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ABSTRACT OF THE THESIS 
 

Pan-brain Cell-type Profiling Using Fluorescence in situ Hybridization: 
How to Make a Periodic Table of Brain Cell Types? 

 

 
by 

 

Siavash Moghadami 

 

Master of Science in Chemistry 

University of California San Diego, 2022 

Professor Don W. Cleveland, Chair 
Professor Wei Wang, Co-Chair 

 

 

Among all the organs, the brain has the most heterogeneous cellular composition, which 

mostly remained unclear. With recent advances in omics, the required technologies for 

unlocking the mysteries of brain heterogeneity are emerging. After reviewing different 

techniques, we strived to make a periodic table of brain cell types using in situ hybridization 

techniques using mice as model organisms.
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CHAPTER 1: INTRODUCTION 
 

Biological science has long been interested in converting one cell type to another. Fig. 1.1 

demonstrates such a reaction. 

 

Fig. 1.1: Hypothetical reaction of converting a cell type to another. 

Several pieces of information are needed to devise a successful method to perform this reaction 

scientifically. 1) What is the cell? 2) What is the cell type, and how to define it? 3) How to convert 

one cell type to another? I strive to answer these questions in the following sections. 

 

1.1.What is the cell? 

The question of “what is life?” has puzzled scientists throughout history. Before the invention 

of the light microscope, scientists didn’t have a clear view of life. Life was considered as something 

descended from God. However, the notion of life has changed dramatically through reproducible 

experimentations after the invention of light microscopy. 

In 1665, Robert Hooke published his landmark work titled “Micrographia” (Fig. 1.2), which 

was composed of his drawings, observations, and descriptions of the various forms of organisms 

under the bare light microscope [Hooke 1665]. Like many other examples in the history of science 

that developing new technologies and techniques resulted in discoveries, the invention of the light 
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microscope resulted in the discovery of the “cell” concept by Hooke for the first time while 

observing cork under the microscope. He coined the term “cell” due to the similarity of the pin 

box-shaped structures to rooms or cells of abbeys.  

Hook’s observations led to the classical Cell Theory proposed by Theodor Schwann and 

Mattias Schleiden in 1838 and 1839. According to the Cell Theory formulated in the mid-

nineteenth century: 1) all living organisms are composed of at least one cell, 2) cells are basic units 

of life as well as structure and function in all known organisms, and 3) all cells are arising from 

pre-existing cells that have divided (proposed by Rudolf Virchow in 1858) 

 
 
 

Figure 1.2: The Micrographia. 

With the advancement of various technologies, more detailed and controlled observations 

of the cells coming from all domains of life were made, which resulted in the formation of modern 

cell theory, which has three additional statements: 1) all cells contain hereditary genetic 

information encoded in the form of 2’-DeoxyriboNucleic Acids (DNA) that passed to offspring 

cells during cell division, 2) cells of the organisms from similar species are fundamentally similar 
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from both chemically and structurally perspectives, and 3) energy flows through the cells. Fig. 1.3 

shows a generic animal cell and the associated organelles.  

 

Figure 1.3: A generic animal cell diagram. 
 

1.2.What is the Cell Type and How to Define Cell Type? 

1.2.1. What is the Cell Type? 

Although all cells have many similarities, cells come in different phenotypic features such 

as morphologies, sizes, and function. This cellular diversity contributes to the variety of known 

life within and between species. The formation of complex organisms with various cell types from 

a single-cell zygote involves the division, differentiation, and even apoptosis of cells or groups of 

cells throughout the organism's development. However, defining a cell type is not accessible due 

to various phenotypic characteristics at different levels. In humans only, it is estimated that there 

are more than 200 cell types with different morphologies specialized for specific functions. In a 

recent study using single-cell mRNA sequencing, more than 102 cell types were identified after 

sequencing 599,926 cells, as depicted in Fig. 1. 4 [Han 2020]. Not all organs have the same cellular 

heterogeneity. Among all the organs and all the organisms with the Central Nervous System 

(CNS), the brain has the most diverse cell types, as demonstrated in Fig. 1. 5 [Zeisel 2018]. 
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Figure 1.4: Diversity of human cell types using single-cell mRNA sequencing [Han 2020]. 
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Figure 1.5: Mouse nervous system cell types [Zeisel 2018]. 

As a result, defining the cell type is crucial for better understanding the function of the 

cell and, subsequently, tissue within an organism.  

Cells with similar structures and functions could be grouped to group the cells within an 

organism. Considering the presence of billions to trillions of cells within many organisms (multi-

cellular life), cell type categorization enables the study of the cells more systematically and 

accurately by reducing the complexity of the system of interest. However, the main question is 

which features, properties or characteristics of the cells must be used to group and classify the 

cells. Unfortunately, a consensus on the exact cell type definition does not exist yet. Lack of cell 

type definition consensus not only makes the results of much research not accurately reproducible 

but also results in uncertainty in the investigation of all cell types in an organism. Despite the 

recent advances in transcriptomic techniques such as single cell/nucleus RNA sequencing, spatial 

transcriptomics, and in situ hybridization methods, it remains an unanswered question whether the 

grouped cells (clusters) represent biologically meaningful cell types or not. Moreover, although 
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cell type characterization may seem a relatively straightforward task, at the cellular level, 

individual cells exhibit heterogenous properties which not necessarily have high concordance with 

other similar cells within the same tissue making the cell type assignment a challenging task. 

 

1.2.2. Cell Type Characterization Methods 

Cells possess different phenotypic and functional features such as morphology, physiology, 

molecular, and location within and between tissues in multicellular organisms. Many studies tried 

categorizing cellular heterogeneity in the brain by addressing different cellular modalities [Fishell 

2013; Mukamel 2019; Nelson 2006; Seung 2014; Zeng 2017]. However, no concrete consensus 

exists on how to classify the cells. As a result, unbiased quantitative methods with comprehensive 

coverage that yield reproducible results are needed to study all brain regions and then 

computationally classify the cells into different groups. Pursuing that completeness, only then can 

one say that all types of cells in the brain have been identified.  

Various methods characterize cell types, as shown in Fig. 1.6 [Zeng 2022]. At the 

molecular level, RNA transcripts could be captured and sequenced to yield a cell transcriptome at 

a specific snapshot. Moreover, chromatin modifications such as accessible euchromatin, the 3D 

structure of the chromatin, or methylation of the chromatin could be profiled genome-wide 

(epigenome) to understand which parts of the chromatin are likely to be transcribed or related to 

each other. Also, although not popular so far, proteins of the single cells could be captured and 

identified using mass spectroscopy to have a proteome-level vision of the cell at that snapshot 

(Mund 2022; Cho 2022). Single-cell proteomics still needs a lot of technological advancements 

since there is not always a correlation between transcriptome and proteome. Moreover, if 
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developed with enough efficiency, spatial single-cell proteomics could dramatically give a better 

view of the distribution of proteins throughout the cells and tissues. 

Considering a cell as a drawing, all these layers of information (genome, transcriptome, 

epigenome, metabolome, and proteome) are different layers of the final cell, portraying necessary 

to have a complete understanding of the whole cell. 

Combining the molecular information of the single cells with their spatial information 

would result in a better understanding of individual cells in the context of the tissue and the 

connection between cells or connectomes. Usually, spatial transcriptomic techniques are based on 

in situ hybridization and imaging, in situ capture, or situ sequencings [Close 2021; Larsson 2021; 

Moses 2022; Zhuang 2021; Moffitt 2018]. Currently, single-cell or single-nucleus RNA 

sequencing is the most widely used technique to define the cell type due to its unbiased nature, 

comprehensiveness, and scalability to thousands of cells. There have been many attempts to make 

a cell atlas for different organisms [Lindeboom 2021; Regev 2017] or brain-specific [BRAIN 

Initiative Cell Census Network (BICCN) 2021; Ngai 2022]. 

Although transcriptome profiling methods have been so popular lately, cellular 

morphology and connectivity are critical defining features of brain cells. Many techniques based 

on Light Microscopy (LM) (high resolution or super-resolution microscopy) have been developed 

to profile the morphology of the cells in the brain [Gao 2022]. Besides LM, Electron Microscopy 

(EM) techniques have been developed to investigate the connectome and projection of the brain 

[Kulse 2021]. More technology development is needed in the connectivity of neurons at the level 

of cellular junctions since synapses are basic units of information processing in the brain. Without 

knowing the nature of the synapses, whether they are excitatory or inhibitory, and how they 

achieve their specificity, understanding or predicting the behavior of the whole neural circuit 
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would not be possible [Südhof 2021]. Recent attempts have been made to address this issue using 

super-resolution microscopy, but more technological advancement is needed to include synapses 

in the brain's connectome [Trotter 2019]. 

 

Fig. 1.6: Cell type characterization methods [Zeng 2022]. 
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Although single modality measurements of single cells have yielded valuable insights, 

integrating multiple modality measurements of the same cell is critical to having a better and more 

coherent vision of the cell at different levels. Currently, the most common integration method is 

combining the cell's transcriptome with one or more modalities, as demonstrated in Fig. 1.6. There 

are many approaches for integrating different modalities. One possible approach is performing 

multimodal measurements of the same cell. Many methods have been developed considering this 

approach, such as single-cell muti-modal omics [Chenxu 2020], Patch-seq, which combines 

transcriptome and electrophysiology of the same cell [Berg 2021; Scala 2021; Le Floch 2022], and 

chemical connectivity tracing, such as Retro-seq, Epi-retro-seq, and Retro-MERFISH [Kim 2020; 

Tasic 2018; Zhang 2021], and calcium-based in vivo imaging combined with fluorescent in situ 

hybridization (FISH) [Bugeon 2022; Condylis 2022; Lovett-Barron 2020; Xu 2020].  

Besides the mentioned methods, there are computationally based approaches to integrate 

different modalities, such as transferring labels across individually performed measurements. In 

this type of integration, critical features of other modalities are utilized for integration, such as 

marker genes of cellular transcriptome and accessible chromatin regions or chromatin 

modifications [Yao 2021]. Moreover, using all the information gathered in previous techniques, 

various cell-type-specific genetic tools could be developed to collect further information regarding 

a cell type [Daigle 2018; Matho 2021]. 

As with organisms, cell type diversification is also subjected to evolution. A new set of 

unique regulatory mechanisms and signatures (cell type-specific core regulatory complex of 

transcription factors) is required to establish a new cell type. This new set of regulatory instructions 

dictates the transcriptome of the cells and defines the cellular type. As a result, the cell type identity 

is written in its genome because diverse cell types are products of evolution. Consequently, the 
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gene expression pattern of a cell (transcriptomic and epigenomic) is an acceptable feature for cell 

type classification. 

 

1.3.How to Convert a Cell Type to Another? 

As shown in Fig. 1.7, until the late 19th century, it was thought that as cells differentiate, they 

only keep the genetic information necessary to preserve their unique identity and functions. 

Therefore, differentiation was widely believed to be an irreversible process [Morris 2019]. 

 

Fig. 1.7: Chronological advancement of the cellular differentiation process [Morris 2019]. 

In a study published in 1955 [Briggs 2019], the researchers transferred the nuclei of a 

blastula or differentiated cell to an enucleated egg. Although they could make a viable frog from 

blastula nuclei, no offspring were observed from differentiated nuclei. As a result, they concluded 

that the nuclei of cells in late-stage gastrula have an intrinsic restriction in differentiation potential. 

This viewpoint has been altered by further experiments [Gurdon 1958]. Briefly, scientists used 

another frog species in these experiments to transfer the nuclei of a differentiated cell into an 
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enucleated egg and produce a normal viable animal that could swim. This experiment 

demonstrated that cells retain their genomes intact, and no part of the genetic materials has been 

lost throughout the differentiation process. 

Consequently, these results seriously challenged widely held dogma and opened a new 

perspective on the cell reprogramming field. Eventually, researchers discovered four well-known 

transcription factors to reprogram a mouse fibroblast cell into a pluripotent stem cell capable of 

differentiating into other cells. The demonstrated reprogramming process demonstrated that not 

only is the cell differentiation process reversible, but so is cellular identity [Takahashi 2006]. 

Moreover, these experiments could also conclude that the cell transcriptome or gene expression 

profile determines cellular identity supporting previous discussions.  

Cellular reprogramming is very appealing in many cases, such as neurological disorders 

with the hallmark of neuronal death. The process would be highly beneficial therapeutically if a 

method could be developed to reprogram non-neuronal cells in vivo to replace lost neurons. As 

shown in Fig. 1.8, Different approaches to reprogramming a cell type to another are possible, 

including direct reprogramming or transdifferentiating and in-direct reprogramming. Each of these 

approaches has advantages and disadvantages. In direct reprogramming, cells would not go 

through a pluripotency/multipotency state, resulting in a brief therapy effect timewise. 

Moreover, transdifferentiating cells would preserve the epigenomic features of the cells 

and decrease the chance of tumorigenesis due to a lack of pluripotency state. They would be 

suitable for in vivo cellular regeneration, specifically in the brain. In contrast to direct 

reprogramming, in in-direct cellular reprogramming, cells would go through the intermediate 

pluripotent/multipotent stem cells, resulting in a slow therapy effect. 
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Fig. 1.8: Possible cellular reprogramming approaches. 

Moreover, due to passing the pluripotency state, the epigenetic features of the cells would 

be lost, and the risk of tumorigenesis would be high. However, many target cell types could be 

generated. The advantage of in-direct reprogramming could be the possibility of manipulating and 

engineering the cells in vitro. 

Regardless of the approach, to have a successful transformation, the conversion process 

should be tightly regulated by defining the cell type of the initial cells that will be converted and 

the target terminal cell (in this thesis, neurons) type. However, as mentioned before, no consensus 

exists on all brain cell types. As a result, in this thesis, we strived to generate a periodic table of 

the brain's cell types using the fluorescence in situ hybridization technique (Fig. 1.9) to lay a solid 

foundation for a successful neural cell reprogramming process which will be discussed in next 

chapter in detail. 
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Fig. 1.9: Periodic table of the human brain [adopted from Allen Institute for Brain Science, 
Image credit to Benedicte Rossi]. 
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CHAPTER 2: EXPERIMENTAL DESIGNS AND METHODS 

There are several possible approaches for defining the cell type in a brain-wide fashion and 

completing the periodic table of the brain cell types. One possible method is using conventional 

single cell/nucleus RNA sequencing to define the transcriptome of the cells in different brain 

regions and classify them based on their gene expression pattern. Although, as mentioned before, 

transcriptome could be a suitable candidate for cell type classification, the spatial organization of 

the cells would be lost due to the process of preparing the samples for the sequencing process. 

Spatial organization of the cells across the brain is a crucial metric in classifying the cell type-

specific in a brain-wide fashion. Another possible approach is using multi-modalities single 

cell/nucleus sequencing approaches to investigate both the transcriptome and epigenome of the 

cells and then classify the cells based on their transcriptome and epigenome. In this approach, 

although the efficiency of detecting transcripts is compromised due to adding another modality, 

having epigenomic information of the same cell could be very beneficial. However, again, spatial 

information of the cells would be lost due to the sequencing process. As a result, we decided to 

use Multiplexed Error Robust Fluorescence in situ Hybridization (MERFISH) to capture both the 

transcriptome and spatial information of the cells across the mice brain to make an atlas of the cell 

types in a brain-wide fashion. 

 

2.1.From FISH to MERFISH 

As shown in Fig. 2.1, Fluorescence in situ Hybridization (FISH) is a technique that individual 

molecules can be imaged with sub-cellular or single-molecule resolution and visualized while 

preserving spatial information. In conventional FISH for RNA imaging which is also known as 

single-molecule FISH (smFISH), complementary strands of the target RNAs are synthetically 
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synthesized, and the tissue is fixed on a slide. Then, the tissue is permeabilized, and synthesized 

RNA probes conjugated to fluorophores with different colors are introduced to the system. The 

designed probes would then be hybridized and annealed to the target RNA molecules via the 

canonical Watson-Crick base pairing process. Then using imaging techniques, individual 

molecules could be visualized. 

 

Fig. 2.1: Fluorescence in situ Hybridization (FISH) 

The drawback of using FISH for determining the transcriptome of the cells is the limited 

number of fluorophores that could be conjugated to the probes (usually a maximum of four colors). 

Consequently, if many genes are required to be imaged, which is the case in cell type profiling, 

sequentially reflecting the probes is not a suitable approach. A multiplexed system is needed to 
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decrease the number of rounds of hybridization, imaging time, and data storage size. Fortunately, 

a Multiplexed FISH approach has been demonstrated recently [Chen 2015] (Fig. 2.2). 

 

Fig. 2.2: MERFISH technology [Chen 2015]. 
 

In MERFISH, each RNA transcript is labeled with a certain number of complementary 

probes (target sequence) in different locations of the target RNA. By annealing these target 
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sequences to the RNA transcript, the RNA molecule is transformed into a specific combination of 

the readout sequences (coding strategy). Each probe has a central RNA-targeting region flanked 

by two distinct readout sequences chosen from a set of N particular sequences. Each of these N 

unique sequences is associated with a specific hybridization round. The coding strategy for each 

type of RNA is composed of a different combination of four N readout sequences (on bits) 

associated with the specific four rounds of hybridization that the target RNA transcript should have 

a read of 1. 

Consequently, to probe the readout sequences, N rounds of hybridization with fluorescently 

conjugated readout probes are used (named Hyb1 to HybN). To minimize the error, the 

photobleaching process is applied after each round of hybridization to photobleach and inactivate 

the bound probes. There are several considerations in the design process of a MERFISH 

experiment. First, the target RNA transcripts must be known since the probes must be synthesized 

to target them. Consequently, the measured transcriptome might be a biased and unbiased survey 

of gene expression that is not feasible. The encoding strategy should be designed carefully to 

prevent optical crowding and reach peak efficiency. 

 

 

2.2.Determining Target RNAs for Brain-wide Cell Type Profiling 

As mentioned in the previous section, the first step of designing a MERFISH experiment is 

choosing the target RNA transcripts that will be imaged. Several pan-brain or semi-pan-brain 

single-cell/nucleus RNA-seq datasets (Table 2.1) have been obtained to select the target genes. We 

tried using datasets not enriched for a specific cell type, although not all the datasets in Table 2.1 

are fully pan-brain. Unfortunately, there are not that many pan-brain high-quality datasets 
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available. However, many recent attempts have been made to address this challenge using various 

techniques. 

Table 2.1: Pan-brain single-cell/nucleus RNA-seq datasets. 

Dataset 
Number 

Type 
(Cell/Nucleus) 

 Count 
Year Tissue 

Technology/Time Points Reference 

1  
Nucleus 
469.2k 2019 Brain-wide 

10XV2 (P60) Not Published 

2 Cell 
6.5M 2021 Primary Motor Cortex 

10XV3 Yao 2021 

3 
4 
5 

Cell 
1.3M 
2.5M 

157.4k 

2021 

Mostly Neurons 
10XV3 
10Xv2 

SMART-seq V4 Tasic 2018 
Yao 2021 

6 
7 

Nucleus 
90.9k (V2) 
90.4k (V3) 

2021 
Mostly Neurons 

10XV2 
10XV3 

8 Cell 
98.0k  

2021 

Neocortex 
10XV2 (E12.5 to E18.5 

P1 and P4 
(Multi-ome) 

J Di Bella 2021 

9 Cell 
5.5k  

2018 Dentate Gyrus 
10XV1 (P12, P16, P24, P35) Hochgerner 2018 

10 Cell 
509.9k 2018 19 Brain Regions 

10XV1,10XV2 (P20-P30) Zeisel 2018 

11 Cell 
690k 2018 9 Brain Regions 

Drop-seq (P60-P70) Saunders 2018 

12 Cell 
1.3M 2020 Brain-wide  

10Xv2 (E18) 
10X Sample 

Dataset 

13 Cell 
1.1M 2021 Cortex and Hippocampus 

10Xv2, SSv4 Yao 2021 

14 Cell 
292.5k 2021 

Brain-wide 
10Xv1 (Gastrulation to Birth, Time 

Points) 
La Manno 2021 
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For example, we used dataset 10 [Zeisel 2018], which classified cell types across the adult 

mice nervous system (CNS and PNS) using single-cell RNA-seq on ~510k cells taken from 19 

different regions of the adult mice nervous system, as shown in Fig. 2.3. 

 

Fig. 2.3: 19 mice's nervous system regions profiled in [Zeisel 2018]. 

Next, as shown in Fig. 2.4, we first clustered the cells using the Leiden clustering method 

at various hierarchical levels. At each clustering level, we applied a machine learning algorithm 

called Necessary and Sufficient Forest v3.0 (NS-Forest v3) described in [Aevermann 2021], which 

uses random forests to find a small subset of the transcriptome that holds enough differential 

expression information to preserve the integrity of the cell clustering at each clustering level. Then, 

we refined the output genes using biological knowledge and added additional genes such as 

proliferation markers and housekeeping genes such as Malat1. The NS-Forest algorithm iterates 

over each cell type in the dataset. It constructs a Random Forest classifier to separate the target 

cell type from all other cell types present in the dataset at that level of clustering. Then, this 

algorithm identifies 15 genes with the highest Gini index for the random forest. From these 15 

genes, we selected six genes with the most binary expression, primarily expressed in only the target 
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cell type, to be evaluated in combination to maximize the Fbeta score, where beta was set to 0.5. 

The algorithm's output would be a group of cell type markers with high precision in classifying a 

given cell into its actual cell type, rather than a higher beta value which would sacrifice accuracy 

for a more extensive set of markers. Fig. 2.4 shows the Leiden clustering of the [Zeisel 2018] in the 

first clustering level. 

 

Fig. 2.4: Clustering of [Zeisel 2018] at clustering level 1. 

At this level of clustering, we tried to include target genes that could be used for high-level 

characterization of the cell types across the brain, such as neurons, glia, and vascular cells. Fig. 

2.5 demonstrates the next level of clustering, which is more comprehensive than level 1. At this 

level of clustering, more detailed yet high-level cell clusters could be identified, and the unique 

marker genes of each cluster were included in the final set of target genes. We excluded the cells 

from PNS regions since we focus only on the brain. 
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Fig. 2.5: Clustering of [Zeisel 2018] at clustering level 2. 

Fig. 2.6 and Fig. 2.7 demonstrate the clustering of the same dataset at level 3 and level 4, 

respectively. We tried to make sure that at each level (from level 1 to level 4), the same cell clusters 

were not breakdown into different subtypes to make sure that we had captured enough target genes 

to be able to distinguish significant cell types from each other before going into subtypes of each 

primary cell type to increase our accuracy in the MERFISH pan-brain dataset. 

The periodic table of brain cell types would not be complete if only major cell types such 

as neurons, astrocytes, oligodendrocytes, and microglia could be distinguished. To capture 

subtypes of primary cell types, we have applied NS-Forest v3 to the same dataset at an even finer 

resolution, as shown in Fig. 2.8. By doing so, we made sure that we can distinguish different 
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subtypes of neurons, astrocytes, and other types of cells at various regions of the brain which is 

crucial for cell type profiling of the whole brain. 

 

Fig. 2.6: Clustering of [Zeisel 2018] at clustering level 3. 

Each subtype of a primary cell type in the brain should be distinguished from the other 

since cells from each subtype would have different molecular and functional characteristics in the 

brain. For example, it has been reported that several different subtypes of astrocytes exist in the 

nervous system [Liddelow 2017]. Moreover, the role of cellular subtypes would be crucial in 

reprogramming one cell type to another. For example, recently, it has been reported that by 

transient downregulation of Ptbp1 in the mouse brain, mature astrocytes could be converted to 
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mature neurons [Qian 2020]. However, if transdifferentiating, it is still unclear what starting cells 

are converting to mature neurons. Our approach could be coupled with such experiments to better 

characterize the origin of the converting and terminal cells in a pan-brain fashion. 

 

Fig. 2.7: Clustering of [Zeisel 2018] at clustering level 4. 

By analyzing the [Zeisel 2018] dataset, we obtain 331 target genes for profiling the cell 

types across the brain. In comparison to the initial clustering of the cells with 3048 highly variable 
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genes, we reduced the target genes from 3048 to 331 while preserving the clustering accuracy, 

which shows the success of our approach. 

 

Fig. 2.8: Clustering of [Zeisel 2018] at sub-major cell type clustering. 

Fig. 2.9 compares the clustering accuracy while clustering with 3048 highly variable genes 

with our identified 331 genes. As shown, the overall shape of the clusters was well preserved, and 

all the major cell types are distinguishable. We applied the same approach to all other datasets, 
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and after each analysis, we included the unique target genes that were not identified in the previous 

study. As was expected, as more datasets were analyzed, fewer and fewer unique target genes were 

identifiable. 

 

Fig. 2.9: Clustering of [Zeisel 2018] with identified 331 target genes. 

After analyzing all the datasets, we identified 585 target genes necessary for cell type 

profiling pan-brain. We also included cell cycle markers, highly expressed housekeeping genes, 
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genes related to the neural transdifferentiation process that we are doing in parallel to this project, 

and marker genes from literature and synthesized a library of ~1500genes. 

After synthesizing our list of genes, we strived to quantitatively test our target genes' 

accuracy in cell type identification. We assigned a new cell type label to each cell in the test dataset 

to calculate the clustering accuracy. This new cell type label represents the most prevalent cell 

type of the five nearest neighbors in terms of gene expression to the cell. These five nearest cell 

neighbors are found by calculating a Euclidean distance matrix between gene expression profiles 

of all the cells. Once each cell is reassigned to a cluster, the accuracy of the clustering has been 

determined by dividing the number of cells reassigned to their original cluster by the number of 

total cells reassigned. The result is reported in Table 2.2. As shown in this table, with our targeted 

genes, we could accurately identify the cell types with high accuracy even compared to the list of 

well-established marker genes that were reported in [Zeisel 2018]. Moreover, our target genes 

perform better in comparison to only using top differentially expressed genes of all clusters. Our 

680 target genes were able to separate cell types among the pan-brain datasets listed in Table 2.2 

with clustering accuracies exceeding those of similarly sized gene sets and close to the large 

ground truth high variable gene sets. 

Table 2.2: Comparison of clustering accuracy. 

Target Genes 
Finest Cell Type 

Accuracy  
[Zeisel 2018] 

General Cell Type 
Accuracy 

[Zeisel 2018] 

Allen Brain 
General Cell 

Type 
Accuracy  

[Yao 2021] 

Allen Brain 
Finest Cell 

Type 
Accuracy  

[Yao 2021] 
Our 680 Target Genes 85% 98% 99% 85% 

819 Differentially 
Expressed Genes of 

[Zeisel 2018] 
80% 97% 99% 83% 

3048 Highly Variable 
Genes of [Zeisel 2018] 86% 99% 99% 87% 

440 Reported Marker 
Genes of [Zeisel 2018] 76% 98% 99% 84% 

2344 Highly Variable 
Genes of [Yao 2021] 87% 99% 99% 90% 
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2.3.Designing the Encoding Strategy and Probes 

The next step after picking the target genes for imaging is devising an encoding strategy and 

designing the probes accordingly. Fig. 2.10 shows our process for encoding strategy and probe 

design. 

 

Fig. 2.10: Encoding strategy and probe design. 
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As shown in Fig. 2.10, we have designed 60 primary probes (30 per readout sequence type) 

for each mRNA target (target genes from our previous analysis). For each mRNA species, two 

distinct readout sequences have been used to increase the accuracy of RNA molecule efficiency 

by co-localizing signals, which will be discussed later. mRNA molecules were tethered to the 

polyacrylamide gel using their polyA tails to minimize their drift during the imaging process. Each 

primary probe has a 30nt length target sequence designed complementary to the RNA strand. 

Moreover, each primary probe has three readout sequences which we used later for mRNA 

detection using fluorophore-conjugated oligos. To amplify our library, we also put PCR primers 

at each end of all primary probes, which enabled us to amplify primary probes to maintain our 

storage. We used two distinct readout sequences per mRNA species and tried to alternate between 

these two while hybridizing the primary probes to the mRNA molecule. Also, to stabilize and 

tether the primary probes to the matrix, we used acrydite-conjugated oligos. Due to their molecular 

structure, acrydite-conjugated oligos could be incorporated into the hydrogel (polyacrylamide), 

resulting in lower drift between frames and more accuracy in mRNA detection. 

From a chemical perspective, the double-bond in the molecular structure of the acrydite 

group is similar to the double bond of acrylamide monomers and reacts with activated double 

bonds of acrylamide and bisacrylamide (for cross-linking linear polymers of acrylamide) 

monomers which results in the incorporation and tethering of acrydite-conjugated oligos in the 

matrix. By hybridizing the primary probes, both smFISH and MERFISH could be performed to 

determine the transcriptome of the cells and classify the cell type. Although MERFISH has the 

advantage of being multiplexed, which means lower imaging time and data storage size, the 

detection accuracy of smFISH is superior to that of MERFISH. As a result, we decided to choose 

289 target genes and perform both smFISH and MERFISH as a comparison. Moreover, we planned 
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to use the smFISH as ground truth to design the currently developing MERFISH encoding strategy. 

We chose 289 genes in a way to ensure that we would be able to detect significant cell types across 

the mice's brains.  

For the smFISH experiment, since there are two distinct readout sequences per mRNA 

species, we could use co-localization of signals to increase the detection accuracy. As shown in 

Fig. 2.10, the fluorophore-conjugated oligos in three colors (750nm, 650nm, 560nm) were used 

for imaging purposes. 

The currently developing secondary MERFISH probes could be hybridized with the 

primary ones. Each MERFISH probe is designed in a way that it has four on-bit regions (20nt 

each), which could be used for detection as shown in Fig. 2.10. However, we will concentrate on 

the smFISH results in the next chapter. 

 

2.4.Methods 

We have sacrificed two 8-week-old C57BL/6J male mice without brain perfusion. Next, we 

covered the brains with NEG-50 frozen section medium and put them on dry ice for 30mins until 

they were fully frozen. Next, we sectioned the brain at 16°C and 16µm thickness using a cryo-stat 

machine and obtained two half-brain sections on treated coverslips. To prepare the coverslips, we 

mixed 350mL of 37% HCl and 350mL of 100% methanol in a large beaker. Then we put the 

coverslips in the large beaker by loading them into wafer boats. Coverslips were incubated in the 

HCl/methanol solution for 30mins. Next, we washed the coverslips three times with ddH2O by 

dipping the wafer boats in deionized water. After the third wash, any remaining water wiped out 

very carefully. Then, we put the wafer boats containing the coverslips into 100% ethanol for 

30mins. Next, we took out the coverslips and incubate them at 37°C overnight. 
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To add an acrylamide-reactive silane layer to the surface of coverslips to allow a polyacrylamide 

gel to chemically bond to the surfaces of the coverslips, we silanized the coverslips the next day. 

To do so, we added 700mL of chloroform to 0.7mL of Triethylamine in a large glass beaker and 

mixed thoroughly. Then we added 1.4mL of Allytrichlorosilane to the solution and mixed 

vigorously. Then, we put the coverslips into the wafer boats and submerged them in the solution 

for 30mins at room temperature. Then, in another large glassware, we added 700mL of 100% 

chloroform and dipped the coverslips and wafer boats into it for a brief wash. Then, in another 

glassware, we put 700mL of 100% ethanol and briefly washed the coverslips by dipping the boat 

inside the ethanol. Then we air-dried the coverslips and incubated them at 60°C for 2 hours before 

coating them with Poly-L-Lysine.  

Surfaces of the coverslips become hydrophobic due to Allyltrichlorosilane treatment. As a 

result, we treated the coverslips with poly-L-lysine and RNase inhibitors to make them hydrophilic 

so that the tissue could attach to the coverslip. To do so, we added 10mL of poly-L-lysine with 

2µL of RNase inhibitor into a 15 mL tube and mixed it thoroughly. Then we put each coverslip 

into a dish and added the mixture to cover the surface of the coverslips and incubated at 60°C for 

30mins. After this step, coverslips are ready for brain sectioning.  

For the probe hybridization step, we used a similar protocol as discussed in [Chen 2015]. 
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CHAPTER 3: RESULTS AND DISCUSSIONS 

3.1.smFISH Results 

We performed smFISH using the designed probes discussed in Chapter 2 and a home-built 

microscope on an 8-week-old C57BL/6J male mice brain. After sacrificing the mice, we sectioned 

the brain and produced two slices, 14µm in thickness each, and put them on the poly-lysine-treated 

coverslips. To image the whole mouse brain slices, we divided the brain slices into distinct fields 

of view (FoVs), as shown in Fig. 3.1. 

 

Fig. 3.1: FoVs orientations. 
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Later, by putting all FoVs together, we could be able to construct the transcriptome of cells 

in the brain slice. However, here we just show FoV=79 which shows part of the granular layer of 

the dentate gyrus.  

We have designed primary probes with two readout sequences per each type of mRNA 

molecule. As shown in Fig. 3.2 for Ascl1, it is expected to see co-localization of the two signals 

after imaging each readout sequence. As a result, if two spots co-localize, the certainty of calling 

that mRNA molecule would be higher. Simply put, by using 2-color smFISH, we could be able to 

decrease the false positives. 

 

Fig. 3.2: 2-color smFISH for Ascl1. 

Fig. 3.3 shows some of the highest expressed genes in the mice brain, such as Malat1 and 

Aldoc. As expected, these genes are expressed everywhere and in all cells. This expression pattern 

is consistent with previously reported expression from single-cell/nucleus RNA-seq datasets. 

Moreover, expression of Neurod2, which is a transcription factor playing a role in the development 

of the central and peripheral nervous systems, could be observed in cortical neurons and the 
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granular layer of the dentate gyrus. Also, as expected, expression of the Htt gene was observed 

everywhere. 

 

Fig. 3.3: Highly expressed genes. 

All these results are in perfect agreement with biological knowledge, which shows the 

accuracy and sensitivity of our approach. Fig. 3.4 shows the expression of Dcx, a marker gene for 

immature neurons. 

 

Fig. 3.4: Expression pattern of Dcx. 
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As shown in Fig. 3.4, some cells in the dentate gyrus express Dcx, which supports the 

hypothesis that neurogenesis is still ongoing in young mice. Moreover, many mRNA molecules 

show the co-localization of both readout sequences, which offers detection accuracy. 

Fig. 3.5 shows the expression of Gfap, a marker for glial cells and astrocytes. As expected, 

these glial cells are present in the dentate gyrus. 

 

Fig. 3.5: Expression pattern of Gfap. 

Fig. 3.6 shows the expression of Olig1, a marker for oligodendrocytes. Fewer yet localized 

expressions of this gene are observed in the dentate gyrus. 

 

 

Fig. 3.6: Expression pattern of Olig1. 
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Next, to better understand how good our smFISH experiment was, we compared our results 

with two previously done MERFISH experiments from our group. In the first MERFISH 

experiment on the 8-week mouse, 1202transcripts per cell were detected. In the second MERFISH 

on the 1-year-old mouse, a 1067 transcript was identified. And finally, in our 2-color smFISH, we 

identified 1035 transcripts. As shown in Fig. 3.7, we also compared transcripts per cell for almost 

220 genes and observed a very high correlation (p is a Pearson correlation coefficient). This shows 

the reproducibility of MERISH and smFISH experiments. 

 

Fig. 3.7: Correlation of various MERFISH and smFISH experiments. 

 

We also compared the correlation between the two-readout sequence we designed, as 

shown in Fig. 3.8. For instance, in the case of Prox1 and Gfap genes, we saw a very nice correlation 

which ensures the high mRNA detection efficiency and reliability of our data. This means that we 

successfully detected each mRNA with both readout sequences. 
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Fig. 3.8: Correlation of 2-color smFISH readouts. 

After sequentially imaging the 289 genes, we identified the cell types and clustered them 

by transferring the labels from [Zeisel 2018] using the Scanpy python package [Wolf 2018]. Fig. 

3.9 shows the spatial information of the cell types across the imaged brain slices. 

 

Fig. 3.9: Spatial distribution of the profiled cell types across the brain slices. 
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As shown in Fig. 3.8, the spatial information of the cell types shows agreement with 

biology knowledge. For instance, as expected, the granular layer of the dentate gyrus is mainly 

composed of neurons and astrocytes. However, more genes are needed to be imaged to fully 

distinguish the cortex layers or subtypes of the major cell types. In Fig. 3.6, the UMAP associated 

with each brain slice is also shown to prove the superiority of MERFISH to the single-cell/nucleus 

RNA-seq approach in which spatial information is lost. 

Although we have imaged incomplete slices of the brain (two pieces), we can continue the 

same approach to many other brain slices and then connect them to profile the cell types in the 

mouse brain in a pan-brain fashion. Moreover, by imaging the complete set of 1500genes, we 

could better understand the brain composition and strive to complete the periodic table of the brain 

cell types. 
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