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RESEARCH ARTICLE
10.1002/2016MS000689

Effects of explicit convection on global land-atmosphere
coupling in the superparameterized CAM
Jian Sun1 and Michael S. Pritchard1

1Department of Earth System Science, University of California, Irvine, California, USA

Abstract Conventional global climate models are prone to producing unrealistic land-atmosphere
coupling signals. Cumulus and convection parameterizations are natural culprits but the effect of bypassing
them with explicitly resolved convection on global land-atmosphere coupling dynamics has not been
explored systematically. We apply a suite of modern land-atmosphere coupling diagnostics to isolate the
effect of cloud Superparameterization in the Community Atmosphere Model (SPCAM) v3.5, focusing on
both the terrestrial segment (i.e., soil moisture and surface turbulent fluxes interaction) and atmospheric
segment (i.e., surface turbulent fluxes and precipitation interaction) in the water pathway of the land-
atmosphere feedback loop. At daily timescales, SPCAM produces stronger uncoupled terrestrial signals
(negative sign) over tropical rainforests in wet seasons, reduces the terrestrial coupling strength in the
Central Great Plain in American, and reverses the coupling sign (from negative to positive) over India in the
boreal summer season—all favorable improvements relative to reanalysis-forced land modeling. Analysis of
the triggering feedback strength (TFS) and amplification feedback strength (AFS) shows that SPCAM
favorably reproduces the observed geographic patterns of these indices over North America, with the
probability of afternoon precipitation enhanced by high evaporative fraction along the eastern United
States and Mexico, while conventional CAM does not capture this signal. We introduce a new diagnostic
called the Planetary Boundary Layer (PBL) Feedback Strength (PFS), which reveals that SPCAM exhibits a
tight connection between the responses of the lifting condensation level, the PBL height, and the rainfall
triggering to surface turbulent fluxes; a triggering disconnect is found in CAM.

1. Introduction

The land is coupled with the overlying atmosphere through complex physical mechanisms that govern
water, energy, carbon, and other trace gas exchanges. Seneviratne et al. [2010] define a soil moisture-
precipitation feedback loop depicting important pathways through which water cycles between the land
and the atmosphere. From this view, soil moisture feeds back to itself via atmospheric precipitation through
two physical segments [Seneviratne et al., 2010; Santanello, 2011; Ferguson et al., 2012; Guillod et al., 2014]. In
the terrestrial segment, soil moisture is a major source of water for evapotranspiration and plays a vital role
in determining the surface flux partitioning [Dirmeyer, 2011; Sun et al., 2011]. In the atmospheric segment,
the turbulent fluxes (both sensible heat flux and latent heat flux) impact convection and precipitation
through altering Planetary Boundary Layer (PBL) dynamics. For instance, wetter soil yields more latent heat
flux, which can reduce the altitude of the condensation level, favoring shallow convection and moist, cool
PBL conditions. Alternately, dryer soil yields more sensible heat flux, which can promote the boundary layer
growth, breaking stable layer barriers aloft and resulting in deep convection. Counterintuitive effects of
explicit entrainment can also introduce exotic behaviors [Hohenegger et al., 2009]. Thus, both positive and
negative soil moisture feedback on precipitation can occur as shown in many studies [Hohenegger et al.,
2009; Findell et al., 2011; Taylor et al., 2011, 2012; Gentine et al., 2013c; Guillod et al., 2015].

The atmospheric segment is the most complicated and uncertain part in the full soil moisture-precipitation
feedback loop. It is especially uncertain in modern climate models that heavily parameterize the dynamics
of the PBL, clouds, convective triggering, and entrainment.

How tightly the land couples to the atmosphere is vital to predicting weather [Koster et al., 2006, 2010, 2011;
Guo et al., 2012] and the climate system [Dirmeyer, 2003; Dirmeyer et al., 2013, 2014]. The ‘‘coupling strength’’ is
generally measured by the degree to which one variable controls or exhibits statistical dependence on
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another variable across the land-atmosphere interface. Regions displaying strong soil moisture-
precipitation coupling signals tend to satisfy three conditions: (i) they experience nontrivial soil mois-
ture anomalies; (ii) evapotranspiration is sensitive to soil moisture anomalies; (iii) precipitation is sensi-
tive to evapotranspiration variations [Guo et al., 2006]. Despite the large diversity of coupling signals in
different global circulation models (GCMs), they tend to agree on several regions of strong coupling sig-
nals, initially identified in the Global Land-Atmosphere Coupling Experiment (GLACE) [Koster et al., 2004,
2006], which has inspired a series of global land-atmosphere coupling studies in the past decade. These
studies range in spatial and temporal scales and use a combination of models, reanalysis or satellite
products [e.g., Dirmeyer, 2006, 2011; Dirmeyer et al. 2012; Findell et al., 2011; Taylor et al., 2012], with
associated trade-offs. For instance, observational-based analyses are limited by an inability to explore
the relationship of causality and short temporal and sparse spatial coverage, while reanalysis and mod-
els are impaired by their PBL and cloud parameterization schemes [Seneviratne et al., 2010; Ferguson
et al., 2012; Guillod et al., 2015], though this can be mitigated to some degree by assimilating rainfall
data [Findell et al., 2011].

The sorts of cumulus and convection parameterizations that are used in modern climate models and reanal-
ysis have been attributed to causing some unrealistic land-atmosphere coupling signals and significant
uncertainty in large-scale predictions [Mohr et al., 2013; Guillod et al., 2015]. The inaccuracy of precipitation
simulation leads to distorted soil moisture variability, which, in turn, can hamper the land surface feedback
on the atmosphere and coupling diagnostics. In certain settings, the sign of the rainfall-soil moisture feed-
back can even flip if convection is explicitly resolved: Hohenegger et al. [2009] performed sensitivity experi-
ments with explicit and parameterized convection over the Alpine region in Europe, and found oppositely
signed soil moisture-precipitation feedback signals due to effects of explicit entrainment.

The question naturally arises as to whether next-generation global climate models that use explicit convec-
tion meaningfully modify the physics of land-atmosphere coupling in ways that are visible globally and that
matter to climate prediction [Koster et al., 2010, 2011; Guo et al., 2012]. We focus on the Superparameterized
Community Atmosphere Model, which uses embedded cloud resolving models (CRMs) within each GCM
grid column to replace typical parameterizations of moist convection and vertical mixing (see section 2). To
date there are few studies on the effects of superparameterization at the land surface. For example, DeMott
et al. [2007] demonstrated that more realistically intermittent intense rainfall under the superparameteriza-
tion approach modifies canopy interception feedbacks in the Community Atmosphere Model (CAM) in
ways that are important to sustaining climatological conditions in the Central U.S. Surface fluxes in the
NASA Goddard Multiscale Modeling Framework were validated against FLUXNET [Baldocchi et al., 2001]
data by Mohr et al. [2013] who found superparameterization led to a realistic reduction of drizzle recycling
and associated latent heating relative to the NASA MERRA (the Modern Era Retrospective-analysis for
Research and Applications) product.

The effects of superparameterization on rainfall intensity and the diurnal rainfall cycle have been well docu-
mented. Early studies by Khairoutdinov et al. [2005] and Pritchard and Somerville [2009a,b] demonstrated
that superparameterization also improves the diurnal timing of precipitation regionally. Most recently, Koo-
perman et al. [2016] evaluated high-order statistics based on the frequency and amount of daily precipita-
tion simulated by three versions of superparameterized models. Their results confirm the assessment of
DeMott et al. [2007] that a resilient effect of superparameterization is to enhance intense rain rates, both in
terms of the extreme rate and amount mode, and reduce the frequency of weak rain rates relative to sever-
al conventionally parameterized versions of CAM.

By incorporating CRMs in GCM grids, superparameterization alters precipitation statistics, changes soil mois-
ture conditions, and philosophically should be expected to impact the physics of land-atmosphere interac-
tions. However, the effects of superparameterization on global land-atmosphere coupling dynamics have
never been explored systematically.

In this paper, we aim to fill this gap by analyzing the effects of superparameterization on both the terrestrial
and atmospheric segments of the soil moisture feedback on precipitation by taking advantage of a suite of
advanced land-atmosphere coupling indices. In section 2, we briefly introduce the coupling metrics and the
model tools that we use. We present our results and discussion in section 3, and summarize our findings
and future direction in section 4.
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2. Background

2.1. Coupling Indices
2.1.1. Terrestrial Coupling Index
To analyze the terrestrial segment, we select a widely used coupling index developed by Dirmeyer [2011],
which attempts to measure the coupling strength between soil moisture and surface turbulent fluxes (or
other flux metrics) as the slope (b/) of the bivariate linear regression between anomalies of a quantity of
interest (/) and soil moisture, scaled by the standard deviation of daily soil moisture (sw):

I/5swb/ (1)

This index filters out distracting conditions of apparently strong coupling situations with large slope and
correlation but nearly invariant soil moisture by incorporating sw in the formulation, which can be viewed
as an advantage compared to other purely correlation-based coupling indices. The regression slope is calcu-
lated from daily anomalies of soil moisture (after detrending) and the flux quantity from the climatological
annual cycle. Following Dirmeyer [2011], we calculate the coupling index on a monthly basis, and analyze
seasonal averages from 15 year time intervals.
2.1.2. Triggering Feedback Strength and Amplification Feedback Strength
For the atmospheric segment, we focus on an appealingly causative metric—a simplified version of the trig-
gering feedback strength (TFS) and amplification feedback strength (AFS) [Findell et al., 2011, 2015] to
account for the coupling strength of precipitation to evaporative fraction (EF) on subdaily timescales.

TFS reflects the sensitivity of the afternoon (noon–6 P.M.) rainfall triggering probability to morning (9 A.M.–
noon) EF, while AFS reflects the sensitivity of the afternoon rainfall amount to morning EF once rainfall is
triggered. Rainfall events are defined as days in which accumulated afternoon rainfall exceeds 1 mm. The
built-in diurnal time offset of (afternoon) rainfall and (morning) EF is a critical ingredient in this diagnostic,
and in addition to filtering out time periods with morning rainfall, helpfully hones in on cases where the sur-
face state has a chance to locally modify convection in a causative sense. Specifically,

TFS5rEF
@CðrÞ
@EF

(2)

where rEF represents the standard deviation of EF, CðrÞ represents the probability of afternoon rainfall
event. AFS is formulated similarly by replacing CðrÞ with EðrÞ, the expectation of rainfall amount in the
afternoon:

AFS5rEF
@EðrÞ
@EF

: (3)

In Findell et al. [2011], the triggering probability and expectation values of afternoon rainfall amount are
considered separately in bins constrained by EF, convective triggering potential (CTP), and low-level humid-
ity deficit (HIlow) [Findell and Eltahir, 2003a] to isolate separate regimes. They also restrict the sampling days
by two conditions in order to mitigate the impacts of large-scale synoptic systems: (i) days with morning
(6 A.M.–noon) rainfall are excluded from the calculation to limit the impacts of long-duration synoptically
controlled stratiform rainfall events; (ii) days with negative CTP are excluded as the condition is not favor-
able for local convection development. Recently, Findell et al. [2015] simplified TFS and AFS by neglecting
CTP-HIlow constraints in binning and negative CTP criteria in screening the days and indicated that the vari-
ability from sampling is far larger than the variability associated with these screening criteria. Thus we
neglect (ii) and use the simplified TFS and AFS for simplicity following Findell et al. [2015]. That is, we first
screen days with the early morning rainfall criteria in each grid cell and create 200 bootstrap samples (con-
sistent with Berg et al. [2013]) based on the available days for statistical significance evaluation; then the
probability and expectation of afternoon rainfall are binned (10 bins in total) according to morning (9 A.M.–
noon) mean EF; finally, the simplified TFS or AFS are calculated as the product of the standard deviation of
the morning EF and the average of the slopes of CðrÞ or EðrÞ and EF across all bins. We maintain TFS and
AFS as acronyms of simplified version of TFS and AFS throughout the paper. We note the days considered
in TFS are not same as those used in AFS calculation. That is, the days without early morning rainfall are fur-
ther filtered with triggered afternoon rainfall for AFS calculation.
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2.2. Superparameterization and Model Simulations
Conventional GCMs generally use statistical methods to represent unresolved moist convection and PBL
turbulent diffusion at subgrid scales. In contrast, superparameterization takes advantage of embedded
cloud resolving models (CRMs) in each GCM grid column to explicitly represent the subgrid convection pro-
cesses. Thus both large-scale GCM dynamics and fine-scale CRM convection are resolved simultaneously
[Grabowski 2001; Randall et al., 2003a; Khairoutdinov et al., 2005] and interact. The Center for Multiscale
Modeling of Atmospheric Processes (CMMAP) has helped pioneer the study of superparameterization in
comprehensive GCMs during the past decade (www.cmmap.org). In this study, we use the Superparameter-
ized Community Atmosphere Model 3.5 (SPCAM3.5) developed by Marat Khairoutdinov in affiliation with
CMMAP. We choose to use this version of SPCAM3.5 instead of the more widely validated SPCAM3.0 in
order to include important updates to the land model in terms of hydrological cycle outlined in Oleson et al.
[2008], having verified that essential effects of superparameterization on rainfall intensity and diurnal rain-
fall are similar across both versions. We do not choose newer versions of SPCAM5 due to computational
cost overheads associated with model updates since SPCAM3.5.

SPCAM3.5 is approximately one hundred times more computationally expensive than the conventional
CAM3.5. But several acceleration strategies have been explored to reduce the computation cost without
hampering the desired performance [Pritchard et al., 2014; Jones et al., 2015]. For the sake of computational
resources, in this study, we reduce the CRM extent from the default 128 km (4 km 3 32 columns) to 32 km
(4 km 3 8 columns) in each GCM grid following (the ‘‘micro-CRM’’ configuration of Pritchard et al. [2014]).
The outer GCM grid is at T42 (�2.88) spatial resolution and 30 levels vertically.

As Findell et al. [2015] pointed out, a long record of data (over 10 years) is needed to obtain robust land-
atmosphere coupling signals. We therefore run CAM3.5 (hereafter CAM) and SPCAM3.5 (hereafter SPCAM)
for 20 years with the first 5 years disregarded as a spin-up (for the land surface model reaching equilibrium).
Both models are forced by identical observed ocean climatological annual cycles. A single land model grid
cell interacts with the horizontal mean state from the embedded cloud resolving models, in the typical
approach of superparameterization models to date that does not include mesoscale land-atmosphere feed-
back processes. Daily and hourly outputs are used for analysis in this study.

3. Results and Discussion

3.1. Terrestrial Segment
3.1.1. Coupling Strength Between Latent Heat Flux and Surface Soil Moisture in the Boreal Summer
Season
Superparameterization induces several favorable shifts in the terrestrial segment of land-atmosphere cou-
pling. Figures 1a and 1b show the results of the terrestrial coupling index applied to measure the coupling
between the surface soil moisture (about 3 cm) with latent heat flux (LH) for the boreal summer (JJA) sea-
son. The values with correlations below 0.2 are masked out, since they are deemed indistinguishable from
zero at a significance threshold of 95% confidence level, using a conservative estimate of the number of
degrees of freedom [see Dirmeyer, 2011]. The regional patterns of the terrestrial coupling index (ILH) are dif-
ferent between SPCAM and CAM, although the overall magnitudes of the coupling strength are similar in
general. Specifically, SPCAM reduces the coupling between soil moisture and LH in central North America,
mitigates the coupling signal in Middle East, shrinks the geographic extent of a strong coupling area in
North Africa, reverses the coupling signal (from negative to positive) in India, and enhances the coupling
signal negatively in Indo-China. The effect of these changes is to make SPCAM more comparable to a suite
of land surface model results driven by observationally based meteorological forcing (i.e., GSWP-2 results in
Figure 1 of Dirmeyer [2011]).

Further decomposing ILH, Figures 1c and 1d, 1e and 1f display the regression slope (b/) and surface soil
moisture standard deviation (sw), respectively. Whereas the sign of b/ (representing the flux response to
soil moisture variation) determines the sign of the coupling index, the magnitude of sw and b/ both control
model differences in its strength. For example, the opposite signs of ILH over India are determined by the
opposite signs of bLH in that region. Both models have positive LH response (with different magnitude) to
soil moisture variability, but the extremely low b/ contributes more to the nearly neutral coupling index in
the Middle East in SPCAM. Both relatively stronger sw and b/ over Central U.S. lead to the strong ILH in that
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region in both models. The Sahel region stands out in Africa with strong positive ILH in SPCAM mainly due
to the higher sw. The regions displaying different strength of the terrestrial coupling signals in the two mod-
els (e.g., Central U.S., Sahel region, the Middle East, Southeast Asia) generally show different levels of soil
moisture variance (presumably resulting from radically different representations of regional precipitation
variability), as seen in Figures 1e and 1f.
3.1.2. Coupling Strength of Latent Heat Flux and Soil Moisture at Different Soil Depths
Soil moisture at depth can be an important control on evapotranspiration in dense vegetated areas with
long and deep roots such as forests. Figure 2 displays the results of the terrestrial coupling index of LH with
soil moisture at different soil depths in JJA season. The results show that the geographic structure of the
coupling signals does not vary with depth, but the magnitude of coupling signals gets weaker with depth.
The coupling signals in most areas are muted when using the whole column (represents a depth of nearly

Figure 1. Terrestrial coupling index (ILH in W/m2) with respect to surface (3 cm) (top row) soil moisture, (middle row) slope (bLH in W/m2) of
the relationship, and (bottom row) soil moisture standard deviation (Sw) in JJA.
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3m) soil moisture in calculating the coupling index, which is mainly attributed to the reduced response of
LH to soil moisture.

The Amazon stands out as a distinct area in SPCAM, which displays a stronger signal of the terrestrial cou-
pling index with deeper soil moisture compared to CAM. This can be traced to a larger variability of deep
soil moisture in SPCAM. With depth, sw increases while b decreases in both SPCAM and CAM (not shown),
but sw dominates the magnitude of the coupling index with the entire soil column moisture. This effect

Figure 2. Terrestrial coupling index (ILH in W/m2) with respect to soil moisture at different depths in JJA.
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may be consistent with arguments introduced by DeMott et al. [2007] that greater rainfall extremes in
SPCAM increase the chances that rainfall penetrates the leaves of the simulated forest, allowing more inter-
action with the soil, potentially increasing the variability of soil moisture at all depths.
3.1.3. Seasonality of the Coupling Strength of Latent Heat Flux and Surface Soil Moisture
We calculate the terrestrial coupling indices of LH and surface soil moisture in different seasons and show
them in Figure 3. The most striking difference between the two models is that SPCAM displays relatively
stronger negative coupling signals (magnitude of negatively signed ILH) over tropical rainforests in most
seasons. For instance in DJF over the Amazon and the Central African rainforest SPCAM has a persistently
strong negative sign of the terrestrial coupling index while CAM has relatively neutral or slightly positive
sign of the signal. In this season, these regions experience lots of rainfall (wet season, see Figures 4g and
4h), such that evapotranspiration is more strongly limited by available radiative energy than by water sup-
ply, i.e., evapotranspiration depletes soil moisture instead of being controlled by soil moisture. A negative

Figure 3. The seasonal cycle of terrestrial coupling index (ILH in W/m2) with respect to surface soil moisture.
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signal in this region and season is also consistent with precipitation assimilating land reanalysis such as
shown by Dirmeyer [2011] (his Figure 1 plot 4). In this context, the more negative terrestrial coupling indices
over tropical rainforests that result from using superparameterization may be viewed as an improvement.

Otherwise, the seasonal cycle of the positive coupling signal geographic action centers is broadly similar in
both models. Strong positive coupling zones generally migrate seasonally with the transitional areas
between dry and wet regions. However, as seen for JJA, there are regional differences in the nature of the
strong coupling signals. In MAM, the most striking difference is that CAM displays a strong coupling signal
over India while SPCAM possess very weak one (Figures 3a and 3b). In SON, the coupling signals distribute
over the low latitude and southern hemisphere (mainly Sahel region, southern Africa, South America) in
both models, but the positive coupling signals are more intense in CAM than in SPCAM (Figures 3e and 3f).

Figure 4. The seasonal cycle of mean precipitation (mm/d).
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In DJF, the strong coupling regions move further south and mainly extend at the end of South America, Afri-
ca, and Australia in both models, although the specific locations differ in some degree (Figures 3g and 3h).

The seasonal cycle of precipitation displays an interesting phenomenon—SPCAM does not simulate the
Indian Monsoon (Figure 4c). This is not consistent with previous experience in simulating the Indian Mon-
soon with superparameterized versions of CAM [Khairoutdinov et al., 2005; DeMott et al., 2011, 2013;
Goswami et al., 2013]. There are many possible reasons for the discrepancy, e.g., lack of ocean coupling,
uniquely reduced number CRM columns, and different model version comparing with those used in previ-
ous monsoon studies. It is impossible to rule out the possibility that the seemingly favorable simulation of
the terrestrial coupling index over India in SPCAM is somehow supported by compensating errors associat-
ed with unrealistic monsoonal rainfall, although the use of seasonal detrending of soil moisture in the ter-
restrial coupling index methodology might argue against this.

It is natural to wonder what causes superparameterization to boost negative terrestrial coupling relation-
ships over tropical rainforests, which we have traced to be mainly due to a stronger negative slope compo-
nent b rather than stronger soil moisture variability. The interaction of evapotranspiration and soil moisture
can be further understood by decomposing the total evapotranspiration response to soil moisture. Figure 5
displays the response of the total evapotranspiration (bLH), canopy evaporation (bFCEV), canopy transpiration
(bFCTR), and ground evaporation (bFGEV) to surface soil moisture anomalies over Central Africa and the

Figure 5. The seasonal cycle of the sensitivity of total evapotranspiration (bLH), canopy evaporation (bFCEV), canopy transpiration (bFCTR), and ground evaporation (bFGEV) to surface soil
moisture over the Amazon and Central Africa. All are in W/m2.
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Amazon seasonally. Note that the values are not masked with the correlation threshold as in previous fig-
ures in order to display continuous signals over the domain.

The results indicate that the stronger negative coupling signal of bLH in SPCAM (Figure 5I) is contributed by
a combination of changes due to superparameterization in bFCEV and bFCTR (Figures 5II and III). For example,
in the wet season (DJF), bFCEV and bFCTR are of compatible magnitudes but with different signs in CAM, bal-
ancing out to a large extent. But superparameterization reduces the positive bFCEV while boosting the nega-
tive bFCTR. bFGEV is nearly neutral and hardly affects the overall signal of bLH in both models (Figure 5IV). In
the dry season (JJA), the positive bFCEV is muted over the tropical rainforest in both models due to lack of
rainfall. Thus, the positive bLH mainly reflects the signal of bFCTR (stronger in SPCAM) in addition to the less
important role of bFGEV (similar magnitude in both models). Note that both models display negative bLH

that is mainly due to the negative bFCTR in the north end of South America, because this region actually
experiences higher rainfall and thus is in a radiatively limited wet regime in this season (see Figures 4c and
4d).

Based on the different response of canopy evaporation and its impact on mediating the coupling signal, as
well as telling differences in geographic patterns of mean seasonal rainfall, we speculate this effect of super-
parameterization is related to a combination of (i) consequences of superparameterization on the distribu-
tion of precipitation and water reservoir recharge over tropical rainforests revealed by DeMott et al. [2007]
and (ii) model differences in the mean seasonal cycle of rainfall that affect the degree of radiation-
limitation.

On the first front, DeMott et al. [2007] found that CAM tends to produce too much light-moderate but not
enough heavy rainfall, while SPCAM correctly simulates intermittent heavy rainfall events. This can directly
explain the reduction in bFCEV in SPCAM seen in all seasons in Figure 5II. We decompose the latent heat flux
and find that CAM does produce substantially more time mean water flux into atmosphere than SPCAM
(31% and 28% more over the Amazon and Central Africa, respectively, in DJF), the difference of which is
basically coming from the canopy reservoir (not shown). This is consistent with previous results of DeMott
et al. [2007] and Mohr et al. [2013] despite the different model versions in our studies. Due to the drizzle
problem and its effects on recharging and recycling from the canopy reservoir, the strong positive signal of
bFCEV tends to be biased in CAM, which further results in the unrealistic bLH considering the relatively impor-
tant contribution of bFCEV (see Figure 5).

On the second front, we speculate that the degree to which the Amazon is radiatively limited is different in
the two models due to seasonal rainfall differences, and that this externally controls the model differences
in bFCTR. In all periods except JJA, a positive soil moisture anomaly results in a negative anomaly in canopy
transpiration (FCTR) over the Amazon in both models (negative slopes in Figure 5III). This indicates that the
positive anomaly is a result of higher rainfall and lower radiation impinging on the canopy, i.e., evidence of
a radiatively limited regime due to ample mean rainfall and soil moisture. This highlights the potential for
model differences in the amount of rainfall over the Amazon to externally control differences in the magni-
tude of negative bFCTR. Consistent with this view, during MAM (DJF) SPCAM has less (more) strongly nega-
tive bFCTR than CAM (Figure 5III), mirroring the fact that it also has less (more) mean rainfall in the region
(Figures 4a 4b, 4g and 4h) and is thus less (more) radiatively limited, promoting weaker (stronger) negative
soil moisture-transpiration regression slopes.

In summary, we have analyzed the terrestrial coupling indices of soil moisture and latent heat flux at differ-
ent soil depths and different seasons of SPCAM and conventional CAM. Given the format of the terrestrial
coupling index, there are two effects exerted by superparameterization that influence the coupling signal:
modified soil moisture variability driven directly by modified precipitation variability (accounted for by sw in
the coupling index formulation), and the surface flux response to soil moisture condition that results from
using a different convection strategy to represent the PBL (accounted for by b in the coupling index formu-
lation). The soil moisture variability can be understood through analyzing the different precipitation pat-
terns in the two models as explored in other precipitation-focused studies with different versions of SPCAM
[e.g., Khairoutdinov et al., 2005, 2008; DeMott et al., 2007; Pritchard and Somerville, 2009a,b; Kooperman et al.,
2016]. Explicitly understanding why superparameterization modifies the surface flux response to soil mois-
ture will require a detailed analysis of the terrestrial segment at subdaily scales in impacted regions. The
results here pave the way for such an analysis by showing the bulk effect of superparameterization on the
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terrestrial coupling strength globally, and highlighting some interesting regional, seasonal, and vertical
effects worth further study.

3.2. Atmospheric Segment
In this section, we turn our attention to the atmospheric segment of the soil moisture-precipitation feed-
back, focusing on the effects of surface state conditions on the probability and amount of rainfall using the
TFS and AFS framework (see section 2.1.2).
3.2.1. Global Distribution of TFS and AFS
Figure 6 shows the global distributions of TFS in both models for JJA and DJF seasons, which represents the
sensitivity of afternoon rainfall triggering probability to morning land surface evaporative fraction. The over-
all magnitude of TFS is weakened in SPCAM, especially in each continental interior during summer.
Focusing on the low and midlatitudes in JJA (Figures 6a and 6b), superparameterization mutes the strong
positive coupling signals in the Sahel and Middle East that occur in CAM, while displays coupling signals
with negative sign in some areas of North Africa. Superparameterization reduces and expands a localized
area with strong positive TFS in Central Asia during JJA, shifting it to the southeast of China.

In North America, SPCAM strikingly reduces summer TFS hot spots in the continental interior and instead
displays a strong TFS signal regionally along the east coast. This is reassuringly consistent with the North
American Regional Reanalysis (NARR) results of Findell et al. [2011], indicating superparameterization
removes an unrealistic coupling between morning EF and afternoon rainfall that occurs in CAM in the Cen-
tral U.S. Whether or not the shifts in TFS in other parts of the world are an improvement is unknown, as to
our knowledge observational analysis within a TFS framework has only been performed over North America
where high-resolution precipitation assimilating regional reanalysis data are readily available. But we do
observe that superparameterization also shows relatively stronger TFS in the north end of Amazon forest. In
DJF (Figures 6c and 6d), SPCAM mutes the coupling signals over Central Africa and Australia and reduces
the coupling signals in South Africa and South America.

We have limited attention to mid-to-high-latitude features since low rainfall probability and high variability
of EF contributes to the strong TFS at high latitudes in both models and since the relatively stronger

Figure 6. Triggering feedback strength TFS (units of probability of afternoon rain (1200–1800 LT)) in JJA and DJF.
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coupling signals over Alaska and the northwest of Canada in SPCAM are possible artifacts in these regions
during DJF (discussed later).

It is natural to wonder if model differences in the mean seasonal cycle of rainfall exert a first-order control
on model differences in TFS in regions of extreme seasonality. Consistent with this view, contrasting Figures
4 and 6, model differences in seasonal mean precipitation do seem to collocate with differences in TFS (i.e.,
collocating of less/more rainfall and weak/strong TFS signal) in the Middle East during JJA and in South
America and South Africa during DJF (where TFS signals colocate with distinct transitional zones in each
model). But inconsistent with this view, there is little coherence between mean rainfall responses and the
TFS response in India, Central Africa, and North America during JJA. Thus TFS must be controlled by more
than regional model differences in mean seasonal rainfall.

Figure 7 displays the global distributions of AFS in both models for JJA and DJF, representing the sensitivity
of the amount of afternoon rainfall to morning evaporative fraction. There are no clear geographic signa-
tures of detectable AFS in either model, indicating that the morning land surface state is not a strong con-
trol on afternoon rainfall intensity. This is consistent with the NARR and model results over North America in
Findell et al. [2011] and Berg et al. [2013]. The only effects of superparameterization are that this coupling
signal is more noisy in SPCAM overall and if anything slightly stronger than in CAM. This is consistent with
previous studies that the rainfall amount is usually controlled by factors other than land surface conditions.
For instance, Zhang and Klein [2010] found that boundary layer inhomogeneity and atmospheric instability
in the 2–4 km layer are stronger controls than land surface conditions on the total rain amount and maxi-
mum rain rate.

To ease the comparison of TFS and AFS with each other, we normalize them following the strategy of Findell
et al. [2011]:

normTFS5
EF

CðrÞ
@CðrÞ
@EF

5
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rEF
� TFS; (4)

Figure 7. Amplification feedback strength AFS (units of millimeters of afternoon rain (1200–1800 LT)) in JJA and DJF.
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In this way, normTFS and normAFS become unitless and can be fairly compared to each other in magni-
tude. As seen in Figure 8, the overall magnitude of normAFS is much smaller than normTFS in each model,
as is observed. It is reassuring that both SPCAM and CAM agree with regional reanalysis that while the trig-
gering of afternoon rainfall can sometimes be sensitive to morning surface fluxes, the rainfall intensity tends
to be externally controlled.

We note that the sample days considered in TFS and AFS are different between the two models due to the
different rainfall diurnal cycles and the screening criteria. For completeness, Figure 9 displays the percent-
age of days used for calculating TFS and AFS in 15 JJAs and DJFs. When calculating TFS during JJA, a great
number of days (up to 60%) are screened out (due to prevalent morning rainfall) over the tropical and sub-
tropical regions in CAM, especially over India, South Asia, the Midwestern, and the Northeastern U.S.,

Figure 8. The normalized TFS and AFS in JJA and DJF.
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Mexico, and the north end of the Amazon (Figure 9b). Similarly during DJF, over 50% of the sample days
are excluded from the analysis over Central Africa, Northern Australia, and most areas of the Amazon in
CAM (Figure 9d). The days screened out in the northern hemisphere are due to abnormal EF values in this
season. SPCAM generally maintains most of the sample days (70% or higher) over most of the regions dur-
ing both JJA and DJF (Figures 9a and 9c). The unscreened days considered in AFS (without morning rainfall
but with afternoon rainfall) generally encompass less than 20% of all days in JJA for both models, and more
days are retained for AFS calculation in CAM over tropics, especially the Sahel region (Figures 9e and 9f). In
DJF, SPCAM includes more days than CAM for the AFS calculation over Central Africa and the Amazon but
only an extremely low percentage of days (less than 5%) in Australia (Figures 9g and 9h).

These differences highlight how fundamental the discrepancy of simulated rainfall between the two models
is. For example, focusing on North America in JJA, morning rainfall occurs more often in CAM than in
SPCAM (Figures 9a and 9b). Considering Figures 9a, 9b, 9e, and 9f, it is clear that the rainfall simulated by

Figure 9. The sample day percentages in TFS and AFS calculations in JJA and DJF.
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SPCAM mostly occurs during the night in the Central U.S., while rainfall in CAM mostly happens during day-
time. These effects of superparameterization on rainfall have been noted before [Khairoutdinov et al., 2005;
DeMott et al., 2007; Pritchard and Somerville, 2009a, 2009b; Pritchard et al., 2011; Dirmeyer et al., 2012] and
are improvements given the observed nocturnal peak of rainfall in the U.S. Midwest [Dai et al., 1999] and
the persistent drizzle problem in conventional GCMs [Dai, 2006]. It is reassuring that similar improvements
of diurnal rainfall associated with superparameterization occur even in the micro-CRM configuration that
we have employed for computational efficiency, which emphasizes that mesoscale organization on the 32–
128 km scale is not a critical factor for the diurnal cycle, as has also been noted for SPCAM’s Madden-Julian
Oscillation [Pritchard et al., 2014]. Over the Amazon during DJF, SPCAM tends to produce less frequent
morning rainfall (more sample days in Figure 9c than Figure 9d) and more frequent afternoon rainfall (more
sample days in Figure 9g than Figure 9h) than CAM. This is consistent with the known issue of too-early
onset of precipitation in conventional GCMs and further affirms the ability of explicated embedded

Figure 10. The standard deviation of evaporative fraction EF (rEF) and the sensitivity of afternoon rainfall to morning EF (@CðrÞ=@EF ) in JJA
and DJF.
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convection to improve the diurnal cycle of rainfall over this region [Dai, 2006; Bechtold et al., 2014; Tanaka
et al., 2014].

Are the effects of superparameterization on modifying TFS due to modified EF variability (led by soil mois-
ture variability and land-atmosphere coupling dynamics in the terrestrial segment), or through more funda-
mental land-atmosphere coupling dynamics in the atmospheric segment? To investigate this issue, Figure
10 decomposes the coupling index into its two components—morning EF standard deviation (rEF ) and the
sensitivity term @CðrÞ=@EF , which depicts the response of afternoon rainfall probability to morning EF. The
distributions of TFS generally mirror the distributions of @CðrÞ=@EF in JJA and DJF in both models (see Fig-
ure 6 and Figures 10c, 10d, 10g, and 10h). However, the relative contributions of rEF and @CðrÞ=@EF to TFS
are different over different regions. For example, in JJA, @CðrÞ=@EF dominates the strong signal over Central
China in both models, while rEF plays a major role determining the stronger TFS in CAM and muting TFS in
SPCAM in Middle East (Figures 10a–10d). In DJF, the relatively strong TFS action center in South Africa arises
by offsetting rEF and @CðrÞ=@EF in both models (higher EF variability and lower sensitivity in SPCAM) while
the combination of higher rEF and @CðrÞ=@EF leads to the stronger TFS over Australia in CAM than SPCAM
(Figures 10e–10h).

Overall, @CðrÞ=@EF plays a more central role in TFS in CAM than SPCAM. As we discussed earlier based on
Figure 9, SPCAM improves the simulation of the diurnal cycle of precipitation over many regions. If the rain-
fall triggering is poorly simulated with parameterized convection schemes, it is likely that the sensitivity
term introduces some bias and it could be significant due to the dominant role of @CðrÞ=@EF in TFS in CAM.
On the other hand, the regions with dominant EF variability are likely the places where soil moisture vari-
ability and the terrestrial coupling are more important in terms of the land feedback.

The above analysis has focused on the convective season, in which the TFS and AFS framework is intended
to be interpreted. But since Figure 6 also displays wintertime results it is also worth noting what gives rise
to seemingly important TFS signals during this season. In DJF, the strong TFS signals in Alaska and the
northwest of Canada (see Figure 6c) stem from extreme wintertime values of @CðrÞ=@EF (Figure 10g), a
result of both extremely low probability of rainfall and relatively low EF in these regions during this season
(not shown). @CðrÞ=@EF is calculated by binning EF and summing the slopes of the rainfall probability ver-
sus EF in adjacent bins within each grid. Low wintertime EF values (in the denominator) can make the slope
unreasonably sharp and thus lead to seemingly strong TFS. Meanwhile, the low rainfall probability (around
or less than 5% in most regions of the northern hemisphere in DJF) makes the sensitivity term (and TFS)
less meaningful. Again, we suggest focusing only on regions experiencing convective seasons when using
the framework of TFS and AFS.
3.2.2. Sensitivities of Rainfall and PBL Properties to EF in North America
As mentioned in section 3.2.1, superparameterization changes the spatial pattern of strong TFS in North
America in a favorable fashion compared to precipitation-assimilating regional reanalysis (NARR) in Findell
et al. [2011]. That is, SPCAM displays strong TFS along the east coast and Mexico, which is in agreement
with the results of NARR [Findell et al., 2011, Figure 1a]. In contrast, CAM has unobserved TFS hotspots in
central and northwestern U.S. instead of the east coast (Figures 11a and 11b).

Are the TFS issues in CAM due to its convective triggering formulation or complex feedbacks from parame-
terized convection that distort underlying PBL dynamics? To better understand how superparameterization
results in improved land-atmosphere coupling in the United States, we analyze the response of PBL proper-
ties to EF using metrics analogous to TFS and AFS. We name these new metrics ‘‘PBL Feedback Strength’’
(PFS/), where / represents an arbitrary PBL property of interest. A high value of PFS/ indicates that early
morning EF has a strong control on afternoon mean state PBL properties. Specifically, we select the mean
PBL height and lifting condensation level (LCL) as proxies of important PBL properties in the afternoon
(noon–6 P.M.), and calculate their variations with morning EF (PFSPBLH and PFSLCL, respectively) in a way
that is directly analogous to how TFS is calculated (Figures 11c and 11f).

The results show that the spatial patterns of PFSPBLH and PFSLCL generally match the TFS signal in SPCAM,
but not in CAM, in which PFSPBLH and PFSLCL are remarkably similar to those in SPCAM. The interesting
implication is that TFS model differences occur despite model similarities of PBL properties’ variation with
EF. That is, CAM’s rainfall parameterizations disconnect the correct response of rainfall triggering to surface
turbulent fluxes despite realistically representing the response of PBL properties to surface fluxes, perhaps
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implying a more solvable parameterization problem than if complex PBL feedbacks had been found in this
analysis. As an aside, it cautions against using LCL as an indicator of rainfall when analyzing climate model
output of CAM; similar issues may apply to other conventional GCMs and reanalysis products.

A functional relationship of normTFS with EF (binned in 10 bins from 0 to 1) over continental North America
is presented in Figure 12. The mean normTFS of 200 bootstrap samples (represented by the thick black line)
has an overall positive slope with EF in both models, indicating again that wetter surfaces promote a higher
probability of afternoon rainfall triggering as observed in NARR [Findell et al., 2011]. The sensitivity of after-
noon triggering to EF is stronger beyond the EF threshold of about 0.6 in both models, which is also consis-
tent with the results of NARR [Berg et al., 2013]. One seeming symptom of unrealistic US land-surface
coupling in the CAM is that there is a drop of normTFS curve (around EF of 0.5–0.6) in CAM that is not
observed in NARR and SPCAM. Otherwise, differences are subtle between the two models from this per-
spective. TFS remains positive across the entire range of EF, but the larger spread (represented by the shad-
ing area of the 5th and 95th percentile interval) indicates that the negative signal is possible over the
moderate EF range (0.4–0.6) in both models. Relatively, CAM shows smaller variability of normTFS in lower
EF bins but larger variability in higher EF bins. In addition, the functional relationships of normAFS and EF

Figure 11. TFS, PFSPBLH (millibar) and PFSLCL (millibar) in North America in JJA.
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(not shown) display slight positive normAFS values in higher EF bins in both models, but SPCAM does show
larger spread of normAFS across all EF bins than CAM that is consistent with the enhanced noisy AFS
spatially.

By decomposing TFS (Figures 13a–13d), we see that @CðrÞ=@EF plays a dominant role over EF standard
deviation in TFS and its distribution replicates that of TFS. The mean rainfall difference of the two models
(see Figures 4c and 4d) translates directly to mean EF (Figures 13e and 13f). That is, higher mean rainfall is
balanced by higher mean EF in CAM overall. Both models display the dry-to-wet transition from the west
coast to the east coast of North America. The mean rainfall model difference is not reflected in the mean
afternoon rainfall probability (Figures 13g and 13h). Because of the functional relationship of TFS and mean
EF (Figure 12), higher EF tends to produce strong TFS. Along the east coast, the rainfall probability is too
low for the sensitivity term being significant although mean EF is higher in CAM, while moderate mean EF
(potentially increased TFS) along with moderate rainfall probability leads to stronger TFS in SPCAM.
Similarly, the extreme low rainfall probability over Central U.S. suppresses the potentially strong signal (due
to high EF) in SPCAM.

The results in this section highlight the morning EF impacts on afternoon rainfall. There is a positive feed-
back in terms of EF and rainfall triggering, while no significant relationship in terms of EF and the rainfall
amount based on the coupling indices of TFS and AFS. The physical mechanism of positive feedback is
understandable and consistent with previous studies. That is, high evaporation is associated with shallow
PBL and high moist static energy (MSE). It is more efficient to lower the LCL than the PBL top, and leads to
cumulus mass flux generation [Betts, 1973; Gentine et al., 2013a,b]. Superparameterization alters the rainfall
frequency and intensity [Kooperman et al., 2016], and impacts the coupling strength defined by TFS and
AFS by altering quantifications of afternoon rainfall and morning EF (through changing the soil moisture
state and the coupling strength in the terrestrial segment). Comparing this against the responses of PBL
properties to EF (i.e., PFS), it proves that explicit resolved convection tightens the connection between PBL
thermodynamics and rainfall-triggering responses to surface fluxes. A disconnect between TFS and PFS in
CAM may be an expected consequence of using deep convection parameterizations like Zhang-McFarlane
[Zhang and McFarlane, 1995] that are overly pinned on the surface thermodynamic state in their closure
assumptions.

Koster et al. [2004] identified a striking land-atmosphere coupling hotspot over the central Great Plains
through GLACE experiments in a suite of conventionally parameterized GCMs, which is not consistent with
the TFS results of Findell et al. [2011] and Berg et al. [2013]. It was attributed to the lack of accounting for the

Figure 12. The function relationships of the normalized TFS and EF in each of the 200 bootstrap samples over North America in JJA. Shaded areas indicate the 5th and 95th percentiles
in these bootstrap samples; dashed lines are the mean 6 1 standard deviation; the thick blue line indicates the mean number of observations per bin (10 bins with an increment of 0.1)
over the bootstrap samples. Shading is truncated where the mean number of observations per bin is less than 5.
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coupling strength of soil moisture and surface fluxes and the mismatch in the temporal scale of rainfall by
Findell et al. [2011] and Berg et al. [2013]. Our results here indicate that the convective schemes used in
GCMs might also be part of the reason. Berg et al. [2013] also attributed the difference of TFS results and
those in other studies showing negative feedbacks [e.g., Carleton et al., 2008; Wang et al., 2009; Taylor et al.,
2011, 2012] to the coupling indices framework and the spatial scale difference. The positive feedback as
shown through TFS in our coarse spatial resolution simulations (�2.88 here) is not necessarily contradictory
with those studies that emphasize scales of coupling in the 10–100 km range accounting for surface hetero-
geneity, which are not included in our framework.

4. Conclusions and Future Direction

We have quantified the coupling strength in the two segments of soil moisture-precipitation feedback loop
in a conventional version of CAM and its superparameterized twin. Overall, the superparameterized CAM

Figure 13. Standard deviation of morning (0900–1200 LT) EF (rEF), sensitivity of afternoon (1200–1800 LT) rainfall to morning EF
(@C rð Þ=@EF ), mean morning EF (EF ), and mean afternoon rainfall probability (CðrÞ) in North America in JJA.
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shows improvements in the sign and magnitude of the coupling signals in both segments of the feedback
loop regionally.

In the terrestrial segment, SPCAM changes the coupling strength of soil moisture and surface fluxes geo-
graphically as defined by the terrestrial coupling index from Dirmeyer [2011]. It can be attributed to the dif-
ferences in the spatial distribution of soil moisture standard deviation and the surface flux response to soil
moisture in the two models. By incorporating CRMs, SPCAM explicitly resolves convection and improves the
precipitation simulation in many aspects, which alters soil moisture variability. To better understand the
effects of explicitly resolved convection on the surface flux response to soil moisture variability, more con-
strained experiments and land-atmosphere coupling studies at subdaily scales and at process levels (e.g.,
the mixing diagram approach in Santanello et al. [2009]) would be useful.

Overall, SPCAM show a few improvements in terms of the coupling strength of soil moisture and evapo-
transpiration relative to CAM—weakening the coupling signals in the central U.S., muting the coupling sig-
nal in Middle East, reversing the coupling signal from negative to positive in India in the boreal summer
season, and displaying more realistic coupling signals over the Amazon and Central Africa rainforest in wet
season (boreal winter season). The effects on the coupling signal in dense vegetated areas are related with
the canopy interception and drizzle problems in conventional GCMs and the improvements of SPCAM in
the rainfall frequency and intensity.

In the atmospheric segment, the effects of morning surface fluxes on afternoon rainfall are quantified by
the rainfall triggering feedback strength and amplification feedback strength from Findell et al. [2011].
SPCAM reduces TFS and slightly enhances the variability and amplitude of AFS globally. The sensitivity term
(i.e., the response of rainfall triggering to surface turbulent fluxes) in TFS primarily controls the effects of
superparameterization on the pattern of TFS in most places. An additional implication from analysis of sam-
pling days in TFS and AFS is that even when using a throttled miniature cloud-resolving model, SPCAM
improves the diurnal cycle of precipitation (mainly reducing the morning rainfall events) over important
regions (e.g., the Midwest and the Amazon).

Focusing on North America, SPCAM captures the geographic structure of coastally enhanced TFS that is
seen in precipitation-assimilating reanalysis, while CAM produces distorted land-atmosphere coupling sig-
nals. More importantly, by introducing a new analog to TFS that measures the ‘‘PBL feedback strength’’
(PFSPBLH and PFSLCL), we discovered that the model discrepancy of TFS occurs despite the similar effects of
surface flux partitioning on the lifting condensation level and PBL height. The places displaying strong
PFSPBLH and PFSLCL are consistent with those that display strong TFS in SPCAM but are not translated into
appropriate rainfall triggering in CAM. We suggest that including analysis across the set of TFS and the new
PFS diagnostics may be an especially useful strategy for uncovering regions in which convection parameter-
ization fails to link to realistic rainfall triggering.

We acknowledge that the land-atmosphere coupling processes also happen at even finer temporal scales
than we have analyzed. As the results show, the sensitivity terms (surface fluxes response to soil moisture or
rainfall response to surface fluxes) in the coupling indices play dominant roles in many cases. To better
understand these effects of superparameterization at a process level, we report in a separate manuscript
the results of applying a local land-atmosphere coupling (LoCo) framework [Santanello et al., 2009, 2011a;
Santanello 2011] in observationally constrained SPCAM and CAM experiments.
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