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Abstract 

Use of heteroskedasticity-robust standard errors has become common in frequentist 

regressions. I offer here a Bayesian analog. The Bayesian version is derived by first focusing on 

the likelihood function for the sample values of the identifying moment conditions of least 

squares and then formulating a convenient prior for the variances of the error terms. The first 

step introduces a sandwich estimator into the posterior calculations, while the second step 

allows the investigator to set the sandwich for either heteroskedastic or homoskedastic error 

variances. If desired, the Bayesian estimator can be made to look very similar to the usual 

heteroskedasticity-robust frequentist estimator. Bayesian estimation is easily accomplished by 

a standard MCMC procedure.
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Introduction 

Estimation of heteroskedasticity-consistent (aka “robust”) standard errors following the work of 

White (1980), Eicker (1967), and Huber (1967) has become routine in the frequentist literature. 

(For a recent retrospective see MacKinnon (2012). Freedman (2006) is also of interest.) Indeed, 

White (1980) was the most cited article in economics between 1980 and 2005 (Kim (2006)). 

While a number of authors have proposed Bayesian approaches to heteroskedasticity, no one 

has presented the direct Bayesian analogue to the frequentist approach.2 The Bayesian version 

may be useful both in estimation of models subject to heteroskedasticity and in situations 

where such models arise as blocks of a larger Bayesian problem. 

In the frequentist framework, definition of an estimator and derivation of an estimate of 

the distribution of that estimator generally proceed sequentially. For Bayesians the estimate 

can’t be separated from its distribution; there is simply a posterior. For a regression subject to 

heteroskedastic errors the Bayesian equivalent of GLS is straightforward, but as with 

frequentist GLS the presence of heteroskedasticity affects the mean of the posterior. The idea 

of Bayesian robust standard errors is to allow heteroskedasticity to affect the spread of the 

posterior without changing its mean. 

It turns out that the principal “trick” to finding robust standard errors for a Bayesian 

regression is to focus on the likelihood function for the moment conditions that identify the 

coefficients, rather than the likelihood function for the data generating process. The posterior 

for the coefficients can be made to closely mimic the frequentist OLS/robust standard error 

                                                      
2  Poirier (2008) provides an extensive analysis of Bayesian rationalizations for White’s estimator using 

the Bayesian bootstrap. Another recent example, which focuses on the sandwich estimator, is Szprio, 
Rice, and Lumley (2010). 
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distribution. The second contribution here is to offer a prior of convenience that can be 

parameterized to give a posterior for the error variances, conditional on the coefficients, to 

mimic either a homoskedastic model or the frequentist robust variance estimator. 

Given the coefficient posterior conditional on the error variances and the error variance 

posterior conditional on the coefficients, a Gibbs sampler is completely straightforward. As an 

illustration, I re-examine a hedonic housing price model that has been the subject of a number 

of Bayesian estimates. 

To make clear notation, the problem under consideration is the classic least squares 

model with normal, independent, but possibly heteroskedastic errors. 

          (       )  

   (   )  {
        
                   

 
(1) 

where   is    . Assuming that   is nonstochastic or that the analysis is conditional on  , 

which we shall do henceforth, the generalized least squares estimator is given by      

(      )         and the ordinary least squares estimator is given by      (   )     . 

The frequentist distribution of the estimators is respectively       (  (      )  ) and 

      (  (   )   (   )  )              . The terms on either side of   in the 

estimation of   give rise to the name “sandwich estimator,” which plays a role in what follows. 

If   is known, then both GLS and OLS estimators are available. The GLS estimator is likely 

preferred on efficiency grounds. Since equation (1) can be transformed into a homoskedastic 

regression by pre-multiplying both sides by the Cholesky factorization of    , the Bayesian 

version of the generalized least squares estimator is straightforward. 
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If     is unknown but can be consistently estimated by    ̂—for example by modeling 

   as a function of a small number of parameters—then   can be estimated by feasible GLS 

which will be well-behaved in large samples. A text book version of the analogous “feasible 

GLS” Bayesian procedure is given in section 6.3 of Koop (2003). Alternatively, the size of the 

parameter space can be limited in a Bayesian analysis through use of a hierarchical prior. The 

outstanding example of this is probably Geweke (1993) who showed an equivalence between 

the normal heteroskedastic model and a model with Student-t errors. 

Despite GLS’ possible efficiency advantages, frequentists very often prefer OLS 

estimates with robust standard errors because use of an estimated error variance-covariance 

matrix can lead to bias in GLS coefficient estimates. The breakthrough that permitted robust 

standard errors was recognition that while GLS requires a weighted average of    , robust 

standard errors require a weighted average of  . For reasons reviewed briefly below, the latter 

can be well-estimated with fewer restrictions. 

Bayesian Analysis 

For a Bayesian analysis in which the investigator has meaningful priors for   
 , one can simply 

proceed with Bayesian GLS. After all, if one is happy with the model for drawing   
  then the 

draw for     and        follow immediately (and in an Markov Chain Monte Carlo (MCMC) 

context follow trivially). The more difficult situation is when one adopts priors of convenience 

while relying on a large number of observations so that the posterior will be dominated by the 

likelihood function with the influence of the convenience prior being small. The issue is not 

really different from the reason frequentists might choose OLS over GLS. 
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Suppose one observes           . Then   
  (    )    

  with mean      and 

variance (    )
 . The squared errors   

  and   
 .are independent. The reciprocal is 

1/  
    (  ⁄        ⁄ ), where the inverse gamma density   (   ) follows the convention in 

Greenberg (2008)    (     )  
  

 ( )
  (   )    [    ]. The reciprocal has no finite moments. 

It is sometimes said that the difficulty in estimating the GLS weighting matrix is that we have 

the same number of precision parameters as we have observations. While true, this is not quite 

to the point as we require only an estimate of the  (   )   parameters in       . Rather, 

the problem is that with no finite moments for     the law of large numbers does not apply to 

      . In contrast, the moments for   are well-behaved. As a result while estimation of 

       is problematic, estimation of      is straightforward so long as   is sufficiently large. 

The frequentist approach to robust standard errors, in which an estimator is first 

defined and then robust standard errors are derived, is something of an unnatural act in a 

Bayesian framework since the posterior arises with no separation of point estimate and 

distribution around the estimate. It turns out that the requisite analytic trick is to recognize that 

when making a sandwich it’s best to lay down the bread before the filling. 

The coefficients in a regression are identified by the   moment conditions  (   )   . 

Focus on the likelihood function for the sample moments     (with  (   )   variance 

parameters) rather than the data generating process for the regression (with   variance 

parameters). (This technique which may be useful for moment-based estimators other than 

least squares as well.)  

Consider pre-multiplying equation (1) by    to start the sandwich. 
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                  (   ) (2) 

Conditional on   (       and  ), equation (2) is simply a regression model with 

correlated errors    . If one assumes a normal prior for  ,    (     ), independent of    and 

 , then the conditional posterior follows from the standard formula for Bayesian GLS.3 

          ( ̅  ̅) 

 ̅  (  
   (   )    (   ))

  
 

 ̅   ̅(  
     (   )    [(   )]) 

(3) 

Equations (2) and (3) appear odd on the surface, since the smörgås’ed mean equation 

has only   observations. Note, however, that    ,    , and   are all composed of summations 

with   terms, so the right hand terms in the posterior expressions all converge in probability.. 

Thus, unlike (      )        is well behaved in large samples. 

Consider what happens to the conditional posterior in equation (3) as the prior precision 

  
   approaches zero. Very conveniently, the posterior variance  ̅  ((   )    (   ))

  
 

(   )   (   )   and the posterior mean  ̅  ((   )    (   ))
  

((   )    (   ))  

(   )  ((   )    )  (   )    (   )  (   )     . In other words, as the prior precision 

becomes small relative to the information from the data, the posterior for   approaches the 

classical least squares distribution with robust standard errors. 

                                                      
3  The straightforward regression analog to the third line of equation (3) is a regression with     as the 

dependent variable,     as the matrix of independent variables, and   as the variance-covariance 
matrix of the errors. Thus the conditional posterior mean is 
 ̅̅   ̅ (     (   )    (   )[(   )    (   )]  [(   )    (   )]), which simplifies to the 
expression given in equation (3). 



-6- 

Returning to equation (1), draws of    are straightforward. Conditional on   and  , the 

standardized errors    √   are observed. Thus the draw for    is as from a standard regression 

model. If we assume the prior for    is   (
    

 
 
  

   

 
) then the conditional posterior is 

           (
  

 
 
  

 
) 

          

 ̂  
(      )

√  

 

     
     ̂  ̂ 

In specifying prior parameters it may be useful to note that  (  )    
      , 

   (  )  
 (  

 )
 

    
     .  

The final step is to find   conditional on     . One approach, consistent with Geweke 

(1993), is to assume independent inverse gamma priors for   . A very convenient 

parameterization is      (     )    . Note this gives prior expectation  (  )    and, for 

   ,    (  )    (   ). Conditional on  ,    and therefore   
  is observable from equation 

(1). The likelihood for   
        is  (

 

 
 

 

     
), where the gamma density  (   ) is   (     )  

  

 ( )
       (   ). It follows immediately that the conditional posterior is characterized by 
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(4) 

 

Judicious choice of   allows equation (4) to represent either heteroskedastic or 

homoskedastic errors. Note that as the prior parameter    , then  (  |  
 )    

     so that 

the conditional posterior mean is the same as the frequentist estimate for the heteroskedastic 

variance. As    , the prior and posterior both converge in probability to    indicating a 

homoskedastic model. In the latter case,    is identified separately from   by the 

homoskedastic prior. Note also that while conditional posteriors are given for all   elements of 

 , just as in the frequentist case all that we make use of is the     matrix       . The 

investigator can choose intermediate values of   to allow for a limited amount of 

heteroskedasticity. See Geweke (1993) or the textbooks by Greenberg (section 4.5) or Koop 

(section 6.4) for discussion of hierarchal priors for  . 

In summary, a diffuse prior corresponding to the frequentist robust standard error 

model consists in setting    large,    just above 2, and   just above 1. 

Bayesians generally have less concern than do frequentists with the asymptotic 

behavior of estimators. Nonetheless, a look at equation (3) shows that the conditional posterior 

for   converges in distribution to the frequentist, robust distribution. Hence, the estimator for 
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  is consistent. In contrast, examination of equation (4) shows that the distribution of the 

heteroskedastic variance terms does not collapse with a large sample. In other words the 

results are the same as White’s and others, the variance of the regression coefficients is well-

identified in a large sample but the individual error variances are not. 

 

Illustrative Example 

As an illustration I re-examine Koop’s (2003) version of Anglin and Gençay’s (1996) hedonic 

regression of house prices in Windsor, Canada, as Koop provides five Bayesian estimates of this 

model using different assumptions.4 For our purposes I provide least squares results with both 

homoskedastic and robust standard errors and, for comparison, results of the estimator 

presented above with relatively noninformative priors and with both   set to 10,000 to enforce 

a homoskedasticity assumption and   set to 1.001 to allow for heteroskedastic errors. As a 

further example, I provide a heteroskedastic version with mildly informative priors suggested 

by Koop that can be compared to Koop’s implementation of Geweke’s model. The substantive 

model regresses sales price (CDN$) on a constant, lot size (sq. feet), the number of bedrooms, 

the number of bathrooms, and the number of stories in the house. There are 546 observations. 

Results for Gibbs sampling with 10,000 draws retained after a burn-in of 5,000 draws are 

reported in Table 1.5 

  

                                                      
4  The data is available at http://www.wiley.com/legacy/wileychi/koopbayesian/datasets.html and at 

http://qed.econ.queensu.ca/jae/1996-v11.6/anglin-gencay/.  
5  Estimation required 0.26 milliseconds per draw on a fast vintage 2011 PC running Matlab, so 

computation time is not an issue. Results for 100,000 draws after 50,000 burn-ins generally agreed 
with the results in the table to two significant digits. 

http://www.wiley.com/legacy/wileychi/koopbayesian/datasets.html
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 Least squares Robust Bayesian Estimate 

(noninformative priors) 

Robust 

Bayesian 

Estimate 

(Koop priors) 

Student-t 

model 

                               

Intercept -4,010 

(3,603) 

[3,651] 

-3,986 

[4,963] 

-3,999 

(3,608) 

-3,953 

[4,063] 

-413 

(2,898) 

Lot size 5.43 

(0.37) 

[0.46] 

5.43 

[0.58] 

5.43 

(0.37) 

5.49 

[0.55] 

5.24 

(0.36) 

Bedrooms 2,825 

(1,215) 

[1,257] 

2,817 

[1,681] 

2,819 

(1,214) 

3,461 

[1,317] 

2,118 

(972) 

Bathrooms 17,105 

(1,734) 

[2,253] 

17,111 

[2,849] 

17,093 

(1,746) 

15,146 

[2,353] 

14,910 

(1,666) 

Stories 7,635 

(1,008) 

[913] 

7,634 

[1,312] 

7,638 

(1,006) 

7,795 

[1,219] 

8,109 

(956) 

Notes: mean estimates with standard deviations in parentheses and robust standard errors in 

brackets. 

Table 1 

The leftmost column of Table 1 give least squares results with both classical and robust 

standard errors. The next two columns give Bayesian results with relatively noninformative 

priors. Specifically,                       , and   
     ( ). In column (2)   

     , so heteroskedasticity is allowed for, while the estimates in column (3) force 

homoskedasticity with         . As expected with      , mean coefficient estimates are 

essentially the same as from least squares. The numerical standard deviations from the 

Bayesian homoskedastic estimate are also essentially the same as the frequentist standard 
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errors. The numerical standard deviations from the Bayesian heteroskedastic model are 

relatively close to, but somewhat larger than, the frequentist robust OLS standard errors. 

The final two columns in Table 1 allow for a comparison to Geweke’s method. The 

penultimate column shows the heteroskedasticity-robust Bayesian results using mildly 

informative priors for   suggested by Koop. The right-most column,  taken from Koop (2003) 

Table 6.2, gives Koop’s estimate of Geweke’s student-t model with the same priors. The 

differences are not terribly large, with the exception of the intercept, suggesting that for this 

application the choice of prior is at least as important as how heteroskedasticity is handled. 

Conclusion 

The Bayesian analog to the now classical frequentist approach to robust standard errors in the 

regression model is straightforward for linear regression. The first step is to model the sample 

moment conditions. This works because the GLS estimator for the moments, Bayesian or 

frequentist, is essentially the same as the regression procedure with robust standard errors. In 

addition to linear regression, this step is likely to apply to models as well. The second step is to 

model the sandwich estimator for the coefficient variance-covariance matrix, which is 

straightforward for heteroskedastic errors. MCMC estimation is simple to implement and the 

illustrative example gives the expected results. 
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