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ABSTRACT
Bovine pancreatic ribonuclease (RNase A) is the founding member of the RNase A superfamily. Members of
this superfamily of ribonucleases have high sequence diversity, but possess a similar structural fold,
together with a conserved His-Lys-His catalytic triad and structural disulfide bonds. Until recently, RNase A
proteins had exclusively been identified in eukaryotes within vertebrae. Here, we discuss the discovery by
Batot et al. of a bacterial RNase A superfamily member, CdiA-CTYkris: a toxin that belongs to an inter-
bacterial competition system from Yersinia kristensenii. CdiA-CTYkris exhibits the same structural fold as
conventional RNase A family members and displays in vitro and in vivo ribonuclease activity. However,
CdiA-CTYkris shares little to no sequence similarity with RNase A, and lacks the conserved disulfide bonds
and catalytic triad of RNase A. Interestingly, the CdiA-CTYkris active site more closely resembles the active
site composition of various eukaryotic endonucleases. Despite lacking sequence similarity to eukaryotic
RNase A family members, CdiA-CTYkris does share high sequence similarity with numerous Gram-negative
and Gram-positive bacterial proteins/domains. Nearly all of these bacterial homologs are toxins associated
with virulence and bacterial competition, suggesting that the RNase A superfamily has a distinct bacterial
subfamily branch, which likely arose by way of convergent evolution. Finally, RNase A interacts directly
with the immunity protein of CdiA-CTYkris, thus the cognate immunity protein for the bacterial RNase A
member could be engineered as a new eukaryotic RNase A inhibitor.
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Review

To date all identified RNase A superfamily members stem
from vertebrates.1 These RNase A family members possess
highly divergent sequences and play a variety of roles in many
distinct biological pathways.1 As a result of their heteroge-
neous sequences, it is especially challenging to recognize and
classify RNase A proteins in the absence of biochemical
characterization. All previously identified RNase A proteins
contain three to four conserved, structural disulfide bonds
(Fig. 1). RNase A proteins act on RNA to catalyze a phospho-
transferase bond cleavage to produce a cyclic 20–30-phospho-
diester fragment and a 50-hydroxyl terminated fragment.2,3

While some RNase A members can degrade both single and
double-stranded RNAs, the preferred substrate for catalysis is
single-stranded RNA.1 Typically, poly-pyrimidine strands are
more rapidly cleaved than poly-purine RNAs, and a conserved
His-Lys-His catalytic triad is required for the hydrolytic activ-
ity to occur.2

Bacteria possess many pathways to compete and communi-
cate with their bacterial neighbors. One such system is contact-
dependent growth inhibition (CDI), which is found in Gram-
negative bacteria that exchange toxins upon direct cell-to-cell
contact.4,5 CDI relies on a two-partner (Type V) secretion sys-
tem comprised of CdiA and CdiB. CdiB, an Omp85 b-barrel, is
responsible for the export and display of CdiA on the cell
surface. CdiA proteins are large (180–630 kDa). They recognize
specific surface receptors of neighboring bacteria, and upon

contact, initiate transfer of the CdiA C-terminal toxin domain
(CdiA-CT) into the target cell.5-7 A single gene cluster encodes
CdiA and CdiB, as well as CdiI, the cognate immunity
protein.5,8 CdiI proteins specifically bind and restrict the activ-
ity of cognate CdiA-CT toxin domains, providing species-spe-
cific protection.5,8

To date, nearly all characterized CDI toxins are nucleases,
each with its own specificity. For example, the CdiA-CT of
Enterobacter cloacae cleaves 16S ribosomal RNA,9 while uro-
pathogenic E. coli 536 bears a unique ribonuclease fold with no
sequence similarity to other RNase families and only cleaves
tRNA in the presence of endogenous O-acetylserine sulfhydry-
lase (CysK).10,11 Additionally, several CdiA-CT toxins belong
to the PD-(D/E)XK phosphodiesterase superfamily. These
include a Zn2C-dependent DNase from E. coli TA271,12,13 as well
as CdiA-CTs from Burkholderia pseudomallei 1026b and E479,
both of which are tRNases that specifically recognize a unique
subset of tRNAs and cleave at different tRNA sites.12,14

Often the structure of an uncharacterized protein provides
insight into its precise function. Recently, the crystal structure
of Yersinia kristensenii ATCC 33638 CdiA-CT toxin (CdiA-
CTYkris) in complex with its immunity protein (CdiIYkris) was
determined (PDB ID 5E3E).15 The toxin structure adopts a kid-
ney shape that is formed by two curved b-sheet domains, which
strongly resembles several RNase A family members: human
angiogenin (PDB ID 4B3616), Rana pipiens protein P-30 or
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onconase (PDB ID 3SNF17), and mouse pancreatic RNase A
(RNase 1, PDB ID 3TSR18). Strikingly, while eukaroytic RNase
A family members contain 3 to 4 conserved disulfide bonds,
CdiA-CTYkris contains none at all (Fig. 1).

In addition to lacking some structural elements that are
highly conserved among eukaryotic RNase A homologs, the
composition of the catalytic core of CdiA-CTYkris is distinct
from the typical RNase A His-Lys-His catalytic triad. In angio-
genin, the reaction is initiated when His13, acting as a general
base, deprotonates the 20 hydroxyl of substrate RNA.2 Lys40
stabilizes the resulting transition state intermediate, and, acting
as a general acid, His116 terminates the reaction by donating a
proton to the 50 leaving group.2 From structural alignments
with RNase A proteins, the active site of CdiA-CTYkris was pre-
dicted to comprise of His175 (aligns to His13), Val192 (aligns
to Lys40), and Thr276 or Tyr278 (aligns to His116). As Val192
is unlikely to participate in catalysis, Batot et al. identified the
neighboring residue Arg186, which appears to be conserved as
shown by multiple sequence alignments of putative bacterial
homologs,15 as a potential transition state stabilizer.

Further, experiments show that CdiA-CTYkris has metal-
independent RNase activity. However, in the presence of the
immunity protein, CdiIYkris, a toxin-immunity complex is
formed that effectively neutralizes CdiA-CTYkris ribonuclease
activity. Notably, the CdiA-CTYkris variants H175A and Y278A
display no RNase activity both in vitro and in vivo, whereas
R186A and T276A variants retain partial RNase activity. Like
RNase A, CdiA-CTYkris can also hydrolyze cCMP.3 All four of
the H175A, R186A, T276A and Y278A CdiA-CTYkris variants
exhibited reduced cCMP hydrolytic activity. These results sug-
gest that His175, Arg186, Thr276 and Tyr278 residues are
required for full CdiA-CTYkris ribonuclease activity. The RNase
and cCMP hydrolytic activities of CdiA-CTYkris, in addition to
its structural similarity to the RNase A family members, sup-
port its classification as a novel bacterial member of the RNase
A superfamily.

The distinct set of catalytic/active site residues for CdiA-
CTYkris suggest an alternate mechanism of ribonuclease action.
The reaction likely begins via His175, which may behave as a
general base to initiate the reaction. Subsequently, Arg186
could stabilize the transition state while Thr276 or Tyr278, act-
ing as a general acid, terminate the reaction. Though distinct
from other RNase A family members, aspects of this unique
catalytic core have been observed in other endonuclease fami-
lies. For example, the RNase T1 family of nucleases employ a
highly conserved arginine residue to stabilize the reaction inter-
mediate.19 Further, tRNA-splicing endonucleases use a tyrosine
residue as a general base to initiate the reaction, and a histidine
residue to terminate the reaction by acting as a general acid.20

Similarly, tyrosine appears to be involved in the reaction mech-
anism of other eukaryotic endonucleases, RNase L and Ire1,
acting by an analogous mechanism to tRNA-splicing.21 While
the proposed catalytic residues of bacterial CdiA-CTYkris have
been observed in other nucleases, they signify a dramatic shift
from the conserved His-Lys-His core of eukaryotic RNase A
family members. Further biochemical analyses are required to
understand the RNase mechanism of CdiA-CTYkris; notably
characterizing the pKa of key residues could aid in understand-
ing specific residue roles in general acid/base chemistry. Fur-
ther, little is known about the substrate specificity of CdiA-
CTYkris and whether its unique catalytic core, as compared with
eukaryotic RNAse A, affects its RNA substrate specificity.

Before the characterization of this CdiA-CTYkris toxin,15

RNase A family members had only been discovered in verte-
brates.1 Placing CdiA-CTYkris as a member of the RNase A fam-
ily allows for the integration of a novel and populous bacterial
branch into this superfamily. Based on sequence homology to
CdiA-CTYkris

, this subfamily includes a multitude of bacterial
proteins/domains from both Gram-negative and Gram-positive
bacteria, many of which play a role in bacterial virulence or
competition and all of which have predicted immunity proteins
and associated secretion systems.15 CdiA proteins from Serratia
proteamaculans, Photorhabdus luminescens, Pseudomonas cit-
ronellolis, and Bordetella species contain RNase A-like C-termi-
nal toxin domains. Many of the CdiA-CTYkris homologs are
associated with type VI secretion systems (T6SS); the RNase
domain is found in T6SS effectors in Burkholderia and Entero-
bacteria species as well as in Rhs (Rearrangement hotspot) pro-
teins – which are exported by T6SS – in Pseudomonas and
other species.22,23 The RNase domain is also present in Gram-
positive Bacillus lipoproteins and at the C-terminus of putative
type VII secretion system (T7SS) effectors.24-26

Because members of this branch of bacterial RNase A pro-
teins are frequently association with a secretion system, these
toxins are presumably unfolded and refolded during the
secretion/delivery process. As such, the lack of disulfide bonds
in bacterial RNase A proteins offers a practical advantage; the
proteins can be readily unfolded and refolded without the need
to break or reform disulfide bonds. Regarding catalysis, the pre-
dicted CdiA-CTYkris His-Arg-Tyr-Thr active site residues are
well conserved across these homologs: His175 and Thr276 are
completely conserved, while a phenylalanine residue is fre-
quently substituted for Tyr278. Thus, it seems likely that there
is a common active site amongst these bacterial RNase A family
members, though Thr276 is perhaps less likely to play a role in

Figure 1. The RNase A superfamily has two divergent branches: one in vertebrates
and a recently identified bacterial branch. Notably the disulfide bonds (black
spheres) present in all vertebrate RNase A family members (RNase 1 – PDB ID
3TSR18) are absent in bacterial RNase A proteins (CdiA-CTYrkis – PDB ID 5E3E15). The
N- and C- termini are indicated. Figures were generated in PyMOL.
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catalysis than Tyr278. In conclusion, further mechanistic analy-
sis of CdiA-CTYkris residues involved in ribonuclease activity is
required.

Most CdiA-CTYkris bacterial homologs are encoded near puta-
tive immunity proteins. While eukaryotic RNase A family mem-
bers do not encode a neighboring immunity protein, the RNase A
inhibitor (RI) is abundant in the eukaryotic cytoplasm to prevent
RNase cytotoxicity.27 Interestingly, there is no sequence or struc-
tural similarity between CdiIYkris and RI (Fig. 2). While CdiIYkris is
nearly spherical, composed of eight densely packed a-helices,15 RI
resembles an horseshoe, with a structural repeat of alternating
a-helices and b-strands that form a curved, right-handed solenoid
consisting of 15 leucine-rich repeats.18 Unlike RI, which surrounds
mouse pancreatic RNase A (RNase 1, Fig. 2B), CdiIYkris interacts
directly with CdiA-CTYkris active site residues (Fig. 2A); hydrogen
bonds and electrostatic interactions are formed between CdiIYkris

Gln20 and CdiA-CTYkris Tyr278, and CdiIYkris Asp21 and
CdiA-CTYkris His175 and Thr276. Thus, it seems likely that
CdiIYkris protects against CdiA-CTYkris action by restricting the
access of substrates to the toxin’s active site. Although CdiIYkris has
no sequence or structural similarity to RI (Fig. 2), preliminary
experiments demonstrate that CdiIYkris co-purifies with and par-
tially inactivates eukaryotic RNase A (unpublished data, personal
communication). CdiA-CTYkris and eukaryotic RNase A are dra-
matically different proteins with low sequence similarity and key
differences in their active site composition and geometry. Thus,
the ability of CdiI to inhibit eukaryotic RNase A is remarkable and
could have significant implications. As CdiIYkris interacts specifi-
cally with CdiA-CTYkris active site residues, CdiIYkris could be engi-
neered to bind specific RNase A proteins with high affinity. This
could be advantageous as the CdiIYkris protein is small (»11 kDa)
and can be recombinantly produced and purified from bacteria,
while RI, a larger protein (»50 kDa) with numerous cysteine
residues, is typically extracted from animal tissue. Engineering
CdiIYkris to have both high affinity and neutralizing power for
eukaryotic RNase A proteins, together with its ease in expression
and purification frombacterial systems, would significantly reduce
the cost of a potential RNase A inhibitor for laboratory usage.

Significantly, Batot et al. have discovered a diverse new
branch of the RNase A superfamily in bacteria.15 As the
RNase A superfamily has no sequence homologs in lower
eukaryotes or invertebrates, and this unique bacterial subset
of RNase A toxins has no sequence similarity to the verte-
brate RNase A proteins, the bacterial and eukaryotic RNase
A branches seem indicative of convergent evolution. Thus,
bacteria appear to have independently evolved an analogous
ribonuclease that – while structurally somewhat similar to
eukaryotic RNase A family members – operates via a novel
mechanism. While vertebrate RNase A family members
cleave RNA using a His-Lys-His catalytic triad, bacterial
RNase A family members appear to utilize a His-Arg-
(Tyr/Thr) triad or quartet. Further, the structure of CdiA-
CTYkris was solved in complex with its immunity protein
CdiIYkris, which incidentally can also partially neutralize
RNase A activity (unpublished). It is remarkable that
CdiIYkris, a highly specific protein partner for CdiA-CTYkris,
may also neutralize a protein from another species with a
similar function to CdiA-CTYkris, but with no detectable
sequence similarity and different active site architecture.
The broadly neutralizing ability of CdiIYkris could be har-
nessed to generate effective RNase A inhibitors at low cost
for laboratory or industrial settings.
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