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Abstract

The utility of remote sensing in the study of fluvial systems depends upon the extent to which image data can be used to derive

quantitative information of sufficient accuracy and precision for specific applications. In this study, we evaluate the effects of channel

morphology on depth retrieval by coupling a radiative transfer model to various morphologic scenarios. Upwelling radiance Lu spectra

generated for a range of depths (2–150 cm) and benthic cover types (limestone, periphyton, and gravel) were linearly mixed to simulate sub-

pixel bed topography and substrate heterogeneity. For sloping bottoms, solar–streambed geometry modified Lu relative to a level bottom,

especially for beds sloping steeply away from the sun. Aggregate pixel scale Lu spectra were compared to a database of simulated spectra to

determine the radiance-equivalent depth of a uniform bottom (REDUB). REDUB spectra for hypothetical stepped streambeds indicated

underestimation of the actual area-weighted mean depth, but the ln (Lu,560/Lu,690) REDUB ratio consistently reproduced the pixel-scale mean

for beta distributions of depths. Similarly, when both dark periphyton and bright limestone substrates occurred within a pixel, REDUB spectra

produced large errors while the ratio proved robust. Along channel banks, pixels will inevitably be mixed, and our simulations indicated that

although bank fractions estimated by spectral mixture analysis were highly accurate for vegetated cutbanks, gravel bars were sensitive to the

selection of both aquatic and terrestrial end members and subject to relatively large fraction errors. These theoretical results were tested using

a ratio-based relative depth map and two-end member mixture models derived from a hyperspectral image of the Lamar River in Yellowstone

National Park, which also served to illustrate the importance and applicability of our simulations. The primary conclusions of this study are

that 1) the ratio-based algorithm is well-suited to complex river channels; 2) channel morphology and sensor spatial resolution must be

considered jointly during data collection and analysis; and 3) the accuracy and precision of depth estimates are influenced by channel

morphology and thus vary spatially.

D 2005 Published by Elsevier Inc.

Keywords: River channel; Remote sensing; Depth; Radiative transfer model; Spectral mixture analysis; In-stream habitat
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U1. Introduction

Remote sensing has emerged as a potentially powerful

tool for detailed, quantitative characterization of fluvial

systems across broad geographic areas with improved

temporal coverage (Mertes, 2002). Since the early 1990’s,
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numerous studies have demonstrated the utility of remotely

sensed data for retrieving suspended sediment concentra-

tions (Mertes et al., 1993), classifying in-stream habitat

(Legleiter & Goodchild, In press; Whited et al., 2002;

Wright et al., 2000), and estimating water depth (Lyon et al.,

1992; Marcus et al., 2003; Winterbottom & Gilvear, 1997).

When multi-temporal image data are available, the synoptic

perspective offered by aerial platforms has allowed geo-

morphologists to document channel changes associated with

flood events (Bryant & Gilvear, 1999) and estimate volumes

of erosion and deposition in large, braided river systems

(Lane et al., 2003). Recent increases in the number and
ent xx (2005) xxx–xxx
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diversity of remote sensing systems, including high spatial

resolution commercial satellites, imply that spectrally-

driven, image-based analyses could become an integral

component of river research and management.

Ultimately, however, the utility of remote sensing

technology will depend on the degree to which the channel

characteristics of interest can be remotely measured with the

accuracy and precision required for specific applications.

Although most previous stream research has been empirical,

relating image-derived quantities to ground-based measure-

ments (Marcus et al., 2003; Winterbottom & Gilvear, 1997),

a more thorough knowledge of the underlying physical

principles is needed to quantify uncertainties and define

realistic operational guidelines. As a first step toward a

general theoretical framework, Legleiter et al. (2004) used a

radiative transfer model to illustrate the effects of water

depth, substrate reflectance, suspended sediment, and sur-

face turbulence on the upwelling spectral radiance from a

shallow stream channel. We concluded that, although certain

fundamental limitations must be acknowledged, remote

mapping of river channel morphology and in-stream habitat

is both theoretically sound and technically feasible. In

particular, our radiative transfer simulations and ground-

based spectral measurements demonstrated that a simple

ratio-based algorithm could provide an image-derived

quantity linearly related (R2=0.79) to water depth across a

range of stream conditions.

Our initial work described radiative transfer processes

and discussed the role of sensor spectral and radiometric

resolution but did not specifically address the spatial effects

that could prove to be a limiting factor in small-to

moderate-sized channels (Legleiter et al., 2002; Wright et

al., 2000). In these highly variable, dynamic systems, biotic

and geomorphic patterns and interactions often occur at a

spatial scale finer than the spatial resolution of the imaging

system, typically equated with the pixel edge dimension

(but see Cracknell, 1998). Such incongruence between the

scales at which data are collected and processes operate

represents a classic problem in remote sensing and geo-

graphic information science that has also drawn attention in

the marine research community (e.g., Andrefouet et al.,

2002). Recent emphasis on shallow coastal environments,

primarily coral reefs (e.g., Andrefouet et al., 2003), has

motivated studies on the effects of bottom morphology and

fine-scale substrate variability (Mobley & Sundman, 2003;

Zaneveld & Boss, 2003).

In this paper, we draw upon coastal research to evaluate a

fundamental question: can remotely sensed data be used to

effectively document the subtle channel changes of interest

to the fluvial geomorphologist? For applications such as

post-project appraisal of river restoration projects (Downs &

Kondolf, 2002) and morphologic estimation of sediment

transport rates (Ashmore & Church, 1998; Gaeuman et al.,

2003), accurate characterization of channel bed topography

is critical (Lane, 1998). The use of raster-formatted image

data in these studies entails two basic limitations: 1) even
ED P
ROOF

when depth varies on a sub-pixel scale, only one depth

estimate can be assigned to each image pixel; and 2) along

channel banks, radiance is contributed from both terrestrial

and aquatic features and pixels will inevitably be mixed.

The former problem is expected to complicate depth

retrieval to a degree dependent upon the complexity of

channel bed topography and benthic cover and the

dimensions of an image pixel, whereas the latter problem

could influence measurements of channel width and

preclude near-bank depth estimates. Our goal in this paper

is to evaluate the effects of channel morphology and sensor

spatial resolution on image-derived depth estimates. Specif-

ically, we use tools developed by oceanographic and

terrestrial remote sensing scientists—radiative transfer

modeling and spectral mixture analysis, respectively—to

address a pair of basic questions:

1) When depth or substrate reflectance varies within an

image pixel, what is the composite upwelling spectral

radiance signal recorded by a remote sensing system?

What will be the resulting, single depth estimate for that

pixel?

2) What are the spectral characteristics of mixed pixels

along channel banks? Can these pixels be unmixed to

refine estimates of channel width?

2. Methods

2.1. Field data collection and archival image data

The Lamar River basin of northeastern Yellowstone

National Park, USA, has been the subject of several

previous remote sensing studies (e.g., Marcus et al., 2003;

Wright et al., 2000) and ongoing research on channel

change. The field data for this study were acquired along

Soda Butte Creek, a major tributary of the Lamar River, in

July and August, 2003, and consist of point measurements

of water depth and a spectral library of channel substrates

and bank cover types (Fig. 1, Table 1). The collection and

processing of the spectral data are described in Legleiter et

al. (2004). Water depths in Soda Butte Creek averaged 38

cm, with a slightly positively skewed distribution and a

maximum of 142 cm; the Lamar River is slightly deeper on

average, with a maximum measured depth of 160 cm

(Marcus et al., 2003). The substrate in these streams

consisted primarily of gravel derived from glacial outwash,

andesitic volcanic rocks, and Paleozoic carbonates (Prostka

et al., 1975); a few reaches of Soda Butte Creek flow over

limestone bedrock. As flows subside in mid- to late summer,

periphyton coats portions of the streambed as well, typically

in shallow, low-velocity areas.

Hyperspectral image data for the Lamar River were

acquired by the AISA sensor on August 1, 2002. This

instrument recorded upwelling spectral radiance in 34

narrow bands (full-width half-maximum of 3.10–3.42 nm)
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Fig. 1. Reflectance spectra for substrate types and stream bank materials

from the spectral library compiled along Soda Butte Creek in Yellowstone

National Park (Legleiter et al., 2004).

t1.1Table 1

Input parameters for the Hydrolight radiative transfer model t1.2

Parameter type Value or range

of inputs

Description t1.3

Solar geometry 208, 308, 408,
508, 608

Solar zenith angle in air t1.4

Sea level pressure 1016 mbar t1.5

Air mass type 10 Continental t1.6
Relative humidity 20% t1.7

Precipitable water 0.5 cm t1.8

24-hr average wind

speed

0 m/s t1.9

Horizontal visibility 100 km t1.10

Water depth 2–150 cm in

steps of 1 cm

t1.11

Substrate reflectance

(ground-based spectral

measurements)

Periphyton Samples scraped from

cobbles removed from

streambed t1.12
Wet gravel Mixture of rock types and

particle sizes, measured on

gravel bars t1.13
Wet limestone Mississippian Madison

Limestone Group (Prostka

et al., 1975); Grey-white

(Munsell color chart:

Hue 0.19Y, Value 5.71,

Chroma 2.87) t1.14
Suspended sediment

concentration

2 g/m3 Converted to inherent

optical properties using

brown earth optical

cross-section t1.15
Wind speed 5 m/s Surrogate for flow

turbulence t1.16
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spanning the visible/near-infrared spectral region from 495–

898 nm. Apparent at-platform reflectance was calculated

from concurrent measurements of downwelling spectral

irradiance, obtained using a diffuse collector mounted on

top of the aircraft and connected to the AISA sensor by a

fiber optic cable (http://www.specim.fi/products-aisa.html).

The ground sampling distance of 2.5 m produced many

mixed pixels along the banks of the 30–50 m wide channel

and dictated that most in-stream pixels would encompass a

range of depths and/or substrate types. Although ground

reference data for this time period were not available, we

intend to use the AISA image as part of a time series for

monitoring channel change in northern Yellowstone. Here,

we present a scene from the Lamar River to evaluate the

results of the radiative transfer simulations that are the

primary focus of this paper and to illustrate the real-world

applicability of these modeled scenarios.

2.2. Radiative transfer modeling

In essence, passive optical remote sensing of fluvial

systems is based upon spatially distributed measurements

of a fundamental physical quantity, the upwelling spectral

radiance. For a shallow stream channel, this reflected solar

energy can be conceptualized as the sum of four

components:

LT ¼ LP þ LS þ LC þ LB þ LL; ð1Þ

where LT is the total at-sensor spectral radiance; LP

represents path radiance scattered into the sensor’s field

of view by the Earth’s atmosphere; LS denotes radiance

reflected from the water surface, interacting with neither

the water column nor the substrate; LC refers to radiance

that entered the water column but was scattered into the

upper hemisphere before reaching the bottom; LB is the

portion of LT that reflected from the streambed, passed

through the air–water interface, and traveled through the
ED P
ROOF

atmosphere to the sensor; and LL is the radiance

contribution from adjacent areas of land, typically gravel

bars or riparian vegetation, for mixed pixels along the

channel banks. Of these components, only the last is

directly relevant to characterization of channel morphology

(i.e., water depth) and in-stream habitat (i.e., benthic

cover). Our analysis thus focused upon the two primary

controls on LB, bottom depth zb and the (spectral

irradiance) reflectance of the substrate Rk, by using a

radiative transfer model to simulate LT spectra while fixing

the parameters that determine LP, LS, LC, and LL.

The radiative transfer equation describes the attenuation

of electromagnetic radiation within the water column and

can be solved numerically, subject to certain critical

assumptions, if initial and boundary conditions are specified

(Mobley, 1994). The Hydrolight computer model (Mobley

& Sundman, 2001) implements these solution methods to

simulate spectral radiance distributions within and above a

water column and is used extensively in various marine

environments (e.g., Dierssen et al., 2003; Louchard et al.,

2003). Individual Hydrolight runs are parameterized by zb
and Rk, as well as water column optical properties, water

surface state, solar geometry, and atmospheric conditions.

This one-dimensional model assumes that all changes in the

underwater light field are functions of depth alone,

independent of horizontal location; this simplified geometry

http://www.specim.fi/products-aisa.html
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allows for numerical solution of the radiative transfer

equation. For more complex, three-dimensional configura-

tions where bottom depth and/or albedo vary spatially (i.e.,

river channels), computationally expensive probabilistic

methods are technically more appropriate. Mobley and

Sundman (2003), however, found close agreement between

Hydrolight and a backward Monte Carlo model (BMC3D)

in the presence of fine-scale substrate variability

(errorsb1%) and sloping bottoms (errorsb7% for bottom

slopesb208), concluding that efficient one-dimensional

models can predict radiance distributions above heteroge-

neous bottoms with sufficient accuracy for all but the most

demanding applications. For our first-order analysis, we

therefore adopt this plane-parallel approximation and use

the Hydrolight radiative transfer model to simulate the

effects of sub-pixel variability of depth and bottom albedo.

We developed a database of 2,235 simulated Hydrolight

spectra parameterized by the input data in Table 1. The

incident spectral irradiance Ed and sky radiance distribu-

tion for our study area in Yellowstone National Park were

obtained using the Gregg and Carder (1990) and Harrison

and Coombes (1988) models, respectively; cloud cover

was assumed negligible. To isolate the effects of depth and

bottom albedo, suspended sediment concentration was

fixed at 2 g/m3 and the brown earth optical cross-section

included with Hydrolight used to obtain the corresponding

absorption (a) and scattering (b) coefficients (Bukata et al.,

1995). The concentration profile was vertically homoge-

neous and the contributions of chlorophyll and dissolved

organic matter to the inherent optical properties of the

water column were assumed negligible. In practice, the

abundance and wavelength-dependent scattering and

absorption properties of various constituents suspended

and/or dissolved within the flow will also influence Lu and

thus depth retrieval and substrate characterization. Surface

turbulence was incorporated by fixing the wind speed,

which Hydrolight uses to generate an irregular water

surface described by the Cox and Munk (1954) wave slope

statistics (Mobley, 1994), at 5 m/s. Substrate Rk spectra for

three bottom types were used, including bright white-gray

limestone, periphyton scraped from streambed cobbles, and

gravel of mixed grain size and lithology (Fig. 1, Table 1).

For each substrate type, simulated spectra were generated

for bottom depths ranging from 2 to 150 cm in 1 cm

increments. Shallower and/or more closely spaced depths

could not be modeled because Hydrolight computes diffuse

attenuation coefficients (e.g., Kd, defined as the depth

derivative of the downwelling plane irradiance Ed; Mobley,

1994) using a finite difference approximation that dictates

a minimum spacing between successive output depths. All

depths shallower than 2 cm in our simulations were

therefore assigned the corresponding Lu spectra for a depth

of 2 cm. To evaluate the effect of solar geometry, a

separate set of Hydrolight runs for all depth/substrate

combinations was performed for in-air solar zenith angles

hs from 208 to 608, in 108 increments. The modeled
ED P
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spectra spanned the range 400–800 nm as a series of 100

monochromatic runs spaced 4 nm apart.

2.3. Simulated spectral mixtures

We examined the effects of sub-pixel variation of depth

and bottom albedo and mixed stream bank pixels by

simulating spectral mixtures, with an assumption of linear

mixing. Under this framework, the composite spectral

radiance Lk from a pixel containing multiple cover types

(or bottom depths) is the sum of the Lk for each cover type,

weighted by their areal abundance—that is, the spectral

proportions match the spatial proportions (Adams et al.,

1993). The use of additive mixtures neglects the contribu-

tion of multiply scattered photons to the total radiance, and

our simulated mixtures therefore do not account for in-water

adjacency effects. In shallow stream channels, however,

these effects are likely to be minimal because the scattering

phase function is strongly forward-peaked and depths are

typically only one or two photon mean free paths 1/c, where

c=a+b is the beam attenuation coefficient (Mobley &

Sundman, 2003). Mobley and Sundman (2003, p.333)

argued that under these circumstances, the vast majority of

photons travel directly from the bottom to the water surface

and the path radiance contribution is negligible, implying

that scattering by the water column itself can be ignored.

The validity of this assumption will be strained in deeper

water and/or for higher suspended sediment concentrations,

but provides a reasonable approximation for the shallow,

clear water conditions in our study area.

Using the database of simulated Hydrolight spectra, we

assembled fine-scale radiance fields by assigning the

appropriate upwelling radiance Lu (in air, just above the

water surface) spectrum to each cell of various morphologic

scenarios. Mixed pixels were then simulated by computing

the average of the Lu values for all 1 cm2 cells

encompassed by a pixel of the specified dimensions. We

assumed square pixels and equally weighted the radiance

contributions of all cells within the pixel; a more

sophisticated radiance aggregation scheme could be used

to model the point spread function of a particular sensor.

For the stream bank scenarios, mixtures were modeled by

combining the field-measured Rk spectra for the bank

material types with Rk spectra for the submerged portion of

the pixel, obtained from the Hydrolight-modeled Lu by

converting to irradiance (assuming isotropy and multiplying

by k) and dividing by Ed.

2.4. Morphologic scenarios

Simulated spectra from the Hydrolight database were

coupled to various bed configurations to model the effects

of solar–streambed geometry, fine-scale morphology, and

substrate heterogeneity on the pixel-scale upwelling spectral

radiance that would be measured by a remote sensing

system. Each scenario consisted of regular grids of depth
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and substrate type with a cell size of 1 cm2, and spectral

properties were assigned from a look-up table. These

scenarios are described in the following paragraphs and

illustrated in Fig. 2.

To evaluate the effect of solar geometry and streambed

slope and aspect, we considered a planar streambed rotated

about both the vertical and horizontal axes. The bed sloped

down at a specified angle hb and aspect u was defined as

the angular difference between the slope direction and solar

azimuth (Fig. 2a). Mobley and Sundman (2003) reasoned

that the primary effect of a sloping bottom was to change the

solar incidence angle and that the slope could be accounted

for by using Lambert’s cosine law to correct the radiance

computed for a level bottom (i.e., with Hydrolight). We used
UNCORRECT
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Fig. 2. Basic morphologic scenarios evaluated in this study. (a) A planar,

sloping bed for modeling the effects of solar–streambed geometry. The bed

slopes down in the x direction at an angle of hb with the horizontal, the

depth at which the upwelling spectral radiance Lu is modeled as zb, the solar

zenith angle is hs in air and hsw in water, the solar azimuth (angular

difference between the slope direction and the position of the sun) is u, and

the incidence angle of the solar beam onto the streambed is h i, measured

relative to the streambed normal. Profile (b) and plan (c) of a stepped

streambed with a uniform substrate. Profile (d) and plan (e) of a

heterogeneous substrate with a constant depth zb. Scenarios evaluated for

hypothetical 1 m2 pixels. Figure after Mobley and Sundman (2003).
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Eqs. (9) and (10) of Mobley and Sundman (2003) to

compute the radiance from a sloping streambed as

Lslopeu ¼ Llevelu

cosh slope
i

coshleveli

; ð2Þ

where hi denotes the solar incidence angle onto the

streambed and the superscripts refer to sloping and level

bed configurations. For a sloping bed, hi is given by

coshslopei ¼ sinhbsinhswcosu þ coshbcoshsw; ð3Þ

where hsw is the solar zenith angle after refraction at the air–

water interface.

The effects of sub-pixel depth variability were modeled

by aggregating fine-scale radiance fields corresponding to a

stepped streambed. A fraction fdeep of the simulated pixel

was assigned a relatively large depth zdeep while the

remaining 1-fdeep was assigned a shallower depth zshallow
(Fig. 2b). By varying these three parameters, we modeled

composite, pixel-scale Lu spectra for pixels ranging from

predominantly deep to mostly shallow, with various step

heights (i.e., intra-pixel depth differences); both sides of the

step had the same substrate Rk and hs was fixed at 308. To
determine the effect of such sub-pixel morphologic features

on depth retrieval, we compared the composite radiance

from the stepped streambed to the Lu spectra tabulated in the

Hydrolight database by defining the radiance-equivalent

depth of a uniform bottom (REDUB) for each wavelength as

the depth at which Lu from a flat bed is closest in absolute

value to the composite radiance from a more topographi-

cally complex streambed.

More complex bed configurations were simulated as

random variables drawn from a beta distribution defined by

parameters a and b and bounded by a specified minimum

zmin and maximum zmax depth

f zb; a; b; zmin; zmaxð Þ ¼ 1

zmax � zmin

d
C a þ bð Þ
C að ÞC bð Þ

� zb � zmin

zmax � zmin

� �a�1

� zmax � zb

zmax � zmin

� �b�1

; ð4Þ

where f(d ) is the probability density function (pdf) of depths

for zminVzbVzmax (the beta distribution has zero density

outside this interval), and C(d ) is the gamma function

(Devore, 2000). A single substrate reflectance was used for

all 1 cm2 cells and hs was fixed at 308. The flexibility of the

beta pdf allowed us to generate depth histograms skewed

toward deep or shallow water, uniformly distributed across

the specified range of depths, or centered about a single

mean depth. To examine the effects of differing degrees of

sub-pixel scale topographic complexity on depth retrieval,

we used the log-transformed band ratio algorithm shown to

provide an image-derived quantity linearly related to water

depth (Legleiter et al., 2004), computing ln (Lu,560/Lu,690)
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EC

for both aggregate, pixel-scale radiances for the simulated

streambeds and for individual Lu spectra in the Hydrolight

database. Analogous to the REDUB above, we define the

REDUB ratio as the depth at which the log-transformed

band ratio value computed for a level bottom is closest in

absolute value to the ratio computed for the mixed, variable

depth pixel.

Similar to the bed step scenario, we modeled the effects

of sub-pixel substrate heterogeneity by assigning a specified

fraction of a pixel to one substrate and the remainder to a

second benthic cover type (Fig. 2c). For these simulations,

bottom depth was held constant and hs was fixed at 308.
Because Lu is a function not only of depth but also bottom

albedo (Legleiter et al., 2004), fine-scale substrate hetero-

geneity might interfere with depth retrieval. To examine this

possibility, we computed both wavelength-specific REDUB

values and ln (Lu,560/Lu,690) REDUB ratio values for

simulated constant depth/mixed substrate pixels.

2.5. Stream bank spectral mixture analysis

Along the margins of the channel, radiance is contributed

from both the submerged streambed and adjacent exposed

areas with various cover types. In this study, we considered

two common stream bank configurations which often occur

in tandem on the inner and outer banks of a meander bend,

respectively: a gently sloping gravel bar and a steep,

vegetated cutbank (Fig. 3). We modeled mixed pixels along

the gravel bar by specifying the fraction of the pixel fb
occupied by exposed gravel and the bed slope hb off the bar

into the channel, retrieving the appropriate Hydrolight

spectrum for each depth (depths shallower than 2 cm were
UNCORR

Fig. 3. Field examples of the stream bank morphologic scenarios evaluated in

Yellowstone National Park. Gradually sloping gravel bar in foreground and abru

Andrew Marcus.
ED P
ROOF

assigned the spectrum for 2 cm depth; see Section 2.2) along

the slope (1 cm2 cell size), applying the slope correction

(Eq. (2); hs fixed at 308 and u at 458), converting the Lu

spectra to reflectance (Section 2.3), and adding the area-

weighted reflectances of the submerged and exposed

portions of the pixel. For the vegetated cutbank, pixel-scale

mixtures were generated by specifying fb and the bottom

depth zb. The transition from bank top to channel bed was

assumed to occur over a fixed distance of 10 cm, and the

radiance from this zone was incorporated by computing the

depths along the slope and applying the slope correction as

for the gravel bar. The pixel-scale reflectance was obtained

by summing the area-weighted contributions from the

vegetated bank, the bank-to-bed submerged slope, and the

flat streambed.

To determine the extent to which stream bank pixels

can be unmixed on the basis of their spectral character-

istics, we used spectral mixture analysis (SMA, Adams et

al., 1993), a popular technique with numerous terrestrial

applications that has recently been extended to shallow

marine environments (Hedley & Mumby, 2003; Hedley et

al., 2004), to estimate fb for different bank scenarios. The

essence of SMA is to model the reflectance (or radiance)

spectrum of a mixed pixel as a weighted linear combina-

tion of the spectra of two or more pure cover types, called

end members:

RkV ¼
XN
k¼1

fkRkk þ ek: ð5Þ

Here, RkV is the modeled mixture, fk represents the

fractions of each of k end members, Rkk is the reflectance
this study, from the Hollywood Meadow reach of Soda Butte Creek in

pt, vegetated cutbank on opposite side of channel. Photo courtesy of Dr.
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spectrum of the kth end member, and ek is a wavelength-

specific error term; a unit sum constraint is typically

imposed on the fk as well (Roberts et al., 1998). For our

analysis of stream bank mixtures, we use Gaussian

elimination to determine the least-squares optimal two-

end member model for each bank scenario. One end

member is the bank material reflectance spectrum and a

single Hydrolight-modeled spectrum serves as the aquatic

end member. For the gravel bar scenario, we evaluated the

sensitivity of the mixture model to aquatic end member

selection by computing bank fractions using three differ-

ent water spectra: 1) the Hydrolight spectrum for the

mean depth along the submerged portion of the bank

slope, typically 5–10 cm depending on fb and hb; 2) a

fixed water spectrum of moderate depth, as might be

obtained by selecting an image end member from the

channel talweg; and 3) the spectrum for the greatest depth

in the Hydrolight database, 1.5 m. For the vegetated

cutbank, the water end member was taken as the

Hydrolight spectrum corresponding to the depth of the

channel bed zb. To assess the feasibility of unmixing

stream bank spectra, we compared the modeled bank

fractions to the input fb used to parameterize each

simulated bank scenario.
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3. Results

3.1. Effects of sun–streambed geometry on upwelling

spectral radiance

In topographically complex, meandering stream chan-

nels, the solar irradiance incident upon the channel bed will

vary spatially as a function of solar geometry and local

streambed slope and aspect. Fig. 4 illustrates the effect of

solar–streambed geometry, expressed as the percent differ-

ence in Lu,690 relative to a flat bed, for a range of in-air solar

zenith angles hs, slope aspects u (defined as the angular

difference between the solar azimuth and slope direction),

and bed slopes hb. For low hs and low to moderate hb,

topographic effects are minimal for small u (i.e., sun

shining directly onto the slope) but become substantial for

larger u, with the greatest modification of the solar beam’s

angle of incidence onto the streambed occurring at u=1808
when the bed slopes down away from the sun (Mobley &

Sundman, 2003). As hs increases to 408 or 508, Lu can be

increased by nearly 20% relative to a flat bottom when a

moderately steep bed slope faces the sun or reduced by up to

100% when the aspect is less favorable. For a fixed solar

geometry (i.e., time of data collection), topographic effects
E
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lling spectral radiance Lu (at 690 nm) from a shallow stream channel. Each
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riphyton.
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are clearly more pronounced for steeper bed slopes, such as

those along channel banks. Although bed slopes of 508
might not be common in alluvial rivers, especially those

with non-cohesive banks, even for a more typical pool exit

slope of 108 (e.g., Thompson & Hoffman, 2001) and a fixed

hs, differences in u alone could still create a 10–15% range

in Lu.

3.2. Effects of sub-pixel variability in depth

For smaller or more complex channels and/or coarser

sensor spatial resolutions, many, if not most, image pixels

will encompass relatively fine-scale morphologic features

and thus a range of depths. For the hypothetical stepped

streambed in Fig. 2b, the REDUB exhibited spectrally-

dependent residuals which varied with fdeep and step height

zdeep�zshallow (Fig. 5). For a moderate step height of 20 cm,

the REDUB matched the area-weighted mean depth (thin,

dashed lines in Fig. 5) at shorter, blue wavelengths but in the

red portion of the spectrum positive REDUB residuals,

defined as the difference between the area-weighted mean

depth and the REDUB, indicated that depth was under-

estimated. The magnitudes of these residuals were least (1

cm) when fdeep was either large (0.9) or small (0.1) and

greatest when the pixel contained equal amounts of deep

and shallow water, up to 3 cm in the near-infrared for

0.4VfdeepV0.6. The gaps in the REDUB spectra plotted in

Fig. 5 correspond to a crossover region of equal Lu for all

depths, with scattering by suspended sediment dominant at
UNCORREC
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shorter wavelengths and absorption by pure water prevalent

in the red and near-infrared (Legleiter et al., 2004). As the

step height increased to 40 or 60 cm, the REDUB residuals

became increasingly positive, indicating larger underesti-

mates of the area-weighted mean depth. For the 60 cm step,

the REDUB bias reached 22 cm in the NIR for fdeep=0.7 and

was 5 cm even in the visible at 675 nm. For smaller fdeep
(i.e., shallower area-weighted mean depths), the REDUB

residuals were smaller but can still be on the order of 8 cm

for high steps. This effect was also modulated by the

substrate, and the high NIR reflectance of periphyton also

could have contributed to the large REDUB residuals in Fig.

5; the magnitude of these residuals might be reduced for

other substrates with lower NIR reflectance. In general, for

pixels with both a range of depths and a non-homogeneous

substrate, the pixel-scale Lu will depend on the spatial

distribution of benthic cover types relative to the bed

topography, as well as the scattering properties of the water

column. In any case, our simulations indicated that the

juxtaposition of deep and shallow water within a single

pixel caused spectrally-based depth retrieval to under-

estimate the true mean depth because the shallow water

made an areally disproportionate contribution to the

aggregate, pixel-scale radiance, effectively drowning out

the radiance contributed from the deeper water portion of

the pixel.

We also performed a second, somewhat more realistic set

of simulations based upon beta distributions of depth within

an image pixel. By varying the a and b parameters of the
0.1
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referred to the web version of this article.)
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beta pdf (Eq. (4)), we created depth distributions represen-

tative of sloping bottoms (uniform pdf; Fig. 6a), relatively

flat bottoms (strongly peaked, symmetric distribution; Fig.

6d), and streambed configurations featuring either predom-

inantly shallow (Fig. 6e) or predominantly deep (Fig. 6f)

water. The performance of a ratio-based depth retrieval

algorithm in the presence of such sub-pixel depth variability

was evaluated in terms of the REDUB ratio, the depth of a

uniform bottom for which the ln (Lu,560/Lu,690) ratio is

equivalent to that computed for the simulated pixel. The

REDUB ratio consistently reproduced the area-weighted

mean depth of the pixel, even for negatively skewed depth

distributions (Fig. 6f, h), unlike the spectrally-dependent

residuals observed when the REDUB was retrieved from the

Hydrolight database on a band-by-band basis.

3.3. Effects of sub-pixel variability in bottom albedo

Because Lu is sensitive to both depth and bottom

albedo, sub-pixel substrate heterogeneity could influence
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spectrally-based depth estimates even when depth is

uniform at the pixel scale. Reflectance spectra for pure

limestone and periphyton substrates are plotted in Fig. 7a

and the panels below contain REDUB spectra (lines) and

REDUB ratio depth estimates (points) for mixtures of these

two substrate end members at depths of 30 and 60 cm

(indicated by the dashed line in each panel). Fig. 7b and d

illustrate the results of simulating Lu for a mixed substrate

comprised of both periphyton (covering a fraction fp of the

substrate) and limestone (covering the remaining 1�fp),

but then restricting the search of the Hydrolight database

to consider only the pure periphyton end member when

retrieving the REDUB for the mixed pixel. Similarly, Lu

spectra for these periphyton/limestone mixtures were

compared to the pure limestone end members in the

Hydrolight database to obtain the REDUB spectra and

REDUB ratio values shown in Fig. 7c and e; REDUB

retrievals were limited to depths less than 1 m in all cases.

In essence, this analysis quantifies the depth retrieval error

that would be incurred if substrate heterogeneity were
ED P

 

0.3 0.4 0.5 0.6
0

500

000

500
0

200

400

600
0

200

400

600
     
  

                

0

200

400

600

     

 α  = 9,β = 1
µZ = 0.57 m ,
σZ = 0.027 m ,
REDUB ratio = 0.57 m

α  = 7,β = 2
µZ = 0.53 m ,
σZ = 0.04 m ,
REDUB ratio = 0.53 m

α  = 10,β = 10
µZ = 0.45 m ,
σZ = 0.032 m ,
REDUB ratio = 0.45 m

α  = 0.7,β = 0.7
µZ = 0.45 m ,
σZ = 0.097 m ,
REDUB ratio = 0.45 m

(b)

(d)

(f)

(h)

 (m)

on ratio-based depth retrieval. The dashed lines in each panel correspond to

,560/Lu,690) ratio calculated for a Hydrolight spectrum is equivalent to that

rs (a and b) used to generate the depth distribution, the area-weighted mean

308 (in air).



CORRECTED P
ROOF

ARTICLE IN PRESS

582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613

400 450 500 550 600 650 700 750 800
0

0.05

0.1

0.15

R
ef

le
ct

an
ce

Wavelength (nm)

Limestone

Periphyton

z
b
 = 0.3 m

z
b
 = 0.6 m

z
b
 = 0.3 m

z
b
 =  0.6 m

400 500 600 700 800

0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

Periphyton fraction

R
E

D
U

B
 (

m
)

Periphyton
end-member
database

fp = 0.2

fp = 0.8

400 500 600 700 800

0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

400 500 600 700 800

0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

Periphyton fraction

R
E

D
U

B
 (

m
)

400 500 600 700 800

0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

0 0.25 0.5 0.75 1
0

1

Periphyton fraction

Limestone
end-member
database

Periphyton fraction

Limestone
end-member
database

Periphyton
end-member
database

fp = 0.2

fp = 0.8

fp = 0.2

fp = 0.8

fp = 0.2

fp = 0.8

(a)

(b) (c)

(d) (e)

Fig. 7. Effects of fine-scale substrate heterogeneity on spectrally-based depth estimates. (a) Hydrolight-modeled reflectance spectra for limestone and

periphyton substrates at depths of 30 and 60 cm. (b–d) REDUB spectra (lines, referring to bottom axis, with the periphyton fraction fp for each line labeled on

the plot) and REDUB ratio values (points, referring to top x-axis) for various periphyton fractions, using both pure periphyton (b and d) and pure limestone

spectra (c and e) from the Hydrolight database as references for comparison with the simulated limestone/periphyton mixtures. Bottom is level at the depth

indicated by the dashed line in each panel and hs is fixed at 308 (in air). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

C.J. Legleiter, D.A. Roberts / Remote Sensing of Environment xx (2005) xxx–xxx10
UNneglected and a single benthic end member was used

throughout an image.

When comparing the simulated constant depth/mixed

substrate Lu spectra to the pure periphyton database, the

REDUB bsaturatedQ and was assigned the greatest depth in

the database at wavelengths up to 560 nm, irrespective of

the actual bottom depth or fp of the simulated mixture. At

this end of the spectrum, an increase in zb corresponded to

an increase in Lu due to scattering by suspended sediment,

and the increased pixel-scale Lu due to the presence of

bright limestone had the same effect as an increase in

volume reflectance and effectively caused the pixel to

appear deeper than if the substrate were composed of pure

periphyton. Conversely, in the red portion of the spectrum

Lu and zb were inversely related and the REDUB for the

mixed pixel was the minimum depth in the database because
the increased Lu associated with the limestone substrate

caused the pixel to appear shallower than a streambed

completely covered by periphyton. Only in the NIR were

differences in fp expressed in the REDUB, with higher fp
corresponding to greater REDUB as the radiance contribu-

tion from the limestone portion of the pixel was reduced,

although the REDUB consistently underestimated the actual

depth. This convergence in the NIR could be due to the

more similar reflectance of the limestone and periphyton

substrates at these wavelengths and/or due to stronger

absorption by the water itself, which subdues the effect of

bottom albedo on Lu.

An opposite pattern was observed when the pure lime-

stone substrate end member was used as the reference for

REDUB retrievals from the simulated periphyton/limestone

mixtures. In this case, REDUB spectra were more sensitive
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to fp but still tended to saturate and take on the value of the

deepest depth within the database for wavelengths extend-

ing throughout the red portion of the spectrum for high fp.

The lower bottom albedo of the periphyton substrate

reduced Lu for the mixed pixel and therefore caused the

bottom to appear deeper than would a periphyton-free

limestone substrate, and at an actual depth of 30 cm,

REDUB overestimated zb by up to 50 cm in the green region

of the spectrum even when fp was only 0.2. The crossover at

560 nm was absent when pure limestone was used as a

reference because, unlike the darker periphyton, the

reflectance of the limestone substrate exceeded the scatter-

ing-induced volume reflectance of the water column,

illustrating the importance of bottom contrast for depth

retrieval. The REDUB also overestimated the true depth

throughout the red and NIR and only at wavelengths of 720

nm or greater, where transmittance through the water

column was reduced and the reflectance difference between

limestone and periphyton less pronounced, did the REDUB

begin to converge on the true depth. These results indicate

that two different estimates of depth would be retrieved,

depending on which pure substrate served as a reference:

depth would be overestimated at all wavelengths if lime-

stone were assumed and would be either over-(short

wavelengths) or underestimated (long wavelengths) if a

periphyton-coated streambed was assumed instead.

In contrast to the sensitivity of the wavelength-specific

REDUB spectra to mixed substrates, the REDUB ratio was

much more robust to sub-pixel substrate heterogeneity

(points in Fig. 7b–e, referring to the top x-axis of each

panel). For an actual depth of 30 cm, the REDUB ratio

consistently reproduced the actual zb regardless of whether

the periphyton or limestone database was used as a

reference. For mixed substrates at a depth of 60 cm, the

REDUB ratio retrieved from the periphyton database over-

estimated zb by up to 10 cm for small fp but agreement

improved for larger fp. When the limestone database served

as the reference, the REDUB ratio reproduced zb for small fp
and underestimated zb by only 3 cm for large fp.

3.4. Stream bank spectral mixture analysis

Fig. 8a and b illustrate the simple geometric representa-

tions of gravel bars and vegetated cutbanks used to simulate

mixed streamside pixels as weighted linear combinations of

the pure spectra for each bank material and the submerged

channel bed. For the vegetated cutbank simulations, we used

the Hydrolight spectrum corresponding to depth of the

adjacent streambed as the aquatic end member. For the

gravel bar mixture models, we considered spectra for three

depths: 1) the mean depth along the bed slope off of the bar,

which thus varied depending on hb and fb; 2) a fixed,

moderate depth (zb=0.2 or 0.4 m); and 3) 1.5 m, the greatest

depth in the Hydrolight database (a hypothetical infinitely

deep-water column produced nearly identical results). The

actual (simulated) and modeled bank fractions fb for four
ED P
ROOF

morphologic scenarios, computed using linear, unit sum-

constrained two-end member models are plotted in panels

c–f. Fig. 8c and e indicate that for gravel bars the modeled

bank fraction is accurate to within a few percent for large fb
but is consistently underestimated for water-dominated

pixels. The magnitude of this error increases as fb decreases,

with negative modeled bank fractions for the smallest actual

fb. Fraction errors were smaller, however, when a moderate

fixed depth end member was used rather than the mean

depth along the slope; using a deep-water spectrum further

reduced the fraction error. These results imply that shallow-

water spectra along gradually sloping bars tend to be very

similar to exposed, possibly moist, gravel, and that more

accurate unmixing of stream bank pixels could be achieved

by selecting or modeling a deep-water end member with

greater spectral contrast.

Although the radiance contribution from the exposed

portion of a mixed pixel might be expected to overwhelm

the submerged area and lead to overestimated, possibly

super-positive bank fractions, fb was underestimated for our

simulated mixtures and became negative at low fb, even

when a deep-water end member was used. We attribute this

counterintuitive result to the use of relatively bright, dry

gravel as a terrestrial end member but dark, wet gravel to

define the bottom albedo for the water spectra (Fig. 1). This

low reflectance substrate was actually darker than deep,

open water due to volume scattering within the water

column. Mixed pixels comprised primarily of water were

therefore brighter than shallow water end members bearing

the imprint of the dark gravel substrate, which dictated that

the bright terrestrial end member would require a negative

fraction in order to make the modeled mixture dark enough

while still honoring the unit sum constraint. This effect was

most pronounced for the smallest actual fb and steepest bar

slopes, which contained the most (and deepest) water and

were thus brightest at the pixel scale. The extreme case is

illustrated in Fig. 8g, where a pixel containing only 10%

gravel bar was unmixed using a shallow water end member

that was actually brighter than the pixel-scale mixture,

resulting in a large negative modeled fb and a 25% fraction

error. Had a brighter substrate (i.e., limestone) been used to

define the bottom albedo, the shallow water end members

would have been brighter than open water, resulting in

overestimated bank fractions. The choice of a terrestrial end

member could also play a role, with bright spectra from

high, dry bar tops producing different results, typically

underestimated bank fractions, than darker spectra from

lower on the bar surface, where wet sand might also be

present. These results indicate that linear spectral unmixing

of gravel bars is highly sensitive to end member selection

and thus subject to considerable uncertainty.

For vegetated cutbanks, typically found opposite gravel

point bars along the outside of meander bends, linear

spectral unmixing of stream bank pixels appears much more

promising. For actual bank fractions ranging from 0.1 to 0.9

and bed depths of 20 and 40 cm, the modeled fb reproduce
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UNCthe fractions used to simulate the mixtures almost exactly,

even for the small actual bank fractions that proved most

problematic for gravel bars (Fig. 8h). Unlike gravel bars

with reflectance spectra similar to the adjacent substrate,

vegetation along the banks is quite spectrally distinct from

aquatic end members, particularly in the near-infrared. This

enhanced spectral contrast allows for accurate solution of

the mixing model and also reduces the sensitivity of the

resulting fractions to end member selection.

3.5. Application to the Lamar River AISA scene

The simulations described in the preceding sections were

motivated by our field experience in the Lamar River Basin

and by the need to establish a physically-based theoretical

foundation for analyzing archival image data for which field

measurements were unavailable. As an example of the
importance and applicability of our simulation-based results,

we developed a ratio-based relative depth map and two-end

member spectral mixture models from an AISA hyper-

spectral image of the Lamar River (Fig. 9a). A relative depth

value was assigned to each in-stream pixel by 1) computing

the natural logarithm of the ratio of apparent reflectances

(Section 2.1) measured in spectral bands centered at 555 and

693 nm to obtain a variable linearly related to water depth;

2) subtracting the minimum ratio value from every pixel, in

effect setting the minimum depth to zero; and 3) dividing

each pixel by the mean of all in-stream pixels. The resulting

image (Fig. 9b) highlighted a shallow gravel bar on the left

side of the channel and a narrow talweg along the outer

bank, illustrating the complex, fine-scale morphology

typical of this dynamic fluvial system. The relatively coarse

image data dictated that this filtered, 2.5 m representation of

the true bed topography would include a large proportion of
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Fig. 9. (a) AISA hyperspectral image of the Lamar River; (b) relative depth map with cooler tones indicating deeper water (background is the 884 nm band); (c)

stream bank mixture models for the exposed bar top and (d) moist point bar end members; (e) apparent reflectance spectra extracted along the transect shown

with the blue line in (a–d); and (f) modeled fractions (left axis) and relative depth cross-section (right axis).
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UNCORREvariable depth pixels analogous to our simulations. These

morphologic scenarios provided theoretical evidence that

the log-transformed band ratio provides an unbiased

estimate of the pixel-scale mean depth, although replacing

point measurements of depth with an area-weighted average

will inevitably entail a loss of information (i.e., reduction in

variance). The simulations thus justified our interpretation

of image-derived depth maps while also informing us of

their limitations and inherent uncertainties.

Similarly, two-end member spectral mixture models of

the Lamar River were consistent with the results obtained

for simulated stream bank mixtures (Section 3.4). We

created models that unmixed the wetted channel from 1)

the exposed, presumably dry bar top; 2) the point bar

immediately adjacent to the channel, which was probably

somewhat moist; and 3) riparian vegetation on top of the

outside cutbank. A single water end member was selected

from the talweg and a unit-sum constraint was included in

all three models. As predicted by our simulations, the high

spectral contrast between the channel and the vegetated

cutbank ensured accurate unmixing on the right side of the

river, as indicated by near-unity vegetation fractions (Fig.

9f) and low RMS errors (not shown). The two bar–channel

mixture models are displayed as false-color composites in

Fig. 9c and d, and, as expected, the gradually sloping left

margin of the river proved more problematic. Although the
two bar end members resulted in fraction images with

similar spatial patterns, the bank fraction estimated using the

dark point bar was consistently higher than when a brighter,

bar top spectrum served as the terrestrial end member; this is

expressed as a darker and/or greener tone in Fig. 9c relative

to d, which has an identical contrast stretch. The darkness of

the wetted channel in these images indicates very small,

mostly negative, bank fractions and small RMS errors,

suggesting that relatively deep water can be distinguished

from either bar end member. For the shallow mid-channel

bar, however, the slightly lighter, yellow tone indicates a

larger bank fraction and suggests that water depth has a

confounding effect on linear mixture models. On the

opposite, densely vegetated bank, the blue hue in Fig. 9c

represents large RMS errors when the brighter, bar top end

member was used, while the white area of 9d indicates both

large RMS errors and super-positive bank fractions for the

darker, point bar end member. Both of these images suggest

that simple two-end member models failed to provide a

complete description of the riparian environment.

The image spectra in Fig. 9e confirmed that accurate

unmixing of stream banks was favored by the large NIR

reflectance difference between the channel and adjacent

riparian vegetation and compromised by the similar spectral

shapes for submerged and exposed portions of gravel bars,

which appeared to differ only in overall brightness. The
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difficulty of unmixing bar–channel mixtures could be due to

both a lack of spectral contrast and the bvisibilityQ of the
terrestrial end member through shallow water, resulting in

considerable spectral confusion. This hypothesis was

supported by the cross-sections of relative depth and end

member fractions in Fig. 9f, where the bar fractions for both

end members mimic the channel geometry, notably the mid-

channel bar, revealed by the log-transformed band ratio,

with a gradual transition to high bar fractions along the left

bank.
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4. Discussion

4.1. Limitations and applicability

The first-order analysis presented in this study provided

an indication of the likely effects of sub-pixel variability of

depth and/or bottom albedo and stream bank spectral

mixtures upon image-derived depth estimates, but our

approach was limited in several important respects. First,

our representation of the water column optical properties

was simplistic and could be refined by incorporating

chlorophyll, dissolved organic matter, and vertical concen-

tration gradients; in situ measurements of absorption and

scattering coefficients would be invaluable. Second, our

simulated pixels did not incorporate sensor spectral response

or point spread function and assumed linear mixing,

ignoring in-water adjacency affects. We also did not

consider the case where both depth and substrate vary

simultaneously on a sub-pixel scale. Sensor characteristics

could be included with appropriate technical data, but the

problems of intimate mixtures and co-varying depth and

bottom albedo present greater challenges. Finally, our

simulations were based on only a handful of measured

spectra from one small stream in Yellowstone National Park

and these bank material and substrate end members might

not be representative of other rivers in different environ-

ments. Nevertheless, we believe that the analysis presented

here is sufficiently general to illustrate, in a physically-based

manner, important relationships among channel morphol-

ogy, sensor spatial resolution, and the uncertainty inherent

to spectrally-based depth retrieval.

4.2. Advantages of ratio-based depth retrieval

The results outlined above demonstrated the utility of the

log-transformed band ratio for estimating water depth and

indicated that the technique is particularly well-suited to

complex fluvial environments like the Lamar River. A

primary advantage of the ratio-based algorithm is that the

site-specific normalization inherent to the ratio implicitly

accounts for solar geometry and specular reflection from the

water surface. Because this surface reflectance is spectrally

flat (Legleiter et al., 2004), it will affect both bands equally

and cancel during the ratio calculation. Unlike oceano-
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graphic applications where sun glint can be attributed

primarily to wind-induced waves and corrected uniformly

across an image, pixel-by-pixel removal of the specular

component of the upwelling radiance is critical in rivers

because the flow-related turbulence responsible for the

irregularity of the water surface varies spatially as a function

of depth, velocity, and substrate particle size.

Similarly, although the topographic effects described in

Section 3.1 could severely compromise analyses based on

the absolute magnitude of Lu, ratio-based depth retrieval

algorithms should be less affected. Because the incidence

angle terms in Eq. (2) are spectrally invariant and occur in

both the numerator and denominator, bed topography will

be implicitly accounted for in each individual pixel. The

accuracy and precision of image-derived estimates will still

be lower in areas with steep bed slopes and/or an

unfavorable aspect because Ed and thus Lu will be reduced.

When the bed is poorly illuminated, changes in depth will

correspond to very small changes in Lu that could be below

the detection limit of many imaging systems (Legleiter et

al., 2004). Because streambed slope and aspect are spatially

variable, the magnitude of these topographic effects will

also vary throughout an image to an extent that will not, in

practice, be known a priori. Acquiring data at lower hs will
reduce topographic effects but could introduce problems

(i.e., sensor saturation) related to specular reflection from

the water surface; Mobley (1999) cautions that sun glint is

inevitable when both solar and view zenith angles are

small. Collecting data at off-nadir views could mitigate this

effect but might complicate flight planning and geometric

correction.

Our simulations of beta-distributed depths and substrate

patches also suggested that ratio-based depth retrieval is

robust to fine-scale bottom morphology and substrate

heterogeneity. Whereas the REDUB spectra calculated for

stepped streambeds were subject to a strong, spectrally-

dependent bias toward shallower water, the REDUB ratio

consistently reproduced the area-weighted mean depth for

uniform, symmetric, and highly skewed depth distributions.

When bright limestone and dark periphyton substrates were

combined in varying proportions at a fixed depth, the

spectral REDUB was again strongly biased while the

REDUB ratio reproduced the actual depth for shallow water

and produced relatively small errors in deep water. The

robustness of the band ratio in these simulations reflects the

theoretical basis of the technique—whereas a change in

substrate reflectance affects both ratio bands similarly, an

increase in depth produces a much greater decrease in

radiance in the band with stronger attenuation (Dierssen et

al., 2003). Our results support the finding of Stumpf et al.

(2003) that ratio values for different substrates at similar

depths are similar to one another and imply that the ratio-

based algorithm is more appropriate for complex in-stream

habitats than alternative approaches that do not include such

normalization. For example, the comparative spectral

classification method of Louchard et al. (2003), which
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assigns depth and substrate reflectance values to image

pixels by selecting the Hydrolight-modeled spectrum most

similar to the radiance measured by the imaging system,

might not be able to account for spatial variations in

specular reflectance and bottom slope and could also be

sensitive to sub-pixel mixtures of depth and/or bottom

albedo. Although this type of sophisticated spectrally-based

analysis could prove useful in the future, at present the ratio-

based algorithm provides a simple, effective method for

mapping river channel morphology.

4.3. Problems and prospects for spectral mixture analysis

The simple, two-end member models for mixed pixels

along stream banks described in Section 3.4 and applied to a

hyperspectral image of the Lamar River in Section 3.5

indicated that the ability to unmix streamside spectra is

strongly dependent on bank morphology. Specifically,

whereas bank fractions for vegetated cutbanks were

modeled very accurately, spectral mixture models developed

for gravel bars typically featured relatively large fraction

errors. The differences between these two bank types

illustrated the importance of spectral contrast and demon-

strated the difficulty of discriminating between a shallow,

submerged gravel bed and an adjacent, exposed bar surface.

Our analysis of the gravel bar scenario also indicated that fb
estimates were sensitive to the selection of both terrestrial

and aquatic end members, with smaller fraction errors for

deep-water spectra and bank fraction overestimates asso-

ciated with darker terrestrial spectra. These results clearly

indicate that a greater degree of confidence can be assigned

to mixture models developed for steep, vegetated banks than

for gradually sloping gravel bars. This finding implies that

spectral mixture analysis will be a more reliable tool for

some channel morphologies, such as meandering meadow

streams with cohesive banks, than for others, such as

bedload-dominated braided channels with numerous gravel

bars.

The sensitivity to both morphology and end member

selection observed in our simulations implies that more

sophisticated multiple end member spectral mixture analysis

(MESMA), in which the end members used to model mixed

spectra are allowed to vary on a pixel-by-pixel basis

(Roberts et al., 1998), might be a more appropriate method

for fluvial environments. By coupling bank and substrate

spectra with a radiative transfer model such as Hydrolight,

MESMA could also be useful for depth retrieval. Hedley

and Mumby (2003) have proposed an SMA-based method

of mapping depth and sub-pixel proportions of benthic end

members, but their approach does not provide any measure

of the error in the mixture model (e.g., root mean square

error or spectral residuals; see Roberts et al., 1998) and has

not yet been tested on real data. Future application of SMA

to rivers will require the development of more extensive

substrate spectral libraries and the acquisition of more

advanced, hyperspectral image data, which should involve
ED P
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careful evaluation of the tradeoffs among spectral detail,

spatial resolution, and radiometric precision.

4.4. Implications for remote measurement of river channel

change

The fundamental motivation for this study was to

determine whether remotely sensed data could be used to

estimate water depth with sufficient accuracy and precision

to document subtle changes in channel morphology. Our

results indicate that this important question cannot be

answered with broad generalizations but must instead be

addressed on a case-by-case basis. The analysis of simple

morphologic scenarios presented here illustrated how

streambed slope and aspect, bed topography, and substrate

heterogeneity influence the upwelling spectral radiance

from a shallow stream channel. These simulations also

suggested, however, that the simple, ratio-based depth

retrieval algorithm is robust and well-suited for complex

fluvial systems, consistently reproducing the area-weighted

mean depth when depth and/or substrate vary on a sub-pixel

scale. The ratio calculation also implicitly accounts for

specular reflectance and topographic effects, but solar–

streambed geometry could still adversely affect depth

retrieval at high solar zenith angles and/or where the bed

slopes away from the sun. In topographically complex

meandering rivers, the resolution and reliability of depth

estimates could thus vary from one pixel to the next.

In fact, the primary implication of our study is that the

relationship between sensor spatial resolution and channel

morphology establishes a set of complex, spatially variable

controls on the accuracy and precision with which river

channels can be remotely mapped. For example, both our

simulations and the mixture models we derived from the

Lamar River hyperspectral image indicate a strong morpho-

logic dependence, with SMA-derived bank fractions esti-

mated more accurately for steep, vegetated banks than for

gravel bars. This effect is, of course, mediated by sensor

spatial resolution because the proportion of mixed terres-

trial/aquatic pixels will decrease as the ratio of channel

width to image pixel size increases. For the fluvial

geomorphologist, these results imply that sub-pixel refine-

ment of width measurements (i.e., multiplying fb by the

pixel size for the end-points of a cross-section) will likely be

more accurate along the outer bank of a meander bend than

along the opposite point bar. If this hypothesized pattern

holds true, a greater degree of confidence can be assigned to

lateral migration and pool scour along the outer bank than to

point bar growth and bed aggradation on the inner bank.

Within the channel proper, the ability to obtain realistic

representations of pools, riffles, and other habitat features

from digital image data will depend in a complex and

spatially variable manner upon both the spatial resolution of

the imaging system and the typical dimensions of channel

features. If the spatial frequency of bed elevation change

within the channel exceeds the sampling frequency of the
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sensor, morphologic detail will be obscured, with the

discrepancy between representation and reality becoming

more pronounced as this frequency difference increases. In

essence, the morphology of the channel complicates

attempts to document that morphology using remote sensing

techniques, and a spatial resolution that is adequate for one

reach might not be appropriate for other, more complex

channel segments.

Given this intimate linkage between sensor spatial

resolution and channel morphology, the selection of an

appropriate pixel size for specific studies becomes an

important practical question. Because the log-transformed

band ratio could provide an unbiased estimate of the area-

weighted pixel-scale mean depth, the choice of a spatial

resolution does not necessarily need to involve radiative

transfer models or complicated hydrologic optics but can

instead be posed in terms of sample design. Efficient use of

remotely sensed data for river research and management

will require familiarity with the channels of interest along

with clear statements of the specific objectives of each

study. We propose that although the accuracy and precision

of image-derived depth estimates are complicated, spatially

variable functions of channel morphology and sensor

characteristics, they are nonetheless governed by funda-

mental physical processes which can be modeled to quantify

the resolution and reliability of spectrally-based depth

retrieval. Research toward this goal is needed to develop

operational guidelines and define realistic expectations for

remote sensing of rivers.
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5. Conclusion

The contribution of remote sensing technology to river

research depends on the ability to obtain from digital

image data quantitative information on the channel

characteristics of interest with the accuracy and precision

required by specific applications. In this study, we

evaluated the effects of sub-pixel variations in depth and

bottom albedo on image-derived depth estimates and the

role of morphology and end member selection in spectral

mixture analysis of stream bank pixels. Using a radiative

transfer model, we generated a database of spectra for

various depths and substrate types, which we then coupled

(assuming linear mixing) to various morphologic scenarios

including a planar sloping streambed, a stepped bed, beta

distributions of fine-scale depths, and heterogeneous

substrates. These simulations indicated that although the

upwelling spectral radiance from a shallow stream channel

can be highly sensitive to each of these factors, simple,

ratio-based depth retrieval algorithms are robust to topo-

graphic effects, fine-scale bottom morphology, and patchy

substrates. For mixed pixels along channel margins, our

results indicated that bank fractions derived from two-end

member mixture models were highly accurate for vegetated

cutbanks but less reliable for gravel bars. These theoretical
OOF

results were tested by producing a relative depth map and

calculating bank and water fractions from a hyperspectral

image of the Lamar River. The primary conclusions of this

study are that the utility of remotely sensed data for

characterizing fluvial environments depends strongly on

the relationship between sensor spatial resolution and

channel morphology and that the accuracy and precision

of image-derived depth estimates are spatially variable and

cannot be categorically defined. The ability of the ratio-

based depth retrieval to consistently reproduce the area-

weighted, pixel-scale mean depth for our simulated

morphologic scenarios was encouraging, however, and

future research will focus on developing methods for

selecting an appropriate pixel size for different types of

channels. A related goal crucial for application-oriented

users of digital image data is to provide physically-based,

quantitative estimates of the uncertainty inherent to remote

mapping of river channel morphology.
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