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Abstract

Counterparty credit risk (CCR), a key driver of the 2007-08 credit crisis, has become one
of the main focuses of the major global and U.S. regulatory standards. Financial institutions
invest large amounts of resources employing Monte Carlo simulation to measure and price
their counterparty credit risk. We develop efficient Monte Carlo CCR frameworks by focusing
on the most widely used and regulatory-driven CCR measures: expected positive exposure
(EPE), credit value adjustment (CVA), and effective expected positive exposure (eEPE). Our
numerical examples illustrate that our proposed efficient Monte Carlo estimators outperform
the existing crude estimators of these CCR measures substantially in terms of mean square
error (MSE). We also demonstrate that the two widely used sampling methods, the so-called
Path Dependent Simulation (PDS) and Direct Jump to Simulation date (DJS), are not
equivalent in that they lead to Monte Carlo CCR estimators which are drastically different
in terms of their MSE.

1 Introduction

Counterparty credit risk (CCR) is the risk that a party to an OTC derivative contract may
default prior to the expiration of the contract and fail to make the required contractual payments,
(see [3] for the basic CCR definitions). Counterparty credit risk has been widely considered as
one of the key drivers of the 2007-09 credit crisis, and it has become one of main focuses of the
major global and U.S. regulatory frameworks; Basel III'and the Dodd-Frank Act of 2009-10,
(see, for instance, [1]). It is well known that pricing and measuring counterparty credit risk
is computationally extremely intensive; financial institutions (derivative dealers) invest large
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amounts of resources to develop and maintain Monte Carlo simulation “engines” to manage
their counterparty risk, (see [16], [11], and [3]).

In this paper we develop efficient Monte Carlo frameworks for pricing and measuring counter-
party risk. More specifically, we focus on efficient Monte Carlo estimation of the most widely used
and regulatory-driven CCR measures, expected positive exposure (EPE), credit value adjust-
ment (CVA), and effective EPE (eEPE), as defined below. Efficiency criteria under consideration
are variance, bias, and computing time of the Monte Carlo estimators. Our proposed Monte
Carlo estimators of EPE, CVA, and eEPE outperform the existing “crude” estimators of these
CCR measures substantially in terms of mean square error (MSE). To the best of our knowledge,
this paper is the first to consider efficiency improvement for Monte Carlo CCR, estimation.

Counterparty credit exposure [3], denoted by V', of a financial institution against its coun-
terparty, is the larger of zero and the market value of the portfolio of OTC derivative con-
tracts the financial institution holds with its counterparty. To effectively introduce our efficient
Monte Carlo procedures we consider credit exposures in the absence of the commonly used risk
mitigants, i.e., collateral and netting agreements. This simple setting facilitates the effective
communication of our main results.

EPE is a widely used counterparty credit risk measure for regulatory and economic capital
calculations, (see Chapters 2 and 11 of [11]). It is defined as follows,

EPE = /OT E[Vi]dt, (1)

where E[V}] is the expected value of the (credit) exposure at time ¢ > 0, and 7' > 0 denotes the
time to maturity of the longest transaction in the OTC derivative portfolio.

Effective EPE (eEPE), another widely used regulatory and economic capital-related coun-
terparty risk measure [11] is defined as follows in the CCR literature:

eEPE = max E[Vj]A,. (2)

This definition is based on a discrete time grid, 0 = tg < t; < ... < t, =T with A; = t; — t;_1,
i=1,...,n. We prefer and propose the following continuous version of eEPE:

T
eEPE = max E[V,]dt, (3)

0 0<u<t

which is consistent with the definition of EPE and has the advantage of not requiring an a priori
specification of a discrete time grid. Our results in Section 5 apply to eEPE as well as eEPE 4.

eEPE is the “conservative” version of EPE that accounts for roll-over risk. Roll-over risk
refers to the following scenario. Expiration of some of the short-term trades in the OTC deriva-
tives portfolio before T would decrease some of the E[V;] and so EPE. However, it is likely that
these short-term trades are replaced by new ones. When these replacements are not captured
by the Monte Carlo CCR “engine”, EPE is underestimated, (see [16]).



CVA, which is the difference between the risk free portfolio value and the true counterparty
default risky portfolio value, (see [15]), has become one of the main focuses of the Basel III;
derivative dealers are required to calculate CVA charges for each of their counterparties on a
frequent basis.

Let 7, a positive random variable, denote the default time of the counterparty. It can be
shown that CVA, the price of the counterparty credit risk, is equal to the risk neutral expected
discounted loss, i.e.,

CVA = E[(1 — R)D,V,1{r < T}], (4)

where 1{A} is the indicator of the event A, D; = By/ B, is the stochastic discount factor at time
t, B; is the value of the money market account at time ¢, and R is the financial institution’s
recovery rate, (see, for instance, Chapter 7 of [11] for a derivation of this formula). Hereafter we
suppress the dependence of the CVA on the recovery rate, R. When V and 7 are independent,
we refer to CVA as independent CVA. Let F' denote the cumulative distribution function of 7.
Independent CVA can be written as follows,

T
CVA; = E[D,V,1{r <T}] = / E[DyVi]dF, (5)
0

where the last equality follows from conditioning on 7, the independence of V and 7, and the
independence of D and 7. We focus on efficient Monte Carlo estimation of independent CVA in
this paper. 2

EPE, effective EPE, and independent CVA are estimated based on the Monte Carlo esti-
mation of expected exposures, E[V;], and expected discounted exposures, F[D,;V;]. Section 2
summarizes the common features of the Monte Carlo CCR framework widely used by financial
institutions and introduces the notion of Marginal Matching. Marginal matching enables one to
differentiate the two widely used CCR sampling methods, Path Dependent Simulation (PDS)
and Direct Jump to Simulation date (DJS). These two terms were first introduced by Pykhtin
and Zhu in 2006 [16]. Practitioners choose either of the sampling methods arbitrarily.> We
illustrate that PDS and DJS-based CCR estimators have drastically different MSE; their com-
puting time also may be not be equal. Section 3 introduces an efficient Monte Carlo framework
for estimating EPE. Using our results in Section 3, we introduce efficient Monte Carlo estima-
tors of independent CVA in Section 4. Section 5 considers efficient Monte Carlo estimation of
eEPE. Our numerical examples indicate that employing our Monte Carlo CCR schemes leads
to substantial MSE reduction.

2 Monte Carlo Counterparty Credit Risk Estimation

Contract level credit exposure at time ¢ > 0 is the maximum of the contract’s market value
and zero, max{Cy, 0}, where C; denotes the time-t value of the derivative contract. Consider a

Wrong (right) way risk are referred to as cases where credit exposures are negatively (positively) correlated
with the credit quality of the counterparty, (see [6], [3], and [12]).
30ne of the authors’ former employer is a large investment bank.



financial institution that holds a portfolio of k¥ OTC derivative contracts with its counterparty.
Counterparty level credit exposure is

k
V=Y max{Cj,0}, (6)
=1

where C} denotes the time-t value of the i'th derivative contract in the OTC derivatives portfolio.
When risk mitigants are employed, V; is defined differently. For instance, in the presence of
netting agreements, credit exposure becomes, (see [15]),

k
Vi = maX{Z Ci,0}. (7)

A typical Monte Carlo counterparty risk engine of a derivatives dealer estimates various
types of CCR measures based on sampling from the credit exposure process on a time grid,
0<t <..<ty,="1T, where T denotes the maturity of the longest transaction in a portfolio of
OTC derivatives and 1, ...,t, are sometimes referred to as valuation points. Set V; = V;,.

Some of the CCR measures are static in the sense that they are defined based on a given fixed
time point. Expected exposure (EE) at time ¢;, is simply E[V;]. Also, VaR type of measures
for a given valuation point ¢; is referred to as potential future exposure. Derivatives dealers use
Monte Carlo simulation to estimate EE and PFE for all the given valuation points ¢1, ..., ¢, on a
frequent basis, (see [11] and [15] for more details on CCR measures). Note that CCR measures
considered in this paper, EPE, CVA, and eEPE, are dynamic in the sense that they depend on
the time evolution of the credit exposure process.

In what follows we first summarize the simulation of the credit exposure process. Then, we
introduce the notion of Marginal Matching in sampling from the time evolution of the credit
exposure process.

2.1 Simulating the Credit Exposure Process

We assume that credit exposure is a stochastic process {V; ;¢ > 0} defined on a given filtered
probability space (2, F, (Ft)o<t<oo, P). Given (6) and (7), V; can be viewed as a function of
the stochastic processes that drive the values of the derivative contracts, Cf,...,CF. In risk
management, these underlying stochastic processes are usually referred to as risk factors, e.g.,
interest rates, commodity prices, and equity prices. To generate a Monte Carlo realization of V,
for a fixed t > 0, first, the underlying risk factors should be sampled from up to time ¢ > 0. Next,
given the Monte Carlo realization of the risk factors up to time ¢ > 0, the derivative contracts
C¢ should be valued. This two-step procedure generates a single Monte Carlo realization of V;.
It is a risk management common practice to use the physical probability measure in the first
step and risk-neutral measure in the second. This applies to Monte Carlo estimation of EPE
and eEPE. However, since CVA is usually viewed as the market price of counterparty credit
risk, risk-neutral measure is usually used in both steps. Depending on the complexity of the



payoff function of the derivative contracts, the valuation step could take straightforward Black-
Scholes-type analytical calculations, or it could demand approximations that depending on the
desired level of accuracy might be computationally intensive. These approximations could also
involve Monte Carlo simulation: Nested Monte Carlo refers to the use of a second layer of Monte
Carlo simulation in the valuation step of the above procedure, (see [10]), and regression-based
Monte Carlo (see [2]) uses ideas from regression-based Monte Carlo American option pricing,
(see Chapter 8 of [7]).

2.2 Marginal Matching

Let X = (Xi,...,Xy) denote a random vector with distribution function Fyx. Let wx =
(E[h1(X1)], ..., E[hn(Xy)]) for some functions hq,...,h,. And let 0x = g(wx) for a function

g that maps wx from R" to R. Two simple examples of 0x are as follows,
S ER(X)] and max{E[h(X)], ... EA(X,)]},
=1

that is fx is defined based on the marginal distribution of (functions of) Xi,..., X,,. Let Y =
(Y1, ..., Y,) denote another random vector with distribution function Fy such that,

X2y X, =%Yjforalli=1,..,n, (8)

where =% denotes “being equal in distribution”. Simply note that since the marginal distribu-
tions of X and Y match, 0x = 0y. Now, suppose that fx is to be estimated with Monte Carlo
simulation. Given (6), samples can be drawn from Fx or Fy. Let 0 x,m and éyﬂn denote Monte
Carlo estimators of fx based on m simulation runs when samples are drawn from Fx and Fy,
respectively. Obviously,

Ox.m 7% Oy.m,

and so between HAXM and éy,m, i.e., when deciding on whether to sample from Fx or Fy, the
estimator with lower mean square error (MSE) should be chosen.

Example: Finite-Dimensional Distributions of Brownian Motion Let {X; ;¢ > 0}
denote a Brownian motion with drift ;1 and volatility parameter . Consider the random vector
X =(Xy,....Xn) = (X4, ..., Xt,) on the time grid, 0 < t; < t2 < ... < t,. That is, following the
basic definition of a Brownian motion, X is a multivariate normal random vector with E[Xy,] =
ut; and Var(Xy,) = o%t;, and cov(Xy,, Xi;) =t; > 0for t; <t;. Now, let Y = (Y¥1,...,Y},) denote
a multivariate normal random vector whose marginal distributions match that of X but with
cov(Y;, Y;) =0, i.e., components of Y are independent.



Stochastic Models of the Risk Factors Let {R; ;t > 0}, representing the dynamics
of a risk factor, denote a stochastic process defined on a given filtered probability space,
(Q, F, (Ft)o<t<oo, P). In this paper we assume that {R; ;¢ > 0} is a Gauss-Markov process
(see Chapter 5 of [13]) or a Geometric Brownian motion (GBM). Many of the widely used
continuous time stochastic processes in finance and economics are in this class. Note that
Gauss-Markov processes and GBM have this property that cov(Rs, R;) > 0 for any 0 < s < .
Consider the finite dimensional distribution of R on a time grid, t1,...,t, and set R; = Ry,.
Suppose that R = (R, ..., R;,) can be sampled from ezactly in the sense that the distribution of
the simulated R is precisely that of the R process at times t1, ..., t,; examples are Brownian mo-
tion, Ornstein-Uhlenbeck processes, and GBM, whose simulations involve generating positively
correlated normal random variables. Let R = (Rl, - Rn) denote a random vector for which
R+“Rbut R, =* R; for alli=1,...,n and cov(}é,-, R]) =0 for all ¢ # j. That is, simulation of
Ry, ..., R, can be done by generating n uncorrelated normal random variables.

PDS Sampling versus DJS Sampling In the CCR literature when counterparty risk mea-
sures are estimated based on sampling from the finite-dimensional distributions of the underlying
risk factors, the sampling is referred to as Path Dependent Simulation (PDS sampling). Oth-
erwise, when the notion of marginal matching is used, the sampling is referred to as Direct
Jump to Simulation date (DJS). For instance, in the Brownian motion example above, sampling
from X and Y when estimating 6 x-type estimands are referred to as PDS and DJS sampling,
respectively. In Monte Carlo estimation of CCR measures, PDS and DJS sampling have been
widely considered equivalent. We have also observed that practitioners often choose either of
the sampling methods arbitrarily. One of the contributions of this paper is to differentiate DJS
and PDS in terms of the mean square error of the estimators of EPE, eEPE, and CVA.

3 Efficient Monte Carlo Estimation of EPE

In this section we consider efficient Monte Carlo estimation of EPE,
T
EPE — / E[Vidt,
0

where V' denotes the credit exposure process, and T" > 0 represents the expiration time of the
longest maturity derivative contract in an OTC derivatives portfolio. Consider a time grid,
0=ty <ty <..<t, =T, with afixedn. Set A; =¢t; —t;_;y and V; =V, i =1,...,n. Let
éb,m,n,k denote a class of Monte Carlo estimators of EPE defined as follows,

n
Obmnk = E Vi,
i=1

where V; = Zgnzl Vij/m and Vi1, ..., Vi, represent the m simulation samples at valuation point
t;. The subscript b refers to the biased nature of the estimators, and the subscript & could take



p and d, referring to PDS and DJS based simulation of the credit exposure process, respectively.
As mentioned in Section 2.1, simulating the credit exposure process involves sampling from
the underlying risk factors. Hereafter, PDS and DJS-based simulations of the credit exposure
process refer to the cases where the underlying risk factors are sampled from based on their
finite dimensional distributions (PDS sampling) and based on the notion of marginal matching
(DJS sampling), respectively. Note that,

2
MSE (0,1 ) VarZVA (ZE VilA; - /Etht>.

=1

We assume that Monte Carlo realizations of V; are unbiased estimates of E[V;], i = 1,...,n. This
implies that the bias part of the MSE of 9b7m7n’k is not affected by the choice of the sampling
method (PDS or DJS). In Section 3.1, we assume that n, the number of “valuation points” is
fixed, and we compare the efficiency of éb,m,n,p and éb’m,n,d in terms of variance and computing
time both for path independent and path dependent derivatives. Next, we introduce our efficient
biased, yet consistent Monte Carlo estimators of EPE. In Section 3.3. we introduce efficient
unbiased estimators of EPE. Numerical examples in Section 3.4 indicate that our proposed
estimators substantivally outperform the “crude” estimators of EPE in terms of the mean square
error.

3.1 Comparing PDS and DJS-based Monte Carlo Estimation of EPE

Suppose that the credit exposure process, V, defined on a given filtered probability space
(Q, F, (Ft)o<t<oo, P), is driven by a single risk factor, denoted by S, which is a Gauss-Markov
process or a GBM. Let (F;)o<t<oo denote the filtration generated by {S; ;¢ > 0}. Consider
the simple setting where V' denotes the contract level exposure and a financial institution takes
a long position in a maturity-7" derivative contract with its counterparty. Let II7 denote the
payoff function of the derivative contract. It is well known from martingale pricing that

11
V,=Cy=nE [T\ft] : (9)
nr

where n is a numeraire (stochastic discount factor). We would like to compare the efficiency
of éb,m,n,p and éb,m,n,d in terms of variance and computing time for path independent and path
dependent derivatives. Without any loss of generality, consider the well-known setting where
{S; ;t > 0} is a GBM, S; = SpeXt, and {X; ;¢ > 0} is a Brownian motion with drift p and
volatility o. Consider a given payoff function with fixed maturity 7" > 0. In the path independent
case, V; = Cy = B HT |St = f(S¢). That is, credit exposure is considered as a function of the

risk factor.* C0n51der the time grid, 0 =ty < t; < ... <t, =T and set V; = V;,. In the path

4Consider, for instance, the payoff function Iz = (S7 — K)" of a maturity-T' GBM-driven vanilla call option
with strike K. Assuming zero short rate, C; = E[(St — K)T|S:] = E[(StS7—+ — K)¥|S:]. Note that the function
fin f(S¢) = E[(S:St—+ — K)*|S:], which is well-defined for all values of ¢ > 0 given the payoff function Il
with a fix maturity 7T, is in fact a function of ¢t and S;. In Section 3, for notational simplicity, we suppress the
dependence of f on t in the definition C; = ntE[ L|Se] = f(S).



dependent case we assume that V; = g(S4, ..., S;), where g is a function from R’ to R. Hereafter,
for notational simplicity, we suppress the dependence of V' on the stochastic discount factor.

Path Independent Case Set 6§ =3 " | E[Vi]A;. Recall that,

éb,m,n,k = Zn: V;Aza

=1

where Vj is the m-simulation-run average of Vi1, ..., Vi,. With V; = f(S;) and S; = Spe™,
Monte Carlo estimation of 6 requires sampling from the multivariate normal random vector,
X = (X1, ..., Xy,). This is the so-called PDS sampling method. An alternative sampling method,
using the notion of marginal matching, is to sample from the multivariate normal random vector,
Y = (Y1,...,Y,), whose components are uncorrelated but marginal distributions match those of
X. This is the so-called DJS method. To be more specific, in DJS sampling, .S; is generated from
time zero. That is, generate Y;, a normal random variable with mean ut; and variance ot;, and
set S; = Spe¥. In PDS sampling, Vj’s are sampled based on generating the sample path of the
GBM sequentially at ¢ = 1,...,n. That is, to generate a realization of V;, S; is generated given
the previously generated value of S;_1. > Note that since for any given ¢t > 0, V; is a function of
Sy = SpeXt, DJS-based simulation of the exposure process implies that cov(V;, V;) = 0 for any

i£4,4,5=1,..,n

We now show that PDS-based simulation of the exposure process implies that cov(V;, V;) > 0
for any i # j. First consider the case where V; is the time-t value of a path independent
maturity-1T" derivative contract with payoff function Ilp, which is driven by a single risk factor
denoted by S. That is, V; = C; = E[Ilp|S:] = f(S¢), for a function f. For any 0 < u < t we
have

cov(Vu, Vi) = cov(f(Su), f(St)) = E[cov(f(Su), f(5t)[Su)] + cov (f(Su), E[f(S:)|Su]) ,

where the last equality follows from the conditional covariance formula (see Chapter 3 of [17]).
It is easy to check that the first term on the right hand side above is zero. Consider the second
term and note that

E[f(51)]Su] = E[E[Mr|Si][Su] = E[Mr]Su] = f(Su),
and so we conclude that for any 0 < u < t,

cov(Vy, Vi) = Var(V,,) > 0.

5More specifically, to sample from S; generate )Z'Z and set S; = Si_lexi, where Xl- is a normal random variable
with mean pA; and variance a2 A;.



Now, consider the general case where the credit exposure at time ¢ > 0 is the maximum of zero
and the time-t value of a derivative contract. That is, V; = max{Cy,0} , where C; = E[IIp|S;] =
f(S;) as defined before.> We now argue that for any 0 < u < t,

cov(Vy, Vi) > 0, (10)

when the payoff function is a monotone function of the risk factor S. Again, conditioning on S,
and using conditional covariance formula gives

cov(Vy, Vi) = cov (Vy, E[Vi|Sy]) = cov (max{f(Sy), 0}, Elmax{f(S:),0}|Su]) -

First consider the first term max{ f(S,),0} inside the covariance function on the right hand side
above. Note that since f is a monotone function, max{f(S,),0} = f(S,) is also a monotone
function of S,. Next, consider the second term E[max{f(S;),0}|S,]. Note that when S is a
Gauss-Markov process, for any 0 < u < t we have S; = S, + S¢_y, where S, and S;_, are
independent random variables. Also, when S is a GBM, for any 0 < u < ¢t we have log(S;) =
log(Sy) +1og(Si—v), where S,, and S;_,, are independent random variables. This follows from the
independent and stationary increments properties of Gauss-Markov processes’ and that their
finite dimensional distributions are multivariate normal. This implies that E[max{f(S;),0}|S.]
is a monotone function of 5,. To see this, consider the case where f is an increasing function.
Increasing S, will increase S; = Sy, + Si—y (St = SuSi—y when S is a GBM); this increases
max{f(S;),0}. So, E[max{f(S;),0}|S,] = h(S.) also becomes an increasing function of S,,.
A similar argument can be used when f is a decreasing function. Consequently, we can write
cov(Vi, Vi) = cov(f(Su), h(Sy)), where f and h are both either increasing or decreasing functions
of S,. Using Chebyshev’s algebraic inequality (see, for instance, Proposition 2.1 in [5]) gives
cov(Vi, Vi) = cov(f(Sy), h(Sy)) > 0.

The monotonicity assumption of the payoff function is satisfied for most of the actively traded
OTC derivative contracts; well-known exceptions are Barrier® and Lookback options, (see, for
instance, [14]). Under this monotonicity assumption which leads to (10), it is not difficult to see
that

Var Oy m.n.a) < Var(By.mnp)- (11)

The above inequality holds since

. " Var(V;})AZ S Var(V;)AZ 2 .
Var(eb,m,n,d) = Z <TTL) Z (771)1 + W Z COV(V%, VJ)AzAJ = Var(9b7m7n7p). (12)

SFor instance, consider the case where C; represents the time-t value of an interest rate swap. Then, C; can
be negative for some ¢t > 0.

"Note that when S is a GBM, logarithm of S is a Brownian motion, which is a Gauss-Markov process.

8More specifically, the payoff function of up-and-in and down-and-out European barrier call options are mono-
tone functions of the underlying security prices. This monotonicity assumption does not hold for up-and-out and
down-and-in European barrier call options, (see Chapter 6 of [14] and the references there).



Path Dependent Case We now consider the path dependent case. For instance, suppose
that V; is time t value of a maturity-7" arithmetic Asian option, where the payoff at the time T’
is a function of Sy, ...S,. That is, V; = g(S1, ..., S;), where g is a function from R’ to R. The DJS
sampling method is to make V; = ¢(S51,...,.5;) and V; = ¢(S1, ..., S;), i < j, uncorrelated random
variables. That is, sample from Si,...,.5; to generate a single realization of V;. To generate
Vj, start again from time zero, and sample from Si, ..., S;,...S;. Under this DJS-type sampling
method, V; and V; become uncorrelated, cov(V;, V;) = 0. In the PDS-type sampling, given the
Monte Carlo realization of V;, to generate Vj, one uses the previously generated Si,...,5; and
only samples from S; 1, ...,.Sj. In this case V; and Vj are dependent. Using conditional covariance
formula and arguments similar to the ones used in the path independent case, it can be shown
that cov(V;, V;) > 0. More specifically, it can be shown that cov(V;, V) > 0 holds without any
restriction on the payoff function and the underlying risk factors when V; coincides with the
time-t value of the derivative contract C;. In the more general case where credit exposure is the
maximum of zero and C}, under the monotonicity assumption of the payoff function and risk
factors being Gauss-Markov or GBM, it can be shown that cov(V;, V;) > 0.

To compare the efficiency of the DJS and PDS-based estimators of 6 in the path dependent
case, computing time is also to be considered in parallel with variance of the estimators. Sup-
pose that the computational time to calculate ébm’n’k is proportional to the number of random
variables that are to be generated. Let ct(éb7m7n7k) denote the computational effort associated
with 6y k- Note that,

ct(0p,1,n.0)

Oh1.n
~ ~n and M . (13)
ct(0b,1,n,p) Var(6

b,1,m.d)

To see why (13) holds note that to calculate éb717n’d, ”("; U random variables are to be generated

while ém,n,p requires generating n random variables, (assuming that the calculation of E[IT4|F}]
does not require generating additional random variables). Also, note that as can be seen from
(12), variance of the PDS-based estimator is of order n? because of the covariance terms while
the DJS-based estimator has a variance of order n. Now, one should select the estimator with
the lower

variance per replication X expected computing time,

(see [9] for the formal formulation of this useful criterion in comparing alternative Monte Carlo
estimators) . So, we conclude that for the path dependent case Monte Carlo estimators of EPE,
i.e., Opmmnd and 0y p p, have a similar performance for fixed and sufficiently large n.

3.2 Efficient Monte Carlo EPE Estimation: Biased Estimators

In this subsection, we suppress the subscript b in éb,m’n’k and instead write émnk for notational
simplicity. We would like to find the number of valuation points, n, and the number of simulation

~

runs at each valuation point, m, to minimize MSE(6,, » 1),

MSE (k) = Var(@m ni) + (B0 ni] — EPE)2.

10



given a fixed computational budget, denoted by s, that is proportional to, mn. Also, k = p,
and d refer to PDS and DJS-based simulation of the credit exposure process on a time grid
0=ty <t <..<t,=T. That is, as shown in the previous section, under PDS sampling and
DJS sampling, cov(V;, V;) > 0 and cov(V;, Vj) = 0, respectively, for any i # j, 4,7 =1,...,n
To formulate and solve this optimization problem, we specify the order of the variance and
bias of the Monte Carlo estimator of eEPE, émnk Note that from the basic results on the
endpoint Reimann sum approximation of the integral time-discretization bias is of order 1/n.
We are not concerned with deriving sharp estimates of the orders of variance. In fact, our
numerical examples indicate that choosing approximately optimal m and n using even very
rough approximates for the orders of variance and bias leads to substantial MSE reduction
compared to industry practice.
Suppose that the time grid is equidistant, i.e., A; = A = % We assume that E[V;?] < oo
for all t € [0, T]. It is not difficult to show that,
Var (6. — ot 14
(O na) = O (14)
To see this,” consider M > 0 such that E[V,?] < M for t € (0,T]. Note that,

3

Var( mnd

C(Tpyn B0 i

m T~ mn

=1 =1

Now, consider the variance of the PDS-based estimator, 6y, , p,

n

Var (6 np) = A2 Z Var(V; + A? 22 Z Zcov Vi, Vj).

i=1 i=1 j<i

As shown before, the first term above is O(ﬁ) Also, under PDS sampling, the credit exposure
process is simulated according to its finite dimensional distributions for which the covariance
terms are positive. So, the second term is O( #) This gives,

1 1

Var(fmnp) = O(— + —3). (15)

Note that if a function belongs to O(:L- + #), it also belongs to O(1). Therefore, we have
Var(Opnp) = O(E) (16)

This second and more familiar approximate order of variance can be viewed as follows.!? For
m =1, 01, converges to a positive constant as n — co. Then, we have Var(0y, »p) = O(%)
converging to zero as m — oo.

9The Landau symbol, O, in f(z,y) = O(g(x,y)) means that f(z,y)/g(x,y) stays bounded in some limit, say
z,y — 0 orz,y — oo.
98ee page 365 of [7].
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PDS-Based Biased Efficient Estimator of EPE We choose the number of valuation
points, n, and number of simulation runs at each valuation point, m, to minimize the mean
square error of the PDS-based estimator, ém,n,py under a fixed computational budget propor-
tional to mn. Approximating the variance of ém,mp using (15) leads to the following optimization
problems,

min
m,n

c c c
(LJ 4 P2 —2> subject to s = c3mn, (17)
n

mn  m2 2

for some constants, ¢, 1, cp 2, c2, and c3. MSE of 0, 5, , is minimized at,

1 1
m =cs2 and n = cs2, (18)

for constants c and ¢. If we approximate the variance of ém’n,p using (16) in the MSE minimiza-
tion problem, the solution becomes,

2 _ 1
m =cs3 and n = ¢éss. (19)

Our numerical examples indicate that (18) and (19) lead to very similar simulation performance
in practical settings.

DJS-Based Biased Efficient Estimator of EPE Let ¢4 denote a constant. Given (14), we

A~

approximate Var (0, »,q) with -% in the MSE minimization problem for the DJS-based estimator,

. Cd C2 .
min (— + 7) subject to s = cgmn,
mn \mn = n
to which the trivial optimal solution is m = 1 and n = és fo some constant ¢. We note

that estimating the various constant parameters appearing in all the above mentioned MSE
minimization problems is not possible in practice. In our numerical examples we simply set all
these constant parameters equal to 1.

3.3 Efficient Monte Carlo EPE Estimation: Unbiased Estimators

In this section we derive unbiased estimators of EPE. Specifically, we eliminate the time discriti-
zation bias at the expense of introducing additional randomness. To control the variance that
would be increased as the result of this new source of randomness, we use stratified sampling.
Let 7 denote a [0,7] Uniform random variable that is independent of the credit exposure, V.
We have,

EPE = TE[V;], (20)

which simply follows from conditioning on 7, i.e., using E[V;] = E[E[V;|7]], independence of
V and 7, and noting that f(t) = %, t € [0,T], is the probability density function of 7. Now,
consider the following identity,

EPE =TE[V,] =T Y E[Vi|r € Alpi = Y _ E[V|r € Aj]A,, (21)
=1 =1
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where A; = [0,t;), p; = P(t € A;) = %, on the time grid, 0 = tg < t; < ... < t, =T, and

A; = t; — ti—1. Our proposed unbiased estimators of EPE use the identity (21) by estimating
the conditional expectations, E[V;|T € A;],

éu,m,n,k = Z VnAia (22)

where 7; = 7|17 € A, V,, = Z;n:l Ve, /m, and Ti1, ..., Tym are ii.d. copies of 7;. That is, to
draw a single realization of V., we first sample from 7 conditional on 7 € A;. Note that
7; is a [ti—1,t;] Uniform random variable. Next, given this realization of 7;, we generate V.
The subscript k£ = p and d refer to PDS and DJS sampling, respectively.!!That is, PDS-based
simulation in calculating éu,m,n,p implies that COV(VTZ.,VTJ.) > 0 for i # j, i,j = 1,...,n, and
DJS-based simulation in calculating éu,m,n,d implies that COV(VTZ,,VT].) = 0 for ¢ # j. This
immediately implies Var(éuymymd) < Var<éu,m,n,p)~ Consider a more general setting that allows
different numbers of simulation runs for each stratum. That is, let m; denote the number of
runs used to estimate E[V;|T € 4;] and N = m; + ... + m,, denote the total number simulation
runs. Note that our setting with equidistant strata and m; = m, for ¢ = 1,...,n coincides
with proportional stratified sampling which uses m; = Np;, (see [18] for results on proportional
stratification). This is because 7 is a [0,7] Uniform random variable. In this paper we do not
address further possible improvements of our unbiased stratified sampling-based estimators of
EPE by attempting to find optimal my, ..., m, and n under fixed computational budgets. Our
numerical examples indicate that using our unbiased stratified sampling-based estimators by
setting m; = m and choosing m and n as specified in subsection 3.2 leads to substantial MSE
reduction when compared to crude biased Monte Carlo estimators of EPE.

Proposition 1 below shows that éu,m,n,d and the biased DJS-based estimator of EPE, éb7m7n7d,
are asymptotically equivalent in terms of MSE. This equivalence is further confirmed by our
numerical experiments (see the next subsection) in practical settings with fixed and finite com-
putational budgets proportional to mn. In addition, our numerical examples presented in the
next subsection show that the unbiased PDS-based estimator of EPE, éu,m,mp, outperforms the

efficient biased PDS-estimator, éb,m,n,pa introduced in the previous section.

Proposition 1. Consider the credit exposure process, {V; ;t > 0}, defined on a given filtered
probability space (U, F, (Ft)o<t<oo, P). Suppose that biased and unbiased Monte Carlo estimators
of EPE calculated under DJS-sampling,

n n
eb,m,n,d = Z ‘_/zAu and eu,m,n,d = Z VTZAZ (23>

i=1 i=1
are defined on an equi-distant time grid, 0 =ty < t1 < ... < tp, =T, where A; = t; —t,_1 =
T/n=A, 7 =717 € A and A; = [ti—1,ti). Let V; and V,, denote the averages of m Monte

"Recall that the biased estimators of EPE, ém,mk, k = p,d, are based on Right Reiman sum approximation of
the integral of the expected exposures in the EPE formula. Our proposed unbiased estimators éu,m,n,k7 k=np,d,
can simply be viewed as a Reiman sum approximation of the EPE where each expected exposure is evaluated at
a randomly selected point within each subinterval.
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Carlo realizations of Vi, and V;,, respectively. That is, the total number of simulation runs is
N = mn. We assume that E[V?] < oo, for all i = 1,...,n. Asymptotic performance of Qb,m,md
and Gu’m’n’d is equivalent in the following sense,

T
lim nMSE(ebmnd) - nvaT(eumnd) = C/ V(J/f’(‘/t)dt, (24)
0

n—o0

where ¢ is a constant.

3.4 Numerical Examples

In this section we use simple numerical examples to illustrate the efficiency of our proposed
Monte Carlo estimators of EPE. We consider contract level exposure in a simple setting where
V; denotes the value of a geometric Brownian motion driven forward contract at time ¢ > 0.
That is, we assume that the underlying security price process following a geometric Brownian
motion {S; ;t > 0}, where S; = SpeXt with {X;; ¢ > 0} being a Brownian motion with drift
1, and volatility o. In this case, at any time ¢ the value of a forward contract coincides with
the security price at that time S; and thus EPE can be computed analytically. This enables us
to calculate the MSE exactly. We consider six different Monte Carlo estimators of EPE in our
numerical examples.

Let éc,p and éc,d denote the “crude” and biased Monte Carlo estimators of EPE under PDS
and DJS sampling, respectively. That is,

bor = S VA (25)
i=1

where A; = t; —ti 1, 0=tg <t < ... <t, =T, k =p,d, and V; is the m-simulation-run
average of V;. We shall shortly specify the choice of the valuation points.

Let 9@ b,p and He »,d denote the efficient and biased Monte Carlo estimators of EPE under PDS
and DJS sampling, respectively. In particular, their statistical efficiency is a result of solving
the MSE minimization problems in Section 3.2 to derive the (approximately) optimal number
of points on the time grid, n, and simulation runs at each of these time points, m, given a fixed
computational budget proportional to mn.

Let é%p and éu’d denote the unbiased stratified sampling-based Monte Carlo estimators of
EPE under PDS and DJS sampling, respectively. That is,

m:imm (26)

where V,, = =300 Vo /mi with 7 = 7|7 € A, A = [ti—1, ], and k = p, d.
We set T=1. The crude estimators of EPE are calculated based on 12 valuation points,
=12, at 1, 2, 3, 4, 8, 12, 18, 21, 24, 36, 49 weeks and 1 year. We note that one year,
T = 1, with the number of valuation points fixed at 12, is a setting widely used by financial
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institutions.'> The time grid used to calculate our efficient estimators of EPE is equidistant,
ie., A; = A = T/n . Computational budget, s, is fixed at 12,000 and 120,000, respectively.
To calculate ée,b’p under these fixed computational budgets, the solution, (19) with both ¢ and
¢ set to 1, to the MSE minimization problem of Section 3.2 is used.'® This gives, n = 23 and
m = 524 for s = 12,000, and n = 50, and m = 2433 for s = 120,000. Similarly, to calculate
ée,b,d, we use the solution to the MSE minimization problem, (3.2). That is, we set n = 12,000
and m = 1 for s = 12,000, and n = 120,000 and m = 1 for s = 120,000. In calculating the
stratified sampling estimators of EPE, é%p and éu,d, we do not address the problem of deriving
the optimal values of n, and my,...,m,. Instead, we simply use the setting of ée,b,p and ée’@d,
respectively. That is, to calculate OAW,, we set n = 23, m = 524, and n = 50, m = 2433, under
s1 = 12,000 and sy = 120,000, respectively. And to calculate éu,d, we set n = 12,000, m =1,
and n = 120,000, m = 1, under s; = 12,000 and so = 120, 000, respectively.

Tables 1 to 4 illustrate that our proposed estimators of EPE lead to substantial MSE re-
duction when compared to the “crude” Monte Carlo estimators. Comparing the MSE of the
PDS-based estimators, éc,p, ée7b7p, and é%p, we find that our proposed stratified sampling-based
estimator of EPE leads to an MSE reduction by a factor of up to 100; this unbiased estimator
also dominates the efficient biased estimator of EPE, in some cases quite substantially (see Ta-
bles 3 and 4). Comparing MSE of the DJS-based Monte Carlo estimators of EPE, éqd, é&b’d,
and éwd, we observe that the stratified sampling-based estimator of EPE and our efficient bi-
ased EPE estimator perform similarly, which suggests that the asymptotic equivalence result in
Proposition 1 can hold for even a moderate number of valuation points. Both efficient DJS esti-
mators lead to substantial MSE reduction when compared to the corresponding crude estimator
of EPE. Finally, we note that the variance and MSE for the crude estimators do not change
much as the computational budget increases from 12,000 to 120,000, whereas those of efficient
estimators reduce by up to an order of ten. This contrast yields the simple, yet useful insight
that the number of valuation points should vary as the computational budget varies.

EPE  Variance MSE CPU Time
éc’p 34.6559 .047219  .48478 .00380
907(1 34.6522 .005028  .43768 .00162
ée,b,p 34.1802 .077212 1117 .00253
ée,b,d 33.9955 .004785 .004786 .00174
33.9964 .072068 .072064 .00518
wd  33.9956  .004865 .004866 .00335

Table 1: Sop =30, 4= .2,0 =.3, s = 12,000

12There is no mathematical basis for this arrangement of valuation points. It is believed that since some trades
have “short” expiration times, having more valuation points earlier would increase the accuracy of the estimators
of CCR measures.

3Our numerical examples indicate that the solutions (19) and (18) derived based on Var (6, m.np) = O(L) and

Var(Oy m.n.p) = O(5% + L), respectively, lead to estimators which perform similarly in terms of their MSE.
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EPE  Variance MSE CPU Time
Ocp 34.652  .004791 4372 .03887
f.q 34.6521 .000501  .43303 .01564
ée’b,p 34.0798 .016741 .024026 .02299
éab’d 33.9948 .000483 .000483 .02409
wp  33.9957 015533  .015533 .04420
wd  93.9945  .000486 .000486 .03426

Table 2: Sy =30, u = .2,0 = .3, s = 120,000

EPE  Variance MSE  CPU Time
0cp 57.7556 16106 23.5389  .00389
fca 577598 01628 23.4351  .00189
fepp 541296 23369  1.6954  .00270
fepa 529238 015853 .015862  .00189
wp 529226 217 21698 .00516
wd  52.9198 015796 015796  .00390

Table 3: Sp =30, 4= 1,0 = .3, s = 12,000

EPE  Variance @MSE CPU Time
Ocp  57.7579 016112 23.4159 .03891
0.q 577591 .001616 23.4136 .01661
Ocpp ©3.4783 .047841  .35899 .02412
Ocpa 529212 .001563 .001564 02627
wp  92.9189 .045783 .045781 .04657
wd  92.9203 .001565 .001565 .03598

Table 4: Sp =30, u=1,0 = .3, s = 120,000

4 Efficient Monte Carlo Estimation of Independent CVA

To present our results on efficient Monte Carlo CVA; estimation, we suppress the dependence
of CVA on the stochastic discount factor by assuming zero short rate,

T
CVA; = E BV, 1{r < T}|r]) = /O E[V/JdF,. (27)

where F denotes the cumulative distribution function of 7, which is assumed to be known
(market observable) from, for instance, credit default swap spreads of the counterparty, (see, for
instance, [12]).

Note that independent CVA can be viewed as the weighted average of the expected exposure
with the weights being default probabilities. Therefore, our results from Section 3 on efficient
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estimation of EPE apply here.

Efficient Biased Estimators of CVA; We can employ our MSE minimization formulation
to first specify the approximately optimal n and m under a fixed computational budget, and
then estimate CVA; with

n
Gr =Y VAR, (28)
i=1
where k = p,d denotes PDS and DJS sampling, respectively, V; = Z;nzl Vij/m as defined in
Section 3, and AF; = F'(t;) — F(ti—1). (We have suppressed the dependence of &, ;, on m and n,
Le, Sk = Sommk-)

Efficient Unbiased Estimators of CVA; Note that

n
EV,1{r <T}| =Y E[Vi|r € A]P(7 € A)), (29)
i=1
where stratum ¢ is A; = [t;—1,t;). Let m;, i = 1,2, ...,n denote the number of simulation runs
used to estimate E[V], where V; = Vi, to =0, and t, = T. Also, N = Y " ; m; denotes the
total number of simulation runs used in estimating CVA;. Using 7 as the stratification variable
and the identity (29), the stratified sampling estimator of CVA; is

uk = Vi, (30)
i=1

where k = p,d denotes PDS and DJS sampling, respectively. Also, p; = P(17 € A;) = AF;,
7 =7|T € Ajy and V,, = Z;n:zl V,;/m;. That is, to draw a single realization of V;,, we first
sample from 7 conditional on 7 € A;; next, given this realization of 7;, we generate V.. In terms
of computing time, &, ; requires generating IV realizations of V; and &, j requires N additional
samples from the truncated 7 based on the strata defined above. Note that since generating
V; is computationally much more intensive than the truncated 7, &, outperforms &, merely
marginally in terms of the computational time.

Similar to our numerical examples in Section 3.4, we have observed that &, , outperforms
&pp in terms of mean square error.'* In what follows we compare the MSE of the DJS-based
biased and unbiased estimators of CVA[, &, 4 and &, 4. Lemma 1 below compares the asymptotic
performance of &, 4 and &, 4. The proof of Lemma 1 is similar to Proposition 1, and so it is
omitted.

Lemma 1. Consider the proposed estimators of CVAr, & q and &, 4 as defined in (28) and (30),
respectively. Suppose that proportional sampling is used, i.e., m; = Np;, and Y ;- ;m; = N, i =

14 Assuming that 7 is an exponential random variable, the results of our numerical examples for &,,, and &,
are very similar to those in Section 3.4, and so are omitted.
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1,..,n. We assume that E[V?] < oo, i = 1,...,n. Note that D.JS sampling gives cov(V;,V;) =0
foralli+# j andi,7=1,...,n. Then the following holds,

T
lim 0 Var(€a) = nMSE(€a) = ¢ /O Var(Vy)dF (£) (31)

n—oo

where ¢ is a constant and F is the cumulative distribution function of . That is, §.q and &, q
perform similarly in terms of asymptotic MSE.

It is useful to also compare the MSE of &, ;4 and &, 4 in the practical finite-n settings. Note
that MSE(§,.4) = Var(&,,q) because £, 4 is unbiased; we have

n

MSE(éu,4) — MSE(é,4) = %Z (Var(Vy|7 € A;) = Var(Vi)) p; — (D E[ViJAF; — CVA;)?, (32)
i=1 =1

where to derive the variance of , 4, we note that marginal matching is used such that cov(V;, V;) =
0, i.e., using DJS sampling. Also, note that Var(V;) = Var(V;)/Np;. For Var(€,.4) we have used
the standard results on proportional stratified sampling, (see [18]). For the “finite” n case, (32)
implies that depending on the functional form of Var(V;), the density of 7, and the numerical
scheme to approximate the integral in the independent CVA formula when calculating &, 4, either
&p,d or &4 could outperform the other in terms of MSE. However, our various numerical results
indicate that in finite-n settings the stratified sampling estimator, &, 4, usually outperforms &, 4;
in fact, it can lead to substantial MSE reduction. The following example is one instance of such
numerical results.

A Numerical Example Suppose that {V; ;¢ > 0} is a geometric Brownian motion, V; =
VoeXt, where {X; ;¢ > 0} is a Brownian motion with drift x and volatility o. Also, let 7,
counterparty’s default time, be an exponential random variable with mean 1/A. Note that
Var(&,,q) and MSE(&, q) are easily analytically computable; set oy = p + o/2 =\ ay = 2

ay’

B1=2u+20% -\ Bo = 6 Again, consider the time grid, 0 =tg < t; < ... < t, =7T. Then,
CVA; = aaVp(exp(anT) — 1), E[V;|T € A;] = C%VO (exp(ait;) — exp(alti,l)), and E[V2|T €

Al = BZV & (exp(Bit;) — exp(Biti-1))-

Var(§u,q) Var(&p,q) Bias?(&.4)  MSE(&.q)/Var(&y.q)
n=10, N=1x10" 1.9476 x 1077 2.1502 x 10~7 2.4544 x 10~° 127.1294
n=20, N=2x10* 9.7377 x 1078 1.0243 x 10~7 2.2763 x 107 234.8168
n=>50, N=5x10* 3.8950 x 107® 3.8143 x 10~% 2.1727 x 107° 558.8347
n=100, N=1x10% 19475 x 1078 1.9677 x 1078 2.1387 x 107 1.0992 x 103

Table 5: T=1, V=1, u=0, 0 =02, A=.1

Therefore, we suggest not to eliminate all the randomness resulting from 7, as & 4 does
at the expense of introducing bias. We recommend &, 4 which eliminates bias but leaves out
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some controlled randomness from 7. Note that in approximating the integral on the right side
of the CVA; formula (27), & 1 uses the Right Riemann sum. In our numerical examples we
have also used Left Riemann sum and the Middle sum; in practice where V; is the maximum of
zero and the time ¢ value of a portfolio of possibly thousands of OTC derivative contracts, the
functional form of Var(V;) is not known and so a time-discretization biased-optimal numerical
approximation procedure can not be chosen before estimating CVA.

We introduce a second unbiased estimator of CVA; in the Appendix. This estimator, denoted
by &3, is computationally faster than the stratified sampling-based estimator at the expense of
less controlled randomness. We compare the mean square error and computing time of £ and &, 4
in the Appendix; there we identify conditions under which & outperforms the biased estimator,
&b, in terms of MSE and computing time.

5 Efficient Monte Carlo Estimation of eEPE

In this section we discuss efficient Monte Carlo estimation of effective expected positive exposure,

¢EPE,
T

eEPE = max E[V,]dt,
o 0<u<t
where {V; ;¢ > 0} denotes the credit exposure process, and 7' denotes the expiration time of
the transaction with the longest maturity in a portfolio of OTC derivatives held by a financial
institution with its counterparty. Consider the time grid, 0 = tg < t1 < ... < t, = T. Set
A, =t; —ti_1,i=1,...,n. Monte Carlo estimators of eEPE are,

mnk - Z max {V }A’L’ (33>

1<5<i

where VJ denotes the m-simulation run average of the i.i.d. random variables, Vj1, ..., Vj,,. The
subscript k£ = p and d denote PDS and DJS sampling, respectively. That is, under k = p (k = d),
Vj’s are positively correlated (uncorrelated). Consider the mean square error of 6y, , i,

2
MSE(ppnk) = Var< 1n<1jai<{V}A> (ZE max{V} eEPE) . (34)

It is useful to differentiate the following two sources of bias,

n n

(ZE 111<1§1§Z{V} 1A; — 111<1§1§ZE[W]A¢> - (eEPE— ‘ gﬁéE[vj]AJ : (35)
=1 =1

That is, the first part of the bias is due to the presence of the maximum operator and the second

part is time-discretization bias. Note that for a fixed n, variance of 0,, ,, 1 converges to zero as

m — oo. Now, consider Proposition 2 below whose proof is in the Appendix.
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Proposition 2. Let {V;; t > 0} denote the credit exposure process. Let,
My i = max{Vi, ..., V,. },

where V; = Vi, on the time grid 0 =ty <t; < ... <t, =T, and V; = 23"21 Vij/m, Vi, ..., Vim are
i.4.d random variables. Also, k = d and k = p refer to the cases where V; are uncorrelated and
positively correlated, respectively, resulting from DJS and PDS-based simulation of V. Assume
that E[V?] < oo for all i =1,...,n. Let M,, = max{E[WV1],..., E[V,,]}. Then, as m — oo,

My — M, a.s., (36)
where a.s. stands for almost surely.

Note that dominated convergence theorem and Proposition 2 give E[M, ] — M, as
m — 00.1% So, the first part of the bias

ZE max {V; }]A; — max E[V;]A;
1<j<i PR
converges to zero as m — oo. That is, Hm n,d and Gm n,p are consistent estimators of eEPEdst for
a fixed n. Since as n — oo the time-discritization bias also converges to zero, an 4 and Hm np
are also consistent estimators of eEPE.

In what follows we first show that for a fixed n and sufficiently large m, émm’d outperforms
ém,mp in terms of variance. Next, after specifying approximates for the order of variance and
bias of émm’k, we formulate an MSE minimization problem over m and n given a fixed compu-
tational budget. Our numerical results indicate that our proposed estimators of eEPE, which
use approximately optimal m and n, lead to substantial MSE reduction when compared to the
crude estimators.

5.1 Comparing PDS and DJS-based Monte Carlo Estimators of eEPE

We are to compare the variance of 6, ,,, and ém,n,d for a fixed n and sufficiently large m. Set

0= Z max E[V;]A; , Opni = Z 1122%{1/ FA;,

where k£ = p (k = d) refer to the cases where V; and V; for any i # j, are positively correlated
(uncorrelated). In what follows we find it useful to append a second subscript m to V; to
emphasize that the average is based on m i.i.d random variables and a third subscript k£ = d or
p to indicate DJS or PDS.

Denote by 6;; = E[V;] — E[V;] and 6 = min{|d; ;| : ¢ # j,4,j = 1,...,n}. Without loss of
generality, assume 0 > 0. Let o;; denote the standard deviation of V; — V; under estima-
tion method type k and omax = max{o; i : 4,5 = 1,...,n,k = d,p}. For i = 1,....,n, let 7

"®Note that My m. < 3.1, Vi and Proposition 2 assumes E[V;] = E[Vi] < co.
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denote the index for which max{E[V1],..., E[Vi]} is attained and 7;,x be the index for which
max{Vi m k, ..., Vim} is achieved. It then follows from these definitions that

0=> EViAi and Opnp =Y Ve, medi. (37)
=1 =1

For k =d or p and i = 2, ..., n, the probability that simulations do not yield the right 7; can be
bounded from above as follows

P(Ti,m,k 7é Ti) < Z P<VTi,m,k - ‘7j,m,k < O)

ATt

= > P(Veumk = Vimk — 0y < —0r)
AT

< Y P(Vemk = Vimk —0rj < =0)
AT =L i

< D P(Vemk = Vimk —0r > 0)
AT =L et

2
O-Tivj7k:

< D (38)
AT =L

< (7“ - 1) : Ur2nax

— m52 M

where (38) follows from the Chebyshev’s inequality.
Consider the event By, = {7; = Timd = Ti,mp,for all i = 1,...,n}. It makes sense to call By,

the desirable event and BY, the undesirable event. Let émnk B,, denote émnk conditional on
the event B,,. We have that

A~ A~

Va’r(em:nvdme) < Var(9m7n7p7Bm)- (39>
This order can be established by first noting that

ém,n,k,Bm = Z ‘_/Ti,m,kAi- (40)
i=1

Then since V; and V}, for any i # j, are positively correlated (uncorrelated) under PDS (DJS)
sampling, the variance of expression (40) is lower under DJS than under PDS.
Note that:

P(By) <Y P(Tima #7) + Y P(Timp # 7) (41)
=2 =2
. (Z - 1) i Ur2nax
< 22 e, (42)

The above argument leads to the following result.
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Proposition 3. Consider the desirable event By, as defined above. First, conditional on this
event, (39) holds. Secondly, the desirable event occurs asymptotically almost surely as m — oo.
That is, limy, 00 P(Bm) = 1. More specifically, P(BS,) goes to zero at rate 1/m as m — oo.

Proposition 3 suggests that for sufficiently large m, Var(6p, .4) < Var(0mnp). Our various

A~ ~

numerical examples of Section 5.3 use m > 400; they all indicate that Var(6,, , 4) < Var(0m np)-

5.2 Efficient Monte Carlo Estimation of eEPE

Similar to our approach in subsection 3.2, we would like to find the number of valuation points,
n, and the number of simulation runs at each valuation point, m, to minimize MSE(émnk)
given a fixed computational budget, s, that is proportional to, mn. To do so, we need to
specify the order of the variance and bias of the Monte Carlo estimator of eEPE, émnk We
are not concerned with deriving sharp estimates of the orders of variance and bias. In fact,
our numerical examples indicate that choosing approximately optimal m and n using even very
rough approximates for the orders of variance and bias lead to substantial MSE reduction. The
following is used to formulate our MSE minimization problem: for £ = p or d,

Var (O, ni) ~ CLk - and Bias(0 k) ~ ko 6—3, (43)

m m n

for some constants cj i, cak,c3. The above approximation of the order of bias uses (35) and
Proposition 2. Note that our rough approximate of the order of variance, applicable to both
émm,d and ém,n,pv does not depend on n. This is because of the presence of the maximum
operators that leads to positive covariance terms. To see this, let V; denote the m-simulation-
run average of the i.i.d random variables, V;1, ..., Vim, ¢ = 1,...,n, and consider an equidistant
time grid with n time points, A = T'/n. Note that,

Var(émm’k) = A%Var (Vl + max{Vq, o} + ... + max{V, ..., Vn}) ,

is equal to A% = Z:—; times the sum of n non-zero variance terms and n(n—1)/2 positive covariance
terms both for k¥ = d and & = p. This leads to a result similar to (15) which can be further
approximated by (16) as shown in subsection 3.2.

Given (43), we recommend solving the following MSE minimization problem to specify the
approximately optimal m and n,

min (ﬂ + (9 + 6—3)2> subject to s = cmn, (44)
mn \m  m n

for some constants ¢q, ¢2, c3, and c.
5.3 Numerical Examples

Our numerical examples presented below illustrate the efficiency of our proposed estimators of
eEPE.'6 As in Section 3.4, we consider the simple forward contract where the underlying price

16We refer the reader to Section (D) of the Appendix for a discussion on eEPEg,; and numerical illustrations
of Propositions 2 and 3.
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process follows a geometric Brownian motion with drift ;1 and volatility o. Let éc,p and éc,d denote
the “crude” Monte Carlo estimators of eEPE under PDS and DJS sampling, respectively. That
is,

n

éc,k = max. ‘%AZ, (45)
i=1

where k = p,d and A; =t; — t;_1 and the t;’s are 1, 2, 3, 4, 8, 12, 18, 21, 24, 36, 49 weeks and
1 year, with t1o = T = 1 year. Let ée,p and ée,d denote the efficient Monte Carlo estimators
of eEPE under PDS and DJS sampling, respectively, based on an equidistant time grid, i.e.,
expression (45) with A; = A = T'/n) and resulting from solving the MSE minimization problem
(44) (with constants ¢;, i = 1,2,3, and ¢ therein set to 1) in Section 5.2. In particular, under
s = 12,000, the optimal n = 29 and m = 414, and under s = 120,000, the optimal n = 62 and
m = 1935.

Our various numerical examples result in findings similar to those for the EPE estimation.
For example, Tables 6 to 9, all based on 10* replications, show that the variance of the DJS-
based estimators are much lower than that of the corresponding PDS-based estimators. Also,
our proposed estimators of eEPE substantially outperform the crude Monte Carlo estimators in
terms of MSE; for instance, MSE is reduced by a factor of 100 in Table 9.

eEPE  Variance MSE CPU Time
f.p 57.2278 10931 224936  .00259
fcq 572233 034659 22.3768  .00168
fcp 53.4344 19358  1.0731  .00191
fcq 534379 011188 .89722  .00211

Table 6: Sp =30, u=1,0 = .25, s = 12,000

eEPE  Variance MSE  CPU Time
Ocp ©7.2277 .010824 22.3945 .02866
éqd 57.2262 .003591 22.3734 .01427
Aem 52.9363  .03962 .23301 01817
ée,d 52.9354 .001083  .19367 .01545

>

Table 7: S = 30,4 = 1,0 = .25, s = 120,000

23



eEPE  Variance MSE CPU Time
O.p 81.0388 .24286 101.0233 .00279
éc 4 81.0309  .0843 100.7055 .00173
ep 12.8899 3986 3.9705 .00221
e,d 72.8885 .024652  3.5914 .00226

Table 8: Sy = 30, 4 = 1.5,0 = .25, s = 12,000

eEPE  Variance MSE CPU Time
Ocp 81.0332 .024156  100.692 .02929
0.4 81.0302 .008395 100.6154 .0144
ep (18779 083579  0.85454 .01935
e, 71.8807 .002425 0.77819 .01630

Table 9: Sy = 30, u = 1.5, = .25, s = 120, 000

6 Conclusion

It has become increasingly crucial for financial institutions to actively manage their counterparty
credit risk. Proper counterparty credit risk management is challenging and computationally in-
tensive. Monte Carlo simulation is often used for CCR pricing and measurement. We improve
the existing widely used Monte Carlo CCR frameworks by substantially increasing the efficiency
of Monte Carlo estimators of the key CCR measures: EPE, CVA, and eEPE. Introducing and
using the notion of marginal matching, we show that the so-called path dependent simulation
(PDS) method, which simulates the credit exposure process based on the finite dimensional
distributions of the underlying risk factors, leads to CCR estimators whose variance is substan-
tially larger than the variance of the CCR estimators calculated based on the so-called direct
jump to simulation date (DJS) method. Taking into account the computational time in parallel
with the mean square error, we demonstrate that DJS sampling is preferable to PDS sampling
for path independent derivatives. For path dependent derivatives the two sampling methods
are approximately equivalent. We show that the mean square error (MSE) of the crude Monte
Carlo estimators of EPE, CVA, and eEPE can be substantially reduced by solving approximate
MSE minimization problems that specify how to achieve an approximately optimal balance be-
tween bias squared and variance. Our proposed efficient estimators of EPE and CVA are in
fact unbiased and derived using stratified sampling with the number of strata and simulation
runs (allocated to each stratum) being chosen based on the solution to the aforementioned MSE
minimization problems. Our various numerical examples illustrate that employing our proposed
Monte Carlo frameworks will substantially increase the efficiency of the existing Monte Carlo
CCR “engines”.
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Appendix

A Proof of Proposition 1

In this proof, for notational simplicity, we suppress the dependence of éb,m,n,d and éu,m,n,d on m
and n. Note that,

nMSE(fy.4) = ZVar A+nZE VilA; — /Evtdt (46)

where the first term on the r1ght hand side of the above equality uses Var(V;) = Var(V;)/m. So,
nMSE(Qb’d) converges to cfo Var(V;)dt as n — oc.

Now, consider Var(émd), and let I, = I,(7) € {1,...,n} denote the index of the stratum
containing 7. Set p; = P(1 € A;) = %. From standard results on stratified sampling we have,

R T2 n T2
Var (6, Var(V; A))p; = — E[Var(V.|1,)]. 47
0 0d) = s SNVl € Al = B Var(V4[ 1) (47)

Since fOT Var(V;)dt = TE[Var(V;|7)], to complete the proof, it suffice to show that, as n — oo,

EVar(V;|1,)] — E[Var(V;|7)]. (48)

From the formula for the conditional variance, to show the convergence in (48), it suffice to show
that, as n — oo,

E [(E[V;|L.])?] — E [(E[V;7])*] . (49)

Set X = E[V;|r] and X,, = E[V;|I,,]. Note that X,, is a martingale because as n increases I,
generate increasing family of sigma-algebras. We can use martingale convergence theorem (see
Chapter 4 of [4]) to conclude that X,, converges to X almost surely as n — oco. Using continuous
mapping theorem and dominated convergence theorem (see Chapter 1 of [4]) we conclude that,
E[X?2] converges to E[X?] almost surely, and so (49) holds. This completes the proof of Lemma
117

B A Second Unbiased Estimator of CVA;

The following efficient estimator of independent CVA, similar to &, , is unbiased, and it is
derived using stratification and control variate method. Note that

EV:1{r <T}] = E[V;:|r <T]p, (50)

1"The probabilistic arguments used in second part of the proof are similar to the ones used in the proof of
Lemma 4.1 in [8].
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where p = P(1 < T) is analytically computable. Let w = 7|t < T. That is, w is a random
variable distributed according to the distribution of 7 conditional on the event 7 < T. To
estimate the above conditional expectation we use w as a control variable. Our second unbiased
estimator of independent CVA based on m-simulation is,

& = (Vo + (@ — Ew]))p, (51)

where, from standard results on control variate method, ¢* = cov(V,,,w)/Var(w). And, @ is the
average of m Monte Carlo realizations of w and V,, = m™! i1 Vi, Note that to sample from
V., first generate w = 7|7 < T. Then, given this realization of w, sample from V,,, (note that w
and V are independent). The variance of &2, which is based on m simulation runs, is,

2

T cov?(V,,w
Var(&) = %( /0 Var(Vy)dE,(t) + Var(E[V,|w]) — oo (Vay, w)

Var(w) ) (52)

where the first two terms inside the parenthesis follow from the conditional variance formula,

Var(V,,) = E[Var(V,|w)] + Var(E[V,|w]) and the last term inside the parenthesis is due to
the use of control variate method. Now, let us compare the performance of & with the biased
estimator of CVA; under DJS sampling, & 4. Suppose that proportional sampling is used as in
Lemma 1. Note that,

p [T 1 ¢
Var(gn) = MSE(§0) = L [ Var(V)ar() - 5 3o Var(V)AF,
=1

p? covZ(V,,w)

+ <Var(E[Vw]w]) - W) — (Bias)?, (53)

where we have used f,(t) = f-(t)/p for t € [0,T]. Setting m = Np, simply note that for
sufficiently large n and for cases where,

cov?(V,,w) ~ Var(w)Var(E[V,|w]), (54)

& and &4 perform similarly in terms of mean square error. However, for cases where p =
P(r < T) is small, which would also lead to reduction in computing time when calculating &2,
this estimator is preferable to &, 4. Recall that { and , 4 are calculated based on m = Np and
N simulation runs, respectively. (Note that from the conditional variance formula Var(V,,) >
Var(E[V,|w]), and so, there exists practical cases where (54) holds.)

To get a feel for this consider the simple example where V' is a Brownian motion with drift u
and volatility o and 7 is an exponential random variable with mean 1/X. This example results
in Var(E[V,,|w]) = p?Var(w) and cov?(V,,w) = p?Var(w). So, setting m = Np = NP(r < T),
we get Var(£3) = MSE(&;) for large enough n, (as n — oo, the bias-squared term converges to
zero with rate 1/n? and the Riemann Stieltjes sum in (53) converges to the integral term in (53)
with rate 1/n). That is, for this example &, 4 and & perform similarly in terms of asymptotic
MSE. However, taking in to account the computing time, & should be preferred to &, 4 when
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p is small. Note that for finite n cases in the practical CCR settings, the bias term may not
be negligible compared to variance, as seen in Table 5. And, so, for small p cases if a small
simulation study reveals that cov?(V,,,w) ~ Var(w)Var(E[V,,|w]), the estimator & is preferable
to &p,a-

C Proof of Proposition 2

We first consider My, ;. Let us assume that My = E[V5] without loss of generality. Note that,
max{V1, Va} — E[Vo] = Vil{Vi > Va} + (Vo — E[Va])1{Va > V1} — E[Vo]1{V1 > Vo}.  (55)

First, consider the indicator random variable, 1{V; > V5}; the dependence of V; on m is sup-
pressed for notational simplicity. Set W* = Vi — Va, where k = d, p refer to the cases where V;
and V5 are uncorrelated and positively correlated, respectively. Note that 1{V; > Vo} < 1{W* >
E[WF}; WE,...,WE are i.i.d random variables and W* is their average. It is well known that
1{Vi > Va} — 0 a.s. if and only if for all € > 0,

P(1{V; > Va} > €io0.) =0, (56)

where i.0. stands for infinitely often. To see that (56) holds, note that,

P(|Wk — E[WH]| > &)

€2 ’

P({Vy > Va} > €) < P(I{Wk > E[WF]} > ¢) < (57)

for all € > 0. To derive the last inequality above the Chebyshev’s inequality is used. Then,
(57), almost sure convergence of W* — E[W*] following from the strong law of large numbers
(SLLN), and Kolmogorov’s 0-1 law, (see Theorem 8.1 of [4]), give (56).

Now, consider the first term on the right side of (55). Given that V3 and 1{V; > V5}, almost
surely converge to E[V;] and zero, respectively, it is not difficult to show that

‘711{‘71 > VQ} — 0 a.s..
To see this, it suffices to write
Vil{V1 > Va} = (Vi — E[Vi))L{Vi > Va} + E[V4]1{V;i > Va},

and use SLLN for the sequence of indicator random variables and V7. The last term on the right
side of (55) converges to zero a.s. based on (56). Analogous arguments led to (56) show that
the second term on the right side of (55) converges to zero a.s. This completes the proof for
n = 2. Induction and analogous arguments are employed for the general case.

Suppose that M,,_1 i — Mp—1, a.s. as m — oo. Assume that M,, = E[V,,]. Then, we need
to show that a similar almost sure convergence holds for M, ,, 1. To see this, it suffices to note
that, for all e > 0 and € > 0,

P ((Vi — EV1]) — (max{Va, ..., Vo, } — E[V,]) > €)
€2
P (|[Vy — EVi]| > €) N P (|max{Va, ..., Vo, } — E[Vy]| > €)

P(1{V}y > max{Va, ..., V,,}} > ¢€)

IN
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which is then used to show that

H{Vi > max{Vs,..., V,}} — 0 a.s.
This completes the proof.

D Numerical Examples for eEPE,;

The numerical results presented in this section demonstrate the consistency of PDS and DJS
estimators for eEPEg4; and the asymptotic efficiency of DJS over PDS. In particular, they
support our Propositions 2 and 3.

We consider the simple forward contract and the underlying security price process following
a geometric Brownian motion with initial value Sy = 30, drift p = 0.01, and volatility o = 1
here. We compare the crude PDS and DJS estimators ch and Hcd as defined in Section 5.3.
Each estimation procedure is replicated 10,000 times to produce the estimates.

In Tables 10 to 13, in addition to presenting the estimator value, variance, MSE (which, unlike
that in Section 5.3, is defined with respect to the estimand of eEPE ), and CPU time, we also
include a column named “WrongOrderProb”, which gives the estimate for the probability that
the indices at which the running maximums are achieved ever go wrong, i.e., using the notation
in Section 5.1 of the main paper, P(7;m, r # Ti, for some ¢), k = p or d, corresponding to PDS
and DJS respectively. The sum of these two probabilities provides an upper bound for P(B¢))
in the statement of Proposition 3. As these four tables show, this upper bound converges to zero
as m increases, which implies lim,, o P(B,) = 0. Also, the bias of both estimators vanishes
as m increases; this is consistent with Proposition 2.

eEPE;; Variance MSE  CPU Time WrongOrderProb
O.p 41.0514 20.6228 20.7011  0.000329 0.9613
Ocqa 42.4019 7.901 10.5697  0.000431 1

Table 10: m = 50

eEPE,;; Variance  MSE CPU Time WrongOrderProb
O.p 40.7481  2.1847 2.1849 0.00156 0.2789
O.qa 40.8833 0.77441 0.78761  0.00121 0.919

Table 11: m = 500

eEPE,;; Variance  MSE CPU Time WrongOrderProb
O.p 40.7756 0.21446  0.2146 0.0173 0
Ocq 40.7708 0.07379  0.07379 0.0090 0.1987

Table 12: m = 5000
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eEPE,;; Variance  MSE CPU Time WrongOrderProb
Ocp 40.7708 0.02156 0.02156 0.1708 0
Ocq 40.7682 0.00711 0.00711 0.0932 0.0001

Table 13: m = 50,000
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