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Abstract

INTRODUCTION: We used sex and apolipoprotein E ε4 (APOE-ε4) carrier status as predictors 

of pathologic burden in early-onset Alzheimer’s disease (EOAD).

METHODS: We included baseline data from 77 cognitively normal (CN), 230 EOAD and 70 EO 

non-Alzheimer’s disease (EOnonAD) participants from the Longitudinal Early-Onset Alzheimer’s 

Disease Study (LEADS). We stratified each diagnostic group by males and females, then further 

subdivided each sex by APOE-ε4 carrier status and compared imaging biomarkers in each 

stratification. Voxel-wise multiple linear regressions yielded statistical brain maps of gray matter 

density, amyloid and tau PET burden.

RESULTS: EOAD females had greater amyloid and tau PET burden than males. EOAD female 

APOE-ε4 non-carriers had greater amyloid PET burden and greater gray matter atrophy than 

female ε4 carriers. EOnonAD female ε4 non-carriers also had greater gray matter atrophy than 

female ε4 carriers.

DISCUSSION: The effects of sex and APOE-ε4 must be considered when studying these 

populations.

Keywords

Sex differences; APOE-ε4 ; Early-onset Alzheimer’s disease; Early-onset non-Alzheimer’s 
disease; genetics; neuroimaging; MRI; amyloid PET; tau PET; imaging biomarkers

1 BACKGROUND

Sporadic Alzheimer’s disease (AD) is a heterogeneous, multifactorial disorder that presents 

with a high degree of clinicopathological variability across the AD spectrum. While 

the morphological hallmarks of extracellular amyloid-β and intraneuronal tau aggregates 

forming neurofibrillary tangles can be observed across different variants, disease onset, 

trajectory, and clinical phenotype are highly variable1.

The early-onset AD (EOAD; onset <65 years) variant is an atypical, insidious, and 

aggressive form of AD with an accelerated trajectory of cognitive decline and greater 

pathology burden compared to late-onset AD (LOAD)2–5. EOAD manifests with more 

extensive neurodegeneration and tau burden in regions classically correlated with AD. 

Neuroimaging measures reveal greater global atrophy on magnetic-resonance imaging 

(MRI), extensive hypometabolism in the bilateral parietal, temporal, and frontal lobes, as 
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well as insular and cingulate cortices on fluorodeoxyglucose-positron emission tomography 

(FDG-PET) compared to cognitively normal (CN) controls, with a stronger effect size in 

EOAD vs. LOAD6.

A multitude of factors, including biological sex and certain genes, modulate lifetime 

AD risk and disease phenotype. When considering sex differences, longitudinal studies 

examining sex in LOAD and EOAD suggest that female participants are subject to faster 

disease progression, greater pathology burden and seem to be more susceptible to clinical 

manifestations of AD than male participants7–9. Female EOAD participants presented with 

greater global amyloid-β burden and greater tau burden in the frontal, inferior parietal, and 

temporal lobes, along with more pronounced hippocampal atrophy10.

While most patients with a clinical diagnosis of AD are positive on amyloid-β scans, 15–

35% of clinically diagnosed AD patients are found to be amyloid-β negative11–13. These 

individuals exhibit evidence of neurodegeneration, but do not meet the biomarker threshold 

for brain amyloidosis14–16. As a result, they are classified as non-AD or early-onset non-

AD (EOnonAD)11–13. EOnonAD dementia is caused by multiple etiologies, presenting 

as heterogenous clinical trajectories and outcomes11. Chételat et al.11, found EOnonAD 

populations to be a mix of limbic-predominant pathologies that largely affect the medial 

temporal lobe, which makes the identification of succinct patterns of atrophy and tau PET 

deposition difficult5.

Among those diagnosed with AD, the prevalence of apolipoprotein E ε4 (APOE- ε4) 

is upwards of 40%, compared to between 13–23% in non-AD individuals worldwide17. 

Compared to other isoforms, the APOE-ε4 variant is associated with greater amyloid-

β deposition in the brain18,19. Tau-mediated neurodegeneration may also be markedly 

exacerbated by APOE-ε4 leading to increased tau deposition20,21. APOE-ε4 is associated 

with earlier symptom onset in LOAD, and possibly a later symptom onset in EOAD, 

though it appears the ε4 allele has maximum impact between the onset ages of 60–70 

years4,22,23. Further, Polsinelli et al.4, found female EOAD APOE-ε4 non-carriers had 

significantly younger symptom onset compared to female ε4 carriers and males regardless 

of their APOE-ε4 status, suggesting a complex age and sex dependent relationship between 

APOE-ε4 and AD24. EOnonAD patients are less likely to be APOE-ε4 carriers, with a low, 

14%, prevalence of the gene11,25.

This study aims to examine the effects of sex on gray matter atrophy, amyloid PET and tau 

PET burden and further stratify these effects by APOE-ε4 carrier status in the LEADS 

cohort. Given the limited literature on sex differences in EOAD and EOnonAD these 

analyses will fill a valuable gap in the literature. We hypothesized that EOAD females 

would have greater atrophy, amyloid PET, and tau PET burden than EOAD males. We also 

suspected that we might observe nonAD-like patterns of pathology in our EOnonAD group 

due to the multiple etiologies contributing to this disease state. Furthermore, we conducted 

an exploratory analysis in which we investigated how APOE-ε4 carrier status within each 

sex impacted EOAD and EOnonAD pathologic burden.
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2 METHODS

2.1 Participants and Data collection

The current study included 230 EOAD, 70 EOnonAD, and 77 CN participants from 

the Longitudinal Early-Onset Alzheimer’s Disease Study (LEADS) with data from their 

baseline visit. When the study was conducted, 377 participants from LEADS had all 

necessary baseline imaging data needed for analysis which included T1 structural MRI, 

Florbetaben PET (FBB PET; amyloid), and Flortaucipir PET (FTP PET; tau) data. Due to 

batch processing APOE genotype data was only available for a subset of participants (204 

EOAD, 67 EOnonAD, 74 CN).

LEADS is an ongoing longitudinal multi-site study with the primary goals of advancing 

knowledge of mechanisms and heterogeneity, and capturing disease progression through 

collection of clinical, genetic and biomarker data26. The study collects baseline and 

longitudinal clinical, cognitive, genetic, and neuroimaging and fluid biomarker data. 

Neuroimaging data collection includes various MRI sequences, FBB PET, FTP PET, and 

FDG PET (EOnonAD and CN groups only).

The framework, methodology, exclusion and inclusion criteria, and clinical and biomarker 

assessments of LEADS have been previously published26. Briefly, all participants are 

between 40–64 years old at the time of consent. Participants are either self-referred or 

referred from clinic and given the rarity of EOAD, site enrollment is not capped (nor is 

sex proportion). EOAD and EOnonAD participants meet the NIA-AA criteria for dementia 

or MCI and have a global Clinical Dementia Rating (CDR)27 score ≤ 1. CN participants 

have a global CDR = 0, a Mini-Mental State Examination (MMSE)28 score ≥ 24, and 

normal ranges on neuropsychological testing. Impaired individuals with genetic mutations 

in Amyloid Precursor Protein (APP), Presenilin-1 (PSEN1) or Presenilin-2 (PSEN2), 

Microtubule Associated Protein Tau (MAPT), Chromosome 9 Open Reading Frame 72 

(C9ORF72), or Granulin Precursor aka Progranulin (GRN) were excluded, consistent with 

LEADS’ focus on sporadic early-onset dementia. To assign cognitively impaired participants 

to the EOAD or EOnonAD group, visual reads and global SUVR quantification of baseline 

amyloid PET scans were used. Certified physicians first performed visual reads blinded to 

clinical information and scan quantification. If the visual read and SUVR quantification 

were both Aβ-positive or both Aβ-negative, the participant was assigned to the EOAD 

or EOnonAD cohort, respectively. If the visual read and quantification were incongruent, 

a second “tie breaker” visual read was performed by an additional blinded reader for 

cohort assignment. The quantitative threshold used for amyloid PET positivity is a global 

SUVR≥1.18, extracted from a PET-only pipeline. The full details of all PET methods and 

thresholds are described elsewhere in this special issue29.

Informed consent was obtained from all participants in accordance with U.S. federal and 

local federations, the Declaration of Helsinki and the Indiana University Institutional Review 

Board.
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2.2 Genotyping

National Alzheimer’s Coordinating Center, the Alzheimer’s Disease Center Network, 

National Centralized Repository for Alzheimer’s Disease and Related Dementias and 

Alzheimer’s Clinical Trials Consortium collaborate to track phenotypic data, imaging and 

biologic specimens, including genotypic data from LEADS participants30.

2.3 MRI and PET Data Acquisition and Processing

MRI and PET data acquisition details and any pre-processing steps are fully described 

in Apostolova et al.26. T1 structural MRI scans and fully pre-processed FBB PET and 

FTP PET scans were downloaded from LONI IDA31 in NifTI format. Fully pre-processed 

PET scans were already quality controlled, averaged, aligned to standard space, intensity-

normalized and smoothed to standard resolution using ADNI procedures26,32. Volumetric 

measures for MRI and regional and composite standardized uptake value ratio (SUVR) 

values for amyloid and tau PET were downloaded from LONI, which were extracted using 

Freesurfer 7.1. Details on the methods to extract these values are described previously and 

elsewhere in this special issue26,29.

We processed the quality-controlled MRI scans using voxel-based morphometry (VBM) 

in Statistical Parametric Mapping version 12 (SPM12)33. The resulting gray matter maps 

were normalized and smoothed with a 10 mm Gaussian kernel which yielded gray matter 

density (GMD) images to be used in imaging analysis. The downloaded PET scans were 

co-registered to the corresponding MRI scan from the same visit, normalized to MNI 

space using transformation parameters from VBM MRI segmentation, and re-scaled to 

MRI-defined reference regions26,29 (amyloid PET to whole cerebellum and tau PET to 

inferior cerebellar gray matter) using SPM via MATLAB. Quality control was conducted on 

all final processed MRI and PET images.

2.4 Statistical analysis and Workflow

Our analyses included the full cohort and the subset of participants with available APOE 
genotype as described in section 2.1. First, we analyzed the effect of sex on imaging 

biomarkers within each diagnostic group. Next, we analyzed the effect of APOE-ε4 carrier 

status within males and females, separately, within each diagnostic group. See Figure 1 for 

analysis workflow.

2.4.1 Demographic and Imaging Biomarker Comparisons—Full cohort 

demographics were compared using analysis of variance (ANOVA) for continuous variables 

and chi-square tests for categorical variables implemented in Statistical Package for Social 

Sciences (SPSS) version 28. Demographics and imaging biomarkers were compared using 

independent samples t tests for the sex differences and sex stratified by APOE-ε4 analyses. 

Box plot representations of means for the imaging biomarkers were produced in R Studio. 

We used average hippocampal volume as our MRI measure which was corrected for 

intracranial volume (ICV). For amyloid PET, we used a composite neocortical SUVR value 

representing global amyloid uptake. For tau PET, we used the MetaROI34 and composite 

Braak stage35 SUVR values (Braak 1/2, Braak 3/4, Braak 5/6).
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2.4.2 3D Comparisons—For analysis in imaging space, voxel-wise multiple linear 

regression models were employed in SPM 12 to produce whole brain 3D statistical brain 

maps of GMD, amyloid PET burden, and tau PET burden within each diagnostic group. 

Part one of our analyses used sex as the predictor (male vs. female). The second part of our 

analyses used APOE-ε4 carrier status (ε4+ vs. ε4-) as the predictor within each sex group. 

All models included age and education as covariates, and GMD models also included ICV as 

a covariate.

We set our voxel-wise significance threshold at p<0.01 (uncorrected) to visualize results and 

applied family-wise error (FWE) correction for multiple comparisons at the cluster level. 

Only clusters surviving a pFWE < 0.05 with a minimum cluster size (k) equal to the smallest 

significant cluster size were visualized. Cluster-corrected statistical maps were saved as 

NifTI files and rendered in Surf Ice 36 producing 3D brain maps.

3 RESULTS

3.1 Sample Characteristics

3.1.1 LEADS Cohort Overview—Demographic and baseline cognitive data for EOAD, 

EOnonAD, and CN groups are shown in Table 1. The CN group was younger than the 

EOAD and EOnonAD groups (p = .006). The CN group was also the most educated 

compared to EOAD and EOnonAD (p <.001). Predictably, the CN group had the highest 

MMSE score, followed by EOnonAD and lastly EOAD (p < .001).

While all groups were predominantly White non-Latino/a, the racial make-up of our cohort 

was significantly different across groups (p < .001). The CN and EOAD groups had larger 

proportions of females (68% and 54% respectively) compared to EOnonAD (36% female) (p 
< .001).

As expected, EOAD had the highest proportion of APOE-ε4 carriers, but the difference was 

not significant (CN 43%, EOAD 54%, and EOnonAD 42%; p = .114).

3.1.2 Demographic Differences by Sex—The results examining demographic 

differences by sex in each diagnostic group are shown in Table 2. There were no significant 

differences in age between males and females in either of the CN, EOAD, or EOnonAD 

groups. CN males had significantly more education than CN females (p = 0.04). There were 

no significant differences in years of education between males and females for EOnonAD or 

EOAD. Males and females in the CN and EOAD groups showed no significant differences 

on the MMSE, while EOnonAD males outperformed EOnonAD females on MMSE (p = 

.02). APOE-ε4 carrier status did not differ between males and females in any diagnostic 

group. Percentages of ε4 carriers in males and females in each diagnostic group are shown 

in Table 2.

3.1.3 Sex Stratified by APOE-ε4 Carrier Status Demographics—The 

demographic results examining sex stratified by APOE-ε4 carrier status in each diagnostic 

group are shown in Table 3. There were no significant differences in age or education 

between female ε4 carriers and female ε4 non-carriers in the EOAD group. There were also 

Nemes et al. Page 7

Alzheimers Dement. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



no significant differences in age, education, or MMSE between male ε4 carriers and male ε4 
non-carriers in the EOAD group. EOAD female carriers had a significantly higher MMSE 

score than EOAD female non-carriers (p = .01). Carrier and non-carrier differences by sex 

were not seen in either CN or EOnonAD for age, education, and MMSE.

3.2 Imaging biomarker and 3D comparisons

3.2.1 Sex Differences

Imaging biomarker comparisons between males and females are shown in Table 2 for all 

groups and displayed as box plots in Figure 2 for the EOAD group. In the EOAD group, 

females had significantly greater tau uptake in the metaROI (p < .001), as well as Braak 3/4 

(p = .002) and Braak 5/6 (p = .006) and higher mean global amyloid uptake, compared to 

EOAD males (p < .001). Interestingly, EOAD females also had larger mean hippocampal 

volume than EOAD males (p = .01). Sex-based differences were also seen in the CN group 

(Supplementary Figure 1). CN males had a greater mean tau SUVR in Braak 1/2 (p = .03). 

There were no significant sex-based differences in the EOnonAD group (Supplementary 

Figure 1).

The FWE cluster-level corrected whole brain maps from the voxel-wise analysis comparing 

male and female participants within CN, EOAD, and EOnonAD are shown in Figure 3. 

Overall, EOAD females had greater amyloid and tau burden than EOAD males. For amyloid 

PET, females showed greater uptake than males in the frontal, inferior parietal, and inferior 

temporal cortices and the superior frontal, cingulate, and lingual gyri, bilaterally. For tau 

PET, females showed greater uptake than males primarily in the left temporoparietooccipital 

and the left middle and inferior temporal cortices. No significant differences between males 

and females were seen in the CN and EOnonAD groups for amyloid or tau burden. There 

were also no significant differences between males and females for GMD in CN, EOAD, or 

EOnonAD.

3.2.2 Sex stratified by APOE-ε4 carrier status—Imaging biomarker comparisons 

for sex stratified by APOE-ε4 carrier status are shown in Table 3 for all groups and 

displayed as box plots in Figure 4 for the EOAD group. In the EOAD group, female ε4 
carriers had a higher mean tau SUVR in Braak 1/2 (p = .004) than female ε4 non-carriers; 

however, it was the female ε4 non-carriers with greater global amyloid uptake (p < .001). 

No significant differences were found between male ε4 carriers and male ε4 non-carriers in 

the EOAD group nor between carriers and non-carriers of any sex in the EOnonAD and CN 

groups (Supplementary Figures 2 & 3).

The FWE cluster-level corrected whole brain maps from the voxel-wise analysis comparing 

female ε4 carriers with female ε4 non-carriers within CN, EOAD, and EOnonAD are shown 

in Figure 5. There were no significant differences between male ε4 carriers and male ε4 
non-carriers for GMD, amyloid or tau uptake in any of the diagnostic groups (not shown; all 

clusters, pFWE > .05).

CN female ε4 carriers had greater amyloid uptake than CN female ε4 non-carriers 

in the superior and medial frontal cortices. In contrast, EOAD female ε4 non-carriers 
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had greater amyloid uptake compared to EOAD female ε4 carriers in the paracentral, 

frontal, and occipital cortices and the lingual gyrus and temporal pole. This pattern was 

present bilaterally but more pronounced on the right. EOAD female ε4 non-carriers also 

had greater gray matter atrophy than EOAD female ε4 carriers in the lateral temporal, 

temporoparietooccipital and inferior parietal cortices, bilaterally.

EOnonAD female ε4 non-carriers had greater gray matter atrophy lateralized to the right 

occipital cortex compared to EOnonAD female ε4 carriers. There were no significant 

differences between female ε4 carriers and female ε4 non-carriers for GMD in CN, for 

amyloid uptake in EOnonAD, or for tau uptake in EOAD, EOnonAD or CN.

4 DISCUSSION

Results of our imaging biomarker comparisons demonstrated that both sex and APOE-ε4 
carrier status impact atrophy, amyloid PET, and tau PET burden in EOAD, EOnonAD, and 

CN individuals.

4.1 Sex Differences

Greater amyloid and tau PET burden have been previously reported in female LOAD 

patients compared to male patients37. As hypothesized, we found that female patients 

with EOAD have greater amyloid PET and tau PET burden compared to male patients. 

Examining the regional distribution of amyloid and tau burden in EOAD females, we 

observed greater amyloid uptake in frontal, parietal and temporal areas, and greater tau 

uptake in temporoparietooccipital areas. Consistent with previous findings38, MMSE scores 

were similar between females and males despite greater pathological burden in females, 

suggesting that female AD patients may handle greater pathology burden and show some 

degree of cognitive resiliency. Thus, sex may serve as a moderator of the association 

between amyloid and tau burden and cognitive function39.

We also found that EOAD females had significantly larger mean hippocampal volume 

than EOAD males which was seen in MCI and AD patients in prior work40, suggesting 

that females could be less atrophied. However, we did not observe differences in GMD 

between males and females in our voxel-wise regression, similar to previous cross-sectional 

results41,42. While no cross-sectional differences were seen, Lee et al.41, did observe 

longitudinal changes in cortical thickness between males and females with AD, showing 

females had more rapid decline than males. This highlights the importance of examining 

longitudinal changes between sexes within the LEADS cohort in future studies.

The role of sex hormones, such as estrogen, and menopause are important considerations 

in this age group given their proximity to menopause. Differences in estrogen levels across 

the lifespan have been linked to risk of dementia. Prevalence of dementia in surgically 

induced menopause versus natural menopause, and the association between number of 

pregnancies and rates of AD suggest low estrogen is associated with increased vulnerability 

to development of AD in female patients37,43–50. Examining the influence of sex hormone 

fluctuations on cognitive function and neuroimaging biomarkers throughout the lifecycle is 

an important future direction for understanding sex-linked vulnerabilities to dementia. This 
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may be particularly fruitful in EO cohorts whose younger age offer a unique and essential 

perspective by including pre and perimenopausal women.

4.2 Sex stratified by APOE-ε4 carrier status

The most novel aspect of this paper is the further division of sex-split groups to account for 

APOE-ε4 carrier status. Novel, exploratory analyses splitting each diagnosis group by sex 

and then by APOE-ε4 carrier status showed important effects of ε4 carrier status. Across all 

diagnostic groups, APOE-ε4 carrier status was the most impactful in females.

Our CN group had a 43% APOE-ε4 carrier rate and while this is not significantly higher 

than those of the EOAD and EOnonAD groups, it is notably higher compared to the global 

average proportion of APOE-ε4 carriers among CN individuals in the population (23.9%)51. 

This high carrier rate can be attributed to the CN group being comprised of highly motivated 

volunteers who may have familial connections to AD.

CN female APOE-ε4 carriers had more amyloid PET burden in the medial frontal cortices 

compared to female non-carriers, but no differences were found for tau burden. Amyloid 

deposition and APOE have been shown to interact in cognitively normal individuals, 

leading to a cascade of decline52,53. Mormino and Papp54 have suggested that in older 

clinically normal individuals, increased amyloid burden may represent a disease precursor 

and link to expedient decline. These findings and our data in conjunction with evidence 

that AD disproportionately affects female patients a nearly 2:1 rate over male patients, 

suggest a sex-driven uptake disparity in amyloid. Mosconi et al.55, reported that cognitively 

normal perimenopausal and postmenopausal women exhibit increased amyloid deposition, 

hypometabolism, and reduced gray and white matter volume in regions vulnerable to AD 

when compared with cognitively normal premenopausal women and age-matched men. 

Further, postmenopausal APOE-ε4 carriers had greater amyloid deposition relative to the 

other groups55.

Similar to LOAD, EOAD female APOE-ε4 carriers showed greater tau burden in the medial 

temporal lobe56–58. The present study found EOAD female APOE-ε4 carriers to have 

greater tau uptake in entorhinal and parahippocampal cortices (Braak 1/2) than female 

non-carriers. These findings reinforce that the APOE-ε4 genotype facilitates a predisposition 

to vulnerability in the medial temporal areas 57–59.

However, EOAD female APOE-ε4 non-carriers showed greater amyloid uptake than 

female carriers in the late Braak regions corresponding to the primary sensorimotor 

and visual cortices and greater gray matter atrophy, particularly in the lateral temporal, 

temporoparietooccipital and inferior parietal cortices. These findings suggest that there 

are yet uncovered risk factors that drive greater amyloid and neurodegenerative pathology 

burden in female ε4 non-carriers. Less well-understood risk variants and genetic modifiers 

in EOAD that may be worth investigating for sex-based differences include PRNP 
p.MM129V, SORL1, and CCL11 p.A23T, and MAPT60–62. Consideration of these and other 

genetic drivers are essential in illuminating a more comprehensive understanding of AD 

disease processes and presentations and paving a path for greater sex and gender equity in 

the research, diagnosis, and precision-medicine-based treatment of EOAD.
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Our results also yielded a significant difference between female ε4 carriers and female 

ε4 non-carriers in the EOnonAD group. EOnonAD female ε4 non-carriers presented with 

greater gray matter atrophy than ε4 carriers, primarily in the right occipital cortex. Given the 

heterogeneity of EOnonAD, these results may reinforce or, at least, not contradict, previous 

assertions that EOnonAD neurodegeneration is not driven by the APOE pathway, but rather 

a unique spectrum of etiologies that differ from AD63.

4.3 Strengths and Limitations

Several strengths and limitations of our study should be noted. We expanded on the first part 

of our analysis examining sex differences by also exploring the impact of APOE-ε4 carrier 

status on gray matter atrophy, amyloid PET, and tau PET burden. By first splitting each 

diagnostic group by males and females, then further dividing each sex by APOE-ε4 carrier 

status, we were able to create a novel sequence of analyses and generate a new set of data.

One of the limitations of our study is the cross-sectional nature of our analyses. Longitudinal 

analyses are needed to assess atrophy and amyloid and tau uptake overtime; however, 

LEADS is a longitudinal study and future efforts will be focused on longitudinal changes. 

Another limitation is that our study focused on the effects of sex and APOE-ε4 carrier 

status on neuroimaging biomarkers, so we did not include analysis of cognitive measures 

beyond MMSE. This limits our interpretation of the cognitive profiles in our cohort but 

is an opportunity for future research to explore cognitive resiliency and variation between 

sexes. It is also important to acknowledge that our analyses do not account for menopausal 

status for female participants. These data are currently being collected to include in future 

analyses examining the effects of menopause on cognitive function and neuroimaging 

biomarkers once the full study cohort is enrolled. Additionally, LEADS employs relatively 

strict inclusion and exclusion criteria which limit the representation of the cohort to all 

Alzheimer’s and dementia patients. Furthermore, insufficient post-mortem data has been 

collected thus far in LEADS as it is an ongoing study, so pathological verification of AD 

and non-AD pathologies are lacking. In terms of diversity, equity and inclusion, the LEADS 

population is largely middle-aged, highly educated, and primarily consists of non-Latino/a 

White adults. As such, our findings do not generalize well to the AD population at large. 

Though our current sample lacks diversity, the LEADS study recently added a diversity 

recruitment supplement to promote community outreach of diverse populations. Replication 

of our findings in a more diverse group will be essential in ensuring greater inclusivity and 

applicability of our research.

4.4 Future Directions

These analyses are preliminary, and we plan to continue building on this work. Longitudinal 

follow-up analyses of atrophy, amyloid PET, and tau PET will provide important insight on 

outcomes among diagnostic groups. Additionally, we plan to explore cognitive resiliency 

between sexes by including more neuropsychiatric variables, further dividing groups by 

amnestic and non-amnestic presentation, and adding fluid biomarkers to our analysis. 

Other risk factors (such as obesity, hypertension, diabetes, depression etc.) that could be 

contributing to sex differences in neuroimaging biomarkers should also be included in future 

work. There is also an opportunity to compare the characteristics of our EOAD population in 
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LEADS to other AD populations with known genetic risk such as dominantly inherited 

Alzheimer’s disease from the Dominantly Inherited Alzheimer Network Observational 

Study.

4.5 Conclusion

Despite our limitations, our results show that APOE-ε4 and sex play a role in AD pathology 

in EOAD and suggest that the effects may be at least in part different from those observed 

in LOAD studies. Uncovering the main components of disease heterogeneity by examining 

the differential effects of sex, age, and genetic risk brings us closer to characterizing these 

understudied disease states and implementing clinical interventions.
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HIGHLIGHTS

• Novel analysis examining the effects of biological sex and apolipoprotein 
E ε4 (APOE-ε4) carrier-status on neuroimaging biomarkers among early-

onset Alzheimer’s disease (EOAD), early-onset non-AD (EOnonAD), and 

cognitively normal (CN) participants.

• Female sex is associated with greater pathology burden in the EOAD cohort 

compared to male sex.

• The effect of APOE-ε4 carrier status on pathology burden was the most 

impactful in females across all cohorts.
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Figure 1. Analysis Workflow.
A visual representation of the groups used for each analysis. 1) Males were compared to 

females in each diagnostic group for demographic, imaging biomarker and 3D analyses. 

2) Male APOE-ε4 carriers were compared to male ε4 non-carriers and female APOE-ε4 
carriers were compared to female ε4 non-carriers in each diagnostic group for demographic, 

imaging biomarker and 3D analyses.
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Figure 2. Box plots - Sex differences.
Imaging biomarker measures comparing EOAD males and females: (A) tau uptake 

measures, (B) global amyloid uptake, (C) hippocampal volume.
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Figure 3. 3D comparisons – Sex Differences.
Voxel-wise multiple linear regression statistical maps showing males vs. females within 

CN, EOAD, and EOnonAD for amyloid PET, tau PET and GMD. All GMD models were 

controlled for ICV. FWE: family-wise error.
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Figure 4. Box plots - Sex stratified by APOE-ε4 carrier status.
Imaging biomarker measures comparing EOAD female APOE-ε4 carriers (+) vs. female 

non-carriers (−): (A) tau uptake measures, (B) global amyloid uptake, (C) hippocampal 

volume.
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Figure 5. 3D Comparisons – Sex stratified by APOE-ε4 carrier status.
Voxel-wise multiple linear regression statistical maps showing female APOE-ε4 carriers (+) 

vs female non-carriers (−) within CN, EOAD, and EOnonAD for amyloid PET, tau PET and 

GMD. All GMD models were controlled for ICV. FWE: family-wise error.
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Table 1.
Sample Overview.

Demographic comparisons between EOAD, EOnonAD, and CN cohorts.

EOAD EOnonAD CN

N 230 70 77 p-value

Age, years, mean (SD) 59.1 (4.2) 58.3 (6.2) 56.5 (6.1) 0.006

Sex, % female 54% 36% 68% <0.001

Race, % White 94% 89% 75% <0.001

Years of education, mean (SD) 15.5 (2.4) 15.6 (2.5) 16.7 (2.2) <0.001

APOE-ε4+ (%) 54% 42% 43% 0.114

MMSE, mean (SD) 21.6 (5.2) 25.6 (4.2) 29.3 (0.8) <0.001

Sample Overview. Demographic comparisons between EOAD, EOnonAD, and CN groups.
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Table 2.
Sex Differences.

Demographic and imaging biomarker comparisons between EOAD, EOnonAD, and CN cohorts split by sex. 

Whole FBB SUVR = global amyloid uptake; FTP MetaROI SUVR, Braak 12, Braak 34, Braak 56 = tau 
uptake.

EOAD EOnonAD CN

Males Females p-value Males Females p-value Males Females p-value

N 105 125 45 25 25 52

Age, years, mean (SD) 59.1
(4.3)

59.2 
(4.1)

0.9 58.3 
(5.8)

58.4
(6.8)

0.9 55.6 (6.6) 56.9
(5.8)

0.4

Education, years, mean (SD) 15.3 (2.2) 15.7
(2.5)

0.2 15.9
(2.7)

15.0
(2.1)

0.1 17.4 (2.3) 16.3
(2.1)

0.04

MMSE (SD) 22.0 (5.4) 21.3
(5.0)

0.3 26.4
(2.4)

24.0
(6.0)

0.02 29.4 (0.7) 29.3
(0.8)

0.6

Race, % White 93% 95% 0.01 84% 96% 0.6 76% 75% 0.4

APOE-ε4+ (%) 57% 51% 0.4 40% 46% 0.6 33% 48% 0.2

Whole FBB SUVR, mean, (SD) 1.53 (0.2) 1.61
(0.1)

<0.001 1.00
(0.06)

1.02
(0.07)

0.3 1.03 (0.1) 1.03 (0.06) 0.8

FTP MetaROI SUVR, mean (SD) 2.00 (0.5) 2.20
(0.4)

<0.001 1.19
(0.2)

1.27
(0.4)

0.3 1.20 (0.2) 1.14 
(0.05)

0.1

BRAAK 12 SUVR, mean (SD) 1.51 (0.2) 1.56
(0.2)

0.1 1.17
(0.1)

1.19
(0.2)

0.6 1.20 (0.2) 1.14
(0.08)

0.03

BRAAK 34 SUVR, mean (SD) 1.80 (0.4) 1.95
(0.4)

0.002 1.15
(0.2)

1.21 
(0.3)

0.3 1.16 (0.2) 1.11
(0.05)

0.08

BRAAK56 SUVR, mean (SD) 1.75 (0.4) 1.91
(0.4)

0.006 1.07
(0.2)

1.14
(0.3)

0.2 1.08
(0.08)

1.08
(0.05)

0.8

Hippocampal Vol, cm3, mean (SD) 2.29 (0.3) 2.39
(0.3)

0.01 2.48
(0.4)

2.64
(0.3)

0.09 2.79 (0.3) 2.77
(0.2)

0.8
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Table 3.

Sex stratified by APOE-ε4 carrier status. Demographic and imaging biomarker comparisons in EOAD, 

EOnonAD, and CN cohorts split by sex and further stratified by APOE-ε4 carrier status. (A) EOAD male 

APOE-ε4 carriers vs. male non-carriers and EOAD female APOE-ε4 carriers vs. female non-carriers. (B) 

EOnonAD male APOE-ε4 carriers vs. male non-carriers and EOnonAD female APOE-ε4 carriers vs. female 

non-carriers. (C) CN male APOE-ε4 carriers vs. male non-carriers and CN female APOE-ε4 carriers vs. 

female non-carriers. Whole FBB SUVR = global amyloid uptake; FTP MetaROI SUVR, Braak 12, Braak 34, 
Braak 56 = tau uptake.

(A)EOAD

Female Male

APOE-ε4+ Carrier Non-carrier p-value APOE-ε4+ Carrier Non-carrier p-value

N 56 54 54 40

Age, years, mean (SD) 62.8 (4.5) 61.8 (3.8) 0.3 62.3 (4.0) 61.5 (4.6) 0.4

Education, years, mean (SD) 15.5 (2.6) 15.6 (2.5) 0.9 15.1 (2.3) 15.5 (2.2) 0.3

MMSE (SD) 22.8 (4.5) 20.4 (5.1) 0.01 22.2 (0.5) 21.5 (5.6) 0.5

APOE-ε4+ (%) 51% 57%

Whole FBB SUVR, mean, (SD) 1.56 (0.2) 1.65 (0.1) <0.001 1.54 (0.2) 1.53 (0.2) 0.8

FTP MetaROI SUVR, mean (SD) 2.13 (0.4) 2.24 (0.4) 0.2 1.93 (0.5) 2.05 (0.4) 0.2

BRAAK 12 SUVR, mean (SD) 1.62 (0.2) 1.51 (0.2) 0.004 1.51 (0.2) 1.48 (0.2) 0.5

BRAAK 34 SUVR, mean (SD) 1.91 (0.4) 1.98 (0.3) 0.3 1.76 (0.4) 1.82 (0.3) 0.4

BRAAK 56 SUVR, mean (SD) 1.83 (0.5) 1.98 (0.4) 0.09 1.70 (0.5) 1.81 (0.4) 0.2

Hippocampal Vol, cm 3 , mean (SD) 2.34 (0.3) 2.42 (0.3) 0.09 2.26 (0.3) 2.34 (0.2) 0.2

(B)EOnonAD

Female Male

APOE-ε4+ Carrier Non-carrier p-value APOE-ε4+ Carrier Non-carrier p-value

N 11 13 17 26

Age, years, mean (SD) 61.0 (7.6) 61.0 (5.6) 0.9 62.6 (5.8) 61.0 (6.0) 0.4

Education, years, mean (SD) 14.4 (2.0) 15.4 (2.2) 0.3 16.2 (2.6) 15.7 (2.9) 0.6

MMSE (SD) 24.8 (6.4) 23.4 (6.1) 0.6 26.6 (2.7) 26.6 (2.1) 0.1

APOE-ε4+ (%) 46% 40%

Whole FBB SUVR, mean, (SD) 1.04 (0.09) 1.00 (0.05) 0.2 1.01 (0.08) 1.00 (0.06) 0.3

FTP MetaROI SUVR, mean (SD) 1.27 (0.4) 1.28 (0.4) 0.1 1.24 (0.3) 1.15 (0.07) 0.2

BRAAK 12 SUVR, mean (SD) 1.18 (0.2) 1.19 (0.2) 0.9 1.19 (0.2) 1.15 (0.1) 0.4

BRAAK 34 SUVR, mean (SD) 1.22 (0.4) 1.21 (0.3) 0.1 1.19 (0.3) 1.12 (0.06) 0.2

BRAAK 56 SUVR, mean (SD) 1.15 (0.3) 1.13 (0.2) 0.8 1.11 (0.3) 1.04 (0.05) 0.2

Hippocampal Vol, cm 3 , mean (SD) 2.65 (0.2) 2.64 (0.4) 0.9 2.41 (0.5) 2.52 (0.3) 0.4

(C)CN

Female Male

APOE-ε4+ Carrier Non-carrier p-value APOE-ε4+ Carrier Non-carrier p-value

N 24 26 8 16

Age, years, mean (SD) 59.7 (5.2) 60.8 (6.1) 0.5 58.0 (6.8) 60.1 (6.2) 0.5

Education, years, mean (SD) 16.3 (1.8) 16.4 (2.5) 0.9 17.3 (3.0) 17.5 (2.0) 0.8
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(A)EOAD

Female Male

APOE-ε4+ Carrier Non-carrier p-value APOE-ε4+ Carrier Non-carrier p-value

MMSE, mean (SD) 29.4 (0.7) 29.2 (0.9) 0.3 29.4 (0.7) 29.3 (0.7) 0.8

APOE-ε4+ (%) 48% 33%

Whole FBB SUVR, mean, (SD) 1.04 (0.07) 1.02 (0.06) 0.2 1.08 (0.2) 1.01 (0.1) 0.2

FTP MetaROI SUVR, mean (SD) 1.14 (0.06) 1.15 (0.05) 0.4 1.31 (0.4) 1.15 (0.06) 0.2

BRAAK 12 SUVR, mean (SD) 1.13 (0.1) 1.15 (0.07) 0.4 1.29 (0.2) 1.16 (0.07) 0.06

BRAAK 34 SUVR, mean (SD) 1.11 (0.06) 1.12 (0.04) 0.5 1.24 (0.3) 1.13 (0.06) 0.2

BRAAK 56 SUVR, mean (SD) 1.07 (0.05) 1.08 (0.04) 0.5 1.11 (0.1) 1.06 (0.06) 0.3

Hippocampal Vol, cm 3 , mean (SD) 2.78 (0.2) 2.77 (0.3) 0.8 2.75 (0.3) 2.81 (0.3) 0.6
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