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Due to the COVID-19 pandemic, many key neglected tropical disease (NTD) activities have been postponed. This hindrance comes 
at a time when the NTDs are progressing towards their ambitious goals for 2030. Mathematical modelling on several NTDs, namely 
gambiense sleeping sickness, lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminthiases (STH), trachoma, 
and visceral leishmaniasis, shows that the impact of this disruption will vary across the diseases. Programs face a risk of resurgence, 
which will be fastest in high-transmission areas. Furthermore, of the mass drug administration diseases, schistosomiasis, STH, and 
trachoma are likely to encounter faster resurgence. The case-finding diseases (gambiense sleeping sickness and visceral leishman-
iasis) are likely to have fewer cases being detected but may face an increasing underlying rate of new infections. However, once 
programs are able to resume, there are ways to mitigate the impact and accelerate progress towards the 2030 goals.

Keywords.  neglected tropical diseases; coronavirus; modeling.

The coronavirus disease 2019 (COVID-19) pandemic will have 
wide-reaching implications for health systems and programs, 
including among populations in whom neglected tropical 
diseases (NTDs) are endemic. In the short term, preliminary 
World Health Organization (WHO) guidance advises that NTD 
surveys, active case detection activities, and mass drug adminis-
tration (MDA) campaigns should be postponed, while support 
for prompt diagnosis, treatment, and essential vector control 
should continue where possible [1]. The impact of program 

disruptions on the hard-won gains of reduced infection, mor-
bidity, and mortality, and therefore on elimination timelines, 
is uncertain. Mathematical modelling, such as that carried out 
by the NTD Modelling Consortium, can provide quantitative 
insights on how NTD programs could be impacted by the de-
lays while showing potential catch-up strategies to mitigate im-
pacts (ntdmodelling.org/covidinterruption.pdf). These models 
suggest that the impact on some NTDs can be mitigated in the 
years to come, provided the delay is minimal and that prompt 
remedial (and in some cases novel) action is taken.

During a disruption to interventions, the transmission 
of infectious diseases will gradually rise back towards the 
preintervention level unless interventions are reintroduced. The 
resulting rate of resurgence in prevalence depends on the rate at 
which new infections occur, which is driven by the natural his-
tories of the disease and the local transmission conditions. The 
resurgence rates for many NTDs are relatively slow, particularly 
when compared with other infectious diseases, such as measles 
and malaria, meaning that the impact of a short disruption to 
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NTD programs will accrue gradually. High-transmission areas 
face the greatest risk as resurgence will be faster in these areas. 
Additionally, the longer the delay of interventions, the greater 
the resurgence, and therefore the greater the rate of new infec-
tions. Once reintroduced, programs could consider intensifying 
the coverage or frequency of interventions, if politically and ec-
onomically feasible, to mitigate the effects of the disruption.

For the NTDs managed via MDA campaigns, the impact 
of delaying MDA will vary across diseases. For the helminth 
infections, the resurgence rate following a round of MDA is 
driven by the local transmission rate and the lifespan of the 
adult worm. Shorter-lived worms will have higher resurgence 
because resurgence rates are approximately proportional to 
1/L, where L is the lifespan of the worm in the human host 
[2]. Hence, missing an annual MDA for soil-transmitted 
helminthiases (STH) and schistosomiasis programs (life-
spans from 1 to 10  years [3–7]) will be more severe than 
for onchocerciasis and lymphatic filariasis (LF) (lifespans 
from 5 to 15 years [8, 9]) (Figure 1) (but unlike LF, oncho-
cerciasis MDA treatments are not strongly adulticidal [10]). 
Similar analysis for trachoma estimated that the doubling 
time (time over which the number of cases double) for resur-
gence may vary from 1–2 months in highly endemic settings 
to 4–8  months in lower endemic settings [11], suggesting 
that trachoma programs face a greater resurgence risk rela-
tive to the helminths. The risk of trachoma resurgence will 
be greatest in high-prevalence settings, where a 1-year delay 
may extend elimination timelines by 2–3 years.

For NTDs for which intensified testing and case finding is the 
primary strategy, the resurgence rates are more difficult to estimate. 

This is due to uncertainties in the natural history of infection and, 
more importantly, because changes in the number of newly diag-
nosed cases are a consequence not only of new infections but also 
of how rapidly they are detected. Therefore, disruptions due to 
COVID-19 are likely to lead to fewer cases being detected, while 
the underlying rate of new infections increases. Where this hap-
pens, detections of outbreaks may be delayed, posing a challenge 
to health system responses. For visceral leishmaniasis (VL) in the 
Indian subcontinent, halting programs for 1 year likely causes inci-
dence to revert to the rate occurring 1 year earlier, if the program is 
currently in the attack phase (ie, undertaking intense control meas-
ures). For settings that are already below the target incidence (<1 
per 10 000 annually [12]) with less-intense measures, the setback 
could be up to 5 years, leading to an incidence above the elimina-
tion target in previously highly endemic settings. Local outbreaks 
may also be possible. For the gambiense form of human African 
trypanosomiasis (gHAT), incidence is likely to continue to decline 
if the disruption only lasts for 1 year but may increase in the second 
year of disruption, especially if diagnosis and treatment of cases pre-
senting at health facilities are disrupted; modelling suggests trans-
mission temporarily increased in Mandoul, Chad, during a 2-year 
screening break in 2007–2008 [13].

NTD programs are at different stages with both well-established 
and early programs being impacted by the disruption. Programs 
that have made good progress in reducing the levels of infection 
in a high-baseline setting may face a particular risk of faster resur-
gence, and so may lose the most. In contrast, more recently estab-
lished programs may not have made such gains and so may lose 
less but will be closer to the baseline setting and at risk of returning 
to higher levels sooner. Further modelling of such specific settings 
is required to inform estimates of the impact.

Vector control offers the potential to mitigate the impact of a 
disruption to programs as it reduces the transmission rate of some 
infections, therefore slowing resurgence. However, the impact 
of vector control depends on the extent to which it is sustained 
during the disruption. While it is unlikely that new vector-control 
activities can be introduced during the COVID-19 pandemic, 
continuation of existing measures may help, as evident during 
program disruptions due to the West African Ebola outbreak in 
Guinea, where areas with vector control saw fewer gHAT cases 
after normal activities resumed [14]. For VL, the effect of sus-
pending indoor residual spraying efforts should be expected to be 
more variable at local village levels, ranging from very limited im-
pact to outbreaks as observed in Kosra, India [15, 16]. For LF, the 
use of bednets has a small impact relative to MDA and, in addi-
tion, bednets will not be effective in areas where the predominant 
vector species bites during the day [17, 18].

Interim guidance has recommended that water, sanitation, and 
hygiene (WASH) activities should continue during the postpone-
ment of mass interventions, with a greater focus on supporting 
implementation of COVID-19–related measures where needed, 
such as hand hygiene [1, 19]. The modelling of WASH on NTD 

Figure 1. Modelling projections showing the impact of missing a round of MDA 
for schistosomiasis (Schistosoma mansoni; mean worm lifespan, 5.6  years) and 
(Anopheles-transmitted) lymphatic filariasis (Wuchereria bancrofti; mean worm 
lifespan, 8 years). Schistosomiasis starting at 75% baseline prevalence in school-
aged children (5–14  years old) and treating 75% of school-aged children with 
praziquantel. Lymphatic filariasis starting at 15% baseline prevalence in the en-
tire population and treating 65% communitywide with ivermectin and albendazole 
(assuming 30% long-lasting insecticidal nets coverage). Abbreviation: MDA, mass 
drug administration.
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transmission has received limited attention, but reviews based on 
current evidence from STH and trachoma programs show con-
trasting effects of WASH on infection risk, suggesting that it may 
have limited impact on reducing transmission [20–22].

When interventions are reintroduced, there may be an oppor-
tunity for NTD programs to accelerate progress towards the 2030 
goals—for example, through biannual MDA for trachoma and 
onchocerciasis, or use of more effective drug combinations, such 
as the triple-drug regimen for LF in eligible settings [10, 11, 23]. 
Expansion of programs to communitywide treatment could be 
considered for STH and schistosomiasis in high-transmission set-
tings [24, 25]. Increased active case detection could be implemented 
for VL and gHAT, alongside improved coverage of vector control 
(indoor residual spraying of insecticide for VL and tiny targets for 
gHAT [26, 27]). Such intensified strategies should be prioritized in 
high-transmission areas where they will be most beneficial, as well 
as in areas where programs may encounter longer delays.

The future course of the COVID-19 pandemic is uncer-
tain, as is the public health response to its progression in dif-
ferent settings. Multiple disruptions to NTD programs are a 
possibility, and each disruption will have an impact on trans-
mission. The duration and extent of these disruptions will af-
fect their short- and long-term impact on achievement of the 
NTD goals and associated morbidity or mortality. Once NTD 
programs are able to resume, many financial and human re-
sources will be constrained, hindering business-as-usual. 
However, targeting of catch-up strategies should be informed 
by up-to-date data, rather than implementing standard 
disease-specific interventions. Re-surveying areas once 
programs are resumed will also allow for empirical validation 
of model-based predictions. The future of NTD programs 
may necessitate novel approaches, such as integrated treat-
ment, whereby multiple NTDs are targeted at once, and inte-
grated surveys. Furthermore, there may also be opportunities 
to incorporate COVID-19 surveillance in NTD programs to 
aid in mitigating further COVID-19 outbreaks.

During the year in which NTD programs should be cele-
brating achievements in progress towards 2020 goals [28] 
and building towards even more ambitious goals for 2030 
[29], COVID-19 will impact both the interventions and sur-
veillance programs that have led to and revealed hard-won 
gains. Programs will want to resume as promptly as possible, 
but, as highlighted here, for some NTDs and in some settings 
business should not resume as normal. Rather, there is an op-
portunity to implement novel catch-up strategies in order to 
ensure programs remain on track. These efforts will require 
WHO leadership, flexible support from donors, and research 
to evaluate impacts of different approaches. In the context of 
limited resources for NTD programs and the multifactorial 
impact of COVID-19 on health systems, prioritization and ra-
tionalization of mitigation strategies can be used to respond 

to programmatic needs, strengthening NTD programs for 
the future.
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