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Research Article
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Mild, blast-induced traumatic brain injury (mbTBI) is a common combat brain injury characterized by typically normal
neuroimaging findings, with unpredictable future cognitive recovery. Traditional methods of electroencephalography (EEG)
analysis (e.g., spectral analysis) have not been successful in detecting the degree of cognitive and functional impairment in
mbTBI. We therefore collected resting state EEG (5 minutes, 64 leads) from twelve patients with a history of mbTBI, along with
repeat neuropsychological testing (D-KEFS Tower test) to compare two new methods for analyzing EEG (multifractal detrended
fluctuation analysis (MF-DFA) and information transfer modeling (ITM)) with spectral analysis. For MF-DFA, we extracted
relevant parameters from the resultant multifractal spectrum from all leads and compared with traditional power by frequency
band for spectral analysis. For ITM, because the number of parameters from each lead far exceeded the number of subjects, we
utilized a reduced set of 10 leads which were compared with spectral analysis. We utilized separate 30 second EEG segments for
training and testing statistical models based upon regression tree analysis. ITM and MF-DFA models both generally had
improved accuracy at correlating with relevant measures of cognitive performance as compared to spectral analytic models ITM
and MF-DFA both merit additional research as analytic tools for EEG and cognition in TBI.

1. Introduction

Human EEG recordings have been utilized for clinical and
research purposes since the 1930s, but much is still unknown
about the underlying neuronal dynamics responsible for
scalp-recorded electric potential changes as a function of
time. Recently, many lines of investigation in neuroscience
and statistical physics have converged to raise the hypothesis
that the underlying pattern of neuronal activation which
results in EEG trace recordings is nonlinear, with scale-free
dynamics [1, 2], while EEG signals themselves are nonsta-
tionary and also show scale-free dynamics [3]. Therefore,
traditional statistical methods of EEG analysis (e.g., Fourier

Transform and frequency-averaged spectral analysis) may
not be the most appropriate means to analyze EEG signals,
since these techniques would miss many properties inherent
in nonstationary signals with scale-free dynamics [2].

In an attempt to take these considerations seriously, we
have demonstrated that two separate approaches derived
from physics of time series analysis have the potential to be
improvements over existing techniques (including spectral
analysis), summarized below.

Multifractal detrended fluctuation analysis (MF-DFA):
we have shown that human EEG signals are well-modeled as
a multifractal time series [4]. We have also shown that within
subjects, sleep stages are clearly distinguished from waking via
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multifractal detrended fluctuation analysis (MF-DFA; [4]).
Additionally, in a study of patients with Alzheimer’s disease,
mild cognitive impaired, and age-matched controls, MF-
DFA EEG analysis was shown to predict cognitive function
scores in an out-of-sample EEG dataset [5]

Information transfer modeling (ITM): we have also
demonstrated that human sleep EEG stages are readily differ-
entiated from waking EEG within subjects by means of ITM
analysis [6]. ITM specifically models EEG voltage fluctua-
tions as an “information transfer device” [7, 8], as a way of
characterizing a generalized nonequilibrium thermodynamic
process, via estimation of the information transfer constant
as a function of time. While our previous publication
described the within-lead ITM procedure, in this manuscript,
we provide an additional novel application to between-lead
ITM analysis and take advantage of both spatial and tempo-
ral information transfer patterns to provide a more compre-
hensive understanding in multilead EEG (see methods for
complete details)

To date, neither MF-DFA nor ITM has been directly
compared to spectral analysis (via Fourier Transform) in
their ability to generate EEG-derived parameters that corre-
late with clinically meaningful data. In this manuscript, we
show data from a study performed on a group of individuals
with a history of mild blast-induced traumatic brain injury
(mbTBI), with neuropsychological testing for executive func-
tioning (D-KEFS Tower test [9]), in conjunction with resting
state EEG recordings.

TBI is a devastating consequence of multifactorial causes
of brain damage, which results in considerable morbidity to
affected individuals. In 2014, about 2.87 million TBI-related
emergency department (ED) visits, hospitalizations, and
deaths occurred in the United States [10]. Over the span of
eight years (2006–2014), age-adjusted rates of TBI-related
ED visits increased by 54% [10]. The peak of incidence of
TBI in the general population is in males aged 15 to 24, and
it has been estimated that several million people in the U.S.
alone may suffer from resultant lifelong cognitive and physi-
cal impairment [11].

In U.S. veteran populations, TBI presents a considerable
ongoing clinical challenge. Operation Enduring Freedom
(Afghanistan)/Operation Iraqi Freedom-returning veterans
suffered from high rates of TBI primarily due to concussive
blast injuries [12]. Nearly 7% of veterans seeking U.S. Veterans
Administration (VA) treatment in 2009 were diagnosed with
TBI; of those, 89% had a cooccurring psychiatric disorder
(73% PTSD), and 70% suffered from a chronic somatic pain
disorder [12]. These proportions were far higher than those
in veterans without TBI; all told, veterans with TBI incurred
annual medical costs more than three times greater than those
without ($5831/year vs. $1487/year in 2009). Therefore, TBI
and the resultant increased psychiatric, and medical comor-
bidities represent a large ongoing challenge to military and
veteran health care providers.

Many serious diagnostic and treatment-specific problems
currently limit the ability of clinicians and health care organi-
zations to treat TBI, as there are no single specific biomarkers
for neurocognitive impairment or functional capacity limita-
tions associated with TBI [12]. The gold standard for diagnosis

and treatment of TBI is an expensive, intensive battery of neu-
roimaging, medical, and neuropsychiatric testing to arrive at a
diagnosis and that utilizes a complex diagnostic process to
determine impressions of the patient’s level of functional
capacity [12]. Additionally, existent screening tools designed
to assess for TBI are very nonspecific and frequently provide
positive screens for patients with no history of brain injury
[13]. One of the primary areas of cognitive dysfunction that
individuals with TBI exhibit post injury is the executive, which
is responsible for important life functions, such as planning
and organizing, following through with tasks, analyzing com-
plex information, and modulating emotions. Therefore, there
exists an urgent need to develop specific diagnostic tests for
executive function deficits in TBI, both to aid in diagnosis
and treatment.

The overall aims of this preliminary study were to com-
pare ITM-, MF-DFA-, and FT-derived indices from resting
EEG tracings in their ability to correlate with clinically mean-
ingful measures of executive function in a group of twelve
participants with mbTBI without neuroanatomical lesions
(dataset originally described in [14]). We hypothesized based
upon theoretical and practical considerations that both MF-
DFA and ITM would prove superior to FT as an EEG-
derived correlate for executive functioning.

2. Materials and Methods

2.1. Summary of Experimental Design. Participants (n = 12)
who previously participated in a Greater Los Angeles VA
Healthcare System (GLAVAHS) research study of PET scan-
ning as a potential diagnostic tool for mbTBI (“Regional
cerebral metabolism in blast-induced mild TBI”, Dr. Berenji,
P.I. [14]) were invited back for collection of resting-state EEG
(~5 minutes) and cognitive testing via a test not utilized in
the original study. Participants eligible for the study had a
history of mild blast-induced TBI incurred during their
military service within five years of study entry, with no iden-
tifiable structural lesions. The inclusion criterion for the
study was completion of the VA research study “Regional
cerebral metabolism in blast-induced mild TBI.” The exclu-
sion criteria were any indication of suicidal ideation (i.e., as
assessed by question 9 on the Beck Depression Inventory,
Revised (BDI-II)) or inability to participate in the EEG
collection or cognitive testing. Per VA research guidelines,
participants were compensated for their participation. All pro-
cedures described in this study were approved by the GLA-
VAHS IRB, and informed consent obtained from all subjects.

2.2. Behavioral and Cognitive Measures. Beck Depression
Inventory, Revised (BDI-II [15]) is a 22-item measure of
depressive symptomatology, widely used in psychological
research and practice.

2.2.1. Delis-Kaplan Executive Function System (D-KEFS):
Subtest—Tower Test. The D-KEFS is designed to assess the
key components of executive functions believed to be associ-
ated primarily with the frontal lobe. The Tower test measures
learning of rules, visuo-spatial planning, inhibition of impul-
sive responses, perseveration, and the ability to maintain and
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establish an instruction-based set [9]. The time-per-move
ratio score (TPM) was utilized as the primary outcome mea-
sure, as deficits in the cognitive ability to plan moves are
largely independent of motor function [16] and are impli-
cated as a sensitive indicator of frontal lobe dysfunction
[17, 18]. Secondary outcome measures including total
achievement score (ACH), mean first move time score
(FMT), move accuracy ratio score (MAR), and rule violations
per item ratio score (RVPI), and total rule violation (TRV)
score was also assessed.

Montreal Cognitive Assessment (MOCA) is designed to
provide an accurate assessment for mild to severe cognitive
impairment associated with dementia such as Alzheimer’s
disease or moderate to severe brain injury [19].

2.3. EEG Methods

2.3.1. EEG Acquisition. We collected five minutes of resting-
state EEG on participants utilizing a 64-channel EEG cap via
the NetStation EEG system (Electrical Geodesics, Eugene,
OR). Participants’ EEG activity was continuously recorded
during 5 minutes while patients were instructed to sit quietly
with their eyes closed. EEG data were sampled at 250Hz with
filter settings of 0 to 100Hz in DC acquisition mode. 64 cap-
mounted, equidistant sintered Ag-AgCl electrodes were
positioned via manufacturers’ instructions for use. EEG data
were processed offline using NetStation EEG software, using
a right mastoid reference electrode. However, given time
constraints for participant contact and limited equipment
availability, many of the recorded leads demonstrated ele-
vated levels of impedance (~40% per participant on average),
which likely impaired the overall quality of recorded EEGs.
Nonetheless, all leads were utilized for further analysis, as a
test of likely “real world” application of the EEG analytic
techniques as described.

2.3.2. EEG Analysis.We chose two separate 30 s epochs from
each subject (one from 90 to 120 s of recording and one from
210 to 240 s of recording) for further analysis, using all 64
leads irrespective of the possibility of movement artifacts or
poor impedance. These epochs were used separated for train-
ing and testing EEG data in order to, respectively, train and
test our statistical models (see below).

2.3.3. MF-DFA EEG Analysis. 64 lead digital EEG tracings
(30 s in each of two epochs as above) were analyzed using
MF-DFA as described [4], using right mastoid as a secondary
reference electrode. The following parameters were extracted
from each lead: mean, minimum, maximum Hölder expo-
nents, and width of Hölder exponent spectrum for further
analysis.

2.3.4. ITM EEG Analysis. We performed both within-lead
ITE analysis as described [6] but further characterize a
between-lead EEG ITM analysis herein. Briefly, given appro-
priate constraints, virtually any physical system can be con-
sidered from the point of view of information transfer,
whereby information flows from a source (q) to a destination
(u) [7, 8]. From information theory, therefore, the informa-
tion flow (I) must obey the inequality:

Iu ≤ Iq: ð1Þ

This is because information received cannot exceed
information transmitted. Following this, Fielitz and Borch-
ardt derived equations describing information transfer
relationships for several different physical systems [7, 8].
Relevant to EEG, ITM predicts that there will be an informa-
tion transfer constant (κ) for each instant such that voltage
changes (ΔV) are proportional to corresponding time inter-
vals (Δt):

ΔVj j ~ Δtj jκ: ð2Þ

EEG is a time series of voltage readings VðtÞ, where t =
1, 2,⋯n, (length of series) for each value of t up to n − Δt,
given a time interval Δt. In this manner, the value of the
information transfer constant (κ) for each instant can be
calculated:

κt =
log V t + Δtð Þ −V tð Þð Þ

log Δtð Þ : ð3Þ

Therefore, each segment of EEG would be characterized
by a series of information transfer constant ratios, for
different values of the time interval Δt (i.e., 1, 2, 4, 8, and
time steps):

κ segment,Δtð Þ = 〠
n−Δt

t=1
κt: ð4Þ

Mean information transfer constants as a function of
time interval Δt can provide an accurate description of sleep
staging from a single lead [6].

Principles of ITM can also be extended to between-lead
information flow as a function of time. For two EEG leads
(e.g., l1 and l2) placed on different parts of the scalp, a
measure of between-lead information flow can be defined by
the information transfer constant ratio:

κitcr =
κl1
κl2

: ð5Þ

This implies that for a given time interval Δt, the between-
lead information flow for two leads (l1 and l2) can be assessed
by the following relation:

κitcr,Δt =
log Vl1 t + Δtð Þ −Vl1 tð Þj jð Þ
log Vl2 t + Δtð Þ −Vl2 tð Þj jð Þ : ð6Þ

In a manner similar to the single-lead ITM above (see
equations (2)–(4); [6]), the most meaningful way to utilize
the information transfer constant ratio as a function of time
interval would be as a mean value over a given length (N) of
EEG (e.g., 30 s), with a series of different time intervals (e.g.,
ranging from 4ms to 4 s in natural logarithmic steps).

SegmentMean κitcr,Δt =
∑N−Δt

1 κitcr,Δt
N − Δt

: ð7Þ
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Given that the combination of within- and between-lead
ITM analysis provides for an extremely large number of possi-
ble combinations (i.e., 5 time steps per lead, along with 5 time
steps for each between-lead ITM combination, >20,000 possi-
ble data points for all combinations of 64 leads with only 12
subjects), this would prevent the practical use of data mining
techniques. Therefore, we chose a subset of 10 electrodes
covering the majority of the scalp to keep the number of data
points down to a reasonable number amenable to subsequent
analysis. The choice of 10 leads for ITM analysis was informed
by balancing the desire to adequately sample the entire scalp
with keeping the number of leads as few as possible to avoid
underperformance of statistical modeling. The leads used were
the following (see Electrical Geodesics manual for exact
locations): leads 3 and 56 (right frontal area), leads 9 and 19 (left
frontal area), 6 and 36 (anterior and posterior midline, respec-
tively), 40 and 46 (right parietal), and 26 and 31 (left parietal).

2.3.5. Spectral Analysis. We utilized the R program “spec.p-
gram” to perform a fast Fourier Transform on the same EEG
utilized for MF-DFA and ITM, separately [20]. We extracted
total spectral power for the following bandwidths: alpha (8-
14Hz), beta (16-31Hz), delta (0.1-4Hz), gamma (32-50Hz),
and theta (4-7Hz) for each 30 s segment of each lead.

2.4. Statistical Methodology. As above, the two separate 30 s
EEG segments (either all 64 leads for MF-DFA and matched
FT or subset of 10 leads for ITM andmatched FT analysis) were
analyzed by eachmethod listed above, respectively. Themethod
of Classification and Regression Trees (CART) was used on the
first (training) EEG parameter set, with a minimum split of 4,
using the R program “rpart” [21], designed to follow CART
[22] closely. The rpart model utilized output from the D-
KEFS Tower test subscores to make a regression model with
the EEG training data parameters (1st set of EEG-derived
parameters). In order to minimize bias-variance and overfitting
problems, we utilized 10-fold cross validation for choosing an
optimal complexity parameter for each CART model on the
training dataset. Following [23], we chose complexity parame-
ters based upon the smallest CART model within 1 standard
error of the model with the minimum cross-validation error,
and used these tuned models for predicting cognitive function
from the test datasets. The trained, pruned rpart model for each
subscore and EEG training data parameters was then used to
predict the subscore from the second EEG test data parameters
for each analysis. For correlations between the predicted EEG
test data parameters and the actual subscores, Pearson’s
moment correlation testing was performed using R. CART
tree plots in Supplementary Figure 1 were drawn using the R
“rpart.plot” package [24]. We choose CART for two main
reasons, firstly, that CART models are straightforward in
their physiological interpretation, such that precise EEG-
based parameters that lead to successful models are readily
identified. Secondly, traditional machine learning paradigms
such as Support Vector Machines analysis produced such
high correlations in similar training/testing paradigms that
there were no observable differences between the different
methods tested (data not shown; parameters tuned with 10-
fold cross validation on training data).

3. Results

3.1. Demographic and Clinical Characteristics of the TBI
Participants. The subjects had a mean age of 30:8 ± 2:7 years
of age. The sample was mostly male (10 subjects), mostly
racially white (9 subjects; 2 black subjects), with a substantial
proportion of Hispanic ethnicity (5 subjects), largely represen-
tative of the veteran population in the greater Los Angeles met-
ropolitan region. There was no association between age, gender,
race/ethnicity, BDI score, or MOCA score and any Tower test
subscores (Table 1). All participants had perfect 30/30 MOCA
scores, whereas there was significantly more variability in BDI
scores and Tower test subscores amongst participants on the
procedure day (Table 1). In addition to a diagnosis of a mild
blast-induced TBI, all participants were also independently
diagnosed (using the Structured Clinical Interview for Dsm-5
Disorders (Scid-5-cv): Research Version) with posttraumatic
stress disorder as a result of their military combat experience.
Despite elevated levels of depressive symptoms seen across
subjects (BDI score 21 ± 8:9, Table 1), only four subjects
carried a previous diagnosis of major depression, and none
were taking psychiatric medications at the time of the study.

3.2. MF-DFA Differs from FT on Ability to Predict Test EEG-
Derived Tower Test Scores. The MF-DFA test EEG-derived
CART model correlated with actual Tower test TPM scores,
whereas the FT CART model did not (Table 2 and Figure 1).
However, the FT test EEG-derived CART model did correlate
with actual Tower test RVPI scores, whereas the MF-DFA
CARTmodel did not (Table 2). Neither FT- nor MF-DFA test
EEG-derived CART models correlated with Tower test ACH,
FMT, MAR, or TRV subscores (Table 2).

3.3. CART-Derived RegressionModels and Brain Regions: FT vs.
MF-DFA. Regression models derived from CART data are dia-
grammed schematically in supplementary data (Figure S1). A
summary of the relevant brain regions and statistical models
generated is demonstrated in supplementary Table S1. For
the FT-derived CART model for RVPI, lead 2 (lower right
frontal), lead 30 (left temporal lobe), and lead 58 (lower right
frontal) were included model parameters (Table S1).

For the MF-DFA-derived CART model for TPM, lead 1
(lower right frontal), lead 9 (middle left frontal), lead 24 (left
temporal), and lead 52 (right temporal) were included model
parameters (Table S1).

3.4. On a Reduced EEG Dataset, ITM Differs from FT on
Ability to Predict Test EEG-Derived Tower Test Scores. Utiliz-
ing the reduced 10-lead EEG dataset, ITM test EEG-derived
CART models correlated with actual Tower test ACH, FMT,
MAR, RVPI, and TPM subscores (Table 3 and Figure 2). By
contrast, the FT test reduced lead EEG-derived CART model
only correlated with the actual Tower test RVPI scores
(Table 3). Neither method’s corresponding EEG-derived
CART models correlated with TRV scores (Table 3).

3.5. CART-Derived RegressionModels and Brain Regions for the
Reduced Lead Set: FT vs. ITM. For the reduced lead FT-derived
CART model for RVPI, lead 3 (middle right frontal) and lead
26 (left parietal/temporal) were included model parameters
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(supplementary Figure S1, supplementary Table S1). For the
reduced-lead ITM-derived CART model for ACH, leads 6/56
(middle frontal to left frontal), lead 3 (middle right frontal),
lead 31 (left parietal), lead 36 (midline parietal), and lead 40
(right parietal) were included parameters. For the ITM-
derived CART model for MAR, lead 6 (middle frontal), leads
26/36 (left temporal to midline parietal), and lead 3 (middle
right frontal) were parameters. For the ITM-derived CART
model for FMT, leads 19/31 (left frontal to left parietal), lead
3 (middle right frontal), lead 36 (midline parietal), and lead
56 (lateral right frontal) were parameters. For RVPI, lead 3
(middle right frontal), lead 40 (right parietal), and lead 9
(middle left frontal) were CART model parameters. Finally,
for TPM, leads 9/56 (middle left frontal to later left frontal),
leads 3/6 (middle right frontal to midline frontal), lead 9
(middle left frontal), and lead 36 (midline parietal) were
ITM-derived CART model parameters (Figure S1, Table S1).

4. Discussion

4.1. Differential Performance of MF-DFA and FT on the
Ability to Predict Tower Test Executive Function Subscores
from EEG. Given the dramatically different theoretical back-
grounds behind FT andMF-DFA, it is perhaps not surprising

that EEG-derived parameter models would prove to correlate
with different aspects of Tower test performance (Table 2 and
Figure 1). While TPM has been perhaps the best studied sub-
score of the Tower test [17], RVPI has been shown to specif-
ically impaired in a small study of patients with focal lateral
prefrontal cortex lesions [25]. Therefore, while MF-DFA-
derived EEG in this study did correlate with the most widely
used measure of executive function in the Tower test, there
should certainly continue to be a role for FT, especially with
regard to lesions with a propensity to RVPI impairment.

4.2. Differential Performance of ITM and FT and on the
Ability to Predict Tower Test Executive Function Subscores
from EEG. ITM-derived EEG parameters proved to be the
most globally correlative with Tower test executive function
subscores of the tests examined here, even in the reduced-
lead paradigm (Figure 2 and Table 3). Indeed, ITM analysis
only failed to correlate with Tower test TRV score amongst
all subscores. By comparison, in the same reduced-lead
subset, FT correlated only with RVPI (Table 3).

4.3. Potential General Utility of MF-DFA, ITM, and FT as
Diagnostic Tools for Executive Function Deficits from EEG.
ITM-derived EEG parameters clearly outperformed both
MF-DFA and FT in this paradigm; in that in this study, they
were able to correlate with most Tower test subscores. How-
ever, practically speaking, MF-DFA (in the case of TPM) and
FT (in the case of RVPI) show promise in correlating with
two of the most important subscores. It should be noted that
the between-lead ITM analysis first described here is likely to
represent a considerable improvement over within-lead ITM
[6], as four of the five CART-derived correlationmodels incor-
porated between-lead analysis (Table S1). All this, it should be
noted, while using a reduced set of leads. Future experience
and more comprehensive analysis may allow for more
complete EEG datasets to be successfully analyzed with ITM,
which may further improve the accuracy of these models.

With regard to the TPM Tower test subscore, MF-DFA
may continue to have an important role, given its efficacy
(Figure 1 and Table 2). It is also likely to have the advantage
of being relatively robust to noise, compared to other tech-
niques to detect multifractality in time series’ such as EEG
recordings [26]. Indeed, even in the current study where a
good proportion of the electrode recordings suffered from
high levels of noise due to high impedance, MF-DFA
produced a relatively accurate prediction of the Tower test
TPM score from the test EEG (Table 2 and Figure 1).
Ultimately, given that all three techniques proved to have
some utility in correlating with Tower test subscores in an
out-of-sample test, all three techniques should continue to
be studied as potentially useful modalities for quantitative
EEG research.

4.4. Temporal and Spatial Patterns of EEG-Based Correlates of
Tower Test Performance. While far from a comprehensive
study, the CART-based generation of linear models which
associate with performance in Tower test subscores do provide
some hints as to the localization of relevant brain regions
(Figure S1 and Table S1). For instance, in both complete- and

Table 1: Demographic and clinical characteristics of sample (N = 12).

Overall
Age Male White Hispanic BDI

30.8 (2.7) 10 (83.3%) 9 (75%) 5 (41.7%) 21 (8.9)

Test
component

Statistic vs. test component

ACH 0.28 0.19 0.81 1.6 0.22

FMT -0.35 0.29 0.2 1.4 -0.52

MAR 0.14 0.04 3.17 1.3 0.33

RVPI 0.54 1.4 2.5 0.17 -0.13

TPM 0.21 0.002 0.69 0.42 -0.08

Total
score

0.18 0.2 0.67 0.07 -0.03

ACH: achievement score; FMT: first move time; MAR: TPM: time-per-move
ratio. Listed statistics represent r values (Pearson’s correlation for age and
BDI) and Fð1, 10Þ statistics (ANOVA for male, White, and Hispanic
categories). None of the listed statistics result in statistical significance at
the p < 0:05 threshold.

Table 2: Tower test out-of-sample EEG correlation coefficients with
recursive partitioning: MF-DFA vs. FT.

Subscore FT Corr t stat MF-DFA Corr t stat

ACH 0.41 1.41 0.02 0.06

MAR -0.011 -0.04 0.21 0.66

FMT -0.08 -0.26 0.03 0.08

RVPI 0.6 2.37 ∗ 0.57 2.2

TPM 0.43 1.5 0.68 2.94 ∗

TRV 0.34 1.14 0.31 1.03

ACH: achievement; MAR: mean accuracy ratio; FMT: first move time;
RVPI: rule-violations-per-item ratio; TPM: time per move; TRV: total
rule violations; Corr: Pearson’s product-moment correlation value. Italic,
∗p < 0:05.
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reduced-lead datasets, FT-derived EEG parameters for RVPI
correlations find right frontal and left temporal beta spectral
power are included in the model. These data substantially
overlap with beta spectral power differences seen in a group
of patients with mild blast-induced TBI (versus controls) via
magnetoencephalography [27].

For the complete-lead dataset of MF-DFA-derived EEG
parameters for the TPM correlation model, both left and right
frontal and temporal lobe regions were included, with
characteristic changes in region-specific minimum Hölder
values (Figure S1 and Table S1). This indicates that variations
in the amount of short-range correlation in EEG signals in
frontal and temporal lobe leads are associated with
performance changes in the Tower test TPM. Prior studies
have demonstrated that reduced short-range and increased
long-range correlation in EEG signals were associated with
deep stages of sleep, compared to waking [4, 28]. Therefore,

the assessment of changes in temporal correlations in EEG
signals (e.g., via MF-DFA) may prove to be generally useful
in studies of abnormal brain function, including TBI.

For the reduced-lead dataset of ITM-derived EEG
parameters for the ACH correlation model, the middle fron-
tal to left frontal mean information transfer constant ratio
(κitcr) at an 8ms delay was an included model parameter,
along with mean information transfer constants (κ) in the
right frontal (4ms), left (4ms), right (32ms), and middle
(32ms) parietal leads (Figure S1, Table S1). In the case of
the FMT model, ITM-derived EEG parameters included
left frontal to mid parietal at 3 s delay and midline parietal
(4ms) and right frontal (4 and 256ms) values. For the MAR
correlation model, ITM-derived EEG parameters included left
temporal to midline parietal at 3 s and midline (4ms) and
right frontal (4ms) values. The RVPI model ITM-derived
EEG parameters contained left and right (4ms each) frontal,
along with right parietal (32ms) values. Finally, the ITM-
derived EEG parameter model for TPM included left frontal
to lateral left frontal (64ms) and right frontal to midline
frontal (8ms) values, along with left frontal (2 s) and midline
parietal (4ms) values. Therefore, EEG-based ITM-derived
regression models for Tower test subscores provide both
spatial and temporal data about brain regions involved in
associative information processing. Indeed, the relevant
timeframe can be as short as 4 milliseconds or as long at 3
seconds for between- or within-lead information transfer.

4.5. Limitations. The number of participants in this study was
relatively small, and given the high dimensional nature of the
parameterized EEG data, more definitive studies will await
larger sample sizes in future studies. The population was lim-
ited to patients with mbTBI with no structural lesions, and
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Figure 1: Correlations of FT- and MF-DFA EEG-derived CART model for TPM with actual TPM scores. Using all 64 leads and the first 30 s
set of EEG parameters, a CARTmodel was trained and then tested on the novel 30 s set. The resulting predicted scores are correlated with the
actual TPM score for each participant: (a) FT-derived model; (b) MF-DFA-derived model. For demonstration purposes only, a small amount
of noise was added to the TPM scores.

Table 3: Tower test out-of-sample EEG correlation coefficients with
recursive partitioning: ITE vs. FT.

Subscore FT Corr t stat ITE Corr t stat

ACH 0.31 1.04 -0.19 -0.62

MAR -0.33 -1.12 0.92 7.25 ∗

FMT 0.2 0.63 -0.72 -3.28 ∗

RVPI 0.75 3.53 ∗ 0.71 3.15 ∗

TPM 0.14 0.44 0.64 2.63 ∗

TRV 0.38 1.31 0.29 0.97

ACH: achievement; MAR: mean accuracy ratio; FMT: first move time; RVPI:
rule-violations-per-item ratio; TPM: time per move; TRV: total rule
violations; Corr: Pearson’s product-moment correlation using reduced 10-
lead EEG dataset. Italic, ∗p < 0:05.

6 Computational and Mathematical Methods in Medicine



therefore, these results may not apply to clinical populations
with focal TBI or other gross structural brain pathologies.
There was limited clinical information about concomitant
medical or psychiatric history for the participants. Although
BDI scores did not correlate with Tower test or MOCA per-
formance, and none of the participants were taking psycho-
tropic medications, some of the participants had elevated
levels of depressive symptoms and/or histories of a diagnosis
of major depression. Access to more comprehensive neuro-
psychological testing was not available; only MOCA and D-
KEFS Tower test results were collected on the day of EEG
collection. Information on the presence and severity of cog-
nitive impairment is limited when using the MOCA with
individuals with mild TBI. EEG data collection was ham-
pered by poorly contacting electrodes in many cases, which
may have impaired the study power overall.

5. Conclusions

The development of a biomarker derived from EEG signals
which correlates with executive function deficits and associ-
ated neuroanatomical lesions would provide an important
clinical tool for providers treating patients with TBI. Such
an EEG-based biomarker for executive function deficits
would be a major clinical innovation for treatment providers,
given the high prevalence and associated morbidity of TBI.
The current results are promising and merit further investi-
gation of the ability of ITM, FT, and MF-DFA EEG analyses
to provide an independent assessment of cognitive function.
In particular, overall executive function (as assessed by TPM)
seems to be best assessed via ITM and MF-DFA (Figures 1
and 2 and Tables 2 and 3), whereas RVPI is likely better

assessed via FT or ITM (Tables 2 and 3). While based upon
a limited sample, these data certainly give ample justification
for larger studies of the potential for FT-, MF-DFA-, and
ITM-based EEG analysis to correlate with executive function
deficits in TBI.

Data Availability
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a publicly accessible section of github.com upon acceptance
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Supplementary Materials

Supplementary 1. Supplementary Figure 1: classification tree
plots for EEG parameter models with significant correlations
with Tower test subscores. As in Figures 1 and 2, these plots
represent CART-derived tree plots of the actual successful
correlation models. Each tree branch is described by the lead
number, followed by the classifier after a period, then an
operator, then the classifying value. For example, “L30.bet
< 48e+3” indicates “lead 30 beta power < 4800” as the
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Figure 2: Correlations of FT and ITM EEG-derived CART model for TPM with actual TPM scores. Using the reduce 10 lead subsets and the
first 30 s set of EEG parameters, a CARTmodel was trained and then tested on the novel 30 s set. The resulting predicted scores are correlated
with the actual TPM score for each participant: (a) FT-derived model; (b) ITM-derived model. For demonstration purposes only, a small
amount of noise was added to the TPM scores.
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classifying value in the first panel. FT: alp- alpha; bet- beta
power. MF-DFA: avgh- average Holder value; minh- mini-
mum Holder value. ITM: V signifies the lead, with the num-
ber after the period indicating the time step Δt (in units of
sampling rate 250Hz), with the classifier as the value of
the mean Information Transfer Constant κ at the time step.
Classifiers with two leads listed (e.g., “V6V52”) indicates the
value of the relevant Information Transfer Constant Ratio
κITCR, again with the number after the period indicating
the time step in units of the sampling rate.

Supplementary 2. Table 1: CART-derived parameter rules
from successful models.
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