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Abstract. Specific protein misfolding and aggregation are mechanisms underlying various neurodegenerative diseases such
as prion disease and Alzheimer’s disease (AD). The misfolded proteins are involved in prions, amyloid-B (AB), tau, and a-
synuclein disorders; they share common structural, biological, and biochemical characteristics, as well as similar mechanisms
of aggregation and self-propagation. Pathological features of AD include the appearance of plaques consisting of deposition
of protein AP and neurofibrillary tangles formed by the hyperphosphorylated tau protein. Although it is not clear how protein
aggregation leads to AD, we are learning that the cellular prion protein (PrP€) plays an important role in the pathogenesis of
AD. Herein, we first examined the pathogenesis of prion and AD with a focus on the contribution of PrP€ to the development
of AD. We analyzed the mechanisms that lead to the formation of a high affinity bond between A3 oligomers (ABOs) and
PrPC. Also, we studied the role of PrP€ as an ABO receptor that initiates an ABO-induced signal cascade involving mGIuRS5,
Fyn, Pyk2, and eEF2K linking AP and tau pathologies, resulting in the death of neurons in the central nervous system.
Finally, we have described how the PrP¢-ABOs interaction can be used as a new potential therapeutic target for the treatment
of PrPC-dependent AD.

Keywords: Alzheimer’s disease, AP oligomers, amyloid-3, amyloid-8 protein precursor, neurodegenerative diseases, prion
protein, prion protein refolding, prions, tau pathologies ABO-induced signal cascade

INTRODUCTION missible spongiform encephalopathies (TSEs) [3]
such as scrapie in sheep, chronic wasting dis-
ease in deer, bovine spongiform encephalopathy in
cattle, and Creutzfeldt-Jakob disease (CJD), Fatal
Familial Insomnia, Gerstmann—Straussler—Scheinker
syndrome in humans [4]. In humans, the mature PrPC
protein is encoded by the PRNP gene, located on
the short arm of chromosome 20 [53, 6]. PrPC is a
highly conserved glycoprotein bound to the cellular
membrane by means of glycosylphosphatidylinosi-
tol (GPI)-anchor [7]. The protein is associated with

*Correspondence to: Vincenzo Mattei, Biomedicine and Adv- lipid raft microdomains [8], sub-compartments of
anced Technologies Rieti Center, “Sabina Universitas”, Via the plasma membrane mainly enriched in choles-
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739607; E-mail: v.mattei @sabinauniversitas.it. terol and glyCOSphlngthldS such as GM3, GMl’ and

Cellular prion protein (PrP®), a molecule dis-
covered by Stanley Prusiner [1], is present in all
nucleated cells although it is mainly expressed in
neuronal cells [2]. Prion protein has two possible
tridimensional (3D) conformations: the physiolog-
ical isoform PrP® and the scrapie prion protein
isoform (PrPSC), which is involved in the trans-
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GD3 [9] and proteins involved in signal transduc-
tion [10]. Following its biosynthesis, PrP€ traffics
dynamically through diverse membrane compart-
ments to be processed, glycosylated, properly folded,
and then correctly anchored on the plasma membrane
[11]. PrPC is formed by a N-terminal region, with 5
octapeptide repeats able to bind the Cu* ions, a mid-
dle region that contains a cluster of lysine residues
and a hydrophobic domain [12], and a C-terminal
globular domain which contains 3 a-helices, 2 short
B-sheets, and interconnecting loops [13, 14]. More-
over, a disulfide bond is found between residues 179
and 214 [15], and some N-linked glycans can be
added at residues 181 and 197 [16]. PrP€ and PrPS¢
have the same molecular weight, the same amino acid
and oligosaccharide composition as they are synthe-
sized by the same gene, but they have a distinct 3D
conformation: PrPC is enriched with a-helical con-
tent (42%), and it has a little B-sheet structure (3%),
whereas PrPS¢ shows less a-helical content (30%)
and is rich in B-sheet structure (43%) [17, 18]. Over
time, PrPC has been associated with an astounding
variety of biological processes including neuronal
homeostasis, neuroprotective and pro-myelinating
functions, neuronal differentiation process, neuro-
transmission, stem cell fate, protection against stress
or cell adhesion, zinc-copper transport, and calcium
homeostasis [19, 20]. The involvement of PrPC in so
many activities can be explained by the role of PrP€ in
cell signaling events [21]. Firstly, the ability of PrP®
to bind Cu®* ions in the fractions of the brain mem-
brane and to improve the incorporation of copper into
superoxide dismutase [22], suggest a possible antiox-
idant activity of the protein [23], that could regulate
the influx of Cu?™ into neurons and exerts a protective
activity against Cu>T excess [24]. Indeed, there is a
lot of evidence to suggest that Cu>* excess in cells
may be involved in the conformational conversion of
PrPC and in the transmission of prion diseases [25].
Furthermore, since PrPC is preferentially localized in
the pre- and postsynaptic compartments of nerve end-
ings, it has been thought that it may be involved in
preserving normal synaptic structure and function by
regulating synaptic transmission and plasticity [26].
Mattei et al. examined the hypothesis that PrPC plays
a role in the receptor-mediated apoptotic pathway
[27], and in a recent study it has been shown that
PrPC may act as an antiapoptotic agent by blocking
some of the internal environmental factors that ini-
tiate apoptosis [28]. Recent studies documented the
involvement of PrPC in angiogenesis, a process in
which the increase of PrP€ is mediated by hypoxia

[29]. Additionally, in vitro studies proposed a role
for PrP€ in the regulation of neuritogenesis [24, 30],
in the axonal growth [31], and in tumorigenesis by
regulating tumor growth, differentiation, and resis-
tance to conventional therapies [32, 33]. In the last
years, several scientists have highlighted an active
role of PrPC in stem cell biology [20, 34]. PrPC is
expressed in a wide variety of stem cells such as
embryonic and hematopoietic stem cells, taking part
in the modulating of proliferation and self-renewal
capacity [35], stemness, and in the neuronal differen-
tiation of neural stem cells [36]. Lately, Martellucci et
al. demonstrated the presence of PrPC in human den-
tal pulp derived mesenchymal stem cells (hDPSCs)
and its role in the neuronal differentiation process [6,
37]. It also demonstrated that the integrity of the lipid
raft microdomains is essential for PrPC-induced sig-
naling pathways and that it is essential for hDPSCs’
neuronal differentiation process induced by epider-
mal growth factor and basic fibroblast growth factor
[38].

PrPC® REFOLDING MECHANISM AND
ROLE OF PRIONS IN
NEURODEGENERATIVE DISEASES

Mechanism of PrPC€ refolding

Mammalian prions, the pathogens that cause TSEs,
are transmissible particles devoid of nucleic acid
composed exclusively of a modified protein that
reproduces by recruiting PrPC and stimulating its
conversion into infectious isoform PrPS¢ [39]. Once
PrPS¢ is introduced into individuals from the envi-
ronment or is generated endogenously, it converts the
PrPC into additional molecules of PrPS¢ [40]. PrPS¢
propagate by self-perpetuating the structural infor-
mation stored in the abnormally folded, aggregated
conformer PrPS¢ of the host encoded PrP€ [41]. PrPC
is converted into PrPS¢ through specific mechanisms
involving a post-translational process during which
it acquires a high content of B-sheets [42, 43]. Two
distinct mechanisms have been proposed to account
for such behavior.

In a first model, the formation of PrP¢ is a nu-
cleation-dependent polymerization process. In the
absence of a pre-existing aggregate, the conversion
between PrPC and PrPS¢ is reversible, but the PrPS¢
monomer is less stable than PrPC. The PrPS¢ aggre-
gates, however, promote the conversion of PrPC by
binding and stabilizing the PrPS¢ conformation.
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In a second model, defined “template-assisted
mechanism”, the PrPS¢ form is intrinsically more
stable than PrPC, but kinetically inaccessible [3]. In
this case, PrPS¢ could promote conversion by cat-
alyzing the rearrangement of a PrPC molecule, or a
partially destabilized intermediate, to the more stable
PrPS¢ conformation and infectivity would therefore
be based on the ability of the PrPS¢ molecule to bind
and catalyze the conversion of existing intermediate
molecules [44].

Several studies have shown that lipid rafts are
important in the refolding process of PrPC in PrPS¢
[45, 46]. The increasing of the membrane-anchored
PrPC local concentration seems to be able to induce
a conformational transition accompanied by di- or
oligomerization of the PrPC, and that membrane
anchoring of an excess of prion protein is the struc-
tural prerequisite in the development of prion diseases
[9, 47]. Misfolding of the PrP€ into the amyloido-
genic isoform PrPS¢ is a key pathogenic event in prion
diseases [48] that can present themselves as genetic,
infectious, or sporadic diseases. The conformational
modification of PrPC in PrPS¢ with a chain reaction
[1], in which PrPS¢ isoform stimulates the conversion
of PrPC in the brain, and the accumulation of these
abnormal isoforms, leads to the appearance of highly
structured amyloid fibers, which finally form plaques.
A similar mechanism of misfolding and aggregation
in fibrils and amyloid plaques could be reproduced by
a variety of proteins in various diseases such as AD,
Parkinson’s disease, amyotrophic lateral sclerosis,
frontotemporal dementia, and Huntington’s disease
[49].

Cellular and molecular mechanisms of prion
neurotoxicity

While a great deal is now known about the
mechanisms of prion infectivity and propagation,
we have a much more limited understanding about
how misfolded PrPS¢ damages neurons and causes
the neuropathological abnormalities characteristic of
the disease [40]. Evidence suggests that infectivity
(the ability to self-propagate) and neurotoxicity (the
ability to produce neuropathology) may be distinct
properties attributable to different molecular forms
of misfolded PrP [50]. Although recent studies with
other amyloidogenic proteins suggest that ordered
pre-fibrillar or oligomeric forms may be responsible
for cell dysfunction, the precise nature of the neuro-
toxic species and the mechanism of cell death have yet
to be determined. In a study, Sanghera et al. folded

the recombinant prion protein (rPrP) into two dis-
tinct, B-sheet-rich forms with an intact disulfide bond,
noting how the structural properties of the globular
and pre-fibril aggregates of rPrP in both states are
toxic to neuronal cells in culture [51]. Considerable
evidence show that PrPC plays an essential role in
mediating prion neurotoxicity, beyond its function
as a required precursor to PrPS¢ [52, 53]. In this
regard, it has been hypothesized that PrPC may act
as a cell surface receptor that binds PrPS¢ and trans-
duces downstream neurotoxic signals, a process that
could involve the subversion of a normal, physio-
logical activity of PrP€ [50, 54]. Furthermore, it is
likely that the oligomeric forms of misfolded PrP
have been found to be more neurotoxic than large
self-propagating PrPS¢ polymers [55]. An important
clue to the mechanism underlying prion neurotoxi-
city is the observation that PrP€ knockout neurons
are relatively resistant to the toxic effects of PrPS°
that is supplied exogenously by wild-type astrocytes
or by neighboring neurons [52, 53]. This result sug-
gests that a critical neurotoxic signal is generated as
part of the process by which endogenous cell surface
PrP€ is converted into PrPS¢ and, in the absence of
PrPC, this signal is not produced. As PrPC is normally
attached to the cellular membrane by a GPI-anchor
[56], one might predict that a signal-transducing func-
tion for PrP® would require its membrane anchoring.
Consistent with this prediction, scrapie-inoculated
mice expressing an anchorless form of PrP€ show an
altered neuropathological profile, suggesting that the
neurotoxic signaling processes normally mediated by
PrPC require its attachment to the plasma membrane
[57, 58]. While there are several studies suggest-
ing signal-transducing activities for cell surface PrP®
[59], the pathways by which its interaction with
PrPS¢ produces neurotoxic signals remain mysteri-
ous. Although the mechanism of neurodegeneration
and the involvement of PrPS¢ is far from clear, data
indicates that neuronal apoptosis might be related to
activation of several signaling pathways, including
proteasome dysfunction, alterations in prion matura-
tion pathway and endoplasmic reticulum (ER) stress.
Castilla et al. describe a molecular mechanism of
PrPS¢ neurotoxicity in which the key step in the
pathogenesis of prion disorders, regardless of their
etiology, is the alteration of ER homeostasis due to
drastic modifications of the physico-chemical prop-
erties of PrP, which leads activation of ER-dependent
signaling pathways that control cell survival [60].
Like other proteins that traffic through the ER, mis-
folded PrP is retrograde transported to the cytosol
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for degradation by proteasomes. The accumulation of
even small amounts of cytosolic PrP has been found
to be strongly neurotoxic both in cultured cells and
in transgenic mice: the mice developed normally but
acquired severe ataxia, with cerebellar degeneration
and gliosis. This establishes a mechanism for con-
verting wild-type PrPC to a highly neurotoxic species
that is distinct from the self-propagating PrPS¢ iso-
form and suggests a potential common framework
for several neurodegenerative disorders [61].

Prions and neurodegenerative diseases

PrPC plays a central role in prion diseases, a set
of fatal and incurable neurodegenerative disorders.
These disorders share a common molecular mecha-
nism, which is the conformational conversion of the
GPI-anchored, properly folded PrPC into the infec-
tious PrPS¢ that accumulates in the brain of affected
individuals [62]. A list of the best-known human
TSEs follows:

Kuru

A neurodegenerative, not inflammatory, and infec-
tious disease caused by cannibalism practices. The
most typical feature is amyloid “kuru” plaques, which
are present in most of cases. Shrunken neurons with
dispersed Nissl bodies and intracytoplasmic vacuoles
may be present, as well as vacuolated striatal neurons
and cerebellar Purkinje cells. A neuropathological
feature may be a spongiform transformation and
neuronophagy affecting predominantly the deeper
cortical layers without involvement of hippocampal
neurons. Microglial and astroglial proliferation can
also be detected [63, 64].

Creutzfeldt—Jakob Disease

The most common prion disease in humans,
CJD is a transmissible and rapidly progressive
degenerative disease of the central nervous system
(CNS) caused by an accumulation of pathologi-
cally conformed PrP. It can be classified into four
major phenotypic variants, according to molecu-
lar, histopathological, and clinical features: sporadic
(sCJD), familial (fCJD), iatrogenic (iCJD), and vari-
ant CJD (vCID). Neuropathological changes include
spongiform transformation, neuronal loss, astrocy-
tosis, and the formation of PrP-amyloid plaques in
the gray matter, although they occur in only 10-15%
of patients with the MV2 subtype of sCID [65].
Different subtypes of sCJD are distinguishable, to
depending on the amino acid specified at the codon

129 Met/Val polymorphic site in PRNP and the type
of proteinase K-resistant prion protein fragments,
using a western blot examination [66—68].

Structurally, the amyloid plaques of CJD patients
show marked heterogeneity. In particular, the plaques
present in subjects affected by sCJD are reminis-
cent of the unicentric stellate plaques of patients
with Kuru, being characterized by a dense center of
interwoven fibrils and radiating fibrils at the periph-
ery with prevalent absence of dystrophic neurites.
Florid plaques, the typical vCJD plaques, are also
unicentric but the architecture is less compact and
more diffuse, moreover abnormally configured neu-
ronal processes are identifiable in the core and in the
edge of the plaque. The form and structure of florid
plaques is comparable to the architecture of neu-
ritic plaques, characterized by a central zone of dense
amyloid enclosed in a corona of dystrophic Tau-
positive neurites [69] commonly observed in the brain
parenchyma of AD patients.

Gerstmann—Strdussler—Scheinker syndrome

Slowly progressive hereditary autosomal dominant
neurodegenerative disease or encephalo(myelo)pathy
with multicentric PrP plaques localized in the cere-
bral and cerebellar cortex and the basal ganglia [70].

Fatal Familial Insomnia

A rare autosomal-dominant inherited prion dis-
ease characterized clinically by severe sleep disorder,
motor signs, dysautonomia, and abnormal behavior.
Fatal familial insomnia is associated with the aspar-
tic acid to asparagine substitution at codon 178 of the
prion protein gene [71, 72].

Lately, it has been discovered that some neuro-
degenerative diseases such as AD, Parkinson’s dis-
ease, amyotrophic lateral sclerosis, frontotemporal
dementia, and Huntington’s disease share common
pathogenic mechanisms with prion diseases, includ-
ing the presence of misfolded protein deposits,
protein aggregation and progressive neuronal loss in
specific areas of the brain. The misfolded proteins
involved in these disorders (amyloid-f3 (A3), tau, and
a-synuclein) share common structural, biological,
and biochemical features, as well as similar mech-
anisms of aggregation and self-propagation [73].
These deposits composed of AP, or a-synuclein
protein spread from cell to cell, in a prion-like
manner and emerging evidence suggests that the
circulating soluble species of these misfolded pro-
teins, the oligomers, could play an important role in
the development of pathology while, the less toxic
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insoluble aggregates would exercise a protective
function [74, 75].

Recent evidence suggests that PrP€ can act as a tox-
icity transduction receptor for amyloid-f3 oligomers
(ABOs) and for this reason it is becoming clear that
PrPC can play an important role in the pathogen-
esis of AD [76]. Pathological features associated
with neurodegeneration in AD include the forma-
tion of plaques due to the deposition of ABOs and
neurofibrillary tangles (NFTs) formed by the hyper-
phosphorylated tau protein [77]. ABOs bind directly
to PrP¢ [78], and it is this ABOs-PrPC interaction that
plays an important role in A3 toxicity by aggravating
its interference with synaptic plasticity [79].

ALZHEIMER’S DISEASE: AMYLOID
PLAQUES AND NEUROFIBRILLARY
TANGLES

AD is a chronic neurodegenerative disease and
one of the most common forms of dementia [80].
AD manifests with symptoms such as: short-term
memory loss, visual-spatial perception disorders, and
impaired language and executive functions [81].

From a neuropathological point of view, AD is
characterized by extracellular amyloid plaques and
NFTs located within the cells. Although different in
shape, density, and localization, these deposits coop-
erate in destroying CNS regions responsible for learn-
ing and memory, the hippocampus, and the neocortex
[82]. Amyloid plaques are aggregates of AP peptide,
a product of natural cellular metabolism, consisting
of several amino acids ranging between 36 and 43.
The AR peptides derive from the proteolytic cleavage
of amyloid-f3 protein precursor (ABPP), a transmem-
brane protein expressed by the cells of various organs
such as the brain, heart, spleen, and kidneys.

NFTs are filamentous inclusions typical of AD
and other neurodegenerative diseases called “tau-
opathies”, located within pyramidal neurons. The
number of NFTs found in brain tissue is considered
a pathological marker of the dementia severity. The
main component of such neuropathological lesions
is an aggregated and hyperphosphorylated form of
the tau protein. Tau is an abundant axonal soluble
protein, and it promotes the microtubule assembly
and stability and regulates the molecules and cell
organelles transport [83]. The hyperphosphorylated
form of tau observed in tauopathies is thought to
contribute largely to neuronal degeneration and indi-
rectly, to cell death [84].

Amyloid Precursor Protein (APP) and
Alzheimer’s disease

Studies on APP as a genetic determinant in AD
began in the mid-1980s observing that individuals
with Down syndrome who survived over 30-40 years
of age developed the classic neuropathological and
clinical characteristics of AD. These data are focused
on the involvement of chromosome 21 in AD, sup-
porting the theory that the over-expression of a gene
located on this chromosome and present in double
copy in Down syndrome, could reproduce the clin-
ical phenotype and neuropathology of subjects with
AD. Studies carried out on this pathology were able
to identify the first linkage between a locus of chro-
mosome 21q and the familial form of early-onset
AD. During the same period, other groups located
the gene coding for APP on chromosome 21, which
became the first candidate gene responsible for the
inheritance of AD. Finally, sequencing and screening
for mutations were carried out which unequivocally
demonstrated that APP was the gene locus of the
disease [85]. The gene product is represented by a
ubiquitous type 1 membrane glycoprotein, encoded
by the homonymous gene located, as mentioned, on
chromosome 21q2.

There are several isoforms produced by alterna-
tive gene splicing of 19 exons: exons 1-13, 13a,
and 14-18. The predominant transcripts are APP695
(exons 1-6, 9-18), APP751 (exons 1-7, 9-18),
and APP770. All these transcripts encode multiple
domain proteins with a single intramembrane region.
These isoforms differ from each other as in the case of
APP751 and APP770 containing 7 exons that encode
a serine protease inhibitor domain (Kunitz proteinase
inhibitor, KPI). APP695 is the smallest isoform and
is the predominant form in neuronal tissue while,
APP751 is the predominant form in glial cells. AP
derives from the region of the protein encoded from
its exons 16 and 17 [86]. The nucleotide sequenc-
ing of the exon 17 APP gene led to the discovery of
numerous missense mutations in families with early
onset AD: the first mutation was found in an English
family and called the “London mutation”. It is charac-
terized by the substitution of a valine in an isoleucine
at codon 717; mutations in codons 670 and 671 were
discovered in two Swedish families and consist of a
substitution of a base pair: lysine and methionine are
replaced by aspartic acid and leucine (“Swedish muta-
tions”) immediately before the N-terminal segment
of the peptide AB. The “Flemish mutation” at codon
692 (Ala in Gly) causes an intermediate phenotype
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between cerebral amyloid angiopathy and AD. Other
pathogenic missense mutations have been described
at codons 716, 715, 714, 694, 693, and 665. Some of
these mutations could be responsible for an altered
metabolism of ABPP, being at the level of the secre-
tase cleavage site. Two ways of proteolytic processing
of ABPP are known: a non-amyloidogenic way and
an amyloidogenic way [86]. The non-amyloidogenic
pathway involves a-secretase, an enzyme that cuts
ABPP, generating a soluble N-terminal fragment
(sABPPa) and a C-terminal fragment anchored to the
membrane, CTFa (also known as C83). The amy-
loidogenic pathway involves 3-secretase, an enzyme
also known as BACE (3-APP-site cleaving enzyme),
which cuts the ABPP at the level of the N-terminal end
generating the SABPP[3 fragment and the C- fragment
CTFp terminal (also known as C99). Cleavage of
some [3-secretases can be displaced by ten amino acid
residues, generating the sABPP fragment and the
CTFf ’(or C89) fragment. All C-terminal fragments
(C83, C99, and C89) are substrates for y-secretase,
a high molecular weight (>106kDa) multiprotein
enzyme consisting of a presenilin (presenilin 1 or
presenilin 2), associated with other components such
as nicastrin, anterior pharynx defective 1 (APH-1),
and presenilin enhancer 2 (PEN-2). When y-secretase
acts on the C83 fragment determines the formation of
the intracellular domain of APP (AICD) and p3 pep-
tide. The action of secretase at the level of the C99
fragment leads to form the AICD and the AB1-40 and
APB1-42 peptides, while on the fragment C89 deter-
mines AICD and Glul 1A fragments. Both types of
A can be found at the level of amyloid plaques, but
the AB1-42 peptide has a strongly neurotoxic action
and a greater tendency to aggregate than the AB1-49
form [87]. Under normal conditions, about 90% of the
secreted A[3 peptide is A31-49, the soluble form of the
peptide that only slowly converts to an insoluble 3-
sheet configuration and, for this reason, can be readily
eliminated from the brain. On the contrary, about 10%
of the secreted AP peptide is AP-42, which tends
to aggregate easily and settle early in the brain in
individuals with AD and Down syndrome [84]. At
the intracellular level, A is present in the form of
monomers, oligomers, protofibrils, and fibrils. While
the former does not show pathogenic action, the oth-
ers can facilitate the hyperphosphorylation of the
tau protein, the destruction of the proteasome and
mitochondrial functions, the deregulation of calcium
homeostasis, the loss of synapses, the decrease in
the release of neurotransmitters (acetylcholine) and
finally, can lead to the death of neurons [87].

Hpypothesis of the amyloid cascade

Research on AD over the past 25 years has been
dominated by the hypothesis of the amyloid cas-
cade. According to this hypothesis, a dysfunction of
the metabolism of ABPP and the consequent accu-
mulation of AP peptides and their aggregation in
the form of senile plaques in the brain parenchyma,
with consequent neuronal dysfunction and death,
represents the crucial event that leads to demen-
tia [88]. In the original hypothesis, these neuronal
alterations were attributed by many authors to the
toxic effects of the total amyloid. Over the years,
knowledge about the pathological features of AD
has increased, and this hypothesis was changed, as
it became clear how the correlation between demen-
tia or other cognitive alterations and the accumulation
of AP in the brain as amyloid plaques, were not lin-
ear. Research has focused on more specific alterations
of AP processing, such as the cleavage of ABPP
into different peptides, AB1-40 and APB1-42 and the
importance of ABOs (small aggregates of 2 to 12
and more peptides). Several studies have reported
that APB1-42 aggregates faster than ARBj-49, instead
oligomers have been shown to be more toxic than
mature fibrils. Then, the concept of soluble toxic
oligomers has been proposed to be responsible for the
neurotoxicity of the AP peptide. An example comes
from AB56, which is negatively associated with cog-
nitive decline in an APP mouse model, and some
authors have seen that it induces memory deficits
when injected into rat brains [89]. These intermedi-
ate forms lie between free or soluble A3 monomers
and insoluble amyloid fibrils, but the exact molec-
ular composition of these oligomers has not been
fully understood. The hypothesis of the amyloid cas-
cade suggests that synaptotoxicity and neurotoxicity
could be mediated by these soluble forms of the mul-
timeric species of the A} peptide, whose deposition
in the brain parenchyma would represent a crucial
phase in the process leading to AD. The dynamics
of these species and the poorly defined mechanisms
of toxicity make this topic particularly controversial
in this field [90]. One of the sticking points of the
amyloid cascade hypothesis is that apparently healthy
people can have many plaques. These subjects have
a lower oligomer-to-plaque ratio than patients with
dementia, but it is hypothesized that the plaques
sequester soluble oligomers until a limit is reached
beyond which the excess oligomers begin to dif-
fuse along the synaptic membranes [91]. Another
critical point is that to date no drug targeting A3
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has been recognized to be as effective as disease-
modifying. In fact, several possible drugs targeting
A have failed to demonstrate efficacy clinical trials
[92, 93], even if this might be due to a too late admin-
istration of these drugs to reverse the damage. On
June 7, 2021, the US Food and Drug Administration
(FDA) approved the drug aducanumab, a mono-
clonal antibody targeted against A for the treatment
of AD, however, evidence of clinical benefit from
two clinical trials of Phase III is contradictory and
inconclusive [94].

Other hypotheses of AD pathogenesis

Among amyloid hypothesis, other pathogenic
mechanisms are proposed, first of which is the tau
hyperphosphorylation hypothesis. Hyperphosphory-
lated tau in AD patients’ brains could contribute
largely to neuronal degeneration and indirectly, to
cell death, through two mechanisms: 1) the removal
of tau from microtubules and the consequent destruc-
tion of cell trafficking (events leading to dysfunction
and loss of synapses); 2) the production of a more
fibrillogenic form of tau protein, capable of blocking
transport processes and causing cell death. Moreover,
an association between the degree of tau aggre-
gation and the pathological severity of AD was
described. Further, oxidative stress and inflammation
are involved in AD brain pathology. Lipid peroxi-
dation was found in membranes, and other damage
stress in proteins and nucleic acids, while inflam-
matory processes include astrocytes and microglia
activation, with higher proinflammatory cytokines
[95].

ROLE OF PRION PROTEIN IN
ALZHEIMER’S DISEASE

Cellular ABOs receptors a bridge between PrP
and amyloid hypothesis

Even after many years of intensive research, the
mechanisms that govern the etiology of AD are still
partially unknown, also because of the numerous
molecular pathways linked to the neurodegenerative
process. Proteolytic pro-amyloidogenic processing
of ABPP, as mentioned above, triggers the gener-
ation of monomeric AP peptides, intermediary A3
oligomers, and high molecular weight (3-stranded fib-
rils that contribute to the development of dementia
at several levels [96, 97]. In particular, the het-
erogeneity of structure, morphology, conformation,

and post-translational modification of the soluble
amyloid species greatly complicates a mechanistic
reconstruction of the ABOs effect on CNS cells
[98, 99]. However, accumulating data suggest that
AP impairment of synaptic plasticity and memory
is closely related to biological activity of soluble
nonfibrillary AP peptide aggregates [100]. Indeed,
ABO burden in the brain correlates with synaptic
impairment and cognitive decline both in AD sub-
jects [101] and in animal models of the pathology
[102]. Further, individuals expressing Osaka muta-
tion of the APP gene develop dementia without the
presence of amyloid plaques but accumulate ABOs
within neurons [103]. Among the different soluble
species of ABO, that can be antigenically distinct
from monomeric A peptides [104], some are char-
acterized by a significant ligand-like specificity to
cultured hippocampal neurons [105] or brain slice
preparations [106] suggesting the presence of cell
surface receptors that mediate signal transduction of
synaptic selective toxicity. To date, at least 20 pos-
sible putative cognate-ligand receptors have been so
far proposed [107], but among all the PrP€, show-
ing the highest-affinity for ABOs, can be assumed
to have greater relevance to the progressive nature
of AD [108]. Several lines of evidence support this
assertion: ABOs, monomers or fibrils not included,
have been shown to bind directly to PrPC in a cell-
based screen with affinity in a nanomolar range and
antibodies against PrPC strongly block this interac-
tion [109]. Moreover, spatial learning and memory
deficits in animal models of AD depend on the brain
expression of PrPC [110] while, antibodies against
the PrP° receptor rescue the loss of cognitive perfor-
mance [111]. Nonetheless, several authors, reported
that in certain contexts the pathological effect exerted
by ABOs on synaptic dysfunction, reduction of spine
density, inhibition of long-term potentiation, and
enhancement of long-term depression (both the last
two processes are considered models of synaptic plas-
ticity) are independent on the actual presence of
PrP¢ receptors [112]. Most likely, these differences
regarding ABOs-induced degenerative cascades are
due to the possible interaction of specific species
of oligomers with other cell surface receptors able
to activate several toxic pathways for synapses and
finally neurons. Intriguingly, in a similar way as
described for ABOs, membrane PrPC, seems to par-
ticipate in the establishment of several membrane
complexes with numerous [3-sheet-rich conformers
retaining a prominent role as neurotoxic effector
[113].
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Fig. 1. Tau phosphorylation cascade.

PrP-dependent downregulation of Fyn signaling
cascade from ABO to tau toxicity

Allegedly, the aforementioned physical assembly
of the oligomer-PrPC complex remains structurally
localized in the external leaflet of the outer sur-
face of the plasma membrane, in particular inside
the lipid rafts [114]. The signaling cascade induced
by ABOs-PrPC binding and its downstream interact-
ing partners began to emerge with the identification
of a close functional relationship of the complex
with Fyn [115] (Fig. 1), an intracellular non-receptor
tyrosine kinase highly expressed in neurons [116]
that belongs to the SRC family kinases. The Fyn
kinase plays a role in many biological processes
in the CNS, including myelination, oligodendrocyte
differentiation, axon outgrowth, long-term potentia-
tion (LTP), and regulation of N-methyl-D-aspartate
receptors (NMDARs) [117, 118]. Notably, Fyn over-
expression amplifies [119], whereas ablation of the
enzyme alleviates memory impairment in AD animal
models [120] suggesting a direct involvement in the
neurodegenerative mechanisms of the human demen-
tia. Fyn is normally localized in lipid rafts [121] as
is PrPC and its activation, depending on the assem-
bly of ABOs (dimers and trimers, not monomers or
AB*56). PrPC complex can be abrogated by antibod-
ies directed against PrPC [122] or triggered by brain
extracts derived from AD patients [115]. Considering
the main pathological characteristics of AD, several
downstream functional effects exerted by the acti-
vation of Fyn kinase can be considered particularly
interesting with respect to neurodegeneration and
synaptotoxicity. Firstly, Fyn could represent a mecha-
nistic link between the ABOs toxic role in AD and tau
pathologies [122]. The physical interaction between
the enzyme and the microtubule-associated protein
tau leads to tyrosine phosphorylation at the amino ter-
minus [123]. Importantly, antibodies against the prion

protein suppress Fyn-dependent tau hyperphospho-
rylation. Moreover, Fyn and other members of SRC
kinases can upstream regulate the activity of Proline-
rich tyrosine kinase2 (PyK2), a member of the focal
adhesion kinase family, which, in its turn, phosphory-
lates tau tyrosine residues [124]. Interestingly, PyK2,
which is present in neurofibrillary tangles [125] is
encoded by the PTK2B, a late-onset AD (LOAD)
risk gene identified by a genome wide association
study [126]. PyK2 is also a regulator of glycogen syn-
thase kinase-33 (GSK3p), a serine/threonine kinase
with an important role in tau hyperphosphorylation
and microtubule organization. However, it is not
clear if ABOs-induced signaling cascade is directly
involved in GSK3f activation [127]. Phosphoryla-
tion of tau protein has considerable implications for
Fyn’s activity, too. In fact, Mondragon-Rodriguez et
al. demonstrated that phosphorylated tau sequesters
Fyn kinase in dendrites decreasing its concentra-
tion at synapses and generating a drop down of the
NMDAR density [128]. Intriguingly, ABOs interac-
tion with PrP® on neuron plasma membrane induces
a signaling cascade that links Fyn activation to the
NMDAR subunit NR2B phosphorylation [115, 122].
NR2B phosphorylation is essential to stabilize the
interaction of NMDARs with the scaffolding pro-
tein postsynaptic density protein 95 (PSD95) in order
to get a strong binding to the postsynaptic density
(PSD) of the receptors [129]. The final effect of the
signaling pathway is the inhibition of NMDAR endo-
cytosis that preserves the NMDAR mediated Ca®*
currents [130]. Hyperphosphorylated tau by binding
to Fyn in dendrites perturbs this signal cascade dis-
rupting calcium homeostasis within the post-synaptic
sites. The binding of ABOs with the PrP€ in addition
to altering the mobilization of calcium, causes the
activation of the eukaryotic elongation factor (eEF2)
kinase (also known as calmodulin-dependent protein
kinase type III) [131] and the consequent phospho-
rylation of the eEF2 associated to AR-induced LTP
failure [132]. The eEF2 factor induces an increased
expression of calcium/calmodulin-dependent protein
kinase II [133] a serine/threonine protein kinase that
regulates neurotransmission and synaptic plasticity.
Both, the Fyn and eEF2 kinases bind to the Gag-
protein coupled metabotropic Glutamate Receptor
5 (mGluR5), a key element in signal transduction
between the ABO-PrPC complex, anchored by the
GPI on the outer side of the plasma membrane and
the downstream activation of kinases in the cyto-
plasm [131]. PrP€ and Fyn physically interact with
mGIuRS to form a protein complex localized in
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the postsynaptic densities but there is not a direct
binding between ABOs and mGluR5. However, in
cortical neurons, there are evidence that ABOs dis-
sociate the interaction of the Homer scaffolding
proteins with mGIuRS exclusively if the PrPC is
expressed by the cells [131, 133] suggesting that
ABO-PrP€ complex perturbs the ligand binding pro-
file of mGluRS5. Further characterization of mGIuRS
role in signaling pathway triggered by exposition
to ABOs revealed that the specific antagonists of
mGIuRS activity, 2-methyl-6-(phenylethynyl) pyri-
dine (MPEP) and 3-[(2-methyl-1,3-thi-azol-4-yl)
ethynyl] pyridine (MTEP), can inhibit Fyn and eEF2
activation in vitro and rescue deficits in learning and
memory of AD transgenic models [131]. Another
potential track to discern the role played by mGIuRS5
in ABO-mediated neurotoxicity could be represented
by its capacity to physically bind to the NR2 subunit
of NMDARSs by means of Shank, Homer and PSD95
proteins [134]. At the PSD, the colocalization of
ionotropic and metabotropic glutamate receptors sug-
gests a downstream functional mechanism that could
be impaired by ABO-PrPC complex interaction; how-
ever, the molecular aspects of this hypothesis remain
so far elusive. Taken together, this evidence sug-
gests that a well-structured cell signaling pathway,
comprising PrPC that serves as membrane recep-
tor, mGIuRS as trans-membrane jointing element
and several cytoplasmic kinases as downstream func-
tional effectors, may mediate the neuro/synaptotoxic
effect of ABOs. Every one of the elements involved
in the signal transduction cascade could represent a
main pharmacological target to prevent some of the
more dangerous clinical symptoms of AD and indeed
some attempts to develop therapeutic strategies are
being evaluated.

Interaction PrPC- ABOs as new drug target
for AD

There is great interest in therapeutic targeting of
the toxic signals mediated by ABOs-PrPC complex
to intracellular components of the pathway. An early
possible therapeutic strategy could be achieved by
decreasing the number of oligomers able to bind to the
PrP€ receptor on the surface of neurons. Indeed, the
use of small synthetic peptide inhibitors can stabilize
the monomeric forms of amyloid fragments reducing
toxic effect of aggregated species [ 135]. A subsequent
therapeutic approach could concern the blocking of
the interaction between ABOs and PrP€. Several pre-
clinical data from AD transgenic models demonstrate

that antibodies against the amino-terminal residues
of PrPC (residues 93-109) prevent binding of ABOs
[136, 137] preserving activity of synapses and block-
ing cognitive decay. Similarly, the small molecule
Chicago Sky Blue 6B was able to avert in vitro
binding of ABOs to prion protein [138]. However,
there are not reports that have investigated therapeu-
tic effects of the drug. Certain investigations show
that the soluble PrPC, its N-terminal cleavage frag-
ments [139, 140] or decoy PrPC peptides [141] inhibit
disruptive effects on synaptic functions of ABOs
reducing the bulk of ligand for membrane anchored
PrPC. Leaving further along the amyloid-dependent
toxic pathway, another potential therapeutic target
could be represented by the physical interaction
between the ABOs-PrPC complex and the co-receptor
mGIuRS. From this perspective Haas et al. evaluated
the drug BMS-984923 [142], a potent mGluRS5 silent
allosteric modulator, showing in an AD transgenic
mouse model that the compound hampers patholog-
ical ABOs signaling without affecting physiological
glutamate transduction cascade [143]. An open-label,
single-ascending dose study [144] was started in
2021 to evaluate safety, tolerability, pharmacokinet-
ics, and receptor occupancy of the drug, it is ongoing
now. ABO-dependent Fyn kinase activation has been
considered another promising pharmaceutical target
[145] and some reversible enzyme inhibitors have
passed the preclinical development to arrive at clini-
cal research. Saracatinib (AZD0530) is a Src and Abl
kinases inhibitor specific for Fyn and Src kinase that
was synthesized from anilino quinazoline to arrest
the spread of cancer [146]. The drug was repur-
posed to be tested as AD modifying therapy on
the base of its capacity to modulate Fyn activation
and protect synaptic densities and cognitive func-
tions in an animal AD model [120, 147]. A phase IB
randomized placebo-controlled trial [148] success-
fully assessed the effect of the Fyn kinase activity
inhibition on the primary endpoints concerning
safety, tolerability, and compliance to pharmacoki-
netic parameters in a small cohort of probable AD
subjects but fail to demonstrate regional cerebral
glucose metabolism preservation as measured by
fluorine-18 fluorodeoxyglucose positron emission
tomography or clinical efficacy [149]. A subsequent
Phase ITA randomized placebo-controlled clinical
study [150] enrolled a more consistent cohort of
participants diagnosed with mild AD [151]. The con-
clusion of the second study confirmed safety and
tolerability of Saracatinib in subjects affected by mild
AD, however highlighted the lack of significant out-
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Table 1

Some phase I/II/III clinical trials designed for the treatment of AD

CLINICAL TRIALS TREATMENT PHASE REFERENCES

An Open-Label, Single-Ascending Dose Study to Evaluate the — BMS-984923 I ClinicalTrials.gov Identifier:
Safety, Tolerability, Pharmacokinetics and Receptor Occupancy NCT04805983
of BMS-984923

A Phase Ib Multiple Ascending Dose Study of the Safety, — Saracatinib I ClinicalTrials.gov Identifier:
Tolerability, and CNS Availability of AZD0530 in AD — Placebo NCT01864655

A Phase IIa Multi-Center Study of 18F-FDG PET, Safety, and — AZD0530 100 mg daily I ClinicalTrials.gov Identifier:
Tolerability of AZD0530 in Mild AD — AZD0530 125 mg daily NCT02167256

— Placebo

A Multicenter, Double-blind, Placebo-controlled, Randomized, — Masitinib (AB1010) 11 ClinicalTrials.gov Identifier:
Parallel-group Study to Evaluate the Efficacy of Oral AB1010in  — Placebo NCT00976118
Adults Patients with Mild to Moderate Alzheimer-type Disease.

A Multicenter, Double-blind, Placebo-controlled, Randomized, — Masitinib 111 ClinicalTrials.gov Identifier:
Parallel-group Phase 3 Study to Evaluate the Safety and Efficacy - Placebo NCT01872598

of Masitinib in Patients with Mild to Moderate AD

comes produced by Saracatinib on both the surrogate
endpoint (regional brain glucose metabolism) and
cognitive decline or disease biomarker measures. The
phenylaminothiazole-type tyrosine kinase inhibitor
Masitinib (AB1010) being able to target c-Kit and
Fyn enzymatic activity [152] in preclinical mod-
els was evaluated as neuroprotective agent in mild
to moderate AD by a two double-blind, random-
ized, placebo-controlled, clinical trial. A first phase II
study [153], where Masitinib was administered to AD
patients in combination with standard therapies, met
its efficacy and tolerability-related outcomes signifi-
cantly. The add-on therapy was able to reduce the rate
of cognitive decline in the treated group respect to the
placebo [154]. A following phase IIB/III multicenter
clinical trial [155] started in 2013 and seven years
after in December 2020 its sponsor, AB Science a
late-clinical-stage French company, announced some
positive results with respect to clinical efficacy, as
measured by the neurological Alzheimer’s Disease
Assessment Scale-Cognitive Subscale test and safety.
Some concerns, however, have been raised about
the number of adverse events recorded during the
study that emerged to be almost three times greater
in patients treated with Masitinib [156]. Recently,
Abd-Elrahman et al. described sex specific difference
in PrPC-dependent interaction between ABOs and
mGluRS5 in an AD animal model [157]. According
to the study, the ABOs-PrPC complex binds the
glutamate receptor exclusively in male animals,
as a consequence the functional effects on cogni-
tive impairment and the underlying AP pathology
depending on the inhibition of the pathological sig-
nal pathway are exclusive to male mice. If confirmed
in the humans, these finding would lead to impor-
tant implications for the design of clinical studies and

would suggest the very importance of stratifying by
gender the clinical trial outcomes.

CONCLUSION

In this review, we summarize the latest knowl-
edge about the role of PrP€ on AD. Indeed, the
mechanisms that govern the etiology of AD are still
not completely known, partly due to the numerous
molecular pathways linked to the neurodegenerative
process. Several authors showed that Af oligomers
but not AR monomers are able to bind to PrP¢ with
high affinity and mediate a signal pathway.

The signaling cascade induced by ABOs-PrP¢
binding and its downstream interacting partners
began to emerge with the identification of a close
functional relationship of the complex with Fyn, a
SRC family kinases. There is great interest in the
therapeutic targeting of the toxic signal mediated
by ABOs-PrPC complex to intracellular component
of the pathway. In this review, we explored dif-
ferent possible therapeutic strategy about the toxic
signal mediated by ABOs-PrPC. One of them aims
to decrease the number of oligomers able to bind
to the PrPC and the possibility to block the interac-
tion between ABOs-PrPC. Several papers showed that
the use of antibodies against amino-terminal PrP®
or soluble cellular prion protein could prevent the
binding of ABOs preserving activity of synapses and
blocking cognitive decay. Another possible strategy
could be represented by a drug named BMS-984923,
a silent allosteric modulator of mGluRS5 (a coreceptor
of ABOs-PrPC) that is under clinical trials started in
2021 is ongoing now. A Src inhibitor represent a pos-
sible strategy to block the downstream of Fyn. The
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clinical trials on Sarcatinib (IIA phase) showed safety
a tolerability of the drug in subject affected by mild
AD but highlighted the lack of significant outcomes
on both the surrogate endpoint and cognitive decline.
A phase IIB/III study on Masitinib (drug able to tar-
get c-Kit and Fyn enzymatic activity) showed some
positive results respect to clinical efficacy even if
some concerns have been raised about adverse events.
Despite advances in knowledge of cellular and molec-
ular mechanisms of AD, we are still unable to block
or slow down the pathological effects of the disease.
We believe that further studies related to possible sig-
nal pathways mediated by the interaction between
ABOs-PrPC need to be implemented.
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