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Abstract: WD is caused by ATP7B variants disrupting copper efflux resulting in excessive copper
accumulation mainly in liver and brain. The diagnosis of WD is challenged by its variable clinical
course, onset, morbidity, and ATP7B variant type. Currently it is diagnosed by a combination of
clinical symptoms/signs, aberrant copper metabolism parameters (e.g., low ceruloplasmin serum
levels and high urinary and hepatic copper concentrations), and genetic evidence of ATP7B mutations
when available. As early diagnosis and treatment are key to favorable outcomes, it is critical to
identify subjects before the onset of overtly detrimental clinical manifestations. To this end, we sought
to improve WD diagnosis using artificial neural network algorithms (part of artificial intelligence) by
integrating available clinical and molecular parameters. Surprisingly, WD diagnosis was based on
plasma levels of glutamate, asparagine, taurine, and Fischer’s ratio. As these amino acids are linked
to the urea–Krebs’ cycles, our study not only underscores the central role of hepatic mitochondria
in WD pathology but also that most WD patients have underlying hepatic dysfunction. Our study
provides novel evidence that artificial intelligence utilized for integrated analysis for WD may result
in earlier diagnosis and mechanistically relevant treatments for patients with WD.

Keywords: Wilson disease; copper; mitochondria; liver; intermediary metabolism; urea cycle; amino
acids; Krebs’ cycle; artificial neural network; diagnosis prediction

1. Introduction

Wilson disease (OMIM 277900) is caused by homozygous or compound heterozygous
variants affecting the ATP7B gene (OMIM 606882) on chromosome 13q14. This gene
encodes for a polypeptide that, when acting as a dimer, exhibits a plasma membrane
copper-transport activity [1,2]. The protein has several membrane-spanning domains, an
ATPase consensus sequence, a hinge domain, a phosphorylation site, and at least two
putative copper-binding sites located mainly at the Golgi apparatus. By functioning as a
monomer, it exports copper out of the cells, guaranteeing the efflux of hepatic copper into
the bile. Alternate transcriptional splice variants encoding different isoforms with distinct
cellular localizations have been characterized.

Challenges to WD diagnosis are complicated by two factors: the type of ATP7B
variant and the clinical course of the disease. Most of the ATP7B gene variants observed in
patients include nonsense and frameshift mutations along with deletions, but few of the
truncated or modified ATP7B proteins still conserve some of the native activity. This might
constitute the main reason underlying the inconclusive attempts to correlate genotype
with phenotype [3,4] when including copper parameters [5]. WD presents with a variable
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clinical course. For instance, young adults more frequently manifest the first symptoms
of WD [6,7], but some patients present a late onset of the disease while others may not
show overt signs of copper toxicity at all. In addition, WD is usually classified into three
phenotypes defined as primarily hepatic (40%), neurological (40%), and psychiatric or
asymptomatic (20%). However, this classification is not exactly fine-tuned to the patients’
presentation of WD, as neurological signs (e.g., tremor, ataxia, dystonia, and parkinsonism)
are often observed concomitantly with hepatic metabolic defects [6–10]. Furthermore,
neurological signs usually present later than those associated with liver pathology [7,9–11].
These challenges at recognizing the signs of WD may hamper clinicians’ ability to make an
accurate diagnosis, impacting the delivery of personalized treatments that may minimize
the progression of the disease.

Considering the above challenges, the aim of this study was to apply artificial intelli-
gence to aid in the diagnostic process of WD and its hepatic or neurological manifestations.
In this regard, a neural network is a simulation of a biological brain (a.k.a. Artificial Neural
Network or ANN) and a branch of artificial intelligence. ANN is first “trained” by having it
process several input patterns and showing what output resulted from each input pattern.
Once trained, the ANN can recognize similarities when presented with a new input pattern,
resulting in a predicted output pattern. As such, ANN detects early warning signals of
critical transitions defined as sudden and large-scale state transitions that occur in complex
systems [12,13]. In the case of WD, we can speculate that ANN could contribute both to the
early diagnosis of the disease and can help characterize and predict the disease phenotypes.
Here, we will use the breadth of clinical and molecular outcomes to detect input similarities,
thereby allowing ANN to build a predictive model for WD phenotypes by considering
the diagnosis of WD and its phenotypes as critical transition points [12,14–19]. This can
be achieved even with relatively higher inter-subject variability as observed in humans
compared to isogenic/cloned WD animal models maintained under rigorous, controlled
conditions.

2. Materials and Methods
2.1. Biological Samples

The patients’ demographic and clinical data (age, sex, and BMI; WD diagnosis and
subclassification into hepatic, neurological or asymptomatic [5]) were collected at a single
center, the 2nd Department of Neurology, Institute of Psychiatry and Neurology in Warsaw,
Poland. Patients were all recruited when pre-treatment (i.e., not receiving any anti copper
treatment). All patients were diagnosed with WD based on the Leipzig criteria, including
low ceruloplasmin levels, increased 24 h urinary and hepatic copper levels, presence of
Kayser–Fleischer rings, presence of neurological symptoms, Coombs-negative hemolytic
anemia, and eventual genetic testing results if available, as previously described [20,21].
Other basic laboratory liver tests (i.e., total bilirubin) were performed in the hospital labora-
tory by using standard methods. Samples from control healthy subjects were obtained from
the same community in Poland. The study was approved by the local bioethics committee
and all patients provided written informed consent prior to participation following the
Declaration of Helsinki.

Mitochondrial DNA (mtDNA) copy number and deletions were determined in whole
blood by following the previously described protocol [22]. Of note, the subjects included
in the present analysis are the same subjects described in our previous mtDNA study [22].
Serum metabolomics were determined by mass spectrometry as described before [23,24].
Serum metabolites were normalized to the average of control values and expressed as log2
fold change (log2 FC). The missing values were replaced by using the k-nearest neighbor
algorithm feature approximation.

2.2. Artificial Neural Network (ANN) for Diagnosis

The neural-network design for the SFAM algorithm consisted of a three-layer network:
an input layer, with four units for the diagnostic criteria defined as control, asymptomatic
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WD or WDA, hepatic WD or WDH, and neurologic WD or WDN; sex, age, and BMI,
66 units for metabolites relevant to liver metabolism, 3 units for metabolite ratios, and
2 units for mtDNA-associated data; a hidden layer, with 11 units; and an output layer for
the diagnosis of WD. A NeuNet Pro software (CorMac Technologies Inc., Thunder Bay,
ON, Canada), SFAM algorithm was used for the prediction of WD and its phenotypes. The
unsupervised training variables included all of those indicated above. In order to select
the size of the training set, we performed a learning curve analysis [25]. Essentially, we
withdrew a relatively small random sample from our data to train an ANN and used this
training set to predict a randomly sampled test set. Then, the size of our training sample
was iteratively increased while keeping the same test set. By tracking the degree to which
predictive accuracy on the fixed test set increased with the training set size, we obtained
the training data that were needed until the differences between the network classifications
and the clinical diagnoses became acceptable (41 training samples and 21 test ones). We
also repeated the learning curve analysis multiple times with different test set samples
to further reduce variation in predictive accuracy. Finally, the patterns of input facts
associated with diagnoses were trained with randomly selected 41 subjects from the set 62
with known clinical status. Once the network was trained, the remaining 21 subjects were
“tested” by means of the trained network. The neural network classifications were then
compared with the known clinical diagnoses to observe whether the network was able to
classify the disease status with reliability. The same data were analyzed with the Visual
Rule Extraction, which is a highly optimized version of the C4.5 algorithm published by J.
Ross Quinlan [26] for generating a decision tree with adjustable tree pruning. Inductive
Rule Extraction, which is related to the fields of machine learning, knowledge discovery,
expert systems, and artificial intelligence, is often called “Decision Tree Classification”.
The method depends on the concept of entropy, which was introduced in the field of
information theory by Dr. Shannon >70 years ago [27]. Our analysis included a 75%
pruning with 4 minimum subjects.

3. Results and Discussion

A total of 62 subjects were included in our analysis (Table S1). Of those, 47 were diag-
nosed with WD (23 females/24 males) with prevalent hepatic (WDH; n = 18;
11 females/7 males) and prevalent neurological (WDN; n = 18; 7 females/11 males) mani-
festations or were asymptomatic (WDA; n = 11; 5 males/6 females). The average age of the
15 healthy control subjects (10 females/5 males) was 36 ± 9 years (mean ± SD), which is
not different from that of patients with WD (34 ± 11 years).

In order to apply ANN, we used two-thirds of the randomly selected samples (from all
62) to train the ANN by utilizing as input data the diagnosis of WD (healthy control, WDA,
WDH, and WDN), age, sex, BMI, total bilirubin, ceruloplasmin levels, mtDNA copy number
and deletions from whole blood, and 66 serum metabolites relevant to liver physiology, all
evaluated by mass spectrometry. We also included the following three relevant metabolite
ratios: lactate-to-pyruvate, as a feature of mitochondrial dysfunction [28]; cystine levels
normalized to the sum of cystine and cysteine, as a marker of oxidative stress [29,30]; and
the Fischer’s ratio (the ratio of branched chain amino acids (BCAA) to that of aromatic
amino acids (AAA) [31]), as a biomarker of advanced fibrosis (Table S1).

By utilizing a simplified fuzzy adaptive resonance theory map to predict a class
(in our case, WD diagnosis), the ANN classification identified subjects with WD vs.
those without it with an accuracy of 100% (95% CI = 83.89 to 100%) and sensitivity and
specificity of 100% (95% CI, respectively, 79.41% to 100% and 47.82% to 100%). Overall,
when the different phenotypes are considered, the ANN showed an accuracy of 57.14%
(Figure 1A; Table S2). The control and WDN diagnoses had the least errors (0% and
16.67%, respectively), whereas WDA and WDN diagnoses had 100% and 66.67% errors.
The mismatches between predicted and the actual diagnoses were mostly the result of the
reclassification of 60% of WD-affected subjects to the WDN diagnosis (all four WDA and
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two of the six diagnosed as WDH), suggesting the possible occurrence of undetected or
subclinical neurological issues in WD patients diagnosed as either WDA or WDH.
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Figure 1. Confusion matrix and decision tree for the diagnosis of WD and its manifestations by using artificial neural
network. (A) The testing samples (n = 21) were “trained” by using the trained ANN obtained with the training set. By
applying a simplified fuzzy adaptive resonance theory map, the top part of the table shows the actual diagnosis vs. the
predicted one. Numbers in boxes represent the number of subjects except for errors which are expressed in percentages.
Colored boxes are those matching the actual and predicted diagnoses. (B) Decision tree showing the main outcomes needed
to be tested in order to reach the diagnosis of WD and its phenotypes. Diagnosis confidences (in percentage) are stated
between parentheses. Other details are found in the text.

The same set was analyzed by using a Visual Rule Extraction algorithm to ascertain
what outcomes needed to be collected and in what order for reaching a reliable diagnosis,
which patients need a second opinion regarding their diagnosis, and finally what combi-
nation of factors are important in reaching a diagnosis (Figure 1B; Table S3). Our results
show that the resulting flow chart for determining diagnosis was built basically on values
from nine amino acids and derivatives (glutamate, asparagine, taurine, branched-chain,
and aromatic amino acids; Figure 1B). Notably, advanced liver disease is associated with
metabolic derangements, especially for amino acid levels, and most of these amino acids
are directly or indirectly associated with the urea (nitrogen disposal) and Krebs’ cycles.
These results also highlight the critical role of hepatic mitochondria in WD morbidity as
our own previous studies showed [22,32].

The healthy control subgroup was identified with a 69% confidence by considering
only the levels of the amino acid glutamate (log2FC ≤ −0.68; Figure 1B). In patients with
liver disease, as the hepatocytes cannot convert ammonia into urea and glutamine rapidly
enough, the blood ammonia level rises. Shunting of blood from the liver—as observed in
portal hypertension with interference with the intercellular glutamine cycle (Figure 2A)—
results in increased ammonia as well as glutamate levels. These changes are the likely
underlying metabolic explanation of our findings, indicating that glutamate levels could
be a discriminating factor between healthy controls and patients with WD.
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Figure 2. Enrichment analysis of outcomes identified by ANN and the intercellular glutamine cycle in WD. (A) Diagram
showing the intercellular glutamine cycle as it occurs between the periportal cells and the perivenous ones surrounding the
central vein. Copper accumulation induces liver toxicity, which results in lower urea cycle function undermining a safe
disposal of the excess of ammonia as urea. Excess of ammonia, formed by the action of glutaminase on glutamine (among
others), is then used to generate glutamate at the expense of the Krebs’ cycle intermediate alpha-ketoglutarate as well as
increases in asparagine at the expense of aspartate. The lower activity of the Krebs’ cycle results in lower ATP production,
which may challenge the ATP-driven generation of glutamine from glutamate. Enrichment analyses were performed by
using the amino acids and derivatives identified under Figure 1B as input against a disease signature database in CSF (B)
and blood (C). Those highlighted in yellow had an FDR < 0.05. The analysis was performed by using MetaboAnalyst [33].

With high glutamate levels, low BCAA/AAA ratio (log2FC ≤ −1.55) indicates a
diagnosis of WDH with 54% confidence. If the levels of the BCAA/AAA are above the
threshold, then low levels of both taurine (log2FC ≤ 0.45) and asparagine (log2FC ≤ 0.12)
result in a diagnosis of WDN with a 69% confidence (Figure 1B). If the levels of asparagine
are above the threshold, the diagnosis is WDH with an 8% confidence. Although most
amino acids are metabolized by the liver, BCAAs are metabolized exclusively by skeletal
muscle. Hence in progressive liver failure and end stage liver disease, as observed in asso-
ciation with copper accumulation, the latter amino acids’ metabolism remains unaffected,
whereas the metabolism of other amino acids, especially the aromatic ones, is severely
impaired. Therefore, blood concentrations of BCAA are normal, whereas those of AAA
increased, thereby increasing the BCAA/AAA ratio. Since both types of amino acids are
transported into the brain via the same carrier, the change in concentration ratio increases
the amount of AAA that enters the brain. Considering that these amino acids (tyrosine and
tryptophan) are the precursors of crucial biogenic amines, dopamine, noradrenaline, and
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serotonin (5-hydroxytryptamine) and given that that the serotonin synthesis in the brain
does not contain a flux-generating step, these changes in amino acid blood levels increase
the concentrations of amines in the brain. As serotonin levels in brain promote sleep, large
amounts of tryptophan and serotonin could explain the neurological issues and lethargy
observed in some WD-affected patients [34]. These imbalances in neurotransmitters along
with deficits in the disposal of nitrogen via the urea cycle and the siphoning off alpha-
ketoglutarate from Krebs’ cycle may further contribute to energy failure and ammonia
toxicity in the CNS.

The combination of high glutamate and BCAA/AAA ratio with levels of taurine
above the threshold results in WD diagnosis with a 23% confidence (Figure 1B). High
levels of taurine somehow seem to protect WD-affected patients from entering a path
that results in WDN diagnosis. Taurine is an abundant intracellular free amino acid that
has a central role in brain development, and it is the second most important inhibitory
neurotransmitter after GABA. It also forms conjugates with bile acids and may enhance
bile flow and increase cholesterol clearance by the liver. Taurine, in the context of copper-
induced oxidative stress, may also play a role in salvaging toxic intermediates (see [35]
and references therein). Interestingly, taurine in adults can be obtained from the diet or
from synthesis from cysteine when vitamin B6 is present. Although vitamin B6 deficiency
does not appear to be frequently associated with new penicillamine formulations, it has
been proposed that some of the side effects of copper chelator D-penicillamine may be
the result of interference with vitamin B6 metabolism, thereby promoting neurological
issues [36,37]. Since the studied patients were not receiving any treatment at the time of
the blood draw, it is tempting to propose that copper-mediated increases in oxidative stress
may reduce cysteine levels as well as those of B6, resulting in lower taurine which then
triggers some of the neurological symptoms due to an imbalance between excitatory and
inhibitory neurotransmitters.

The decision tree showed some phenotypes (control, WDH, and WDN) that were
diagnosed with suitable confidence levels, whereas it was less useful for WDA. This
suggests that, according to the ANN analysis, most subjects affected by WD could actually
be either WDN or WDH even when they are still clinically asymptomatic. Notably, when
taurine and asparagine levels are low and glutamate is high, increases in the BCAA/AAA
ratio shifts the diagnosis from WDH to WDN suggesting that these parameters should
be tested in all WD patients in order to monitor their clinical manifestations and possible
progression from hepatic to neurologic signs and symptoms.

Enrichment analysis performed with the nine amino acids and derivatives implicated
in the diagnosis of WD (from Figure 1B) against a database of disease signatures in human
cerebral spinal fluid (Figure 2B) and blood (Figure 2C) indicated a significant overlap
with manifestations associated with WD. Among them, seizures, ataxia, inflammation,
amino acid or metabolic disorders (overlapping with diabetes, Hartnup, and Tyrosinemia),
systemic disorders (overlapping with Friedreich’s ataxia), cognitive impairment [38], and
cholestasis [39] were identified.

Finally, principal component analysis performed with all outcomes vs. the nine
amino acids and derivatives from the decision tree showed that the separation between
healthy controls and WD patients is the most efficient. Conversely, both WDA and WDN
diagnoses seem to be subsets of the larger WDH group, suggesting that all patients may
have various degrees of underlying and potentially underdiagnosed or underrecognized
hepatic function impairment (Figure 3).
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4. Conclusions

By evaluating nine amino acids and derivatives, it is possible to diagnose WD with an
acceptable level of confidence for those having hepatic and neurological manifestations.
Surprisingly, the outcomes usually tested in WD, such as ceruloplasmin and total bilirubin
levels or common demographic and clinical parameters including age, sex, or BMI, did
not play any role in our decision tree. The finding that nine amino acids reflect the WDN
and WDHmainly liver function as well as the interaction between the urea and the Krebs’
cycle is consistent with the role of mitochondrial dysfunction in both patients and mouse
models of the disease [22,32,41–57]. One major limitation of the studied cohort is the
lack of direct (liver biopsy and histological analyses) or indirect assessments (liver and
brain imaging) of disease morbidity. In addition, we are not comparing WD cases to
other etiologies of liver diseases, and we do not have a prospective cohort to assess the
longitudinal risks in developing WD manifestations. Some of our findings may not be
specific of WD but could be associated with liver fibrosis and portal hypertension in
general. However, the proposed algorithm could have incremental value if added to
existing diagnostic parameters of altered copper metabolism (except ceruloplasmin) or
findings from liver or brain imaging [58], and it could streamline the diagnostic process. It
could be argued that adding histological reports may improve the accuracy of the ANN-
based algorithm. However, non-invasive diagnoses and assessments of liver disease are
becoming the standard-of-care for most liver diseases. As such, access to histology reports
is less common. A scoring system based on liver histology will not likely help current and
future clinical practice. On the other hand, future studies should attempt an integration of
validated WD scoring systems, including the Leipzig score, to ANN approaches in order to
further improve their clinical accuracy.
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Furthermore, our findings may have relevance when designing targeted therapies
or when optimizing dietary approaches in the management of patients with WD. Dietary
approaches in WD should aim at reducing the urea cycle overload and, consequently, mito-
chondrial dysfunction, while assuring adequate protein intake in order to minimize sarcope-
nia associated with portal hypertension. In addition, the adjustment of the BCAA/AAA
ratio, which has been extensively studied as an approach to the treatment of hepatic en-
cephalopathy [59–65], may be particularly helpful in WD when hepatic and neurological
manifestations coexist.

Ultimately, ANN represents a future option when considering the diagnosis of WD,
especially in those frequent cases with uncertain clinical presentation, and offers the
opportunity for therapeutic improvements.
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Table S7: PCA loadings when using outcomes selected by the visual extraction rule algorithm.
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