UCLA
Papers

Title
Declarative Failure Recovery for Sensor Networks

Permalink
https://escholarship.org/uc/item/69s78776

Authors

Gummadi, Ramakrishna
Kothari, Nupur
Millstein, Todd

Publication Date
2007-03-12

DOI
10.1145/1218563.1218583

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/69s78776
https://escholarship.org/uc/item/69s78776#author
https://escholarship.org
http://www.cdlib.org/

Declar ative Failure Recovery for Sensor Networks

Ramakrishna Gummadi Todd Millstein Ramesh Govindan
Nupur Kothari University of California, Los Angeles University of Southern California
University of Southern California todd@cs.ucla.edu ramesh@usc.edu

{gummadi,nkothari}@usc.edu

Abstract low observation of previously unobservable phenomena. They have
found use in a variety of domains ranging from scientific experi-

Wireless sensor networks consist of a system of distributed sen- - : . ; : .
ments involving habitat, environment, and marine monitoring [40]

sors embedded in the physical world, and promise to allow obser- ;| ™= . o 8 h -
Py b to industrial and civil engineering deployments for measuring de-

vation of previously unobservable phenomena. Since they are ex- - d struct B5 [4] to milit d ial i
posed to unpredictable environments, sensor-network applications!/C€ and structure responses [4] to military and commercial appli-

must handle a wide variety of faults: software errors, node and link &tions involving detection and tracking of objects and phenom-
failures, and network partitions. The code to manually detect and €@ [LB]. Building practical and reliable sensor network systems is
recover from faults crosscuts the entire application, is tedious to a S|g_n|f|cant Cha_llenge. Sensor networks co_mbme_ many of the dif-
implement correctly and efficiently, and is fragile in the face of pro- ficulties of traditional embedded systems, including scale, severe
gram modifications. We investigate language support for modularly resource constraints and_ an unp_red_lctable operating environment,
managing faults. Our insight is that such support can be naturally with the difficulties of trad!tlor)al distributed systems, including the
provided as an extension to existing “macroprogramming” systems need for proper synchronization among nodes and the need for fault
for sensor networks. In such a system, a programmer describes d°/€rance. .
sensor network application as a centralized program; a compiler We _fo_cus on t_he Issue of fault toleranc_e fo_r_ sensor networks.
then produces equivalent node-level programs. We describe a sim-aintaining application accuracy and availability in the face of
ple checkpoint API for macroprograms, which can be automatically 'aults is @ nontrivial proposition. Software bugs can render a node
implemented in a distributed fashion across the network. We also Partially or wholly unresponsive. Network and hardware dynamics
describe declarative annotations that allow programmers to specifySUCh as nod_e failures, b_urst Iqsses on Imks,_ r_1etwork partitions, and
checkpointing strategies at a higher level of abstraction. We have "éconfiguration events involving node addition and deletion can
implemented our approach in the Kairos macroprogramming sys- COMPIetely disable nodes or alter their program state.
tem. Experiments show it to improve application availability by an _FOr €xample, consider a vehicle tracking application, in which
order of magnitude and incur low messaging overhead. a group of nodes coopt_e_ratlvely and |_terat|ve_ly refines their esti-
Categories and Subject Descriptors: D.1.3 [Programming mate of the current position of a moving vehlcle. If one or more
Techniques]: Concurrent ProgrammingBistributed Program- nodes should fail in the middle of a computation, the resulting esti-
ming D.3.2 [Programming L anguages]: Language Classification— mate can be incorrect bgcause only partial data from the operatlonal
Specialized application languageB.4.5 [Operating Systems]: nodes is used. Depending on the extent and location of failure, the

Reliability—Checkpoint/restarGeneral Terms: Wireless Sensor applice}tion may not even be ab[e to form an eS“m?“e' eﬁectively
Networks, Macroprogramming, Node-level programming, Fail- rendering it unavailable. Such failures are far more likely in sensor

ure, Recovery, Checkpointing, Declarative Recoviseywor ds: networks, where a large number of nodes are exposed to an unpre-

WSN, Macroprogramming, Node-level programming, Declarative dictsble envtironmhent, thandin traditional distr_igutec_i SySte'E.s'
Failure Recovery, Checkpointing esearchers have made impressive strides in providing pro-

gramming platforms (e.g[.[18.118]) and services (e.al [[23, &k

1. Introduction simplify the development of sensor network systems. However, to
: our knowledge, none of these systems provides special support for

Wireless sensor networks consist of a system of distributed sensorsmanaging faults. Instead, the programmer must manually imple-

embedded in the physical world. Sensor networks promise to al- ment a failure recovery strategy that is appropriate for the appli-

cation at hand. In our vehicle tracking example above, a program-

* Contact author. mer might insert code to track the dependencies among program
nttp://Kalros.usc.edu variables and nodes within the algorithm, detect when a node has
This material is based in part upon work supported by the NatiScience failed, and discard failed dependencies in the final output in order
Foundation under Grant Nos. 0520299, 0121778, 0427202 548830. to maintain program correctness and availability.

Any opinions, findings, and conclusions or recommendatiopsessed in The need for sucld hocrecovery code significantly compli-

this material are those of the author(s) and do not necegsafiect the

h - ; > h velopment of r nsor-network ms. Rgcover
views of the National Science Foundation. cates the development of robust sensor-network systems. Rgcove

code crosscuts the entire application and is intimately tangled with
the application logic, making the system difficult to modify and
Permission to make digital or hard copies of all or part of this work for personal maintain. Further, the recovery code is tedious to implement cor-

classroom use is granted without fee provided that copies are not made outbstrib rectly for examp|e requiring synchronization among the nodes in
for profit or commercial advantage and that copies bear this notice and the fubiritati !
on the first page. To copy otherwise, to republish, to post on servers or ttritedes the network while maintaining energy efficiency.

to lists, requires prior specific permission and/or a fee. We aim to provic_ie declarative support for modularizing the fail-
AOSD 07 March 12-16, 2007, Vancouver, Canada ure concern, allowing sensor-network programmers to easily and
Copyright© 2007 ACM 1-59593-615-7/07/03. .. $5.00 reliably identify and recover from faults. Our insight is that this can

173

http://kairos.usc.edu

be achieved by extending existingacroprogrammingystems for failures have been extensively considered in the distributed systems
sensor network$ [1L7. 31]. Unlike the traditional approach, in which literature (e.g.[I8. 14, 29, B9]). Such work, however, has natrex
programmers directly implement the programs to be run onindivid- ined the kind of high-level recovery API and automated recovery
ual nodes in the sensor network, macroprogramming makes it pos-techniques that we describe. We are able to support these tech-
sible to write acentralizedprogram to express a computation. The niques in a practical manner by leveraging the centralized view of a
compiler then automatically produces node-level programs that im- distributed computation provided by macroprogramming systems.
plement the specified behavior in a distributed manner. Macropro- The rest of the paper is structured as follows. Sedflon 2 moti-
gramming allows programmers to focus on the algorithmic aspects vates the need for failure recovery support in wireless sensor net-
of their applications, without worrying about low-level details like works, and describes the complexity of manually implementing re-
the protocol for communication among nodes. covery within node-level programs. Sectidn 3 provides an overview
In this paper, we make the following contributions: of Kairos, and describes our recovery API on top of Kairos and
how it can be used for manual recovery. In Secfibn 4, we describe
¢ We describe a simple API faheckpointinga generic recovery how we can provide support for declarative and transparent recov
approach for a broad class of common sensor-network failures, ery mechanisms. Sectifh 5 details our evaluation of these recovery
in the context of a macroprogramming language. The APl lever- techniques for several classes of sensor network applications. We
ages the macroprogram’'s centralized view to allow program- describe related work in Sectifh 6. Sectidn 7 concludes and dis-
mers to naturally specify application state to be checkpointed cusses future work.
at desired points in the program. The programmer can later roll
back to a previously created checkpoint in order to consistently 2. Motivation
undo the effects of failed nodes, and re-execute the rolled back o)
code with only the set of available nodes. This API is imple- Real-world sensor network deployments see significant failures.
mented by a novel low-cost distributed a|gorithm for check- Flgureﬂ shows the distribution of failure durations in a real-world
point and rollback. The API also supports an important variant Sensor network deployment at the James Reserve in Southern Cali-
of recovery that is designed to preserve application work done fornia [1]. In this deployment, each sensor periodically sends read-
during a network partition event, call@artition Recovery ings to a base station; failure to receive any readings from a sensor

o . APl d ibed ab is a distincti corresponds to a failure of the sending node or one or more other
urgeneric recovery escribed above IS a diSUNCtIMProve- gensors nodes that would otherwise have forwarded the sender’s
ment overad hocrecovery techniques used in traditional sen-

oo : data to the base station. The figure plots the duratioouthges
sor network systems, but it still requires the programmer t0 ex- (in1aryals during which no data was received from a sensor) for a
plicitly |nterle'ave.recovery logic with the macroprogram. Our total of twenty sensor nodes over a period of several months in 2003
second contribution leverages the recovery AP to support a 504 2004, During this period, each node transmitted data for a to-
form of qutomated recovery that we cBleclarative Repovery tal of at least six months. There were a total of 543 outage events
Declarative Recovery allows a programmer to provide modu-

lar code annotations that specify where checkpoints should bedurlng this period.
taken, and the macroprogramming system then automatically i e
detects faults and rolls back execution appropriately. It also in- N
cludes an algorithm to automatically determine at run time the
nearest checkpoint to which it is sufficient to roll back in order
for recovery to succeed.

Finally, we push automated recovery even further, to explore a
form of Transparent Recoverin this recovery scheme, the sys-
tem additionally automatically determines where checkpoints 02],
should be taken. We describe a simple set of heuristics for plac- o
ing checkpoints that appropriately handles common macropro- 0
gramming patterns.

CDF (P(y<Y))

o 1 2 3 4 5 6

Hours

We have instantiated this approach to failure recovery in sen-
sor networks as an extension of our macroprogramming system Figure 1—Distribution of outage durations in a real sensor network.
called Kairosl[1l7]. We have implemented three qualitatively differ-
ent sensor network applications using Kairos—localization, target ~ The Cumulative Distribution Function of the duration of out-
tracking, and data aggregation—and have used them to evaluate theges converges slowly, and outages range from a few minutes to
recovery APl and the declarative recovery technique. Our primary well beyond six hours, with most outages shorter than three hours.
metrics are the benefits of improvement in correctness and avail- Thus, in a real-world sensor network deployment, applications are
ability of a recovered application in comparison to an unrecovered likely to see a range of node failure and recovery time-scales; there
application, and the performance costs of messaging and memoryis no single time-scale that one can engineer for. As such, it is de-
overheads. Our recovery strategies can improve application avail-sirable for an application to incorporate mechanisms that allow it to
ability by an order of magnitude: in some cases, an application is function for short periods of time with a smaller set of nodes than
unavailable for 30 times fewer reporting intervals than one which it started with, and to re-use nodes that might have been down for
does not incorporate our recovery mechanisms. Our strategies fullyextended periods. Such mechanisms can improve the quality of a
preserve application accuracy for two common kinds of faults— sensor network computation.
software faults and network partitions, incur acceptable messaging One possibility, then, is for an application writer to manually
overhead (less than 15% for vehicle tracking), and incur about a program failure recovery in sensor network applications. To illus-
factor of two additional data memory for storing checkpoints. trate some of the problems that arise from manual failure recovery,

To our knowledge, ours is the first work to explicitly address consider an application in which sensor nodes periodically send
generic failure recovery methodologies for sensor networks. Tech- both temperature and light readings to a designated base station
niques for detecting and concealing faults and for recovering from node, which we assume to be the node with the lowest ID. The

174

base station aggregates the data it receives in some fashion. Even
in this simple scenario, failures must be considered carefully:

1. What should be done if a node fails in some period when the ;.
base station has only been able to obtain one of the two sensory
values (temperature and light) from the node? For our example, 3:
we assume that the base station must remove the effect of thes:
incomplete sensor reading from the aggregation. 5:

. What should be done if the base station fails? In that case, a new?;
base station must be elected, by finding the live node with the
lowest ID. Further, whenever an old base station comes back
up, sensor data from the old and current base stations must be
merged, and the node with the lower ID must become the new
base station.

node bs;

|l executed at every sender
voi d aggregate_send() {

uint tenp,light;
for(;;)
sl eep(SAMPLE_| NTERVAL) ;
sanpl e(tenp);
sanpl e(light);
send_sanpl e(t enp, bs);
send_sanpl e(light, bs);
}

}

Ckpt
/I executed at base station

ckpt;

voi d aggregate_receive() {

In a language like nes€ 3], the default node-level program- 8:
ming language for the Berkeley sensor molés [2], this application 9:
would typically be written as a collection of components, each per- 10
taining to a different task, such as aggregation, leader election, andll
base-station merging. Every node has the code for all of the com- 12

ponents and executes the appropriate procedures from these comy ;.

15:

ponents depending on its states(, whether it is a normal node, a
current base station, or a rebooted old base station).

For ease of presentation we focus on the functionality for data 16:
aggregation. Figurgl 2 shows pseudocode for the two main proce-17:

dures. Theggr egat e_send procedure is invoked by every node

and periodically sends temperature and light readings to the baselsf

19:
20:

station. The value obs is set by the leader-election component,
which is not shown.
Theaggr egat e_r ecei ve procedure is invoked by the base

station, in order to handle the receipt and aggregation of data from 5.

the nodes in the network. In each periodépocl), the base station 23
obtains a list of what it believes to be the live nodes, via a call to 24:
the local procedurget _avai | abl e_.nodes() (line 15). This 25:

list is maintained by the leader-election component (not shown) in

an efficient way through a simple membership management proto- 26:

col. This protocol would be part of the leader election component,
whereby every node periodically announces its liveness. The base
station then usessel ect () facility (line 21) to wait for temper-
ature or light data from these nodes (sentaggyr egat e _send)

and update local state appropriately. This process repeats until ei-

28

27:

ti me next_epoch;
list node_list, received_list;

:uint av_l, av_t, count, tinmeout;
: bool ean done;
cfor (53) {

ckpt =t ake_l ocal _ckpt();
next _epoch=get _cur _ti nme()+SAVMPLE | NTERVAL;
node_l i st =get _avai | abl e_nodes(), recei ved_| i st=NULL;
//check if node_list has an old base station
if (hasLower(node_list,id())) {
...llinvoke nerge()...

}
ti meout =SAVPLE_| NTERVAL;
done=FALSE;
while (!done) {
/[lwait till timeout or at |east one node sends
recei ved_|ist=sel ect (TEMP_T| LI GHT_T, node_l i st, & i neout) ;
if(received_list!=NULL) {
//read tenp and/or It values; conpute averages...
//remove node fromnode_list if bs got tenp,lt...
if (node_list==NULL) done=TRUE;

el se{//bs tined out=>nodes in node_list are dead
//restore node-local state to previous epoch
restore_| ocal _ckpt (ckpt);

}

sl eep(next _epoch-get _cur_tine());

ther all expected data from the live nodes has been received (line }

25) or a timeout is received, indicating the end of the epoch (line
26).

The aggr egat e_r ecei ve procedure handles node failures
through checkpoint and rollback, a standard failure recovery ap-
proach. The base station takes a checkpoint of its local state at the
beginning of each epoch (line 13). When a timeout is signaled, in-
dicating that some live nodes did not provide both sensor values,
the base station restores this checkpoint (line 27). This has the ef-
fect of removing all data obtained in the current epoch from the
aggregation, thereby ensuring consistency. (It is possible to per-
form finer-grained recovery, for example retaining sensor reading
in the current epoch from any node for which both values were able
to be obtained. However, doing this would require the programmer
to manually track dependencies to ensure consistency, which is te-
dious and error prone.)

To handle base station failures, we assume that whenever a
node determines that the base station has not broadcast its liveness2.
as part of membership management described above, that node
triggers leader election. To handle the situation when an old base
station comes back, the current base station checks the live nodes
at each epoch for a node with a lower ID, invoking the merge
functionality if required (lines 16-17).

Manual recovery as illustrated by our example has a number of
drawbacks:

1.

175

Figure2—Send and receive procedures for data aggregation in alewele-
program with manual recovery.

The code for the recovery concern is tangled with the rest of the
application logic. For example, the base station must explicitly
check for the presence of an old base station after accessing
the live nodes (line 16) and must explicitly restore a taken
checkpoint upon detecting a failure in the middle of an epoch
(line 27). Further, because a checkpoint could be restored at
any point in its dynamic lifetime, managing checkpoints is non-
modular. For example, if the innehi | e loop in Figurd® were
defined in its own function, the checkpouitpt would have to

be restored from there, requiring it to either be a global variable
(whose deletion would then need to be manually managed to
save space) or to be explicitly passed to the function.

Proper recovery may require manual tracking of dependencies
across nodes. In our example, only the base station’s local state
is of interest upon a node failure, so local checkpoint and recov-
ery (t ake_l ocal .ckpt andrestore. ocal _.ckpt) are
sufficient. However, suppose the base station’s local state had
dependencies with local state at other nodes in the network.
In that case, whenever the base station required a rollback,
the failed dependencies at other nodes would also have to be

tracked and removed to maintain consistency. Further, when- Kairos provides a natural way to access the program state at any
ever these dependencies change, through program maintenanceode from within the centralized program.rfode-local variable
or extension, the recovery code must likewise be updated. is a program variable that is instantiated per node. A particular

Dealing with network partitions also makes dependency track- node’s version of a variable can be acces_sed by the macroprogram
ing harder because a partition causes some nodes to be disconthrough avar @ode syntax. All other variables are instantiated
nected from others, thereby causing their states to drift as nodesCnly once within the network, and are calledntral variables.

in the two partitions work independently. After a partition is re- Kairos respects the scoping, lifetime, and access rules of variables
paired, one option is for the programmer to simply discard the iMmposed by the host language.

work done by nodes from one half of the partitioned network.

However, this is sub-optimal, because work done by both sets void av() {

of nodes can be_integrated into the_long-term_state ofthe healed;. "ogelist full _node_set ;

network, which improves the quality of the final results. But, 2. node iter, bs;

again, this requires careful tracking of dependencies between3s: wuint sl eep_i nterval =1000;

data across nodes during and after the partition has occurred. 4: uint nodel ocal count=1, av_t=0, av_l=0;

_ . P 5: uint nodel ocal sensor tenp, It;
3. Similarly, proper recovery may require synchronization across . full _node_set =get _avai | abl e_nodes()

nodes. If dependencies exist across nodes, requiring rollbacks. bs=get first(sort(full _node set));

at multiple nodes, the programmer must be sure to synchro-g. for (;7) {

nize these rollbacks to ensure consistency. Otherwise, one nodey: sl eep(sl eep_i nterval);

could restart its rolled-back execution before another node has10: for (iter=get_first(full _node_set);iter!=NULL;

been fully rolled back. Manual synchronization is difficult to iter=get _next(full_node_set)) {

implement both correctly and in an energy-efficient manner, 11: av_t @s=(av_t @s*(count @s- 1) +tenp@ter)/count @s;
which is critical on today’s resource-constrained sensor nodes. 12 }av_l @s=(av_| @s*(count @s-1)+lt @ter)/count @s++;

3. Generic Checkpoint Recoveryin a }}

M acroprogramming SyStem Figure 3—Example macroprogram for computing average temperature and
We first describe the particular macroprogramming language and light readings.
system we use throughout this paper, called Kalrds [17]. While we
have concretely examined and evaluated the techniques described Figurel3 shows the Kairos code that uses these abstractions for
in this paper within Kairos, we believe that the key concepts can be continuously computing the sample averages for light and temper-

adapted to other macroprogramming languages like Regiinént [42]. ature readings and storing them at a base station node. It works as
follows. In lines 1, 2, and 3, we declare variables to represent the

31 AnOverview of KAIROS list of nodes in the network, a temporary node, a node that will

In this section, we briefly review the Kairos macroprogramming be chosen as the base station, and the time to sleep between aver-

system; it is described in more detail elsewhbré [17]. aging intervals. In lines 4 and 5, we declare node-local variables.
Kairos lets a programmer directly express the desgietbal tenmp andl t are special node-local variables (indicated by their

behaviorof a distributed computation. The programmer achieves sensor attribute) that are continuously updated with new readings
this by writing a centralized program in which sensor network from a node. For each of the node-local variables, a copy of the
data can be manipulated as ordinary program variables. The Kairosvariable with the same name exists at each node in the network. In
compiler then translates the centralized program into programs thatline 6, we store the list of active nodes in the network in the vari-
execute on individual nodes, with the support of the Kairos runtime. ablef ul | _node_set , and in line 7 we instantiate the node with the
We summarize the Kairos |anguage abstractions here. KairoleWESt id as the base station node. Finally, in lines 8-12, we cause
augments a host language with a small number of new program- the network the repeatedly fetch temperature and light samples and
ming primitives, which allow a distributed computation on a sen- store their average at the base station.
sor network to be expressed centrally. The programming model ~ Kairos implements the distributed version of a macroprogram
is ana|ogous to that of mainstream imperative programming lan- in anetwork-efficienmanner. The Kairos runtime has a distributed
guages: Kairos has a sequential semantics by default and a cencaching layer that makes sure updates to central variables are visi-
tralized memory model. As such, Kairos fits well as an extension ble across the network consistently. The caching layer also buffers
to commonly used languages. We have built a Kairos extension to updates from node-local variables so that the programmer can per-
Python, which we use in our imp|ementation and experiments re- form synchronous reads and writes. For example, inlines 11-12 of
ported here. The detailed description of our compilation and run- Figure[3, the macroprogram updates the base station’s node-local
time techniques is available in_17]. variables in sequence, while in a node-level program such as Fig-
Kairos decouples a sensor network program from the underly- urel2, the programmer is responsible for managing network mes-
ing node topology, thereby making it instantiable on an arbitrary sages that may arrive any time and out of order. Kairos minimizes
topology. Thenode data type is an abstraction of a network node. communication overhead for both data and control through three
Nodes can be conveniently manipulated usingpdel i st itera- techniques: by allowing asynchronous execution at nodes and min-
tor data type that presents a set-based abstraction of a node collecimizing their control flow synchronization; by exploiting relaxed
tion. Kairos makes sure that the values contained in these variablesdata consistency semantics where possible in order to further re-
are visible consistently and efficiently at all nodes. The function duce control traffic overhead; and by caching remote variables for
get _avai | abl e_nodes() provides access to th@del i st repre- reads and filtering unnecessary writed [17].
senting all nodes in the network, while tet _nei ghbor s(node)
function returns the current list ofode’s radio neighbors. Given
the broadcast nature of wireless communication, a neighbor list is In addition to checkpointing, which was discussed in Sedfion 2,
a natural abstraction to build interacting groups of nodes in a pro- there are two approaches for programming recovery into macro-
gram, and is similar teegions[42] andhoods[43]. programs. The simplest approach is for runtime support to provide

3.2 Recovery in Macroprograms

176

error notifications, leaving it to the programmer to manually deal
with failures. For example, the runtime can return an error when
reads to a remote variable fail. Thus, in Figlle 3, accesses to node-
local variablesav_t, av.l, count, tenp andlIt in lines 11-12 1
can return a special error code when a node is unavailable. But2:
such a facility only solves one of the three problems with node- 3
level manual recovery described in Secfidn 2. While the program-
mer is relieved of the burden of manually synchronizing such ac-
cesses across nodes because the macroprogram’s runtime imples:
ments such synchronization, the programmer must still deal with
the first two problems: she would have to add checks around each7:
access to a node-local variable (there would be five such checks in8:
lines 11-12, for example), and manually track dependencies across’:

Ckpt ckptl, ckpt2;
void av() {
nodel i st full _node_set;
node iter, bs;
uint sl eep_interval =1000;
ui nt nodel ocal count=1, av_|=0, av_t=0;tenp;

full _node_set =get _avail abl e_nodes();

ckpt 1=t ake_ckpt (ful | _node_set);
//Check if we have to take another checkpoi nt
if (ckptl.restored){

full _node_set =get _avail abl e_nodes();

ckpt 1=t ake_ckpt (ful | _node_set)

such node-local states.

The second approach is to augment the language with a trans-1 -

action facility. While such a facility could potentially solve all the
three problems of manual recovery, it would be heavy-weight un-
less carefully implemented. Support for nested transactions would
be necessary in order to minimize lost work during recovery, but
such transactions are difficult to implement efficiently and correctly
in a distributed setting because of their potential for causing dead-
locks and livelocks[[21]. Thus, we use checkpoint-based recovery

3.3 Manual Failure Recovery for Macroprogramming

In this section, we examine a checkpointing approach to manual
failure recovery in the context of macroprogramming. In particular,
we describe a small checkpointing API for Kairos. The key novelty
is the way in which this API leverages Kairos’ centralized view
of the network: programmers specify checkpoints at the granular-

ity of the macroprogram, and the runtime system carefully ensures 2

the corresponding node-level programs take consistent checkpoint
and rollback in a synchronized manner when a failure is detected.
Programmers are still responsible for manually managing check-
points, thereby suffering from some of the drawbacks described in

}

bs=get _first(sort(full_node_set));
11:for (;;) {
12: sleep(sleep_interval);

. ckpt 2=t ake_ckpt (bs);
14:

full _node_set =get _avail abl e_nodes();
15: for (iter=get_first(full_node_set);iter!=NULL;
iter=get_next (full_node_set)) {
16: av_t @s=(av_t @s*(count @s-1)+tenp@ter)/count @s;
17: av_| @s=(av_| @s+*(count @s-1)+l t@ter)/count @s++;

}

18: if (_failed) {
19: full _node_set =get _avai | abl e_nodes();
20: if (menber(bs,full_node_set)) {
//bs still alive=>another node crashed

21:
: restore_ckpt (ckpt2);
} else {
restore_ckpt(ckptl);
}
}
}

23:
4

Section[2. These drawbacks are addressed by our automated re- }

covery strategies, which build on the checkpointing API and are
described in the next section.

The Checkpointing API

In a Kairos macroprogram, the programmer may call the following
function at any point:

Ckpt take_ckpt(nodelist nl);

This function takes a consistent checkpoint at every node in the
specified node list. By a consistent checkpoint, we mean that no
node in nodelisinl proceeds in the computation until it knows
that all other nodes inl have also taken the checkpoint. This call
returns a handle to the checkpoint.

To rollback to a checkpoint, a programmer may call the follow-
ing function:

bool ean restore_ckpt (Ckpt ckpt);

Figure 4—Example macroprogram with manual recovery code.

must be recovered from: when a base station crastes,1 cre-

ated in line 6 is used, and when any other node crashes,2
created in line 13 is used. Whenever one or more nodes fail during
the execution, the runtime ultimately triggers the recovery code in
lines 18-24. This is because failures of nodes are detected in the
background by the runtime and exposed through an internal vari-
able calledf ai I ed, which the programmer can check anywhere
in the program.

In case a node other than the base station crashes, the program-
mer restores checkpoiokpt 2 in lines 20—22, and in case the base
station itself crashes, the programmer restores checkphpttl
in line 24. If ckpt 1 is restored, execution resumes at line 7. The
programmer takes another checkpoint in lines 7—8kift 1 has
been restored. I€kpt 2 is restored, execution resumes at line 14.

This function takes a previously created checkpoint as an argumentThus, as long as any node other thancrashes, the state la$ is
and restores the state at each node (again, consistently) to that atinaffected, because of its recovery via checkpointt 2. Further,

the specified checkpoint. Execution of the restored program then
resumes at the statement following the point where the specified
checkpoint was taken.

Figurdd shows how this API can be used to implement a version
of fault tolerant sensor averaging in Kairos. It meets the require-
ments described at the beginning of Secfibn 2 except for merging
data from old base stations, which we describe in the following sub-
section. The recovery code that is additional to the macroprogram
in Figure[3 is shown in bold. The basic idea behind the recovery
code is to use two checkpoints for the two failure scenarios that

177

since restoring a checkpoint reinstates a previous state of the pro-
gram, the actual values of node-local variables that a program uses
in the time between taking and restoring a checkpoint is immate-
rial. Lines 16-17 of FigurEl4 exploit this property by not checking
for the return values of node-local variables. Our implementation
currently returns a well-defined error code, which is useful if a pro-
grammer wants to implement finer-grained recovery.

A macroprogram written to use the checkpointing API is said to
usecheckpoint-rollback recoverfCRR). CRR solves the last two
problems of node-level recovery described in Sedflon 2 as follows:

1. Unlike the manual checkpoints taken in the pseudocode in Fig- ~ When a program invokesest or e_ckpt (ckpt), the runtime
ure[2, which are local to a particular node, the Kairos check- restores the program state from the local checkpoints of nodes
pointing API provides globally consistent checkpoints. There- stored inckpt structure. The distributed component of this oper-
fore, the programmer is relieved from manually tracking de- ation uses the same machinery involved &ke_ckpt (), except
pendencies across nodes: as long as all nodes that have deperhat the remaining nodes should obviously not expect protocol mes-
dencies among one another are checkpointed and the call tosages from the failed nodes. After the live nodes have agreed to
t ake_ckpt is placed at a globally consistent point, all depen- consistently restoreekpt , each node’s runtime locally restores its
dencies will be properly handled automatically. own state.

2. The Kairos runtime automatically synchronizes nodes when a
checkpoint is taken or restored. For example, a node is only
allowed to resume execution after restoring its local checkpoint The checkpointing API provides an abstraction that specifies recov-
once all other nodes have also restored their checkpoints. There-€ry actions at the level of the macroprogram itself. The Kairos run-
fore, the programmer is completely relieved of the burden of time carefully ensures that consistent checkpoints are taken at each

Summary

node synchronization. local node. This checkpointing mechanism is conceptually similar
] to other distributed checkpointing techniques, all of which, includ-
Detecting Faults ing ours, are variants of Chandy and Lamport’s algorithim [9]. The

Fault detection is a significant research challenge in its own right. main novelty is that our implementation is asynchronous and opti-
In this paper, we assume non-malicious faults and use a simple, yetmized for the locally communicating and broadcast nature of sen-
practical, fault detection strategy. A fault is said to occur when a SOr networks. Moreover, we are not aware of similar language-level
read or write to a node fails after three successive retries. Variable recovery techniques that are tightly integrated with the underlying
reads and writes use a simple request/response protocol in Kairosdistributed programming system, a feature which is useful in pro-
This protocol has a three-second timeout, a reasonable upper-boundiding support for partition recovery, as described in the next sec-
on real-world latencies in sensor networks. When a fault is de- tion.

tected, thef ai | ed flag is set. . o
3.4 Recovering from Partitions

Implementing Checkpoints Checkpointing can lose work between the last checkpoint and when
Kairos implements the checkpointing API, and its various compo- ar est or e_ckpt () is called. If faults affect a single node, invoking
nents, in its runtime. This task involves coordinating the relevant CRR is the right choice if we only want to ensure consistency of
node-level runtimes to efficiently take and restore checkpoints. the macroprogram state. In the case of many continuous-output
By the time a program invokessake _ckpt (nl), the runtime applications, such as vehicle tracking, it also happens to be the
ensures that the value ot is available at every node in the optimal choice because it causes the macroprogram to respond
network. Each node withiml takes its own local checkpoint, both rapidly and correctly to network dynamics, and compute the
sends out a completion message, and stops the node-level programsontinuous output with no loss of accuracy.
execution until it hears the same message from other nodes. Nodes However, CRR on its own is not sufficient to properly han-
that are notiml need not actually take a local checkpoint, but they dle network partitions. We define a partitioning as an event which
still have to participate in a global consensus algorithnh [11]. In causes one or more live nodes to be disconnected from the rest
the general case, this synchronization can be expensive, requiringof the network. Suppose a network partition occurs anywhere be-
O(Nz) reliable point-to-point transmissions for a network of size tween lines 11-15 in Figufd 4. With CRR, Kairos would rollback
. the computation and resume it independently on both halves of the
We propose two novel optimizations for communication reduc- partition. There are now twbs values, each of which keeps accu-
tion. First, we exploit the broadcast nature of wireless sensor net- mulating averages. When the partition heals, we need a mechanism
works in order not to require every node to communicate with ev- to let a programmer specify how to unify the work done by each
ery other node. We build consensus using the following algorithm, side of the partition.
which has two phases of execution. In the first phase, a node re- We provide such a mechanism, calfattition Recoverywhich
liably broadcasts “Done/Wait” to its immediate neighbors after it combines the global work done by each group during the partition.
takes its local checkpoint. Whenever it hears “Done/Wait” from The goalis to preserve the values of variables representing the long-
all neighboring nodes, it enters the second phase of execution bylived program state, such av_| @s, av_t @s, andcount @s.
reliably broadcasting “Done” in the local domain. Once it hears The programmer invokes partition recovery by specifyingexge
“Done” from all current neighbors, the node independently deter- function along with the macroprogram. The runtime indicates that
mines that a consistent global checkpoint has been taken. Intu-the partition has healed by setting_laeal ed variable, and the
itively, this algorithm works because a node would not have en- programmer can detect this condition similar to the check used for
tered the second phase of the protocol if any neighbor had not yetnode failures in line 15 of Figufd 4.
completed or even entered its own first phase. In order to make the ensuing discussion clear, we show the
The cost of this protocol is clearly at mosi 2eliable local entire code for the macroprogram in Fig[ite 5. It is augmented with
broadcasts. Another distinguishing feature of this protocol is that the code for dealing with partitions in bold.
nodes only need to synchronize during this operation but otherwise Figure[® works as follows. When a partition occurs, the test for
execute completely asynchronously with respect to one other. _failedin line 18 would succeed. One half of the partition that
Second, we optimize a common case scenario in which a check-contains the base station would work with a fewer set of nodes
point is repeatedly taken over a single node. For example, in line because its runtime restoreigpt 2 to line 14 of the macroprogram,
13 of Figurd®, we repeatedly checkpoint statesatin such cases, while the other half that does not contain the current base station
the runtime can avoid global synchronization by only taking a lo- will additionally obtain a new base station when its runtime restores
cal checkpoint. The runtime implements the correct consistency se-ckpt 1 to line 7 instead. Thus, there would be two global runtimes,
mantics so that such a checkpoint is valid. Our local checkpointing each of which is the union of the local runtimes of its constituent
implementation uses the bckpt library to save the private pro- nodes. We note that the original base station does not lose its long
cess state (the data, heap and stack segments) locally at a node. term statei(e., its values ofav.l , av_t, andcount) because the

178

Ckpt ckpt1,

node bs, bs_Pl, bs_P2;
ui nt nodel ocal count=1, av_|=0, av_t=0;

ckpt 2;

void av() {

1: nodelist full_node_set;
2: node iter;
3: uint sleep_interval =1000;
4: uint nodel ocal tenp;
5: full _node_set=get _avail abl e_nodes();
6: ckpt1l=take_ckpt(full_node_set);
/I Check if we have to take another checkpoi nt
7: if (ckptl.restored){
8: full_node_set=get _avail abl e_nodes();
9: ckptl=take_ckpt(full_node_set)
10: bs=get _first(sort(full_node_set));
11:for (;;) {
12: sleep(sleep_interval);
13: ckpt 2=t ake_ckpt (bs);
14: full _node_set=get _avail abl e_nodes();
15: for (iter=get_first(full_node_set);iter!=NULL;
iter=get _next(full _node_set)) {

16: av_t @s=(av_t @s*(count @s-1)+tenp@ter)/count @s;
17: av_| @s=(av_| @sx*(count @s-1)+l t@ter)/count @s++;

}
18: if (_failed) {
19: full _node_set=get _avail abl e_nodes();
20: if (menber(bs, full_node_set)) {
21: /Ibs still alive=>another node has crashed
22: restore_ckpt (ckpt2);
23: '} else {
24: restore_ckpt (ckptl);

}

}
25: if (_healed) {
26: nerge_av();

}

}
}

voi d nmerge_av()

{
27: bs=m n(bs_P1, bs_P2);
28: av_| @s=(av_| @s_Plxcount @s_Pl+av_| @s_P2
*count @s_P2)/ (count @s_Pl+count @s_P2);
29:av_t @s=(av_t @s_Pl*count @s_Pl+av_t @s_P2
*count @s_P2)/ (count @s_Pl+count @s_P2);
30: count @s=count @s_Pl+count @s_P2;
}

Figure 5—Example macroprogram for recovering from partitions.

rollback of its partition is only until line 14. As long as they are
separate, both partitions work independently thereafter.

Later, when the two partitions merge, the runtimes of the two
halves will independently detect this condition, because the two
distributed runtimes maintain information about which nodes are

tion merge pbs_P1 andbs_P2 are updated respectively with values
from each of the two partitions.

The merge function is invoked by the programmer separately
for each runtime in line 26, after she detects that the underlying
partition has healed, by testing for thieeal ed flag in line 25.
The merge function synchronizes the two runtimes by making the
first caller wait until the second caller has also invokedge_av.
mer ge_av first updates the global varialie of the macroprogram
to the lower-valued base station. It then updatesthe, av_t , and
count values abs. When it exits, the two runtimes are considered
unified, and the application resumes execution at line 11.

One observation we can make regarding the application domain
of sensor networks is that it is often possible to write merge func-
tions that follow a well-known idiom. FigurEl 6 describes some
common example applications and suitable merge functions.

State Type Example Merge Function
Aggregatable . .
alars Sum, average, count Simple aggregation
Linearly Vector aggregates, auto- an
combinablevectors | cross-correlations, covariancg, Textbook compositional formulae
and matrices Fourier transforms

Duplicate insensitive counting/sketcl

Max, min, quantiles, theory, g-digests, approx. aggregateg,
etc.

histograms, quantiles, etc.

Non-aggregatable
scalars

Model/problem-specific but simple
low-state spatiotemporal interpolateq
composition

Spatiotemporal

Isobars, contours, etc.
State

Figure 6—Common tasks and their merge functions.

4. Automated Recovery Strategies

While our checkpointing API for macroprogramming is a signifi-
cant step from node-local manual recovery, it still requires the pro-
grammer to manually create checkpoints, manage their lifetimes
explicitly, and restore to the appropriate checkpoint at necessary
places within the application logic.

4.1 Declarative Recovery Annotations

In order to relieve the programmer from dealing with such issues,
and in order to only allow her to reason about recovery modu-
larly, we have designed Beclarative Recovery (DRannotation
technique. This annotation takes the following formodel i st ,

mer ge_f unc> wherenodel i st is an expression that evaluates to

a list of nodes potentially affected by a fault, and the optional
mer ge_f unc specifies a merge function to be used after a partition.
Thenodel i st argument is specified using a set-theoretic notation,
with support for basic operations of union, intersection, and differ-
ence. Such an annotation may be placed at any line in the macro-
program, and more than one such annotation may be present in a
given macroprogram.

When a programmer places an annotatioodel i st, nerge_f unc>
at some point in the program, she is indicating that the global pro-
gram state is consistent at that point, and therefore that this is an
appropriate point at which to take a checkpoint. When such an an-
notation is encountered during execution, the runtime automatically
takes a checkpoint at all nodesnadel i st (using the checkpoint-

available. Before the merge, each runtime maintains its own copy ing API described in the previous section). The runtime also starts

of the central variables, and the copies may become out of sync. Af-

a newrecovery scop@nd watches for any failed or merged nodes

ter the merge, the programmer may require access to both copiesjn the background. This recovery scope lasts for the dynamic extent
in order to determine an appropriate value to use for that central of the annotation’s smallest enclosing program block.

variable upon program resumption. A programmer can indicate a

central variablevar whose values from the two partitions should
be saved by declaring two additional central variabl@s_P1 and

var _P2. For example, in the beginning of Figlide 5, the programmer
declaress_P1 andbs_P2. Just before the two runtimes of a parti-

179

When any remote access encounters a failure within a recovery
scope, the runtimautomaticallyrolls back the computation at each
node in the macroprogram to the most recent relevant checkpoint.
Relevance is determined by thedel i st argument to an annota-
tion, which indicates that forward progress can be made from this

point as long as at least one nodenisdel i st is live. Given this 4.2 Selecting and Managing Checkpoints
information, the runtime can automatically rollback to the check-
point that discards the least amount of work while ensuring forward
progress. We describe this rollback algorithm in more detail in the
next subsection. Furthermore, when new nodes are added to th f code at whichA was taken is executed after the line at which

system or when a partition heals, the runtime also rolls back the g a5 taken at run time. The runtime continuously tracks nodes’
computation, applies the specified merge function, and resumes themembership status in the background to discover if one or more

In a macroprogram with several annotations, the checkpoints cre-
ated by active annotations can be dynamically managed as a single
list. In this list, a checkpoinA follows a checkpoinB if the line

computation. nodes have failed or been partitioned. If it detects such a condition,
it searches this checkpoint list for a checkpoint with an annotation
that has specified at least one live node. Intuitively, the program-
void av() { mer intends each checkpoint to represent both a globally consistent
1: nodelist full_node_set; state, and, orthogonally, a liveness condition that declares that the
2: node iter, bs; ~ . macroprogram can make forward progress if execution is retried
i: uint sleep_interval =1000; L from that point on, after discarding the effects of failed nodes dur-
: uint nodel ocal count=1, av_t=0, av_|=0; . .
5. uint nodel ocal sensor temp, It; ing CheckaInt recovery. . .
6: full node_set=get availabl e_nodes(): ~ The runtime allocates and maintains memory for checkpoints
in an efficient and distributed manner. Metadata associated with
7: <full _node_set, NULL> a checkpoint, which includes the list of nodes over which the
8: full _node_set=get _avail abl e_nodes(); checkpoint was taken and the checkpoint’s parent checkpoint in the
9: bs=get first(sort(full_node set)): Iis_t, is replicated at every node. One valuable optimizati_on !s that, if
10:for (:3) { this metadata does not change when the next checkpoint is taken at
the same place, global synchronization is averted. Thus, in Hifjure 7,
11: <{bs}, NULL> when the runtime repeatedly takes a checkpoint bgés state, it
12: full _node_set=get _avai | abl e_nodes(); can avoid global communication and synchronization after the first
13: sl eep(sl eep_interval): time. This is because of our gbservation that if two _checkpoints are
14: for (iter=get first(full node set);iter!=NULL: taken over the same node list, the older checkpoint can be safely
i ter=get_next (full _node_set)){ replaced by the newer checkpoint—the older checkpoint will never
15: av_t @s=(av_t @s*(count @s- 1) +temp@ter)/ be used in favor of the later checkpoint because (a) our liveness
count @s; requirement during rollback applies equally to both checkpoints,
16: av_| @s=(av_| @s=*(count@s-1)+H t@ter)/ and (b) our requirement to minimize work lost will cause the later
count @s++; checkpoint to preferentially be chosen over the older one.
} The runtime reclaims storage allocated for checkpoints in the
} following simple fashion. Whenever execution encounters an anno-

} tation, the runtime takes a checkpoint at that location, and then dis-
Figure 7—Example macroprogram to illustrate Declarative Recovery cards any previously taken checkpoints at that code location. This
(DR). strategy lazily discards checkpoints; an alternative would have been

for the Kairos compiler to carefully discard checkpoints whenever
execution exits the static program scope in which the annotation

FigurelT shows our averages example augmented with recoveryis declared, but our approach requires less work on the part of the
annotations (lines 7 and 11). Lines 8 and 12 are additional code compiler, and is comparably efficient. Furthermore, before restor-
for ensuring that the program can make progress without the failed ing the state corresponding to a selected checkpoint, the runtime
nOdES, and are executed immediate|y after the macroprogram haéjiSC.ardS the saved memory associated with all later CheCprintS in
been rolled back to the corresponding points. For simplicity, we the list.
do not show a merge function, which would be very similar to the
one in Figurdb; thus, the second arguments of the annotations in
lines 7 and 11 ar®&ULL. In line 7, we annotatéul | _node_l i st While Declarative Recovery significantly simplifies programming
as the set of nodes over which the checkpoint is defined. In line recovery, it still requires the programmer to annotate code. In addi-
11, we activate another recovery scope, defined only over the basetion to identifying points in the code where consistent checkpoints
station. This annotation indicates that forward progress can be can be taken, the programmer has to indicate what the minimal set
made from line 11 as long as the base station is still live. Therefore, of live nodes is at such points in order to optimize lost work. For
whenever any node other thars fails during the annotation’s example, in Figurgl7, the second annotation’s first argument must
recovery scope, the runtime rolls the program back only to line 12, contain the base station in order to avoid losiisgstate. An inter-
and re-initializes the set of currently available nodes. If the base esting question arises whether it is possible to provide completely
station fails, however, the runtime instead rolls back to line 8, and transparentrecovery, without programmer involvement at all.
subsequently chooses a new base station in line 9. We have taken a first step in this direction using a simple heuris-

These declarative recovery annotations eliminate the problemstic that we call Transparent Recovery (TR). In Transparent Recov
of manual checkpointing described earlier. A simple annotation ery, the need for supplying declarative annotations is eliminated,
tells the runtime where checkpoints should be taken. The runtime but the programmer must still supply a merge function for the pro-
then automatically creates and manages these checkpoints, detectgram, because merge functions are inherently application-specific.
failures and determines an appropriate checkpoint to restore, eveniWe only allow one merge function to be provided; it is declared
across function boundaries. In this way, the recovery code is much with a special attribute indicating that it is the merge function.
more insulated from the application logic and much more robustto ~ Transparent Recovery works as follows. The Kairos compiler
application updates. Finally, the runtime also automatically garbage generates code to take a checkpoint after each update to a variable
collects checkpoints as they become inactive, as described in theof type node or nodel i st. Thus, going back to theriginal ex-
next subsection. ample (Figuré3), the compiler would direct the runtime to take a

4.3 Transparent Recovery

180

checkpoint off ul | _node_set after line 6, ofbs after line 7, and monitoring, it can be configured as a latency sensitive single-shot
of i ter after line 10. application.

Transparent recovery can be sub-optimal, losing more work
than necessary, because it is not possible to infer the nodes that
must be live at a given point to ensure that forward progress can
be made. Therefore, TR’s rollback strategy must be conservative:
upon the failure of a node, TR rolls back to the latest checkpoint
C such thatC and all earlier checkpointslo not include node.
Intuitively, it is safe to roll back te if this condition is met, since
nothing in the program execution up@depended upon node If
no such checkpoint exists, the runtime system simply rolls back to
the beginning of the macroprogram.

Because all nodes are checkpointed at line 6 in Fiflire 3, this Figure 8—A single Mica-Z controlled by a PC (left), a single Mica-Z
code represents a worst case of sorts for TR; failures alwaye caus attached to a Stargate (center), and Mica-Z'’s (circledherceiling (right).

rollback to the beginning of the macroprogram. However, our ex- . .
; ; : ; ; ; : The Testbed: Our testbed consists of 36 nodes, of which 15 are
t Sectiof)] 5 illustrate that the tech tical f . . . ’ L
periments in Sec Hiusra’e at e lechnique 1S practica or Stargates with an attached Mica-Z mote (Fiddre 8). The remaining

other common sensor-network applications. For example, TR is 21 lated nod h node bei lated b EmSt

appropriate for many continuous-output applications like vehicle are emEu ahe nol es,deacd node being ?mu ate lyor(;e Mr_n ;r

tracking, because nodes in such a network do not accumulate longProcess. Each emulated node uses a real (not emulated) Mica-
mote for all communication. These Mica-Z motes are mounted on

term state. the ceiling of our laboratory (Figufé 8). This setup allows us to sim-
ulate real-world multihop configurations without being constrained
5. Evaluation by the limited memaory resources of the current generation of motes.

In our testbed, all nodes are within a single physical hop of each
other, but we configure nodes to multi-hop through other nodes
in order to more closely mimic real deployments. Specifically, we
arrange these node to form a 6x6 2D torus topology.

Experimental Setup: A single run of an experiment measures
application performance metrics (described below) Nbfaults,
where N ranges from 0 to 15. We inject three types of faults
into the system, and in a given run, all injected faults are of the
51 Methodology same type. In a software fault (SW), the application instance at
Implementation: We implemented Kairos, and the recovery tech- a node is killed, leaving the Kairos runtime operational. In this
niques for Kairos partly in Python (using its embedding and extend- case, for example, remote reads of raw (unprocessed) sertaor da
ing APIs) and partly in C. The Kairos runtime uses EmStal [12] can be satisfied by the Kairos runtime. In a hardware fault (HW),
to implement end-to-end reliable routing and topology manage- the entire node is stopped, so that neither the Kairos runtime nor
ment. Our Kairos implementation runs on 32-bit embedded plat- the application can send or receive messages. When injecting a
forms such as the Stargalé [3], as well on PCs. We have presentedgoftware or hardware fault, we are careful to keep the network
the details of our Kairos implementation n][17]. To this implemen- itself connected. Finally, we also inject a network partition (PR),
tation, we added the recovery API described in Sedflon 3, and the whereN nodes are partitioned from the system, and the partition
compiler and runtime support for Declarative Recovery (DR) and then heals after 2 minutes. In all cases, the network is started with
Transparent Recovery (TR) described in Sedtion 4. All experiments no faults, and faults are injected immediately after the first call to
reported in this paper use this implementation. getavailablenodes< has succeeded.

Applications. We evaluate the efficacy of recovery in Kairos using We set algorithm parameters as follows. For vehicle tracking,
three representative sensornet applications written in Kairos, thewe assume a constant speed target moving randomly within the
complete code for which is given ifi_]17]. The three applications 6x6 grid. Other parameters of the algorithmlinl [24] are scaled to fit
are: vehicle tracking, for which an explicitly distributed algorithm our topological dimensions. For localization, coordinates of bea-
based on Bayesian belief propagation is given in &iwal. [24]; con nodes are randomly perturbed with Gaussian noise according
node localization in a sensor network, for which we macroprogram to the parameters i [B5]. The g-digest application uses a Kairos
the distributed algorithm based on cooperative multi-lateration as application to construct the routing tree along which the data di-
given in Savvidet al.[B5]; and quantile estimation, for which we gests are sent. We configure g-digest to periodically (every 100s)
macroprogram the distributed algorithm, based on the concept of asend digests.

summarizing data structure called g-digests, as given in Shrivastava In all experiments, the recovery latency for checkpointing, after
et al.[37]. failure detection, was less than a minute.

These applications place different demands on Kairos, yet, as Comparing Recovery Strategies: We evaluate transparent recov-
we show below, Kairos is able to satisfactorily recover each appli- ery (TR) for software faults (TR-SW) and for hardware faults (TR-
cation. Vehicle tracking is an instance of a locally-communicating, HW). In the programs we evaluate, TR-SW and TR-HW are re-
continuously-sensing, latency sensitive, periodic (duty-cycling) ap- spectively equivalent to DR-SW and DR-HW because they happen
plication. Localization is an example of a globally-communicating, to roll back to the same checkpoint in each case, and are thus ex-
single-shot, latency insensitive application, driven by network hibit identical performance. For evaluating the efficacy of recov-
events such as node addition, deletion, mobility, and reconfigu- ery after partition healing, we evaluate Declarative Recovery with
ration. Finally, g-digest is a network-wide locally-communicating non-null merge functions in the annotations (DR-PR). Since Trans-
application, whose output and latency sensitivity requirements de- parent Recovery is primarily meant for applications that don’t ac-
pend on its use: for collecting statistics over a continuously chang- cumulate long-lived state, we do not evaluate TR-PR. For DR-PR,
ing sensor field, it can be configured to be a latency tolerant, con- we have inserted declarative annotations into each of the Kairos
tinuous output application; however, for low frequency rare event applications; none of our applications requires more than 5 annota-

In this section, we describe the results of experiments conducted
on a wireless testbed using an implementation of Kairos and the
recovery mechanisms described in this paper. We quantify the ef-
ficacy of our recovery techniques along various dimensions: error
in application quality, application availability, and messaging and
memory overhead.

181

w

tions, although the largest of our applications is nearly 250 lines of
macroprogramming code, which is roughly how much large macro-
programmed tasks are in practice.

We compare these strategies against two baseline cases: the per-
formance of the application without any faults (NF), and the per-
formance of the application without recovery (NR) in the presence
of faults.

Metrics: Our comparison is based on the following four quantita-
tive metrics. Our first metric is applicatia@vailability, defined for

two of our applications, vehicle tracking and g-digest. In these two
applications, the application periodically (say ev@nsecond in-
tervals) returns a result (the current location of the vehicle, or the
current median). When a fault occurs, the application may or may

not be able to return an answer at a given instance. Définte be Figure 10—Availability comparison of TR-Software (TR-SW), TR-

the fraction of intervals during which an unrecovered application Hargware (TR-HW), and DR-Partition Recovery (DR-PR) sgis with
(NR) did not return an answer. Defirdr analogously, but for an increasing node failures.

application with a recovery strategy applied. Then, we define ap-
plication availability to be IogDDB—Eq, a metric that is commonly
used for representing availability. THisgarithmic metric defines
applications which return an answer during 0.999 of the intervals to
have X (or 100% more) availability compared to one which returns
an answer during 0.99 of the intervals.

Our second metric measures applicatéror. This metric ap-
plies to all three applications, of course, and is defined for vehicle

tracking as%, 2y is the approximation computed by NF, and

Zr is the approximation computed by either TR-SW, TR-HW or ‘ ‘ ‘
DR-PR. The metric is similarly defined for our other applications. 0 5 10 15 20
Our last two metrics measure the messaging and memory overhead Number of Failures
of recovery. They are defined as the additional fraction of messages
sent, or memory used, relative to NF.

We chose these metrics because, for recovery techniques toFigure 1l—Accuracy comparison of TR-Software (TR-SW), TR-
be practical in realistic multi-hop scenarios, they need to be Hardware (TR-HW), and No Recovery (NR) strategies with insieg node

lightweight in addition to being expressive. failures.
case where no recovery strategy is employed (NR). The relative

52 Results error under NR is indicative of the loss of application fidelity in-
In Figured®, we plot the availability of the vehicle tracking appli- herent in failure; for example, when nodes fail, a vehicle tracking
cation as a function of the number of faults. Notice that the advan- application is essentially left with a less dense network than be-
tages of recovery are apparent even with one failure; the increase infore, adversely affecting tracking quality. Our main observation in
availability is more than %, indicating that recovery strategies- this graph is that, while the application accuracy degrades linearly
duce the number of intervals during which an answer is available with increasing numbers of faults (TR-HW), this degradation is no
by a factor of 10As the number of faults increases, this factor rises worse than the relative error under NR. This indicates that the loss
to nearly 30 (18°). The availability for the g-digest application is of application accuracy is entirely inherent in node failure, and re-
qualitatively similar (Figurd_10). For both applications, different covery does not exacerbate this loss. On the contrary, recosery
strategies exhibit slightly different availabilities, mostly due to dif- ducesapplication error: TR-HW has lower application error than
ferences in the latency of recovery across the three approaches. NR, because the latter has lower availability resulting in missed
3 readings and therefore a more erroneous track (since the tracking
algorithm uses a smoothed history of position readings). Further-
more, note that TR-SW exhibits no relative error at all; when the
OR-PR Kairos runtime is able to respond with sensor readings, even if the
application instance at the node itself is dead, the overall applica-
tion is still able to preserve fidelity. Finally, we do not show DR-PR
in this graph; partition healing is not relevant to an application in
which the answer (the position estimate) is continuously changing.

In FiguredIP anfl13, we plot the relative error of the various
‘ ‘ ‘ recovery strategies for g-digest and localization. The interesting
5 10 15 2 difference between this graph and Figlré 11 is that, as expected,
Number of Failures DR-PR also exhibits zero application error since partition recovery
is able to recover lost work by merging two g-digests, or location
estimates. Furthermore, since medians and location estimates are
relatively less sensitive to node loss than vehicle tracking, the mag-
nitude of error for TR-HW is lower. Even in this case, however,
this error is comparable to the application error without fault recov-

In Figure[T1, we plot the relative error in the position estimate ery (we do not shown application error under NR for localization
as a function of the number of faults for the vehicle tracking ap- because a single failure causes the application to not successfully
plication. Our baseline for comparing our recovery strategies is the terminate).

N
&

N

DR-PR

Factor (Logarithmic)
- &

o
o

o

Increase in g-digest Availability

5 10 15 20

o

Number of Failures

45

40
35+
30 +
254
20 +
15 4
10 +

Vehicle Tracking Error %

254

N

e
o

(Logarithmic)

[N

TR-HW

Increase in Vehicle Tracking
Availability Factor
o
(&

o

o

Figure 9—Availability comparison of TR-Software (TR-SW), TR-
Hardware (TR-HW), and DR-Partition Recovery (DR-PR) sgae with
increasing node failures.

182

30

Finally, we see in Figure15, that TR requires betweéh-25

25 1 times the data memory of an application without recovery, which

measures the amount of checkpointing state maintained. Today’s
sensor nodes have different program, SRAM, and flash memories.
Since SRAM (data) memory can be stored inside a (much larger)
flash, this problem is less severe. Nevertheless, clearly, this is an
aspect of our system that could benefit from some optimization.

This memory overhead is independent of the number of faults. It

does depend only on application characteristics, specifically the av-
0 erage nesting depth of checkpoints. Interestingly, for our applica-

° ® 1 1 % tions, this nesting depth happens to be comparable (slightly more
than 2 for an average execution trial), hence the memory overhead
appears to be the same across applications.

Figure 12—Accuracy comparison of TR-Software (TR-SW), TR- 25 Sq-digest

Hardware (TR-HW), DR-Partition Recovery (DR-PR), and No ®ery
(NR) strategies with increasing node failures.

20 +

154

10 4

g-digest Error %

5 4 TR-SW, DR-PR

Number of Failures

I Localization

HVehicle
Tracking

20 4
18 4

Data Memory Overhead Factor

TR-SW, DR-PR

1 2 4 8 16
Number of Failures

Localization Errors %
-
o

T T T |
0 5 10 15 20

Figure 15—Memory overhead for CRR.
Number of Failures

Summary. Our recovery strategies can improve application avail-
Figure 13—Accuracy Comparison of TR-Software (TR-SW), TR- ability by an order of magnitude, while preserving application ac-
Hardware (TR-HW), and DR-Partition Recovery (DR-PR) sgae with curacy for certain kinds of faults (software faults, and network par-
increasing node failures. titions). They incur acceptable messaging overhead (less than 15%

for vehicle tracking), and a factor of two additional data memory

In Figure[T#, we show the messaging overheads for the various for checkpointing. While TR works well for continuous output ap-
recovery strategies for each of the applications. The error bars plications like vehicle tracking, those requiring longevity, such as
in the figure depict the variation in overhead with the number of d-digest, benefit from having declarative annotations with merge
faults. We see that communication overhead of these mechanismdunctions for partition recovery.
is independent of the severity of faults, and depends mostly on the
nature of the application. TR-SV_V and TR-HW are aI_most equal 5 Reated Work
because they share the same logic when invoked, and incur no more)]
than 25% additional messaging overhead. DR-PR incurs twice as There are two primary approaches for generic rollback-based re-
much overhead as TR-HW or TR-SW for some applications like g- COvery schemes, a survey of which is givenlin [11]. Such schemes
digest that span the entire network, and, therefore, involve a large¢an be classified as either checkpoint-based or log-based. Log-
number of nodes. For applications like vehicle tracking in which, based protocols tend to have unpredictable message logging re-
at any given time, only nodes within a certain locality are involved, duirements, which are hard to provision for in memory-restricted
the overhead of DR-PR is almost a constant and quite small (aboutSensor nodes. However, log-based protocols are predominantly
15%). used in database5_|28] and file systens [34] because they have
access to a large and persistent disk storage. CRR is checkpoint-
based, and there is an extensive set of algorithms and implemen-
tations of distributed checkpoint schemes in a variety of domains
ranging from loosely coupled message passing systems to tightly
coupled multiprocessoris [8,[6.110] 19] 22,[30,[32[36, 38]. A taxon-
omy and survey of such schemes is givenLid [20]. Two important
features of our checkpointing API are that (a) it is easier to use
than most of these techniques because it leverages the macropro-
gramming abstraction, and (b) it is implemented efficiently over
the broadcast facility in wireless sensor networks.

Declarative recovery through annotations is a novel aspect of
our work. We are not aware of prior work similar to these language-
level constructs, even though a growing body of literature exists
for augmenting systems such as MPI with recovery APIs and li-
braries|[7]. Also, recently, there is a renewed interest in implement-
ing systems components using declarative approathels [15, 25], but
they do not directly deal with recovery.

~
S

Hg-digest

@
3

MLocalization

W Vehicle
Tracking

@
3

Message overhead (%)

-
S

Figure 14—Message overhead comparison of TR-SW, TR-HW, and DR-
PR strategies.

183

Our partition recovery support is also novel. Others have pro- [12] J. Elson, S. Bien et al. Emstar: An environment for devielgmvireless
posed application-specific merge functions in varied contexts such embedded systems softwa@ENS-TR-9, 2003
as distributed file systems [33] and mobile computing [41]. How- [13] D. Gay, P. Levis et al. The nesC Language: A Holistic Awgmh to
ever, such systems have not been widely popular mainly because =~ Networked Embedded Systems.RhDI 2003
their generality means merge functions are hard to write. We be- [14] J. Gray. Why do computers stop and what can be done about it?
lieve that it is simpler to write merge functions for sensor network SRDS'86 _ _
applications because they are frequently numerical in nature. Mad-[13] T. Griffin and J. Sobrinho. MetaroutinGIGCOMM 2005
denet al. have proposed a form of merge functions for query pro- [16] L. Gu, D. Jia et al. Lightweight detection and classfiioa for
cessing in sensor networks [26], but those merge functions were wireless sensor networks in realistic env_wonmeﬁmnsys 2005 .
for normal processing inside SQL queries, and not for recovery, 171 R: Glummad" 0. C;Vr\'la"‘l'(a“' and kR" g;zvg\ggrgool\élacro-programmmg
Finally, we are not aware of any prior work that considered recov- 18 \Sv'r:.lfsésgnsor nek (:r Isussm? ar hitecture direat work
ery in sensor networks, either in the context of macroprogramming[1J. Hill, R, Szewczyk et al. System architecture di or networ

. sensorsASPLOS, 2000
systems such aﬂ:{ﬂ@ 43] or otherwise. [19] D. B. Johnson. Distributed system fault tolerance using message

logging and checkpointing?hD thesis, 1990.

[20] S. Kalaiselvi and V. Rajaraman. A survey of checkpoigtihgorithms
e for parallel and distributed computeiSadhana, Vol. 25, Part.5
0{21] E. Knapp. Deadlock detection in distributed databas€M Comput.

Surv, 19(4):303-328, 1987. ISSN 0360-0300.
[22] R. Koo and S. Toueg. Checkpointing and rollback-recpver dis-

7. Conclusionsand Future Work

Failures are a critical concern for sensor-network systems, and on
that crosscuts entire applications. In this paper, we have describe
the problems for manual failure detection and recovery in sensor
networks, and we show how the notionroéicroprogrammingan tributed systems|EEE Trans. Softw. Eng13(1):23-31, 1987. ISSN
be used to largely untangle the failure concern from the applica- 0098-5589.
tion logic. First, we have designed a generic checkpointing APl 23] p, evis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accte@nd
for macroprogramming systems that leverages the centralized view scalable simulation of entire tinyos applications Sensys, 2003
of a network to allow checkpoint and rollback to be specified at [24] J. Liu, J. Reich, and F. Zhao. Collaborative in-netwpricessing for
natural points in the overall application. Second, we explored two target tracking EURASIP, 2002
automated recovery strategies, which significantly raise the level of [25] B. Loo, J. Hellerstein, I. Stoica, and R. RamakrishnareclBrative
abstraction for specifying recovery and serve to further insulate the routing: Extensible routing with declarative queri&GCOMM 2005
recovery concern from the rest of the application. We have imple- [26] S. Madden, M. J. Franklin, J. Hellerstein, and W. HongGT A tiny
mented our checkpointing API and automated recovery strategies ~ AGgregation service for ad-hoc sensor netwo®SDI, 2002
in the Kairos macroprogramming system, and experimental results[27] M. Maroti, B. K. G. Simon, and A. Ledeczi. The flooding time
illustrate their utility and practicality. synchronization protocolSensys, 2004 .

Several avenues for future work remain. First, it would be use- [28] J. E. B. Moss. Log-based recovery for nested transastiénVLDB
ful to gather more experience with our techniques on real-world 87, pages 427-432, 1987. ISBN 0-934613-46-X. o
deployments. Second, our work on transparent recovery is only a[29] B- Murphy and T. Gent. Mﬁasu_“ng system and softwaribéity
first step; we plan to examine a range of applications to better un- - ;S'T_lg aBn Z‘gg:f;endddftiﬁo Ei%’;g;?;?rii’uﬁgsm P—
derst_and appr(_)prlate h.eu”St'CS for transpa_lrent recovery tI_1at will consistent global snapshot&EE Trans. Parallel Distrib. Syst6(2):
be widely applicable. Finally, our recovery implementation is rel- 165-169, 1995. ISSN 1045-9219.
atlvely unoptimized; in future _N(_)rk_ we will use program-analy3|s [31] R. Newton and M. Welsh. Region streams: Functional maogram-
techniques to automatically minimize work lost in recovery and to ming for sensor networkDMSN, 2004
minimize the memory overhead of checkpoints. [32] J. S. Plank. Efficient checkpointing on MIMD architecturesPhD

thesis, Princeton, NJ, USA, 1993.
[33] G. J. Popek, R. G. Guy, J. Thomas W. Page, and J. S. Heidemann

Replication in ficus distributed file system&Vorkshop on Manage-
ment of Replicated Data, 1990

References
[1] James reserve. URfht t p: / / www. j anesr eser ve. edu/ }.

[2] Micaz mpr2400. URL{http://ww. xbow. com Product s/
product sdet ai | s. aspx?si d=101}.

[3] Stargate platform. URKht t p: // www. xbow. com Pr oduct s/
XScal e. ht m}.

[4] R. Adler, P. Buonadonna et al. Design and deployment ofistidhl
sensor networks: Experiences from the north sea and a setiicton
plant. SenSys 2005

[5] L. Alvisi and K. Marzullo. Message logging: Pessimistiptimistic,
causal, and optimallEEE Trans. Softw. Eng24(2):149-159, 1998.
ISSN 0098-5589.

[6] R. Baldoni, F. Quaglia, and B. Ciciani. A vp-accordanéeckpointing
protocol preventing useless checkpointsSRDS '98page 61. IEEE
Computer Society, 1998. ISBN 0-8186-9218-9.

[7] G. Bosilca, A. Bouteiller et al. Mpich-v: toward a scalatfault
tolerant mpi for volatile nodes. I8C'02 pages 1-18. IEEE Computer
Society Press, 2002.

[8] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Foxi- M
croreboot - a technique for cheap recovedgDI, 2004

[9] K. M. Chandy and L. Lamport. Distributed snapshots: Deti@ing
global states of distributed systen®CM Trans. Comput. Sys8(1):
63-75, 1985. ISSN 0734-2071.

[10] E. Elnozahy. Manetho: fault tolerance in distributed systems using

rollback-recovery and process replicatioRhD thesis, 1994.

[11] E. N. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson. A seyv
of rollback-recovery protocols in message-passing syste&M
Comput. Surv., 2002

184

[34] M. Rosenblum and J. Ousterhout. The design and implertientaf
a log-structured file systenACM Trans. Comput. SysfL0(1):26-52.
ISSN 0734-2071.

[35] A. Savvides, C. Han, and S. Srivastava. Dynamic Finer@chlocal-
ization in Ad-Hoc networks of sensorsiOBICOM, 2001

[36] R. D. Schlichting and F. B. Schneider. Fail-stop preoes: an ap-
proach to designing fault-tolerant computing systerdCM Trans.
Comput. Syst1(3):222-238, 1983. ISSN 0734-2071.

[37] N. Shrivastava, C. Buragohain, S. Suri, and D. Agrawédians and
beyond: New aggregation technigues for sensor netw@&aSys’'04

[38] R. Strom and S. Yemini. Optimistic recovery in distribditgystems.
ACM Trans. Comput. SysB(3):204-226, 1985. ISSN 0734-2071.

[39] M. Sullivan and R. Chillarege. Software defects andrtimpact on
system availability - a study of field failures in operatingstems.
FTCS, 1991

[40] R. Szewczyk, A. Mainwaring, J. Polastre, and D. Cullen analysis
of a large scale habitat monitorin§ensys, 2004

[41] D. Terry, M. Theimer et al. Managing update conflicts iryba, a
weakly connected replicated storage syst&@SP 1995

[42] M. Welsh and G. Mainland. Programming sensor networkegusi
abstract regiondNSDI, 2004

[43] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hoode@h-
borhood abstraction for sensor networkobiSys, 2004

