
UC San Diego
UC San Diego Previously Published Works

Title
NGL viewer: web-based molecular graphics for large complexes

Permalink
https://escholarship.org/uc/item/69n8f00p

Journal
Bioinformatics, 34(21)

ISSN
1367-4803

Authors
Rose, Alexander S
Bradley, Anthony R
Valasatava, Yana
et al.

Publication Date
2018-11-01

DOI
10.1093/bioinformatics/bty419

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/69n8f00p
https://escholarship.org/uc/item/69n8f00p#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Structural bioinformatics

NGL viewer: web-based molecular graphics for

large complexes

Alexander S. Rose1,2,*, Anthony R. Bradley1,2, Yana Valasatava2,

Jose M. Duarte1,2, Andreas Prli�c1,2 and Peter W. Rose1,2

1RCSB Protein Data Bank and 2San Diego Supercomputer Center, UC San Diego, CA, USA

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on August 15, 2017; revised on May 4, 2018; editorial decision on May 19, 2018; accepted on May 22, 2018

Abstract

Motivation: The interactive visualization of very large macromolecular complexes on the web is

becoming a challenging problem as experimental techniques advance at an unprecedented rate

and deliver structures of increasing size.

Results: We have tackled this problem by developing highly memory-efficient and scalable exten-

sions for the NGL WebGL-based molecular viewer and by using Macromolecular Transmission

Format (MMTF), a binary and compressed MMTF. These enable NGL to download and render mo-

lecular complexes with millions of atoms interactively on desktop computers and smartphones

alike, making it a tool of choice for web-based molecular visualization in research and education.

Availability and implementation: The source code is freely available under the MIT license at

github.com/arose/ngl and distributed on NPM (npmjs.com/package/ngl). MMTF-JavaScript

encoders and decoders are available at github.com/rcsb/mmtf-javascript.

Contact: asr.moin@gmail.com

1 Introduction

Interactive visualization of molecular structures is a widely used tool

in biological research. Displaying molecular structures on the web

makes them accessible to all scientists, educators, and students, not

just to experts with access to dedicated networking, hardware and

software. Overviews of current web-based molecular graphics and

modeling software are given by Pirhadi et al. (2016) and Yuan et al.

(2017). Driven by advancements in X-ray crystallography and espe-

cially in Cryo-EM, larger and larger structures are submitted to the

Protein Data Bank (PDB) archive (Berman et al., 2000; Rose et al.,

2017). As a consequence, more effective ways are needed for trans-

mitting the structure files, parsing and finally rendering them in web

browsers and on mobile devices.

Advances in web browser technology opened up new avenues for

implementing and deploying molecular graphics tools. A number of

new 3D viewers have since emerged to address the rendering of 3D

structures on the web using either HTML5 or WebGL, which adds

native support for GPU hardware-acceleration. These include,

JSmol, the Jmol port to JavaScript/HTML 5 (Hanson, 2010) and

the WebGL-based viewers 3Dmol.js (Rego and Koes, 2015),

ChemDoodle (Burger, 2015), iCn3D github.com/ncbi/icn3d, PV

github.com/biasmv/pv, LiteMol (Sehnal et al., 2017), Molmil

(Bekker et al., 2016), NGL Viewer (Rose and Hildebrand, 2015)

and Web3DMol (Shi et al., 2017). In addition, both 3Dmol.js and

NGL Viewer (Nguyen et al., 2017) have plugins for Jupyter

Notebooks (jupyter.org).

While these viewers enable 3D rendering in modern web brows-

ers and on mobile devices, efficient transmission and a small client

side memory footprint of the structural data are essential for visual-

izing large structures. To address the challenges of the growing size

of structures submitted to PDB, we updated the NGL Viewer (Rose

and Hildebrand, 2015) to provide scalable molecular graphics on

the web. The viewer makes extensive use of modern browser fea-

tures, including WebGL and Web Workers to allow fast 3D graphics

and numerical calculations (Khan et al., 2014). Further, it parses

files in the Macromolecular Transmission Format (MMTF), our

new binary and compressed format for molecular structures

(Bradley et al., 2017). MMTF is a binary format that is much faster

to parse than existing text-based file formats for macromolecular

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 3755

Bioinformatics, 34(21), 2018, 3755–3758

doi: 10.1093/bioinformatics/bty419

Advance Access Publication Date: 29 May 2018

Applications Note

Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx2009;
Deleted Text: &hx2009;
https://academic.oup.com/


data. Through bespoke compression methods, the entire PDB arch-

ive can be stored in MMTF in about 9GB (Valasatava et al., 2017).

The MMTF file format was specifically designed for high-

performance transmission and efficient data representation of

macromolecular data and NGL Viewer is its first application.

Figure 1 demonstrates the rendering of the currently largest struc-

ture in the PDB at different scales.

2 Materials and methods

The general steps for displaying a macromolecular structure on the

web are: download file, decompress & parse, populate a data

model, create geometry and render it. To speed-up the download

and parsing step we use the MMTF format (Bradley et al., 2017). Its

compressed binary data offers smaller file-sizes and faster parsing

speed. Moreover it includes all necessary bonding information for

rendering. Our approaches for optimizing the data model, geometry

and rendering are described below.

To enable molecular graphics that scale to large macromolecules,

efficient memory management is crucial, especially on devices with

limited resources. We created a parser for MMTF and a data model

for NGL that allows memory reuse and avoids duplicating data. The

NGL data model uses a flat, columnar layout with a single

JavaScript TypedArray for each property (e.g. atom co-ordinates,

Fig. 2). This allows the parsed MMTF data to be reused or copied in

blocks to the NGL data model. Reusable proxy objects (e.g. for

atoms) are then used for convenient property access and traversal of

the structure hierarchy (Fig. 2). Moreover, bit arrays were added to

leverage hardware bit-level parallelism for increased performance

when combining selections and to allow storing arbitrary selections

of atoms with minimal memory use. A set bit at index i indicates

that the atom at i in the atomStore is selected.

For rendering, WebGL is efficiently used by preparing the data

such that the number of calls to the WebGL API does not grow with

the size of the macromolecules. WebGL API calls have a fixed time

cost, therefore molecular representations are grouped and rendered

together as opposed to rendering, e.g. each atom individually. By

that, the substantial overhead every WebGL API call adds is

avoided, e.g. making a WebGL API call for every atom to be ren-

dered would be prohibitively slow even for moderately sized struc-

tures. As in previous NGL versions (Rose and Hildebrand, 2015),

spheres and cylinders can be rendered efficiently as ray-casted

impostors (Fig. 3A): For each pixel, the GPU tests the intersection of

sphere and camera ray to produce high quality images independent

of resolution (Sigg et al., 2006). Impostors are also used to render

cylinders and hyperboloids, the latter follows the approach by

Chavent et al. (Chavent et al., 2011) to produce the HyperBalls rep-

resentation. Long running calculations like generating molecular

surfaces can be performed on separate Web Worker threads to lever-

age available CPUs and to avoid blocking the user interface.

The Viewer supports common molecular representations, includ-

ing spacefill, ball & stick, cartoon and surfaces. It can parse and ren-

der volumetric data showing electron densities and electrostatic

potentials. Multi-model files and trajectories from molecular dy-

namics simulations can be loaded and animated. When rendering

instances of biological assemblies and crystallographic unit cells,

transformations are performed on the GPU to minimize memory

usage and data transferred to the GPU (Fig. 3B).

3 Results and discussion

We have developed a memory efficient representation for molecular

data in the NGL Viewer as well as a reference implementation for

decoding and parsing MMTF files in JavaScript. The developments

in the NGL data model and the use of MMTF significantly reduce

the peak memory consumption. In Figure 4, we show the rendering

of some of the largest structures in the PDB. In Table 1, we compare

the loading of these structures from MMTF (Bradley et al., 2017)

and mmCIF (Westbrook and Fitzgerald, 2009) files. MMTF files are

Fig. 1. Multi-scale visualization of the 2.4 M atoms HIV-1 capsid structure

[PDB ID 3J3Q, Zhao et al. (2013)] in the NGL Viewer loaded from a 13 MB

gzipped MMTF file. Shown are visualizations with an increasing level of detail

which are generated on-the-fly from the same file. More detailed visualiza-

tions are only created for parts of the structure to reduce visual clutter and

allow fast rendering. Left: molecular surface rendering of the whole capsid.

Middle: secondary structure cartoon with a background silhouette of a hex-

ametric subunit. Right: atom and bond display of two helices shown as

cylinders

Fig. 2. Schema of the flat, columnar data model used in NGL to store molecu-

lar structures. Each property array of a store is a single Typed Array, for in-

stance, the xCoord property array contains the x coordinates for all atoms of

the structure. Special index and offset property arrays allow traversing the

structure hierarchy. As there are only a few types of residues and atoms in a

structure, common properties are stored in corresponding type objects. For

concise and convenient access, proxy objects are available to get data from

the store and type objects

Fig. 3. (A) Comparison of the amount of triangles required to render the sur-

face of a sphere using the standard triangle-geometry approach (left) versus

ray-casted impostors (right). (B) Example of using software instancing to ren-

der the surface (green) of a highly symmetric virus capsid (PDB ID 1RB8). The

surface geometry is transferred once to the GPU and then reused 59 times

3756 A.S.Rose et al.

Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: <italic>.</italic>
Deleted Text: &hx0026; 
Deleted Text: D


about one third to one quarter the size of the corresponding gzipped

mmCIF files, which speeds up the download of structures. Second,

on average, MMTF files can be parsed about 10 times faster than

mmCIF files. Third, maximum heap memory is reduced by a factor

of two or more for very large structures. These improvements, to-

gether with fast rendering, enable the interactive visualization of

even the largest structures in the PDB in a web browser.

Due to its high performance, NGL Viewer has been selected as

the default 3D viewer for the RCSB PDB website (rcsb.org) and has

replaced RCSB PDB Mobile (Quinn et al., 2015), a dedicated viewer

for mobile devices. NGL Viewer downloads MMTF files that con-

tain the asymmetric unit and transformations to create biological

assemblies. Shown in Figure 5 is the biological assembly of the rat

liver vault protein, generated by applying the symmetry transforma-

tions on the GPU.

Another use case of NGL is the interactive download and rendering

of structures using the NGLview plugin (Nguyen et al., 2017) in

Jupyter Notebooks. Here, the fast download and rendering lets a user

browse through a set of structures without any noticeable delay in

loading and rendering structures. Several other viewers and biomolecu-

lar libraries have adopted the MMTF file format (see: mmtf.rcsb.org).

LiteMol (Sehnal et al., 2017) has adopted BinaryCIF, a version of the

mmCIF file format using MMTF’s encoding and compression

strategies.

Molecular visualization is fundamental to biological research.

Profound advances in experimental techniques provide ever more

data on ever larger biological systems. We described a number of

methods that enable scalable molecular graphics on the web. Using

our viewer, large systems can be interactively viewed and manipu-

lated using a web-browser, even on mobile devices.

Acknowledgements

This project was supported in part by the NIH (U01 CA198942; PI: PW

Rose), and the RCSB PDB which is jointly funded by the NSF, the NIH, and

the US DoE (NSF DBI-1338415; PI: SK Burley).

Conflict of Interest: none declared.

References

Bekker,G.-J. et al. (2016) Molmil: a molecular viewer for the pdb and beyond.

J. Cheminform., 8, 42.

Berman,H.M. et al. (2000) The protein data bank. Nucleic Acids Res., 28,

235–242.

Bradley,A.R. et al. (2017) MMTF—an efficient file format for the transmis-

sion, visualization, and analysis of macromolecular structures. PLoS

Comput. Biol., 13, e1005575.

Burger,M.C. (2015) Chemdoodle web components: html5 toolkit for chemical

graphics, interfaces, and informatics. J. Cheminform., 7, 35.

Chavent,M. et al. (2011) GPU-accelerated atom and dynamic bond visualiza-

tion using hyperballs: a unified algorithm for balls, sticks, and hyperboloids.

J. Comput. Chem., 32, 2924–2935.

Hanson,R.M. (2010) Jmol–a paradigm shift in crystallographic visualization.

J. Appl. Crystallography, 43, 1250–1260.

Khan,F. et al. (2014) Using JavaScript and WebCL for numerical computa-

tions: a comparative study of native and web technologies. In Proceeding

DLS’14 Proceedings of the 10th ACM Symposium on Dynamic languages,

Portland, Oregon, USA, pp. 91–102.

Nguyen,H. et al. (2017) Nglview—interactive molecular graphics for jupyter

notebooks. Bioinformatics, 1241–1242.

Pirhadi,S. et al. (2016) Open source molecular modeling. J. Mol. Graph.

Model., 69, 127–143.

Quinn,G.B. et al. (2015) RCSB PDB Mobile: iOS and Android mobile apps to

provide data access and visualization to the RCSB Protein Data Bank.

Bioinformatics, 31, 126–127.

Rego,N. and Koes,D. (2015) 3dmol.js: molecular visualization with WebGL.

Bioinformatics, 31, 1322–1324.

Rose,A.S. and Hildebrand,P.W. (2015) NGL Viewer: a web application for

molecular visualization. Nucleic Acids Res., W576–W579.

Rose,P.W. et al. (2017) The RCSB protein data bank: integrative view of pro-

tein, gene and 3D structural information. Nucleic Acids Res., 45,

D271–D281.

Sehnal,D. et al. (2017) LiteMol suite: interactive web-based visualization

of large-scale macromolecular structure data. Nat. Methods, 14,

1121–1122.

Fig. 4. Large structures: (A) PDB ID 5IV5, (B) 4V4G, (C) 5Y6P and (D) 3J3Q, ren-

dered with NGL Viewer in a cartoon representation. Note that these are the

same structures used in Table 1 for the performance metrics

Table 1. Metrics for parsing and rendering four of the largest structures in the PDB archive from the MMTF and mmCIF files using NGL v2

PDB ID aFile parsing [ms] Geometry creation and rendering [ms] aJS Heap Memory [MB] aFile size [MB] Atom count

5IV5 386/3312 774 195/348 3.3/11.0 549 576

4V4G 485/4377 850 198/454 3.9/15.4 717 805

5Y6P 654/7623 1368 196/594 9.0/28.7 1 234 811

3J3Q 965/14514 2155 193/787 13.5/47.3 2 440 800

Note: Tests were performed in Chrome 64 under MacOS X 10.11 on a Mac mini (Processor 2.6 GHz Intel Core i5, Memory 16 GB 1600 MHz DDR3,

Graphics Intel Iris 1536 MB). The JS Heap Memory is as reported by the Performance Tool in the Chrome developer tools.
aData for MMTF/mmCIF, respectively.

Fig. 5. Biological Assembly view of the rat liver vault protein PDB ID 4V60 ren-

dered with NGL Viewer using the MMTF file format on the RCSB PDB website

NGL viewer: web-based molecular graphics for large complexes 3757

Deleted Text: &hx2009;


Shi,M. et al. (2017) Web3DMol: interactive protein structure visualization

based on WebGL. Nucleic Acids Res., 45, W523–W527.

Sigg,C. et al. (2006). GPU-based ray-casting of quadratic surfaces. In: Botsch,

M., Chen, B., Pauly, M. and Zwicker, M. (eds). Symposium on Point-Based

Graphics. The Eurographics Association, Aire-la-Ville, Switzerland, pp.

59–65.

Valasatava,Y. et al. (2017) Towards an efficient compression of 3D coordi-

nates of macromolecular structures. PLoS One, 12, e0174846.

Westbrook,J. and Fitzgerald,P. (2009) The PDB format, mmCIF formats, and

other data formats. In: Structural Bioinformatics, chapter 10, 2nd edn, John

Wiley & Sons, Inc. pp. 271–291.

Yuan,S. et al. (2017) Implementing WebGL and HTML5 in macromolecular

visualization and modern computer-aided drug design. Trends Biotechnol.,

35, 559–571.

Zhao,G. et al. (2013) Mature HIV-1 capsid structure by cryo-electron micros-

copy and all-atom molecular dynamics. Nature, 497, 643–646.

3758 A.S.Rose et al.


	bty419-TF1
	bty419-TF2



