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Abstract

Motivation: The interactive visualization of very large macromolecular complexes on the web is

becoming a challenging problem as experimental techniques advance at an unprecedented rate

and deliver structures of increasing size.

Results: We have tackled this problem by developing highly memory-efficient and scalable exten-

sions for the NGL WebGL-based molecular viewer and by using Macromolecular Transmission

Format (MMTF), a binary and compressed MMTF. These enable NGL to download and render mo-

lecular complexes with millions of atoms interactively on desktop computers and smartphones

alike, making it a tool of choice for web-based molecular visualization in research and education.

Availability and implementation: The source code is freely available under the MIT license at

github.com/arose/ngl and distributed on NPM (npmjs.com/package/ngl). MMTF-JavaScript

encoders and decoders are available at github.com/rcsb/mmtf-javascript.

Contact: asr.moin@gmail.com

1 Introduction

Interactive visualization of molecular structures is a widely used tool

in biological research. Displaying molecular structures on the web

makes them accessible to all scientists, educators, and students, not

just to experts with access to dedicated networking, hardware and

software. Overviews of current web-based molecular graphics and

modeling software are given by Pirhadi et al. (2016) and Yuan et al.

(2017). Driven by advancements in X-ray crystallography and espe-

cially in Cryo-EM, larger and larger structures are submitted to the

Protein Data Bank (PDB) archive (Berman et al., 2000; Rose et al.,

2017). As a consequence, more effective ways are needed for trans-

mitting the structure files, parsing and finally rendering them in web

browsers and on mobile devices.

Advances in web browser technology opened up new avenues for

implementing and deploying molecular graphics tools. A number of

new 3D viewers have since emerged to address the rendering of 3D

structures on the web using either HTML5 or WebGL, which adds

native support for GPU hardware-acceleration. These include,

JSmol, the Jmol port to JavaScript/HTML 5 (Hanson, 2010) and

the WebGL-based viewers 3Dmol.js (Rego and Koes, 2015),

ChemDoodle (Burger, 2015), iCn3D github.com/ncbi/icn3d, PV

github.com/biasmv/pv, LiteMol (Sehnal et al., 2017), Molmil

(Bekker et al., 2016), NGL Viewer (Rose and Hildebrand, 2015)

and Web3DMol (Shi et al., 2017). In addition, both 3Dmol.js and

NGL Viewer (Nguyen et al., 2017) have plugins for Jupyter

Notebooks (jupyter.org).

While these viewers enable 3D rendering in modern web brows-

ers and on mobile devices, efficient transmission and a small client

side memory footprint of the structural data are essential for visual-

izing large structures. To address the challenges of the growing size

of structures submitted to PDB, we updated the NGL Viewer (Rose

and Hildebrand, 2015) to provide scalable molecular graphics on

the web. The viewer makes extensive use of modern browser fea-

tures, including WebGL and Web Workers to allow fast 3D graphics

and numerical calculations (Khan et al., 2014). Further, it parses

files in the Macromolecular Transmission Format (MMTF), our

new binary and compressed format for molecular structures

(Bradley et al., 2017). MMTF is a binary format that is much faster

to parse than existing text-based file formats for macromolecular
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data. Through bespoke compression methods, the entire PDB arch-

ive can be stored in MMTF in about 9GB (Valasatava et al., 2017).

The MMTF file format was specifically designed for high-

performance transmission and efficient data representation of

macromolecular data and NGL Viewer is its first application.

Figure 1 demonstrates the rendering of the currently largest struc-

ture in the PDB at different scales.

2 Materials and methods

The general steps for displaying a macromolecular structure on the

web are: download file, decompress & parse, populate a data

model, create geometry and render it. To speed-up the download

and parsing step we use the MMTF format (Bradley et al., 2017). Its

compressed binary data offers smaller file-sizes and faster parsing

speed. Moreover it includes all necessary bonding information for

rendering. Our approaches for optimizing the data model, geometry

and rendering are described below.

To enable molecular graphics that scale to large macromolecules,

efficient memory management is crucial, especially on devices with

limited resources. We created a parser for MMTF and a data model

for NGL that allows memory reuse and avoids duplicating data. The

NGL data model uses a flat, columnar layout with a single

JavaScript TypedArray for each property (e.g. atom co-ordinates,

Fig. 2). This allows the parsed MMTF data to be reused or copied in

blocks to the NGL data model. Reusable proxy objects (e.g. for

atoms) are then used for convenient property access and traversal of

the structure hierarchy (Fig. 2). Moreover, bit arrays were added to

leverage hardware bit-level parallelism for increased performance

when combining selections and to allow storing arbitrary selections

of atoms with minimal memory use. A set bit at index i indicates

that the atom at i in the atomStore is selected.

For rendering, WebGL is efficiently used by preparing the data

such that the number of calls to the WebGL API does not grow with

the size of the macromolecules. WebGL API calls have a fixed time

cost, therefore molecular representations are grouped and rendered

together as opposed to rendering, e.g. each atom individually. By

that, the substantial overhead every WebGL API call adds is

avoided, e.g. making a WebGL API call for every atom to be ren-

dered would be prohibitively slow even for moderately sized struc-

tures. As in previous NGL versions (Rose and Hildebrand, 2015),

spheres and cylinders can be rendered efficiently as ray-casted

impostors (Fig. 3A): For each pixel, the GPU tests the intersection of

sphere and camera ray to produce high quality images independent

of resolution (Sigg et al., 2006). Impostors are also used to render

cylinders and hyperboloids, the latter follows the approach by

Chavent et al. (Chavent et al., 2011) to produce the HyperBalls rep-

resentation. Long running calculations like generating molecular

surfaces can be performed on separate Web Worker threads to lever-

age available CPUs and to avoid blocking the user interface.

The Viewer supports common molecular representations, includ-

ing spacefill, ball & stick, cartoon and surfaces. It can parse and ren-

der volumetric data showing electron densities and electrostatic

potentials. Multi-model files and trajectories from molecular dy-

namics simulations can be loaded and animated. When rendering

instances of biological assemblies and crystallographic unit cells,

transformations are performed on the GPU to minimize memory

usage and data transferred to the GPU (Fig. 3B).

3 Results and discussion

We have developed a memory efficient representation for molecular

data in the NGL Viewer as well as a reference implementation for

decoding and parsing MMTF files in JavaScript. The developments

in the NGL data model and the use of MMTF significantly reduce

the peak memory consumption. In Figure 4, we show the rendering

of some of the largest structures in the PDB. In Table 1, we compare

the loading of these structures from MMTF (Bradley et al., 2017)

and mmCIF (Westbrook and Fitzgerald, 2009) files. MMTF files are

Fig. 1. Multi-scale visualization of the 2.4 M atoms HIV-1 capsid structure

[PDB ID 3J3Q, Zhao et al. (2013)] in the NGL Viewer loaded from a 13 MB

gzipped MMTF file. Shown are visualizations with an increasing level of detail

which are generated on-the-fly from the same file. More detailed visualiza-

tions are only created for parts of the structure to reduce visual clutter and

allow fast rendering. Left: molecular surface rendering of the whole capsid.

Middle: secondary structure cartoon with a background silhouette of a hex-

ametric subunit. Right: atom and bond display of two helices shown as

cylinders

Fig. 2. Schema of the flat, columnar data model used in NGL to store molecu-

lar structures. Each property array of a store is a single Typed Array, for in-

stance, the xCoord property array contains the x coordinates for all atoms of

the structure. Special index and offset property arrays allow traversing the

structure hierarchy. As there are only a few types of residues and atoms in a

structure, common properties are stored in corresponding type objects. For

concise and convenient access, proxy objects are available to get data from

the store and type objects

Fig. 3. (A) Comparison of the amount of triangles required to render the sur-

face of a sphere using the standard triangle-geometry approach (left) versus

ray-casted impostors (right). (B) Example of using software instancing to ren-

der the surface (green) of a highly symmetric virus capsid (PDB ID 1RB8). The

surface geometry is transferred once to the GPU and then reused 59 times
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about one third to one quarter the size of the corresponding gzipped

mmCIF files, which speeds up the download of structures. Second,

on average, MMTF files can be parsed about 10 times faster than

mmCIF files. Third, maximum heap memory is reduced by a factor

of two or more for very large structures. These improvements, to-

gether with fast rendering, enable the interactive visualization of

even the largest structures in the PDB in a web browser.

Due to its high performance, NGL Viewer has been selected as

the default 3D viewer for the RCSB PDB website (rcsb.org) and has

replaced RCSB PDB Mobile (Quinn et al., 2015), a dedicated viewer

for mobile devices. NGL Viewer downloads MMTF files that con-

tain the asymmetric unit and transformations to create biological

assemblies. Shown in Figure 5 is the biological assembly of the rat

liver vault protein, generated by applying the symmetry transforma-

tions on the GPU.

Another use case of NGL is the interactive download and rendering

of structures using the NGLview plugin (Nguyen et al., 2017) in

Jupyter Notebooks. Here, the fast download and rendering lets a user

browse through a set of structures without any noticeable delay in

loading and rendering structures. Several other viewers and biomolecu-

lar libraries have adopted the MMTF file format (see: mmtf.rcsb.org).

LiteMol (Sehnal et al., 2017) has adopted BinaryCIF, a version of the

mmCIF file format using MMTF’s encoding and compression

strategies.

Molecular visualization is fundamental to biological research.

Profound advances in experimental techniques provide ever more

data on ever larger biological systems. We described a number of

methods that enable scalable molecular graphics on the web. Using

our viewer, large systems can be interactively viewed and manipu-

lated using a web-browser, even on mobile devices.
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