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Abstract

With the advanced wireless technologies and emerging machine learning techniques, there is an

increasing trend of using both wireless communication and machine learning along with new

platooning control as well as traffic signal control (TSC) algorithms to leverage and accommodate

connected and autonomous vehicles (CAVs) for achieving high throughput and low latency traffic

flow, lowering accidents, and reducing emissions in urban transportation. However, this development

leads to highly connected wireless environments that would increase the potential for cyber-attacks on

TSC. These attacks can undermine the benefits of new TSC algorithms. For example, an adversary

can first perform reconnaissance to gain understanding of how the TSC operates under different

traffic arrival rates, and then, choose a fixed number of vehicles to be attack vehicles to get scheduling

priority and/or to create traffic congestion in one intersection which can spread to the entire network.

These attacks can compromise TSC systems and significantly increase traffic delay and make TSC

completely ineffective. Furthermore, machine learning based TSC approaches also lead to several

issues: complexity, dimensionality, and convergence. They require a long period of time and a

significant amount of training data to gain insights into improvement of traffic throughput and

latency. They are not applicable to problems with a large state size. In addition, some of the

approaches adopting neural networks (NNs) as a function approximator leads to a convergence

issue due to the non-linearity of NNs. In this work, we have proposed the SecureTLC to address

the security and machine learning issues caused by the novel technologies for modern intelligent

transportation systems (ITS).

As our first work, we have investigated security vulnerabilities in four different backpressure-based

(BP-based) traffic control algorithms: 1) Delay-based BackPressure Control (DBPC), 2) Queue-based

BackPressure Control (QBPC), 3) Sum-of-delay-based BackPressure Control (SBPC), and 4) Hybrid-
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based BackPressure Control (HBPC) which is a combination of the delay-based and queue-based.

Their performance has been compared when they are under two misinformation attacks: 1) time

spoofing attack and 2) ghost vehicle attack. The time spoofing attack is a type of falsified data

attack in which attack vehicles arriving at an intersection alter their arrival times. In the ghost

vehicle attack, attack vehicles intentionally disconnect the wireless communication and thereby hide

from the TSC. We have shown that the misinformation sent by attack vehicles can influence the

signal phases determined by BP-based traffic control algorithms. We have considered an adversary

that determines a set of arriving vehicles to be attack vehicles from many candidate sets (attack

strategies) in order to maximize the number of disrupted signal phases. We have shown that by

formulating the problem as a 0/1 Knapsack problem, the adversary can explore the space of attack

strategies and determine the optimal strategy that maximally compromises the performance in terms

of average delay and fairness. Through detailed simulation analyses we have also shown that while

the DBPC has better fairness, it is more vulnerable to time spoofing attacks than the other schemes.

On the other hand, the QBPC, which determines traffic signal phases using the aggregate queue

information, suffers from a higher intensity of ghost vehicle attacks. We have examined the drawbacks

of both the DBPC and QBPC under different attack scenarios for different traffic patterns including

homogeneous and non-homogeneous vehicle arrivals at an isolated intersection. We have proposed

two protection mechanisms against the attacks, namely, an auction-based protection algorithm

(APA) and a hybrid-based protection algorithm (HPA). Using simulation analysis, we have shown

that both protection schemes are able to mitigate the impacts of the time spoofing and ghost vehicle

attacks.

In our second work, we have studied the impact of AI-enabled platooning control on fuel

consumption. Nowadays, vehicular emissions and traffic congestion have been deteriorated by

highly urbanization. The worsen traffic burdens drivers with a higher cost and longer time on

driving, and exposures pedestrians to unhealthy emissions such as PM, NOx, SO2 and greenhouse

gases. In response to these issues, CAV which enables information sharing between drivers and

infrastructure was proposed. With advanced wireless technologies offering extremely low latency

and CAV, platooning control can be realized to improve traffic efficiency and safety. However,

conventional platooning control algorithms require complex computations and hence, are not a

perfect candidate when applying to real-time operations. To overcome this issue, this chapter focuses

iv



on designing an innovative learning framework for platooning control capable of reducing the fuel

consumption by the four basic platoon manipulations, e.g., split, acceleration, deceleration, and no-op.

We integrated reinforcement learning (RL) with NNs to be able to model non-linear relationships

between inputs and outputs for a complex application. The experimental results reveal a decreasing

trend of the fuel usage and a growing trend of the reward. They demonstrate that the proposed

DRL platooning control optimizes the fuel consumption by fine-tuning speeds and sizes of platoons.

In our third work, we have applied advanced machine learning techniques to TSC. A recent

report has illustrated that an urban road network equipped with an advanced TSC system is capable

of reducing average sojourn time of vehicles, traffic collisions, and traffic delay while at the same

time decreasing energy consumption and improving parking. Modern TSC systems which leverage

advanced machine learning techniques and scheduling algorithms have been a promising topic in

recent years. RL has been broadly adopted in many areas, owing to its flexibility in combining an

assortment of architectures and neural networks that assists RL agents in learning from a complex

environment. Due to its compatibility with numerous existing deep learning techniques, RL can

be integrated into a complicated deep learning framework which is extendable and powerful for

many deterministic and nondeterministic applications. We proposed a deep RL (DRL) framework

which has high extendability and flexibility by incorporating various RL-based algorithms and

techniques. We shown that learning performance can be significantly improved by applying an

on-policy temporal-difference (TD) learning method, SARSA, to the traffic signal control problem

for a traffic network consisting of multiple intersections. The proposed traffic flow maps (TFMs) as

input states are formulated by traffic flows at every time slot in the network. These states are fed

into a non-linear function approximator to output the optimal action. In order to process TFMs, we

combined a convolutional neural network, a dueling network architecture which enhances evaluations

of action values when there is a huge action space, and a memory replay that breaks the strong

temporal correlations among states. Moreover, we compared learning performance among DQN,

3DQN, DSARSA, and 2DSARSA as well as provide a thorough analysis on their weaknesses and

strengths. To the best of our knowledge, this is the first work discussing and evaluating learning

effects of different DRL-based agents.

In our fourth work, as an extended work, we have proposed a novel architecture exploiting both

the global and local information to further improve the performance of TSC in the third work. We
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use the proposed TFMs as input states to represent the global information for a DRL agent and

pressure-of-the-lanes (POL) to represent the local information as pressure metric for a number of

backpressure (BP) controllers. We define a combinatorial reward function using the power metric

which maximizes the overall throughput and minimizes the average end-to-end delay of a network.

We proposed a hybrid-based two-level control (TLC) architecture which has high extendability

and flexibility by enabling a collaboration between the centralized DRL agent using TFM and the

decentralized BP controllers using POL in a hierarchical architecture to determine traffic signal

phases that optimizes the network throughput and latency. We show that learning performance

can be significantly improved by the collaboration between the two levels for a traffic network of

multiple intersections. Moreover, we compare learning performance of the proposed TLC with BP,

DQN, 3DQN, DSARSA, and 2DSARSA as well as provide a thorough analysis on their weaknesses

and strengths.

As our future work, first, we plan to analyze the impacts of malicious attacks on TSC equipped

with the DRL-based agent. From our experiments, we have shown that DRL performs well for a

traffic network with multiple intersections. We expect to explore the tolerance of DRL-based agent

when it is under adversarial attacks. How many attacks can it tolerate? We want to examine the

resilience of DRL-based agent as well. How well can it recover after encountering attacks? Second,

as we start to consider TSC problems for larger areas, increases in dimensions of states and actions

are foreseeable. High dimensional states and actions causing difficulty in learning will be a worthy

research topic. We plan to design a two-level control architecture which is capable of reducing the

dimension of actions by transferring some workload from a centralized agent to local controllers.
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Chapter 1

Introduction

Human population has exponentially increased in this century. Due to an unbalanced development

among regions, resources are extremely concentrated on urban cities into which must support

increasingly larger number of commutes move everyday. Nowadays, 55% of the human population in

our world lives in urban cities. The population in urban areas is predicted to increase to 68% by

2025 [2]. The website called Our World in Data [82] presented a series of data visualization related

urbanization across the world and predictions of future trends with respect to urban shares, density,

and population sizes. According to their predictions of urban and rural populations Fig. 1.3, our

world is expected to become more urbanized in 2050. Fig. 1.2 presents the share of the population

living in urbanized areas for highly developed and high-population countries from 1700 to 2000. Fig.

1.1 shows a current overview of urbanization across the world. As can be observed, most countries

are predominantly urban, especially for high-income areas such as Europe, the U.S., and Japan. For

example, over 82% of population in the U.S. lives in urban cities. 91.7% of population in Japan

lives in urban cities. This phenomenon is resulting into more traffic congestion, a longer average

delay, and high emissions in urban cities. It is also pushing for modern transportation systems. The

annual congestion cost for each driver reported by INRIX [22] was 97 hours and $1, 348 in 2018 in

the United States (US). Greenhouse gas emissions [1] contributed by transportation were 27% in

2015 and 29% in 2017. Medium-duty (including light-duty) and heavy-duty vehicles accounted for

59% and 23% of transportation greenhouse gas emissions in 2017, respectively.

In response to ever-growing traffic demands, the emergence of innovative traffic management

systems also known as intelligent transportation system (ITS) is inevitable. ITS has been extensively
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Figure 1.1: The human population lives in urban versus rural areas in 2019 where ’majority urban’ indicates
more than 50% of the population lives in urban centres and ’majority rural’ indicates less than 50%.

Figure 1.2: Urbanization from 1700s to 2000 over developed and high-population countries
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Figure 1.3: Trends of urban and rural populations projected to 2050

developed, especially in Japan, the US, and European Union (EU), as a popular research topic since

it was first proposed by the US. ITS is a future technology that is utilized to develop transportation

systems with reliability, safety, and efficiency for the next generation. The underlying idea of ITS is

to form a highly connected environment where information about pedestrians, vehicles as well as

facilities by sensors can be shared unhindered, and the information can be integrated with high speed

communication technologies to provide comparatively robust services to users. In recent years, with

highly evolved wireless technologies, communications now are much more stable and adaptable to

heterogeneous devices such that a variety of applications related to ITS can be realized for efficiency

and safety. Since service-based and data integrating systems have become vital in smart cities,

Barba et al. [11] proposed a framework for a smart city where intelligent traffic lights (ITLs) set

up in crossroads are capable of collecting flow density, sending warning messages, and updating

statistics. ITLs themselves formulate a network which enables information sharing and estimating

statistics for an entire city. This framework aims at providing services based on data collected

by the ITL network. Younes et al. [123] emphasized more on the intelligent traffic light control

(ITLC) and arterial traffic light (ATL) algorithms. ITLC is designed for an isolated intersection

and ATL is designed for a network of intersections. Their proposed algorithms are able to schedule

phases effectively based on the traffic characteristics. In addition to conventional ITS that is driven
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by multiple state-of-the-art technologies, Zhang et al. [125] proposed a data-driven ITS (D2ITS)

which is capable of fully extracting valuable information from heterogeneous resources such as video,

inductive-loop detectors, laser radar, as well as Global Positioning System (GPS), and applying

learning algorithms to these data to improve the performance of traffic signal control. Moreover, the

recent research on ITS [37] unveiled that proactive control could be a potential development over

conventional reactive control.

To develop a securer and smarter system for the next generation, security vulnerabilities and

machine learning issues need to be addressed in the design of traffic signal control (TSC) and

platooning control (PC) to improve the overall ITS performance. TSC has been a well-known and

challenging research topic for complicated traffic networks in the real world [27,64,76,116–118,124,127].

A considerable research work has been dedicated to this area to improve the performance of the

signal control. Pre-timed systems which schedule each phase by an equivalent time slot performed

well under static traffic flows. However, the fixed timing pattern becomes a limitation to satisfy

highly dynamic traffic flows. Bell and Bretherton [12] demonstrated that the obsolete timing

plan degrades performance by 3% per year. Hence, the ability to adapt to non-static traffic flows

needs to be considered while designing TSC algorithms. Updating timing pattern accordingly and

making time slots adjustable enable ITS to be more flexible and reliable. The idea of adaptive TSC

(ATSC) was proposed and has been widely applied to traffic scheduling for achieving throughput

optimality [16,64,76]. Pandit et al. [76] formulated the traffic scheduling problem as a job scheduling

problem. The arriving vehicles are divided into several platoons which can be regarded as jobs with

conflicts. They proposed an algorithm that schedules platoons in a conflict-free manner to minimize

delays at the intersection based on the collected speed and position data of vehicles. Cai et al. [16]

proposed a learning framework that incorporates dynamic programming which is solved using the

Bellman equation to achieve adaptability for traffic scheduling. On the other hand, connected and

autonomous vehicles (CAVs) [98] enable wireless communications among drivers, road side units

(RSUs) and controllers to promote connectivity, automation, throughput, efficiency, and safety for

public transportation [55]. With a fully connected traffic environment, PC can be fulfilled by sharing

all information of vehicles. PC is a technique that organizes a traffic flow into multiple groups,

convoys, or platoons with close-following vehicles also known as road trains in order to increase the

overall capacity of roads and reduce fuel consumption and emissions [68] in the traffic network. By
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forming vehicles into road trains, the overall throughput can be improved because gaps among CAVs

are minimized. In addition, fuel consumption and emissions can be reduced due to lower air drag and

speed variation for each CAV in a platoon [68]. Platooning can be considered as a effective control

strategy for heavy-duty vehicles (HDVs) as well as a promising solution to reduce fuel consumption

in HDVs [5,14,97].

In this dissertation, we focus on the TSC and PC in terms of security and performance. First,

owing to some weaknesses existing in the technologies mentioned above, the integration of them in a

modern ITS would not be seamlessly combined and might have vulnerabilities caused by ill-defined

data structures, poor-designed architectures, poorly maintained functionalities as well as insecure

communication channels. Modern ITS with TSC and CAVs will be exposed to cyber-attacks [26, 77]

if designers fail to consider security issues when designing systems. These security vulnerabilities

will provide great opportunities to attackers who attempt to compromise TSC systems to disrupt

traffic flow and achieve their own benefit. We study two types of misinformation attacks which

aim at disrupting signal phases scheduled by four different BP-based traffic control algorithms and

our contributions are as follows. We propose a threat model [121] in which an advanced persistent

adversary can formulate attack strategies as a 0/1 Knapsack problem and determine the optimal

strategy using a branch-and-bound algorithm. By the model, an adversary knows when and where

to deploy attack vehicles in arrivals to formulate the optimal attack strategy that maximizes the

number of total disrupted phases. For the attack strategies formulated by the model, we analyze the

hidden relationship between the number of disrupted phases and delay/fairness by both offline and

online simulations. We propose protection mechanisms against these attacks. Second, due to the

traffic congestion and emissions, performance improvement in TSC and PC is another imperative

topic because their performance can directly influence traffic throughput and fuel consumption which

are contributing factors to the issues. Toward this end, we consider deep reinforcement learning

(DRL) and adopt DRL techniques such as the dueling neural architecture and experience memory

replay to improve TSC and PC regarding traffic throughput, traffic latency, and fuel consumption.

The contributions to DRL-based TSC and PC can be summarized as follows. We propose a DRL

framework [120] that integrates the deep learning, dueling architecture, and experience replay memory

for both TSC and PC to optimize the traffic throughput, traffic latency, and fuel consumption.

We propose traffic flow map (TFM) and arrival timing vector (ATV) as states for TSC and PC,
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respectively to enhance learning performance of DRL-based agents. Based on the DRL framework,

we propose a hybrid-based TLC architecture which enables a collaboration between decentralized

BP controllers and a centralized DRL agent. To the best of our knowledge, this is the first research

combining BP with DRL on TSC. Our results unveil that the collaboration between centralized

and decentralized controllers in the two levels substantially improves the network throughput and

latency by exploiting the insights of using the local information. The proposed TLC performs better

and converges faster than DQN [72], 3DQN [58], DSARSA [128], and 2DSARSA [120].
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The rest of this proposal is organized as follows.

1. In Chapter 2, we include background knowledge of backpressure based scheduling algorithms,

reinforcement learning, and deep reinforcement learning.

2. In Chapter 3, we address security vulnerabilities of TSC using BP-based algorithms. We

examined their reliability when under attack.

3. In Chapter 4, we propose a DRL-based PC to optimize fuel consumption by fine-tuning speeds

and sizes of platoons.

4. In Chapter 5, we propose a DRL framework for integrating RL-based TSC, deep learning, and

several existing techniques which enhance learning performance.

5. In Chapter 6, we proposed a two-level optimization framework integrating the DRL-based

TSC with backpressure algorithms for improving the performance by pure DRL-based TSC.

6. In Chapter 7, we propose the future research work.
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Chapter 2

Related Work

2.1 Backpressure-based (BP-based) Traffic Signal Control

The backpressure (BP) routing algorithm [93] was originally developed to optimize the throughput

of a queuing network over a multi-hop radio network with random arrival rates. The study in [93]

determined the stability region that defines the boundaries of arrival and service rates within which

feasible policies exists such that the network is stable. The study proposed an optimal policy that

achieves maximum throughput. The original work on backpressure control has been extended in the

domain of wireless communication networks [47,73,74,90].

The concept of the backpressure was first applied to traffic signal control in [116]. They

summarized some important definitions for network stability to aid in the modeling of the traffic

network. In their algorithm, they considered the difference in the queue length between any two

adjacent nodes at each time slot and then determined a feasible schedule by giving priority to the

phase with the maximum difference. In this algorithm, at each intersection at each time slot, the

decision regarding which phase of the traffic movement is scheduled is independently determined

based on the queue length. The results showed that the algorithm can achieve maximum network

throughput without any prior knowledge about arrival rates.

However, in practice, an algorithm considering only queue length information has an inherent

weakness. Specifically, queue-based scheme suffers from larger delay when encountering the last

packet (or vehicle) problem in wireless networks [47]. In a delay-based scheme, at each intersection,

the decision regarding which phase of the traffic movement is scheduled is determined by the head-
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of-the-line (HOL) delay. They proved that there is a linear relationship between queue lengths and

delays in the fluid limit model. That is, for each link-flow-pair (s, k), qs,k(t) = λsws,k(t), they showed

that the queue length grows when the delay becomes longer. This implies that the delay-based BP

scheme is quite similar to the queue-based BP scheme. However, the delay-based scheme outperforms

the queue-based scheme for the last packet problem.

The delay-based BP traffic signal control scheme at an isolated intersection was studied in [117]

for solving the last vehicle problem. Besides, a hybrid scheme was proposed that considers both

queue and delay information and achieves the advantages of both the schemes. It can switch between

the two schemes using a tuning parameter. Depending on different traffic situations, the parameter

determines whether the scheme adopts a queue-based scheme or a delay-based scheme. We describe

the schemes in detail in Section 3.3.1.

2.2 Connected Autonomous Vehicle (CAV)

Recently, CAV has been well studied and there is a plethora of CAV-based research that has been

conducted to optimize vehicular maneuvers and fuel usage as well as reduce traffic latency and

pollutant emissions. Lee et al. [54] proposed a cooperative vehicle intersection control (CVIC)

algorithm that enables seamless cooperation among vehicles and infrastructure to manipulate

vehicular maneuvers for a traffic environment without any traffic signal. They conducted experiments

and showed improvements of air quality and fuel consumption under an assumption that all vehicles

are fully connected and automated. With CAV technology and received signal phase and timing

(SPaT) information, drivers is able to increase energy efficiency and reduce pollutant emissions

generated by unnecessary stops, idles, accelerations, and decelerations [56]. In [28], Feng et al.

developed an algorithm that exploits CAV data to determine the optimal signal phase allocation to

minimize the total delay and the queue length. Cooperative adaptive cruise control (CACC), which

enables information sharing (e.g., speed and acceleration) among connected vehicles to reduce inter-

vehicle distance, is one of famous CAV use-cases for achieving mobility and safety [67,69,106,109].

Yang et al. [119] developed an Eco-CACC algorithm that calculates a fuel-optimum trajectory for

each vehicle arriving an isolated signalized intersection. Wang et al. [108] proposed a cluster-wise

cooperative algorithm that clusters CAVs into groups and perform eco-driving in a collaborative
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manner. Furthermore, with platooning control and signal flexibility, Guler et al. [38] proposed a

CAV-based algorithm which considers the location and speed information shared by connected

vehicles to decide which sequence of vehicles need to be discharged from an intersection to reduce

the number of stops and the total delay.

2.3 Platooning Control Methods

Platooning control is a well-known technique applied to form vehicular groups (platoons) where

vehicles in the same platoon drive close to each other to decrease gaps. This technique can be realized

in an environment where most of vehicles are connected and their information such as position and

speed is shared. Much research on platooning control has been conducted to study impact on traffic

in terms of road capacity, travel latency, and fuel consumption. They demonstrated that 1) road

capacity can be substantially increased [40, 66, 95] as well as fuel usage can be decreased due to

reduction of air drag and speed variation by platooning [5, 68, 97]. Talebpour et al. [92] studied the

impact of platooning control on an traffic environment with both CAVs and non-CAVs. Lioris et

al. [60] investigated potential improvement of intersection capacity when vehicles communicated

with each other to form a platoon; thus, they passed an intersection as a whole and increased

the saturation flow rate by a factor of up to three. Fernandes et al. [30] conducted simulations

with different platooning profiles to maximize road capacity. They proposed a new approach that

separates the control of the leading vehicle the other member vehicles. The former is controlled

by the pre-defined TraCI package and the latter is controlled by a novel module they implemented

for SUMO. Santini et al. [85] proposed a consensus-based algorithm that regulates gaps among

vehicles in the same platoon with respect to not only their predecessor and but also the leading

vehicle. The proposed platoon high-order equation was solved by a decentralized control variable

embedding the gap information and the communication delays. Zhang et al. [126] highlighted work

related to fuel savings for truck platooning and summarized existing methods, their contributions,

and platooning strategies that computes fuel-efficient speed profiles for vehicles in the same platoon.

Moreover, PERMIT [65], a platooning simulator based on SUMO [53] and its extension Plexe, was

implemented to simulate platooning maneuvers such as merge, leave, split by using finite state

machine. VENTOS [6], an integrated simulation platform based on SUMO [53] and OMNET++,
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was developed to provide platooning management protocol to perform platoon operations using the

three basic maneuvers merge, split and lane-change.

On the other hand, the emergence of machine learning (ML) offers an efficient way to tackle

optimization problems by using non-linear approximation functions or an unsupervised learning

framework. Many ML-based methods have been well-studied and efforts have been devoted to

design platooning control that combines well-known ML models to achieve energy efficiency and

improve road capacity. The first application of using RL to CACC was proposed by Desjardins et

al. [23]. They proposed a model-free RL-based CACC algorithm to perform basic cruise controls

(e.g., acceleration and brake) for a platoon of vehicles. They conducted experiments on two vehicles

in a simple traffic environment where the state is depicted by headway information, the actions are

the cruise controls, and the reward is defined by the gap between the two vehicles. The proposed

algorithm updates neural parameters by using gradient descent in order to maximize the expected

cumulative reward. Buechel et al. [15] introduced an idea of the state augmentation by including

advance knowledge and proposed an actor-critic RL algorithm to learn longitudinal control with a

predicted leading vehicle trajectory of desired velocities adaptive to road grade changes over time.

Chu et al. [21] designed a model-based deep RL (DRL) CACC algorithm for a heterogeneous platoon

with both human-driven and autonomous vehicles. The control logic is to determine desired headway

for vehicles and their acceleration are separately modeled by the optimal velocity model (OVM). Lu

et al. [61] proposed a deep deterministic policy gradient (DDGP) based platooning control to address

inefficiency in exploring continuous action space. A shared model was trained for members in the

same platoon to solve the convergence problem. All the platoon members was jointly participating

in generating training samples to diversify samples and enhance the exploration. Chen et al. [19]

proposed a DRL-based algorithm to handle platoon maneuvers, aiming at reducing fuel consumption.

The DRL model learns to determine the optimal entry point for vehicles which wants to be merged

into a platoon. Li et al. [57] discussed how to formulate the drift counteraction optimal control

(DCOC) problem in a problem to which RL can be applied. They developed a RL-based adaptive

cruise control (ACC) algorithm under the DCOC framework to automatically change a speed and

maintain a safe headway for each vehicle, aiming at maximizing the expected time before safety and

fuel efficiency are violated. Inappropriate driving behaviors such as frequently deceleration caused by

heavy traffic or traffic light usually lead to a higher fuel consumption and accidental risks. Zhou et
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al. [129] proposed a DDPG-based algorithm to address well-known traffic oscillation issue triggered

by human drivers. The trajectories of CAVs were controlled by acceleration determined the proposed

model Their results showed significant improvements including higher travel efficiency and safety as

well as lower fuel consumption and traffic oscillation.

2.4 Reinforcement Learning

Reinforcement learning (RL) [91] is an unsupervised learning algorithm where an agent learns from

experiences E receiving from an environment. Experiences contain the states, actions, and rewards

where E = {s0, a0, r0, . . . , st, at, rt}. The agent interacts with an environment by observing states,

taking actions accordingly, and receiving rewards such that maximizes the total reward without any

prior knowledge. First, the current state st is an observation receiving from the environment at every

time step t. Second, the current action at is a response which could be possibly taken according to

the state st by the agent. The final one is reward rt, which is the feedback from the environment

after taking action at. The reward rt is utilized to iteratively update the current state-action pair so

as to achieve the best policy. RL is a trial-and-error framework which is capable of searching an

optimal policy by fine-tuning exploration and exploitation.

2.4.1 Markov Decision Process

Markov Decision Process (MDP), a mathematical framework, is a discrete time control process for

modeling decision making problem. Formally, MDP describes an environment for RL and contains

the following elements:

• A set of states S;

• A set of actions A;

• A transition function T (st+1|st, at) that maps each state-action pair to a distribution of next

state;

• A reward function R(st, at, st+1) that measures how well the agent performed in state st; and

• A discount parameter γ ∈ [0, 1] for future reward.

RL problems can be formalized as MDPs. The important MDP property is that given the current

state st, the next state st+1 is independent from all previous states (s0, s1, s2, . . . , st−1). For TSC
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systems, the learning trajectory modeled by MDP is episodic where the control system will be

terminated at a given training time T . The objective of a MDP agent is to find an optimal policy π

which maximizes the expected cumulative reward E[Rt|s, π] where Rt is given by

Rt =
T∑
t=0

γtrt (2.1)

where the discount parameter γ indicates how critical the future rewards will be. γ close 0 represents

myopic evaluation, whereas γ close 1 denotes far-sighted evaluation. There are two types of RL

agents. One fully understands the transition probability T from the current state st to the next

state st+1, which is also known as the model-based RL. The other is not aware of the transition

function and needs to explore the environment. That is called model-free RL. Model-free RL can

be further divided into 1) value-based and 2) policy-based methods. In a value-based RL agent, a

value function which maps each state-action pair to a value will be updated at every iteration. In

policy-based RL agent, policy will be updated by using policy gradient at each iteration.

2.4.2 Value-based RL Agent

Given the current state s under policy π, a value function V π(s) estimates the value of state s in

which the agent is by the expected cumulative reward and is given by

V π(s) = E[Rt|s, π] (2.2)

The optimal value function V ∗(s) is defined as the maximized state-value function over the policy π

for all states and hence given by

V ∗(s) = max
π

V π(s), ∀s ∈ S (2.3)

Furthermore, the state-action value function Qπ(s, a) also known as the quality function (Q-

function) is determined by the expected reward of taking action a in the current state s and is given

by

Qπ(s, a) = E[Rt|s, a, π] (2.4)
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Similarly to the optimal state-value function V ∗, optimal action value function Q∗ can be calculated

by maximizing its expected return over all states and hence given by

Q∗(s, a) = max
π

Qπ(s, a),∀s ∈ S,∀a ∈ A (2.5)

In addition to state-value, actions taken by the agent will affect the return as well. The optimal

expected return can be captured by Q∗. Then, the optimal state and action value functions can be

given by

V ∗(s) = max
a∈A

Q∗(s, a),∀s ∈ S (2.6)

Q-function Q∗(s, a) provides the optimal policy π∗ by selecting the action a that maximizes the

Q-value for the state s and is given by

π∗ = argmax
a∈A

Q∗(s, a), ∀s ∈ S (2.7)

2.4.2.1 Temporal-difference Learning Method

Temporal-difference (TD) learning method, which is a model-free RL method, sample experiences from

incomplete episodes and update Q-values depending on estimated returns (TD target). Compared

to Monte Carlo (MC) learning methods, which update Q-values by the empirical mean returned

at the end, TD learning methods directly learn by bootstrapping from the current estimate of the

value function.

Based on definitions of the value function and TD learning methods, there are two types of RL

algorithms: off-policy and on-policy RL algorithms. The classic off-policy and on-policy learning

algorithms are Q-learning [111] and SARSA [83], respectively. These TD learning methods are

conventional tabular RL. In other words, the values of state-action pairs (Q-values) are stored in a

Q-table, and are learned via the recursive nature of Bellman equations utilizing the Markov property

given by

Qπ(st, at) = Eπ[rt + γQπ(st+1, π(st+1))] (2.8)
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For each iteration, the Qπ estimate is updated with a learning rate α to improve the estimation as

follows

Qπ(st, at)← Qπ(st, at) + α(yt −Qπ(st, at)) (2.9)

where yt is the TD target for Qπ(st, at) and yt −Qπ(st, at) is the TD error.

1. Q-learning is an off-policy learning model in which the selection of actions based on maximizing

Q-values over all actions. It updates Q-value estimates by acting greedily.

yQ−learning
t = rt + γmax

at
Qπ(st+1, at+1) (2.10)

2. SARSA is an on-policy learning model in which the selection of actions depends on the policy

π derived from the Q-function. It updates Q-values and takes actions by following the same

policy.

ySARSA
t = rt + γQπ(st+1, at+1) (2.11)

ϵ-greedy policy is the most common and intuitive approach for exploration and exploitation

in both Q-learning and SARSA. In the ϵ-greedy policy, an action is randomly selected with

probability ϵ, and the best action with respect to the current policy defined by Q(s, a) is chosen

with probability 1− ϵ.

2.5 Deep Reinforcement Learning

Conventional RL algorithms perform well for simple scenarios such as an isolated intersection with

static traffic demands and regular traffic patterns. Complicated traffic problems usually lead to huge

state space in which the state size grows exponentially. The tabular RL approaches are no longer

suitable for learning informative features from complex environments because they will soon run out

of memory while constructing Q-table for all state-action pairs and will fail to update all of them.

However, the huge state space problem can be solved by deep learning. Deep RL (DRL) applies

neural networks as function approximators to approximate Q-values instead of building a Q-table.

Various neural networks like artificial neural network (ANN), convolutional neural network (CNN),
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and recurrent neural network (RNN) have been applied to train RL algorithms for high-dimensional

state spaces.

2.5.1 Deep Q-Network

Value-based RL algorithms update Q-value by the tabular approach. This approach is not feasible to

visit all state-action pairs especially for complex systems because state space grows exponentially and

the action space can also be large. Mnih et al. [72] proposed Deep Q-Network (DQN) applying deep

neural networks to approximate Q-values where the network parameter set is θ, and the Q-function

approximation can be rewritten as Q(s, a; θ). The goal of the neural network is to update the network

parameter set θ that optimizes the loss function L(θt) given by

L(θt) = Eπ[(yt −Qπ(st, at; θt))
2] (2.12)

where st is the current state, at is the current action, st+1 is the next state which is dependent on at

taken by the agent in st, at+1 is the next action selected by ϵ-greedy, and yt is the TD target given

by Eq. 2.14 and 2.15.

First, the partial derivative of L(θt) is calculated by differentiating Eq. 2.12. The gradient of the

loss function can be obtained as follows:

▽θtL(θt) = Eπ[(yt −Qπ(st, at; θt))▽θt Q
π(st, at; θt)] (2.13)

where ▽θtQ
π(st, at; θt) denotes the gradient of the current state-action value. We optimize the loss

function L(θt) by Eq. 2.13 and the network parameter set θ is updated by using stochastic gradient

descent (SGD).

The output of neural network is the best action selected from a discrete set of approximate action

values based on Eq. 2.7. DQN takes images as input states and processes them to estimate Q-values

by CNNs. The proposed DQN outperforms the expert human performance on a variety of Atari

games.

Mnih et al. [72] contributed two state-of-the-art techniques for stabilizing the learning process

with deep neural networks: 1) target network and 2) experience replay. The target network is a

critical part of DQN and plays an important role to stabilize the learning process. Two separate
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neural networks are implemented in DQN: the main network that approximates the Q-function and

the target network that provides the TD target for correcting the TD error (updating the main

network). The parameters θ of the main network are updated after every action during the training

process. In contrast, the parameters θ− of the target network are only updated after specific time

steps τ . The target network cannot be updated after every iteration because it corrects the TD

error for the main network in order to control the value estimations. If two networks were updated

simultaneously, the change in the main network would become very exaggerated because of the

feedback loop caused by the target network. This will lead to an extremely unstable network. The

TD target for DQN can be written as follows:

yDQN
t = rt + γmax

at+1

Qπ(st+1, at+1; θ
−
t ) (2.14)

where Qπ(st+1, at+1; θ
−
t ) is the target network.

2.5.2 Double Deep Q-Network

DQN is the improved version of the conventional Q-learning algorithm by applying neural networks

to Q-learning. But, DQN and Q-learning, which both use only one estimator, could lead to

overoptimistic value estimates in actions because of having single Q function estimations. Hasselt et

al. [102] first came out with an idea that applies two estimators separately to DQN. One estimator

with the main network is for action selection, and the other estimator with the target network is for

action evaluation. Double DQN (DDQN) separates the action selection, and action evaluation for

better Q-value estimation. Instead of selecting the Q-value that maximizes future reward using the

target network (see Eq. 2.14), DDQN selects the action by the main network and evaluates it by the

target network. The TD target for DDQN can be written as follows:

yDDQN
t = rt + γQπ(st+1,max

at+1

Qπ(st+1, at+1; θt); θ
−
t ) (2.15)

2.5.3 Dueling Network Architecture

Many papers have integrated RL and existing neural networks (NN) together because this combination

has revealed success in learning Atari games in recent years. The idea of dueling was proposed
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Figure 2.1: The conventional one sequence network is shown at the top. The dueling network with two
sequences is shown at the bottom. State-value and the advantages for each action are separately estimated

by the dueling network; the output of the dueling network (green) implements Eq. 2.16 to combine
state-value and advantages.

by [110]. They first came up with such an idea for the model-free reinforcement learning. Instead of

using one single sequence for value estimations, they implemented the dueling architecture where a

single Q Network has two separated sequences, one for value and the other for action advantage as

shown in Fig. 2.1 (borrowed from [110]). They proposed this architecture because they found that

in some states, it matters which action needs to be taken, but most states, the selection of action

has no influence on what happens. Hence, they separated the estimations of state-value and action

advantage in order to learn which state-values are higher without going through and learn every

single state-action pair. Even if they are separated, the state-value and action advantage are still

sharing the same convolutional feature.

The goal of the dueling architecture is to estimate Q by separately estimating V and A. It can

be formulated as follows:
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Q(s, a; θ, α, β) = V (s; θ, β) + [A(s, a; θ, α)− 1

|A|
∑
a′

A(s, a
′
; θ, α)] (2.16)

where Q represents the value of selecting a particular action a in a given state s. By following a

policy π, the Q-value of state-action pair can be computed recursively. The goal is to maximize the

summation of expected reward. V denotes how well it is in the given state s. A indicates a relative

measurement of importance of each action a. However, there is a problem where the values are not

unique. For example, if A is increased by 5 and V is decreased by 5, it cancels out the result in Q.

The strategy here is to subtract the mean in order to solve this non-unique problem and increase

stability.

Figures 2.2 and 2.3 are borrowed from [110]. They clearly show the performance of the dueling

architecture. In this corridor environment, there are vertical and horizontal directions, each of which

has 8 grids and 50 grids, respectively. The goal for the agent is to learn how to reach the destination,

the red zone. The actions which could be taken by this agent are going up, down, left, right, and nop.

Nop stands for no operation which means it is an useless action and it does not matter whether the

agent take it or not because it will not affect the environment and will not be helpful for reaching

the goal.

The dueling architecture helps the agent if the action space is large. As mentioned above, there

are five actions could be taken. Fig. 2.3 shows different action space consisted of up, down, left,

right, and an arbitrary number of nop. For 5 actions, there are up, down, left, right, and one nop.

For 10 actions, there are up, down, left, right, and six nops. As can be observed in 2.3, it does not

converge faster for a less number of actions. Instead, it achieves the lower squared error (green line)

when comparing to a single sequence architecture (red line).

The larger the action space would be, the more the useless nops could be. The dueling architecture

trains much better when the number of actions is high because it is able to exclude useless actions

by separating the estimations of V and A. Therefore, it is able to outperform the single sequence

architecture while increasing the number of actions.
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Figure 2.2: A sample environment with 10 grids in vertical direction and 50 grids in horizontal direction

Figure 2.3: Different number of actions and their squared errors

20



2.5.4 Experience Memory Replay

For RL, in a non-terminating environment, quickly getting rid of experiences after only one time

update is probably not a wise decision. First, due to such an environment, all updates are strongly

correlated where the temporal correlation will destroy i.i.d assumption of many popular stochastic

gradient-based algorithms. Second, those experiences, which have been discarded, could be used

later on. Experience replay [86] is able to break the strong temporal correlations by first combining

old and new experiences and then, training on them together. Also, it can speed up the learning

process by avoiding fully sweep over the entire replay memory. In [86], they used the prioritized

experience replay to select replay samples based on priorities. Given pi is the priority of experience

i, a rank-based method is used to calculate the priority of an experience sample. The experiences

will be ranked by the TD errors and then the priority pi of experience i is its rank. The key idea is

to increase the replay probability Pi of the samples with a high TD error.
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Chapter 3

Security Vulnerabilities in Traffic Signal

Control

3.1 Introduction

With the ever-increasing traffic demands, the transportation system faces challenges such as traffic

congestion, traffic accidents, and high energy consumption and the related emissions. In order to

deal with these critical issues in the transportation systems, a significant plethora of research in the

recent decades has investigated algorithms for traffic signal control (TSC) [70,112]. According to

data reported in [127], an urban road network equipped with an advanced TSC system is capable of

not only reducing average travel time of vehicles by 11.4% but also decreasing traffic collisions by

6.7%, traffic delay by 24.9%, parking by 27%, while at the same time, decreasing energy consumption.

The data revealed the impacts of TSC on our future urban planning.

With connected and autonomous vehicles (CAVs), the transportation system can be viewed as

a cyber-physical system (CPS) [10] that is able to combine several multi-disciplinary technologies

from sensing, computation, communication, and control to achieve optimal operation. In such a

transportation-based CPS, CAVs, roadside units and sensors are seamlessly integrated with TSC

using wireless communication. In the foreseeable future, pedestrians, bicyclists, vehicles, and

traffic signals, can communicate using Vehicle-to-Vehicle (V2V), and Vehicle-to-Infrastructure (V2I)

communication [99]. This enables new traffic control algorithms that can enhance safety and improve
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the throughput and delay characteristics of the traffic in the road network.

However, cyber-attacks are potential threats to such a fully connected environment [36]. A recent

study [80] found that even if attackers are currently not able to compromise the TSC algorithms, they

can still send falsified data by hacking sensors to degrade the performance of the TSC algorithms

and create traffic congestion. This situation can be compared to the current problem with fake news

in social media. According to surveys about fake news [88, 103], fabricated content in news has

increased rapidly in recent years. This fake news content is able to influence agenda-setting and

distract media attention from real news topics. Furthermore, in [13,87], it has been demonstrated

that popular social media like Twitter creates a breeding ground for widely spreading misinformation

which is extremely difficult to be distinguished from real news topics. Misinformation attacks are

becoming an intractable problem and need to be considered into the system level design because it

is able to not only occupy the time for real news topics but also intentionally misleads the public to

create chaos and cause damages in terms of health and finance [31,44].

Similar to fake news in social networks [13, 31, 44, 87, 88, 103], TSCs are also susceptible to

misinformation attacks [80]. In particular, misinformation attacks can be launched by falsifying

data on the trajectory and/or the arrival time of a vehicle. Using such attacks, adversaries can

disrupt the signal phases to either benefit from getting served earlier than other vehicles or block

a platoon of vehicles from passing an intersection for a while. Such disruption at one intersection

can lead to delays that can spread to adjacent intersections, and eventually create traffic congestion

and gridlock in the entire network. Vulnerabilities of navigation systems such as Google Navigation

and Waze, which both use position data of smartphones (a.k.a floating car data (FCD)), have been

analyzed specifically with respect to the impact of sending counterfeit GPS data [46]. The study

showed that even though the Google protocol uses Transport Layer Security (TLS), an adversary

can replay collected packets with modified cookies, time stamps and platform keys to masquerade as

multiple vehicles and create traffic congestion. The evaluation focused on user privacy and data

authenticity. For example, in Google protocol, the TLS guarantees data integrity; however, the TLS

tunnel becomes completely useless once adversaries control the beginning of it. Adversaries are able

to randomly select user ID and cookie in the protocol header and then, fabricate counterfeit location

data to the navigation system without being detected. That is to say, If adversaries drive around

and collect the data packets sent to the navigation system, they can reuse those collected packets
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and intensify their attacks by transmitting many delayed packets with modified cookies, time stamps

and platform keys to masquerade multiple vehicles. If adversaries are smart enough, they can further

utilize different IP addresses as well as additional noise which make the navigation system even more

difficult to distinguish between real and counterfeit data. Experiments have shown that it is possible

for adversaries to control the navigation system and create traffic congestion.

Based on our previous work [117], three BP-based traffic control algorithms were analyzed with

respect to throughput and fairness. They are, namely, Delay-based BackPressure Control (DBPC),

Queue-based BackPressure Control (QBPC), and Hybrid-based BackPressure Control (HBPC). The

result showed that DBPC can outperform QBPC and provide a better fairness while facing the

last vehicle problem which is analogous to the the last packet problem [47]. Later, we conducted

analyses of the time spoofing attack on the above three BP-based traffic control algorithms as well as

Sum-of-delay-based BackPressure Control (SBPC) in [122]. The results showed that BP-based traffic

control algorithms are highly susceptible to falsified data attacks particularly when the TSC is not

able to easily identify and/or filter out malicious and falsified data. Our experiments showed that the

DBPC is more vulnerable to time spoofing attacks than other BP-based traffic control algorithms.

In contrast, the HBPC that combines the queue-based and delay-based can be used to switch to

queue-based traffic control when the time spoofing attack is detected. The study also considered

the coordinated attack strategy in which the knowledge of the heterogeneity in the arrivals can be

exploited to amplify the effect of the time spoofing attack in the case of DBPC in a network of

intersections.

In this chapter, we study the impacts of two misinformation attacks, namely, time spoofing

attack and ghost vehicle attack on the four different BP-based traffic control algorithms [117,122].

The study considers an isolated intersection in a fully connected system where vehicles and the TSC

are able to send and receive data without any degradation even when under attack. Our security

study builds on and is contemporary to recent studies [20, 29] and [35] which conducted security

analyses on CAV-based transportation systems and found possible attack strategies which could

significantly impact the effectiveness of a TSC. The study showed that there would be a 68% increase

in the total delay even with only one attack. Other types of attacks that could also significantly

reduce the effectiveness of TSCs are outlined in [41, 81, 84]. We consider an advanced persistent

threat model (Section 3.4) in which the adversary has time and resources to launch complex attack
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on the TSC system. Specifically, the adversary using reconnaissance can learn both the traffic

pattern and the behavior of the TSC algorithm and has a budget to insert multiple attack vehicles

in the traffic stream and launch a misinformation attack. The adversary utilizes an optimization

framework in an offline setting to learn the optimal attack strategy that results in the maximum

number of disrupted signal phases in a BP-based TSC system. This provides the adversary a method

to launch attack in an online setting that can achieve higher number of disrupted signal phases

than achieved by a random attack. Furthermore, by analyzing the impact of these attacks, we

design protection algorithms and evaluate their performance against these attacks. We show that

our proposed algorithms are able to withstand a certain level of attacks and mitigate the damage

from misinformation attacks.

3.1.1 Organization

The rest of this chapter is organized as follows. We list our contributions in Section 3.2. In Section

3.3, we introduce the model of the TSC for an isolated intersection and describe the four different

BP-based traffic control algorithms considered in this study. In Section 3.4, we elaborate on the

misinformation attack and describe the proposed threat model. For an offline setting, we first

formulate an optimization problem relating the number of disrupted signal phases and the attack

strategy, and then outline a solution based on branch-and-bound algorithm to determine the optimal

attack strategy. In Section 3.5, we describe two protection algorithms for misinformation attack on

BP-based TSC algorithms. In Section 3.6, we discuss the results of the offline and online simulations

of misinformation attack on BP-based traffic control algorithms. Finally, we conclude and discuss

future work in Section 3.7.

3.2 Contribution

The main contributions of this chapter are summarized below:

• We analyze the impact of time spoofing attack and ghost vehicle attack on four BP-based

traffic control algorithms at an isolated intersection.

• We propose a threat model in which an advanced persistent adversary can formulate the

attack strategy as a 0/1 Knapsack problem and determine the optimal strategy using a
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branch-and-bound algorithm.

• We show that the ghost vehicle attack degrades the performance of QBPC and SBPC. On the

other hand, time spoofing attack degrades the performance of DBPC.

• We propose an auction-based and a hybrid-based protection algorithms against misinformation

attacks and show that they can mitigate the impact of the attacks.

3.3 System Model

Fig. 3.1 shows an isolated traffic intersection. We consider a fully connected system in which every

vehicle is required to send a message to indicate its arrival when approaching the intersection. From

these messages, the TSC knows the number of vehicles at each lane and the arrival time of each

individual vehicle in each lane. In the subsequent discussion, the number of vehicles in each lane will

be referred to as its queue length and the waiting time of the head vehicle will be considered as the

Head-Of-Line (HOL) waiting time. The TSC operates in a time slotted manner. At the beginning of

each time slot, it applies a traffic control algorithm to determine a feasible signal phase, i.e., which

lane(s) are allowed to release vehicles through the intersection during the time slot. The goal of

this study is to analyze the impact of the time spoofing attack and ghost vehicle attack. In time

spoofing attacks, vehicles (shown as red vehicles in Fig. 3.1) intentionally falsify their arrival time

to make their waiting time appear to be longer. In ghost vehicle attacks, vehicles (shown as green

vehicles in Fig. 3.1) disconnect themselves by not sending the required message when arriving at

the intersection. Consequently, the TSC is unaware of their presence. We also study our proposed

protection algorithms against these attacks. The summary of notations for this paper is listed in

Table 3.1.

We model the TSC as a queuing network with vertices and edges. Let G = (V, E) be a directed

graph where V indicates a set of vertices corresponding to different lanes and E denotes a set of

edges corresponding to traffic movements between any connected lanes. Fig. 3.2 shows an example

of 4 signal phases at an isolated intersection. Each signal phase consists of two non-conflicting

traffic movements. In our simulations, we assume that each vehicle has a fixed routing path and this

routing information is known a priori.

Let A = {ai,j,l | (i, j) ∈ E , l ∈ N} be the set of all arrivals where ai,j,l denotes the l-th vehicle
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Figure 3.1: The illustration shows the system model at an isolated intersection. The attack vehicles are in
red and green. Waiting and approaching vehicles are in blue. The red vehicles carry out time spoofing

attacks and the green vehicles carry out ghost vehicle attacks.

arriving at the intersection, and it is in lane i destined for j. We let Ni(t) be the number of vehicles

that arrive to the intersection in lane i during time slot t, and τ be the total number of time slots.

Then the average arrival rate in lane i, denoted by λi is given by

λi = lim
τ→∞

1

τ

τ−1∑
t=0

E(Ni(t)) (3.1)

Let λ⃗ = {λ1, λ2, . . . , λ|V|} be an arrival rate vector of the intersection. Let Qi,j(t) be the number

of vehicles in lane i at the beginning of time slot t that will transfer to lane j. We denote Qi,j to

represent the queue of vehicles in lane i that will transfer to lane j and Q⃗(t) ≜ [Qi,j(t), (i, j) ∈ E ] is

the queue length vector at time slot t. Let Fi,j(t) be the number of vehicles arriving in lane i for

lane j until time slot t ≥ 0, and F̂i,j be the number of vehicles served at Qi,j until time slot t ≥ 0.
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Based on the above, the queue length Qi,j(t) is given by

Qi,j(t) = Fi,j(t)− F̂i,j(t) (3.2)

Let Ti,j,k(t) represent the waiting time of the k-th vehicle in lane i for lane j at time slot t

where this time is measured from the time the vehicle arrives at the intersection. Let Wi,j(t) be the

waiting time of the HOL vehicle in lane i for lane j at time slot t. Therefore, Wi,j(t) ≜ Ti,j,1(t) and

if Qi,j(t) = 0, it implies Wi,j(t) = 0. Likewise, W⃗ (t) ≜ [Wi,j , (i, j) ∈ E ] indicates the HOL waiting

time vector at time slot t.

We define Ui,j to be the time when the first vehicle (HOL) arrived in lane i for lane j at the

intersection. Then

Ui,j(t) ≜ t−Wi,j(t). (3.3)

A feasible signal phase is a set of movements that can be scheduled concurrently. This is denoted as

p⃗ ∈ {0, 1}|E|. Let SP be a set of all feasible signal phases. Note that if pi,j(t) = 1 then vehicles are

allowed to pass from lane i to lane j at time slot t. On the other hand, if pi,j(t) = 0, vehicles cannot

move from lane i to lane j. We use µi,j(p⃗) to represent the saturation flow rate at which vehicles

move from lane i to lane j under a feasible signal phase p⃗.

Figure 3.2: An isolated intersection activates the 4 signal phases (P1, P2, P3, P4), each of which consists of
two non-conflicting traffic movements in our simulation.

3.3.1 Backpressure Based Traffic Control Algorithms

In this section, we consider four different BP-based traffic control algorithms, namely, Queue-

based BackPressure Control (QBPC), Delay-based BackPressure Control (DBPC), Hybrid-based

BackPressure Control (HBPC), and Sum-of-delay-based BackPressure Control (SBPC) [117,122].

In these algorithms at each time slot, the signal phase is assigned to lane(s) with the maximum
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Table 3.1: Summary of Notations

Symbol Description
V set of vertices (different lanes)
E set of edges (traffic movements between any two lanes)
p⃗ a signal phase (movements that can be scheduled concurrently)
SP set of feasible signal phases
γi,j positive constant that emphasizes particular movements for the vehicles in lane i for lane j
µi,j(p⃗) saturation flow rate (vehicles per second per lane) from lane i to lane j under a feasible signal phase p⃗
Ni(t) number of vehicles arriving for lane i at time slot t
λi average arrival rate (vehicles per second per lane) for lane i
Qi,j(t) queue length of lane i going to lane j at time slot t
Fi,j(t) number of vehicles arriving in lane i for lane j at time slot t

F̂i,j(t) number of vehicles served in lane i for lane j until time slot t
Ti,j,k(t) the waiting time of the k-th vehicle in lane i for lane j at time slot t
Wi,j(t) the waiting time of the HOL vehicle in lane i for lane j at time slot t
ηi,j parameter that gives different relative importance to queue length and HOL waiting time in lane i for lane

j, ηi,j ∈ [0, 1]

W i,j(t) the sum of the waiting time of all vehicles in lane i for lane j at time slot t.
Mi,j(t) the misinformation sent by the l-th arrival as an attack vehicle in lane i for lane j at time slot t
Ui,j(t) time when the HOL vehicle arrived in lane i for lane j at the intersection
A set of all arrivals
L attack strategy formulated by the advanced adversary
LP set of all possible attack strategies
B total cost of assigning arrivals to be attack vehicles
ρ the probability that an arrival at the intersection is an attack vehicle
cl the cost of assigning the l-th arrival to be an attack vehicle
yl(t) variable indicating whether the decision at time slot t is disrupted by misinformation provided by the l-th

arrival as an attack vehicle
hl total number of decisions disrupted by misinformation provided by the l-th arrival as an attack vehicle
xl variable indicating the l-th arrival is an attack vehicle, xl ∈ {0, 1}

pressure. As discussed below, the algorithms differ in the manner in which the maximum pressure is

determined.

Queue-based Backpressure Control (QBPC) Algorithm In this algorithm, at each time slot

t, QBPC selects the signal phase that maximizes the total pressure released where the pressure is

measured in terms of the queue length. Specifically, the signal phase is determined by

p⃗ ∗(t) ∈ argmax
p⃗∈SP

∑
pi,j=1

γi,j ·Qi,j(t) · µi,j(p⃗) (3.4)

In the above equation, the right hand side calculates the queue length Qi,j(t) weighted by two

parameters µi,j(p⃗) and γi,j . The parameter µi,j(p⃗) denotes the number of vehicles that can be

transferred through the connected edge when signal phase p⃗ is activated. The parameter γi,j in

which the subscripts i and j refer vehicles in lane i destined to lane j, is a positive constant that

29



can be used to give priorities to particular movements when there are multiple types of traffic. In

Section 3.6, γi,j is set to 1 for all movements. The impact of multiple types of traffic with different

priorities is left for future work.

Delay-based Backpressure Control (DBPC) Algorithm In this algorithm, DBPC is similar to

QBPC except that the signal phase is determined by the maximum waiting time of the HOL vehicle,

Wi,j(t). Consequently, the signal phase is determined by

p⃗ ∗(t) ∈ argmax
p⃗∈SP

∑
pi,j=1

γi,j ·Wi,j(t) · µi,j(p⃗) (3.5)

The definitions of the two parameters µi,j(p⃗) and γi,j are the same as in QBPC.

Hybrid Backpressure Control (HBPC) Algorithm HBPC combines QBPC and DBPC using two

parameters, η(W )
i,j , η(Q)

i,j ∈ [0, 1]. These parameter values can be adjusted dynamically to give different

relative importance to queue length and HOL waiting time in determining the signal phase. For

example, when a traffic arrival rate from lane i to lane j is low, η(W )
i,j can be set to a value larger

than η
(Q)
i,j to guarantee the fairness of the delay performance. Conversely, by setting η

(Q)
i,j to a value

larger than η
(W )
i,j , we can bound the queue length if traffic arrival rate from lane i to lane j is high.

The signal phase is determined by

p⃗ ∗(t) ∈ argmax
p⃗∈SP

∑
pi,j=1

γi,j · [η(W )
i,j Wi,j(t) + η

(Q)
i,j Qi,j(t)] · µi,j(p⃗) (3.6)

where the definitions of µi,j(p⃗) and γi,j are the same as in QBPC and DBPC.

Sum-of-delay-based Backpressure Control (SBPC) Algorithm Let W i,j(t) be the sum of the

waiting time of all vehicles in lane i for lane j at time t where Ti,j,k(t) is the waiting time of the

k-th vehicle in lane i for lane j at time slot t. Then W i,j(t) is given by

W i,j(t) =
n∑

k=1

Ti,j,k(t) (3.7)

Compared to DBPC, SBPC considers not only HOL waiting time but also waiting times of all

vehicles in lane i for lane j. The signal phase at each time slot t is determined by the maximum
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sum of the waiting time of all vehicles, W i,j(t), and is given by

p⃗ ∗(t) ∈ argmax
p⃗∈SP

∑
pi,j=1

γi,j ·W i,j(t) · µi,j(p⃗) (3.8)

The definitions of µi,j(p⃗) and γi,j are the same as in the other three algorithms.

3.4 Threat Model

In our prior work [122] we showed that the sum of the delays over all the vehicles increases when

there are more number of phases disrupted by adversaries. Instead of using delay as in [29] or

considering flow and service rate as in [35], we consider an advanced persistent threat model in which

the adversary has resources and determines the time and the nature of the attack that maximizes

the disruption of the traffic flow at the intersection. Towards this end, the adversary first performs

reconnaissance to gain understanding of how the TSC operates under different traffic arrival rates.

The adversary has a fixed budget with which it can choose a fixed number of vehicles to be attack

vehicles. An attack strategy denoted by L, is selecting a subset of the arriving vehicles (denoted by A)

to be attack vehicles as shown in Fig. 3.3. Note that the arriving vehicles being selected to be attack

vehicles can be in any lane rather than a fixed one. Mathematically, L = {xl | xl ∈ {0, 1}, l ∈ N}

where xl is a binary variable that indicates whether the l-th arrival is an attack vehicle. The goal of

the adversary is to determine the optimal attack strategy L∗ that maximizes the number of disrupted

signal phases as defined below. Our hypothesis is practical because the study in [18] has shown

that TSC can be manipulated by sending falsified data to sensors. Note that it will not be realistic

if attack vehicles accounts for the majority of all vehicles. Hence, we limit the number of attack

vehicles to a reasonable number.

Figure 3.3: An attack strategy L and arrivals in A along with arrival time slot t. Each strategy L will be
converted into a binary set where attack vehicles are marked as 1s, e.g., L = {0, 0, 1, 0, 0, 1, 0, 1, 0, . . . , 0}
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3.4.1 Misinformation Attack

The study in [18] has shown that TSC can be manipulated by sending fake data to sensors. In this

study, the adversary attempts to influence the signal phases by having the attack vehicles provide

misinformation to the TSC. We denote the misinformation byM which can be either not connecting

to the TSC and hence becoming a ghost vehicle or falsifying the arrival time. The choice of the

misinformation depends on which BP-based traffic control algorithm is adopted by the TSC. The

goal is to alter the scheduling decision determined by the TSC to be different from the scheduling

decisions without the misinformation. For instance, an attack vehicle could spoof its arrival time

to be 50 sec earlier than its actual arrival time resulting in an increase in its waiting time. Under

DBPC based scheduling policy given in Eq. 3.5, this may result in a wrong selection of signal phase

by the TSC.

LetMi,j(t) denote the misinformation for the traffic movement from lane i to lane j collected

by the TSC system during time slot t, (i, j) ∈ E . The scheduling decision p⃗
′ at time slot t is then

given by

p⃗
′
(t) ∈ argmax

p⃗∈SP

∑
pi,j=1

γi,j · Mi,j(t) · µi,j(p⃗) (3.9)

where γi,j is a positive constant as explained in Section 3.3.1.

3.4.1.1 Ghost Vehicle Attack

In the ghost vehicle attack, the attack vehicle does not broadcast any message (turns off the network

connection) and hence cannot be detected by the TSC. As a result, the TSC system will have

misinformation on the number of vehicles in the queue. This will specifically impact QBPC and

SBPC algorithms which use aggregate information from all the vehicles in the queue in determining

the signal phase. The goal of the adversary is, given a number of ghost vehicles, to determine the

optimal attack strategy over time and lanes that maximizes the number of disrupted signal phases

denoted by Eq. 3.12.
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3.4.1.2 Time Spoofing Attack

We adopt the same definition of “spoofing” as in [20, 122]. Specifically, the attack vehicle sends

a falsified arrival time to increase its waiting time. The DBPC algorithm will be misled by this

falsified waiting time if it is larger than HOL waiting time in the other lanes. Hence, instead of

assigning green time to the lane with longest waiting time, DBPC will activate the lane with the

attack vehicle. The goal of the adversary is to determine the optimal attack strategy with a given

number of attack vehicles each with a spoofed time that maximizes the number of disrupted signal

phases as defined below.

3.4.2 Disrupted Signal Phases

The goal of the adversary is to determine the optimal attack strategy L∗ that maximizes the number

of disrupted signal phases. Whether the assigned signal phase at time slot t is disrupted by the l-th

arrival can be mathematically represented by an indicator variable yl(t) which is given by

yl(t) =


1, if p⃗ ′

(t) ̸= p⃗ ∗(t)

0, otherwise
(3.10)

where p⃗
′
(t) indicates the wrong decision made by the TSC system due to the misinformation it has

received and p⃗ ∗(t) is the correct decision determined by the TSC system without the misinformation.

Note that an attack vehicle keeps sending misinformation until it leaves the intersection. Hence,

misinformation sent by one attack vehicle can influence not only one signal phase but also multiple

signal phases. Let τ be the total number of time slots. The total number of signal phases disrupted

by the l-th arrival as an attack vehicle is given by

hl =
τ∑

t=0

yl(t) (3.11)

3.4.3 The Objective Function

The threat model is formulated as the 0/1 Knapsack problem where the profit to the adversary

which is the sum of all disrupted signal phases needs to be maximized with a fixed number of attack
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vehicles and a budget. The threat model is given by

L∗ ∈ argmax
L∈LP

∑
xl=1

hl · xl (3.12)

subject to ∑
xl=1

xl ≤ ρ · |A| (3.13)

∑
xl=1

cl · xl ≤ B (3.14)

xl ∈ {0, 1}, l ∈ N (3.15)

where hl is the total number of disrupted signal phases by the l-th arrival as an attack vehicle and ρ

denotes the probability that a vehicle arriving at the intersection is an attack vehicle (i.e., a ghost

vehicle or time spoofing vehicle). Eq. 3.13 gives the total number of attack vehicles constrained by

ρ · |A| which is cast into an integer number. Notice that it will not be realistic if majority of the

vehicles are attack vehicles as that can easily be detected. Hence, the number of attack vehicles is

limited to a fraction of all arrivals. In Eq.3.14, cl is the cost of assigning the l-th arrival to be an

attack vehicle and B denotes the adversary’s finite budget. In this study, the cost of assigning any

vehicle to be an attack vehicle can be different depending on distinct positions.

Given a budget B, the cost of assigning a vehicle to be an attack vehicle c, and the probability of

assigning a vehicle to be an attack vehicle ρ, the goal of the adversary is to determine the attack

strategy L∗ that maximizes the number of disrupted signal phases. For example, in a case of a time

spoofing attack,Mi,j(t) will be greater than Wi,j(t) in Eq. 3.5 due to a falsified arrival time sent

out by the time spoofing vehicle in lane i destined to lane j at time slot t. Similarly, in the case of a

ghost vehicle attack,Mi,j(t) will be less than Qi,j(t) in Eq. 3.4 because the TSC will not be aware

of the ghost vehicle in lane i for lane j at time slot t. DBPC and QBPC algorithms will be misled by

Mi,j(t) (i.e., false waiting time or false queue length), and not assign green time to the signal phase

with the maximal pressure. In these cases, yl(t) = 1 to indicate that the attack vehicle succeeded in

disrupting the signal phase at time slot t. Consequently, victim vehicles, which are supposed to get
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green time to pass through the intersection at time slot t, may have to wait for several time slots to

get scheduled. As a result, the delay of each vehicle in the victim lane will increase.

3.4.4 Branch-and-Bound Solution

Even for an offline case where the number of vehicles and arrival times are known, the proposed

threat model formulated as the 0/1 Knapsack problem is an NP-hard problem [33] and can be solved

by using a branch-and-bound (BnB) algorithm [43,63]. A BnB algorithm is designed to effectively

search optimal solutions for optimization problems, especially those that involve combinatorial

optimization. The algorithm performs a state space search to systematically enumerate all candidate

solutions on a rooted tree that is formed by the set of candidate solutions. It is able to terminate

branches with poor solutions early in average cases and exclude nodes that are over a given estimated

bound. Branches of the tree are subsets of the solution set. Each branch is explored and checked

against an upper bound (UB) and a lower bound (LB) on the optimal solution. The branches will

be discarded if they are unable to generate better solutions than the best one found so far.

An example of applying BnB to solve the threat model formulated in Eq. 3.12 is illustrated in Fig.

3.4. Since the BnB can only solve minimization problems, we converted the maximization problem

to a minimization problem. For each node in the tree, an estimated UB (without fraction), sum of

all the disrupted signal phases h (with fraction), and sum of all the cost c is calculated. Given a set

of arrivals A, the best attack strategy L∗ can be determined by assigning attack vehicles among the

arrivals. In the node 1, initially, UB = −(h2 +h3 +h4) = −6, h = −(h2 +h3 +h4 +h1× 7
10) = −8.8,

and c = 0. Then, the assignment starts out with x1 where xl represents the l-th position in the

arrivals. If x1 is selected to be an attack vehicle, then move to the node 2 in which UB as well

as h will not be changed and by including x1, c = c1 = 10. Otherwise, move to the node 3 where

UB and h need to be updated since x1 is not considered as an attack vehicle. After re-calculation,

UB = −(h2 + h3 + h4) = −6, h = −(h2 + h3 + h4) = −6. The same steps are repeated to check

the rest of xl until the optimal strategy is reached. As the adversary searches through this state

space, nodes with the least h are explored to accelerate the search process by using the least cost

branch-and-bound (LC-BnB) algorithm. The optimal solution for the above example is found to be

L∗ = {1, 0, 1, 1}
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Figure 3.4: An illustration of the branch-and-bound (BnB) algorithm for solving the threat model.

3.5 Protection Algorithms

Two proposed protection algorithms are discussed in this section. Based on our knowledge of different

types of attacks, we propose an auction-based protection algorithm (APA) for DBPC algorithm

which determines phases by using HOL sojourn time, and a hybrid-based protection algorithm (HPA)

for QBPC algorithm which determines phases by utilizing aggregate information. They are described

in the following subsections.
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3.5.1 The Auction-based Protection Algorithm (APA)

In [17], a traffic control algorithm was proposed employing a market-based pricing strategy in which

for conflicting traffic movements, the most valued trip is given the highest priority. We borrow the

idea from Vickrey sealed bid auction [9] in which the highest bidder wins but the winner only pays

the second-highest price. Vickrey auction push bidders to report their values truthfully. In a time

spoofing attack, attack vehicles falsify their arrival time to make their waiting time high. We propose

a protection mechanism based on a modified Vickrey auction system in which the second-highest

bidder wins. Considering the second-highest bidder to win the auction round is an effective strategy

to disincentivize the adversaries to randomly falsifying their arrival times and make their waiting

time arbitrarily high. This is particularly the case when it is difficult to infer what the second-highest

bid is. The protection algorithm following this idea is outlined in Algorithm 1.

As mentioned in Section 3.3, each signal phase consists of two non-conflicting traffic movements.

Each signal phase acts as a bidder and at the beginning of each time slot places a bid which is the

pressures from its own non-conflicting traffic movements (line 4). This pressure could be the HOL

delay in the case of the DBPC algorithm or the queue length in the case of the QBPC algorithm

or the sum of the delays of the vehicles in the queue in the case of the SBPC algorithm. Signal

phases (bidders) compete with each other in order to win the bid. From line 3 ∼ 13, the TSC selects

the bidder (signal phase) B†
p⃗ with the second highest bid (pressure) to schedule at the time slot.

For example in the case of the DBPC algorithm, APA assigns green time to the bidder with the

second-highest HOL waiting time instead of a bidder who exaggeratedly spoofs its HOL waiting

time far higher than other bidders.

3.5.2 The Hybrid-based Protection Algorithm (HPA)

As mentioned in Section 3.4.1.1 and 3.4.1.2, misinformation sent by ghost vehicles and time spoofing

vehicles impact QBPC and DBPC algorithms differently. The basic idea of HPA is to dynamically

switch between QBPC and DBPC algorithms depending on the type of attack vehicles (ghost vehicles

or time spoofing vehicles). We consider the hybrid algorithm proposed in [117], in Algorithm 2

and adopt η
(W )
i,j and η

(Q)
i,j to give different weights to the delay information Wi,j and queue length

Qi,j by adjusting the parameter r in line 5.
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Algorithm 1 Auction-based Protection Algorithm (APA)
Input:
Set of feasible signal phases SP , highest bidder B∗, second-highest bidder B†, and HOL vehicle waiting time
Wi,j(t) for all (i, j) ∈ E during time slot t.
Output:

1: Signal Phase p⃗ ∗, p⃗ † ∈ SP to be activated during time slot t.
2: Set B∗

p⃗ = −∞, B†
p⃗ = −∞, p⃗ ∗ = ∅, p⃗ † = ∅;

3: for each signal phase p⃗ ∈ SP do
4: Bp⃗ =

∑
pi,j=1

γi,j ·Wi,j(t) · µi,j(p⃗);

5: if Bp⃗ > B∗
p⃗ then

6: B†
p⃗ = B∗

p⃗ ;
7: p⃗ † = p⃗ ∗;
8: B∗

p⃗ = Bp⃗;
9: p⃗ ∗ = p⃗;

10: else if Bp⃗ > B†
p⃗ then

11: B†
p⃗ = Bp⃗;

12: p⃗ † = p⃗;
13: end for
14: return p⃗ †

Algorithm 2 Hybrid-based Protection Algorithm (HPA)
Input:
Set of feasible signal phases SP , weighted parameter r, queue length Qi,j(t), and HOL vehicle waiting time Wi,j(t)
for all (i, j) ∈ E during time slot t.
Output:

1: Signal Phase p⃗ ∗ ∈ SP to be activated during time slot t.
2: Set O∗

p⃗ = −∞, p⃗ ∗ = ∅;
3: Set η

(W )
i,j = 1

1+r
, η

(Q)
i,j = r

1+r
;

4: for each signal phase p⃗ ∈ SP do
5: Op⃗ =

∑
pi,j=1

γi,j · [η(W )
i,j Wi,j(t) + η

(Q)
i,j Qi,j(t)] · µi,j(p⃗);

6: if Op⃗ > O∗
p⃗ then

7: O∗
p⃗ = Op⃗;

8: p⃗ ∗ = p⃗;
9: end for

10: return p⃗ ∗
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3.6 Experimental Results

To evaluate performance of BP-based traffic control algorithms under attack, we consider the

distribution of delays, numbers of scheduled signal phases, and fairness as our metrics. We use Jain’s

Fairness Index [45] which is denoted by f and is given by

f(d⃗ = [d1, d2, . . . , dM ]) =
(
∑M

i=1 di)
2

M
∑M

i=1(di)
2

(3.16)

where di indicates the delay of vehicle i and M represents the total number of vehicles. The main

idea of Jain Fairness Index is to compare the total delay to the delays of the individual vehicles. As

the denominator becomes smaller, which means the delay of individual vehicle becomes smaller, f

will increase. The system achieves a better fairness if Jain Fairness Index is higher.

3.6.1 Analysis of Offline Attack

We consider an offline scenario with multiple vehicles in each lane. We conduct simulations to

examine how different attack strategies impact the performance. The adversary can perform these

simulations to examine how different attack strategies compromise the TSC system and use the

insight to improve upon the random attack in the online case.

Given a set of arrivals A and ratio of attack vehicles ρ, an adversary generates all permutations

of int(ρ × |A|) number of attack vehicles among all the vehicles. Each of these permutations

(candidates) is an attack strategy (e.g., L = {0, 0, 0, 1, 0, 0, 0, 0, 1, . . . , 0}). The adversary explores

these attack strategies to determine the permutation of the attack vehicles that maximizes the

number of disrupted signal phases. The attack strategy that has the maximum impact on the average

delay and fairness is the worst case for the BP-based traffic control algorithm.

Fig. 3.5a ∼ 3.5c show average delay and number of disrupted signal phases (shown along the

y-axes) under ghost vehicle attacks for different attack strategies (shown along the x-axis). The

attack strategies are sorted in the increasing order of the number of disrupted phases. Although the

average delay is not perfectly proportional to the number of disrupted phases, the results demonstrate

that disruptions impact the delay performance of the QBPC algorithm. Fig. 3.5d ∼ 3.5f show

average delays and the number of disrupted signal phases under time spoofing attacks for different

attack strategies. In this case as well, signal phases disrupted by time spoofing attack degrade the
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delay performance of the DBPC algorithm.

Fig. 3.6a ∼ 3.6c show fairness and number of disrupted signal phases for different attack strategies

under ghost vehicle attacks. Fig. 3.6d ∼ 3.6f show fairness and number of disrupted signal phases for

different attack strategies under time spoofing attacks. Similar to the average delay, fairness can be

affected by disruptions. As shown in Fig. 3.6a and 3.6d both ghost vehicle and time spoofing attacks

decrease fairness by one attack strategy that maximizes the number of disrupted signal phases. As

the number of arrivals increases in Fig. 3.6c and 3.6f or if there is a higher ratio of attack vehicles as

in Fig. 3.6b and 3.6e, the fairness decreases.

Based on the simulations, we found that most of the attack strategies do not have significant

impact on the BP-based traffic control algorithms. However, some of them (specific permutations)

can indeed cripple the TSC system. Although examining all possible permutations to discover the

one that makes the largest impact is time-consuming and computational inefficient, the adversary

can effectively reduce complexity by using BnB method mentioned in Section 3.4.4. In addition, as

shown in Fig. 3.5b ∼ 3.5c and 3.6b ∼ 3.6c, ghost vehicle attacks using different attack strategies

increase the number of disrupted signal phases as well as cause fluctuations in the average delay and

fairness. The reason for these fluctuations is that in some cases, ghost vehicle attacks may improve

the traffic control efficiency. For example, if vehicles are assigned to be attack vehicles in lanes that

have a higher arrival rate, then ghost vehicle attacks can enhance the performance of the QBPC

algorithm.

3.6.2 Analysis of Online Attack

For realistic traffic scenarios, a series of simulations were conducted to examine the impact of random

time spoofing and ghost vehicle attacks under both homogeneous and heterogeneous arrivals. This

section shows general cases by randomly assigning vehicles to be attack vehicles within a given set of

arrivals. An attack strategy, which could be any of many candidates but not the optimal one, is a

general case to BP-based traffic control algorithms when under attack. Based on the offline analysis,

the adversary can understand how to improve random attacks.

Simulation results presented in this section are based on one isolated intersection with four signal

phases as shown in Fig 3.2. Based on [116,117], the number of vehicles that pass an intersection in

each lane during time slot t is Rm(1− e−
Q(t)+Ia(t)

Rm ) where Rm = µsTs denotes the maximum number
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(a) ρ = 0.05, |A| = 16 (b) ρ = 0.1, |A| = 16 (c) ρ = 0.00625, |A| = 160

(d) ρ = 0.05, |A| = 16 (e) ρ = 0.1, |A| = 16 (f) ρ = 0.00625, |A| = 160

Figure 3.5: Impact of different attack strategies on average delay for BP-based traffic control algorithms. Top
row shows QBPC algorithm with ghost vehicle attack and bottom row shows DBPC algorithm with time

spoofing attack.

(a) ρ = 0.05, |A| = 16 (b) ρ = 0.1, |A| = 16 (c) ρ = 0.00625, |A| = 160

(d) ρ = 0.05, |A| = 16 (e) ρ = 0.1, |A| = 16 (f) ρ = 0.00625, |A| = 160

Figure 3.6: Impact of different attack strategies on fairness for BP-based traffic control algorithms. Top row
shows QBPC algorithm with ghost vehicle attack and bottom row shows DBPC algorithm with time spoofing

attack.
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of passing vehicles per slot, µs is the saturation flow rate, Q(t) represents the queue length of the

lane at the beginning of the time slot t, and Ia(t) indicates the number of vehicles that arrive in the

lane during time slot t. µs is set to 0.5 and the length of each time slot, Ts, is set to 5 seconds for 8

lanes; thus, we obtain µ⃗s = [1, 1, 1, 1, 1, 1, 1, 1] ∗ 0.5 v/s/l (vehicles per second per lane). We assume

that the arrivals follow a Poisson process. For homogeneous arrivals, the arrival rate parameters for

each of the 8 lanes of λ⃗ = [1, 1, 1, 1, 1, 1, 1, 1] ∗ 0.125 v/s/l. For heterogeneous arrivals, the arrival

rate parameters for each of the 8 lanes of λ⃗ = [0.2, 1, 1, 0.5, 0.2, 1, 1, 0.5] ∗ 0.125 v/s/l. All the results

are based on simulation time of 10 hours.

3.6.2.1 Time Spoofing Attack on An Isolated Intersection with Homogeneous Arrival Rates

We first examine the impact of time spoofing attacks on an isolated intersection. We consider attack

ratio ρ = 0.001 (one attack vehicle per thousand vehicles) and spoofed time δ = 500 seconds. Attack

vehicles are independent and they are fixed in some lanes to clearly show the impact of the attack.

Based on a 10-hours simulation, there are thousands of vehicles approaching, ρ = 0.001 is sufficient to

create traffic jams and compromise the system and each attack vehicle is able to spoof its arrival time

once in one lane at any time whenever it is approaching to this lane. Consequently, the performance

results of the four BP-based traffic control algorithms without attack and under attack are shown in

Fig. 3.7.

Fig. 3.7a shows the delay performance of the four BP-based traffic control algorithms. We

observe that they perform almost the same and the DBPC is slightly better than others because

it can solve the last vehicle problem effectively. Fig. 3.7b shows the number of times each phase

is selected by the four different traffic control algorithms as given in equations (3.4), (3.5), (3.6),

and (3.8). The reason why the number of times each phase is scheduled by the QBPC becomes

unbalanced is because the queue length is based on the number of vehicles in the lane which is an

integer. Hence, under the same arrival rate, the probability that queue lengths of different lanes are

the same is high. When encountering this problem, we do not deal with balancing the four phases

since optimizing the performance is not our first priority in this chapter.

However, after being attacked, in Fig. 3.7e, we note that phases scheduled by the DBPC become

much more unbalanced than phases scheduled by the DBPC without attack. The number of times

that the DBPC schedules phase 2 is increased from 1794 to 1838 and phase 4 is increased from 1799
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to 1822, which means attack vehicles indeed compromised the TSC system by spoofing their arrival

times. When priority should be given for other phases, e.g., phases 1 and 3 is now taken away by

the lanes with attack vehicles. By spoofing the system, an adversary can acquire more scheduling

times from victimized lanes. As a result, it can get scheduled quicker than other vehicles. We call

this phenomenon priority plundering. The delay performance in Fig. 3.7d shows that the DBPC

is vulnerable to time spoofing attacks.

In addition, the priority plundering is also observed for the SBPC and HBPC. The variations are

not as much as the DBPC because they not only take the sojourn time into account but also other

factors. For example, the SBPC considers all sojourn times of all vehicles and the HBPC considers

both the delay and the queue length. As a result, only a few attack vehicles do not impact their

performance, and hence, they can tolerate higher attack rate than the DBPC.

Jain’s fairness index shows the fairness without attack and under attack in Fig. 3.7c and 3.7f,

respectively, where α represent the traffic load. For the DBPC, after being attacked, we can observe

that the fairness drops more than others. The fairness of SBPC and HBPC do drop slightly, but the

influence is not as large as for the DBPC since the sojourn time is just one of factors they consider.

We note that the QBPC is not affected since it only takes the queue length into account and not the

sojourn time.

3.6.2.2 Time Spoofing Attack on An Isolated Intersection with Heterogeneous Arrival Rates

Next, we study the case of heterogeneous traffic arrival rates in 8 lanes at an isolated intersection.

Specifically, we consider higher arrival rates in horizontal direction (lanes 3, 4, 7, 8) and lower arrival

rates in vertical direction (lanes 1, 2, 5, 6). The parameters we use are λ⃗ = [0.2, 0.2, 1, 1, 0.2, 0.2, 1, 1]∗

0.125 v/s/l, the number of attack vehicles is 5, and spoofed time is 500 seconds.

In this scenario, instead of using random attack pattern, we investigate the impact of coordinated

attack to our system. This means the attack vehicles could possibly be sent as a team, trying to

figure out weaknesses of the TSC system. Under this assumption, an adversary could formulate an

attack strategy by sending attack vehicles in the particular lanes. Hence, we first fix the number of

attack vehicles in lanes with lower arrival rates and limit attack vehicles to only appear in these

lanes. Then, we fix the number of attack vehicles in lanes with higher arrival rates and limit attack

vehicles to only appear in the corresponding lanes. We compare the attacks from these two directions
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(a) Distributions of delays without attack
(b) Number of times four signal phases

are scheduled without attack (c) Fairness without attack

(d) Distributions of delays under attack
(e) Number of times four signal phases

are scheduled after being attacked (f) Fairness after being attacked

Figure 3.7: Performance comparison of four BP-based traffic control algorithms with homogeneous traffic
flows under time spoofing attack.

to see whether the adversary can benefit from such attack strategies.

Before discussing the results for the different attack strategies, we first look at Fig. 3.8a and

3.8d that show the performance of each traffic control algorithm without attack. Compared to

homogeneous arrivals, the DBPC reveals it’s advantage when confronting heterogeneous arrivals.

Because non-homogeneous arrivals enhances the last vehicle problem from which the QBPC suffers;

hence, the DBPC can outperform QBPC very much. In SBPC and HBPC, the former works similar

to the DBPC because SBPC considers all delays of all vehicles. The later utilizes the queue length

as well as delay and we can decide to make it closer to the QBPC or the DBPC by adjusting the

parameter η. However, they both take multiple factors into account whenever making decision. As a

result, heterogeneous arrivals do not affect them very much.

Results for the case under attack are shown in Fig. 3.8c, 3.8e, and 3.8f. It is observed that

attacks from lanes with lower arrival rates can lengthen the total delay of DBPC. The number of

times phase 3 scheduled by the DBPC increases from 1005 to 1152 and the number of times phase
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1 scheduled by the DBPC reduces from 2602 to 2596 after being attacked in Fig. 3.8e compared

to 3.8b. The lanes with higher arrival rates (lanes 3, 4, 7, 8) should have more scheduling times

originally, but the priority is plundered by attack vehicles in lanes with lower arrival rates. We

observe that the adversary can benefit from attacking in lanes with lower arrival rates. For phase 3

scheduled by the DBPC (red bar in Fig. 3.8e), the increasing amount of times gained by spoofing in

lower arrival lanes is 147 which is higher than 111 if they had spoofed from the higher arrival lanes.

The SBPC and HBPC do not increase like the DBPC. Hence, even if they have coordinated attacks

from the lower arrival lanes, it will not affect SBPC and HBPC significantly.

Furthermore, we compare the fairness of being attacked in lanes with higher arrival rates and

lanes with lower arrival rates in Fig. 3.8c and 3.8f, respectively. The fairness of the SBPC and HBPC

does not drop very much. But for the DBPC, the results show that the fairness of being attacked in

lanes with lower arrival rates (lanes 1 and 5) drops more than when the attack is launched from

lanes with higher arrival rates (lanes 3 and 7). We also study the case of heterogeneous traffic arrival

rates in which the horizontal direction is low and vertical direction is high. Our results show that

the same behavior that the adversary can gain more scheduling times by spoofing in lanes with lower

arrival rates than in lanes with higher arrival rates.

3.6.3 Ghost Vehicle Attack on An Isolated Intersection with Homogeneous Arrival

Rates

We consider three different ghost vehicle attack ratios ρ = 0.0, 0.1, and 0.3. In order to clearly

observe the impact of the ghost vehicle attack, we limit the attacks to phase 2, which includes traffic

lanes 4 and 8.

The results for different ghost vehicle attack ratios 0.0, 0.1, and 0.3 are shown in the 1st, 2nd,

and 3rd columns, respectively, in Fig. 3.9. Fig. 3.9a, 3.9d, and 3.9g show complementary cumulative

distribution function (CCDF) of the delay, the number of times each phase is assigned, and Jain

fairness index, for each of the four BP-based traffic control algorithms with ρ = 0, i.e., no attack. In

general, all the BP-based traffic control algorithms perform well, and in Fig. 3.9g, performance levels

of these algorithms, which are shown by the Jain’s fairness index, are almost equivalent to each other.

QBPC has a higher delay when compared to the other BP-based traffic control algorithms. The

reason why DBPC (red line) achieves a better fairness than QBPC was discussed in [122] and [117].

45



(a) Distributions of delays no attack
(b) Number of times four signal phases

are scheduled no attack
(c) Fairness after being attacked by lane 3

and 7

(d) Fairness without attack
(e) Number of times four signal phases

are scheduled under attack
(f) Fairness after being attacked by lane 1

and 5

Figure 3.8: Performance comparison of four BP-based traffic control algorithms with heterogeneous traffic
flows under time spoofing attack.

On the other hand, 2nd, and 3rd columns show their performance for different ghost vehicle attack

ratios. First, in Fig. 3.9e, we observe the reduction in the number of times phase 2 (lanes 4 and 8)

is scheduled. Second, when comparing Fig. 3.9b to Fig. 3.9a, we can see that ghost vehicle attacks

change the distribution of delays for traffic control algorithms where QBPC (blue), HBPC (green),

and SBPC (brown) are increased from 151.56 to 177.67, 139.12 to 160.57, and 137.04 to 142.55,

respectively. As we increase ρ to 0.3 in Fig. 3.9c, the maximum delay for QBPC exceeds 249 sec

and the maximum delays for HBPC and SBPC are also increased to 191.83 sec, and 178.89 sec,

respectively. Third, their fairness dropped in Fig. 3.9h when ghost attack ratio is 0.1; however, it is

not very obvious. The reduction in fairness becomes worse when ρ is set to 0.3 (as shown in Fig.

3.9i).

We found that ghost attacks are quite detrimental to BP-based traffic control algorithms that

determine signal phases based on aggregate information. Assigning 10% of all vehicles to be attack

vehicles (i.e., ρ = 0.1) can disrupt the traffic control decisions determined by the QBPC algorithm.
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As can be observed in Fig. 3.9e and 3.9f, by increasing ρ from 0.1 to 0.3, ghost vehicle attack can

result in imbalance in the allocation of signal phases among the four different phases. Note that

this random attack can be improved upon by using a more planned attack based on solving the

optimization problem in Eq. 3.12.

In general, ghost vehicle attacks degrade the performance of QBPC, HBPC, and SBPC algorithms

and fully exploit the vulnerability of these traffic control algorithms when some of the vehicles are

disconnected so that the data sent to the TSC system become totally inaccurate or useless. The

QBPC algorithm requires the number of vehicles while the SBPC algorithm requires the sum of

all individual waiting times in the different traffic lanes. With ghost vehicles, QBPC and SBPC

algorithms would have incorrect data on the number of vehicles and the sum-of-delays. Depending

on the intensity of the attack, these algorithms will produce incorrect scheduling decision resulting

in disrupted signal phases. However, the DBPC algorithm is less affected by ghost vehicle attacks

because it determines signal phases by HOL waiting time instead of aggregate queue information.

The DBPC algorithm can be vulnerable only when the HOL vehicle is a disconnected vehicle during

time slot t.

3.6.3.1 Ghost Vehicle Attack on An Isolated Intersection with Heterogeneous Arrival Rates

In this simulation, we limit attacks to only lanes 3 and 7, which are two non-conflicting traffic

movements in phase 1. We originally assumed that the performance of QBPC was supposed to drop.

However, the result will go opposite if lanes 3 and 7 are attacked. Fig. 3.10b shows the distribution

of the delays when ghost vehicle attacks are launched in lanes 3 and 7 with a ghost vehicle ratio

ρ = 0.3. Compared to the tail of delay distribution with a maximum delay of approximately 900 sec

without ghost attacks (shown in blue line in Fig. 3.10a), the QBPC algorithm has a shorter tail of

the delay distribution with a maximum delay of approximately 800 sec when under attack (blue

line in Fig. 3.10b). Furthermore, the performance of the QBPC algorithm further improves if ghost

vehicle attack ratio is increased to 0.5.

The reason of above improvement in performance after being attacked is because the lanes in

which we deploy attack vehicles. The number of vehicles each lane receives is proportional to its

arrival rate. For example, lanes 3 and 7 have high arrivals with λ = 1 compared to lanes 1 and 5

with λ = 0.2 and as a result, receive more vehicles. Under ghost vehicle attacks, QBPC and SBPC
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ρ = 0

(a) Distributions of delays without attack

ρ = 0.1, Lanes 4 and 8
(b) Distributions of delays under attack

ρ = 0.3, Lanes 4 and 8
(c) Distributions of delays under attack

ρ = 0

(d) Number of times four signal phases
are scheduled without attack

ρ = 0.1, Lanes 4 and 8
(e) Number of times four signal phases

are scheduled after being attacked

ρ = 0.3, Lanes 4 and 8
(f) Number of times four signal phases are

scheduled after being attacked

ρ = 0

(g) Fairness of each algorithm without
attack

ρ = 0.1, Lanes 4 and 8
(h) Fairness of each algorithm after being

attacked

ρ = 0.3, Lanes 4 and 8
(i) Fairness of each algorithm after being

attacked

Figure 3.9: Performance comparison of four BP-based traffic control algorithms with homogeneous traffic
flows under ghost vehicle attack for different ghost vehicle ratios (ρ).

algorithms operate on incorrect information of queue length and total delay. As a result phase 1 is

scheduled fewer number of times than what is due and the difference is assigned to the other phases.

Consequently, even if lanes 3 and 7 in phase 1 cannot acquire enough times, those time slots are

distributed to other signal phases; hence, the overall performance of QBPC algorithm eventually

gets improved.
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ρ = 0

(a) Distributions of delays without attack

ρ = 0.3, Lanes 3 and 7
(b) Distributions of delays under attack

ρ = 0.3, Lanes 1 and 5
(c) Distributions of delays under attack

ρ = 0

(d) Number of times four signal phases
are scheduled without attack

ρ = 0.3, Lanes 3 and 7
(e) Number of times four signal phases

are scheduled after being attacked

ρ = 0.3, Lanes 1 and 5
(f) Number of times four signal phases are

scheduled after being attacked

ρ = 0

(g) Fairness of each algorithm without
attack

ρ = 0.3, Lanes 3 and 7
(h) Fairness of each algorithm after being

attacked

ρ = 0.3, Lanes 1 and 5
(i) Fairness of each algorithm after being

attacked

Figure 3.10: Performance comparison of four BP-based traffic control algorithms with heterogeneous traffic
flows under ghost vehicle attack in different traffic lanes.

In order to prove our hypothesis that a lower arrival rate benefits ghost vehicle attacks, we limit

the attacks to only appear in lanes 1 and 5 which are two non-conflicting traffic movements in phase

3. Fig. 3.10c shows the distributions of the delays for traffic control algorithms in which attacks are

launched in lanes 1 and 5 (lower arrivals). Fig. 3.10i shows the fairness for traffic control algorithms

in which attacks are launched in lanes 1 and 5 (lower arrivals). It reveals that the adversary is
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able to degrade the TSC if attacks are launched in lanes with lower arrivals (lanes 1 and 5). In

Fig. 3.10c, the tail of distribution of delay for QBPC with attack ratio ρ = 0.3 is longer than the

tail of distribution of delay for QBPC with attack ratio ρ = 0. In Fig. 3.10i, the fairness of QBPC

with attack ratio ρ = 0.3 is worse than the fairness of QBPC with attack ratio ρ = 0. Moreover,

the performance will become even worse if ghost attack ratio is increased to 0.5. Compared to Fig.

3.10b where ghost attacks appear in lanes 3 and 7 (higher arrivals), the tail of distribution of delay

for QBPC in Fig. 3.10c increases to about 1400 sec. Compared to Fig. 3.10h where ghost attacks

appear in lanes 3 and 7 (higher arrivals), the fairness in Fig. 3.10i drops more than the fairness for

each algorithm in Fig. 3.10h. In short, launching ghost vehicle attacks in lanes with higher arrivals

can improve the performance. On the other hand, launching ghost vehicle attacks in lanes with

lower arrivals can degrade the performance.

3.6.4 Coordinated Attack using Time Spoofing and Ghost Vehicles

A detailed analysis on the time spoofing attack has been done in our previous work [122]. In the

following scenario, we consider a coordinated attack strategy which could happen in a highly developed

city in which many workers and commuters from countrysides cause homogeneous arrivals and a

well-designed infrastructure contributes a lower number of disconnected vehicles. The coordinated

attack is a combination of different types of attacks, many of which would be launched together

during a specific range of time in the same intersection. We choose the time spoofing attack and

ghost attack as the coordinated attack strategy where the time spoofing attack ratio is ρt = 0.001,

the ghost attack ratio is ρg = 0.45 and homogeneous arrival rates are λ⃗ = [1, 1, 1, 1, 1, 1, 1, 1] ∗ 0.125

v/s/l in 8 lanes.

Fig. 3.11a shows delays of all the BP-based traffic control algorithms which undergo a coordinated

attack. As can be observed, when comparing to Fig. 3.9a (without attacks), the distribution of delays

become various among algorithms. Various levels of increments in delay imply that a coordinated

attack has a different impact on each individual algorithm. The pressure an algorithm adopts

decides whether the algorithm is able to tolerate this attack. For instance, although DBPC is able

to withstand ghost attacks well, it suffers from time spoofing attacks caused by a small number

of attack vehicles. In Fig. 3.11b, the number of times phases scheduled by QBPC and DBPC

(blue bar and red bar) are unequally distributed than the other BP-based traffic control algorithms
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when comparing to Fig. 3.9d. This uneven number of times among phases causes delay increments

and fairness downgrades, especially for QBPC and DBPC. The performance of all the BP-based

traffic control algorithms are dropped, especially for DBPC. It only requires a tiny number of attack

vehicles spoofing arrival time to sabotage the performance of the DBPC. In addition, ghost ratio

needs to be very high to observe the difference.

However, there is one compelling phenomenon in which we call it the attack elimination,

that is, even if the unfair distribution happens in QBPC, the performance measurement shows that

QBPC does not decrease as much as DBPC in Fig. 3.11c. We infer that is because ghost vehicles

are randomly distributed in 8 lanes; therefore, impacts caused by ghost vehicles could be eliminated

by conflicting directions. Imagine that there are total 12 vehicles in the south-north direction and

11 vehicles in the east-west direction, each of which has 4 ghost vehicles. The priority is supposed

to give to the south-north direction originally due to the highest pressure in it. But, from the

system point of view, the controller is only aware of 8 vehicles in the south-north direction and

7 vehicles in the east-west direction. It determines the vehicles in the south-north direction have

higher priority to pass through the intersection. The attacks in different directions eliminate each

other and eventually the priority goes back to the south-north. Hence, this could be the reason why

it acquires particularly high ghost attack ratio to observe the difference. In contrast, the case of

elimination is not applicable to DBPC because it always determines the phase by the longest HOL

sojourn time no matter whether there are the same number of attack vehicles in the conflicting

direction. Adversaries plunder the priority by the spoofed arrival time instead of the number of

vehicles. Hence, even though there is equal number of attack vehicles appear in both two directions,

the priority will be taken away by the attack vehicles which spoofed an exaggerated HOL sojourn

time. For brevity, QBPC determines a phase by depending on the number of vehicles which can be

eliminated. However, DBPC determines a phase by relying on HOL sojourn time which cannot be

eliminated.

3.6.5 Performance Evaluations of Protection Algorithms

To easily demonstrate the effectiveness of the protection algorithms, for APA, we limit attack vehicles

to only lanes 2 and 6 which represent phase 4. Fig. 3.12e reveals the distribution signal phases

determined by the DBPC algorithm with and without the protection algorithm (purple and red bars)
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ρt = 0.001, ρg = 0.45
Random Attack

(a) Distributions of delays without attack

ρt = 0.001, ρg = 0.45
Random Attack

(b) Number of times four signal phases
are scheduled after being attacked

ρg = 0.001, ρg = 0.45
Random Attack

(c) Fairness of each algorithm after being
attacked

Figure 3.11: Performance comparison among four BP-based traffic control algorithms for homogeneous
traffic flows at an isolated intersection when being attacked by multiple types of attacks.

ρ = 0

(a) Distributions of delays without attack

ρ = 0

(b) Number of times four signal phases
are scheduled without attack

ρ = 0

(c) Fairness of each algorithm without
attack

ρ = 0.001, Lanes 2 and 6
(d) Distributions of delays under attack

ρ = 0.001, Lanes 2 and 6
(e) Number of times four signal phases

are scheduled after being attacked

ρ = 0.001, Lanes 2 and 6
(f) Fairness of each algorithm after being

attacked

Figure 3.12: Performance of DBPC with APA with homogeneous traffic flows when under time spoofing
attacks.
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when under time spoofing attack. The DBPC algorithm is vulnerable to time spoofing attack and the

tail of the delay distribution increases under attack. Fig. 3.12e shows that the number of times the

four phases are scheduled by the DBPC algorithm is very unbalanced (red bars). With homogeneous

arrivals and without attack, the number of times different phases are scheduled should be balanced.

However, after applying APA, which determines signal phases by selecting the second-highest waiting

time rather than the HOL waiting time, to the DBPC algorithm, we observed that the tail of the

delay distribution is shorter. Furthermore, as shown in Fig. 3.12e, the number of times different

phases are scheduled by DBPC with APA (purple bars) is balanced. Under time spoofing attack,

the DBPC with APA (purple) achieves both performance and fairness similar to the case without

attacks as shown in Fig. 3.12d and 3.12f.

For HPA, we limit attack vehicles to only lanes 1 and 5 which represent phase 3. Fig. 3.13

presents the results of HPA for the QBPC algorithm under ghost vehicle attack. Our strategy is

to force the QBPC algorithm to act similarly to DBPC if there is a ghost vehicle attack. This is

because the DBPC algorithm is not impacted by ghost vehicle attacks. The value of the weight

parameter r can be tuned such that QBPC with HPA performs close to QBPC when not under

attack and close to that of the DBPC when under attack. In Fig. 3.13b, the light blue curve (QBPC

with HPA) with r = 50 achieves good fairness compared to the blue curve (QBPC without HPA).

The performance of SBPC becomes unstable when the load α is low (0.1 to 0.4). At such low loads,

there are only few vehicles. Consequently, under ghost vehicle attack, there is relatively higher

fluctuations in the number of connected vehicles. As a result, the SBPC algorithm makes incorrect

scheduling which gets amplified with lower traffic demand. Therefore, the performance of the SBPC

algorithm fluctuates with α between 0.1 and 0.4.

3.7 Conclusion

In this chapter, we have demonstrated how an advanced persistent adversary can perform an offline

analyses on a traffic signal control to find the optimal attack strategy that maximizes the number of

disruptions in the traffic phases and consequently impact on the average delay and fairness. In our

simulations, by launching the time spoofing attack, the adversary can benefit from getting scheduled

earlier than other vehicles. In contrast, using ghost vehicle attack, the adversary can block a platoon
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ρ = 0

(a) Fairness of each algorithm without attack

ρ = 0.5, Lanes 1 and 5
(b) Fairness of each algorithm after being attacked

Figure 3.13: Performance of HBPC with HPA adopting r = 10, 50, 100, 1000 with heterogeneous traffic flows
when under ghost vehicles attacks.

of vehicles from passing through an intersection for a while. Based our simulations we found that the

two types of attacks are able to dramatically exploit the vulnerabilities of BP-based traffic control

algorithms. We demonstrated that the time spoofing attack is able to reduce the performance of

DBPC but has negligible impact on other traffic control algorithms that do not take HOL waiting

time into account. The ghost vehicle attack has adverse impact on traffic control algorithms that

determine phases by using aggregate information such as the queue length and sum-of-delays. We

also showed that the proposed APA and HPA protection algorithms are able to significantly reduce

the impact of time spoofing attack and ghost vehicle attack, respectively. As future work, we will

extend the current environment to a network of intersections and conduct simulations to show how

misinformation attacks spread through the traffic network.
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Chapter 4

Deep Reinforcement Learning Based

Platooning Control

4.1 Introduction

With excessively dense population in urban cities, traffic congestion has been part of our daily life

and impacted on our emotion as well as the environment. Highly congested traffic lengthen the

average sojourn time for people who need to commute everyday as well as increase the average fuel

consumption (cost) for each driver and the average volume of noxious emissions to the environment.

According to the report by INRIX [22], the annual congestion cost for each driver was 99 hours and

$1, 377 in 2019 in the United States (US). Greenhouse gas emissions [1] contributed by transportation

were 29% in 2019. Light-duty and Medium-duty (including heavy-duty) vehicles accounted for

58% and 24% of transportation greenhouse gas emissions in 2019, respectively. Undoubtedly, the

ever-worsening congestion, fuel consumption, and emission issues attract public attention to address

energy consumption and pollutant emissions generated by transportation systems. Thereby, many

solutions with novel technologies have sprung up to address these issues.

Connected autonomous vehicle (CAV) [98] is an advanced technology which enables vehicle-

to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications among drivers, road side

units (RSUs) and controllers. Research on CAV to improve mobility, safety and sustainability has

been thriving in recent years. With an environment that most of vehicles are connected and all
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information is shared, platooning control can be fulfilled to improve traffic efficiency and safety.

Platooning control is a technique that organizes a traffic flow into multiple groups, convoys, or

platoons with close-following vehicles also known as road trains in order to increase the overall

capacity of roads and reduce fuel consumption and emissions [68] in the traffic network. Platoons

adopt cooperative adaptive cruise control (CACC) [39] with wireless communications to manipulate

platooning formations and maneuvers. By forming vehicles into road trains, the overall throughput

can be improved because gaps among CAVs are minimized. In addition, fuel consumption and

emissions can be reduced due to lower air drag and speed variation for each CAV in a platoon [68].

Platooning can be considered as a effective control strategy for heavy-duty vehicles (HDVs) as well

as a promising solution to reduce fuel consumption in HDVs [5, 14,97].

However, platooning control methods requiring complicated computations are generally time-

consuming and not amenable for real-time operations. Such intensive computation problems, on

the other hand, are perfect applications for machine learning (ML). Deep reinforcement learning

(DRL), one branch of many ML techniques, is an unsupervised learning framework that integrates

reinforcement learning (RL) [91] with neural networks. DRL can be applied to an episodic traffic

environment where a DRL agent takes pre-defined actions based on observations, and then receives

rewards from the environment. The DRL agent learns to determine the optimal speed and size of

AV platoons that maximize the expected cumulative reward in order to reduce fuel consumption. In

this research, we propose a DRL-based approach that selects the optimal speed and size for each AV

platoon to manipulate platoon maneuvers so that each AV platoon can either cross the intersection

as a whole without stopping or be split into two sub-platoons that the former sub-platoon can cross

without stopping. The goal is to minimize the number of stopping vehicles to reduce fuel use and

emissions.

4.1.1 Organization

The rest of this chapter is organized as follows. We list our contributions in Section 4.2. In Section 4.3,

we introduce the problem and system model for the platooning control. In Section 4.4, we propose a

DRL framework for platooning control to minimize fuel consumption of platoons approaching and

leaving an intersection. In Section 4.5, we discuss the performance of the DRL-based agent regarding

fuel consumption and delay. Finally, we conclude and discuss future work in Section 4.6.
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4.2 Contribution

• We propose a DRL framework that integrates the deep learning, dueling architecture, and

experience replay memory for platooning control to minimize fuel consumption of platoons.

• We consider different arrival times of vehicles in a platoon and adopt a vector of arrival timings

of vehicles as a state to emphasize differences among platoons.

• We apply appropriate actions to individual platoons based on their vectors of arrival timings

(states) instead of using the same action for all platoons.

4.3 Problem Statement and System Model

4.3.1 Problem Statement

Autonomous vehicles provide great controllability that can lead to lower fuel use and traffic delays

in transportation networks. Prior work has demonstrated that properly optimized AV platoons

can reduce both travel time and emissions by as much as 40% when traveling through an isolated

intersection. But the method used to achieve this results, optimal trajectory control, are complex

and time consuming to solve, hence not amenable for real-time operations. Such complex problems,

on the other hand, can be perfect applications for machine learning (ML). In this research, we plan

to 1) using ML to optimize the AV platoon trajectories to reduce fuel use and travel delay, and

2) to consider a mixture of personal cars and buses in the AV platoon, so that the system can be

optimized for personal-centric rather than vehicle-centric mobility and footprint.

4.3.2 System Model

We conduct experiments on an environment of a traffic network where several intersections are

signalized and traffic movements with fixed routes, e.g., W−E and N−S are controlled by traffic lights

with fixed-time signals as shown in Fig. 4.1. The assumption of a high penetration ratio of connected

autonomous vehicles (CAVs) is made; thus, information such as velocity, acceleration/deceleration,

and headway can be shared with extremely low latency by 5G wireless technologies. Platoons with

close-following vehicles arrive periodically, and their platoon maneuvers are controlled by a ML-based

platooning controller aiming at reducing the average fuel consumption. The design of a row of
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intersections instead of a grid network is to study the impact of applying platooning control on fuel

savings and examine if the proposed ML-based platooning controller is capable of cleverly dividing a

platoon into two when the remaining green time is not enough for all vehicles in a platoon to pass.

Figure 4.1: An illustration shows a row of signalized intersections where traffic flows move towards fixed
routs.

4.4 The Proposed Deep Reinforcement Learning based Platooning

Control

To deal with the dynamic of traffic flow and properly select the optimal platooning manipulations

adaptive to various remaining green time that maximize the average fuel consumption, we adopt an

unsupervised learning approach that is able to learn without human intervention. Deep reinforcement

learning (DRL) is an unsupervised learning framework that integrates reinforcement learning with

neural networks as shown in Fig. 4.2. We implement two control modules in the proposed framework:

traffic light control (TLC) and platooning control (PC). TLC is responsible for controlling traffic

lights using fixed-time signals; for example, 20s of green interval plus 3s of yellow change interval
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for N − S 20s of green interval plus 3s of yellow change interval for E −W . PC is responsible

for managing the speeds, sizes of the platoons in the environment based on the selected actions

from the DRL agent. A DRL agent learns to select actions that maximize the expected cumulative

reward by trial and error manner. In this project, we propose a deep reinforcement learning based

(DRL-based) algorithm which trains a DRL agent to determine the optimal action every 2s (a time

step) to optimize the average fuel consumption. For each time step, the DRL agent interacts with

the traffic environment where it first chooses an action (one of the four platooning manipulations),

observes some changes from the environment (the next state), and receives a reward. Given the

observations and reward, the DRL agent computes a difference value (i.e., loss) from the Q-network

and target network and updates the neural networks by the gradient of the loss value.

Figure 4.2: The proposed DRL platooning control framework from which The DRL agent learns to select the
actions that return the maximum expected cumulative reward. There are two control modules in the

proposed framework: traffic light control (TLC) and platooning control (PC). PC is responsible for managing
platoons and TLC is responsible for controlling traffic lights using fixed-time signals; for example, 20s of
green interval plus 3s of yellow change interval for N − S 30s of green interval plus 3s of yellow change

interval for E −W
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4.4.1 State Representation

Recent research [62,120] has demonstrated that RL can be trained by using images as states and

the others [32,34,58,100,115] had formulated a matrix for an intersection by marking 0 and 1 based

on coordinates of vehicles to describe a state. In these previous papers, one characteristic they

all have in common is that one state is mapped to one action. Namely, they considered a fully

observable environment as a state and apply an action to an environment. However, in our case,

it is unrealistic to map a state to a action and then, apply the same action to all platoons in the

environment because their profiles such as speeds, sizes are different; thus, different actions are

required for platoons with different profiles.

In response to this issue, we treat platoons distinctively by generating different actions according

to their profiles. We formulate a state as a vector of arrival timings for an individual platoon. The

arrival timing vector (ATV) includes arrival timings for all the vehicles in a platoon. An arrival

timing of a vehicle is determined by three arrival timing variables proposed in [107]. The three

arrival timing variables are 1) cruising time-to-arrival tc, 2) earliest time-to-arrival te, and 3) latest

time-to-arrival tl. They can be calculated by

tc =
d1
v1

(4.1)

te =
d1 − v1 · π

2α

vlim
+

π

2α
(4.2)

tl =
d1 − v1 · π

2β

vcoast
+

π

2β
(4.3)

α = min

{
2 · amax

vlim − v1
,

√
2 · jerkmax

vlim − v1

}
(4.4)

β = min

{
2 · amax

v1 − vcoast
,

√
2 · jerkmax

v1 − vcoast

}
(4.5)

where d1 is the distance from the current position to the intersection, v1 is the current speed of the

vehicle, α and β are coefficients to calculate te and tl, jerkmax is a pre-defined constant denoting the

maximum changing rate of acceleration or deceleration, vlim is a pre-defined constant denoting the

speed restriction of the current roadway, and vcoast is a pre-defined constant denoting the coasting

speed.
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For each vehicle in a platoon, its optimal arrival timing tarr can be determined by the following

rules: 1) assign tc to be its tarr if tc is within a green interval T , 2) assign min
{
te, tc

}
to be its tarr

if the intersection of
[
te, tc

]
and a green interval T is not empty, 3) assign min

{
tc, tl

}
to be its tarr

if the intersection of
[
tc, tl

]
and a green interval T is not empty, and 4) assign the beginning time of

the next green interval to be its tarr if the vehicle has no choice and must stop and wait for the next

green interval. Note that the rules are ranked by priority; that is to say, no need to move to rule 2, 3,

and 4 if rule 1 is applicable. If rule 1 is not applicable and rule 2 is applicable, then no need to go to

rule 3, and 4 and so forth. An example of different arrival timings assigned to vehicles in the same

platoon is shown in Fig. 4.3. tne is earliest time-to-arrival for the n-th vehicle, tnc denotes the cruising

time-to-arrival for the n-th vehicle, and tnl means latest time-to-arrival for the n-th vehicle. Based on

the four rules, ATV can be represented by
[
t1arr, t

2
arr, t

3
arr, . . . , t

n
arr

]
. ATV includes arrival timings of

all the member vehicles can be meaningful state representation that encodes information of whether

a platoon has to be split or not. For example, in Fig. 4.3, there are 6 vehicles in a given platoon. As

can be observed, the former three vehicles can pass the intersection within the current green interval

if they keep the current speed but the latter three vehicles must stop and wait for the next green

interval. Hence, the ATV of the platoon has distinct arrival timings among member vehicles and

this pattern helps the DRL agent to recognize if a platoon needs to be split to avoid fully stops and

unnecessary accelerations/decelerations. Fully stops and unnecessary accelerations/decelerations are

platooning manipulations which lead to additional fuel usage. The number of these misbehaviors

has to be minimized to achieve optimal fuel consumption. The trajectories as shown in Fig. 4.3

demonstrates that the whole platoon can avoid fully stops if it can be split into two subplatoons at

t0. The former can keep the current speed and pass the intersection at t1 while the latter can first

decelerate and then accelerate to pass the intersection later at t2 without any stop.

4.4.2 Action Space

Since the proposed state representation is ATV that simply encodes meaningful information for

the DRL agent, a large action space would impede convergence of the learning process. Thus, we

only consider four actions, namely, 1) split, 2) acceleration, 3) deceleration, and 4) no-op. These

manipulations are enough to accomplish all platoon maneuvers in our simulations.

61



Figure 4.3: An example of different arrival timings for vehicles in the same platoon

4.4.3 Reward Function

As mentioned, the goal is to minimize the number of fully stops and unnecessary accelerations/decelerations

in order to reduce fuel consumption. In other words, the number of moving vehicles has to be

maximized. Thus, we choose the number of moving vehicles as the reward function.

4.4.4 The Overall Architecture

In this section, we elaborate more on the underlying architecture of the framework and introduce

detailed deep learning techniques utilized to train a DRL model. The DRL architecture integrating

several components that facilitate the learning process is shown in Fig. 4.4. First, usually, there is

strong correlations among several consecutive states especially in time-series data. The experience

memory replay component proposed in [86] is applied to break the strong temporal correlations

and speeds up the learning process for the DRL agent. The second component included in the

architecture is the two separated neural networks, Q-network and target network [72]. In DRL,

neural networks are applied as non-linear approximation function to map a state to an action that

returns the maximum Q-value. Q-network and target network share exactly the same number of

neurons and architecture. The set of neural parameters θ is copied over to the target network every
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τ steps. The current state and action are first fed into the Q-network for approximating a Q-value.

Previous experiences sampled from the replay memory buffer are inputs to the target network for

approximating a target Q-value. The loss value, L, calculated by the Q-value and target Q-value

will be partially differentiated to get the gradient in which the agent will have a sense and know how

to update the Q-network by backwardpropagation to fine-tune the set of neural parameters θ. The

dueling architecture [110] is the third component that helps the selection of action by separating

the estimations of state-value and action advantage. Instead of using one single sequence for value

estimations, a Q-Network with two separated sequences was implemented, one for value (blue cycle)

and the other for action advantage (brown cycle). We include this component because in some states,

it matters which action needs to be taken, but most states, the selection of action has no influence

on what happens. Hence, we separate the estimations of state-value and action advantage in order

to learn which state-values are higher without going through and learn every single state-action pair.

4.5 Results and Discussions

In this chapter, we will elaborate on the hyperparameters in DRL framework and experimental results

regarding the learning performance of the DRL agent, average delay and average fuel consumption.

4.5.1 Hyperparameters

As shown in Table 4.1, a set of hyperparameters used in the proposed DRL framework is pre-defined.

Traffic arrival ratio for each intersection is 900 vehs/h/lane. The ϵ-greedy function determines the

probability of doing exploration or exploitation where ϵi as the initializing value is 1.0, ϵf = 0.01 is the

finalizing value, and the decay ratio is 300. Learning ratio α determines the weight of newly learned

knowledge. α approaching 0 makes the agent exploit prior knowledge instead of learning something

new while α approaching 1 makes it explore new potential rather than using prior knowledge. α is

set to 0.0001 in the simulations. Discount factor γ determines the importance of future rewards.

γ closer to 0 makes the agent behave myopically by only considering immediate rewards while γ

closer to 1 makes it seek a long-term outcome by weighting future rewards with a higher value. γ is

set to 0.99 in the simulations. The replay memory size M used to store previous experiences is set

to 30000, and mini-batch size B used to sample experiences from the memory is set to 1024. The
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Figure 4.4: An overview of the proposed architecture for DRL agent.

number of training episode E = 700 is selected by trial and error.

Table 4.1: Summary of hyperparameters in the proposed DRL framework

Parameter Description
Traffic arrival ratio: 900 vehs/h/lane
ϵ-greedy decay function: calculate the probability of exploration

ϵf + (ϵi − ϵf )× e
− episode

decay ratio and exploitation where decay ratio is 300
Initializing ϵi = 1.0 the beginning value of ϵ
Finalizing ϵf = 0.01 the final value of ϵ
Learning ratio α = 0.0001 learning ratio for updating the neural network
Discount ratio γ = 0.99 discount for future rewards
Memory size M = 30000 the size of entire replay memory buffer
Mini-batch size B = 1024 the size of samples that will be reused
Maximum number of episodes E = 1000 the total number of training episodes
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4.5.2 Learning Performance

We discuss the impact of platooning on the average fuel consumption by each platoon and the average

delay of each platoon. In the simulations, the agent is allowed to explore more than exploiting at a

pre-training stage. The pre-training stage is set to go off in 100 episodes. During the pre-training

stage, the agent randomly selects an action instead of using the optimal one in order to discover

potential actions that would return a better reward. In Fig. 4.5, the trend of the reward shows that

the DRL platooning agent keeps obtaining better rewards after the pre-training stage. Namely, it

had learned how to either split platoons or control the cruise speeds of the platoons to reduce fuel

usage by platoons during the last stage (pre-training) and applies the knowledge to manipulate AV

platoons in the current stage (training). As more and more training episodes had been learned (close

to the 700-th episode), the agent learns to maximize rewards by controlling AV platoons to achieve

lower fuel consumption.

Figure 4.5: The episode reward and average fuel consumption by platoons.

On the other hand, as shown in Fig 4.6, the average delay reveals a growing trend when the

reward gets higher. In the simulation, we observe two reasons for this phenomenon. First, we observe

that the average delay increases because platoons which can not pass an intersection as a whole

reduce their cruise speeds to avoid stopping in front of an intersection. By cruising with a lower

speed, the platoons are able to pass an intersection by the next green interval without fully stops.

Second, platoons which can not pass an intersection as a whole could be split into two where the first

half of the platoons keep the same speed and pass but the second half of them have to fully stop and

wait; thus, the second half of them could be a contributing factor to an increasing trend of the delay.
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Figure 4.6: The episode reward and average delay by platoons.

4.6 Conclusion and Future Work

With the extremely low latency guaranteed by 5G NR, information sharing among CAVs within a

few milliseconds becomes possible, which facilitates research on platooning control to move further.

Previous work has demonstrated feasibility of improving latency and fuel usage by optimizing

platooning control but tremendous mathematical efforts are required to complete the computation

and hence, the computation complexity is high and cannot be applicable to real-world applications.

With the help of deep reinforcement learning (DRL), an agent can be trained in advance and learn

how to deal with highly changeable traffic flow and select the optimal platooning manipulation to

reduce the fuel consumption. In this project, we have demonstrated that the reduction of the fuel

usage is feasible by using DRL. The DRL agent learns how to select the optimal action e.g., change

the current speed or re-size a platoon) to minimize the fuel consumption. The comparison of learning

performance, delay, and fuel consumption shows a promising result if DRL-based platooning control

can be applied to CAVs. In our future work, we plan to conduct more complicated scenarios such as

considering multi-models traffic and a larger traffic network.
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Chapter 5

Deep Reinforcement Learning Based

Traffic Signal Control

5.1 Introduction

Recently, great successes in playing Atari games [71] by reinforcement learning (RL) agents have

revealed the feasibility of using artificial intelligence (AI) techniques in solving complex problems.

In two different strategy games, astonishing milestones indicated higher or at least equivalent to a

human-level performance in which machines outperformed human players. For example, AlphaGo [89],

which is implemented using a deep reinforcement learning (DRL) algorithm, played an excellent Go

game and eventually defeated the most competitive human player, Ke Jie, in 2017. More recently in

2019, AlphaStar [104] defeated players of a real-time strategy game StarCraft II. These developments

show that a machine with a self-learning skill is able to perform at the human level after it has been

trained by tens of millions of episodes. This has spurred the development of RL-based algorithms

for other complex real world applications.

A considerable number of papers using RL have been dedicated to traffic control problems.

Thorpe, and Anderson published the earliest paper [96] that applied on-policy learning, SARSA,

to the TSC problem. Their simulations were not realistic since complicated traffic situations such

as avoiding oncoming traffic flows while making turns, and passing through intersections were not

considered; instead, only 4 arrivals at an isolated intersection and 2× 10× 10 states are involved.
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The study in [3, 7] started to model a comparatively complex traffic environment with larger state

space and more actions. Abdoos et al. [3] applied off-policy learning, Q-learning, to a non-regular

traffic network with 50 intersections each with 4 phases. To address the large state space problem,

the network was divided into multiple sections each with a subset of intersections. Each partition

was governed by a RL agent such that each agent was responsible for only 24 states. Their proposed

multi-agent Q-learning method outperformed a fixed-time signal controller.

In a traffic network with multiple intersections, the state space grows exponentially with the

number of intersections. The limitation of RL when dealing with a traffic network with complicated

flows and numerous intersections becomes evident. A single RL agent is insufficient in such cases

because it suffers from curse of dimensionality [25]. In order to solve this issue, an idea of a

hierarchical architecture by using a multi-agent RL [4, 8, 50, 78] has been widely applied to the

traffic light control problem in multiple intersections. By decomposing a traffic network into several

regions, each of which is governed by one agent, they are able to lessen the workload for each

agent. Furthermore, each region will consist of many individual intersections for which one agent is

responsible for determining traffic light schedule. This evolves into a multi-level control for a traffic

network. On the other hand, instead of exactly recording all Q-values for all state-action pairs (s, a),

some papers came up with the idea of using an approximator which is able to learn without the

tabular RL. The approximation-based RL which utilizes deep neural networks such as convolutional

neural network (CNN) has been developed for an isolated intersection [32,34,79,100].

The above studies all addressed the same fundamental problem of RL where a large number

of states degrades the learning performance of the RL agent. They can be categorized into two

branches, each of which applied a specific approach to solve the problem. In one branch the issue is

addressed by using the architecture with a multi-agent RL. In the other branch a state and action,

the Q-value can be approximated by using a neural network as an approximator. However, neither

of them are perfect solutions for applying to TSC. First of all, although the hierarchical architecture

with a multi-agent RL is able to handle a great geographical region, we still need to recursively divide

a bigger region into several sub-regions, each of which is assigned to one RL agent. This architecture

causes another workload issue, which is sharing of the state information among the multiple RL

agents. This requires a reliable communication channel between adjacent intersections and between

sub-regions. Otherwise, only local optimality can be guaranteed rather than global optimality. On
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the other hand, the approximation-based approach is quite promising as it does not have the issue

of additional workload and achieving only local optimality. But, it takes a relatively long time to

train the model because the action selection will be learned by several neural layers rather than

updating values in a table. For example, the deep neural network has to go through many episodes

in order to fine-tune the weights in neurons by backpropagation. Then, the agent is able to select

the best action with the optimal Q-value. This reveals that an approximation function like CNN

or DNN may require a very large number of training episodes to learn and obtain a good result.

Moreover, the mathematical guarantees of convergence can no longer be guaranteed if non-linear

approximation functions, neural networks are applied. Even worse, sometimes, RL-based algorithms

will not converge if the proposed hyperparameters, architecture, and the selection of the initial policy

are inappropriate. While many papers have shown good prospects on deep Q-Network (DQN) [72],

based on our preliminary experiments, we found that DQN is actually difficult to converge and yield

optimal results.

However, there are two aspects, which have not been investigated very well by previous papers,

that can be used to improve the performance of deep RL (DRL). First is the impact of applying

different temporal-difference (TD) learning algorithms (on-policy and off-policy) with deep learning

to a traffic network. Second is the impact of making decisions using different metric rather than

a queue length. Previous work has mainly focused on developing Q-learning with neural networks

instead of SARSA. According to our preliminary experiments shown in Fig. 5.1, for an isolated

intersection, on-policy learning methods, SARSA and SARSA with eligibility traces (SARSA λ),

are capable of stabilizing a training process and achieving a better performance than off-policy

learning methods based on Q-learning. There are only a few research that has used SARSA dedicated

in TSC. Jin and Ma [48–51] implemented a framework utilizing TD methods and a group-based

control method which has a better flexibility in green time allocation. They conducted a series of

experiments to compare the performance of Q-learning and SARSA. To the best of our knowledge,

there has not been any work analyzing the strengths of DQN and deep SARSA (DSARSA) nor

research evaluating their learning effects on TSC problems in a large-scale traffic network. Second,

all previous research was used to extract information from queue lengths of vehicles. Based on our

previous work [117,122], we have shown that the fairness of using head-of-the-line (HOL) sojourn

time is better than that of using queue length. We consider HOL sojourn time as input states for the
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DRL-based agent. HOL sojourn times of lanes at every intersection are utilized to formulate traffic

flow maps (TFMs). A detail analysis of above mentioned aspects are discussed in this chapter. We

expect that this chapter will answer essential questions about DQN and DSARSA and fill the gap

in understanding these benefits and limitations. We also believe that our contribution will provide

a good reference of applying DRL in ITS for many experienced researchers to review the existing

methods and open challenges.

Figure 5.1: Comparison among RL-based methods for an isolated intersection

5.1.1 Organization

The rest of this chapter is organized as follows. Based on our preliminary study, we list our

contributions in Section 5.2. In Section 5.3, we introduce our system model and problem for the

traffic network. In Section 5.4, we propose the DRL framework for solving TSC problems in a traffic

network. In Section 5.5, we discuss the performance of different DRL-based agents, namely, DQN,

3DQN, DSARSA, and 2DSARSA in terms of the training and testing datasets. We also describe

baseline algorithms for the comparison. Finally, we conclude and discuss future work in Section 5.6.

5.2 Contribution

• We propose the deep dueling SARSA referred to as 2DSARSA, which combines the deep

learning, dueling architecture, and experience replay memory in this chapter. To the best of our
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knowledge, this is the first framework using 2DSARSA to TSC involving multiple intersections.

Preliminary result shows that deep SARSA (DSARSA) outperforms and converges faster than

DQN. Furthermore, the dueling architecture and experience replay memory in 2DSARSA can

accelerate the convergence rate of the learning for a large action space.

• We propose traffic flow maps (TFMs) for capturing flow dynamics of a traffic network with

several intersections. DRL-based agents learn from the proposed TFMs as traffic observations

(states) over time. To the best of our knowledge, this is the first work proposing TFMs.

• We provide a thorough analysis on the learning performance of DQN, 3DQN, DSARSA, and

the proposed 2DSARSA. To the best of our knowledge, this is the first work discussing DQN

and DSARSA in detail in the context of TSC.

• We compare the performance of DQN, 3DQN, DSARSA, and the proposed 2DSARSA. At

present, many existing RL techniques such as DQN [72], double deep dueling Q-Network

(3DQN) [58], and DSARSA [128] have been developed and tested. In order to prove the

performance of 2DSARSA, different agents based on above DRL techniques are implemented

and trained separately for comparisons.

5.3 System Model and Problem Statement

We begin our study with a 3 by 3 grid network shown in Fig. 5.2. There are 9 intersections, each of

which activates 4 traffic lanes (1, 3, 5, 7) in the traffic system. For each time slot t, every intersection

has to determine which phase should be activated. As shown in Fig. 5.3, there are two phases which

represent two directions: vertical and horizontal. Vehicles passing through the current intersection i

will enter in the next intersection j. The conjunction of two adjacent intersections i and j will cause

a traffic bottleneck if the traffic flows from the upstream or the traffic flow to the downstream are

not taken into account. The proposed 2DSARSA is designed for solving this problem and achieving

optimal throughput and/or end-to-end delay performance for the traffic network.
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Figure 5.2: A 3 by 3 grid traffic network topology consisting of 9 intersections

(a) P0 with lanes 3 and 7 (b) P1 with lanes 1 and 5

Figure 5.3: Each intersection has two phases, P0 for horizontal flow and P1 for vertical flow.

5.4 The Proposed Learning-based Framework for Multiple Intersec-

tions

We propose a DRL framework which enables the incorporation of various RL-based algorithms

and exploitation of global information for learning how to interact with a traffic network. Given a

specific RL-based algorithm and TFMs of the entire city over time, our framework adopts the given

RL-based algorithm with deep learning and takes TFMs as input states to train a DRL-based agent
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at higher level to determine the best policy that reduces traffic latency (average end-to-end delay)

and increase overall throughput. The DRL-based agent of centralized controller with the global

information (TFMs) is responsible for managing incoming and outgoing traffic flows, operating at

a fine-grained time scale, and learning an appropriate traffic phase for each intersection at each

time slot; meanwhile coordinating an entire traffic network consisted of multiple intersections. Local

intersections follow phases decided by the DRL-based agent, which makes decisions accordingly to

the globally determined performance objectives.

The global information composed of time series TFMs (states) over time must include all essential

traffic information which assists the DRL-based agent in learning from the traffic environment.

The proposed TFMs are synthesized to represent the traffic environment over time slots. They are

formulated by using Poisson arrival data from multiple intersections. The underlying algorithm

of the DRL framework is a RL-based algorithm, namely, on-policy or off-policy learning with an

approximator implemented by the dueling architecture, CNN, and memory replay buffer. Based on

our preliminary experiments, SARSA has revealed a more stable learning curve than Q-learning. The

dueling architecture helps the selection of action by separating the estimations of state-value and

action advantage. It will benefit the DRL-based agent if the action space is large. The experience

memory replay breaks the strong temporal correlations and speeds up the learning process. Hence,

these strategies are applied to solve the huge state space and convergence problems. First, a state is

fed into the CNN at every time slot. Then, given the state, the network parameter set θ are trained

and updated by optimizing the loss function given by Eq. 5.3, and the optimal action is generated

according to the learned policy. The proposed DRL framework, which extracts features from TFMs

by CNN, could eliminate the workload of exchanging state information in a multi-agent architecture

and achieve maximal performance of the agent.

5.4.1 Deep Reinforcement Learning Model

In any DRL model, we need to carefully define the state, the action and the reward function.

5.4.1.1 State Space

The state contains well-rounded information of different intersections from which the agent can learn

the traffic flows in a network. Recently, research has shown that RL agents can be well-trained
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by images [62, 71]. However, most research papers [32, 34, 58, 100, 115] formulate a matrix for an

intersection by marking 0 and 1 based on coordinates of vehicles. To the best of our knowledge, we

are the first work which proposes TFMs as the global information including information of all traffic

flows of the network. State space is based on TFMs. Note that traffic flows refer to HOL sojourn

times in this chapter. However, HOL sojourn time is not sufficient for capturing flow dynamics of a

traffic network with several intersections, and the delay-based solutions cannot guarantee the linear

relation. A new delay metric between links needs to be redesigned such that the linear relation

between queue lengths and delays for multi-intersection traffic can be established. Ji et al. [47]

proposed the idea of utilizing delay differences for wireless networks where Wi(t) denotes the HOL

sojourn time of lane i at time slot t in the traffic network. The delay metric Ŵ and delay difference

∆Ŵ are defined as follows:

ˆWj(t) = Wj(t)−Wi(t) (5.1)

∆ ˆWij(t) = ˆWi(t)− ˆWj(t) (5.2)

The queue at an intersection j is roughly the number of vehicles arriving at the traffic network

during the time slots between [Uj(t), Uj(t) + ˆWj(t)]. When ˆWj(t) is large enough, the queue length

of intersection j is on the order of λ × ˆWj(t). Hence, a large delay metric implies a large queue

length at j, and a large delay difference implies a large queue difference. HOL differences between

any two adjacent intersections can be calculated by Eq. 5.1 and 5.2. The underlying concept is to

capture queuing dynamics of a traffic network by using HOL differences. Here, we use the delay

metric to substitute the queue metric because delay-based method can achieve better fairness and

will not suffer from the last vehicle problem [47,117].

The traffic flow information of one intersection is stored in a 5× 5 matrix as shown in Fig. 5.4.

The blue element indicates the average traffic flow of all lanes in one intersection. Orange elements

denote traffic flows in different lanes where the figure in each element indicates the number of the

traffic lane rather than an actual HOL value. Red and brown elements represent differences of traffic

flows from neighboring intersections. The TFMs are formulated by information of traffic flows of all

intersections, each of which contains HOL sojourn times corresponding to different lanes, and HOL
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differences corresponding to different adjacent intersections at each time slot t. The agent learns

from these maps and determines the best action according to flow dynamics of a traffic network. All

the information that the agent needs to know is encoded in the map shown in Fig. 5.5

Figure 5.4: An intersection contains traffic flow information where blue element represents the average
traffic flow of all lanes at the intersection, orange elements represents traffic flows in different lanes (figures
in elements only indicate different traffic lanes rather than actual HOL values), and red and brown elements

represent differences of traffic flows from neighboring intersections.

Figure 5.5: An traffic flow map of one traffic network composed of nine intersections

As shown in Fig. 5.6, there are TFMs for the 9 intersections at time slot 220, 5020, and 20020,

respectively. These TFMs visualize information of delay-based traffic flows of a traffic network as it

evolves over time. The color encodes flow dynamics by HOL sojourn time. As can be observed, they

certainly capture flow dynamics of a traffic network. The intensity shows that traffic congestion has

become worse over time.
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(a) t = 220 (b) t = 5020 (c) t = 20020

Figure 5.6: TFM for the 9 intersections as it evolves over time

5.4.1.2 Action Space

Each intersection can activate a traffic flow from either vertical or horizontal direction. The action

sequence of the traffic network is a = {0, 1}M where M is the number of intersections and 0, 1

denotes which direction should be activated, 0 for the horizontal direction, 1 for the vertical direction.

Hence, the action vector can be encoded in M bits and the total action space has a cardinality of

2M .

5.4.1.3 Reward Function

The throughput and average end-to-end delay of the network are two important factors which

indicate the level of traffic congestion in transportation. Higher throughput denotes more vehicles in

the network have been served. A lower average end-to-end delay means vehicles in the network do

not suffer from waiting. We want to improve the overall throughput of the traffic network while

decreasing the average end-to-end delay of vehicles in the network. We consider a power metric

P = λ
d as our reward function where λ denotes the throughput of the network, d represents the

average end-to-end delay of vehicles. The goal of DRL-based agents is to maximize P which is

achieved by maximizing λ and minimizing d.

5.4.1.4 Convolutional Neural Network

Research work has shown that RL agents can learn well from images by CNN [62,71] in recent years.

We implement CNN for the proposed framework by specifying the number of layers and size of filters

which meets our requirement of training agents for TSC. The agents based on different RL-based
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Figure 5.7: The convolutional neural network as the function approximator

algorithms share the same CNN. The deep neural network consists of three convolutional layers and

one fully-connected layer as the output in Fig. 5.7. There are 32 5 by 5 filters with 1 strides in the

first convolutional layer. The output is a volume with the size of 15× 15× 32 which is fed into the

second convolutional layer. At the second layer, the number of filters is 64, each of which has the

size of 4 by 4 and moves 1 stride each time. After the second layer, the output is a volume with the

size of 15× 15× 64. The third layer contains 64 filters with the size of 3× 3, each of which moves 1

stride every time. This outputs a 15 × 15 × 64 tensor. The final output, a fully-connected layer,

transfers the tensor into a 512× 1 matrix.

5.4.1.5 The Proposed Deep Dueling SARSA Learning Method

TD learning methods combine nice properties from the Monte Carlo (MC) and dynamic programming

(DP). First, TD methods learn state-action function Q(s, a) directly from experience with TD errors

and the bootstrapping. TD error denotes the difference between the current estimation and the

actual observation of the state-action value. The bootstrapping substitutes the remaining trajectory

with one or more estimated rewards in the update step. TD methods constantly track the current

TD error and propagate this TD error back in order to update the approximation for every time

step. Second, TD methods are capable of learning from incomplete episodes without knowing the
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dynamic model of the environment. Third, TD methods are suitable for traffic control problems

because they perform well in continuous environment.

In contrast, Monte Carlo (MC) methods must wait for the final reward and update the state-

action function by using a complete series of rewards, Q(st, at) = Q(st, at) + α × [Gt − Q(st, at)]

where Gt = Rt+1 + γ × Rt+2 + · · · + γT−1 × RT indicates the total discounted reward at time t.

Unlike MC methods, TD methods do not necessarily need to wait until the end of episode. Instead,

they update Q-values based on estimated Q-values that have already been learned as given by Eq.

2.9.

SARSA which stands for the current state S, current action A, immediate reward R, next state

S′ and next action A′ is one of TD learning methods. SARSA is also known as an on-policy method

which evaluates or improves the behavioural policy, e.g., SARSA fits the action-value function to

the current policy, i.e., SARSA evaluates the policy based on samples from the same policy, then

refines the policy greedily with respect to action values. On the other hand, off-policy methods, an

agent learns an optimal value function/policy, maybe following an unrelated behavioural policy; for

example, Q-learning attempts to find action values for the optimal policy directly, not necessarily

fitting to the policy generating the data, i.e., the policy which Q-learning obtains is usually different

from the policy that generates the samples. In short, on-policy can be understood as learning from

same-policy. However, off-policy learns from different-policy.

Deep SARSA refers to the on-policy TD learning algorithm using CNN (mentioned in Section

5.4.1.4) as a function approximator. Similar to [72], a parameterized neural network replaces the

conventional tabular approach for updating state-action pairs. DSARSA is incorporated into our

proposed DRL framework. The input data of CNN are TFMs and the output is the action with

the optimal Q-value over all state-action pairs. θ is a network parameter set of CNN. During the

training process, the loss function is defined as follows:

L(θt) = (yDSARSA
t −Qπ(st, at; θt))

2 (5.3)

yDSARSA
t = rt + γQπ(st+1, at+1; θ

−
t ) (5.4)

where st is the current state, at is the current action, st+1 is the next state which is dependent on at
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taken by the agent in st, at+1 is the next action selected by ϵ-greedy, and yDSARSA
t is the TD target

given by Eq. 5.4. The goal of CNN is to update the network parameter set θ that optimizes the loss

function L(θt). First, the partial derivative of L(θt) is calculated by differentiating Eq. 5.3. The

gradient of the loss function can be obtained as follows:

▽θtL(θt) = (yDSARSA
t −Qπ(st, at; θt))▽θt Q

π(st, at; θt) (5.5)

where ▽θtQ
π(st, at; θt) denotes the gradient of the current state-action value. We optimize the loss

function L(θt) by Eq. 5.5 and the network parameter set θ is updated by using stochastic gradient

descent (SGD).

The action space considered in this chapter has a cardinality of 2M since the TSC problem we

try to solve is a traffic network involving multiple intersections. The size of our action space would

degrade the learning performance of other DRL-agents. As mentioned in Section 2.5.3, the dueling

network architecture performs well in a large action space. The benefit of the dueling network

architecture is that the estimations of state-value and action advantage are separated for learning

which state-values are higher without going through and learn every single state-action pair. We

propose the deep dueling SARSA learning using the dueling network architecture referred to as

2DSARSA. In the proposed method, state-value and the advantages for each action are separately

estimated by the dueling network. The output of the dueling network is given by Eq. 2.16 in order

to combine state-value and advantages.

5.4.2 Overall Architecture of The Proposed DRL Framework

Fig. 5.8 shows the overall architecture of the proposed DRL framework for multi-intersection control.

As mentioned, Given a RL-based algorithm, TFMs as global information of the traffic environment is

fed to the CNN over time slots. The ϵ-greedy approach followed the function in Table 5.2 is utilized

for the exploration and exploitation. The agent is trained depends on the given RL-based algorithm.

It learns how to make decisions based on the states and memory replay. Then, the current state,

current action, observed reward, next state, and next action are pushed into the memory for reusing

them later. There are two separated neural networks, one is a Q-network and the other is a target

network, they share exactly the same feature and architecture. The update parameter θ will be
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Figure 5.8: The overall architecture of the proposed 2DSARSA

copied over to the target network every τ steps. The current state and action are first fed into the

Q-network for approximating a Q-value. Old experiences extracted from the replay memory buffer

are used to be inputs to the target network for calculating a target Q-value. The difference, L,

between the Q-value and target Q-value will be partially differentiated to get the derivative in which

the agent will have a sense and know how to update the Q-network by fine-tuning the parameter θ.

In the proposed DRL framework, various RL-based algorithms mentioned in Section 2.4.2.1 and

5.4.1.5 share this overall architecture. We implement 4 different DRL-based agents, namely, DQN,

3DQN, DSARSA, and 2DSARSA, which derive from the overall architecture with respect to the

given RL-based algorithm, neural network, and network architecture as shown in Table 5.1.

5.5 Experimental Results

During the training process, we use 1-hour traffic arrival data as one episode generated by following

the Poisson process. All agent run 1000 episodes training data and they pre-train within the first 100

80



Table 5.1: Properties of Different DRL-based Agents

Methods TD Learning Neural Network Network Architecture Work
DQN Q-learning (off-policy) CNN Conventional Mnih et al. [72]
3DQN Q-learning (off-policy) CNN Dueling Liang et al. [58]
DSARSA SARSA (on-policy) CNN Conventional Zhao et al. [128]
2DSARSA SARSA (on-policy) CNN Dueling The Proposed Method

episodes for accumulating replay data. For test process, 10-hour long traffic arrival data which follow

the Poisson arrivals as well are used as the test data to verify the robustness of each agent after

completing the training step. The difficulty is the training process because all DRL-based agents

take a very long time and might not converge at the end. In the experiments, each agent needs to be

trained separately; hence, it takes nearly one week to do the training process. The reward, average

end-to-end delay (sojourn time), and average queue length are collected as indicators for evaluating

the learning performance of each agent after running test data. We want to analyze and discuss

comprehensively about their performance through those collected data.

5.5.1 Baseline Scheduling Algorithm

Based on the work [93] for the throughput optimality of a queuing network with random arrival rates,

Ji et al. [47] further considered a queue difference between any two adjacent nodes at each time slot

and then determined a feasible schedule by activating the phase with the highest pressure (maximum

queue length). In their algorithm, the controller at each intersection independently determines

which phase of the traffic movement is scheduled based on the queue length and differences from

neighboring nodes in every time slot. Their results showed that their algorithm can achieve maximum

network throughput and global optimality without any prior knowledge about arrival rates.

p⃗∗(t) ∈ argmax
p⃗∈SP

∑
Pi,j=1

γi,j ·Qi,j(t) · µi,j(p⃗) (5.6)

Later, this concept was first applied to traffic signal control in [116]. However, the selection

of phases does not necessarily depend on only the queue length. The metrics such as the HOL

sojourn time, sum-of-delay, and hybrid which combines the queue and HOL delay can be used as the

measurement. Based on their work, we applied the delay-based BP scheme using the HOL sojourn
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time to the network as follows:

p⃗∗(t) ∈ argmax
p⃗∈SP

∑
Pi,j=1

γi,j ·Wi,j(t) · µi,j(p⃗) (5.7)

This formula calculates the sum of HOL vehicle sojourn time multiplied by two weighted values

γi,j and µi,j(p⃗). As before, for vehicles from lane i to lane j, (i, j) ∈ E , γi,j is a positive constant

that can put more emphasis on certain movements and µi,j(p⃗) denotes a traffic flow of vehicles that

can be transferred through the connected edge when phase p⃗ is activated. The scheme will return a

phase that maximizes the total pressure released.

The proposed DRL framework is applied to the TSC problem in order to learn from TFMs of the

entire traffic network and then, determine which phases are supposed to be preferentially activated

for the entire network with 9 intersections. In the experiment section, the performances of BP-based

scheduling schemes as baselines are compared to our proposed DRL framework.

5.5.2 Hyperparameters

Before discussing the experimental results, we want to elaborate more on hyperparameters. The

hyperparameters used in the proposed method are listed in Table 5.2. Traffic arrival ratio for each

intersection is λ⃗ = [0.2, 0.5, 0.2, 1]× 0.125× 1.5 v/s/l (vehicles per second per lane) for generating

1-hour and 10-hour datasets for training and testing, respectively. The ϵ-greedy function for

determining whether exploring or exploiting is applied to the proposed framework where ϵi as the

initializing value is 1.0, ϵf = 0.01 is the finalizing value, and the decay ratio is 300. Learning ratio α

and discount γ are 0.0001 and 0.99, respectively. The experience replay is applied as well where the

total size of replay memory M = 30000, and mini-batch size B = 1024. The number of training

episode E = 1000 is selected by trial and error. Note that DRL-based agents depending on different

RL-based algorithms share the same hyperparameters.

5.5.3 Learning Performance of Different DRL-based Agents

In Fig. 5.9, 5.12, 5.15, and 5.18, we trained different agents based on DQN, 3DQN, DSARSA,

and 2DSARSA, respectively, each of which takes few days to finish 1000 training episodes. Their

performance will be very unstable if their training is incomplete. For example, training process is
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Table 5.2: Summary of hyperparameters in the proposed DRL framework

Parameter Description
Traffic arrival ratio: λ⃗ = [0.2, 0.5, 0.2, 1]× 0.125× 1.5 v/s/l
ϵ-greedy decay function: calculate the probability of exploration and exploitation where

ϵf + (ϵi − ϵf )× e
− episode

decayratio decay ratio is 300
Initializing ϵi = 1.0 the beginning value of ϵ
Finalizing ϵf = 0.01 the final value of ϵ
Learning ratio α = 0.0001 learning ratio for updating the neural network
Discount ratio γ = 0.99 discount for future rewards
Memory size M = 30000 the size of entire replay memory buffer
Mini-batch size B = 1024 the size of samples that will be reused
Maximum number of episodes E = 1000 the total number of training episodes

terminated too early, i.e., only 400 or 500 training episodes.

5.5.3.1 Learning Performance of DQN

DQN was proposed by [72] for Atari games which are strong temporal correlated environments. But

for traffic networks which are not as simple as Atari games, the effect of the current decision could

influence an entire environment in few steps or in even further future. Since the accumulated return

caused by a specific decision is not clear, jumping among different policies is not a wise strategy. As

shown in Fig. 5.9a and 5.9b, the trend of the reward reflects how well the DQN agent performs over

time. Obviously, the agent is not able to increase the reward over episodes. The trend of the reward

goes down, which indicates that the agent cannot learn well from the environment. The trends of the

average end-to-end delay and average queue length keep increasing, which reflects a very congested

traffic caused by poor decisions. Every single decision made by DQN does not necessarily follow

the same policy; hence, it does not consider the long-term effect of the current action. Not taking

future into account will be detrimental to a schedule of traffic movements, which leads to serious

congestion and a long delay. Overall fairness of the network in Fig. 5.9d also unravels that vehicles

scheduled by the DQN agent suffer from unfair decisions and a longer end-to-end travel time.

Based on analytics of learning performance we obtain, the agent cannot effectively learn from

the environment by DQN. Once the training process has been completed. The DQN agent performs

on 10-hour traffic arrival data to exhibit its learning outcomes. Fig. 5.10 shows three delay

distributions conducted by QBPC, DBPC, and DQN, each of which represents sojourn times with
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certain probabilities with which vehicles could encounter. The delay distribution of DQN shows that

vehicles would encounter a longer end-to-end travel time with a higher probability compared to two

BP schemes. In 5.11, due to an unfair schedule by the DQN agent, a considerable amount of vehicles

faces extremely long delay.

(a) Average delay and reward (b) Average queue length and reward

(c) Maximum delay and reward (d) Fairness and reward

Figure 5.9: The trends of delay, queue length, fairness, and reward when training a DQN agent

5.5.3.2 Learning Performance of 3DQN

Liang et al. [58] proposed a framework integrating the double deep Q-network with the dueling

architecture (3DQN) and memory replay. They applied 3DQN to traffic light control at a single

intersection which is comparatively easy. According to their experiments, their framework is able

to converge and outperform conventional fixed-time approaches. However, in our experiments of

applying 3DQN to the TSC problem in a multi-intersection environment, as shown in Fig. 5.12a and

5.12b, the trend of the reward begins to drop and keep oscillating after 200 episodes, and the average
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Figure 5.10: Comparison of delay distributions for queue-based BP control (QBPC), delay-based BP control
(DBPC), and DQN

Figure 5.11: Comparison of box plots for queue-based BP control (QBPC), delay-based BP control (DBPC),
and DQN
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end-to-end delay as well as average queue length of all vehicles increase correspondingly. Similar to

DQN, Vehicles scheduled by the 3DQN agent suffer from an unfair scheduling as well in Fig. 5.12d.

The learning becomes even worse when undergoing more and more training episodes. Based

on our experiments, the 3DQN agent ends up performing more poor than we expected. The final

results of performing on 10-hour traffic arrival data are shown in Fig. 5.13 5.14. Even if the dueling

architecture, which improves the selection of action, has been applied, the 3DQN agent still suffers

from high dimensional states and a large action space. Vehicles suffer from a longer end-to-end travel

time compared to the DQN agent.

We conclude that DQN and 3DQN both adopting off-policy learning are not suitable for multi-

intersection control because the environment considered in this chapter is a traffic network which is

far more sophisticated than one intersection. When it comes to a network, the learning performance

of using DQN or 3DQN becomes unstable and difficult to converge even though they can deal with

one intersection nicely. Both of their trends (reward, average end-to-end delay, and average queue

length) gradually become very oscillating when getting close to the end of the training.

5.5.3.3 Learning Performance of DSARSA

Before discussing the proposed 2DSARSA, we want to first examine the learning performance

of DSARSA which uses SARSA with CNN. The difference between SARSA and Q-learning was

mentioned in Section 2.4.2.1 and 5.4.1.5. In short, SARSA follows the same policy π and explores

optimal state-action values along with this policy. In a highly temporal correlated environment,

Q-learning, which selects the optimal action by switching among several policies, would mess up the

training process. Switching among multiple policies creates chaos so that the agent will not learn

well through Q-learning.

During the training process, the learning performance of the DSARSA agent in terms of reward,

delay, queue length, and fairness is shown in Fig. 5.15a, 5.15b, and 5.15d. Before elaborating more

on these figures, we want to firstly explain why there are spikes around the 100-th training episode

in them. Note that we choose to pre-train within the very first 100 episodes to accumulate tuples of

previous states, previous actions, rewards, the current state, and the current action (a.k.a experiences)

for the memory replay buffer. Without enough data in the buffer, the number of experiences which

can be sampled is insufficient for the agent to compute a loss between a target Q-value and the
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(a) Average delay and reward (b) Average queue length and reward

(c) Maximum delay and reward (d) Fairness and reward

Figure 5.12: The trends of delay, queue length, fairness, and reward when training a 3DQN agent

Figure 5.13: Comparison of delay distributions for queue-based BP control (QBPC), delay-based BP control
(DBPC), and 3DQN
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Figure 5.14: Comparison of box plots for queue-based BP control (QBPC), delay-based BP control (DBPC),
and 3DQN

current Q-value, and update the neural network. From the 1-st to the 100-th episode, the DSARSA

agent randomly selects actions for exploration while accumulating replay data.

As can be observed, the agent obtains higher rewards after learning from more and more episodes.

The average end-to-end delay of vehicles and average queue length of intersections in the network

decline quickly after pre-training. The fairness of the network keeps increasing as the reward becomes

higher. Overall, the trends of the reward, average end-to-end delay, average queue length, and

fairness are converged eventually. Their convergences reveal that the agent with the on-policy

learning algorithm is indeed capable of learning from high dimensional states and performing well in

a huge action space. Unlike DQN and 3DQN, DSARSA outperforms two BP-based schemes once the

training has been done in Fig. 5.16 and 5.17. Fig. 5.16 shows three delay distributions conducted

by QBPC, DBPC, and DSARSA, each of which represents sojourn times with certain probabilities

with which vehicles could encounter. Fig. 5.17 unveils that there are less outliers (vehicles) which
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could encounter with a longer sojourn time. In QBPC and DBPC, the sojourn time which outliers

encounter are close to 500 sec.

We discussed that DBPC has a shorter sojourn time with which vehicles could encounter, and it

achieves a better fairness than QBPC in our previous work. Here, the performance of the DSARSA

agent achieves a even shorter sojourn time for outliers and better fairness for all vehicles than DBPC.

The curve of DSARSA lying between QBPC and DBPC denoting that it has a comparatively lower

probability for vehicles to have the same sojourn time as they do in QBPC and DBPC. For example,

the probability of having 100 sec delay in DSARSA is only 0.4; however, the probability is more

than 0.8 in DBPC. DSARSA starts to outperform QBPC when delay exceeds 130 sec.

(a) Average delay and reward (b) Average queue length and reward

(c) Maximum delay and reward (d) Fairness and reward

Figure 5.15: The trends of delay, queue length, fairness, and reward when training a DSARSA agent
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Figure 5.16: Comparison of delay distributions for queue-based BP control (QBPC), delay-based BP control
(DBPC), and DSARSA

Figure 5.17: Comparison of box plots for queue-based BP control (QBPC), delay-based BP control (DBPC),
and DSARSA
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5.5.3.4 Learning Performance of 2DSARSA

In this chapter, we mentioned that the proposed DRL framework has certain flexibility by adopting

various RL-based algorithms with deep learning, and high extendability by incorporating the dueling

architecture, memory replay as well as other existing techniques. We propose a new method,

2DSARSA, utilizing SARSA with deep learning, the dueling architecture, and memory replay. The

learning performance of the DSARSA agent has already been examined in the last paragraph. The

agent can efficiently learn from a complex environment by DSARSA. As shown in Fig. 5.18, the

training process of the proposed 2DSARSA, which uses the dueling architecture, converges faster

than other DRL-based agents. During the training, similar to DSARSA, we pre-train for 2DSARSA;

hence, there are spikes around the 100-th training episode.

As can be seen, the trend of reward keeps raising all the way after the 200-th episode and the

reward is getting higher and higher over episodes. With respect to the average end-to-end delay and

average queue length, the learning starts to become stable around the 200-th episode in Fig. 5.18a,

and 5.18b. In contrast, DSARSA requires much more episodes to be converged where it becomes

stable around the 1000-th episode. In Fig. 5.18d, it is clear that the fairness of the 2DSARSA

agent reaches a perfect level around the 200-th episode compared to that of the DSARSA agent

which achieves the same level around the 400-th episode in Fig. 5.18d. Our analytics shows that the

learning performance of the 2DSARSA agent converges by only requiring 300 episodes, which is less

than that of the DSARSA agent that converges by using 1000 episodes. The dueling architecture

indeed stabilizes the whole training process and speeds up the convergence.

Based on this successful training, the model of the neural network is stored and used to run

10-hour traffic arrival data. The performance of the 2DSARSA agent is shown in Fig. 5.19 and

5.20. It is quite obvious that the 2DSARSA agent outperforms the conventional BP-based algorithm

proposed in [47] and [117] for multiple intersections after 1000 training episodes. Regarding the

overall fairness, Fig. 5.19 shows the probability of undergoing a long delay for vehicles in the traffic

network. The distribution of a extremely long delay (the green tail) for 2DSARSA is much lower

than QBPC, DBPC, and other DRL-based agents. On the other hand, as shown in Fig. 5.20, there

are less outliers (vehicles) who experience a end-to-end travel delay more than 400 sec comparing to

DSARSA.
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(a) Average delay and reward (b) Average queue length and reward

(c) Maximum delay and reward (d) Fairness and reward

Figure 5.18: The trends of delay, queue length, fairness, and reward when training a 2DSARSA agent

Figure 5.19: Comparison of delay distributions for queue-based BP control (QBPC), delay-based BP control
(DBPC), and 2DSARSA
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Figure 5.20: Comparison of box plots for queue-based BP control (QBPC), delay-based BP control (DBPC),
and 2DSARSA

5.5.4 Critical Evaluations

QBPC serves the lane with the highest queue length, lanes with lower arrivals will get starving.

DBPC was proposed for solving the last vehicle problem in [47,117] where vehicles are scheduled

more fairly by the DBPC. Hence, the tail of the delay distribution of DBPC is lower than that of

QBPC, which means vehicles will not suffer from a longer delay. In this section, their performance is

the baseline compared to DRL-based agents. The learning performance of all DRL-based agents is

shown in Fig. 5.21.

First, we want to elaborate more on poor performance of DQN and 3DQN. DQN and 3DQN

perform terribly and their learning performance unveils that Q-learning with deep learning and

advanced architectures are not appropriate for a complicated environment. The fundamental

difference between on-policy and off-policy methods is that off-policy learns by searching the best

action from several policies. DQN and 3DQN utilize an off-policy learning method, Q-learning, which
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Figure 5.21: Comparison of learning performance among DQN, 3DQN, DSARSA, and 2DSARSA

switches among multiple policies such that maximizes the expected accumulated reward. For many

Atari games applying Q-learning, this approach easily get rid of a poorly initial policy and jump

to the promising one which returns a better accumulated reward eventually. However, as the state

dimension and action space grow exponentially, this approach reveals its weakness while dealing with

a sophisticated environment. Unlike the conventional tabular Q-learning, for unlimited (possibility)

number of states, it is impossible to visit all state-action pairs; hence, the action selection would be

difficult for a Q-learning based agent since it cannot figure out which action is the "best" option to

take without going through each state-action pair. The training processes of DQN and 3DQN are

oscillating and not converged.

On the other hand, DSARSA and 2DSARSA are capable of learning effectively from the

environment during training. Without greedily searching the best policy, SARSA with deep learning

learns by following the initial policy and selecting the next action within this policy. Their training

processes both work perfectly and are converged at the end. On-policy learning with deep learning

shows a certain level of stability while learning from a complicated environment. Because on-policy

learns by following the same policy while learning, the whole training process will still be converged

even if the policy chosen by SARSA is initially not good enough. The dueling technique, which

separates the state-value and action advantage, can effectively filter out useless actions and force
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the entire training become converged eventually. DSARSA equipped with the dueling architecture

can significantly alleviate oscillation during the training process and achieve more optimality than

BP-based schemes, DQN, 3DQN, and DSARSA. In Fig. 5.21, the learning performance comparison

reveals that 2DSARSA obviously outperforms other DRL-based agents and converges quicker than

others.

In a nutshell, 2DSARSA combining the dueling architecture and DSARSA, outperforms other

methods and agents. The combination of the dueling architecture and DSARSA indeed stabilizes the

throughput optimality of the traffic network. Based on our experiments, purely applying BP-based

algorithms to a traffic network does not achieve the global optimality. There is still some room

where we can struggle for optimization. Learning through following the same policy provides a good

entry point to explore more optimality when doing scheduling in a traffic network.

5.6 Conclusion

The experiments have shown a promising prospective of using DSARSA and the dueling architecture

for multi-intersection traffic light control. Due to several success examples in learning Atari games

by the deep Q-learning [71], most researchers who have contributed very much on the traffic control

problem only concentrated on using off-policy learning methods with deep learning. The DQN and

3DQN would work fine in an environment such as an isolated intersection that is easy to understand.

But, when it comes to a complicated environment like a grid network, DQN or 3DQN are no longer

enough to solve the problem. The proposed 2DSARSA performs well even if the environment is far

more complex than one intersection. Our outcomes show that the 2DSARSA agent is able to learn

from the proposed TFMs and even achieve more optimality and fairness than BP-based algorithms

and other DRL-based agents.

As our future work, first, more complicated environment including extending the size of the

grid network from 3 by 3 to 5 by 5 and increasing the number of traffic lanes will be taken into

account. More phases such as turning left or right will be considered as well. Second, a power

metric over a fairness (
λ
d

1−f ) will be considered as our new reward function to enhance the agent’s

learning performance where λ denotes the throughput of the network, d represents the average delay

of vehicles, and f is the Jain’s fairness index [45] of all vehicles in the network.
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Third, our experiments already showed that the dueling architecture indeed contributes to select

valuable actions as the action space grows larger. However, more robust architecture will need to be

designed if the size of the grid network is extended to 5 by 5 or even larger. Instead of the dueling

architecture, what else should be included for enhancing the ability of recognizing valuable actions?

A novel architecture such as multi-level control which is more suitable for the estimation and action

selection will be proposed while the action space is getting huge.

In addition, at present, the depth of the input data is 1, more useful information such as queue

length or sum of delay will be involved to formulate a plentiful data volume which would provide more

comprehensive knowledge for the agent. Last but not least, the simulations of above improvements

will be done by using SUMO for the future work.
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Chapter 6

Two-level Control Architecture for Traffic

Signal Control

6.1 Introduction

Due to the remarkable achievements made by reinforcement learning (RL) in Atari, Go, and real-time

strategy games, simple gaming environments can no longer satisfy scientists’ curiosity. In recent years,

RL algorithms have started to be applied to more and more real-world applications in a wide variety

of fields including traffic signal control (TSC). A detailed survey on applying RL algorithms to TSC is

summarized in [42]. However, in these real-world applications, environments which are usually large

and complicated require a much larger size of states to describe changes after actions are applied.

As RL has been considered in more and more complicated environments, soon, scientists found

that conventional RL can no longer competently tackle states with a larger size from complicated

environments because the state space grows exponentially with the size of states; namely, much more

memory space is needed to store Q-values for all the state-action pairs. Eventually, states with a

larger size degrades the learning performance of a RL agent because it fails to update all state-action

pairs in an extremely huge Q-table. The curse of dimensionality [25] caused by environments with a

huge state space also known as the huge state space problem is the fundamental issue of tabular RL.

Many solutions have been proposed to address this intractable issue, and they can be summarized

into two categories: 1) decentralized and 2) centralized approaches. In the decentralized approach, an
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idea of a hierarchical architecture by organizing multiple RL agents was applied to traffic light control

problems in a large geographical area [4, 8, 50, 78, 105]. To effectively reduce workload for each agent,

the large geographical area is decomposed into several regions and each region is governed by a RL

agent which monitors performance of traffic light control in the region. Each region is further split

into many individual intersections, each of which is assigned to a RL agent determining traffic light

schedules. This approach evolves into a hierarchy-based RL control for a traffic network. In contrast,

the centralized approach developed deep neural networks (DNNs) substituted for the Q-table. The

underlying blocks of a DNN are neurons - the data processing units which are responsible for

weighting input values and generating intermediate features of the inputs for the next hidden layer.

A DNN can be utilized as a function approximator to approximate a Q-value for each state-action

pair (s, a) instead of mapping (s, a) to a Q-value from the Q-table, and hence, is not limited by

the size of states. The approximation-based RL using DNNs such as convolutional neural network

(CNN) has been proposed to address traffic light control problems [32,34,58,79,100,114,115].

The above studies on applying decentralized and centralized approaches have been investigated

very well and revealed a significant success in overcoming the fundamental issue of RL. With that

being said, drawbacks inherent in these solutions make them imperfect and breed two new problems

1) global optimality and 2) convergence which have not been well studied and addressed yet. First,

the decentralized approach organizing multiple RL agents in a hierarchical architecture is capable

of tackling a great geographical area, but a larger area needs to be recursively divided into several

regions. This hierarchical architecture leads to additional overhead of sharing state information,

and requires a reliable communication channel for multi-agent RL. Otherwise, the decentralized

approach cannot guarantee global optimality. Second, the centralized approach possessing global

information usually requires a significant number of training episodes to train a model because the

action selection will be learned by several neural layers rather than simply updating values in the

Q-table. A DNN has to go through many episodes in order to fine-tune the weights in neurons by

backpropagation. Then, the agent is able to select the action with the optimal Q-value. Moreover,

the mathematical guarantees of convergence can no longer be guaranteed if non-linear approximation

functions, DNNs are applied. Due to the two inherent problems we concluded, neither the existing

approaches can be regarded as an optimal solution to a large scale of network with non-stationary

traffic demands and complex traffic patterns; therefore, countermeasures need to be considered when
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designing a state-of-the-art intelligent transportation systems (ITS) for the next generation.

In this chapter, we propose a hybrid-based two-level control (TLC) architecture that incorporates

decentralized backpressure (BP) controllers with a centralized deep reinforcement learning (DRL)

agent in a hierarchical architecture. The idea is to exploit insights of traffic signal phases selected by

the decentralized BP controllers based on the local information they observed into the improvement

of traffic signal phases determined by the DRL agent. Our idea of the collaboration can be forged by

multi-level control to further achieve higher learning performance. The centralized DRL agent and a

number of decentralized BP controllers are organized into a TLC architecture where the DRL agent

with global information is positioned at the higher level and the BP controllers with local information

are at the lower level. The DRL agent interacts with the BP controllers to co-determine a joint

action composed of traffic signal phases based on both global information (i.e., traffic flow maps

(TFMs)) and local information (i.e., pressure-of-the-lanes (POL)). Their goal is to find the optimal

policy (i.e., a series of actions based on given states) that maximizes the expected accumulated

reward for the network of intersections. We found that the decentralized and centralized approaches

can actually compensate each other for their own defects. That is to say, the decentralized BP

controllers in a hierarchical architecture can work in close collaboration with the centralized DRL

agent for compensating for the lack of global information while the centralized DRL agent with global

information can cooperate with decentralized controllers in making the training process converged.

So far, research on TSC for a large traffic network concentrate on using either decentralized or

centralized approaches. A hybrid-based approach which has not yet been studied is a brand new idea

that exploits BP algorithms and DRL. To the best of our knowledge, this is the first research that

investigate the feasibility of applying the innovative idea (hybrid-based approach) and evaluate its

impact and performance compared with our previous work (2DSARSA), well-known BP algorithms,

and famous DRL models (DQN, 3DQN, DSARSA) in detail in the context of TSC.

6.1.1 Organization

The rest of this chapter is organized as follows. Our contributions are listed in Section 6.2. In Section

6.3, we introduce the problem and challenges for the traffic network. In Section 6.4, we introduce the

TLC-based optimization framework for the traffic network. In Section 6.5, we propose the hybrid-

based TLC architecture to improve the learning performance of our previous work (2DSARSA). In
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Section 6.6, we discuss the performance of TLC and compare with that of 2DSARSA in terms of the

rewards, the average end-to-end delay, average queue length, and fairness. We also compare with BP

algorithms which can be regarded as baseline algorithms. Finally, we conclude and discuss future

work in Section 6.7.

6.2 Contribution

• We propose a hybrid-based TLC architecture which integrates decentralized BP controllers

with a centralized DRL agent in this chapter. To the best of our knowledge, this is the first

research combining BP with DRL on TSC. Our results unveil that the proposed TLC performs

better and converges faster than 2DSARSA and the other DRL agents.

• The collaboration between centralized and decentralized controllers in the two levels substan-

tially improves the network throughput and latency by exploiting the insights of using the

local information.

• We train the proposed TLC model using two generated datasets, 1-hour and 10-hours traffic

arrival data and evaluate the performance with the two schemes of the well-known BP algorithm.

• We compare the learning performance of DQN, 3DQN, DSARSA, 2DSARSA, and the proposed

TLC. At present, many existing RL techniques such as DQN [72], double deep dueling Q-

Network (3DQN) [58], and DSARSA [128] have been developed and tested. In order to prove

the performance of TLC, different agents based on above DRL techniques are implemented

and trained separately for comparisons.

6.3 Problem and Challenges

6.3.1 The Curse of Dimensionality

RL and dynamic programming (DP) are two well-known approaches which have been applied to

solve optimization problems. They share the same idea of using Bellman equation to discover the

optimal policy. In cases that DP can be applied, a large and complex problem is recursively divided

into several smaller and simpler sub-problems if these sub-problems can be parts of the problem. In

temporal difference (TD) methods, a RL agent learns from high variance rewards based on Bellman
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equation. The major difference is that DP requires perfect knowledge of the environment (i.e., the

state transition function and reward function) whereas model-free RL allows an agent to explore

and learn how to take actions by interacting with an environment. Therefore, applications of DP is

limited by the curse of modelling. Although RL is not plagued by the curse of modelling, it suffers

from environments with large state space due to table look-up. The estimated Q-values must be

stored for all state-action pairs. Hence, the space complexity increases exponentially as the number

of possible states grows also known as the curse of dimensionality [25,101] as well as environments

with large state space lead to slow learning because mapping a particular state-action pair to its

Q-value requires comparatively longer time.

In TSC problems, a RL agent usually needs to tackle traffic light control in a large geographical

area consisted of multiple intersections, heterogeneous traffic demands, multi-modal vehicles, and a

number of traffic phases. That is to say, a large traffic network described by the above environmental

variables is a state to which the agent is applied. A higher resolution of the state description further

enhances the agent’s understanding of a traffic environment and hence, it is capable of selecting

better actions to respond to changes of a traffic environment to boost its performance in traffic light

control. However, state space of a traffic environment grows exponentially both with increase in

the resolution of the state description and with the number of traffic intersections. For example, in

one-dimensional state description, a state is represented by a vector of numerical values, each of

which denotes the length of a queue corresponding to a traffic lane. If the maximum length of a

queue is 10 vehicles, then there are 108 possible states for an intersection with 8 traffic lanes. The

possible number of states grows from 108 to 1016 for a traffic environment with two intersections.

The number of states can be exponential growth but the memory space cannot be scaled up as more

and more intersections are considered. This is the reason why conventional RL cannot be applicable

to problems with a large and complex environment.

6.3.2 Challenges to The Existing Work

In response to the curse of dimensionality, solutions have been proposed in terms of architecture

designs and mapping functions. One intuitive solution to address the huge state space issue is

to reduce the state size for a RL agent. By decomposing a great traffic environment into several

sub-regions or even intersections, the state size which each RL agent needs to process can be reduced
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to acceptable space complexity to which a Q-table is applicable. Multiple RL agents organized into

the same hierarchical architecture [4,8,50,78,105] can be categorized as the decentralized or hierarchy-

based approach as shown in Fig. 6.1. The other solution is to design a completely new mapping

function to substitute for the Q-table. The Q-table stores estimated Q-values for all state-action pairs

during the training stage in order to be able to instantaneously map a specific state-action pair to its

Q-value without re-computing. The idea is to reduce time complexity but increase in space complexity

is the cost that Q-table must pay in return. To break this restriction, a function approximator is

applied to approximate Q-values for all state-action pairs. DNNs are the most popular function

approximator which has been considered in much research on TSC [32,34,58,79,100,114,115] and can

be categorized as the centralized or approximation-based approach in Fig. 6.1. A DNN is consisted

of a number of data processing units, neurons, which are used to weight input values and output

intermediate features of the input data for the next hidden layer. DNNs are powerful and flexible to

tackle different forms of input data. CNN, a specialized version of DNN, is designed to process the

data with Euclidean structures such as two-dimensional images. Compared to the Q-table, DNNs as

function approximators do not require large memory space to record estimated Q-values during the

training stage; instead, it takes much longer time to go over a considerable amount of training data

to be able to select an optimal action given a state by fine-tuning weights in neurons.

However, there are two challenges inherent in the above two approaches. First, in the decentralized

approach, due to the decentralized nature, each RL agent observes local state information (i.e.,

only a part of a traffic network) and determines traffic signal phases for a region based on the local

observation. Each agent can only guarantee local optimality for a region instead of achieving global

optimality for the entire network. The dissemination of state information can directly influence the

quality of decisions determined by RL agents because both upstream flows from and downstream

flows to neighbors have to be taken into account; namely, two or more agents need to collaborate

together by sharing state information they have. Thus, state sharing is necessary to make sure

that all RL agents understand the up-to-date state information (e.g., queue length of lanes and

flow dynamics of intersections) from their neighbors before determining traffic signal phases that

achieve global optimality and hence, additional overhead of forwarding observed state information

to neighboring RL agents is required as well as a reliable communication channel among multiple

RL agents needs to be established. Furthermore, to what extent state information need to be spread
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Figure 6.1: Categories for existing approaches to TSC

is an open question to the ITS research community. Second, in the centralized approach, without

the participation of the Q-table, the action with the optimal Q-value is approximated by DNNs

which requires an extremely long period of time to finalize backpropagation that updates weights

in neurons. Due to the non-linear nature of DNNs, even though training is performed on sufficient

data, the convergence of the learning is not guaranteed at the end of the training. That is to say,

DNNs could be unstable and unable to learn anything from environments with a large size of states.

In this chapter, we have been seeking for an innovative solution capable of combining the

advantages of both decentralized and centralized approaches to achieve higher performance on

TSC. A hybrid-based architecture forged by multi-level control enables a collaboration between a

centralized DRL agent with decentralized BP controllers in a hierarchical architecture and can be the

solution which we have been seeking for. We propose a hybrid-based TLC as shown in Fig. 6.1 to

co-determine a set of traffic signal phases that optimizes the network throughput and traffic latency

for a network of intersections. We assumed that the local state information described by number

of vehicles in lanes (i.e., pressure or queue length) in local intersections can be exploited to boost

learning performance of a DRL agent. Wei et al. [113] proved our idea by using pressure-based states
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for a DRL agent. They modelled pressure by the arriving and leaving vehicles in intersections and

utilized them as local information to describe the states. They showed that improvement on TSC can

be achieved for a traffic network of multiple intersections by learning from the pressure-based states

and reward function, which is well-supported by BP theory and has been proved to be optimizing

the throughput of a traffic environment. We found that the collaboration between a DRL agent and

a number of BP controllers achieves better learning performance.

6.4 Problem Formulation and Optimization Framework

We formulate a TSC problem as an optimization problem relating the policy (i.e., a series of actions

based on given environmental states) and the reward function. The environment is a 3 by 3 grid

traffic network with 9 intersections, each of which is assigned to a BP controller. There are two

traffic signal phases: North-South and East-West as shown in Fig. 6.3. The conjunction of any

two adjacent intersections where vehicles leave one for the other will become a traffic bottleneck

impeding global optimality if the traffic flows from the upstream and to the downstream are not

considered. The proposed TLC is designed to solve this issue and achieve optimal throughput and/or

end-to-end delay performance for the traffic network. In the proposed TLC architecture, for the

intersections, the DRL agent collaborates with a number of BP controllers on deciding which traffic

signal phase to be activated. The goal of the DRL agent and the BP controllers is to co-determine

the optimal policy that maximizes the network throughput and minimizes the average end-to-end

delay for the network of intersections in the optimization framework as shown in Fig. 6.2. All the

BP controllers are synchronized and operate per time slot of duration t. For every time slot t, each

BP controller independently selects which traffic signal phase to be activated based on POL in an

individual intersection. The 9 traffic signal phases selected by the BP controllers are an action. On

the other hand, the DRL agent decides whether or not to modify the traffic signal phases based on

an observed state st described by the TFM and interacts with the BP controllers to co-determine a

joint action at which is an assignment of traffic signal phases to the 9 intersections. The joint action

at can be represented by a bit vector of length 9 because only two movements are considered at each

intersection. At the end of every time slot t, the DRL agent receives a reward rt which indicates how

well the joint action at in state st impacts the the network throughput and/or average end-to-end
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delay.

Figure 6.2: The TLC-based optimization framework for a 3 by 3 grid traffic network consisting of 9
intersections

(a) P0 with lanes 3 and 7 (b) P1 with lanes 1 and 5

Figure 6.3: Each BP traffic signal controller activates one of the two phases, P0 for horizontal flow and P1
for vertical flow, for every time slot t.
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6.5 The Proposed Hybrid-based Two-level Control Architecture for

Traffic Signal Control

We propose a hybrid-based TLC architecture that organizes a centralized DRL agent and a number

of decentralized BP controllers into the same hierarchical architecture as shown in Fig. 6.4. The

centralized DRL agent observing global information (TFMs) is positioned at the higher level, whereas

the BP controllers observing local information (POL) are positioned at the lower level. Each BP

controller at lower level independently chooses one of the two phases based on the POL it observes at

time slot t. Pressure-of-the-lanes referred to as POL denotes the number of vehicles (pressure or queue

length) in non-conflict traffic movements which can be released simultaneously at an intersection.

The DRL agent trained by TFMs at the higher level possesses a thorough understanding of flow

dynamics in the network. Therefore, it is responsible for deciding whether or not to modify the

chosen traffic signal phases so as to achieve global optimality. Through modifications of the chosen

traffic signal phases, the DRL agent collaborates with BP controllers on co-determining a joint action

composed of traffic signal phases to be assigned to the 9 intersections. The idea of the collaboration

between the two levels is to gain insight of traffic signal phases chosen by the BP controllers using

the POL they observed into the improvement of traffic signal phases determined by the DRL agent.

We elaborate on the two levels more in the following sections.

Figure 6.4: The TLC architecture
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6.5.1 Backpressure Based Decentralized Controller

The detailed studies on BP algorithms can be found in Section 2.1. The studies have proved that

BP algorithms can achieve maximum network throughput and global optimality without any prior

knowledge about arrival rates. Moreover, the concept of pressure is not restricted to only queue

length but also the other pressure metrics such as head-of-the-line (HOL) delay and sum-of-delay

which can be used to develop various BP schemes. The detailed study on the performance of different

BP schemes is mentioned in [121,122].

We select the queue-based BP scheme as the TSC algorithm for the decentralized controllers

at the lower level because the queue-based BP scheme reveals better performance regarding the

throughput and average end-to-end delay. As shown in Fig. 6.5, we evaluate the four different

BP schemes by the five performance metrics; namely, throughput, maximum delay, average queue,

average delay, and fairness. Note that linked schemes denote that the pressure difference between

any two adjacent intersections are considered as the pressure when determining traffic signal phases

for a network of intersections. In Fig. 6.5a, the four BP schemes are applied to determine traffic

signal phases for heterogeneous arrivals. The delay-based BP scheme shows the best fairness. In

the linked delay-based BP and linked queue-based BP schemes, we would have expected that at

least the throughput and average delay can be improved if pressure difference is considered as the

pressure for determining phases in a network. But, the improvements are not very obvious compared

to the queue-based BP and delay-based BP schemes. One the other hand, in Fig. 6.5b, they are

applied to do traffic signal control for homogeneous arrivals. Under the homogeneous traffic, their

performance looks close to each other because the homogeneous traffic is less challenging compared

to the heterogeneous one. Among the four schemes using different pressure metrics, the queue-based

BP scheme results in highest throughput and lowest average end-to-end delay, which is consistent

with the metrics optimized by the proposed power based reward function in Section 6.5.2.3. Hence,

adopting queue-based BP algorithm for the controllers substantially assists in co-optimizing system

throughput and average end-to-end delay for the DRL agent.

Controllers at the lower level adopt the queue-based BP algorithm to the TSC problem. For

every time slot t, without considering any additional information from neighbors, each controller at

an intersection independently selects the phase of the traffic movements that maximizes the total

107



(a) Performance of different BP schemes with heterogeneous
arrivals

(b) Performance of different BP schemes with homogeneous
arrivals

Figure 6.5: The radar plots show that four different BP schemes are evaluated by the five performance
metrics i.e., throughput, maximum delay, average queue, average delay, and fairness.

pressure released where the pressure is measured based on the queue length. The chosen traffic

signal phases are forwarded to the higher level for the further modifications by the DRL agent. The

phase of the traffic movements is selected by Eq. 6.1 given by

p⃗∗(t) ∈ argmax
p⃗∈SP

∑
Pi,j=1

γi,j ·Qi,j(t) · µi,j(p⃗) (6.1)

where the right hand side calculates the queue length Qi,j(t) weighted by two parameters µi,j(p⃗)

and γi,j . The parameter µi,j(p⃗) denotes the number of vehicles that can be transferred through the

connected edge when signal phase p⃗ is activated. The parameter γi,j in which the subscripts i and j

refer vehicles in lane i destined to lane j, is a positive constant that can be used to give priorities to

particular movements when there are multiple types of traffic. In our simulation, γi,j is set to 1 for

all movements.

6.5.2 Deep Reinforcement Learning Based Centralized Controller

In the design of the higher level controller, we expect that a centralized controller with the global

information is responsible for managing incoming and outgoing traffic flows, operating at a fine-

grained time scale, and learning an appropriate traffic phase for each intersection at each time slot;

meanwhile coordinating an entire traffic network consisted of multiple intersections. BP controllers
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at the lower level follow the modifications determined by the centralized controller, which makes

decisions accordingly to the globally determined performance objectives.

DRL is an ideal unsupervised learning that satisfies our expectation. Through the global

information (TFMs), we train a DRL agent which integrates on-policy learning with an approximator

implemented by the dueling architecture, CNN, and memory replay buffer to learn how to modify

the traffic signal phases selected by the BP controllers at the lower level so as to reduce traffic

latency (average end-to-end delay) and increase overall throughput for a traffic network. The dueling

architecture helps the selection of action by separating the estimations of state-value and action

advantage. It will benefit the DRL agent if the action space is large. The experience memory

replay breaks the strong temporal correlations and speeds up the learning process. Hence, these

strategies are applied to solve the huge state space and convergence problems. The time series TFMs

(states) include informative flow dynamics of a traffic network with several intersections which assists

the DRL agent in learning from the traffic environment. The proposed TFMs are synthesized to

represent the traffic environment over time slots. They are formulated by using Poisson arrival data

from multiple intersections. First, a state is fed into the CNN at every time slot t. Then, given the

state, the network parameter set θ are trained and updated by optimizing the loss function given by

Eq. 6.5, and the optimal action is generated according to the learned policy.

In any DRL model, the state, action and reward function need to be carefully defined. In the

following sections, we elaborate more details on the state, the action and the reward function.

6.5.2.1 State Space

We propose a novel state description using a traffic flow map (TFM) which is an image encoding

the HOL sojourn times of lanes at each intersection and differences of HOL sojourn times between

adjacent intersections (i.e., new delay metrics). To the best of our knowledge, we are the first work

of using TFMs as the states. Previous research has shown that RL agents can be well-trained

by images [62, 71]. However, most research [32, 34, 58, 100, 115] either formulated a matrix for an

intersection by marking 0 and 1 based on coordinates of vehicles or used queue length of vehicles at

the intersection to describe the state.

The idea of utilizing the new delay metrics to establish the linear relation between links for

multi-intersection traffic was proposed by Ji et al. [47] because they found that a delay is not sufficient
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for capturing flow dynamics of a traffic network with several intersections, and the delay-based

solutions cannot guarantee the linear relation. Our previous studies [117, 121, 122] proved their

idea and showed that the delay-based BP scheduling algorithm achieves better fairness than the

queue-based BP scheduling algorithm using queue lengths. The delay metrics Ŵi,k calculating a

difference of HOL sojourn times between adjacent intersections and ∆Ŵi,k calculating a difference

of any two Ŵ are defined by

ˆWi,k(t) = Wi,k(t)−Wi,k−1(t) (6.2)

∆ ˆWi,k(t) = ˆWi,k(t)− ˆWi,k+1(t) (6.3)

where k− 1 and k + 1 denote the neighbouring upstream and downstream intersections, respectively,

and Wi,k(t) denote the HOL sojourn time of lane i at intersection k at time slot t in a traffic network.

If an intersection has no neighbors (the edge intersections in our grid network), the HOL sojourn

time values are set to 0. These delay metrics guarantee a linear relationship between queue lengths

and delays for a traffic network with multiple intersections. Note that similar to the delay metrics

one can define queue metrics based on the differences in the queue lengths between the adjacent

intersections.

The traffic flow information of each intersection with respect to the delays and the delay metrics

is stored in a 5× 5 matrix as shown in Fig. 6.6. Note that for each movement there is one lane in

each direction; consequently, there are 4 lanes at each intersection. The blue circle in the center

indicates the average HOL value of 4 HOL sojourn times in each intersection. Orange circles denote

4 HOL sojourn times for 4 different lanes where the values of these circles will be the corresponding

HOL sojourn time values. Red and brown circles represent delay metrics defined in Eq.6.2 and

Eq.6.3 with corresponding neighbouring intersection. Note value of each circle is a real number that

can be mapped to a color scale in which high values are in red and low values are in yellow.

A TFM of an entire network is created by laying out the traffic state information of each

intersection in a two dimensional grid while maintaining the adjacency of the intersections. The

structure of a TFM for a 3× 3 grid network (consisting of 9 intersections) is shown Fig. 6.8. The

agent learns from TFMs and determines the best modifications for the BP controllers according to
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Figure 6.6: An intersection contains traffic flow information where blue element represents the average
traffic flow of all lanes at the intersection, orange elements represents traffic flows in different lanes (figures
in elements only indicate different traffic lanes rather than actual HOL values), and red and brown elements

represent differences of traffic flows from neighboring intersections.

flow dynamics of a traffic network. All the information that the agent needs to know is encoded in

the map shown in Fig. 6.7

Figure 6.7: An traffic flow map of one traffic network composed of nine intersections

As shown in Fig. 6.8, there are TFMs for the 9 intersections at time slot 455, 1155, and 1755,

respectively. Note each TFM consists of 9 tiles each of which is a 5× 5 matrix of data values shown

in Fig. 6.6. These TFMs visualize the delay information (the HOL sojourn times and the delay

metrics) of the traffic flow encoded by varying intensities of color in the network as it evolves over
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(a) t = 455 (b) t = 1155 (c) t = 1755

Figure 6.8: TFM for the 9 intersections as it evolves over time

time. The intensity shows that traffic congestion has become worse over time. As can be observed,

they certainly capture flow dynamics of a traffic network.

6.5.2.2 Action Space

For each time slot t, the BP controllers at local intersections select a traffic signal phase from either

North-South or East-West directions and form a vector of chosen phases pt = {0, 1}M where M is

the number of intersections and 0, 1 denotes which direction should be activated, 0 for the East-West

direction, 1 for the North-South direction. Based on the optimal modifications learned from the

TFMs, the DRL agent improves phases in pt to generate the action a = {0, 1}M .

6.5.2.3 Reward Function

The throughput and average end-to-end delay of the network are two important metrics which

indicate the level of traffic congestion in transportation. A higher throughput denotes more vehicles

in the network have been served. A lower average end-to-end delay means vehicles in the network do

not suffer from waiting. We define the power metric as our reward function given by

P =
λ

d
(6.4)

where λ denotes the throughput of the network and d represents the average end-to-end delay

of vehicles. Note that maximizing P implies that the network throughput is maximized and the

average end-to-end delay is minimized. The power based reward function assigns a higher reward to
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state-action pairs that have high P value. The power metric has been used to design protocols in

computer networks including [52]. Operating a packet switched network that maximizes power is

referred to as Klienrock’s optimal operating point as it achieves the maximum network throughput

at the minimum end-to-end delay. Both the network throughput and average end-to-end delay are

calculated based on the vehicles which have exited the network during the current time slot. For

larger networks it may be more appropriate to calculate the network throughput and the average

end-to-end delay over a number of time slots to account for the nominal delay of vehicles going

through the network which would result in a delay between the action and response (hence the

reward) from the environment. The detailed comparison of the power based reward and the other

rewards can be found in [120].

6.5.2.4 Convolutional Neural Network

Research work has shown that RL agents can learn well from images by CNN [62,71] in recent years.

We implement CNN for the proposed TLC by specifying the number of layers and size of filters

which meets our requirement of training the TLC agent. CNN consists of three convolutional layers

and one fully-connected layer as the output in Fig. 6.9. There are 32 5 by 5 filters with 1 strides

in the first convolutional layer. The output is a volume with the size of 15× 15× 32 which is fed

into the second convolutional layer. At the second layer, the number of filters is 64, each of which

has the size of 4 by 4 and moves 1 stride each time. After the second layer, the output is a volume

with the size of 15× 15× 64. The third layer contains 64 filters with the size of 3× 3, each of which

moves 1 stride every time. This outputs a 15× 15× 64 tensor. The final output, a fully-connected

layer, transfers the tensor into a 512× 1 matrix. Note that the other DRL agents we implement as

the comparisons all share the same CNN as TLC.

6.5.2.5 The Proposed Deep Dueling SARSA Learning Method

TD learning methods combine nice properties from the Monte Carlo (MC) and dynamic programming

(DP). First, TD methods learn state-action function Q(s, a) directly from experience with TD errors

and the bootstrapping. TD error denotes the difference between the current estimation and the

actual observation of the state-action value. The bootstrapping substitutes the remaining trajectory

with one or more estimated rewards in the update step. TD methods constantly track the current
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Figure 6.9: The convolutional neural network as the function approximator

TD error and propagate this TD error back in order to update the approximation for every time

step. Second, TD methods are capable of learning from incomplete episodes without knowing the

dynamic model of the environment. Third, TD methods are suitable for TSC problems because they

perform well in continuous environment.

In contrast, Monte Carlo (MC) methods must wait for the final reward and update the state-action

function by using a complete series of rewards, Q(st, at) = Q(st, at) + α × [Gt − Q(st, at)] where

Gt = Rt+1 + γ × Rt+2 + · · ·+ γT−1 × RT indicates the total discounted reward at time t. Unlike

MC methods, TD methods do not necessarily need to wait until the end of an episode. Instead, they

update Q-values based on estimated Q-values that have already been learned as given by Eq. 2.9.

SARSA which stands for the current state S, current action A, immediate reward R, next state

S′ and next action A′ is one of TD learning methods. SARSA is also known as an on-policy method

which evaluates or improves the behavioural policy, i.e., SARSA fits the action-value function to

the current policy, and evaluates the policy based on samples from the same policy, then refines the

policy greedily with respect to action values. On the other hand, off-policy methods, an agent learns

an optimal value function/policy, maybe following an unrelated behavioural policy; for example,

Q-learning attempts to find action values for the optimal policy directly, not necessarily fitting to

the policy generating the data, i.e., the policy which Q-learning obtains is usually different from
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the policy that generates the samples. In short, on-policy can be understood as learning from

same-policy. However, off-policy learns from different-policy.

Deep SARSA refers to the on-policy TD learning algorithm using CNN (mentioned in Section

6.5.2.4) as a function approximator. Similar to [72], a parameterized neural network replaces the

conventional tabular approach for updating state-action pairs. DSARSA is incorporated into our

proposed TLC. The input data of CNN are TFMs and the output is the action (modifications) with

the optimal Q-value over all state-action pairs. θ is a network parameter set of CNN. During the

training stage, the loss function is defined as follows:

L(θt) = (yDSARSA
t −Qπ(st, at; θt))

2 (6.5)

yDSARSA
t = rt + γQπ(st+1, at+1; θ

−
t ) (6.6)

where st is the current state, at is the current action, st+1 is the next state which is dependent on at

taken by the agent in st, at+1 is the next action selected by ϵ-greedy, and yDSARSA
t is the TD target

given by Eq. 6.6. The goal of CNN is to update the network parameter set θ that optimizes the loss

function L(θt). First, the partial derivative of L(θt) is calculated by differentiating Eq. 6.5. The

gradient of the loss function can be obtained as follows:

▽θtL(θt) = (yDSARSA
t −Qπ(st, at; θt))▽θt Q

π(st, at; θt) (6.7)

where ▽θtQ
π(st, at; θt) denotes the gradient of the current state-action value. We optimize the loss

function L(θt) by Eq. 6.7 and the network parameter set θ is updated by using stochastic gradient

descent (SGD).

6.5.3 An Illustration of Training The DRL Based Centralized Controller

Fig. 6.10 illustrates how to train the centralized DRL agent for multi-intersection control. As

mentioned, the agent is trained based on on-policy learning to learn how to make decisions based on

the states and memory replay. TFMs as states of the traffic environment is fed to the CNN over

time slots. Then, the current state, current action, observed reward, next state, and next action are
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Figure 6.10: An illustration of training the proposed TLC agent

pushed into the memory for reusing them later. The ϵ-greedy approach followed the function in Table

6.2 is utilized for the exploration and exploitation. There are two separated neural networks, one is

a Q-network and the other is a target network, they share exactly the same feature and architecture.

The update parameter θ will be copied over to the target network every τ steps. The current state

and action are first fed into the Q-network for approximating a Q-value. Old experiences extracted

from the replay memory buffer are used to be inputs to the target network for calculating a target

Q-value. The difference, L, between the Q-value and target Q-value will be partially differentiated

to get the derivative in which the agent will have a sense and know how to update the Q-network by

fine-tuning the parameter θ.

As performance comparisons with the proposed TLC, we implement 4 existing DRL agents,

namely, DQN, 3DQN, DSARSA, and 2DSARSA, which derive from the illustration with respect to

the given RL-based algorithm, neural network, and network architecture as shown in Table 6.1.
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Table 6.1: Properties of Different DRL Agents

Methods TD Learning Neural Network Network Architecture Work
DQN Q-learning (off-policy) CNN Conventional Mnih et al. [72]
3DQN Q-learning (off-policy) CNN Dueling Liang et al. [58]
DSARSA SARSA (on-policy) CNN Conventional Zhao et al. [128]
2DSARSA SARSA (on-policy) CNN Dueling Yen et al. [120]
TLC SARSA (on-policy) CNN Dueling The Proposed Architecture

6.6 Experimental Results

During the training stage, we used 1-hour traffic arrival data as one episode generated by following

the Poisson process. All agents were trained by 1000 episodes of traffic arrival data and pre-trained

using the first 100 episodes to collect replay data. For test stage, 10-hour long traffic arrival data

which follow the Poisson arrivals as well were used as the test data to verify the robustness of each

agent after completing the training stage. The difficulty is the training stage because each DRL

agent requires 24 to 27 hours to complete 1000 episodes; hence, it takes nearly one week to finalize

all the training stages. The reward, average end-to-end delay (sojourn time), average queue length,

maximum delay, and fairness are collected as performance indicators to evaluate all DRL agents

after running test data.

6.6.1 Baseline Scheduling Algorithm

Based on the work [93] for the throughput optimality of a queuing network with random arrival rates,

Ji et al. [47] further considered a queue difference between any two adjacent nodes at each time slot

and then determined a feasible schedule by activating the phase with the highest pressure (maximum

queue length). In their algorithm, the controller at each intersection independently determines

which phase of the traffic movement is scheduled based on the queue length and differences from

neighboring nodes in every time slot. Their results showed that their algorithm can achieve maximum

network throughput and global optimality without any prior knowledge about arrival rates.

p⃗∗(t) ∈ argmax
p⃗∈SP

∑
Pi,j=1

γi,j ·Qi,j(t) · µi,j(p⃗) (6.8)

Later, this concept was first applied to traffic signal control in [116]. However, the selection
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of phases does not necessarily depend on only the queue length. The metrics such as the HOL

sojourn time, sum-of-delay, and hybrid which combines the queue and HOL delay can be used as the

measurement. Based on their work, we applied the delay-based BP scheme using the HOL sojourn

time to the network as follows:

p⃗∗(t) ∈ argmax
p⃗∈SP

∑
Pi,j=1

γi,j ·Wi,j(t) · µi,j(p⃗) (6.9)

This formula calculates the sum of HOL vehicle sojourn time multiplied by two weighted values

γi,j and µi,j(p⃗). As before, for vehicles from lane i to lane j, (i, j) ∈ E , γi,j is a positive constant

that can put more emphasis on certain movements and µi,j(p⃗) denotes a traffic flow of vehicles that

can be transferred through the connected edge when phase p⃗ is activated. The scheme will return a

phase that maximizes the total pressure released.

The proposed TLC architecture is applied to the TSC problem in order to learn from TFMs

of the entire traffic network and then, determine which phases are supposed to be preferentially

activated for the entire network with 9 intersections. In the experiment section, the performance of

BP scheduling schemes as baselines are compared to the proposed TLC.

6.6.2 Hyperparameters

As listed in Table 6.2, a set of hyperparameters used in the proposed TLC architecture is pre-defined.

Traffic arrival ratio for each intersection is λ⃗ = [0.2, 0.5, 0.2, 1] × 0.125 × 1.5 v/s/l (vehicles per

second per lane) for generating 1-hour and 10-hour datasets for training and testing, respectively.

The ϵ-greedy function determines the probability of doing exploration or exploitation where ϵi as

the initializing value is 1.0, ϵf = 0.01 is the finalizing value, and the decay ratio is 300. Learning

ratio α determines the weight of newly learned knowledge. α approaching 0 makes the agent exploit

prior knowledge instead of learning something new while α approaching 1 makes it explore new

potential rather than using prior knowledge. α is set to 0.0001 in the simulations. Discount factor

γ determines the importance of future rewards. γ closer to 0 makes the agent behave myopically

by only considering immediate rewards while γ closer to 1 makes it seek a long-term outcome by

weighting future rewards with a higher value. γ is set to 0.99 in the simulations. The replay memory

size M used to store previous experiences is set to 30000, and mini-batch size B used to sample
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experiences from the memory is set to 1024. The number of training episode E = 1000 is selected by

trial and error. Note that DRL agents depending on different RL-based algorithms share the same

hyperparameters.

Table 6.2: Summary of hyperparameters in the proposed TLC architecture

Parameter Description
Traffic arrival ratio: λ⃗ = [0.2, 0.5, 0.2, 1]× 0.125× 1.5 v/s/l
ϵ-greedy decay function: calculate the probability of exploration and exploitation where

ϵf + (ϵi − ϵf )× e
− episode

decayratio decay ratio is 300
Initializing ϵi = 1.0 the beginning value of ϵ
Finalizing ϵf = 0.01 the final value of ϵ
Learning ratio α = 0.0001 learning ratio for updating the neural network
Discount ratio γ = 0.99 discount for future rewards
Memory size M = 30000 the size of entire replay memory buffer
Mini-batch size B = 1024 the size of samples that will be reused
Maximum number of episodes E = 1000 the total number of training episodes

6.6.3 Learning Performance of TLC

In this chapter, we mentioned that the proposed TLC architecture has certain flexibility by adopting

DRL with the dueling architecture, memory replay as well as other existing techniques, and high

extendability by incorporating a centralized DRL agent with decentralized BP controllers. We

elaborate on the learning performance of TLC regarding the four performance metrics: the average

queue length, average end-to-end delay, maximum delay, and fairness. As shown in Fig. 6.11, the

trend of reward (red curve) kept raising all the way after the pre-training stage and the reward

was getting higher and higher over episodes. In Fig. 6.11a, and 6.11b, the average queue length

(green curve) and average end-to-end delay (blue curve) were being minimized when the learning

curve started to become stable at the 300-th episode. These two metrics reveals less vehicles were

waiting in the lanes and experienced long delay. Namely, the TLC agent learns to select the optimal

modifications with the highest P value to improve the phases chosen by BP controllers.

However, the average end-to-end delay averaging out all sojourn times of all vehicles does not

reflect individual sojourn times for vehicles; consequently, it is difficult to evaluate whether individual

vehicles are fairly scheduled. Therefore, we also consider a fairness metric in addition to the average

end-to-end delay. We use Jain’s Fairness Index [45] which is denoted by f and is given by
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f(d⃗ = [d1, d2, . . . , dM ]) =
(
∑M

i=1 di)
2

M
∑M

i=1(di)
2

(6.10)

where di indicates the delay of vehicle i and M represents the total number of vehicles. The main

idea of Jain Fairness Index is to compare the total delay to the delays of the individual vehicles. As

the denominator becomes smaller, which means the delay of individual vehicle becomes smaller, f

will increase. The system achieves a better fairness if Jain Fairness Index is higher. In Fig. 6.11d,

the fairness (gray curve) was maximized and stabilized without many high fluctuations after the

200-th episode. This shows that the modifications to the chosen phases made by the TLC agent did

not compromise the fairness and force vehicles undergo a very long sojourn time.

(a) Average delay and reward (b) Average queue length and reward

(c) Maximum delay and reward (d) Fairness and reward

Figure 6.11: The trends of delay, queue length, fairness, and reward when training a DRL agent using the
proposed TLC architecture
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6.6.4 Performance Comparison with Baseline BP Algorithms

Queue-based BP control (QBPC) serves the lane with the highest queue length, but lanes with lower

arrivals will get starving. Delay-based BP control (DBPC) was proposed for solving the last vehicle

problem in [47,117] where vehicles are scheduled more fairly by DBPC. Hence, DBPC achieves a

better fairness than QBPC in our previous work [117,121,122] and the tail of the delay distribution

of DBPC (red tail) is shorter than that of QBPC (blue tail), which means less vehicles will suffer

from a longer delay in Fig. 6.12. In this section, their performance is the baseline compared to the

2DSARSA and TLC agents. The learning performance of the 2DSARSA agent was discussed in our

previous work [120].

Based on the successful training, the model of the neural network was stored and used to run

10-hour traffic arrival data. The performance of the TLC agent in terms of the delay distribution is

shown in Fig. 6.12. The delay distribution indicates a probability of experiencing a specific delay.

For example, 80% chance of experiencing 100s delay for DBPC, 40% chance of experiencing 100s

delay for TLC, and 20% chance of experiencing 100s delay for QBPC. As can be observed, the TLC

agent achieves a even shorter tail for outliers and better fairness for all vehicles than QBPC, DBPC,

and 2DSARSA. The probability of a extremely long delay (the purple tail) for TLC is much lower

than QBPC, DBPC, and 2DSARSA. QBPC and DBPC have probabilities of experiencing delays

over 500s and 400s, respectively, whereas the probability of experiencing a delay over 400s is 0 for

TLC. The curve of TLC lying between QBPC and DBPC denoting that it has a comparatively lower

probability for vehicles to have the same sojourn time as they do in QBPC and DBPC. TLC starts

to outperform QBPC when delay exceeds 130 sec.

It is quite obvious that the TLC agent outperforms 2DSARSA and the conventional BP algorithms

proposed in [47] and [117] for multiple intersections after completing 1000 episodes. Regarding

the overall fairness, Fig. 6.13 shows how many vehicles (circles) which experienced a long delay

in the traffic network. The numbers of vehicles suffering a delay over 400s for QBPC, DBPC, and

2DSARSA are 6, 5, and 3, respectively. There is no vehicle suffering a delay over 400s for TLC. On

the other hand, the numbers of vehicles suffering a delay between 300s and 400s for QBPC, DBPC,

and 2DSARSA are 94, 83, and 55, respectively. There are only 46 vehicles suffering a delay between

300s and 400s for TLC.
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Figure 6.12: Comparison of delay distributions for queue-based BP control (QBPC), delay-based BP control
(DBPC), 2DSARSA, and TLC

6.6.5 Performance Comparison with Existing Work

The learning performance of all DRL agents is shown in Fig. 6.14. DQN and 3DQN agents cannot

effectively learn from the environment. The learning performance of DQN and 3DQN unveils that

Q-learning with deep learning and advanced DRL techniques are not appropriate for a complicated

environment. The fundamental difference between on-policy and off-policy methods is that off-policy

learns by searching the best action from several policies. DQN and 3DQN utilize an off-policy learning

method, Q-learning, which switches among multiple policies such that maximizes the expected

accumulated reward. For many Atari games applying Q-learning, this approach easily get rid of

a poorly initial policy and jump to the promising one which returns a better accumulated reward

eventually. However, as the state dimension and action space grow exponentially, this approach

reveals its weakness while dealing with a sophisticated environment. Unlike the conventional tabular

Q-learning, for unlimited (possibility) number of states, it is impossible to visit all state-action pairs;

hence, the action selection would be difficult for a Q-learning based agent since it cannot figure out

which action is the "best" option to take without going through each state-action pair. We conclude

that DQN and 3DQN both adopting off-policy learning are not suitable for multi-intersection control

because the environment considered in this paper is a traffic network which is far more sophisticated

than one intersection. In a traffic network, the learning performance of using DQN or 3DQN becomes
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Figure 6.13: Comparison of box plots for queue-based BP control (QBPC), delay-based BP control (DBPC),
2DSARSA, and TLC

unstable and difficult to converge. Both of their trends (reward, average end-to-end delay, and

average queue length) gradually became very fluctuating when getting close to the end of the training.

On the other hand, DSARSA, 2DSARSA, and TLC are capable of learning effectively from the

environment during training. Without greedily searching the best policy, SARSA with deep learning

learns by following the initial policy and selecting the next action within this policy. Their training

processes worked perfectly and were converged at the end. On-policy learning with deep learning

shows a certain level of stability while learning from a complicated environment. Because on-policy

learns by following the same policy while learning, the whole training process will still be converged

even if the policy chosen by SARSA is initially not good enough. The dueling technique, which

separates the state-value and action advantage, can effectively filter out useless actions and force

the entire training become converged eventually. 2DSARSA and TLC equipped with the dueling
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Figure 6.14: Comparison of learning performance among DQN, 3DQN, DSARSA, 2DSARSA, and TLC

architecture can significantly alleviate fluctuations during the training process and achieve more

optimality than baseline BP schemes, DQN, 3DQN, and DSARSA.

Moreover, TLC enables the collaboration between a DRL agent and a number of BP controllers

where the agent optimizes specific metrics and BP controllers help to select phases that maximizes

these metrics. On the top of the chosen phases by BP controllers using POL, the DRL agent

modify them to co-determine a series of joint action (modified phases) that maximizes the expected

accumulated reward for the network of intersections. In Fig. 6.14, the comparison of learning

performance reveals that the TLC agent (purple curve) obviously outperforms the 2DSARSA agent

and the other agents. The training process of TLC converged faster than the other DRL agents.

Our analytics shows that the learning performance of the TLC agent achieves the highest level and

converges by only requiring 300 episodes compared to that of the 2DSARSA agent which needs to

complete 1000 episodes to reach the same level as the TLC agent.

In a nutshell, TLC organizing a centralized DRL agent and a number of decentralized BP

controllers in the same hierarchical architecture, outperforms other methods and agents. The

collaboration between the centralized DRL agent and decentralized BP controllers indeed stabilizes

the throughput optimality of the traffic network. Based on our experiments, purely applying
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DRL with global information to a traffic network does not achieve the global optimality. Further

optimization can still be achieved by enabling the collaboration between the two levels using both

POL and TFM.

6.7 Conclusion

The experiments have shown a promising prospective of using TLC for multi-intersection traffic light

control. Due to several success examples in learning Atari games by the deep Q-learning [71], most

researchers who have contributed very much on the TSC problem only concentrated on using off-

policy learning methods with deep learning. The DQN and 3DQN would work fine in an environment

such as an isolated intersection that is easy to understand. But, when it comes to a complicated

environment like a grid network, DQN or 3DQN are no longer enough to solve the problem. The

proposed TLC performs well even if the environment is far more complex than one intersection. Our

results show that the TLC agent incorporating a centralized agent and decentralized controllers is

able to co-determine traffic signal phases based on both POL and TFMs of the traffic network, and

even achieves more optimality and fairness than BP-based algorithms, 2DSARSA, and the other

DRL agents.

As our future work, first, more complicated environment including extending the size of the

grid network from 3 by 3 to 5 by 5 and increasing the number of traffic lanes will be taken into

account. More phases such as turning left or right will be considered as well. Second, a power metric

over a fairness (
λ
d

1−f ) will be considered as our new reward function to enhance the agent’s learning

performance where λ denotes the throughput of the network, d represents the average delay of

vehicles, and f is the Jain’s fairness index [45] of all vehicles in the network. Third, our experiments

already showed that the dueling architecture indeed contributes to select valuable actions as the

action space grows larger. However, the number of actions has to increase accordingly so as to

achieve a certain level of freedom if the size of the traffic network is extended to 5 by 5 or even

larger. Instead of the dueling architecture, what else should be included for enhancing the ability of

recognizing valuable actions? For problems with higher dimensional action spaces, a multi-branch

architecture which is more suitable for the estimation and action selection needs to be considered

while the action space is getting huge.
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In addition, at present, the depth of the input data is 1, more useful information such as queue

length or sum of delay will be involved to formulate a plentiful data volume which would provide more

comprehensive knowledge for the agent. Last but not least, the simulations of above improvements

will be done by using SUMO for the future work.
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Chapter 7

Future Work

7.1 The Impacts of Cyber-attacks on RL-based TSC

Two potential security vulnerabilities, the time spoofing and ghost vehicle attacks, which have been

examined their impacts on BP-based TSC and proved that they threat modern TSC systems in our

preliminary work. On the other hand, in terms of advanced intelligent traffic controller, we proposed

the TLC architecture which leverages the global information as well as local information to determine

traffic signal phases. The TLC agent with the global information at the higher level operates at

a fine-grained time scale. The performance of the proposed architecture has been analyzed and

showed a significant improvement of traffic delay achieved by deep RL-based method. However, to

the best of our knowledge, at present, there is no investigation on potential threats to RL-based

TSC. We will study the impact of malicious attacks on RL-based TSC schemes and observe whether

an intelligent RL-based agent can be applied to TSC for mitigating impacts of cyber-attacks. Our

goal is to develop a theoretical model based on RL which are capable of suppressing diffusion of

malicious attacks, recovering or even surviving from a serious cyber-attack.

Challenge 1: Representation of A Contaminated Network: Modeling diffusion of malicious

attacks over a traffic network composed of multiple intersections is challenging. Extracting knowledge

of spreads of attacks from a traffic network is essential. We would formulate diffusion flow maps

(DFM) into which all spreads of malicious attacks could be comprehensively involved. Misbehaved

attacks causing serious traffic jams could be collected by roadside units. The estimates of spreads
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could be calculated, and then DFM would be synthesized by these estimates.

Challenge 2: Understanding of Spreading Misinformation: Although we can capture spreads

and generate insightful information, the following questions still need to be examined. How well the

DRL-based agent can understand the data we provide? Would the DRL-based agent learn from it?

Furthermore, would the learning process converge eventually if DFMs were considered?

Challenge 3: RL-based Model for Cyber-attacks: How to come up with a RL-based model that

is able to learn from misbehaved attacks, and then properly adjust scheduling for mitigating the

impacts or even recovering from these attacks? In this stage, existing neural architectures, RL-based

techniques will be examined to figure out their abilities of withstanding attacks. We will propose

state-of-the-art framework consisting the novel architecture and RL-based model that is able to

handle malicious attacks.

7.2 The Convergence of RL with High Dimensional Spaces

As the traffic demand grows rapidly as well as more and more intersections need to be considered

into the TSC system nowadays, RL-based methods suffer from the curse of dimensionality and large

action space issue. Recently, a plethora of papers [58, 71, 102,115] have studied on high dimensional

state spaces and well established solutions by utilizing non-linear approximators such as deep neural

networks. However, the utilization of non-linear function approximators first does not guarantee

the convergence of the learning process, especially, for high dimensional observation spaces, and

second it cannot handle high dimensional action spaces very well. Those issues lead to a convergence

problem at which we can make more efforts for the future work. The following papers [24,59,94]

focused on the issue of high dimensional action spaces and proposed solutions to it. The potential

research directions at which we can make efforts are two. One is exploration and exploitation and

the other is neural network architecture.

Our goal is to design a cutting-edge control architecture which can offload some burdens from

the DRL-based agent to local controllers such that decrease the dimension of actions. There are two

levels in the proposed architecture. The DRL-based agent as a higher level policy maker operates

at a coarse time scale. On the other hand, in a lower level, local controllers work at individual
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intersections at a fine-grained time scale. The DRL-based agent selects actions which are going to

influence decisions determined by local controllers and forces them gradually alter their decisions

towards the global policy made by the agent. Each action a consists of a set of control parameters

where a ∈ R18. By cooperating with local controllers, we expect to lower down the dimension of

actions for the DRL-based agent by separating the control into two levels. The proposed novel

control architecture will be integrated into our existing framework.

Challenge: Action space grows exponentially based on the number of joint intersections and phases.

For example, a 4−phase of signal control system with the coarsest discretization a ∈ {1, 2, 3, 4} for

a 3 by 3 traffic network consisting of 9 intersections leads to an action space with dimensionality:

49 = 262144.

7.2.1 Exploration Efficiency in Large Action Space

The simplest exploration and exploitation method, ϵ−greedy, selects action based on a single

parameter. This dithering strategy that switches between the best action and random selected

actions would fail to deeply explore actions that return a long-term reward. Existing methods like

Boltzmann exploration and Thomson sampling significantly outperform ϵ−greedy.

Osband et al. [75] proposed a bootstrapped DQN for deep explorations via randomized value

functions sampled from an approximate posterior. K different datasets D̃ are initially sampled

from original D for K bootstrapped heads, each of which is trained by its bootstrapped sub-sample

of the data. They are independent from each other but all share the same network. Randomized

value functions have been recently proved that they work similar to Thompson sampling without an

intractable exact posterior update. Their bootstrapped DQN achieves computationally efficiency

and faster learning in a range of Atari 2600 games by training an ensemble of Q-functions.

7.2.2 Multi-branch for Large Action Space

The dueling architecture [110] mentioned in chapter 2.5.3 can learn states with a higher value without

taking every action into account. Their idea is to separate the estimates of state-value and action

advantage. Inspired by it, Tavakoli et al. [94] proposed a multi-branch architecture for problems

with high dimensional action spaces. For a complicated environment, the number of actions has to
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increase accordingly so as to achieve a certain level of freedom. This proposed architecture divides

an action space into several dimensions and implements branches sharing features from the same

neural network for these individual action dimensions. Compared to the bootstrapped method [75],

their architecture uses the same dataset instead of sampling different datasets for each branches,

performing well even when the number of action grows linearly.
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