
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Learning Program-Wide Code Representations for Binary Diffing

Permalink
https://escholarship.org/uc/item/69f4r4mx

Author
Li, Xuezixiang

Publication Date
2019

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-
nc-sa/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/69f4r4mx
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

Learning Program-Wide Code Representations for Binary Diffing

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Computer Science

by

Xuezixiang Li

March 2019

Thesis Committee:

Dr. Heng Yin, Chairperson
Dr. Chengyu Song
Dr. Zhiyun Qian



Copyright by
Xuezixiang Li

2019



The Thesis of Xuezixiang Li is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

First of all, I would like to give my sincere gratitude to my advisor, Prof. Heng Yin, with

out whose guidance, I could not finish the thesis. Second, I am grateful to the committee

members Prof. Chengyu Song and Prof. Zhiyun Qian. Your suggestions and comment play

a significant role during this period. Thanks for your help. I also appreciate Yue Duan and

other group members in our lab. I appreciate all of your suggestions ideas and assistance

for this project. Besides, I am particularly grateful for the guidance given by Prof. Dan

Chen from Wu Han University, which starts my journey of scientific research. Last but not

foremost, I wish to thank my parents and girlfriend for their support and encouragement

throughout my study.

iv



To my parents for all the support.

v



ABSTRACT OF THE THESIS

Learning Program-Wide Code Representations for Binary Diffing

by

Xuezixiang Li

Master of Science, Graduate Program in Computer Science
University of California, Riverside, March 2019

Dr. Heng Yin, Chairperson

Binary diffing analysis quantitatively measures the differences between two given

binaries and produces fine-grained basic block matching. It has been widely used to en-

able different kinds of critical security analysis. However, all existing program analysis and

learning based techniques suffer from low accuracy, poor scalability, coarse granularity espe-

cially on COTS binaries which did not contains complete debug information. On the other

hands, some learning based approaches require extensive labeled training data to function,

so that precise labelled and representative dataset is needed to obtain great results. To

surmount such limitations, in this paper, we come up with a novel learning based code

representation generation approach to solve the binary diffing problem. We rely only on the

code semantic information as well as the program-wide control flow structural information

to generate block embeddings without supporting of any debug information. Furthermore,

we propose a K-hop greedy matching algorithm to find the optimal diffing results using

the generated block representations. We implement a prototype called DeepBinDiff and

evaluate its effectiveness and efficiency with large number of binaries and real-world vul-

vi



nerabilities. The results show that our tool could outperform the state-of-the-art binary

diffing tools by large margin for both cross-version and cross-optimization level diffing. A

case study for OpenSSL using real-world vulnerabilities further demonstrates the usefulness

of our system.

vii



Contents

List of Figures x

List of Tables xi

1 Introduction 1

2 Related Work 7
2.1 Code Similarity Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Assembly code processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Graph mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Problem Statement 13
3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 System Design 16
4.1 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 CFG Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.2 Feature Vector Generation . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Embedding Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.1 TADW algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.2 Graph Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.3 Basic Block Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Code Diffing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.1 K-Hop Greedy Matching . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Evaluation 33
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Datasets & Baseline Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.1 Datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.2 Baseline Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

viii



5.4 Ground Truth Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5 Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5.2 Cross-version Diffing . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5.3 Cross-optimization level Diffing . . . . . . . . . . . . . . . . . . . . . 42

5.6 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.7 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.7.1 DTLS Recursion Flaw . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.7.2 Memory Boundary Checking Failure . . . . . . . . . . . . . . . . . . 46

6 Discussion 48

7 Conclusions 50

Bibliography 51
.1 Cross-version Binary Diffing F1-score CDF Figures . . . . . . . . . . . . . . 56
.2 Cross-version Binary Diffing F1-score CDF Figures . . . . . . . . . . . . . . 56

ix



List of Figures

4.1 Overview of DeepBinDiff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Token Embedding Model Generation. . . . . . . . . . . . . . . . . . . . . . 20
4.3 Token2Vec model used in DeepBinDiff . . . . . . . . . . . . . . . . . . . . . 25
4.4 TADW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Graph Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Matching for DTLS Recursion Flaw . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Matching for Memory Boundary Checking Failure . . . . . . . . . . . . . . 46

.1 Cross-version Diffing F1-score CDF for Coreutils . . . . . . . . . . . . . . . 56

.2 Cross-optimization level Diffing F1-score CDF for Coreutils . . . . . . . . . 57

x



List of Tables

4.1 Basic block features in Gemini[60] . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 Hyper Parameter selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Experimental Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Cross-version Binary Diffing Results . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Cross-optimization level Binary Diffing Results . . . . . . . . . . . . . . . . 41

xi



Chapter 1

Introduction

Binary Code Differential Analysis, a.k.a, binary diffing, is a fundamental analysis

capability, which aims to quantitatively measure the similarity between two given binaries

and produce the fine-grained block level matching. Given two input binaries, it precisely

characterizes the program-wide differences by generating the optimal matching among the

blocks with quantitative similarity scores. It can not only present a more precise, fine-

grained and quantitative results about the differences at a whole binary scale but also

explicitly reveal how code evolves across different versions or optimization levels. Due to

this level of precision and granularity, it has enabled many critical security usages in differ-

ent scenarios when program-wide analysis is required, such as changed parts locating [2],

malware analysis [29, 49], patch analysis [61, 42], binary wide plagiarism detection [45] and

patch-based exploit generation [13].

Because of the importance, binary diffing has been an active research focus. Bin-

Diff [9] which is the state-of-the-art commercial binary diffing tool performs many-to-many

1



graph isomorphism detection on callgraph and control-flow graph (CFG) and leverages

heuristics (e.g., function name hash, graph edge MD index) to match functions as well as

blocks. Other techniques perform diffing on the generated flow graphs [26, 55, 28] or de-

compose the binaries into fragments [24, 22, 23] for similarity detection. These approaches

do not consider the semantics of instructions which can be critical during analysis, espe-

cially when dealing with different compiler optimization levels. Moreover, traditional graph

matching algorithm such as Hungarian algorithm [39] is expensive and cannot guarantee

optimal matching.

Another line of research utilizes dynamic analysis for diffing. These techniques

carry out the analysis by directly executing the given code [27, 59], performing dynamic

slicing [48] or using symbolic execution [31, 47, 45] on the given binaries and checking the

semantic level equivalence based on the information collected during the execution. In

general, these techniques excel at extracting semantics of the code and have good resilience

against compiler optimizations and code obfuscation but usually suffer from very poor

scalability and incomplete code coverage because of the nature of dynamic analysis.

Recently, researchers have been leveraging the advance of machine learning to

tackle the problem. Various techniques such as Genius [30], Gemini [60], INNEREYE [64]

and Asm2Vec [25] have been proposed to utilize graph representation learning techniques [21,

46, 41] and incorporate code information into embeddings (i.e, high dimensional numerical

vectors). Then they use these embeddings for similarity detection. INNEREYE [64] and

Asm2Vec [25] further leverage NLP techniques to automatically extract semantic informa-

tion and generate embeddings for diffing.

2



These approaches embrace multiple advantages over the traditional static and

dynamic approaches: 1) higher accuracy as they incorporate unique features of the code

into the analysis by using either manual engineered features [30, 60] or deep learning based

automatic methods [25, 64]; 2) better scalability since they avoid heavy graph matching

algorithm or dynamic execution. Moreover, the deep learning process can be significantly

accelerated by GPUs.

Limitations to Existing Learning based Techniques. Despite the advantages, we

identify three major limitations for the existing learning based approaches.

First, no existing technique can perform program-wide binary diffing at a fine-

grained basic block level. They either perform diffing on functions [30, 60, 40, 25] or on

small code components [64], and tells how two given functions or small pieces of blocks are

similar. As mentioned above, fine-grained binary diffing is an important analysis upon which

many critical security analysis can be built. Hence, a more fine-grained binary diffing tool is

strongly desired. And we argue that current existing code components search techniques is

hard to extend to perform a program-wide fine-grind binary diffing problem. First, most of

the approaches are only able to perform function level comparison which is not enough for

fine-grind binary diffing. Second, low false positive is required in such task. Assuming that

two functions A and B are mistakenly matched, the original target A′ would be possibly

matched to another function C. Once C has another original target C ′, the false positive

will be propagated continuously.

Second, none of them considers both program-wide dependency information as

well as basic block semantic information during analysis. INNEREYE [64] extracts block

3



semantic information with NLP techniques [46] but only considers local control dependency

information within a small code component by adopting the Longest Common Subsequence

(LCS). Asm2Vec [25] generates multiple random walks within functions and uses the walks

to learn token and function embeddings. It is especially troublesome when performing

binary diffing as one binary could contain multiple very similar functions. In this case,

program-wide function calling relations can be vital in differentiating these functions.

Third, most of the learning based techniques [61, 40, 64] are based on supervised

learning. Thus, the performance is heavily dependent on the quality of training data. We

argue that a large, representative and balanced training dataset can be very hard to collect

in binary diffing problem due to the extreme diversity of the binary programs.

Our Approach. To this end, we propose an unsupervised deep neural network (DNN)

based program-wide code representation learning technique for binary diffing. In partic-

ular, our technique learns basic block level embeddings for binary diffing via completely

unsupervised learning. Each learned embedding represents a specific block by carrying not

only the semantic information of the block but also the structural information from the

program-wide inter-procedural control flow graph (ICFG). These embeddings are used to

efficiently and accurately calculate the similarities.

To achieve this, we leverage NLP techniques to generate token (opcode and operands)

embeddings which are further averaged and concatenated to assemble block level feature

vectors. These feature vectors contain the semantic information for specific blocks. Then,

we merge the two ICFGs of the input binaries on selected terminal nodes (no outgoing

edge) so that the merged graph contains program-wide structural information for both bi-

4



naries yet the original dependency information remains unchanged. Matrix factorization

is then performed on the graph along with the generated feature vectors to produce block

level embeddings using Text-associated DeepWalk algorithm (TADW) [62]. Consequently,

these block embeddings contain both the program-level structural information as well as

the semantics from the blocks. Finally, to deal with the unique challenge of binary diff-

ing, we present a K-hop greedy matching algorithm to match blocks and confront compiler

optimizations including function inlining, instruction reordering, etc.

We implement a prototype named DeepBinDiff and conduct an extensive evalua-

tion with three representative datasets containing 113 binaries. The evaluation results show

that our tool outperforms the state-of-the-art tools BinDiff and Asm2Vec by large margin

in terms of effectiveness with respect to cross-version and cross-optimization level diffing.

Furthermore, we also conduct a case study using real-world vulnerabilities in OpenSSL [8].

The case study also shows that our tool has unique advantages when analyzing vulnerabili-

ties. To our best knowledge, our evaluation is the only work that comprehensively examines

the cross-version and cross-optimization binary diffing problem.

Contributions. In summary, the contributions of this paper are as follows:

• We propose a novel unsupervised program-wide code representation learning technique

for binary diffing. Our technique rely on both the code semantic information as well as

the program-wide control-flow graph structural information to generate high quality

block embeddings. Then a K-hop greedy matching algorithm is proposed to obtain

the optimal diffing results.

5



• We implement a prototype DeepBinDiff. It first extracts semantic information by

leveraging NLP (Neutral Language Processing) technique. Then, it performs Text-

associated DeepWalk algorithm to generate block embeddings that contain both the

semantic and the inter-procedural control-flow information. The generated embed-

dings are used to perform binary diffing with the help of K-hop greedy matching

algorithm.

• An extensive evaluation shows that DeepBinDiff could outperform the state-of-the-

art binary diffing tools by large margin for both cross-version and cross-optimization

level diffing. A case study further demonstrates the usefulness of DeepBinDiff with

real-world vulnerabilities.

6



Chapter 2

Related Work

In this section, we survey some related work about code similarity detection, As-

sembly code processing and graph mining.

2.1 Code Similarity Detection

As mentioned, the existing code similarity search technique falls into three cate-

gories: static analysis, dynamic analysis and learning based approaches.

Static Approaches Static approaches transform binary code into graphs (e.g., control

flow graph) using program static analysis and then perform the comparison among binary

code. Bindiff [9, 26] which is the state-of-the-art binary diffing commercial tool, performs

many-to-many graph isomorphism detection on callgraph to match functions and leverages

intra-procedural CFG graph matching for basic blocks. Considering for the efficiency, the

tool rely on some heuristics (may not be available in stripped binaries) including name

hashing, constant strings, edge counts, etc. Different rules are assigned different priority and

7



perform iteratively. Binslayer [15] further augments the graph matching with the Hungarian

algorithm for bipartite graph matching to improve the matching results. Pewny et.al. [55]

searches bugs within binary programs by collecting a list of input/output pairs to capture

the semantics of a basic block and perform graph matching. The major drawback for graph

matching based approaches is that the algorithms in general is very expensive. For the sake

of improving runtime performance, discovRE [28] chooses to use lightweight syntax level

features and applies pre-filtering before graph matching. However, the pre-filtering process

may significantly affect the accuracy of the matching result [30].

Due the limitations of graph matching, techniques are proposed to use static pro-

gram analysis to decompose functions into fragments. Tracelet [24] converts CFGs into a

number of paths with fixed-length called Tracelets and then matches them by rewriting.

Esh [22] decomposes the functions into segments named strands which represent data-flow

dependencies and uses statistical reasoning to calculate similarities. GitZ [23] further im-

proves Esh to find strands equality through re-optimization. Although no heavy graph

matching is required, these techniques still bear with two major limitations. First, to ab-

stain from massive number of fragments, they can only decompose within functions. Second,

these techniques can not handle instruction and basic block reordering.

Dynamic Approaches Based on an insight that similar code must have semantically

similar behavior, dynamic analysis becomes another promising line of research. Blanket

Execution [27] executes functions of the two input binaries with the same inputs and com-

pares monitored behaviors for similarity. BinHunt [31] uses symbolic execution and theorem

proving and compares intra-procedural CFGs to find the matching between basic blocks.

8



iBinHunt [47] extends the comparison to inter-procedural CFGs and reduces the number

of candidates of basic block matching by monitoring the execution under a common in-

put. CoP [45] also uses symbolic execution to compute the semantic similarity of blocks

and leverages the longest common sub-sequence of linearly independent paths to measure

the similarity. BinSim [48] which is specifically proposed to compare binaries with code

obfuscation techniques, relies on system calls to perform dynamic slicing and then check

the equivalence with symbolic execution. Essentially, dynamic analysis approaches could

deliver accurate results when facing compiler optimizations or even obfuscation. However,

dynamic analysis based approaches by nature suffer from poor scalability and incomplete

code coverage problem.

Learning Based Approaches Recently, researchers have turned to machine learning

techniques to detect code similarity. Genius [30] forms attributed control flow graphs

(ACFG) for each function and calculates the similarity through their graph embeddings

which are generated through comparing with a set of representative ACFGs named code-

book. Gemini [60] directly improves Genius by leveraging neural network to generate em-

beddings for each binary function. Then it trains a Siamese network for similarity detection.

INNEREYE [64] regards instructions as words and basic blocks as sentences and utilizes

LSTM-RNN to automatically encode the information of basic blocks and further uses a

Siamese network to detect the similarity. Both Gemini and INNEREYE rely on super-

vised learning and requires extensive training with massive labeled training dataset. And

both approaches is hard to handle different code obfuscation techniques and compile time

code optimization without being trained by datasets that processed by such techniques.

9



Asm2Vec [25] adopts an unsupervised learning approach by generating token and function

embeddings using PV-DM model. However, it only works on function comparison but can-

not perform binary diffing at more fine-graind basic block level. Also, it does not consider

any program-wide CFG structural information during analysis. PV-DM, as an old-school

Neutral Language Processing (NLP) model can only capture unique keywords set from a

given function instead of finding out real semantic meaning of each code sequence.

2.2 Assembly code processing

Nowadays, because of characteristic shared by both neutral languages and as-

sembly code, researchers started to use Neutral Language Processing (NLP) techniques to

process assembly languages. For instance, INNEREYE [64] and another approach [14] try

to use Word2Vec as a pre-processing model to generate instruction embeddings. And on

the top of instructions, some approaches [64, 25] uses RNN-LSTM and Doc2Vec model to

deal with code sequences. Dislike troditional neural language articles, binaries also con-

tain structural information such as data dependencies and control flows. There are two

different methods to solve such problem. The fist is to adopt RandomWalk [25] to serialize

control-flow graphs. The other way is to use a single model such as LSTM [64] and let the

model itself to find inner structure information without recovering any control flow or data

dependence information.

10



2.3 Graph mining

Graph analysis has been increasingly popular as many problems can be modeled as

graphs. Generating vector representation of each node which contains important graph and

node properties, a.k.a, graph embedding learning, has become widely popular. There are

two different way to capture structural information and node features, which is traditional

matrix factorization and Deep learning based method.

Matrix Factorization Ahmed et.al. [12] proposes a graph factorization technique to fac-

torizes the adjacency matrix of the input graph by minimizing a loss function. GraRep [18]

defines a node transition probability and proposes a k-order proximity preserved embedding

method. The major drawback is scalability. HOPE [52] is similar to GraRep and preserves

higher-order proximity. It fully captures transitivity and uses generalized Singular Value

Decomposition to perform efficiently. DeepWalk [54] is proposed to learn latent represen-

tations of nodes in a graph using local information from truncated uniform random walks.

And node2vec [33] specifically designs a biased random walk procedure that efficiently ex-

plores diverse neighborhoods of a node to learn continuous feature representations of nodes.

These two model are based on random walk and have a Word2Vec model built top of the

walkers. The main difference between those two approaches is the search strategies. In

DeepWalk, walkers use Deep-First search (DFS) to pick new successors, while walkers in

node2vec, combines deep first search (DFS) and Breadth-First search (BFS) to choose the

next target vertex. And both has been proved to be equivalent with the factorization on

adjacency matrices [62]. TADW [62] is the technique leveraged by DeepBinDiff, the major

11



advantage is that it considers feature vectors for nodes during matrix factorization. A re-

cent work REGAL [34] is proposed to perform matrix factorization very efficiently with the

consideration of node features. However, it only checks the existence of features other than

considering the numeric values.

Deep Learning. DNGR [19] proposes a novel graph representation model based on deep

neural networks that can capture the graph structure information directly. SDNE [58] de-

signs a semi-supervised deep model that has multiple layers of non-linear functions to cap-

ture both the local and global graph structure that is highly non-linear. GCN [37] uses a lo-

calized first-order approximation of spectral graph convolutions to perform semi-supervised

learning on graphs in a scalable way. Structure2Vec [21] is proposed for structured data

representation via learning features spaces that embeds latent variable models.

12



Chapter 3

Problem Statement

In this section, we formalize the problem definition for binary diffing problem and

further describe our problem statement and design goals.

3.1 Problem Definition

Given two binary programs, binary diffing precisely measures the similarity and

characterizes the differences between the two binaries at a fine-grained basic block level.

We formally define binary diffing problem as follows:

Definition 1. Given two binary programs p1 = (B1, E1) and p2 = (B2, E2), binary diffing

aims to find the optimal block match combination M(p1, p2) that maximizes the similarity

between p1 and p2: SIM(p1, p2) = argmax
m1,m2,...,mk∈M(p1,p2)

mi∈M(p1,p2)∑
sim(mi), where:

• B1 = {b1, b2, ..., bn} and B2 = {b′1, b
′
2, ..., b

′
n} are two sets containing all the basic

blocks in p1 and p2;

13



• Each element e in E ⊆ B × B corresponds to control flow dependency between two

basic blocks;

• Each element mi in M(p1, p2) represents a matching pair between bi and b
′
i;

• sim(mi) defines the quantitative similarity score between two matching basic blocks.

Therefore, the problem can be transformed into two subtasks: 1) introducing

sim(mi) which quantitatively measures the similarity between two basic blocks; 2) finding

the optimal matching between two sets of basic blocks M(p1, p2).

3.2 Assumptions

To formalize our problem domain, we list the following assumptions on the given

inputs:

• Only stripped binaries are given. This assumption in general makes the problem

harder as no source or symbol information is presented. However, this assumption is

very realistic as COTS binaries are often stripped and malware binaries do not carry

internal symbols for obvious reasons.

• Binaries are not packed but can be optimized with different compiler optimization

levels. Different optimization levels can result in distinctive binary codes even with the

same source code input. Tolerating differences in binaries introduced by optimization

levels is also very important to the code diffing problem. From the evaluation we

can see that even the state-of-the-art tools cannot handle them well. So for packed

14



malware binaries, we assume they are unpacked by using existing unpacking tools

before being present to our tool.

• Two input binaries are for the same architecture. So far DeepBinDiff supports x86

binaries since they are the most prevalent in real world binaries. Of course, DeepBin-

Diff could be extended to handle cross-architecture diffing by performing analysis on

an Intermediate Representation (IR) level. We leave it as future work.

15



Chapter 4

System Design

4.1 Approach Overview

Figure 4.1 delineates the system architecture of DeepBinDiff. In this figure, the

squares with red border is some intermediate data generated my different components of the

system. The system can be divided into three main components: Pre-processing, Embed-

ding Generation and Code Diffing. As shown in the figure, the system take two binaries as

inputs. The pre-processing part is responsible for preparing input data for next component.

Firstly, we disassemble the binary and recover assembly instructions and control-flow graph.

The assembly instruction is used to generate feature vectors of each basic block. Feature

vectors and Control-flow graph are taken as input of the TADW [62] in second component.

Then the TADW model will generate embeddings for each basic block. Next, in the third

component, those embeddings is compared and a K-Hop Greedy Matching algorithm is per-

formed based on the result of comparison. This algorithm will generate a matching result

16



Binary 1

Binary 2

CFG 
Generation

Token 
Embedding

Model

Input

0.015, 0.006, -0.022 …
0.071, -0.014, 0.005 …

...

0.052, -0.006, 0.04 …
0.15, 0.13, -0.0043 …

...

Pre-processing Embedding Generation

0.055, 0.004, -0.07 …
0.07, -0.314, 0.305 …

0.335, -0.93, 0.1189 …
-1.8e-06, 0.092, 0.06 ...

...

K-Hop 
Greedy 

Matching

Code Diffing

token 
embeddings

TADW Matrix 
Factorization

basic block embeddings

0.053, 0.16, 0.032 …
0.12, 0.44, -0.009 …

...

0.411, -0.2206, 0.4 …
0.55, 0.656, 0.33 …

...

feature 
vectors

inter-procedural 
CFGs

Output

diffing 
results

Graph Merging

initial 
matching

Figure 4.1: Overview of DeepBinDiff.

M(p1, p2) which is the output of our system.

In section 4.2, we will introduce the pre-processing phase. We will also introduced

how to recover inter-procedure and generate feature vector for basic blocks. In section 4.3,

we will introduce some detail of TADW and how DeepBinDiff take it into use. In section

4.3, we will introduce how to perform code diffing and generate matching pairs based on

K-Hop Greedy algorithm.

4.2 Pre-processing

In this phase, we generate two kind of data for TADW model, which is inter-

procedural CFG and preliminary feature vectors of basic blocks. Here we capture the

semantic features from the basic blocks and generate vectors based on such features.

17



Table 4.1: Basic block features in Gemini[60]

Type Feature Name

Block-level features

String Constants
Numeric Constants
Number of Transfer Instructions
Number of Function Calls
Number of Instructions
Number of Arithmetic Instructions

Inter-block features
Number of offspring
Betweenness

4.2.1 CFG Generation

By combining call graph of the binary with control-flow graphs of each function,

inter-procedural CFG (ICFG) contains control dependency information among basic blocks

cross function boundaries. ICFG in DeepBinDiff plays a very important role, that is to

provide program-wide contextual information when calculating block similarities. This in-

formation is particularly useful when there exist multiple semantically similar blocks. In

this case, this contextual information can be of great help in differentiating them. However,

none of the existing techniques assimilate this information for binary diffing. DeepBinDiff

leverages [1] to extract basic block information and generates inter-procedural CFGs for the

two given binaries.

4.2.2 Feature Vector Generation

Besides the structural control dependency information carried by ICFGs, Deep-

BinDiff also takes into account the semantic information from basic blocks by generating

feature vector for each block.

18



Existing techniques such as Genius [30] and Gemini [60] empirically select some

features from basic blocks and control flow graphs and then embed them into the CFGs

to form attributed CFGs (ACFG). An example has been shown in table 4.1. However, by

manually selecting limited number of features, one could easily miss some essential infor-

mation and impose bias to the results. Furthermore, once attackers have gained access to

details of the model and leaked such information, it is easy to come up with attacks aiming

at these manually selected features. To overcome this limitation, INNEREYE [64] takes a

supervised learning approach, utilizes Word2Vec to generate instruction embeddings and

further deploys an LSTM-RNN model to convert instruction embeddings to block embed-

dings. It requires sizable and balanced training dataset with labels (which can be hard to

extract) to train the LSTM model. Asm2Vec [25], on the other hand, uses an unsupervised

PV-DM model to produce the token and function embeddings. In DeepBinDiff, we take the

unsupervised learning approach as well due to the fact that labels and balanced training

dataset can be very hard to generate in binary diffing scenario.

In DeepBinDiff, we leverage an unsupervised NLP technique Word2Vec [46] model

which can generate embeddings for each word based on its context (words around it) to

extract the semantics of each block. In our case, we consider each token (opcode or operand)

as word, generate random walks on top of ICFGs to be sentences and instructions around

each token as its context. More details will be shown in Model Training section later.

The whole process consists of two subtasks: token embedding generation and

feature vector generation. More specifically, we first train a token embedding model using

Word2Vec, then use this model to generate token embeddings. These token embeddings

19



jbe: 0.015,0.006,-0.22,.. 
im: 0.071,-0.014,0.005,..
ptr: 0.022,0.065,0.04, …
reg4: 0.15,0.13,-0.043 …

token
embedding

model

Step 1
Random Walks

Step 2
Normalization

Step 3
Model Training Output

movzx reg4, ptr
mov reg4, reg4
ja im
mov reg8, reg8
add reg8, im
movzx reg4, ptr
lea reg4, ptr
cmp reg1, im
jbe im
mov reg8, im
cmp reg1, im
jne im
cmp reg1, im
ja im
...

...

...

movzx ecx, byte ptr [rdx]
mov r8d, eax
ja 0x408963

mov rax, rdx
add rax, 1
movzx esi, byte ptr [rax]
lea edi, dword ptr [rsi - 0x30]
cmp dil, 9
jbe 0x407fa6

mov r14, -1
cmp sil, 0x24
jne 0x408033

cmp r8b, 9
ja 0x4088e7
...

...

lea reg4 ptr cmp reg1 im jbe im

context contexttarget

Hidden Layer

Softmax Classifier

Input

Figure 4.2: Token Embedding Model Generation.

are further averaged and concatenated to generate feature vectors for blocks. Hence, the

major component is the token embedding model generation depicted in Figure 4.2. It takes

3 steps: 1) random walk; 2) normalization and 3) model training.

Random Walks

As is known to all, in execution time, programs follow certain paths. And the

inter-procedural CFG is formed by those execution paths. To emulate real execution paths

and capture most precise semantic information from assembly instructions, we use random

walk algorithm. Also, random walk is able to serialize ICFGs which would be treated as

sentences in NLP field.

As shown in Step 1 in Figure 4.2, we do this by generating random walks for each

node in ICFGs so that each random walk contains one possible execution path of the binary.

We then consider these random walks as sentence for Word2Vec algorithm. Empirically, we

generate 2 random walks per block to make sure every block is covered and each random

walk has a length of 5 blocks to ensure enough control flow information is carried. Then,

20



we put random walks together to generate a complete article for training.

Normalization

Before sending the article to train our Word2Vec model, the serialized codes may

still contain some differences due to various compilation choices. Besides, considering Ad-

dress Space Layout Randomization (ASLR) and other randomization techniques made ad-

dresses differ from every binaries, the model would be hard to convert. To refine the code,

DeepBinDiff adopts a code normalization process.

Shown as Step 2 in Figure 4.2, our system conducts the normalization using the

following rules : 1) all numeric constant values are replaced with string ‘im’; 2) all general

registers are renamed according to their lengths; 3) pointers are replaced with string ‘ptr’.

It is noteworthy that we do not follow INNEREYE [64] where all the string literals are

replaced with < STR >. This is because we believe the string literals are very useful to

distinguish different blocks. And strings will remain the same whatever the optimization

level or version is.

Model Training

Then DeepBinDiff applies the popular Word2Vec algorithm[46] to the generated

article in order to learn the token embeddings. Dislike original Word2Vec, applied in IN-

NEREYE [64], considering each instruction as a word, we uses instructions as context and

predict each token of target instruction. The idea is inspired by Asm2Vec [25]. In this sec-

tion we are going to talk about original word2vec design. Then, we will show our modified

version and talk about the difference.

21



Word2Vec Algorithm A word embedding is simply a vector which is learned from the

given articles to capture the contextual semantic meaning of the word. There exist multiple

methods to generate vector representations of words including the most popular Continuous

Bag-of-Words model (CBOW) and Skip-Gram model proposed by Mikolov et al. [46]. Here

we utilize the CBOW model which predicates target from its context.

Given a sequence of training words w1, w2, ..., wt, the objective of the model is to

maximize the average log probability J(w) as shown in Equation 4.1

J(w) =
1

T

T∑
t=1

∑
−c≤j≤c

log p(wt|wt+j) (4.1)

where c is the sliding window for context and p(wt|wt + j) is the softmax function

defined as Equation 4.2.

p(wt|wk ∈ Ct) =
exp(vTwk

vwt)∑
wi∈Ct

exp(vTwi
vwt)

(4.2)

where vwt , vwk
and vwi are the vector representations of wt, wk and wi. To further

improve the efficiency of the computation, Word2Vec adopts the hierarchical softmax as a

computationally efficient approximation [46].

Token Embeddings To train the token embedding generation model shown as Step 3

in Figure 4.2, we modify the Word2Vec CBOW model which uses words around a target

word as context. In our case, tokens (opcode and operands) are the words. However, we

consider instructions instead of tokens around the target token as context, shown in Step

3 in Figure 4.2. For example, the figure shows that the current token is cmp (shown in

22



red), so we use one instruction before and another instruction after (shown in green) in the

random walk as the context.

Our token embedding generation model shown in figure 4.3 is inspired by Asm2Vec

which also uses instructions around a target token as context. Nonetheless, our model has

a fundamentally different goal than Asm2Vec. DeepBinDiff learns token embeddings via

program-wide random walks while Asm2Vec is trying to learn function and token em-

beddings at the same time and only within the function. Therefore, we choose to modify

Word2Vec CBOW model while Asm2Vec leverages the PV-DM model. We call it token2vec.

Given a sequence of instructions in1, in2, ..., int. For an instruction ini which

contains an opcode pi and a set of k (could be zero) operands Setti , we model the instruction

embedding as concatenation of opcode embedding and the average of operand embeddings,

as depicted in Equation 4.3

ini = embedpi ||
1

|Setti |
∗

k∑
n=1

embedtin (4.3)

Let tokeni be the set of tokens in a instruction ini, which contains the opcode pi

and operands set Setti . Then the objective of Token2Vec is to maximize the avcerage log

probability T (w) as given in Equation 4.4 and Equation 4.5

T (w) =
1

T

T∑
t=1

∑
−c≤j≤c

log p(tokent|int+j) (4.4)

p(tokent|ink ∈ Ct) =
exp(vTink

vtokent)∑
ini∈Ct

exp(vTini
vtokent)

(4.5)

23



To speed up the training step, according to [46, 41], we use the k negative sampling

approach to approximate the log probability.

Feature Vector Generation

Once the token embeddings are generated, the last step is to generate feature

vectors for basic blocks. Since each basic block could contain multiple instructions, each

instruction in turn involves one opcode and potentially multiple operands, we calculate

the average of the operand embeddings and then concatenate with the opcode embedding.

We use Equasion 4.3 to calculate embeddings of each instruction. Therefore, for a block

b = {in1, in2, .., inj} which contains j instructions, its feature vector FVb is the merge of

its instruction embeddings. as depicted in Equation 4.6.

FVb =

∮ j

i=1
(embedpi ||

1

|Setti |
∗

k∑
n=1

embedtin ) (4.6)

The symbol
∮

denotes the merge operation of instruction embeddings. We have

multiple choice on this operation.Though concatenate is the best choice so that we can

generate embeddings for basic blocks without losing any information from the instructions.

The various length of basic blocks prevent us from doing so. As a result, we select some

mathematical or statistical operations to convert all vectors into a single one.This operation

will lose much information. However, those operations can handle instruction reorder which

concatenate is not able to do. Here is some choices.

SUM Sum is the default choice of our approach. It is just sum all vectors up. This

operation reserves most information and has the best performance in our evaluation.

24



movzx reg4, ptr

mov reg4, reg4

ja im

mov reg8, reg8

add reg8, im

movzx reg4, ptr

cmp reg1, im

jbe im

mov reg8, im

cmp reg1, im

jne im

cmp reg1, im

ja im

mov reg4 ptr ja im

Avg

Conca
tenate

mov reg4 reg4

Sampled 
softmax

Sampled 
softmax

Sampled 
softmax

Conca
tenate

Avg

Figure 4.3: Token2Vec model used in DeepBinDiff

Statistical Operations We have MAX, MIN and MEAN for this category. We believe

those operations is able to find out statistical features from instruction sequences.

PCA PCA(Principal components analysis) is also a statistical procedure introduced by

Karl Pearson in 1901 [53], we split this method from the previous category is because it

is widely used in current machine learning field and performs well on vector compression.

However, from our evaluation, we found that the performance is still not as good as SUM.

RNN RNN is a good model to deal with sequential data. However, as a pre-processing

step, RNN is too time consuming for this task, taking the number of basic blocks in real

world programs into consideration.

25



4.3 Embedding Generation

Based on the ICFGs and feature vectors generated in prior steps, this component

produces embeddings for basic blocks in the two input binaries with a goal that similar

blocks can be associated with similar embeddings. Hence, block embeddings could be

leveraged for binary diffing in later steps. To do so, DeepBinDiff first merges the two ICFGs

into one graph and then perform matrix factorization based on Text-associated DeepWalk

algorithm (TADW) [62] to generate block embeddings.

Since the most important building block for this component is the TADW algo-

rithm, we first describe the algorithm in detail and present how basic block embeddings

are generated. Then, we justify why graph merging is needed for TADW and report how

DeepBinDiff accomplishes it.

4.3.1 TADW algorithm

Text-associated DeepWalk algorithm [62] is an automatic graph embedding learn-

ing technique based on unsupervised deep learning. As suggested by name, it can be

considered as an improvement over the DeepWalk algorithm [54].

DeepWalk DeepWalk algorithm is an online graph embedding learning algorithm that

considers a set of short truncated random walks as a corpus in language modeling problem,

and the graph vertices as its own vocabulary. The embeddings are then learned using ran-

dom walks on the vertices in the graph. Accordingly, vertices that share similar neighbours

will have similar embeddings.

More specifically, given a graph G = (V,E) where V represents all the vertices and

26



E contains all the edges, the algorithm gets a shuffle of V and generates random walks with

a pre-defined length t for each vertex in the shuffle and applies Skip-Gram model as defined

previously in Equation 4.2 with respect to a fixed window size w. Just like Word2Vec, it

also adopts the hierarchical Softmax to improve the efficiency.

Text-associated DeepWalk As described, DeepWalk excels at learning the structural

information from a graph. Nevertheless, it does not consider the features from each vertex

and differentiate them by their own uniqueness. As a result, Yang at el. [62] propose an

improved algorithm called Text-associated DeepWalk (TADW) which is able to incorporate

features of vertices into the network representation learning process. As mentioned before,

to serialize ICFG and generate code sequences for word2vec, we have already performed

random walk. Here we have to perform random walk again. However, this is not a redundant

effort. It is proven that DeepWalk is equivalent to factorizing a matrix M ∈ R|v|×|v| where

each entry Mij is logarithm of the average probability that vertex vi randomly walks to

vertex vj in fixed steps. So we only performs a matrices factorization in this phase, instead

of a real random walk step. This discovery further leads to TADW algorithm depicted in

Figure 4.4. It shows that it is possible to factorize the matrix M into the product of three

matrices: W ∈ Rk×|v|, H ∈ Rk×f and a text feature T ∈ Rf×|v|. Then, W is concatenated

with HT to produce 2k-dimensional representations of vertices (embeddings).

4.3.2 Graph Merging

The goal for embedding generation of DeepBinDiff is to learn block embeddings

such that similar blocks correspond to similar embeddings. To achieve this, DeepBinDiff

27



M

|V|
|V
|

W H

k

f

T
T

|V|
t

Figure 4.4: TADW

leverages TADW to generate embedding for each block. Since we have two ICFGs (one for

each binary), the most intuitive way is to run TADW twice for the two graphs, hence, blocks

that hold similar semantic (feature vectors) and structural information can obtain similar

embeddings. However, this method has two drawbacks. First, it is inefficient to perform

matrix factorization twice. Second, generating embeddings for the two graphs individually

could in fact lower the effectiveness.

Take the example exhibited in Figure 4.5 for illustration. In this figure, we have

two ICFGs and each graph has one block that calls a libc function fread and another block

that has a reference to string ‘hello’. Ideally, there is a great chance that these two pairs

of nodes (‘a’ and ‘1’, ‘d’ and ‘3’) should matched. However, the feature vectors of these

blocks may not be very similar as one block could contain multiple instructions and call

or reference instruction is just one of them. Also, the two pairs also have quite different

structural information. For example, node ‘a’ has two outgoing edges but no incoming edges

while node ‘1’ has. As a result, it is possible that DeepBinDiff cannot generate very similar

embeddings for the two pairs of nodes.

To alleviate the problem and make TADW run only once, DeepBinDiff adopts a

28



graph merging process to merge the two ICFGs before TADW. Particularly, it leverages

Angr to extract the string references and detect calls to external libraries and system calls.

Then, DeepBinDiff creates new virtual nodes for the strings and external library functions

and draws edges from the callsites to these virtual nodes. This way, two graphs are merged

into one graph on some terminal virtual nodes. By doing so, node ‘a’ and ‘1’ will have

at least one common neighbor which boosts the similarity between them. Also, since we

only merge the graphs on terminal nodes, the original structures of the two graphs are

unchanged.

call fread call fread
fread

call freadcall fread

ref: ‘hello’ ref: ‘hello’
ref: ‘hello’ ref: ‘hello’

‘hello’

a

b c

d 3

2

1 a

b c

d

1

2

3

Figure 4.5: Graph Merging

4.3.3 Basic Block Embeddings

With the merged graph, DeepBinDiff leverages TADW algorithm and performs

matrix factorization to generate basic block embeddings.

More specifically, DeepBinDiff feeds the merged graph from two ICFGs and the

block feature vectors into TADW for multiple iterations of optimization. The algorithm

factorizes the matrix M into three matrices by minimizing the loss function depicted in

29



Equation 4.7 using Alternating Least Squares (ALS) algorithm [38]. It stops when the loss

converges or after a fixed n iterations.

min
W,H
||M −W THT ||2F +

λ

2
(||W ||2F + ||H||2F ) (4.7)

On that account, each generated basic block embedding contains not only the

information about the block itself, but also the information from the ICFG structural in-

formation. The generated embeddings are essential for binary diffing.

4.4 Code Diffing

Once the basic block embeddings are generated, the last step in DeepBinDiff is

to perform code diffing. The goal is to find the optimal matching between blocks that

maximizes the similarity for the two input binaries.

One spontaneous choice for this task is to consider blocks from one binary as

workers, blocks from the other binary as jobs and embedding similarities as weights, then

perform linear assignment to come up with the global optimal matching. This method,

however, suffers from two major limitations. First, binaries could contain thousands of

blocks or even more and linear assignment at this scale is inefficient. Second, although

embeddings do include structural information, linear assignment itself does not consider

any graph information. Thus, it is still likely to make mistakes when matching very similar

blocks.

Another possible way to improve the performance is to conduct two-level linear

assignment at function level and block level. Instead of matching blocks directly, we match

30



functions in the two binaries first by using function level embeddings. Then, blocks within

the matched function pairs can be further matched with block embeddings. This approach

can be thwarted by compiler optimizations that alter the function boundary such as function

inlining.

Algorithm 1 K-Hop Greedy Matching Algorithm

1: Setinitial ← {initial match from virtual nodes}

2: Setmatched ← Setinitial

3: SetcurrPairs ← Setinitial

4:

5: while SetcurrPairs != empty do

6: (node1, node2)← SetcurrPairs.pop()

7: nbnode1 ← GetKHopNeighbors(node1)

8: nbnode2 ← GetKHopNeighbors(node2)

9: newPair ← FindMaxUnmatched(nbnode1 , nbnode2)

10: if newPair != NULL then

11: Setmatched ← Setmatched ∪ newPair

12: SetcurrPairs ← SetcurrPairs ∪ newPair

13: end if

14: end while

15: Setunreached ← {blocks that are not yet matched}

16: Setmatched ← Setmatched∪ LinearAssign(Setunreached)

output Setmatched as the binary diffing result

31



4.4.1 K-Hop Greedy Matching

To tackle this problem, we introduce a K-hop greedy matching algorithm. The

high-level idea is to benefit from the ICFG structural information and find matching blocks

based on the similarity calculated from block embeddings within the neighbors of already

matched ones.

As presented in Algorithm 1, it extracts initial matching Setinitial from the inserted

virtual nodes during graph merging described in Section 4.3.2 and produces Setmatched as the

binary diffing result. The initial matched pairs are generated by using the string references

and calls to external functions. For example, if each binary only has one block that refers to

string “hello world”, it is highly likely that these two blocks will match. Starting from the

initial set, the algorithm loops and explores the neighbors of the already matched pairs in

GetKHopNeighbors() in Ln.7-8. DeepBinDiff then sorts the similarities between neighbor

blocks and picks the pair bearing highest similarity by calling FindMaxUnmatched() in

Ln.9. During this step, the algorithm empirically sets a threshold of 0.25 to make sure the

new matching blocks are similar enough. This process is repeated until all K-neighbors

of matched pairs are explored and matched. Note that after the loop, there may still

exist unmatched blocks due to unreached code (dead code) or low similarity within K-hop

neighbors. The algorithm then performs linear assignment and finds the optimal matching

among them in Ln.16. Finally, the algorithm returns Setmatched as the binary diffing result.

32



Chapter 5

Evaluation

In this section, we evaluate DeepBinDiff with respect to its effectiveness and effi-

ciency for two different binary diffing scenarios: cross-version diffing and cross-optimization

level diffing. To our best knowledge, this is the first research work that comprehensively

examines the effectiveness of binary diffing tools under the cross-version setting.

Furthermore, we conduct a case study to demonstrate the usefulness of DeepBin-

Diff in real-world vulnerability analysis.

5.1 Experimental Setup

Our experiments are performed on a moderate desktop computer running Ubuntu

18.04LTS operating system with Intel Core i7 CPU, 16GB memory and no GPU. The

feature vector generation and block embedding generation components in DeepBinDiff are

expected to be significantly accelerated if GPUs are utilized since the two components are

built upon deep learning models.

33



5.2 Implementation

In this section, we are going to introduce the implementation of our prototype,

DeepBinDiff. The whole system consists of about 2500 lines of python code. Our system

is built on the top of Angr [1] and Tensorflow [10]. We uses Angr to disassemble binaries

and recover ICFGs, while we uses Tensorflow to implement our own word2vec model and

TADW model. Here is some details.

Pre-Processing In pre-processing phase we use Angr to disassemble binaries and recover

ICFGs. To generate feature vectors, we use Tensorflow to implement our own modified

Token2Vec model. Table 5.1 shows some hyper-parameters for this step. We provide two

different loss functions. The first is sampled softmax loss, the second is NCE loss which is

also called noise-contrastive estimation loss. They are both sampling approaches mentioned

in section 4.2.2. NCE loss tries to simplify the problem to a bi-type classification problem,

which can be solved by logistic regression. Sampled softmax loss tries to randomly pick a

few samples to approximate the softmax probability. Those two loss function is widely used

in classification problems and has been implemented by Tensorflow.

For feature vector generation of basic blocks we also leave multiple choices. We

have sum, mean, min and max function to merge embeddings of instructions. According to

our observation, the summary function performs best in most cases over previous choices,

so we leave sum as default.

Embedding Generation As introduced in section 4.3.1, we use TADW to collect struc-

tural information. Our implementation is based on a python library called OpenNE [7].

34



Table 5.1: Hyper Parameter selection

Type Value

Sliding Window Size 3
Number of Iterations 10000

Output size 64
Number of Sampled token 64

Considered that structural information has been collected and inserted into the embed-

dings in this step, we adjust our embedding size to 128. A decaying learning rate, which is

called lambda in TADW [62] is configured to 0.1.

5.3 Datasets & Baseline Techniques

5.3.1 Datasets.

To thoroughly evaluate the effectiveness of DeepBinDiff, we collect a number of

representative datasets. More specifically, we utilize three binary sets - Coreutils [3], Diffu-

tils [4] and Findutils [5] with a total of 113 binaries for the evaluation of effectiveness and

efficiency. Multiple different versions of the binaries (5 versions for Coreutils, 4 versions for

Diffutils and 3 versions of Findutils) are collected with wide time spans between the oldest

and newest versions (13, 15, 7 years respectively). This setting ensures that each collected

version has enough distinctions such that binary diffing results among them are meaningful

and representative.

We then compile the programs using GCC 5.4 with 3 different compiler opti-

mization levels (O1, O2 and O3) to produce binaries equipped with different optimization

techniques. This dataset is leveraged to show the effectiveness of DeepBinDiff in terms of

35



cross-optimization level diffing.

Moreover, we leverage a popular general-purpose cryptography library OpenSSL [8]

for vulnerability analysis case study. In the case study, we use two different real-world vul-

nerabilities to demonstrate the advantage of DeepBinDiff in practice.

5.3.2 Baseline Techniques.

With the aforementioned datasets, we run DeepBinDiff and compare it against

another two state-of-the-art baseline techniques (Asm2Vec [25] and BinDiff [9]). Note that

Asm2Vec is designed only for function level similarity detection. We leverage its algorithm

to generate token embeddings and take the same procedure in the paper to average operand

embeddings and concatenate with opcode embedding to generate instruction embeddings.

Then, we further sum them up to produce block embeddings and perform binary diffing

with the same K-hop greedy matching algorithm adopted by DeepBinDiff.

5.4 Ground Truth Collection

Ground truth information about how blocks from two binaries should be matched

is required when measuring the effectiveness of DeepBinDiff. To this end, we rely on source

code matching and debug symbol information to collect ground truth information.

Particularly, for two input binaries to be diff’ed, we first extract source file names

from the binaries and then use Myers algorithm [50] to perform text based matching for the

source code of the two binaries in order to get the line number matching. We take two steps

to ensure the soundness of our extracted ground truth information. First, we only collect

36



identical lines of source code as matching but ignore the modified ones. Second, our ground

truth collection process is being deliberately conservative to remove the matching lines like

macros which could expand to multiple lines of code. Therefore, although our source code

matching is by no means complete, it is guaranteed to contain zero false positive.

Once we have the line number mapping between the two binaries, readelf tool is

used to extract debug information to understand the mapping between line numbers and

program addresses. Eventually, the ground truth is collected by examining the blocks of

the two binaries containing program addresses that map to the matched line numbers. This

way, we can successfully collect ground truth block matching information for every pair of

binaries.

Example. Take the diffing between v5.93 and v8.30 of Coreutils binary chown for illus-

tration. To collect ground truth information for block matching between the two binaries,

we first extract source file names from them and perform text-based matching between the

corresponding source files. By matching the source files chown.c in the two versions, we

know Ln. 288 in v5.93 should be matched to Ln. 273 in v8.30. Together with the debug

information extracted by readelf, a matching between address 0x401cf8 in v5.93 chown and

address 0x4023fc in v5.93 chown can be established.

Finally, we use Angr to generate basic blocks for the two binaries. By checking

the addresses within the blocks, we know block 3 in v5.93 chown should be matched to

block 13 in v8.30 chown. Therefore, we collect the ground truth information about how the

blocks between the two binaries should be matched and we further use this information to

37



Table 5.2: Experimental Datasets

Binary Set Versions Compiler Optimization Levels Time Span

Coreutils v5.93, v6.4, v7.6, v8.1, v8.30 O1, O2, O3 13 years (2005 - 2018)

Diffutils v2.8, v3.1, v3.4, v3.6 O1, O2, O3 15 years (2002 - 2017)

Findutils v4.233, v4.41, v4.6 O1, O2, O3 7 years (2008 - 2015)

OpenSSL v1.0.1g, v1.0.1h, v1.1.0, v1.1.0a N/A

measure the correctness of the diffing results produced by DeepBinDiff.

5.5 Effectiveness

With the experimental datasets and ground truth information collected, we evalu-

ate the effectiveness of DeepBinDiff by performing diffing between binaries across different

versions and optimization levels, and checking the results against the ground truth infor-

mation. We also compare the results against two state-of-the-art baseline techniques.

5.5.1 Evaluation Metrics

In the evaluation, we use precision and recall metrics to measure the effectiveness

of the diffing results produced by diffing tools. The matching result M from DeepBinDiff

for two given binaries can be presented as a set of block matching pairs with a length

of x. Similarly, the ground truth information G for the two binaries can be presented as

a set of block matching pairs with a length of y. We present them in Equation 5.1 and

5.2. Elements in set M and G show matching relationship between two basic blocks from

the two binaries in the matching result from DeepBinDiff and ground truth information

respectively.

38



M = {(m1,m
′
1), (m2,m

′
2), ..., (mx,m

′
x)} (5.1)

G = {(g1, g
′
1), (g2, g

′
2), ..., (gy, g

′
y)} (5.2)

We then define two subsets of M : Mc and Mu, representing correct matching and

unknown matching respectively. Correct match Mc = M ∩G is the intersection of our result

M and ground truth G which gives us the correct block matching pairs. Unknown matching

result Mu represents the block matching pairs that no block in these pairs is ever appeared in

ground truth. Thus, we have no idea whether these matching pairs are correct. This could

happen due to the conservativeness of our ground truth collection process. Consequently,

M −Mu −Mc portrays the matching pairs in M that are not in Mc nor in Mu, therefore,

all pairs in M −Mu −Mc are confirmed to be incorrect matching pairs.

Once we have M and G formally presented, we use precision and recall metrics to

show the quality of diffing results. The precision metric presented in Equation 5.3 gives us

the percentage of correct matching pairs among all the known pairs (correct and incorrect).

Precision =
||M ∩G||

||M ∩G||+ ||M −Mu −Mc||
(5.3)

The recall metric shown in Equation 5.4 is produced by finding the intersection of

sets M and G and dividing its size by the size of set G. This metric shows the percentage

of ground truth pairs that are correctly matched by the diffing tool.

Recall =
||M ∩G||
||G||

(5.4)

39



5.5.2 Cross-version Diffing

In this experiment, we benchmark the performance of DeepBinDiff, BinDiff and

Asm2Vec by conducting binary diffing between different versions of binaries (all compiled

with O1 compiler optimization level) in Coreutils, Diffutils and Findutils. We report the

average recall and precision for each tool under different experimental settings in Table 5.3.

As we can see, DeepBinDiff outperforms Asm2Vec and BinDiff across all versions of

the three datasets in terms of recall, especially when the two diffed versions have a large gap.

For example, for Coretuils diffing between v5.93 and v8.30, DeepBinDiff improves the recall

by 14% and 42% over Asm2Vec and BinDiff. Also, we can observe that Asm2Vec which

carries the semantic information for tokens, in general has better recall than the de-facto

commercial tool BinDiff. This evaluation results show that including semantic information

during analysis can improve the effectiveness of diffing. Moreover, since a major difference

between DeepBinDiff and Asm2Vec is the structural information generated from TADW,

we can also draw the conclusion that structural information can help boost the quality of

diffing results by a large margin.

Interestingly, we also notice that BinDiff sometimes can produce higher precision

than Asm2Vec and DeepBinDiff. We investigate the detailed results and see that BinDiff has

a very conservative matching strategy. It usually only matches the basic blocks with very

high similarity score and leaves the other blocks unmatched. Therefore, BinDiff generates

much short matching list than DeepBinDiff which uses K-hop greedy matching to maximize

the matching.

40



Table 5.3: Cross-version Binary Diffing Results

Recall Precision
BinDiff Asm2Vec DeepBinDiff BinDiff Asm2Vec DeepBinDiff

Coreutils

v5.93 - v8.30 0.506 0.633 0.721 0.775 0.611 0.713
v6.4 - v8.30 0.572 0.664 0.747 0.784 0.641 0.745
v7.6 - v8.30 0.748 0.777 0.878 0.771 0.753 0.874
v8.1 - v8.30 0.756 0.792 0.884 0.821 0.766 0.878

Diffutils
v2.8 - v3.6 0.354 0.738 0.779 0.662 0.743 0.775
v3.1 - v3.6 0.905 0.941 0.972 0.949 0.929 0.939
v3.4 - v3.6 0.925 0.952 0.981 0.964 0.941 0.943

Findutils
v4.2.33 - v4.6.0 0.511 0.688 0.731 0.631 0.705 0.746
v4.4.1 - v4.6.0 0.736 0.813 0.912 0.898 0.881 0.887

Table 5.4: Cross-optimization level Binary Diffing Results

Recall Precision
BinDiff Asm2Vec DeepBinDiff BinDiff Asm2Vec DeepBinDiff

Coreutils

v5.93 O1 - O3 0.571 0.556 0.652 0.638 0.537 0.668
v5.93 O2 - O3 0.837 0.905 0.976 0.944 0.855 0.932
v6.4 O1 - O3 0.576 0.589 0.676 0.646 0.569 0.697
v6.4 O2 - O3 0.838 0.899 0.978 0.954 0.848 0.939
v7.6 O1 - O3 0.484 0.627 0.668 0.674 0.602 0.704
v7.6 O2 - O3 0.840 0.898 0.953 0.944 0.845 0.913
v8.1 O1 - O3 0.480 0.628 0.673 0.677 0.601 0.713
v8.1 O2 - O3 0.835 0.868 0.921 0.942 0.839 0.901

v8.30 O1 - O3 0.508 0.516 0.607 0.620 0.495 0.638
v8.30 O2 - O3 0.842 0.884 0.952 0.954 0.832 0.903

Diffutils

v2.8 O1 - O3 0.467 0.779 0.831 0.613 0.755 0.828
v2.8 O2 - O3 0.863 0.955 0.979 0.953 0.936 0.966
v3.1 O1 - O3 0.633 0.801 0.816 0.655 0.647 0.775
v3.1 O2 - O3 0.898 0.902 0.943 0.966 0.925 0.964
v3.4 O1 - O3 0.577 0.712 0.754 0.708 0.698 0.715
v3.4 O2 - O3 0.903 0.911 0.935 0.953 0.943 0.967
v3.6 O1 - O3 0.735 0.876 0.865 0.715 0.811 0.853
v3.6 O2 - O3 0.919 0.954 0.962 0.966 0.922 0.952

Findutils

v4.233 O1 - O3 0.633 0.695 0.783 0.768 0.637 0.799
v4.233 O2 - O3 0.933 0.952 0.983 0.968 0.931 0.981
v4.41 O1 - O3 0.677 0.715 0.821 0.731 0.677 0.882
v4.41 O2 - O3 0.839 0.912 0.951 0.964 0.952 0.967
v4.6 O1 - O3 0.563 0.636 0.763 0.633 0.721 0.791
v4.6 O2 - O3 0.958 0.935 0.961 0.932 0.915 0.954

41



We further present the Cumulative Distribution Function (CDF) figures for F1-

scores of the three diffing techniques on Coreutils binaries in Figure .1. Again, from the

CDF figures we can see that Asm2Vec and BinDiff have similar F1-scores while DeepBinDiff

performs much better. And due to the high precision, BinDiff can even have higher F1-

scores than Asm2Vec. In a nutshell, DeepBinDiff can exceed two baseline techniques by

large margins with respect to cross-version binary diffing.

5.5.3 Cross-optimization level Diffing

We then conduct experiments to measure the effectiveness of the three techniques

in terms of cross-optimization level binary diffing. We perform diffing between the binaries

with the same version but under different optimization levels. Particularly, each binary is

diffed twice (O1 versus O3 and O2 versus O3). We report the average recall and precision

for all settings in Table 5.4.

As shown, just like cross-version binary diffing, DeepBinDiff could outperform

Asm2Vec and BinDiff for most of the settings in recall rate. The only exception is the

Diffutils v3.6 O1 to O3 diffing where Asm2Vec has a recall rate of 0.876 while DeepBinDiff

obtains 0.865. It is because there are only 4 binaries in Difftuils and most of them are

small. In this special case, program-wide structure information may become less useful.

Still, DeepBinDiff could defeat Asm2Vec for all other settings, even for Diffutils. Also,

BinDiff still enjoys a high precision rate, sometimes higher than DeepBinDiff.

One thing we can see from the results is that cross-optimization level binary diffing

is more difficult than cross-version diffing since the recall and precision rates are lower. This

is because of the compiler optimization techniques could greatly transform the binaries.

42



However, we anticipate DeepBinDiff and Asm2Vec to achieve better results if trained with

more samples.

5.6 Efficiency

We then conduct experiments to show the efficiency of our system. The run-

ning time of DeepBinDiff can be split into four parts: training time, pre-processing time,

embedding generation time and matching time.

Training Time We train our token embedding generation model with the binaries in our

dataset. Random walks are generated for each binary to produce one article for training our

model. We stop the training for each binary when loss converges or it hits 10000 steps. In

total, It takes about 30 hours for our machine to finish the whole training process. We could

retrain our model when new binaries are fed into DeepBinDiff. For comparison, Asm2Vec

also needs this training time to generate its model while BinDiff does not need any training

time. Note that training the model is only an one-time effort and the training process could

be significantly accelerated if GPUs are used.

Pre-processing Time DeepBinDiff relies on Angr for ICFG generation. It takes only

an average of 12.264s DeepBinDiff to finish the graph generation on one binary. Then,

our system applies the pre-trained model to generate token embeddings and calculates the

feature vectors for each basic block. Applying the model and calculating the feature vector

only takes less than 100ms for one binary. BinDiff which uses IDA pro for pre-processing

takes similar time for its pre-processing.

43



Embedding Generation The most heavy part of DeepBinDiff is the embedding gener-

ation which utilizes TADW to factorize a matrix. On average, it takes 591s on average to

finish embedding generation for one binary. One way to accelerate the process is to use

a more efficient algorithms other than the Alternating Least Squares (ALS) algorithm for

TADW matrix factorization. For example, CCD++ [63] is demonstrated to be 40 times

faster than ALS algorithm.

Matching Time K-hop greedy matching algorithm is efficient in that it limits the search

space by searching only within the K-hop neighbors for the two matched blocks. On average,

it takes DeepBinDiff 45 seconds to finish the matching. BinDiff, for comparison, takes only

3.4s to finish matching since it uses many heuristics to avoid graph matching.

5.7 Case Study

Besides the above experiments, we also evaluate DeepBinDiff with real-world vul-

nerability analysis to showcase its efficacy in practice. Two representative vulnerabilities in

OpenSSL [8] are utilized for an in-depth comparison among our tool and the state-of-the-art

commercial diffing tool BinDiff.

5.7.1 DTLS Recursion Flaw

The first vulnerability (CVE-2014-0221) happens in OpenSSL v1.0.1g and before,

gets fixed in v1.0.1h. It is a Datagram Transport Layer Security (DTLS) recursion flaw

vulnerability which allows attackers to send an invalid DTLS handshake to OpenSSL client

to cause recursion and eventually crash.

44



Listing 5.1 shows the vulnerability along with the patched code. As listed, patching

is made to avoid the recursive call by changing it to a goto statement (Ln. 10-11).

Listing 5.1: DTLS Recursion Flaw

1 static long dtls1_get_message_fragment () {

2 int i, al;

3 ...

4 + redo: ;

5 if(( frag_len = fragment(s, max , ok)) {

6 ...

7 if (s->msg_callback) {

8 s->msg_callback (0, s->version)

9 - return dtls1 get message fragment(); ;

10 + goto redo;

11 }

To analyze this vulnerability, we feed a vulnerable version as well as a patched

version of OpenSSL into the diffing tools and see if the tools can generate correct matching

between the blocks that contain the vulnerability and the patch.

Partial results from BinDiff and DeepBinDiff are shown in Figure 5.1. This match-

ing is hard because in v1.0.1h, the patched function dts1 get message fragment() is inlined

into another function named dts1 get message(). BinDiff matches the vulnerable function

in v1.0.1h with its caller in v1.0.1g, leaving the original dts1 get message() in v1.0.1g un-

matched.

45



pop     rdx
pop     rcx
mov     esi, dword ptr [rsp+1D8h+var_1D8]
mov     dword ptr [r13+60h], 0
mov     r8, rbx
mov     rcx, rbp
mov     edx, r12d
mov     rdi, r13
call    dtls1_get_message_fragment
jmp     loc_40E34

mov     rax, [r13+50h]
mov     rax, [rax+8]
add     rax, 0Ch
mov     [r13+58h], rax
movsxd  rax, dword ptr [r13+60h]
jmp     loc_40FA1

(a) Matching Result from BinDiff

pop     rdx
pop     rcx
mov     esi, dword ptr [rsp+1D8h+var_1D8]
mov     dword ptr [r13+60h], 0
mov     r8, rbx
mov     rcx, rbp
mov     edx, r12d
mov     rdi, r13
call    dtls1_get_message_fragment
jmp     loc_40E34

pop     r8
pop     r9
mov     rax, [r13+88h]
mov     dword ptr [r13+60h], 0
jmp     loc_4103F

(b) Matching Result from DeepBinDiff

Figure 5.1: Matching for DTLS Recursion Flaw

cmp     qword ptr [rdi+1F8h], 454Ch
mov     eax, 454Ch
mov     r12, rdi
cmovnb  rax, [rdi+1F8h]
cmp     rbp, rax
jbe     short loc_3FFF0

mov     rdx, [rdi+98h]
mov     r12, rdi
cmp     qword ptr [rdx+198h], 0
jz      short loc_3FEA8

ov     rdx, [rdi+98h]
cmp     qword ptr [rdx+198h], 0
jz      short loc_40018

(a) Matching Result from BinDiff

cmp     qword ptr [rdi+1F8h], 454Ch
mov     eax, 454Ch
mov     r12, rdi
cmovnb  rax, [rdi+1F8h]
cmp     rbp, rax
jbe     short loc_3FFF0

mov     rdx, [rdi+98h]
mov     r12, rdi
cmp     qword ptr [rdx+198h], 0
jz      short loc_3FEA8

ov     rdx, [rdi+98h]
cmp     qword ptr [rdx+198h], 0
jz      short loc_40018

(b) Matching Result from DeepBinDiff

Figure 5.2: Matching for Memory Boundary Checking Failure

Figure 5.1a shows the matching blocks from BinDiff. Within the function, BinDiff

fails to match the block containing a recursive function call to the block containing a goto

statement. It mistakenly matched the block to the one which has similar opcodes but with

completely different context. Meanwhile, DeepBinDiff finds the correct matching shown in

Figure 5.1b by considering both the semantics and the program-wide structural information.

5.7.2 Memory Boundary Checking Failure

The second vulnerability (CVE-2016-6308) exists in OpenSSL v1.1.0 and before,

and gets fixed in v1.1.0a. The program fails to check the length before memory allocation,

46



allowing attackers to allocate excessive amount of memory. As shown in Listing 5.2, the

patch inserts a new condition check on top of the original check.

Listing 5.2: Memory Boundary Checking Failure

1 static int dtls1_preprocess_fragment () {

2 size_t frag_off;

3 frag_len = msg_hdr ->frag_len;

4 if (( frag_off + frag_len) > len)

5 + || len > max handshake message len(s)) {

6 SSLerr ();

7 return SSL_AD_ILLEGAL_PARAMETER;

8 }

9 // memory allocation using len

10 ...

For vulnerability analysis, we expect to use binary diffing tool to compare vulner-

able binary with the patched one, and identify the patch as a new insertion.

Depicted in Figure 5.2a, BinDiff mismatches the vulnerable block with the new

condition check block, rendering the real matching block unmatched (shown as white block).

For DeepBinDiff, it successfully matches the blocks and identify the new condition check as

a new insertion block.

47



Chapter 6

Discussion

While our approach improves the accuracy of basic block level binary diffing by

much, there still a long way from ”solving” the general issue. In this chapter, we will talk

about the limitation of our approach and discuss the reason why it is not able to apply on

real-world application on current time spot.

Efficiency As a Unsupervised learning and context sensitive model, DeepBinDiff have to

be retrained for every binary sample, which is both time and space consuming. Gemini [60],

as an out of the box model, in this case is much better than DeepBinDiff. Now matter how

long it takes in training step, that is a one time effort. Once the model has been trained, less

than 100ms would be taken for a function pair. One solution for DeepBinDiff is to divide our

workflow into two mode, which is training mode and estimating mode. In training mode,

we generate token embeddings via our original work-flow. Then, when we have two binary

samples to process, we use token embeddings generated in training mode to form basic

block embeddings. We treat unseen tokens as rare observe tokens and apply them with a

48



fixed embedding. And we follow the rest of steps to match train TADW model and match

basic blocks. After each task, we take binary samples into our dataset. Finally, we retrain

our Token2Vec model and generate new token embeddings from our dataset regularly.

False positive According to our evaluation shown in chapter 5, our precision is not better

than BinDiff, which means we do not get good improvements on this topic. As reported,

BinDiff is conservative while making decisions so that they are able to get such satisfactory

results. Assuming that a approach can get zero false positive and acceptable recall and

F1-score, which means any match in the result is a match in reality, it would be much

useful in vulnerability detection, or other applications.

Semi-supervised learning Semi-supervised node classification, mentioned in [37] give

us some new direction for this task. To decrease false positive to zero, we can have such

back and force work-flow. 1) train the model and get result. 2) manually fix errors based

on the result 3) retrain the model based on those corrections and go back to step 2 until

the result is acceptable. Hence, a semi-supervised model is required to retrain the model

with manually selected labels.

Deep Learning models for Control Flow Graphs As mentioned in chapter 2, there

are many deep learning models designed for graphs recently which can outperform deepwalk

and TADW. However, we finally choose TADW as our model. Because most of the models

is aimed at social networks which is completely differ from control flow graphs. We believed

that a graph model designed for trace based, directed graph is required for further studies.

49



Chapter 7

Conclusions

In this paper, we propose a novel program-wide code representation learning tech-

nique to perform binary diffing in an unsupervised learning fashion. To precisely match the

blocks within the given binaries, we leverage NLP techniques to generate token embeddings

which are further aggregated to generate block level feature vectors containing semantic in-

formation for blocks. We then generate inter-procedural control-flow graphs (ICFGs) from

the binaries, extract the program-wide structural information from the ICFGs using Text-

associated DeepWalk algorithm and generate block level embeddings. Finally, we propose

a K-hop greedy matching algorithm to find optimal matching for the blocks based on the

similarity of embeddings. We implement a prototype named DeepBinDiff and evaluate it

against 113 binaries and 2 real-world vulnerabilities under the scenarios of cross-version and

cross-optimization level binary diffing. The results show that our system could outperform

the state-of-the-art techniques Asm2Vec and BinDiff by a large margin.

50



Bibliography

[1] Angr. https://angr.io/, 2019.

[2] diffing-with-kam1n0. https://www.whitehatters.academy/diffing-with-kam1n0/,
2019.

[3] GNU Coretuils. https://www.gnu.org/software/coreutils/, 2019.

[4] GNU Difftuils. https://www.gnu.org/software/diffutils/, 2019.

[5] GNU Findutils. https://www.gnu.org/software/findutils/, 2019.

[6] IDA Disassembler and debugger. https://www.hex-rays.com/products/ida/, 2019.

[7] OpenNE. https://github.com/thunlp/OpenNE, 2019.

[8] OpenSSL. https://www.openssl.org/, 2019.

[9] zynamics BinDiff. https://www.zynamics.com/bindiff.html, 2019.

[10] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
a system for large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

[11] Christopher R Aberger. Recommender: An analysis of collaborative filtering tech-
niques, 2016.

[12] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and
Alexander J Smola. Distributed large-scale natural graph factorization. In Proceedings
of the 22nd international conference on World Wide Web, pages 37–48. ACM, 2013.

[13] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David Brumley. Aeg:
Automatic exploit generation. 2011.

[14] Roberto Baldoni, Giuseppe Antonio Di Luna, Luca Massarelli, Fabio Petroni, and
Leonardo Querzoni. Unsupervised features extraction for binary similarity using graph
embedding neural networks. arXiv preprint arXiv:1810.09683, 2018.

51

https://angr.io/
https://www.whitehatters.academy/diffing-with-kam1n0/
https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/diffutils/
https://www.gnu.org/software/findutils/
https://www.hex-rays.com/products/ida/
https://github.com/thunlp/OpenNE
https://www.openssl.org/
https://www.zynamics.com/bindiff.html


[15] Martial Bourquin, Andy King, and Edward Robbins. Binslayer: accurate comparison
of binary executables. In Proceedings of the 2nd ACM SIGPLAN Program Protection
and Reverse Engineering Workshop, page 4. ACM, 2013.

[16] Juan Caballero, Noah M Johnson, Stephen McCamant, and Dawn Song. Binary code
extraction and interface identification for security applications. Technical report, CALI-
FORNIA UNIV BERKELEY DEPT OF ELECTRICAL ENGINEERING AND COM-
PUTER SCIENCE, 2009.

[17] Hongyun Cai, Vincent W Zheng, and Kevin Chang. A comprehensive survey of graph
embedding: problems, techniques and applications. IEEE Transactions on Knowledge
and Data Engineering, 2018.

[18] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations
with global structural information. In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management, pages 891–900. ACM, 2015.

[19] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning graph
representations. In AAAI, pages 1145–1152, 2016.

[20] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan Cho, and
Hee Beng Kuan Tan. Bingo: Cross-architecture cross-os binary search. In Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 678–689. ACM, 2016.

[21] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models
for structured data. In International Conference on Machine Learning, pages 2702–
2711, 2016.

[22] Yaniv David, Nimrod Partush, and Eran Yahav. Statistical similarity of binaries. ACM
SIGPLAN Notices, 51(6):266–280, 2016.

[23] Yaniv David, Nimrod Partush, and Eran Yahav. Similarity of binaries through re-
optimization. In ACM SIGPLAN Notices, volume 52, pages 79–94. ACM, 2017.

[24] Yaniv David and Eran Yahav. Tracelet-based code search in executables. Acm Sigplan
Notices, 49(6):349–360, 2014.

[25] Steven HH Ding, Benjamin CM Fung, and Philippe Charland. Asm2vec: Boosting
static representation robustness for binary clone search against code obfuscation and
compiler optimization. In Security and Privacy (SP), 2015 IEEE Symposium on. IEEE,
2019.

[26] Thomas Dullein and Rolf Rolles. Graph-based comparison of executable objects. In
Proceedings of the Symposium sur la Securite des Technologies de Linformation et des
communications, 2005.

[27] Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. Blanket execution:
Dynamic similarity testing for program binaries and components. In 23rd USENIX
Security Symposium (USENIX Security). USENIX Association, 2014.

52



[28] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. discovre: Efficient
cross-architecture identification of bugs in binary code. In NDSS, 2016.

[29] Mohammad Reza Farhadi, Benjamin CM Fung, Philippe Charland, and Mourad Deb-
babi. Binclone: Detecting code clones in malware. In Software Security and Reliability
(SERE), 2014 Eighth International Conference on, pages 78–87. IEEE, 2014.

[30] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng Yin.
Scalable graph-based bug search for firmware images. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pages 480–
491. ACM, 2016.

[31] Debin Gao, Michael K Reiter, and Dawn Song. Binhunt: Automatically finding se-
mantic differences in binary programs. In International Conference on Information
and Communications Security, pages 238–255. Springer, 2008.

[32] Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications, and
performance: A survey. Knowledge-Based Systems, 151:78–94, 2018.

[33] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks.
In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 855–864. ACM, 2016.

[34] Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. Regal: Representa-
tion learning-based graph alignment. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, pages 117–126. ACM, 2018.

[35] He Huang, Amr M Youssef, and Mourad Debbabi. Binsequence: fast, accurate and
scalable binary code reuse detection. In Proceedings of the 2017 ACM on Asia Con-
ference on Computer and Communications Security, pages 155–166. ACM, 2017.

[36] Ian Jolliffe. Principal component analysis. In International encyclopedia of statistical
science, pages 1094–1096. Springer, 2011.

[37] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907, 2016.

[38] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. Computer, (8):30–37, 2009.

[39] Harold W Kuhn. The hungarian method for the assignment problem. Naval Research
Logistics (NRL), 2(1-2):83–97, 1955.

[40] Nathaniel Lageman, Eric D Kilmer, Robert J Walls, and Patrick D McDaniel. Bindnn:
Resilient function matching using deep learning. In International Conference on Secu-
rity and Privacy in Communication Systems, pages 517–537. Springer, 2016.

[41] Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents.
In International Conference on Machine Learning, pages 1188–1196, 2014.

53



[42] Yao Li, Weiyang Xu, Yong Tang, Xianya Mi, and Baosheng Wang. Semhunt: Identify-
ing vulnerability type with double validation in binary code. In SEKE, pages 491–494,
2017.

[43] Bang Liu, Ting Zhang, Di Niu, Jinghong Lin, Kunfeng Lai, and Yu Xu. Matching long
text documents via graph convolutional networks. arXiv preprint arXiv:1802.07459,
2018.

[44] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and Wei Zou.
αdiff: cross-version binary code similarity detection with dnn. In Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering, pages
667–678. ACM, 2018.

[45] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. Semantics-based
obfuscation-resilient binary code similarity comparison with applications to software
plagiarism detection. In Proceedings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pages 389–400. ACM, 2014.

[46] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

[47] Jiang Ming, Meng Pan, and Debin Gao. ibinhunt: Binary hunting with inter-procedural
control flow. In International Conference on Information Security and Cryptology,
pages 92–109. Springer, 2012.

[48] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. Binsim: Trace-based seman-
tic binary diffing via system call sliced segment equivalence checking. In Proceedings
of the 26th USENIX Security Symposium, 2017.

[49] Jiang Ming, Dongpeng Xu, and Dinghao Wu. Memoized semantics-based binary diff-
ing with application to malware lineage inference. In IFIP International Information
Security Conference, pages 416–430. Springer, 2015.

[50] Eugene W Myers. Ano (nd) difference algorithm and its variations. Algorithmica,
1(1-4):251–266, 1986.

[51] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dy-
namic binary instrumentation. In ACM Sigplan notices, volume 42, pages 89–100.
ACM, 2007.

[52] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transi-
tivity preserving graph embedding. In Proceedings of the 22nd ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 1105–1114. ACM,
2016.

[53] K. pearson. On lines and planes of closest fit to systems of points in space. Philosophical
Magazine, 2:559–572, 1901.

54



[54] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 701–710. ACM, 2014.

[55] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten
Holz. Cross-architecture bug search in binary executables. In Security and Privacy
(SP), 2015 IEEE Symposium on, pages 709–724. IEEE, 2015.

[56] Kaspar Riesen and Horst Bunke. Approximate graph edit distance computation by
means of bipartite graph matching. Image and Vision computing, 27(7):950–959, 2009.

[57] Andreas Sæbjørnsen, Jeremiah Willcock, Thomas Panas, Daniel Quinlan, and Zhen-
dong Su. Detecting code clones in binary executables. In Proceedings of the eighteenth
international symposium on Software testing and analysis, pages 117–128. ACM, 2009.

[58] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 1225–1234. ACM, 2016.

[59] Shuai Wang and Dinghao Wu. In-memory fuzzing for binary code similarity analysis. In
Proceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering, pages 319–330. IEEE Press, 2017.

[60] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. Neural
network-based graph embedding for cross-platform binary code similarity detection. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 363–376. ACM, 2017.

[61] Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang Liu, and Fu Song. Spain:
security patch analysis for binaries towards understanding the pain and pills. In Pro-
ceedings of the 39th International Conference on Software Engineering, pages 462–472.
IEEE Press, 2017.

[62] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang. Network
representation learning with rich text information. In IJCAI, pages 2111–2117, 2015.

[63] Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit S Dhillon. Parallel matrix factorization
for recommender systems. Knowledge and Information Systems, 41(3):793–819, 2014.

[64] Fei Zuo, Xiaopeng Li, Zhexin Zhang, Patrick Young, Lannan Luo, and Qiang Zeng.
Neural machine translation inspired binary code similarity comparison beyond function
pairs. In NDSS, 2019.

55



.1 Cross-version Binary Diffing F1-score CDF Figures

Here we present all the F1-score CDF figures for cross-version binary diffing in

Figure .1.

0.0 0.2 0.4 0.6 0.8 1.0
F1-score

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

DeepBinDiff
Asm2Vec
BinDiff

(a) v5.93 vs v8.30

0.0 0.2 0.4 0.6 0.8 1.0
F1-score

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

DeepBinDiff
Asm2Vec
BinDiff

(b) v6.4 vs v8.30

0.0 0.2 0.4 0.6 0.8 1.0
F1-score

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

DeepBinDiff
Asm2Vec
BinDiff

(c) v7.6 vs v8.30

0.0 0.2 0.4 0.6 0.8 1.0
F1-score

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

DeepBinDiff
Asm2Vec
BinDiff

(d) v8.1 vs v8.30

Figure .1: Cross-version Diffing F1-score CDF

for Coreutils

.2 Cross-version Binary Diffing F1-score CDF Figures

Here we put all the F1-score CDF figures for cross-optimization level binary diffing

in Figure .2.

56



0.0 0.2 0.4 0.6 0.8 1.0
F1-score

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

DeepBinDiff
Asm2Vec
BinDiff

(a) v5.93O1 vs v5.93O3

0.0 0.2 0.4 0.6 0.8 1.0
F1-score

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

DeepBinDiff
Asm2Vec
BinDiff

(b) v5.93O2 vs v5.93O3

0.0 0.2 0.4 0.6 0.8 1.0
F1-score

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

DeepBinDiff
Asm2Vec
BinDiff

(c) v6.4O1 vs v6.4O3

0.0 0.2 0.4 0.6 0.8 1.0
F1-score

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

DeepBinDiff
Asm2Vec
BinDiff

(d) v6.4O2 vs v6.4O3

0.0 0.2 0.4 0.6 0.8 1.0
F1-score

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

DeepBinDiff
Asm2Vec
BinDiff

(e) v7.6O1 vs v7.6O3

0.0 0.2 0.4 0.6 0.8 1.0
F1-score

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

DeepBinDiff
Asm2Vec
BinDiff

(f) v7.6O2 vs v7.6O3

0.0 0.2 0.4 0.6 0.8 1.0
F1-score

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

DeepBinDiff
Asm2Vec
BinDiff

(g) v8.1O1 vs v8.1O3

0.0 0.2 0.4 0.6 0.8 1.0
F1-score

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

DeepBinDiff
Asm2Vec
BinDiff

(h) v8.1O2 vs v8.1O3

0.0 0.2 0.4 0.6 0.8 1.0
F1-score

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

DeepBinDiff
Asm2Vec
BinDiff

(i) v8.30O1 vs v8.30O3

0.0 0.2 0.4 0.6 0.8 1.0
F1-score

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

DeepBinDiff
Asm2Vec
BinDiff

(j) v8.30O2 vs v8.30O3

Figure .2: Cross-optimization level Diffing F1-score CDF for Coreutils

57


	List of Figures
	List of Tables
	Introduction
	Related Work
	Code Similarity Detection
	Assembly code processing
	Graph mining

	Problem Statement
	Problem Definition
	Assumptions

	System Design
	Approach Overview
	Pre-processing
	CFG Generation
	Feature Vector Generation

	Embedding Generation
	TADW algorithm
	Graph Merging
	Basic Block Embeddings

	Code Diffing
	K-Hop Greedy Matching


	Evaluation
	Experimental Setup
	Implementation
	Datasets & Baseline Techniques
	Datasets.
	Baseline Techniques.

	Ground Truth Collection
	Effectiveness
	Evaluation Metrics
	Cross-version Diffing
	Cross-optimization level Diffing

	Efficiency
	Case Study
	DTLS Recursion Flaw
	Memory Boundary Checking Failure


	Discussion
	Conclusions
	Bibliography
	Cross-version Binary Diffing F1-score CDF Figures
	Cross-version Binary Diffing F1-score CDF Figures




