
Lawrence Berkeley National Laboratory
LBL Publications

Title
Broad-band trajectory mechanics

Permalink
https://escholarship.org/uc/item/69t2483m

Journal
Geophysical Journal International, 216(2)

ISSN
0956-540X

Authors
Vasco, DW
Nihei, Kurt

Publication Date
2019

DOI
10.1093/gji/ggy435
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/69t2483m
https://escholarship.org
http://www.cdlib.org/


submitted to Geophys. J. Int.

Broad band trajectory mechanics1

D. W. Vasco and Kurt Nihei

Lawrence Berkeley National Laboratory,
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Berkeley, California 94720

2

3

SUMMARY4

5

We present a trajectory-based solution to the elasto-dynamic equation of motion6

that is valid across a wide range of seismic frequencies. That is, the derivation of7

the solution does not invoke a high frequency assumption or require that the medium8

have smoothly-varying properties. The approach, adopted from techniques used in9

quantum dynamics, produces a set of coupled ordinary differential equations for the10

trajectory, the slowness vector, and the elastic wave amplitude along the ray path.11

The trajectories may be determined by a direct solution of the governing equations12

or derived as the by-product of a numerical wavefield simulation. Synthetic tests with13

interfaces and layers containing increasingly narrow transition zones indicates that14

the conventional high-frequency trajectories associated with the eikonal equation15

bend too sharply into high velocity regions as the wavelength exceeds the transi-16

tion zone width. Tests in a velocity model, based upon mapped structural surfaces17

from the Geysers geothermal field in California, indicates that discrepancies between18

high-frequency and broad band trajectories can exceed several hundred meters at19

wavelengths of 1 Hz. An application to a crosswell tomographic imaging experiment20
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demonstrates that the technique provides a basis for the seismic monitoring of fluid21

flow along narrow features such as fracture zones.22

Key words: Seismic wave propagation, seismic tomography, seismic imaging, ray23

methods, high-frequency wave propagation24

1 INTRODUCTION25

Ray-based methods have proven useful in seismology for both visualizing wave propagation26

and for efficient tomographic inversions based upon seismic first arrival times (Aki et al. 1976,27

Iyer and Hirahara 1993). Applications of the latter have been widespread, from crosswell28

tomography (as in Dines and Lytle 1979, McMechan 1983, Peterson et al. 1985), regional29

earthquake studies (Aki and Lee 1976, Thurber 1983, Serretti and Morelli 2011, etc.), to30

whole Earth imaging (as in Sengupta and Toksoz 1976, Dziewonski et al. 1977, Hager and31

Clayton 1989, Inoue et al. 1990, Pulliam et al. 1993, Bijwaard and Spakman 2000, Vasco et32

al. 2003 and others). While there have been tremendous advances in full waveform inversion,33

imaging based upon first arrival times is still very useful for deriving a velocity model. The34

utility is due, in large part, to the quasi-linearity of the inverse problem associated with35

travel times. That is, tomography based on arrival times is not as sensitive to the initial or36

starting velocity model as is waveform inversion. Intuitively, the misfit derived from oscillatory37

waveforms varies in a quasi-periodic fashion in response to lateral shifts of the traces and this38

generates local minima in the misfit functional (Dessa and Pascal 2003, Alkhalifah and Choi39

2012, Bharadwaj et al. 2016). In addition, travel time tomography typically involves much40

less computation and data handling then does waveform inversion. The determination and41

use of a first arrival time is a form of data reduction, leading to a much smaller and more42

tractable inverse problem. Therefore, travel time tomography still has a place in the field of43

seismic imaging.44

Conventional ray-based approaches have their foundation in asymptotic ray theory as de-45

scribed in Karal and Keller (1959), Aki and Richards (1980), Chapman (2004), a technique46

that was developed earlier as a means to relate electromagnetic wave propagation and geomet-47

rical optics (Luneburg 1966, Kline and Kay 1965). The approach explores wave propagation in48

the limit as the frequency becomes large, or equivalently, for spatial variations in elastic prop-49

erties that are smooth with respect to the wavelength of the seismic wave (Aki and Richards50

1980, p. 89). In such cases, the governing equations for the phase and amplitude of the wave51

decouple and it is possible to relate perturbations in the travel time directly to perturbations52
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in the elastic properties. Specifically, the variations in the phase of a transient pulse, and of53

the travel time, may be interpreted in terms of an eikonal equation that only depends upon54

the seismic velocity. The characteristic ordinary differential equations that are equivalent to55

the eikonal equation produce expressions for the raypath tangent vector and the slowness56

vector. Efficient numerical algorithms, based upon finite differences, have also been developed57

to solve the eikonal equation directly such as papers by Vidale (1988), Sethian (1999), Osher58

and Fedkiw (2003).59

While ray-based methods have proven highly successful, in many situations the conditions60

for their validity are likely to be violated within the Earth. Elastic properties vary over a61

wide range of scales in the subsurface and heterogeneity abounds. Such variation is evident in62

sonic logs that record the spatial variations in compressional velocity along the length of wells63

(Leary 1991, Holliger 1996, Savran and Olsen 2016). Interfaces, layering, and fracture zones64

are examples of common structures where material properties can change abruptly. Even at65

the global scale there are features such as subducting slabs, narrow plumes, and sharp phase66

transitions where velocities vary over scales that may be shorter than the length scale of some67

of the longer period waves used to study them. This is particularly true for surface waves that68

interact with structural features at or near the Earth’s surface (Lin and Ritzwoller 2011).69

Wavelength dependent velocity smoothing (Lomax 1994, Lomax and Snieder 1996, Zelt and70

Chen 2016) may be used to mitigate deficiencies of high-frequency asymptotic methods but71

such approaches involve some ad-hoc choices regarding the type of averaging to incorporate.72

Following an approach developed in quantum dynamics (Wyatt 2005, Bittner et al. 2010,73

Bensey et al. 2014, Gu and Garashchuk 2016), we derive a trajectory-based solution to the74

elastodynamic equation of motion. We do not invoke a high-frequency assumption nor do75

we assume that the medium is smoothly-varying in comparison to the length scale of the76

seismic wave. The technique is suitable for modeling first arrival times associated with coherent77

compressional waves. The set of ordinary differential equations describing the trajectory and78

the amplitude of the propagating wave are similar to those of asymptotic ray theory. The79

primary difference is the presence of a term, known as the wave potential, that couples the80

phase to the amplitude of the wave. The differential equations for the extended solution may81

be solved using numerial techniques or by a hybrid approach whereby the travel time field is82

obtained from a numerical solution of the wave equation and the path is obtained by marching83

down the gradient of the phase field. The latter approach is direct, easy to implement, and84

stable but does require a forward calculation of the wavefield. We use the wavefield-based85

algorithm to calculate extended trajectories for several examples involving interfaces and layers86
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with increasingly sharp boundaries. We compare these paths to conventional high-frequency87

paths derived using the eikonal equation. We also illustrate how the approach can be used for88

tomographic imaging, providing semi-analytic expressions relating travel time perturbations89

to small changes in slowness along the trajectory. This allows for easily computed model90

parameter sensitivities that can be used to extend conventional ray-based methods to models91

with rapid spatial variations in properties.92

2 METHODOLOGY93

Our starting point is the elasto-dynamic equation of motion94

ρü = ∇ (λ∇ · u) +∇ · µ
[

∇u+ (∇u)t
]

(1)95

where λ(x) is the Lame parameter, µ(x) is the shear modulus, and ρ(x) is the density. In this96

initial application of the technique we shall only consider wave propagation in an isotropic97

medium without attenuation. Applying the Fourier transform to equation (1) in order to work98

in the frequency domain results in99

−ρω2U = ∇ (λ∇ ·U) +∇ · µ
[

∇U+ (∇U)t
]

, (2)100

where U(x,ω) is the transformed displacement vector. Our interest will be in the interpre-101

tation of arrivals that are observed at some distance from the source. We assume that the102

displacements are due to a coherent body wave propagating through the medium. One can103

write the complex vector U(x,ω) in a polar form104

U(x,ω) = R(x,ω)e−iϕ(x,ω) (3)105

where R(x,ω) and ϕ(x,ω) are both real variables. Note that the form (3) does not extend to106

interface waves, including surface waves, where there may be a phase shift between individual107

components. As shown in the Appendix, substituting the polar form (3) into equation (2)108

produces an expression containing real and imaginary terms.109

2.1 Real terms and the ray equations110

As indicated in the Appendix, if we just consider the real terms we arrive at the equation111

(λ+ µ)∇ϕ ·R∇ϕ+ µ∇ϕ ·∇ϕR− ρω2R = F(x,ω) (4)112

where the right-hand-side F(x) is given by113

F(x,ω) = (∇ ·R)∇λ+∇ · µ
[

∇R+ (∇R)t
]

. (5)114
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For brevity, we define the wave number vector115

k = ∇ϕ (6)116

the gradient of the phase function, and the related slowness vector117

p =
k

ω
(7)118

where p = ∇T is the gradient of the travel time field T (x,ω). Note that this, along with119

equations (6) and (7), implies that ϕ(x,ω) = ωT (x,ω). Equation (4) can be expressed in120

terms of k and R121

(λ+ µ)k ·Rk+ µk · kR− ρω2R = F(x,ω). (8)122

Taking the scalar product of both sides of equation (8) with the displacement vector R results123

in single equation in R and k,124

(λ+ µ) (k ·R)2 + µk · kR2 − ρω2R2 = F ·R (9)125

where126

R2 = R ·R. (10)127

Dividing by ρ, ω2, and R2, we can write equation (9) in terms of the slowness vector p128

α2
(

p · R̂
)2

+ β2p · p− 1 = W (x,ω) (11)129

where130

α(x) =

√

λ+ µ

ρ
, (12)131

β(x) =
√

µ

ρ
, (13)132

W (x,ω) =
1

ρRω2
F · R̂, (14)133

a term that is known as the wave potential, and R̂ is a unit vector in the direction of R. We134

can write equation (11) as the vanishing of a Hamiltonian function of x and p, parameterized135

by ω,136

H(x,p,ω) = 0 (15)137

where the Hamiltonian is given by138

H(x,p,ω) = α2
(

p · R̂
)2

+ β2p · p− 1−W (x,ω). (16)139

In a medium with smoothly-varying properties, or at a high enough frequency, the 1/ω2 factor140

in equation (14) can make the term W (x,ω) negligible.141
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We are interested in the path of a segment of a propagating wavefront as it moves through142

an elastic medium. To this end, we consider a trajectory x(s) that denotes the movement of the143

disturbance from a source location to a given observation point. The parameter s signifies the144

position along the trajectory and may represent the path length or the travel time. Similarly,145

we consider the slowness vector to be a function of distance along the path p(s). Differentiating146

equation (16) with respect s147

dH

ds
= ∇xH ·

dx

ds
+∇pH ·

dp

ds
= 0, (17)148

where we treat the components of x and p as variables while ω is considered to be a pa-149

rameter. Here, ∇x signifies the spatial gradient and ∇p signifies a gradient with respect to150

the components of the slowness vector p. Intuitively, equation (17) can be thought of as151

an orthogonality condition on the six-dimensional vector (dx/ds, dp/ds) with respect to the152

gradient vector (∇xH,∇pH). The orthogonality condition for these two vectors provides the153

bi-characteristic ordinary differential equations for the trajectory154

dx

ds
= ∇pH = 2α2

(

p · R̂
)

R̂+ 2β2p (18)

dp

ds
= −∇xH = −∇xγ

2 − p2∇xβ
2 +∇xW, (19)

where we have defined

γ = α
(

p · R̂
)

and p2 = p · p is the squared magnitude of the wave number vector. These are Hamilton’s155

equations for the conjugate quantities associated with the Hamiltonian (16). Perhaps the most156

useful form is in terms of the travel time along the trajectory, T , and later we shall write the157

equations using T to denote position along the path. The equations are generalizations of158

the expressions associated with a high-frequency asymptotic approximation (Chapman 2004).159

One important difference is the presence of the function W (x,ω) that couples the trajectory160

to the wave amplitude.161

2.2 Expressions for the compressional and shear modes of propagation162

Equations (18) and (19) do not distinguish between shear and compressional modes of propa-163

gation. That is to be expected because the modes couple at sharp boundaries and the equations164

must be general enough to describe this. However, in many cases we are interested in the first165

arriving energy that has propagated solely as a compressional wave. Alternatively, one may166

wish to focus on arrivals associated with waves that traveled from the source to a given re-167

ceiver entirely as shear modes. In such cases it is useful to restrict equations (18) and (19)168
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to specific phases that have maintained their identity throughout their journey. Therefore,169

we shall consider the compressional mode of propagation whereby the particle motion is in170

the direction of propagation and the shear mode where such motion is perpendicular to this171

direction.172

For the compressional wave in an isotropic and non-attenuating medium the displacement173

vector is parallel to the propagation direction and we can write the amplitude vector R(x,ω)174

as175

R(x,ω) = R(x,ω)p̂(x,ω) (20)176

where p̂ is a unit vector in the direction of p. Because p = ∇ϕ, this restriction is related to177

the assumption that the wavefield may be derived from a potential function. Equation (20)178

requires that R̂ = p̂, so that the equations (18) and (19) for the trajectory x and slowness179

vector p reduce to180

dx

ds
= 2Vp

2p (21)

dp

ds
= −p2∇xVp

2 +∇xW, (22)

where Vp signifies the speed of the compressional wave, given by181

Vp =

√

λ+ 2µ

ρ
. (23)182

These equations are very similar to the asymptotic expressions for x and p along a ray path183

(Chapman 2004). Again, the presence of the wave potential in equation (22) couples that184

trajectory and slowness vector to the wave field amplitude. The requirement that R(x,ω)185

have the form (20) is more restrictive and limits the modes of propagation, for example not186

allowing for mode conversions at boundaries that can occur if the equations (18) and (19)187

are used. However, due to the inclusion of the wave potential, the range of validity is still188

significantly greater then it is for high-frequency asymptotic ray theory.189

Shear modes are associated with particle motion transverse to the direction of propagation.190

Such phases are important for imaging partial melts and the loss or rigidity. In an isotropic191

medium it is possible to study waves that have maintained their identity as shear waves192

throughout their propagation. Rectilinear shear motion in the plane transverse to p is given193

by194

R(x,ω) = R(x,ω)l(x,ω) × p̂(x,ω), (24)195

where l is a unit vector perpendicular to the motion. It we substitute the normalized form of196

this vector for R̂ in equations (18) and (19) then the terms containing p · R̂ vanish because197
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the two vectors are perpendicular. As a result equations (18) and (19) become198

dx

ds
= 2Vs

2p (25)

dp

ds
= −p2∇xVs

2 +∇xW, (26)

where Vs = β is the shear velocity given by equation (13).199

2.3 Imaginary terms and the transport equation200

2.3.1 General considerations201

Due to the presence of the wave potential W (x,ω) and other terms containing the amplitude

vector R(x,ω), equations (18) and (19) are incomplete. As shown in the Appendix, equa-

tion (A14) provides a closed system of differential equations. This equation is obtained by

considering the imaginary terms that result upon substituting the representation (3) into the

elasto-dynamic equation of motion (2) and the equation that they define:

∇ (λk ·R) + λ∇ ·Rk+∇µ ·Rk+∇µ · kR+ µ∇R · k

+µ (∇R)t · k+ µ∇ · (Rk) + µ∇ · (kR) = 0. (27)202

Equation (27) is generally valid and makes no assumptions about the nature of the propagating203

wave front, other then that provided by the polar form (3). Therefore, the most general204

analysis would start from this equation. That is, equations (4) and (27) define a coupled205

system that describes the evolution of the phase ϕ and amplitude vector R of a propagating206

elastic wave. Both equations are non-linear partial differential equations and therefore difficult207

to solve. The non-linearity is to be expected, simply from the fact that the interaction of a208

single mode of propagation, such as a compressional wave, with a sharp boundary can lead209

to additional modes such as reflected and transmitted shear modes. As indicated above, the210

partial differential equation (4) is equivalent to the system of ordinary differential equations211

(18) and (19) for the trajectory x(s) and the slowness vector p.212

2.3.2 The transport equation for a compressional mode213

In the remainder of this section we will focus on the study of compressional waves and will214

restrict our attention to those particular modes comprising the first arriving energy in a wave215

train. This involves an additional degree of approximation, as discussed in section 2.2. That216

is, we assume that the mode of propagation can be characterized along the propagation path,217

in this case as a compressional wave with displacement in the direction of p.218
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We begin by projecting onto the direction of motion, that is, taking the scalar product of219

the terms in equation (27) and R. R and k are parallel for the first arriving longitudinal wave,220

we can use the symmetry of the scalar products to collect similar terms and write equation221

(27) as222

∇ · (λk ·RR) + 2∇µ ·Rk ·R (28)223

+2µR ·∇R · k+ 2µR ·∇ (k ·R) = 0.

Noting that the terms containing µ are just those that appear when we take the divergence224

of the vector quantity 2µk ·RR, we can write equation (28) as a divergence225

∇ · [(λ+ 2µ)k ·RR] = 0. (29)226

If we divide both sides by ω, and account for the definition (7), we can write equation (29) in227

terms of p228

∇ · [(λ+ 2µ)p ·RR] = 0. (30)229

Multiplying by ω2 we can write this expression in terms of the velocity vector in the frequency230

domain V(x,ω)231

∇ ·
[

ρα2p ·VV
]

= 0, (31)232

where233

V = ωR, (32)234

and we have used the definition (12) of α(x). We can write equation (31) as the divergence235

of the vector236

N = ρα2p ·VV, (33)237

known as the energy flux vector, the equivalent of the Poynting vector in electromagnetism238

(Chapman 2004, p. 147). Equation (31) can be formulated as an ordinary differential equation239

if we apply the divergence operator to the product, giving240

V ·∇
(

ρα2p ·V
)

= −ρα2p ·V∇ ·V, (34)241

and using the fact that V ·∇ = d/dT , where T is the travel time along the trajectory,242

d

dT
ln

(

ρα2p ·V
)

= −∇ ·V, (35)243

a variation of the transport equation. From the definition (32) we can substitute ωR for V in244

equation (35) to produce an equation in terms of the displacement amplitude vector245

d

dT
ln

(

ωρα2p ·R
)

= −ω∇ ·R. (36)246
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This is a single equation in terms of p and R but we can rewrite it in terms of the amplitude247

of a longitudinal wave propagating along the trajectory x(s). That is, if we represent the248

amplitude vector by R = Rp̂, where R is the amplitude of the longitudinal wave, then249

equation (36) is a scalar ordinary differential equation in p and R.250

2.4 Solutions of the elasto-dynamic equation of motion and the determination251

of the trajectory252

Given an elastic model, along with initial and/or boundary conditions, we could solve the253

two sets of equations (8) and (27) for k, and R. Such a solution would provide the quantities254

necessary to construct a solution to the elasto-dynamic equation of motion (2). As a hypothet-255

ical example, consider a compressional wave impinging on a rapidly-varying velocity structure256

that resembles a step in properties, as in the examples given below. The solution of the two257

governing equations would provide the set of slowness vectors k and amplitudes R that result258

from the interaction of the impinging wavefield and the rapid variation in elastic properties.259

For a discontinuous step function with uniform values on either side of the boundary, such a260

calculation can be accomplished using other methods (Aki and Rickards 1980).261

If we are only interested in the transmitted compressional wavefield, we could simplify262

the problem and focus on that mode of propagation, solving equations (21), (22), and (36).263

Similar considerations also apply to the transmitted shear mode. In order to determine the264

dependent variables, including the path x(s), we may apply numerical techniques for solving265

systems of ordinary differential equations, such as the Runge-Kutta method (Cash and Carp266

1990, Press et al. 1992, Ascher and Petzold 1998). An additional complication arises due267

to the coupling between the amplitude and phase, as a result of the presence of the term268

∇xW in equation (22). The trajectory now depends upon the spatial gradient of properties269

of the amplitude field, linking the calculations associated with adjacent trajectories. In spite270

of this, it is still possible to devise an efficient algorithm for constructing a trajectory-based271

solution, as is evident in applications to quantum dynamics (Wyatt 2005, Bittner et al. 2010,272

Garashchuk et al. 2011, Gu and Garashchuk 2016). These techniques have proven useful in273

modeling higher dimensional chemical systems and quantum mechanical effects in crystals274

(Wyatt 2005, Benseny et al. 2014). An alternative is to solve the coupled partial differential275

equations (11) and (30) using numerical techniques. Unfortunately, due to the coupling it276

is not possble to adopt a fast marching technique (Sethian 1999, Osher and Fedkiw 2003)277

directly, and the use of such methods will be the topic of future research.278

As our interest is in the definition of the trajectories and in their use for visualization and279
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imaging, we advance an alternative approach that is convenient if codes for waveform modeling280

are available. Specifically, we utilize a numerical code for the calculation of the wavefield and281

post-process the results to obtain the travel time field Tnum(x,ω). The slowness vector is the282

gradient of the travel time field, pnum = ∇Tnum, and the trajectory is given by283

dx

dT
= 2Vp

2pnum. (37)284

Given the slowness vector, equation (37) may be integrated numerically using a technique285

such as Huen’s method, or a Runge-Kutta method (Cash and Carp 1990, Ascher and Petzold286

1998). The technique is stable when marching down the gradient of the travel time field from a287

station location to the source point. The post-processing method should mirror the technique288

used to extract arrival times from the actual data. For example, one could use the same289

thresholding technique to determine the arrival times in both the observed and calculated290

wavefields. Travel times corresponding to specific frequencies can be estimated by filtering.291

3 APPLICATIONS292

We will illustrate the calculation of the extended trajectories using several velocity models.293

Interfaces and layers are considered first, as these are the most common features that are294

sharp and not smoothly-varying. A three-dimensional model for the Geysers geothermal area295

is explored next as an example of a velocity structure based upon a large set of geological,296

geophysical, and hydrological data (Hartline et al. 2015). Finally, we consider a travel time297

tomography application and indicate how the technique may be used to image fluid flow-298

related changes in seismic velocity. Our primary goal in this section is to compare the extended299

trajectories with ray paths computed using a conventional approach based upon the eikonal300

equation.301

3.1 Trajectories in the presence of boundaries and layers302

Layering is ubiquitous within the Earth and occurs over a wide variety of length scales. This303

fact presents a challange to methods that assume smoothly-varying properties in relation to304

the wave lengths of propagating elastic waves. In order to observe the break-down of the high-305

frequency approximation we will consider interfaces and layers with boundaries of variable306

sharpness. In particular, each interface will be represented as a transition zone from a region307

with one velocity to a region with a different velocity. The transition zone will be described308

mathematically by the function309
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f(z) = 1−
1

2
arctan [σ (z − zi)] (38)310

where σ is a parameter signifying the abruptness of the boundary, larger values of σ correspond311

to sharper interfaces. The position of the interface is specified by the parameter zi. Layers312

will be described by two such transition zones in close proximity.313

3.1.1 Boundaries314

The simplest boundary is an abrupt change in properties, as observed at various depths in315

the Earth such as the mantle discontinuities, the core-mantle boundary, and the inner core-316

outer core boundary. The exact transitional characteristics of these internal boundaries are317

still the topics of active research. Using equation (38), we consider three different transitions318

in properties across the boundary, as characterized by values of σ equal to 0.1, 1.0, and 10.0319

(Figure 1). As is evident in Figure 1, σ = 0.1 produces a smoothly-varying transition zone320

for elastic waves with wavelengths of the order of hundreds of meters to a kilometer. We321

constructed a three dimensional model containing such a transition zone at a depth of 2 km,322

with a lateral extent of 5 km on a side. A vertical cross-section through the velocity model is323

plotted in Figure 2.324

First, we calculate the ray paths, invoking the conventional high-frequency approximation325

leading to the eikonal equation (Aki and Richards 1980, Chapman 2004). The numerical326

solution of the eikonal equation described by Zelt and Barton (1998), a modification of the327

finite difference approach of Vidale (1988), is used to calculate the travel time field Teikonal(x).328

The ray paths are determined by solving the ordinary differential equation329

dx

ds
= ∇Teikonal (39)330

using a Runge-Kutta based algorithm (Cash and Carp 1990). In essence, the algorithm simply331

marches down the gradient of the travel time field from the point of interest to the source332

location. The travel time field Teikonal(x) and the corresponding trajectories are plotted in333

Figure 2 for the model with the smooth transition.334

The extended trajectories, are found by solving equation (37), which may be written as335

dx

dT
= 2Vp

2∇Tnum (40)336

where Tnum(x,ω) is the travel time field obtained from a numerical solution of the elastic337

equations of motion. In the case shown in Figure 2 we use the finite-difference solution of the338

poroelastic equations described in Masson and Pride (2011) specialized to case in which the339

poroelastic effects are negligible. The source function is a Gaussian modulated by a sinusoidal340
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function that varies as the frequency ω. In most of the examples in this sub-section, the341

central frequency ω is 3 Hz. For this model, with smoothly-varying properties, the trajectories342

based upon the eikonal equation and those resulting from solving equation (40) are essentially343

identical (Figure 2).344

Equation (38) produces a much sharper transition zone when σ = 10.0, with a width of345

0.1 km or less (Figures 1 and 3). In this case the trajectories based upon the eikonal equation346

may be divided into two groups, those that propagate down into the high velocity half-space347

and those that are not influenced by the high velocity region. The latter ray paths form348

straight line segments from the source to the receivers. In the middle panel in Figure 3 we349

observe a kink in the travel time field produced by the eikonal equation, separating the regions350

where these two groups of rays are important. For the high frequency traveltimes there are351

two evident kinks, one above the transition zone and one along it. Ray paths for receivers352

between the two kinks bend strongly into the half-space and propagate along the narrow353

transition zone. Rays outside of this region largely propagate along straight lines insensitive354

to the presence of the interface, except for the rays which cross it. The crossing rays bend at355

the interface approximating Snell’s law of refraction from geometrical ray theory (Chapman356

2004). In contrast, the travel times from the elastic wave equation are continuous and do357

not displays the sharp kinks produced by the eikonal equation (Figure 3). Correspondingly,358

the raypaths all appear to curve in response to the interface. None of the paths concentrate359

at the boundary, rather they dive under the transition zone and curve broadly within the360

high velocity half-space. Two paths deviate strongly from the high frequency asymptotic361

trajectories, those associated with the fourth and fifth receivers from the upper boundary.362

From equations (14) and (22) one would expect that the conventional ray equations would363

become more accurate with increasing frequency. That is, because the wave potential Ŵ (x,ω)364

varies as 1/ω2 the term should be 100 times smaller as ω varies from 1 to 10. In order to test365

this we consider source pulses with center frequencies of 1, 3, and 10 Hz, as shown in Figure366

4. The medium corresponds to the half-space model with σ =1.0 shown in Figure 1. Vertical367

snapshots of the wavefields are also plotted in Figure 4 and they indicate that the wavelengths368

vary from around 2.0 km at 1.0 Hz to about 0.20 km at 10.0 Hz. The exact wavelength of369

the elastic disturbance depends upon the compressional velocity, which varies as a function370

of position within the medium. The resulting sets of trajectories for the three frequencies are371

shown in Figure 5. As ones progresses from the lowest frequency (1 Hz) to the highest (10 Hz)372

the trajectories within the lower, higher velocity, half-space become increasing concentrated373

at the boundary.374
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3.1.2 Layering375

Layering, probably the most common form of heterogeneity within the Earth, may be consid-376

ered to be the superposition of two interfaces. In addition to the width of the transition zone377

defining the edges of the layer, we also have the length scale associated with the thickness of378

the layer. In Figure 6 we plot three vertical velocity profiles associated with a layer approxi-379

mately 100 m thick. The smoothness of the transition zones defining the edges of the layer are380

characterized by the function (38). For σ =0.1 the layer is quite smooth, while values of 0.5381

and 10.0 produce rather abrupt boundaries and thin layers relative to wavelengths of the order382

of a few hundred meters or more. As in the previous sub-section we consider a source-time383

function with a dominant frequency of 3.0 Hz, as shown in Figure 4.384

For a layer with edges defined by equation (38) with σ = 0.1, the eikonal and extended385

trajectories are very similar, as shown in Figure 7. Increasing σ to 0.5 results in a layer with386

moderately sharp boundaries (Figures 6 and 8). The rays based upon the eikonal equation387

either propagate above the layer unaffected by the nearby velocity variation, or propagate388

steeply down into the layer and then spread out to the various receivers at the rightmost389

edge of the model (Figure 8). The influence of the layer is more wide-spread in the trajectory390

mechanics approach and most of the paths above the layer bend in response to its higher391

velocities. Several of the trajectories are significantly different from those of the eikonal equa-392

tion, in particular those starting from the fourth and fifth receivers. As in the case of the393

half-spaces, the travel time field associated with the eikonal equation displays a kink that is394

not observed in the travel time field from the numerical simulator.395

3.2 An example velocity model from The Geysers396

As an example of a more complicated model, we consider a three-dimensional velocity struc-397

ture for a selected area of the Geysers geothermal area in California. The velocity variation398

is based upon a structural model constructed from approximately 870 lithology logs, surface399

geology maps, reservoir temperature and pressure observations, tracer tests and reservoir his-400

tory matching, and microseismic data (Hartline et al. 2015). The structural model consists401

of surfaces separating major lithologies such as graywacke/argillite, greenstone, serpentinite,402

melange, and felsite (Figure 9). Given the lithologic boundaries from well information, it was403

necessary to populate the model with seismic velocities. Due to the harsh reservoir conditions,404

including high temperatures and corrosive fluids, conventional geophysical logging methods405

developed for oil and gas applications are not practical at the Geysers (Hartline et al. 2015).406

As a result of these complications, there are few direct measurements of elastic properties407
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from wells at the Geysers and seismic tomography remains the most common approach for408

obtaining information on compressional and shear velocities (Julian et al. 1996, Gritto et al.409

2013, Gritto and Jarpe 2014). We used the velocity model of Gritto et al. (2013) to populate410

our structural model with seismic velocities. The model is 5 km by 5 km in the east-west411

and north-south directions and 5 km in depth. An east-west cross-section through the ve-412

locity model, intersecting our source location, is shown in Figure 10. The structure consists413

of constant velocity layers separated by velocity gradients, capturing the large-scale spatial414

variations in seismic properties. The ground surface is indicated by a large change in seismic415

velocity at a depth of around 0.9 km.416

In order to compare the trajectories calculated using the eikonal equation with those417

from the trajectory mechanics approach, we considered a source at (x, y, z) =(1.0 km, 2.5418

km, 2.725 km), indicated by the unfilled star in Figure 10. Equations (39) and (40) were419

used to find the eikonal and extended ray paths from the source to nine receivers near the420

surface and several points at the eastern edge of the model (Figure 10). The travel time field421

Teikonal is computed using the numerical routines of Zelt and Barton (1998). The dominant422

frequency of the source used in the finite difference calculations to determine Tnum(x,ω) was423

1.0 Hz. While many of the trajectories are similar for the two methods, there are significant424

differences of 100 m or so for several paths to points at the right edge of the model. Paths425

calculated using the eikonal equation concentrate in the high velocity zone near the base of426

the model. The largest deviations are just above this higher velocity layer, similar to the427

differences observed in Figures 3 and 8. Note that this is only a representation of the large-428

scale velocity variations at the Geysers. That is, we can expect highly heterogeneous smaller429

scale structure to be superimposed on the velocity variations in Figure 10. Correspondingly,430

the eikonal-based ray paths and those from the trajectory mechanics approach should display431

even greater differences if such variations are included in a detailed velocity model.432

3.3 Tomographic Imaging433

The extended trajectories can be used for tomographic imaging of velocity heterogeneity434

using seismic arrival times. Here we will consider travel times associated with first arriving435

compressional waves and the corresponding equations (21) and (22). In order to calculate436

model parameter sensitivities one can utilize equation (21) and integrate along the trajectory437

to derive an expression for the travel time438

T =
∫

x

ds

2Vp
2|p|

. (41)439
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We can apply a perturbation method to the expression (41), or the Born approximation440

(Coates and Chapman 1990), to estimate model parameter sensitivities for the inverse prob-441

lem. Note that, if the eikonal equation was valid we could use it to cancel |p| and a factor of442

Vp in equation (41), leading to the conventional expression relating T and Vp along the tra-443

jectory. For small perturbations in Vp(x) we shall assume that the changes in the trajectories444

and the slowness vector are second order and that we can use values from calculations made445

using the background model, perhaps the last iteration of a linearized inversion algorithm.446

Furthermore, we consider the slownesses,447

Sp(x) =
1

Vp(x)
(42)448

the inverse of the velocities, as the primary unknowns. Perturbing the slowness model449

Sp(x) = So(x) + δS(x), (43)450

where So(x) is the slowness of the background model, and neglecting changes in the back-451

ground quantities gives an expression for the perturbation of the arrival time in terms of an452

integral of the slowness perturbations along the trajectory453

δT =
∫

xo

So

|po|
δSds, (44)454

which differs from that used in current tomographic imaging approaches due to the presence455

of the factor So/|po|.456

We have implemented this approach for tomographic imaging, tested it on synthetic arrival457

times, and applied it to travel time data from a crosswell imaging experiment. The arrival458

times were gathered during the monitoring of a fracturing and remediation experiment at459

the Warren Air Force Base near Cheyenne, Wyoming (Ajo-Franklin et al. 2011). The multi-460

level continuous active source seismic monitoring system (ML-CASSM) was used to gather461

complete crosswell surveys every 3 to 4 minutes. As described in Ajo-Franklin et al (2011)462

fluid was injected into a horizontal fracture that intersected the plane defined by the two wells.463

In order to image the velocity changes associated with the appearance of the fluid within the464

fracture, we adopted an iterative approach in which we conducted numerical simulations of465

the wavefields propagating from the nine sources to the receivers in order to estimate the466

travel time field Tnum and pnum = ∇Tnum. Thus, we defined the quantities in equation (44)467

and calculated the trajectories xo from the sources to the receivers. Two sets of trajectories468

from the 3rd and 8th sources are plotted in Figure 11. The ray coverage provided by all469

nine sources to the active receivers is also plotted in this figure for the final iteration. The470

velocity variations determined by inverting the arrival times are shown in Figure 12. A low471
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velocity feature, at the estimated depth of the fracture, is observed. The feature is somewhat472

sharper than the results of previous work using a conventional approach based upon the473

eikonal equation (Ajo-Franklin et al. 2011). Also, the anomally in Figure 12 is offset from474

the receiver well, in accordance with expectations, while conventional imaging put the largest475

values at the receiver well. Synthetic testing indicated that conventional eikonal equation-476

based imaging can lead to preferential anomalies near the sources and receivers for narrow477

low velocity features.478

4 DISCUSSION479

Most tomographic imaging algorithms rely on a high frequency approximation and the eikonal480

equation for calculating ray paths and sensitivities for the inverse problem. The limitations of481

such a high-frequency approach have been well documented in the literature (Wielandt 1987,482

Woodward 1992, Stark and Nikolayev 1993). Alternative methods for the interpretation of483

travel times, such as a technique based upon the cross-correlation of observed and calculated484

pulses (Luo and Schuster 1991, Luo 1991, Vasco and Majer 1993, Marquering et al. 1999),485

have been developed. While such approaches do account for the frequency content of the pulse486

through the use of waveform calculations, the majority of first arrival times are not obtained487

by cross-correlation but rather from picking the first break of an arriving pulse. It is not488

clear that the sensitivities of a first break are equivalent to those of a cross-correlation time489

because, as shown in Keers et al. (2000), the early time sensitivities of a pulse differ from490

those associated with the peak of the pulse. For example, the peak sensitivity for a point just491

after the onset of the pulse is along the geometrical ray, while the sensitivity for a point near492

the peak is largest not on the ray but adjacent to the geometrical path (Marquering et al.493

1999). Furthermore, in the presence of significant lateral heterogeneity it can be difficult to494

establish an initial model that is sufficient to initiate the necessary waveform calculations for495

the cross-correlation approach (Zelt and Chen 2016). For an imaging approach based upon496

the broad band trajectories we do not have to use cross-correlation arrival times. Rather, one497

can simply apply the same approach to estimating the first arrival times from the recorded498

seismic data to calculate arrival times from the numerical simulation results.499

5 CONCLUSIONS500

Using methods originally developed in quantum mechanics (Wyatt 2005) and recently applied501

in hydrodynamics (Vasco 2018, Vasco et al. 2018), we have derived a trajectory-based solution502
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to the elasto-dynamic equation of motion that is valid for rapid spatial variations in elastic503

properties. The idea is similar in philosophy to Helmholtz tomography (Lin and Ritzwoller504

2011, Kohler et al. 2018) where amplitude gradients are used to correct phase measurements505

using the Helmholtz equation. Here, we derive complete expressions for the trajectory, slow-506

ness, and amplitude of a propagating elastic disturbance directly from the elasto-dynamic507

equation of motion. Coupling this approach with a numerical routine for solving the govern-508

ing equation, such as one based upon finite differences (Virieux 1986, Petrov and Newman509

2012) or spectral-elements (Komatitsch et al. 2002), allows for the calculation of trajectories510

by simply post-processing the results of a simulation.511

As expected, the broad band trajectories agree with conventional high-frequency asymp-512

totic ray paths for velocity models that display smoothly-varying heterogeneity. However,513

the high-frequency paths and the extended trajectories begin to deviate when rapid spatial514

variations are introduced into the velocity model, particularly for those rays that pass close515

to interfaces or layer boundaries. The differences are particularly pronounced for a layered516

model when the layer thickness is less then the dominant wavelength. The deviations depend517

upon the frequency of the propagating waves, and the extended trajectories do approach the518

high frequency solutions as ω becomes large. Calculations for a velocity model based upon519

field data also indicates that substantial differences are possible for local wave propagation520

at frequencies of around 1 Hz. The exact criterion for the significance of the wave potential521

follows from the Hamiltonian given by the expression (16). In particular, when the magnitude522

of the wave potential W (x,ω) approaches 1, that is when523

W (x,ω) =
1

ρRω2
F · R̂ ∼ 1, (45)524

then the coupling between the phase and amplitude becomes an important factor. One can use525

a similarity argument or dimensional analysis to normalize the variables, for example scaling526

the spatial coordinates x by the wavelength of the disturbance L. Using such arguments one527

can deduce that the coupling is important when528

∇λ+∇µ

L
∼ ρω2, (46)529

suggesting that the wave potential can be important at any scale if the elastic properties vary530

rapidly enough.531

The trajectories can serve as the basis for a semi-analytic travel time tomographic imaging532

algorithm with an extended range of validity. This can be helpful due to the many advantages533

associated with travel time tomography. For example, the inverse problem associated with the534

use of seismic arrival times is quasi-linear and its convergence is less sensitive to the initial535
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or starting velocity model. Therefore, travel time tomography is often used to find an initial536

model prior to waveform inversion. Travel times extracted from seismic waveforms reduce537

the data handling burden that is characteristic of waveform imaging. Furthermore, the use538

of waveforms is complicated by the sensitivity of amplitudes to many factors, such as source-539

receiver coupling, source and receiver orientation, receiver calibration, and variations in source540

power.541
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6 APPENDIX697

In this Appendix we provide some of the steps required in order to derive equations (4)

and (27) found in the main body of the paper. We will employ dyadic notation, in which the

multiplication of vectors signify outer products (Ben-Menahem and Singh 1981, p. 1, Rudnicki

2015, p. 25, Vasco and Datta-Gupta 2016, p. 293). We begin with an expanded version of the

governing equation (2)

−ρω2U = ∇λ∇ ·U+ λ∇ (∇ ·U) +∇µ ·
[

∇U+ (∇U)t
]

+µ∇ ·∇U+ µ∇ · (∇U)t . (A1)

Substituting the representation

U(x,ω) = R(x,ω)e−iϕ(x,ω) (A2)

into equation (A1) gives

−ρω2Re−iϕ = ∇λ∇ ·
(

Re−iϕ
)

+ λ∇∇ ·
(

Re−iϕ
)

+∇µ ·∇
(

Re−iϕ
)

+∇µ ·
[

∇
(

Re−iϕ
)]t

(A3)

+µ∇ ·∇
(

Re−iϕ
)

+ µ∇ ·
[

∇
(

Re−iϕ
)]t

.

Applying the differential operators to the quantities in parentheses and factoring out the

multiplier e−iϕ that appears in all of the terms, results in an expression containing both real

and imaginary components.

−ρω2R = ∇λ∇ ·R+ i∇λR ·∇ϕ

+λ∇ (∇ ·R) + iλ∇ ·R∇ϕ+ iλ∇ (∇ϕ ·R)− λ (∇ϕ ·R)∇ϕ

+∇µ ·∇R+ i∇µ · (R∇ϕ)

+∇µ · (∇R)t + i∇µ · (∇ϕR)

+µ∇ ·∇R+ iµ∇R ·∇ϕ+ iµ∇ ·R∇ϕ+ iµR∇ ·∇ϕ− µR∇ϕ ·∇ϕ

+µ∇ · (∇R)t + iµ (∇R)t ·∇ϕ+ iµ∇ ·∇ϕR+ iµ∇ϕ∇ ·R

−µ∇ϕR ·∇ϕ. (A4)
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6.1 Real Terms698

If we consider only the real terms in equation (A4), and move the terms containing ∇ϕ to the

left-hand-side, the resulting equation is

λ (∇ϕ ·R)∇ϕ+ µR∇ϕ ·∇ϕ+ µ∇ϕR ·∇ϕ

= ρω2R+∇λ∇ ·R+ λ∇ (∇ ·R) +∇µ ·∇R

+∇µ · (∇R)t + µ∇ ·∇R+ µ∇ · (∇R)t . (A5)

Using the symmetry of the scalar product and collecting terms, we can write equation (A4)

somewhat more succently as

(λ+ µ)∇ϕ ·R∇ϕ+ µ∇ϕ ·∇ϕR− ρω2R

= (∇ ·R)∇λ+∇ · µ
[

∇R+ (∇R)t
]

. (A6)

The terms on the right-hand-side do not contain ∇ϕ and we can define a vector

F(x,ω) = (∇ ·R)∇λ+∇ · µ
[

∇R+ (∇R)t
]

(A7)

and equation (A6) takes the form

(λ+ µ)∇ϕ ·R∇ϕ+ µ∇ϕ ·∇ϕR− ρω2R = F(x,ω).

(A8)

We can rewrite equation (A8) into a form that is somewhat similar to the eikonal equation if

we define the wave number vector

k = ∇ϕ (A9)

and the related slowness vector

p =
k

ω
. (A10)

If we divide equation (A8) by ω2 and ρ, and make use of the definitions (A9) and (A10), then

we may write it in terms of p

(λ+ µ)

ρ
p ·Rp+

µ

ρ
p · pR−R =

1

ρω2
F(x,ω). (A11)

When the frequency ω is high and the gradients of the wavefield amplitudes contained in699

F(x,ω) are not too large, we may neglect the right-hand-side of equation (A11). The equation700

then begins to resemble the conventional eikonal equation but for the presence of the factors701

of R that prevent us from collapsing the first two terms into one containing p · p. As noted702



Broad band trajectory mechanics 27

in section 2.2, depending on the orientation of the amplitude R with respect to the slowness703

vector p equation (A11) can lead to a governing equation for compressional or shear modes704

of propagation.705

6.2 Imaginary Terms706

Now consider the imaginary terms in equation (A4), defining a second partial differential

equation in ϕ and R. If we set the sum of all of the imaginary terms to zero, we arrive at the

vector differential equation

∇λR ·∇ϕ+ λ (∇ ·R)∇ϕ+ λ∇ (∇ϕ ·R)

+∇µ · (R∇ϕ) +∇µ · (∇ϕR) + µ
[

∇R+ (∇R)t
]

·∇ϕ

+µ∇ · (R∇ϕ) + µ∇ · (∇ϕR) = 0. (A12)

Re-arranging the terms containing λ produces

∇ (λR ·∇ϕ) + λ∇ ·R∇ϕ

+∇µ · (R∇ϕ) +∇µ · (∇ϕR) + µ
[

∇R+ (∇R)t
]

·∇ϕ

+µ∇ · (R∇ϕ) + µ∇ · (∇ϕR) = 0. (A13)

At first glance, equations (A8) and (A13) are first and second order in ϕ respectively. However,

ϕ only appears as k = ∇ϕ in these equations. Thus, if we substitute for ∇ϕ in equation (A13)

∇ (λR · k) + λ∇ ·Rk+∇µ ·Rk+∇µ · kR+ µ∇R · k

+µ (∇R)t · k+ µ∇ · (Rk) + µ∇ · (kR) = 0. (A14)

Alternatively, using the fact that k = ωp, we can diving equation (A14) by ω to write it as

∇ (λR · p) + λ∇ ·Rp+∇µ ·Rp+∇µ · pR+ µ∇R · p

+µ (∇R)t · p+ µ∇ · (Rp) + µ∇ · (pR) = 0. (A15)

The two vector equations (A8) and (A14) can be used to solve for k and R. One could consider707

equation (A8) as having k as a multiplier, containing no derivatives of its components, and708

equation (A13) as first-order in the components. Equation (A8) is second-order in R while709

equation (A14) is first order in terms of the components of R.710
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Figure 1. Three depth profiles representing a jump in compressional velocity at a depth of 2.0 km.

The depth variations were calculated using equation (38). In this equation a parameter σ determines

the transition width of the boundary. Larger values of σ indicate sharper boundaries and the value of

σ is indicated for each profile.
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Figure 2. Trajectories associated with a smooth transition in velocity. (Left panel) Vertical slice

through the three-dimensional compressional velocity model based upon the function (38) with σ =

0.1. The source location is indicated by the unfilled star. (Center panel) Ray paths from source to

observation points at the right edge of the model, calculated using the eikonal equation. (Right panel)

Trajectories based upon travel times estimated from a numerical simulation of a propagating elastic

wave and the solution of the differential equation (40). The central frequency of the source-time function

used to generate the wavefield is 3.0 Hz.

Figure 3. (Left panel) Sharp interface that corresponds to a value of σ = 10.0 is equation (38). (Center

panel) The contours and color variations denote the travel time field obtained by solving the eikonal

equation (Zelt and Barton 1998). The ray paths are the solutions of equation (39) and are determined

by the gradient of the travel time field. (Right panel) Extended trajectories found by solving equation

(40) for each receiver location.
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Figure 4. Wavefield snapshots for three different source-time functions. The source-time functions are

Gaussian pulses modulated by a sinusoidal oscillation of frequency ω. The left panels depict the source

time series while the right panels are vertical cross-sections through wavefield snapshots after 300 time

steps. The snapshots are through the source location which is denoted by the unfilled star.
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Figure 5. Broad band trajectories for the three frequencies considered in Figure 4. The contour plot

denotes the travel time field Tnum(x,ω) and the trajectories are obtained by marching down this

gradient.
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Figure 6. Three depth profiles for layers with boundaries of varying smoothness. The layers are

constucted using two interfaces of the form (38) and σ controls the width of the transition. The curves

are labeled by their corresponding values of σ.

Figure 7. (Left panel) Vertical slice through the three-dimensional layered velocity model generated

when σ = 0.1. (Center panel) Trajectories produced by marching down the gradient of the eikonal

equation travel time field. The contours indicate Teikonal(x), the travel times obtained by solving the

eikonal equation using the method described in Zelt and Barton (1998). (Right panel) Broad band

trajectories obtained by solving equation (40), where the travel time field, indicated by the contours,

is from a finite-difference solution of the elasto-dynamic equations of motion.
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Figure 8. (Left panel) Velocity variation corresponding to a layer with boundaries calculated using

equation (38) with σ = 0.5. (Center panel) Paths based upon the travel times from a solution of

the eikonal equation. The travel time field is indicated by the contours and the color variations.

(Right panel) Rays derived using the trajectory mechanics approach where equation (40) governs the

trajectory geometry and the travel time field is from a numerical solution of equation (1).

Figure 9. Surfaces defining major lithologic units of a geologic model for a region of the Geysers

geothermal field, constructed from a wide variety of data gathered at the Geysers geothermal field

(Hartline et al. 2015). Associated seismicity is also plotted as colored spheres, where the radius and

color of the sphere indicate the magnitude of the event.
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Figure 10. (Left panel) Vertical section through the Geysers velocity model, oriented on an east-

west plane through the source point (x, y, z) =(1.0 km, 2.5 km, 2.725 km) which is denoted by the

unfilled star. The profile ends at the ground surface though the model does extend 100 m higher with

velocities and the density of air. (Right panel) Travel time field from the numerical solution of the

elasto-dynamic governing equation (1) along with the broad band trajectories (solid lines). The high

frequency trajectories from a solution of the eikonal equation are denoted by the dashed lines.
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Figure 11. (Left panel) Trajectories for paths between two sources to the active receivers for the

Warren Air Force Base crosswell experiment. The sources are denoted by unfilled stars and the receivers

by black circles (Right panel) Total path lengths in each cell of the velocity grid used to parameterize

the model. The trajectories associated with the final iteration of the imaging algorithm were used to

calculate the path lengths.
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Figure 12. Velocity variations obtained from the tomographic inversion of arrival times from the

Warren Air Force Base crosswell experiment. Low velocities due to the injection of fluid into an existing

horizontal fracture are evident.




