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Abstract

Enhancing the Performance and Security of Networked Control Systems

Using Identification-Integrated Model-Based Control

Modern industrial plants have become increasingly dependent on networked con-

trol system architectures in which dedicated sensor-controller, controller-actuator, and

controller-controller links are replaced by real-time shared (wired or wireless) digital

communication networks that operate over specialized industrial networks and proto-

cols. While networked control systems offer a multitude of economic and operational

benefits, the increased reliance on shared communication networks comes with a host

of fundamental challenges that need to be addressed. For example, challenges such as

network resource constraints, data losses, communication delays and real-time schedul-

ing constraints are tied to the inherent limitations on the transmission and processing

capabilities of the communication medium, and if left unaddressed can cause operational

instabilities or closed-loop performance deterioration. These challenges have motivated a

significant and growing body of research work on the analysis and design of networked

control systems. An approach that has been proposed to address a number of these chal-

lenges is the use of model-based control, however, a central problem that has yet to be

addressed is the robustness of the control system to plant-model mismatches that could

arise due to things like fouling in heat-exchanger systems or deactivation of catalysts in

catalytic reactors.

Motivated by these considerations, this dissertation aims to develop an identification-

integrated model-based control framework that enhances the performance and security of

networked control systems, and address framework implementation issues such as com-

munication resource constraints, lack of full state measurements, distributed systems,

communication strategies, nonlinearities, and measurement errors. Finally, the implemen-

tation and effectiveness of the developed framework through simulated chemical process

examples.
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Chapter 1

Introduction

Process systems engineering, or controls engineering, is a discipline concerned with the

planning, designing, operating, and controlling of any kind of unit operation [1]. Tra-

ditionally, the control of such operations takes place through dedicated feedback links

as depicted in Figure 1.1. Through these dedicated links, the controller receives data

from the sensor at the output of the process, computes a control action, then sends an

appropriate signal to the actuator at the inlet of the process to try and achieve the de-

sired setpoint. While this traditional control architecture has proven to be successful,

it has a number of limitations. To understand these limitations, we must first look at

a plant-wide application of this control architecture. Figure 1.2 shows an example of a

plant that utilizes a traditional feedback control architecture. In this plant there are three

processes, a plant supervisory control unit from which operators make control decisions

and establish setpoints for each controller in order to meet plant production specifica-

tions, and a plant monitoring unit in which plant parameters are monitored for safety

and performance tracking. In the traditional control architecture, dedicated links from

the plant supervisory control unit to each controller, as well as from each sensor to the

plant monitoring unit, have to be established. While this example only shows three unit

operations, in real applications there can be hundreds of units that are spaced hundreds

of meters apart and installing cables in such a set-up can be very costly. Additionally,

due to its wired nature, this architecture is not very modular; that is, it is not flexible

to the addition of extra units. Moreover, plants that utilize this traditional control ar-
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chitecture lack process level integration; the local sensors and controllers in each unit do

not have access to data from any other units, which limits the ability for these units to

respond quickly to disturbances and faults. Finally, this architecture does not lend itself

to real-time data monitoring, a paradigm in which plant parameters can be accessed in

real-time by plant operators as well as management to enable the possibility for tight

integration between plant production and market demand when it comes to high level

business decisions [2].

Figure 1.1. Traditional feedback control architecture for a single unit

To address these limitations, modern industrial plants have become increasingly de-

pendant on networked control system architectures in which dedicated sensor-controller,

controller-actuator, and controller-controller links are replaced by real-time shared (wired

or wireless) digital communication networks that operate over specialized industrial net-

works and protocols such as Ethernet, HART, WirelessHART, ISA100, Profibus, Modbus

and DeviceNet. On the unit operation level, the controllers, actuators, and sensors all

exchange information through a local shared network as shown in Figure 1.3. Through

this local shared network, processes can exchange information more readily, thus, en-

abling tight process integration. Additionally, a plant-wide shared communication net-

work, across which information can be passed between the local networks and the plant
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Figure 1.2. Example of a plant that utilizes a traditional feedback control architecture

supervisory control and monitoring unit, is established. An example of this architecture

can be seen in Figure 1.4. Leveraging these shared digital communication protocols and

networks can significantly improve the operational flexibility and fault-tolerance capabili-

ties of an industrial control system, as well as reduce the installation, reconfiguration, and

maintenance times and costs by reducing the amount of field wiring required for these

control systems [3].

While networked control systems offer a multitude of economic and operational ben-

efits, the increased reliance on shared communication networks comes with a host of

fundamental challenges that need to be addressed. For example, challenges such as net-

work resource constraints, data losses, communication delays and real-time scheduling

constraints are tied to the inherent limitations on the transmission and processing ca-

pabilities of the communication medium, and if left unaddressed can cause operational

instabilities or closed-loop performance deterioration. These challenges have motivated a

significant and growing body of research work on the analysis and design of networked

control systems (see, for example, [4–14], for some surveys of results and references in this

area).

An approach that has been previously considered to address these challenges is the

use of model-based control (see, for example, [15–22]). The idea of model-based control
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Figure 1.3. Networked feedback control architecture for a single unit

Figure 1.4. Example of a plant that utilizes a networked feedback control architecture
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is to embed a predictive model within the process’ local controller to generate estimates

of the process states. By generating these estimates, the controller can compensate for

lapses in communication by using these estimates to compute control actions, and when

communication can be established, the available state measurements are used at discrete

times. An additional advantage of utilizing model-based control is the ability to design a

control architecture in which periodic or event-based communication can be established

in order to maximize the achievable savings in network resource utilization. This is

especially important in systems where network bandwidth is limited or processes that

rely on batteries in their operation. Figure 1.5 depicts this strategy for a single unit

operation.

Figure 1.5. Model-based control concept

While a model-based control strategy generally helps reduce the control system’s re-

liance on the communication medium, and therefore reduces its vulnerability to sensor

failures and communication outages, its applications thus far have relied on the use of a

single model with fixed parameters. The use of a fixed parameter model, however, is not

robust. For example, consider the case when process parameters change over time, due

to, for example, fouling in heat-exchanger systems or deactivation of catalysts in catalytic
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reactors. Due to these variations, the model no longer captures the accurate state of the

process, and plant-model mismatch occurs. If left unaddressed, this mismatch may limit

the achievable savings in network resource utilization or cause performance degradation

and even instability.

Another challenge that networked control systems face, especially in the context of

wireless networks, is the issue of network cybersecurity. The deployment of sensor and

actuator networks on a large-scale, together with the open nature of wireless networks,

make networked control systems more vulnerable to cyberattacks. Cyberattacks take

many forms, including deception and denial-of-service attacks (e.g., [23]), replay attacks

(e.g., [24, 25]), covert attacks (e.g., [26]) and false data injection attacks (e.g., [27, 28]).

These attacks generally aim to alter process inputs and cause them to deviate from their

normal operating values. If left unchecked, these cybersecurity risks can potentially lead

to high recovery costs, injury, death or physical damage (e.g., [29–34]), and are therefore

a critical problem to address.

A number of approaches have been proposed in the literature for dealing with cyberse-

curity risks. Traditionally, these approaches are based on computer science, information

technology, computer hardware, or networking solutions (e.g., see [28, 35–37]). More re-

cently, several efforts within the process control community have been made to address the

problem of cybersecurity from a control system perspective. Some of these efforts focused

on the development of methods for the detection of cyberattacks. Examples of contribu-

tions in this direction include Bayesian detection techniques as binary hypothesis tests

with prior probability (e.g., [38, 39]), weighted least square detection approaches (e.g.,

[40, 41]), χ2-detector based on Kalman filters (e.g., [42, 43]), quasi-fault detection and

isolation methods (e.g., [44]), Gaussian mixture clustering techniques to classify incoming

measurements (e.g., [45]) and dynamic watermarking techniques wherein actuators inject

private excitations into the system to reveal malicious signal tampering (e.g., [46]). Other

studies have proposed techniques for mitigating the effects of cyberattacks. Examples of

contributions in this direction include event-triggered control strategies under denial-of-

service attacks (e.g., [47]), the design of attack-resilient state estimators (e.g., [48]) and
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economic model predictive control mitigation strategies (e.g., [49, 50]).

An approach to mitigate the risk of cyberattacks in networked control systems is

to minimize the control system’s reliance on the communication network as much as

possible. This idea has been pursued in earlier studies in the context of the design of

resource-aware networked control systems (e.g., [15, 16, 21, 22, 51, 52]), and is realized

through the design of a model-based networked control algorithm that enforces closed-loop

stability with minimal sensor-controller communication. The control strategy involves

suspending sensor-controller communication for some time during which the control action

is computed based on the model predictions, and then updating the model states using

the sensor measurements transmitted when sensor-controller communication is restored.

In doing this, a minimum communication rate that guarantees closed-loop stability can be

established. While this approach helps reduce the vulnerability of the control system to

network-induced cyberattacks, it is a passive approach in the sense that it does not provide

explicit robustness guarantees against cyberattacks, and does not include mechanisms by

which cyberattacks can be actively detected or mitigated.

Motivated by these considerations, the overall objectives of this dissertation are to:

• Develop an identification-integrated model-based control framework that enhances

the performance and security of networked control systems.

• Address framework implementation issues such as communication resource con-

straints, lack of full state measurements, distributed systems, communication strate-

gies, nonlinearities, and measurement errors.

• Demonstrate the implementation and effectiveness of the developed framework through

simulated chemical process examples.

To achieve these objectives, in Chapter 2 we introduce the idea of integrating model

identification and model-based control in order to maintain closed-loop stability and re-

duce network resource utilization, while enhancing controller performance and accounting

for plant drift and plant-model mismatch. Initially, a model-based controller with a well-

characterized model state update rate is designed and implemented. An error detection
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scheme with a time-varying alarm threshold is devised to track the state evolution and

trigger model parameter updates. When the instability threshold is breached, the com-

munication rate is temporarily increased to avoid instability and, in the meantime, the

data collected during this time period are used to identify a new model online based on

subspace identification techniques. The networked closed-loop stability region associated

with the new model is characterized and used to identify a suitable model state update

rate that can restore the communication frequency to its original level.

The approach in Chapter 2 is based on the assumption that all process states were

available as measurements, which were used for both controller implementation and model

parameter estimation. In many practical applications, measurements of the full-state are

not available, and only a limited number of measured outputs are accessible. This prob-

lem typically arises due to technological constraints on the sensing techniques, which

translate into restrictions on the ability to measure certain physical variables in real-time

such as concentrations of reactive intermediates. The lack of full-state measurements im-

poses limitations on the implementation of full-state model-based feedback control and

the data-based identification of model parameters, which need to be addressed. To ad-

vance the proposed framework, in Chapter 3 we present an approach for augmenting

time-triggered model-based output feedback control with event-triggered online parame-

ter re-identification for process systems subject to limited output measurements, process

parameter variations and sensor-controller communication constraints.

At this point, we have only considered implementation strategies for systems mod-

eled by ordinary differential equations (ODEs), however, many applications are modeled

by highly-dissipative partial differential equations (PDEs). In Chapter 4 we present

a framework for the integration of model-based control and model identification for

spatially-distributed process systems modeled by highly-dissipative PDEs, subject to

sensor-controller communication constraints and process parameter variations. The frame-

work aims to enhance the stability and performance properties of the networked closed-

loop system in the presence of process parameter variations and external disturbances,

while simultaneously reducing the rate of sensor-controller information transfer required.
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Initially, a networked feedback controller is designed on the basis of an approximate finite-

dimensional model that captures the dominant dynamics of the infinite-dimensional sys-

tem. The maximum allowable model state update rate is explicitly characterized in terms

of the model parameters and the control actuator locations, and this characterization is

used to devise a time-triggered model state update policy that guarantees closed-loop

stability. An error monitoring scheme with a time-varying instability alarm threshold

is then developed to track the state evolution and trigger model re-identification and

model parameter updates in the event of process parametric drift. When the alarm

threshold is breached, a safe-parking protocol is initiated by temporarily increasing the

sensor-controller communication rate to counter the destabilizing influence of paramet-

ric drift. In the meantime, the input and state data collected during the safe-parking

period are used to identify, on-line, a new finite-dimensional model based on subspace

identification techniques. The networked closed-loop stability region associated with the

newly-identified reduced-order model is then characterized and used to identify a suitable

model state update rate that can restore the control performance and network utilization

to their pre-drift levels.

While the approach in Chapter 4 is successful at improving the achievable level of

communication savings by keeping the plant-model mismatch to a minimum, the imple-

mentation of this approach requires that a minimum fixed communication rate be estab-

lished in order to achieve closed-loop stability, and model re-identification is triggered

only in response to destabilizing parametric drifts. The use of a fixed communication

rate strategy is not always optimal with respect to the achievable savings in network re-

source utilization. Event-triggered control strategies, on the other hand, can lead to more

substantial reductions in network utilization and provide the process with the flexibility

needed to adapt to changes in the operating environment. In Chapter 5 we present an

event-based approach for the integration of model-based control and parameter identi-

fication in networked distributed processes subject to sensor-controller communication

constraints and process parametric drift. The approach aims to improve the performance

and communication constraint-handling capabilities of the networked closed-loop system,
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and simultaneously address practical implementation issues arising from the uncertainty

in process parameter values. Following this work, in Chapter 6 we address the limitations

imposed by the lack of full-state measurements on the implementation of the integrated

control and identification event-based approach developed in Chapter 5 in the context of

event-based networked control of distributed processes. In Chapter 6 We focus on systems

described by highly-dissipative PDEs subject to parametric drift and a limited number

of measured outputs, and address the problem on the basis of a suitable reduced-order

model that captures the slow dynamics of the infinite-dimensional system.

To address the implementation issues of nonlinear systems control, in Chapter 7 we

present a framework for augmenting model-based feedback control with error-triggered pa-

rameter re-identification in spatially-distributed systems described by nonlinear parabolic

PDEs subject to sensor-controller communication constraints and process parametric vari-

ations. The framework aims to maintain closed-loop stability in the presence of varying

levels of plant-model mismatch during periods of parametric drift, while simultaneously

keeping the rate of sensor-controller communication to a minimum and accounting ex-

plicitly for the presence of nonlinearities. In Chapter 8 we advance the algorithm further

to address control under measurement errors by developing a model-based framework for

the design of finite-dimensional sampled-data feedback controllers for spatially-distributed

systems described by nonlinear parabolic PDEs subject to discretely-sampled measure-

ments, bounded measurement errors, and bounded model uncertainty.

While measurement errors can occur naturally in sensor systems, they can also occur

due to deliberate cyberattacks. To explore this, in Chapter 9 we present an integrated

approach for the active detection, identification and mitigation of cyberattacks in a class

of networked control systems subject to false data injection cyberattacks. The approach

brings together tools from supervised machine learning, which are used for attack detection

and identification, and model-based networked controller stabilization techniques, which

are used for attack mitigation. Initially, a model-based networked control architecture

in which the sensor and the controller communicate over a resource-limited communi-

cation medium is designed, and the networked closed-loop stability region is explicitly
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characterized in terms of the measurement error resulting from the falsified measurement

cyberattack, as well as the communication rate and the controller design parameters.

This characterization is obtained by modeling the cyberattack in the closed-loop system

formulation thus making it possible to identify the range of feasible operating conditions

that guarantee robust stability under the attack. This characterization reveals the key

parameters that can be used to actively mitigate the effects of these attacks when they

arise. The implementation of these mitigation measures requires knowledge of the exis-

tence of the cyberattack as well as an estimate of its magnitude. To that end, we utilize

machine learning methods (e.g., [53], [54], [55], [56]) to build a neural network (NN) based

detection system. To detect both the existence and the magnitude of the cyberattack, the

NN is trained using data obtained from simulating the system under normal operation

and the system under different cyberattack magnitudes. While NN models are gener-

ally utilized as classification tools, training the NN with different cyberattack magnitudes

allows for the classification of both the existence of a cyberattack and the approximate

magnitude of this attack.

Finally, proofs of proposed theorems are provided in the appendix.
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Chapter 2

Integrating Parameter Identification

and Model-Based Control

In this chapter, we present a framework for integrating parameter identification and

model-based control of networked control systems in order to maintain closed-loop sta-

bility and reduce network resource utilization, while enhancing controller performance

and accounting for plant drift and plant-model mismatch. Initially, a model-based con-

troller with a well-characterized model state update rate is designed and implemented.

An error detection scheme with a time-varying alarm threshold is devised to track the

state evolution and trigger model parameter updates. When the instability threshold is

breached, the communication rate is temporarily increased to avoid instability and, in

the meantime, the data collected during this time period are used to identify new model

parameters online based on subspace identification techniques. The networked closed-

loop stability region associated with the new model is characterized and used to identify

a suitable model state update rate that can restore the communication frequency to its

original level. Finally, the results are illustrated using a chemical process example.

The rest of the chapter is organized as follows: following some preliminaries in Sec-

tion 2.1, the model-based controller is designed in Section 2.2 and a stability analysis is

performed for the closed-loop system in Section 2.2.2. The integration of parameter iden-

tification and model-based control framework is then discussed in Section 2.3. Finally, the

implementation of the proposed framework is illustrated in Section 2.4 using a chemical
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process example. The results of this chapter were first published in [51].

2.1 Preliminaries

We consider a plant comprised of a network of interconnected subsystems with the fol-

lowing state-space representation:

ẋi = Aixi +Biui +
n∑

j=1,j 6=i

Aijxj (2.1)

where xi is the state vector, ui is the manipulated input vector, Ai and Bi are the state

and input matrices, respectively, all of the i-th subsystem, Aij is the interconnection ma-

trix which captures the coupling between the i-th and j-th subsystems, and n is the total

number of subsystems. The various subsystems have local control systems that exchange

state measurements over a resource-constrained communication medium. The control ob-

jective is to stabilize the overall system at the desired steady-state, while simultaneously

reducing unnecessary utilization of the communication medium. To simplify the presen-

tation of the main results, we will focus on the state feedback control problem where the

states of all the units are assumed to available as measurements.

2.2 Model-Based Control with Time-Triggered Com-

munication

2.2.1 Local controller synthesis

To address the control objective, we consider a model-based control strategy similar to

the one considered in [15]. The main idea is to embed within the local control system of

each unit a set of dynamic models which are used to provide estimates of the states of

the neighbouring units in the event when communication between the plant subsystems

is suspended. When communication is re-established, the model states are updated using

the plant states, at discrete time instances, based on the sensor measured values. The

13



resulting control and update laws are given by:

ui(t) = Kixi(t) +
n∑

j=1,j 6=i

Kjix̂
i
j(t), i ∈ {1, 2, · · · , n}

˙̂x
i

j(t) = Âjx̂
i
j(t) + B̂jûj(t) + Âjixi(t) +

n∑
l=1,l 6=i,l 6=j

Kjlx̂
i
l(t), t ∈ (tk, tk+1)

ûij(t) = Klx̂
i
j(t) +Kjixi(t) +

n∑
l=1,l 6=i,l 6=j

Ajlx̂
i
l(t), t ∈ (tk, tk+1)

˙̂x
i

j(tk) = xj(tk), k ∈ {0, 1, 2, · · · }

(2.2)

where Ki is the local feedback gain, Kij is the controller gain that compensates for the

interactions, x̂ij is the state of the model capturing the dynamics of the j-th unit embedded

in the i-th unit, Âj, Âji, Âjl and B̂j are constant matrices associated with the model of

the j-th unit, and tk is the update time. Note that, for simplicity, the states of all models

are assumed to be updated at the same time.

2.2.2 Closed-loop stability analysis

An important measure of the extent of network utilization is the update period, h, which

is defined as the difference between two successive update times, i.e., h = tk+1 − tk. To

achieve closed-loop stability with minimal communication, it is important to characterize

the maximum allowable update period for the control system which dictates the minimum

communication frequency required for stability. This characterization can be obtained

through a closed-loop stability analysis. Specifically, it can be shown (see [15] for the

details) that the response of the closed-loop system of (2.1) - (2.2) in terms of the update

period is given by:

ξ(t) = eΛ(t−tk)(Ise
ΛhIs)

kξ0 = eΛ(t−tk)Mkξ0 (2.3)

for k ∈ {0, 1, 2, · · · }, where ξ(t) := [sT (t) eT (t)]T is an augmented vector of the plant

states and model estimation errors between the model and plant states, Λ is the augmented

closed-loop matrix which depends on the plant and model matrices as well as the controller

gains, Is is an augmented identity matrix, and ξ0 = [xT (t0) 0]T is the initial condition.

By analysing this response, it can be verified that a necessary and sufficient condition for

closed-loop stability is to have all eigenvalues of the stability test matrix M lie strictly
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inside the unit circle. This is represented by λmax(M)[Ai, Aij, Bi, Âi, Âij, B̂i, Ki, Kij, h] <

1 where λmax is the maximum eigenvalue magnitude of M . This condition can be used to

explicitly characterize the maximum allowable update period in terms of the plant-model

mismatch and controller gains.

2.3 Integrating Model Identification and Model-Based

Control

In this section, an overview of the proposed methodology is presented first, and is then

followed by a discussion of the key implementation issues.

2.3.1 Overview of the proposed methodology

Figure 2.1 summarizes the proposed approach for integrating model identification and

model-based control. Initially, the control system is operated at a suitably chosen update

period that minimizes communication while ensuring closed-loop stability. The evolution

of the closed-loop state is continuously monitored and checked against an instability alarm

threshold to determine when the model parameters need to be updated. In the event of

a threshold breach, a “safe-parking” protocol is activated to momentarily stabilize the

closed-loop system while additional data is collected and a new model is identified. The

new model is then checked for stability, and the corresponding communication rate is

determined. Finally, the model parameters are updated and the new communication rate

is implemented. The algorithm is repeated every time the instability alarm threshold is

breached.

2.3.2 Triggering criterion

To determine when a new model needs to be identified, a process monitoring scheme is

implemented whereby the closed-loop states are continuously checked to detect potential

instabilities caused by the drift in plant parameters. An instability alarm can be designed

on the basis of the nominal closed-loop response in (2.3). Specifically, it can be verified

that, in the absence of process parameter variations, the following time-varying bound is
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Figure 2.1. Flowchart of the algorithm for integrating model identification and model-
based control
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satisfied:

‖x(t)‖ ≤ αe−β(t−t0)‖x(t0)‖ (2.4)

where α > 1 and β > 0 are tunable constants that depend on the choice of the controller

design parameters. Using this bound as a time-varying alarm threshold, instability can

be detected once the norm of the state violates the threshold. This acts as a trigger

for subsequent steps in the process, culminating in the update of the model parameters.

Note that, unlike the model state updates which are time-triggered periodically, the model

parameter updates are event-triggered and thus occur less frequently.

2.3.3 Safe parking and model identification

Once the instability threshold is breached, the plant is switched temporarily to a safe-

parking mode of operation where the model state update period is reduced for a certain

period of time. The temporary increase in the communication rate serves to maintain

closed-loop stability and to collect sufficient data for the model identification step. Model

identification is then triggered and new model parameters are obtained. While the choice

of the identification method depends on the particular application, subspace techniques

are used in this study to identify the new model matrices based on the closed-loop input

and state data to keep plant-model mismatch to a minimum. Note that in the case

of time-varying uncertainty where the mismatch continues to deteriorate over time, the

safe-parking step may need to be repeated to ensure closed-loop stability.

2.3.4 Stability check

Once a new model is identified, the closed-loop stability properties are analysed based on

the eigenvalues of the new stability test matrix M to determine the range of stabilizing

update periods associated with the new model. If either no stabilizing update period ex-

ists, or the maximum allowable update period is less than the safe-parking update period,

the plant is kept in the safe-parking mode until a stabilizing model with a lower update

frequency requirement can be found (possibly using a different identification method);

otherwise, the model parameters are updated and the corresponding update period is

implemented.
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2.4 Application to a chemical process example

We consider a networked plant comprised of two interconnected non-isothermal contin-

uous stirred tank reactors with a material recycle stream. The control objectives are to

stabilize the system at the open-loop unstable steady-state using the heat input rates

as the manipulated variables, to minimize the required communication between the two

control systems and to account for process parameter variations.

To simulate plant parametric drift, we introduce uncertainty in the plant parameters.

We define δ = (∆Hm − ∆H)/∆H, where ∆Hm is the nominal values of the heat of

reaction used in the plant models. The operating conditions were chosen such that the

model states are updated every 4.8 minutes and that there is initially no mismatch between

the model and plant states; that is, h = 0.080h and δ1 = 0. After 1 hour of closed-loop

stable operation (see Figures 2.2 - 2.3), an uncertainty of δ1 = −0.178 is introduced in

the plant causing a mismatch between the plant and model parameters. It can be seen

in Figures 2.2 - 2.3 that, starting at approximately the 4th hour of operation, the reactor

temperature starts to diverge from the operating steady-state in an oscillatory fashion

until the instability alarm threshold is breached and the safe-parking mode is triggered

to regain stability.

The safe-parking update period is determined from the stability plot in Figure 2.4

(see dashed line) which shows that the update period can be reduced to h = 0.073h

to stabilize the system. It is noted that it is sufficient to increase the communication

frequency to achieve stability; however, the objective here is to maintain stability with

low communication frequencies, and model re-identification allows us to continue achieving

this balance even after the process drifts. After data has been collected during the safe-

parking period, the plant model is re-identified at time t = 10h. At that point, the stability

region of the new model is characterized based on the new stability matrix M and the

update period is increased to h = 0.084h to switch the plant out of the safe-parking mode;

and, as seen in Figure 2.2, maintain stability for the rest of the simulation.

The effect of uncertainty and model re-identification on closed-loop stability can be

seen in Figure 2.4 which shows the stabilizing ranges for the update period before the
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Figure 2.2. Closed-loop temperature profile for the first reactor

Figure 2.3. Heat input rate profile for the first reactor
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Figure 2.4. λmax(M) as a function of the update period under normal operation
(dashed-dotted), under plant-model mismatch (dashed) and for the identified model
(solid)

uncertainty was introduced, after the error was introduced and the safe-parking mode

was invoked, and after the model re-identification took place. Eigenvalues below the

critical unit line correspond to stable update periods. It can be seen that when the

error is introduced, the stability region shrinks; however, after model re-identification

takes place, the stability region increases, thus yielding a larger feasible range of update

periods. This translates into stabilization with a lower communication frequency after

model uncertainty is introduced.

2.5 Conclusions

A framework for the integration of time-triggered model-based control and event- triggered

model identification for networked process systems subject to process parameter variations

and communication constraints was presented in this chapter. It was shown that by

minimizing the plant-model mismatch, model identification techniques can help enhance

closed-loop stability with reduced communication requirements. The next chapter will

focus on generalizing this approach to address the output feedback control problem and

also explore the effect of the particular choice of the model-identification method on the

20



achievable savings in communication resource utilization.
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Chapter 3

Output Feedback Model-Based

Networked Control of Process

Systems with Parameter

Re-Identification

In Chapter 2, the developed framework was based on the assumption that all process states

were available as measurements, which were used for both controller implementation and

model parameter estimation. In many practical applications, measurements of the full-

state are not available, and only a limited number of measured outputs are accessible.

This problem typically arises due to technological constraints on the sensing techniques,

which translate into restrictions on the ability to measure certain physical variables in real-

time such as concentrations of reactive intermediates. The lack of full-state measurements

imposes limitations on the implementation of full-state model-based feedback control and

the data-based identification of model parameters, which need to be addressed.

In this chapter, we present an approach for augmenting time-triggered model-based

output feedback control with event-triggered online parameter re-identification for process

systems subject to limited output measurements, process parameter variations and sensor-

controller communication constraints. The rest of the chapter is organized as follows:

following some preliminaries and an overview of the control problem in Section 3.1, a

model-based output feedback controller is designed and analyzed in Section 3.2. The
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controller generates the control action using the predictions of a locally embedded model

during periods of communication suspension, and the model state is periodically updated

when communication is resumed. Owing to the lack of full-state measurements, a state

observer is embedded within the sensor to generate state estimates using the measured

outputs which are transmitted over the network to update the model states. An explicit

characterization of the minimum allowable communication rate in terms of the various

process, controller and observer design parameters is obtained.

The proposed methodology for augmenting model-based control with online param-

eter re-identification tools is then presented in Section 3.3, where an error monitoring

scheme with a time-varying alarm threshold is developed on the basis of the nominal

(drift-free) closed-loop stability properties. When the alarm threshold is breached during

periods of parametric drift, a safe-parking mode of operation is triggered by adjusting

the communication rate and/or the controller/observer design parameters to counteract

the destabilizing tendencies of the increased plant-model mismatch. The process data

collected during the safe-parking period are used to identify new model parameters, and

the resulting networked closed-loop stability region is assessed to determine the appro-

priate post-drift communication rate and/or controller design parameters. At this point,

the process exits the safe-parking regime and the model parameters are updated. Finally,

the implementation of the developed methodology is illustrated in Section 3.4 using a

chemical process example. The results of this chapter were first published in [57].

3.1 Preliminaries

In this work, we consider the class of dynamic linear processes described by the following

state-space representation:

ẋ(t) = Ax(t) +Bu(t) (3.1)

y(t) = Cx(t) (3.2)

where x ∈ Rn is the state vector, A ∈ Rn×n and B ∈ Rn×m are the state and input

matrices, respectively, u ∈ Rm is the vector of manipulated inputs, y ∈ Rq is the vector

of measured outputs, and C ∈ Rq×n is the output matrix.
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We consider a networked control architecture in which the measurement sensors as-

sociated with the process of (3.1) communicate with the feedback controller at discrete

times over a shared, resource-constrained communication medium. The communication

medium is shared by other processes and units, and it is therefore desirable to optimize

the rate at which the controlled process requires sensor feedback over the network. The

control objective is thus to stabilize the closed-loop system at the desired steady-state

while simultaneously reducing the required sensor-controller communication rate so as to

reduce network resource utilization by the controlled process (which helps free up net-

work resources for other units or processes sharing the network). This objective is to be

achieved subject to process parametric variations and limited output measurements.

3.2 Model-Based Output Feedback Control

3.2.1 Controller synthesis

To achieve the control objective, a model-based control strategy wherein a model of the

process is embedded within the controller is utilized. The purpose of the model is to pro-

vide the controller with estimates of the system states when communication is suspended,

and the control actions are generated based on these estimates. When communication is

re-established, the model states are updated over the network, at discrete instances. The

embedded model takes the following form:

˙̂x(t) = Âx̂(t) + B̂u(t) (3.3)

ŷ(t) = Ĉx̂(t) (3.4)

where x̂ ∈ Rn is the vector of model states, Â ∈ Rn×n and B̂ ∈ Rn×m are the model state

and input matrices, respectively, ŷ is the vector of model outputs, and Ĉ is the model

output matrix. Note that, due to the plant-model mismatch, in general we have A 6= Â,

B 6= B̂, and C 6= Ĉ.

The model of (3.3) is used to design a stabilizing feedback controller of the form:

u(t) = Kx̂(t) (3.5)

where K is the feedback gain, which is chosen to place the poles of the closed-loop model
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in the left-half of the complex plane. While the values of x̂ are continuously available to

the controller, it is important to periodically update x̂ to reflect the state of the actual

system dynamics and correct for any inaccuracies caused by the plant-model mismatch.

The implementation of this model state update is complicated when state measure-

ments are unavailable. To address this issue, a state observer is embedded on the sensor

side of the network to provide estimates of the process states using the available output

measurements. To this end, we consider a dynamic observer of the following form:

˙̄x(t) = Âx̄(t) + B̂u(t) + LĈ(x(t)− x̄(t)), (3.6)

where x̄ ∈ Rn is the observer state vector and L ∈ Rn×q is the observer gain. The observer

states are transmitted over the network to update the model state at discrete times as

follows:

x̂(tk) = x̄(tk), k ∈ {0, 1, 2, · · · } (3.7)

where tk is the update time instance, and h = tk+1 − tk is the update period.

3.2.2 Analysis of networked closed-loop stability

To characterize the maximum allowable update period for the networked control system,

we formulate an augmented closed-loop system that captures the collective dynamics of

the process, the model and the observer. To this end, we define the augmented state

vector ξ(t) := [xT (t) x̄T (t) eT (t)]T ∈ R3n, where e(t) = x̄(t)− x̂(t) ∈ Rn is the estimation

error, which is defined as the discrepancy between the model and observer states. The

dynamics of the augmented closed-loop system are given by:

ξ̇(t) = Λξ(t), t ∈ [tk, tk+1) (3.8)

where Λ ∈ R3n×3n is the augmented closed-loop matrix given by:

Λ =


A BK −BK

LC Â− LĈ + B̂K + LD̃K −BK + LD̃K

LC −LĈ + LD̃K Â− LD̃K

 (3.9)

D̃ = D − D̂ (3.10)
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It can be shown (e.g., see [15], [17]) that the response of the closed-loop system in

(3.8)-(3.10) in terms of the update period is given by:

ξ(t) = eΛ(t−tk)Mkξ0, t ∈ [tk, tk+1), k ∈ {0, 1, 2, · · · } (3.11)

where

M = Ioe
ΛhIo (3.12)

is a special matrix whose eigenvalues determine closed-loop stability,

Io =


I O O

O I O

O O O

 (3.13)

is a matrix that captures the model state update logic under output feedback (the fact

that the model state is updated using the observer state, rather than the actual state),

I ∈ Rn×n is the identity matrix, and ξ0 = [xT (t0) x̄T (t0) 0]T is the initial condition.

Based on the response of the closed-loop system in (3.11) it can be verified that a

necessary and sufficient condition for closed-loop stability is to have all the eigenvalues of

the stability test matrix M lie strictly inside the unit circle. This is represented by the

following inequality:

λmax(M)[A,B, Â, B̂,K, L, h] < 1 (3.14)

where λmax(M) is the maximum eigenvalue magnitude of M . This condition can be

leveraged to explicitly characterize the maximum allowable update period as a function

of the plant-model mismatch, the update period, the controller gain and the observer

gain.

3.3 Augmenting model-based control with parameter

re-identification

3.3.1 Overview of the proposed approach

Figure 3.1 summarizes the proposed approach for augmenting the model-based output

feedback control strategy presented in Section 3.2 with model re-identification tools with
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the goal of enhancing the stability and performance properties of the networked closed-

loop system. Initially, the networked control system is operated at a stabilizing update

period that simultaneously reduces sensor-controller communication. The evolution of

the model estimation error is continuously monitored and checked against an instability

alarm threshold to determine when the model parameters need to be updated. Upon

breach of the threshold, a safe-parking protocol is triggered to momentarily stabilize the

closed-loop system while additional data is collected and new model parameters are re-

identified. The identified parameters are then examined for stability and achievable com-

munication savings, and the corresponding communication rate and controller/observer

design parameters are determined. Finally, the model parameters are updated and the

new communication rate and controller parameters are implemented. The algorithm is

repeated every time the instability alarm threshold is breached.

3.3.2 Error monitoring and instability alarms

To determine when new model parameters need to be identified, a monitoring scheme

is implemented whereby the model estimation error is continuously checked to detect

potential instabilities caused by the drift in process parameters. An instability alarm can

be designed on the basis of the nominal closed-loop response in (3.11)-(3.13). Specifically,

it can be verified that, in the absence of process parametric drift, the estimation error

obeys the following time-varying bound:

‖e(t)‖ ≤ αe−β(t−t0)‖ξ0‖ (3.15)

where α ≥ 1 and β > 0 are tunable parameters that depend on the choice of the con-

troller and observer gains. Using this bound as a time-varying alarm threshold, instability

can be detected once the norm of the estimation error violates the threshold, i.e., when

‖e(tb)‖ > αe−β(tb−t0)‖ξ0‖, where tb is the time of the threshold breach. This breach trig-

gers subsequent steps, culminating in the update of the model parameters. To minimize

possible detection delays, it is important to choose the controller and observer design

parameters judiciously to ensure that the alarm threshold is tight enough. Note that,

unlike the update of the model state which occurs periodically at a constant rate, the
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Figure 3.1. A flowchart summarizing the proposed approach for augmenting model-
based control with model identification under output feedback control
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model parameter updates are event-triggered and thus are generally less frequent.

3.3.3 An error-triggered safe-parking mode of operation

Following the breach of the alarm threshold, the process is switched temporarily to a

safe-parking mode of operation in order to maintain stability while collecting sufficient

data for parameter re-identification.

One way to achieve closed-loop stability during the safe-parking mode is to temporarily

switch the model state update period according to the following switching criterion:

h(t) =

 hi , 0 ≤ t < tb

hsp , t ≥ tb
(3.16)

where tb is the time when the alarm threshold is breached and the safe-parking protocol

is activated, hi is the initial update period used prior to tb, and hsp is the stabilizing (safe-

parking) update period chosen such that λmax(hsp) < 1. This safe-parking method comes

at the cost of increasing the communication frequency for the affected process (which may

take a way resources from other units or processes sharing the communication medium);

nevertheless, this temporary increase in the communication rate serves to maintain closed-

loop stability and to collect sufficient data for the model parameter identification step.

Inherently, this approach poses a trade-off between requirements of model re-identification

(which may favor a longer safe-parking period to collect sufficient data) and the need to

reduce communication costs (which favors a shorter safe-parking period).

Remark 3.1. It should be noted here that the possibility of increasing the communication

rate during the safe-parking period requires that a larger share of the bandwidth be made

available to the control system of the process affected by the drift. In a shared network

setting, this increase comes at the expense of other units or processes that utilize the

network, and whose share of the bandwidth (or network access) may be temporarily reduced.

While it is important for the plant’s supervisory control system to allocate and divert

network resources to the units that need it the most (i.e., units on the verge of instability),

it is also important to factor in the potential impact of this resource re-allocation during

the safe-parking period on the stability and performance of the other units in deciding the
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duration of the safe-parking period.

Another method that can be utilized to maintain closed-loop stability during the safe-

parking step is to adjust the observer gain while fixing the sensor-controller communication

frequency. This can be achieved by switching the observer gain according to the following

criterion:

L(t) =

 Li , 0 ≤ t < tb

Lsp , t ≥ tb
(3.17)

where Li is the initial observer gain used before the threshold is breached, and Lsp is the

observer gain during the safe-parking period chosen such that λmax(Lsp) < 1. Using this

safe-parking method could help avoid the communication cost increase associated with the

former method; however, changing the observer gain could affect the closed-loop system

performance and this impact needs to be weighed against the increased communication

cost associated with the other approach to decide on a suitable safe-parking strategy.

Both safe-parking approaches will be investigated in the context of the simulation study

in Section 3.4.

3.3.4 Check for sufficient excitations

The accuracy of the parameters identified in the parameter identification step is governed

by quality of the data collected during the safe-parking mode of operation and whether

we collected enough data to excite all the frequencies (the slow, intermediate, and fast

dynamics). Therefore, it is essential to check that the data collected results in suffi-

cient frequency excitations. If the excitations are sufficient, the model parameters are

re-identified, otherwise, the system inputs are perturbed in order to generate sufficient

excitations. One way to guarantee sufficient excitations is to perturb the system inputs

using simple input signals such as the Pseudorandom Binary Sequence (PRBS) which

varies each of the inputs between 2 values only.

Remark 3.2. This type of perturbation is sufficient for Linear Time Invariant (LTI)

systems. The magnitude scales linearly in LTI systems, therefore, the use of a simple

PRBS signal to identify the system parameters can be performed easily while still obtaining
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the correct LTI system. This can be done while maintaining the system in the safe-parking

mode of operation.

3.3.5 Model parameter re-identification

The choice of the identification method needed for parameter estimation generally depends

on the particular application. For illustration purposes, subspace identification techniques

(see, for example, [58], [59], [60], [61]) are used in this study to identify the new model

parameters based on the closed-loop input and output data to keep the plant-model

mismatch to a minimum following parametric drift. This is achieved by solving the

following subspace equations using least squares methods:Xd
i+1

Yi

 =

Ā B̄

C̄ 0

Xd
i

Ui

 (3.18)

where Xd is the deterministic state sequence, Yi is the output block Hankel matrix, and

Ui is the input block Hankel matrix. Note that the subspace identification method is not

unique and any other parameter identification method can be utilized here.

3.3.6 A post-identification closed-loop stability check

Once the new model parameters (Ā and B̄) are identified, the stability properties of the

new closed-loop system need to be analyzed based on the eigenvalues of the new stability

test matrix M (per (3.14)) to determine the range of stabilizing update periods and/or

observer gains associated with the new model parameters. For the safe-parking approach

where the observer gain is fixed and the update period is adjusted, if the new model does

not yield a maximum allowable update period that is greater than hsp, then the closed-

loop system should remain in the safe-parking mode until a stabilizing model with a lower

update frequency is found (possibly by using a different identification method); otherwise,

the model parameters are updated and the corresponding update period is implemented:

Â(tu) = Ā, B̂(tu) = B̄, h(t) = hf , t ≥ tu (3.19)

where tu is the time that the model parameters are updated, and hf is the new stabilizing

update period. We note here that the process parametric drift is considered to be slow

enough such that continuous or frequent updates of the model parameters are not needed.
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For the safe-parking approach where the update period is fixed and the observer gain

is varied, if the new model does not yield a satisfactory range of feasible observer gains

(that can recover some of the potential closed-loop performance losses induced by the

safe-parking observer gain), the closed-loop system is kept in the safe-parking mode until

a stabilizing model with an observer gain that yields satisfactory closed-loop performance

is identified; otherwise, the model parameters are updated and the corresponding observer

gain is implemented as follows:

Â(tu) = Ā, B̂(tu) B̄, L(t) = Lf , t ≥ tu (3.20)

where Lf is the newly identified stabilizing observer gain.

3.4 Simulation Study: Application to a Chemical Pro-

cess Example

To illustrate the implementation of the methodology described in Sections 3.2 and 3.3,

we consider in this section a jacketed, well-mixed, non-isothermal continuous stirred tank

reactor in which an irreversible elementary reaction, A → B, is carried out. The feed

stream consists of pure reactant at flow rate F , concentration CAo and temperature To.

The reaction is exothermic and a cooling jacket with non-negligible dynamics is used for

heat management. Cooling water is added to the jacket at a flow rate Fj and an inlet

temperature Tjo.

Under standard modeling assumptions, the following process dynamic model can be

obtained from material and energy balances:

dCA
dt

=
F

Vr
(CAo − CA)− koe−

E
RTrCA

dTr
dt

=
F (To − Tr)

Vr
+
−∆Hrko
ρmcpm

e−
E

RTrCA +
UAr(Tj − Tr)
ρmcpmVr

dTj
dt

=
Fj
Vj

(Tjo − Tj)−
UAr
ρjcpjVj

(Tj − Tr)

(3.21)

where the process parameters are given in Table 3.1. The control objective is to stabilize

reactor operation at the open-loop unstable steady-state (CAs = 5.4 mol/L, Trs = 328
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Table 3.1. Process parameters and steady-state values

Vr = 1.00 m3

Vj = 0.109 m3

Ar = 23.226 m2

CA0 = 8.0 kmol ·m−3

U = 226 kcal · hr−1 ·m−2 ·K−1

T0 = 300.17 K

Tj0 = 294.4 K

R = 1.987 kcal · kmol−1 ·K−1

∆Hr = −1.67× 104 kcal · kgmol−1

k0 = 7.09× 1010 hr−1

E = 1.67× 104 kcal · kg−1

cpm = 0.231 kcal · kg−1 ·K−1

cpj = 0.308 kcal · kg−1 ·K−1

ρm = 809.0 kg ·m−3

ρj = 1000.0 kg ·m−3

F = 1.13 m3 · hr−1

Fj = 5.38 m3 · hr−1
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K, Tjs = 320 K), by manipulating the the flow rate of the cooling water Fj, using mea-

surements of the reactor and jacket temperatures, T and Tj, respectively, in the presence

of process parametric drift during operation. The output measurements are assumed to

be transmitted to the control system over a bandwidth-limited communication network

whose resources are shared among multiple processes and units. From a network resource

utilization perspective, the goal is to try to keep the extent to which the process needs to

access the network minimal.

The control problem is addressed on the basis of the linearization of the process around

the unstable steady-state, which takes the form of (3.1) with the following state, input,

and output matrices:

A =


−1.6630 −0.2262 0

47.6263 −9.0081 28.0881

0 156.3528 −205.7106



B =


0

0

−235.1890

 , C =

0 1 0

0 0 1


Using the results presented in Section 3.2, a model-based output feedback controller is ini-

tially designed. The feedback controller gain is chosen to place the poles of the closed-loop

model at [-2, -8, -10], while the observer gain is selected to place the closed-loop observer

poles at [-50, -75, -100]. To simulate process parametric drift, uncertainty is introduced in

the heat of reaction, by defining the following error parameter: δ = (∆Hm −∆H)/∆H,

where ∆Hm is the nominal value of the heat of reaction. The process initially operates at

steady-state with a 5% mismatch between the model and process parameters. Based on

the chosen controller and observer design parameters, the following alarm threshold is used

to detect parametric drift: ‖e(t)‖ > 3.5e−0.009t‖ξ(to)‖. In the remainder of this section,

we explore the implementation of the proposed methodology for integrating model-based

control and identification in the context of two different safe-parking approaches and

simulation scenarios.
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3.4.1 Safe-parking using sensor-controller communication rate

For this case, the operating conditions are chosen initially such that the model states are

updated every 17.9 minutes; that is, hi = 0.298 hr. To simulate the effect of a process

parametric drift, at the 10-th hour of operation the uncertainty in the heat of reaction is

increased such that the plant-model mismatch is now greater. The error parameter thus

changes value from δ = −0.05 to δ = −0.15 at t = 10 hr.

Figure 3.2 shows the response of the reactor temperature, the cooling jacket inlet flow

rate and the norm of the estimation error for the case when safe-parking is performed

using the update period. It can be seen that starting at approximately the 21-st hour

of operation, the reactor temperature starts to diverge from the operating steady-state

in an oscillatory fashion. If left unaddressed, the plant-model mismatch would cause the

system to remain unstable.

At approximately the 26-th hour of operation, the norm of the estimation error vio-

lates the alarm threshold and the safe-parking protocol is initiated to restore closed-loop

stability in preparation for the parameter re-identification phase.

To determine the stabilizing update period for the safe-parking mode, the maximum

eigenvalue magnitude of the stability test matrix is calculated for different uncertainty

and update period values. Figure 3.3 is a contour plot of λmax(M) as a function of the

plant-model mismatch, δ, and the update period, h. The region depicted in white is the

closed-loop stability region which represents the points at which the maximum eigenvalue

magnitude of the stability test matrix M is less than 1 as established by (3.14). By

examining the stability landscape in Figure 3.3 it can be seen that for small h values (more

frequent communication) there is a large tolerance for uncertainty between the process

and model parameters. However, for larger h values (less frequent communication) the

range of tolerable uncertainties decreases and more communication is needed to achieve

stability for high values of δ. This trend can be leveraged to safe-park process operation

and ensure stability following parametric drifts.

Figure 3.4 shows the maximum eigenvalue magnitude for different update period values

at different operating points. It can be seen that before the drift was introduced, the
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Figure 3.2. Closed-loop reactor temperature profile (top), cooling water inlet flow
rate profile (middle) and the norm of the estimation error profile (bottom) when a
parametric drift occurs at t = 10 hr, the alarm threshold is breached and safe-parking
is triggered at t = 26 hr, and the model parameters are re-identified and updated at
t = 30 hr

Figure 3.3. Contour plot showing the closed-loop stability region (white) where
λmax(M) < 1 for different δ and h values
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maximum stabilizing update period value is hi = 0.298 hr. During the safe-parking period,

however, the maximum stabilizing update period is reduced to hsp = 0.210 hr. The system

is operated at the new stabilizing update period value while closed-loop data is collected

for the parameter identification step. Once a sufficient amount of data is collected the

model parameters are re-identified and updated at the 30-th hour of operation. It can be

seen in Figure 3.4 that the maximum stabilizing update period after identification takes

place is now hf = 0.315 hr. Since this new update period value is greater than the update

period value during the safe-parking step, the system is switched out of the safe-parking

mode and the model state updates now occur at the new update rate. Figure 3.2 shows

that the system continues to operate stably after the model parameters are re-identified

and updated and the communication rate decreased.

3.4.2 Safe-parking using the observer pole placement

As mentioned earlier in Section 3.3.3, reducing the update period to maintain closed-loop

stability during the safe-parking period can lead to an increase in network utilization that

may be undesirable. An alternative safe-parking approach is to keep the update rate

Figure 3.4. λmax(M) as a function of the update period under normal operation (blue),
under increased plant-model mismatch (red) and after parameter re-identification
(green)
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fixed, and instead adjust the observer gain to temporarily achieve closed-loop stability.

To capture the effect that adjusting the observer gain has on closed-loop stability, we will

vary the placement of the closed-loop observer poles. This is achieved by introducing a

pole placement parameter, α, to serve as a multiplier to the poles, as follows: [-50α, -75α,

-100α]. The baseline value of α = 1 corresponds to the initial placement of the poles

based on the initial choice of the observer gain. As α is increased, the poles are shifted

farther to the left in the complex plane.

Figure 3.5 shows the closed-loop stability region (in white) as a function of α and

h, after the process drift takes place (with δ = −0.15). It can be seen that for small h

values (more frequent communication) the range of stabilizing α values is greater than

the stabilizing range for large h values (less frequent communication). For large enough

update periods, it appears that no choice of α is stabilizing. Conversely, for α values less

than 1, there is no update period value that stabilizes the closed-loop system; however,

for values of α > 1 the range of stabilizing update periods continues to increase slightly

until an asymptote is reached around α = 9.

Figure 3.5. Contour plot showing the closed-loop stability region (white) where
λmax(M) < 1 for different α and h values, and with δ = −0.15

Figure 3.6 shows the response of the reactor temperature, the cooling jacket inlet flow
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rate and the norm of the estimation error for the case when safe-parking is performed

using the observer pole placement α. Similar to the previous safe-parking case, a drift is

introduced at the 10-th hour of operation and the error parameter is set to δ = −0.15 at

that time. It can be seen from Figure 3.7 that the maximum stabilizing update period

decreases from 0.298 hr to 0.210 hr immediately after the drift. Starting at approximately

the 20-th hour of operation, the reactor temperature starts to diverge away from the

operating steady-state in an oscillatory fashion until the instability alarm threshold is

breached and the safe-parking protocol is triggered a few hours later.
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Figure 3.6. Closed-loop reactor temperature profile (top), cooling water inlet flow
rate profile (middle) and the norm of the estimation error profile (bottom) when a
parametric drift occurs at t = 10 hr, the alarm threshold is breached and safe-parking
is triggered at t = 26 hr, and the model parameters are re-identified and updated at
t = 30 hr

Unlike the previous case where closed-loop stability was regained by decreasing the

update period following the parametric drift, in this case increasing α enables us to recover

stability while maintaining the original operating update period that was used before the

drift occurred. This can be seen by the solid red line in Figure 3.7 where α is increased

to a value of 2.8.

This approach allows us to maintain closed-loop stability without the incurred cost
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Figure 3.7. λmax(M) as a function of the update period under normal operation (blue),
under increased plant-model mismatch with α = 1 (dashed red), under increased plant-
model mismatch with increased α (solid red) and after parameter re-identification with
α = 1 (green)

of increased communication; however, the trade-off here is that the performance of the

closed-loop response is impacted due to the use of the observer gain as the stabilizing

method during the safe-parking mode of operation. It can be seen in Figure 3.6 that

the response is significantly slower at reaching the steady-state compared to the response

time in Figure 3.2. Depending on the system being controlled, this impact needs to be

weighed against the increased communication cost associated with the alternate safe-

parking approach to decide on a suitable safe-parking strategy.

When a sufficient amount of data has been collected, the model parameters are re-

identified and updated after a closed-loop stability check is performed. Specifically, it

can be seen from the green curve in Figure 3.6 that, at the operating update period,

closed-loop stability is maintained using the newly identified model parameters and the

old α = 1 value before the drift took place. Based on this result, the process is taken out

of the safe-parking mode by restoring α restored to its pre-drift value to recover some of

the closed-loop performance losses, and the new model parameters are implemented.
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3.5 Conclusions

This chapter developed a methodological framework for enhancing closed-loop perfor-

mance and network resource utilization achieved using model-based networked control

subject to limited output measurements, process parameter variations and sensor-controller

communication constraints. The main idea was to design a model-based output feedback

controller with well-characterized closed-loop stability properties and to augment its im-

plementation using error-triggered online parameter re-identification that helps maintain

acceptable levels of network utilization and closed-loop performance in the event of pro-

cess parametric drift. The proposed methodology was demonstrated using a chemical

process example, and it was shown that parameter re-identification can help enhance the

closed-loop stability for process systems with limited output measurements while reduc-

ing network resource utilization. Future work will focus on investigating the effect of

measurement noise on parameter identification and the benefits of explicitly modeling the

output noise to enhance the accuracy of the identified parameters and further minimize

the plant-model mismatch.
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Chapter 4

Model-Based Networked Control of

Spatially-Distributed Processes with

Parameter Re-identification

At this point, we have only considered implementation strategies for systems modeled

by ordinary differential equations (ODEs), however, many applications are modeled by

highly-dissipative PDEs. The problem of stabilizing spatial profiles in spatially-distributed

processes using feedback control has been the subject of significant research work in

the distributed parameter systems area (e.g., [62], [63], [64]). This problem is signifi-

cant because the dynamic behavior of many industrial processes, such as fluid flows and

transport-reaction processes, is characterized by spatiotemporal variations and uncertain-

ties, which are captured by Partial Differential Equation (PDE) models. An important

class of PDEs to which finite-dimensional controller design techniques can be applied is

the class of highly-dissipative PDEs whose dominant dynamics are low-dimensional (e.g.,

[65], [66], [67], [68], [69]). The majority of existing research work on control of highly-

dissipative PDE systems is based on the classical paradigm of feedback control in which

sensor-controller communication is assumed to take place through dedicated channels, ig-

noring real-time implementation issues such as sensor-controller communication resource

constraints which are becoming increasingly important with the increased integration of

communication networks in feedback control systems (e.g., [7], [8]).
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An established strategy for dealing with the communication resource constraints prob-

lem is through the use of model-based control which aims to achieve closed-loop stabiliza-

tion with minimal feedback from the sensor to the controller over the network (e.g., [19],

[17]). While this strategy is appealing in that it can potentially reduce the reliance of the

feedback control system on the communication medium, and can thus free up the network

for other tasks, the extent of communication savings achieved is highly influenced by the

quality of the model used and the extent of plant-model mismatch.

To address this implementation gap, in this chapter, we present a framework for the in-

tegration of model-based control and model identification for spatially-distributed process

systems modeled by highly-dissipative PDEs, subject to sensor-controller communication

constraints and process parameter variations. The framework aims to enhance the sta-

bility and performance properties of the networked closed-loop system in the presence

of process parameter variations and external disturbances, while simultaneously reducing

the rate of sensor-controller information transfer required. Initially, a networked feedback

controller is designed on the basis of an approximate finite-dimensional model that cap-

tures the dominant dynamics of the infinite-dimensional system. The maximum allowable

model state update rate is explicitly characterized in terms of the model parameters and

the control actuator locations, and this characterization is used to devise a time-triggered

model state update policy that guarantees closed-loop stability.

An error monitoring scheme with a time-varying instability alarm threshold is then

developed to track the state evolution and trigger model re-identification and model pa-

rameter updates in the event of process parametric drift. When the alarm threshold

is breached, a safe-parking protocol is initiated by temporarily increasing the sensor-

controller communication rate to counter the destabilizing influence of parametric drift.

In the mean-time, the input and state data collected during the safe-parking period are

used to identify, on-line, a new finite-dimensional model based on subspace identifica-

tion techniques. The networked closed-loop stability region associated with the newly-

identified reduced-order model is then characterized and used to identify a suitable model

state update rate that can restore the control performance and network utilization to

43



their pre-drift levels. The development and implementation of the proposed framework

are demonstrated using a representative diffusion-reaction process example. The results

of this chapter were first published in [52].

4.1 Preliminaries

In this work we focus on spatially-distributed processes modeled by highly-dissipative

PDEs with low-order dynamics. A common example of this class of systems are parabolic

PDEs described by:

∂x̄(z, t)

∂t
= α

∂2x̄(z, t)

∂z2
+ βx̄(z, t) + ω

m∑
i=1

bi(z)ui(t) (4.1)

subject to the following initial and boundary conditions:

x̄(z, 0) = x̄0(z)

x̄(0, t) = x̄(π, t) = 0
(4.2)

where x̄(z, t) ∈ IR is the state variable, z ∈ [0, π] is the spatial coordinate, t ∈ [0,∞) is

the time, ui is the i-th manipulated input, m is the number of manipulated inputs, and

bi(z) is the actuator distribution function. The parameters α > 0, β, and ω are constants

and x0(z) is a smooth function of z.

Using standard techniques from infinite-dimensional system theory (e.g., see [70]), the

PDE in (4.1) can be formulated as an infinite-dimensional system of the form:

ẋ(t) = Ax(t) + Bu(t) (4.3)

with an initial condition x(0) = x0, where x(t) = x̄(z, t), for t > 0 and z ∈ [0, π], is

the state function defined on the Hilbert space H = L2(0, π), A is the spatial differential

operator whose spectrum is characterized by a large separation between a finite set of

slow (possibly unstable) eigenvalues and an infinite set of fast stable eigenvalues (e.g., see

[63]), B is the input operator that describes the spatial placement of the control actuators,

and u = [u1 · · ·um]T ∈ IRm is the vector of manipulated inputs. Taking advantage of the

low-order dynamics of this class of systems, standard modal decomposition can be applied
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to the system in (4.3) to obtain the following interconnected systems:

ẋs(t) = Asxs(t) + Bsu(t)

ẋf (t) = Afxf (t) + Bfu(t)
(4.4)

with initial conditions xs(0) = Psx0 and xf (0) = Pfx0, where xs = Psx is the state of the

finite-dimensional system that describes the evolution of the slow eigenmodes, xf = Pfx is

the state of an infinite-dimensional system that describes the evolution of the fast stable

eigenmodes, As = PsA, Af = PfA, Bs = PsB, Bf = PfB, and Ps and Pf are the

orthogonal projection operators for the slow and fast eigenmodes, respectively.

Applying model reduction techniques [63] we can obtain a finite-dimensional ODE

system that describes the time evolution of the amplitudes of the dominant eigenmodes.

The ODE system takes the following form:

ȧs = Asas +Bs(za)u (4.5)

where as = [a1 · · · am]T ∈ IRm, ai is the amplitude of the i-th eigenmode, As is an m×m

diagonal matrix containing the first m slow eigenvalues of A, and Bs is an m×m input

matrix whose elements are parameterized by the control actuator locations, za.

Remark 4.1. When state-feedback control is used (i.e., u is chosen as a function of the

slow states only) the closed-loop slow subsystem in 4.4 becomes decoupled from the fast

subsystem. In this case, stabilization of the closed-loop slow subsystem is sufficient to

guarantee stability of the infinite-dimensional system since the fast subsystem is stable

and driven by a bounded and converging input. This has important implications for model

identification (see Remark 4.4).

4.2 Model-Based State-Feedback Controller Design

4.2.1 Controller synthesis

To address the control objective, we consider a typical model-based networked control

configuration with periodic sensor-controller communication. The idea behind model-

based control is to embed within the control system a dynamic model which is used to
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provide estimates of the states in the event when communication between the controller

and the sensor is suspended. When communication is re-established, the model states are

updated using the plant states, at discrete time instances, based on the sensor-measured

values. The resulting model-based state-feedback control law is given by:

u(t) = Kâs(t) , t ∈ [tk, tk+1)

˙̂as(t) = Âsâs(t) + B̂su(t) , t ∈ [tk, tk+1)

âs(tk) = as(tk) , k ∈ {0, 1, 2, · · · }

h , tk+1 − tk

(4.6)

where K is the feedback gain which is chosen to stabilize the closed-loop model, âs is

the state of the model and Âs and B̂s are constant matrices that approximate the plant

matrices As and Bs, respectively, tk is the update time, and h is the update period which

is assumed to be constant.

4.2.2 Closed-loop stability analysis

In order to achieve closed-loop stability with minimal communication, it is important

to characterize the maximum allowable update period for the networked control system.

The maximum allowable update period dictates the minimum communication frequency

required for stability. This characterization is obtained by performing a closed-loop sta-

bility analysis as shown in [19]. By performing the stability analysis it can be shown that

the response of the closed-loop system in terms of the update period is given by:

ξ(t) = eΛ(t−tk)(Ise
ΛhIs)

kξ0 = eΛ(t−tk)Mkξ0 (4.7)

where t ∈ [tk, tk+1), ξ(t) := [aTs (t) eT (t)]T is an augmented vector of the plant states and

model estimation errors, defined as the difference between the model and plant states,

e(t) = as(t) − âs(t), Is is an augmented identity matrix, ξ0 = [aTs (t0) 0]T is the initial

condition, M = (Ise
ΛhIs) is the stability test matrix, and Λ is the augmented closed-loop

matrix which depends on the plant and model matrices as well as the controller gain and

is given by:

Λ =

As +Bs(za)K −Bs(za)K

Ãs + B̃s(za)K Âs − B̃s(za)K

 (4.8)

46



where Ãs = A− Âs and B̃s(za) = B(za)− B̂s(za).

By analyzing the closed-loop response in (4.7)-4.8, it can be verified that a necessary

and sufficient condition for closed-loop stability is to have all eigenvalues of the stability

test matrix M lie strictly inside the unit circle. This can be described by the following

maximum eigenvalue magnitude function:

λmax(M)[As, Bs(za), Âs, B̂s(za), K, h] < 1 (4.9)

where λmax is the maximum eigenvalue magnitude of M .

Remark 4.2. The condition in (4.9) can explicitly characterize the maximum allowable

update period, or the minimum allowable communication frequency, necessary to main-

tain closed-loop stability in terms of the plant-model mismatch and the controller design

parameters (the feedback gain and the location of the actuator). Alternatively, for a fixed

communication rate, this condition can be used to identify the feasible range of actuator

locations. Both characterizations are important because they provide the basis for any re-

course action (in terms of adjusting the update period and/or the control actuator location)

that may be needed to prevent drift-induced instability (see Section 4.3.3).

4.3 Integrating Model Identification and Model-Based

Control

In this section, we present a methodology for the integration of model identification into

the model-based networked control strategy discussed in Section 4.2. We first present

an overview of the proposed integration methodology followed by a discussion of the key

implementation steps. Figure 4.1 summarizes the proposed approach.

4.3.1 Overview of the proposed methodology

Initially, the networked control system is operated at a chosen update period that mini-

mizes sensor-controller communication while simultaneously ensuring closed-loop stability.

As the system continuous to operate, the evolution of the closed-loop state is continuously

monitored in order to detect plant-model mismatch. When a significant plant-model mis-

match is detected, it becomes necessary to update the model parameters. This is triggered
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by continuously checking the closed-loop state against an instability alarm threshold. In

the event of a threshold breach, a safe-parking protocol is implemented to momentarily

stabilize the closed-loop system by modifying the update period. In the mean time, ad-

ditional data is collected during the safe-parking period and serves as the basis for the

identification of the new model parameters. Once the new model parameters are identi-

fied, the new model is then checked for stability and the corresponding stability region is

determined. Based on this characterization, the decision to move the system out of the

safe-parking regime and update the model parameters is made. The algorithm is then

repeated every time the instability alarm threshold is breached.

4.3.2 Model re-identification triggering criterion

In order to detect potential instabilities caused by the drift in process parameters and

determine when new model parameters need to be identified, a monitoring scheme is

implemented whereby the closed-loop states are continuously checked against some alarm

threshold. To that end, we design an instability alarm based on the nominal closed-loop

response in (4.7). It can be verified that, in the absence of process parameter variations,

there exist positive constants δ > 1 and θ > 0 such that the following time-varying bound

is satisfied:

‖as(t)‖ ≤ δ e−θ(t−t0) ‖as(t0)‖ (4.10)

This bound follows from the exponential closed-loop stability of the origin of the networked

closed-loop system in (4.7). This bound serves as a time-varying alarm threshold and

utilizing it enables us to detect instability once the norm of the state violates the threshold.

This step acts as a trigger for the subsequent steps in the methodology culminating in

the update of the model parameters. It is important to note that unlike the model state

updates which are time-triggered periodically, the model parameter updates are event-

triggered and thus occur less frequently.

Remark 4.3. The threshold defined in (4.10) serves as an upper bound on the time

evolution of the state of the system. The magnitude of this upper bound depends on

the actuator location which could lead to larger upper bounds or smaller upper bounds
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Figure 4.1. A flowchart of the integrated control and identification methodology for
networked control systems with periodic communication

depending on the choice of actuator location. This range of error thresholds could lead to

cases when the triggering criterion takes longer to detect the drift, thus causing momentary

instability. To minimize detection delays, it is therefore important to choose the control

actuator location such that the alarm threshold is sufficiently tight.
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4.3.3 Safe-parking

When the instability threshold is breached, that is when ‖as(tb)‖ > δ e−θ(tb−t0) ‖as(t0)‖,

where tb is the time when the threshold is breached, it is imperative to first stabilize

the process before proceeding with the model parameter re-identification. In this safe-

parking protocol, the plant is switched temporarily to a safe mode of operation. One way

to achieve closed-loop stability during the safe-parking step is to temporarily switch the

model state update period according to the following switching criterion:

h(t) =

 hi , 0 ≤ t < tb

hsp , t ≥ tb
(4.11)

where tb is the time when the instability threshold is breached and the safe-parking pro-

tocol is initiated, hi is the initial update period before tb, and hsp is the stabilizing (safe-

parking) update period chosen such that λmax(hsp) < 1. This safe-parking method comes

at the cost of increased communication frequency; nevertheless, this temporary increase

in the communication rate serves to maintain closed-loop stability and to collect sufficient

data for the model parameter identification step.

4.3.4 Model parameter re-identification

After the closed-loop system is temporarily stabilized and when a sufficient amount of

data has been collected, model re-identification is triggered and new model parameters

are obtained, Ās and B̄s. The choice of the model re-identification method depends on

the particular application. In this work, subspace identification techniques for discrete

linear time-invariant systems are used to identify the new model parameters based on the

input and state data, in order to minimize plant-model mismatch. Utilizing the subspace

methodology and algorithm (e.g., see [58], [59]), new model parameters are obtained by

solving the following set of equations using linear least squares algorithms:Xd
i+1

Yi

 =

Ās B̄s

I 0

Xd
i

Ui

 (4.12)

where Yi and Ui depend on the input and state data and are defined as the output and

input block Hankel matrices, respectively, and Xd is the deterministic state sequences.
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Remark 4.4. In this work, we consider the state-feedback control problem where full-

state measurements of the slow eignemodes are available. As discussed in Remark 4.1,

this results in decoupling the evolution of the closed-loop slow eigenmodes from the fast

eigenmodes. This decoupling is important for model identification since the exclusion of

the fast eigenmodes will not affect model parameter identification because the control and

identification problems are addressed on the basis of the slow subsystem only. In the case

of output feedback control, however, where only output measurements are available, the

dynamics of the slow and fast subsystems will be coupled due to the dependence of the

output on both the slow and fast states. In this case, using the output measurements

to re-identify the slow subsystem (i.e., reduced order model) introduces errors due to the

contribution of the fast states. These errors, however, become negligible if the separation

between the slow and fast eigenvalues of the differential operator is sufficiently large. This

argument can be justified using singular perturbation techniques [63].

4.3.5 Closed-loop stability check

Once the new model parameters, Ās and B̄s, are identified, it is important to verify that

the networked closed-loop stability condition for the newly-obtained model is satisfied.

This can be achieved by analyzing the stability of the new model parameters based on the

eigenvalues of the test matrix M . Using (4.9), the range of stabilizing update periods as-

sociated with the new model can be obtained. If the new model does not yield a maximum

allowable update period that is greater than hsp, then the closed-loop system remains in

the safe-parking mode until a stabilizing model with a lower update frequency is found

(possibly by using a different identification method); otherwise, the model parameters are

updated and the corresponding update period is implemented:

Âs(tu) = Ā, B̂s(tu) = B̄, h(t) = hf , t ≥ tu (4.13)

where tu is the time when the model parameters are updated, and hf is the newly identified

stabilizing update period. It is important to note here that even though the process

parameters are assumed to change over time, this drift is generally considered to be slow

and does not require continuous or frequent updates of the model parameters.
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Remark 4.5. The need for the post-identification closed-loop stability check performed

her stems from the fact that the model re-identification method used does not take the

networked closed-loop stability explicitly into account. Based purely on the input and state

data available during the safe-parking period, the parameter re-identification method yields

parameter values that minimize some measure of the discrepancy between the actual states

and inputs on the one hand, and the predicted states and inputs, on the other, with no a

priori guarantees regarding networked closed-loop stability. If such guarantees are desired,

one may incorporate the networked closed-loop stability condition of (4.9) as an additional

constraint on the optimization problem formulation for parameter re-identification. While

this approach may increases the complexity of the parameter identification algorithm, it

eliminates the need for a stability check since the identified model automatically satisfies

the closed-loop stability requirement.

4.4 Simulation Study: Application to a Diffusion-

Reaction Process Example

To illustrate the developed methodology, we consider a diffusion-reaction process with the

following space-time dynamics:

∂x̄(z, t)

∂t
=
∂2x̄(z, t)

∂z2
+ [βTγe

−γ − βU ]x̄(z, t) + βUb(z)u(t) (4.14)

subject to the following Dirichlet boundary conditions:

x̄(0, t) = x̄(π, t) = 0

where x̄(z, t) is the state, u is the control input, and b(z) is the control actuator distribution

function. It can be shown that the operating steady-state x̄(z, t) = 0 is unstable for the

following choice of process parameter values: βT = 80, γ = 4, and βU = 2.0. The

control objective is to stabilize the state profile at the open-loop unstable steady-state

with reduced sensor-controller communication. To achieve this objective, we consider the

use of a single point control actuator (with finite support) and assume that a sufficiently

large number of point measurement sensors that provide accurate state measurements are

available. To simulate process parametric drift, we consider parametric uncertainty in
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the heat of reaction coefficient, βU . By solving the eigenvalue problem for the differential

operator of the PDE of (4.14), it can be determined that only the first eigenvalue is

unstable, and, therefore, we consider the first unstable eigenvalue to be the dominant one

and apply the Galerkin’s method to obtain the following ODE:

ȧ1 = λa1 + 2

√
2

π
sin(za)u (4.15)

which describes the evolution of the amplitude of the first eigenmode. Using this ODE,

we consider a feedback controller design method based on pole-placement ideas, where

the feedback controller gain is independent of the control actuator location.
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Figure 4.2. Contour plot of the stability region as a function of the update period and
actuator location using the pole placement design for nominal operation

For this design method, the actuator location was initially set to za = π/2 and the

controller gain was chosen as K = −8.06 in order to place the pole of the closed-loop model

at -10. Doing so ensures that the closed-loop system is stable for all actuator locations

(excluding the boundary points where the system is uncontrollable). It is important to

note that for this design method the feedback gain is independent of actuator location

and, as a result, the closed-loop response is sensitive to the actuator location (where

the middle location yields the fastest response). Using the aforementioned settings, we
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Figure 4.3. Contour plot of the stability region as a function of the update period and
actuator location using the pole placement design for operation under drift

are able to characterize the networked closed-loop stability region in terms of the model

update period and the control actuator location as shown in Figures 4.2 - 4.3. These figure

shows the contour plots of the closed-loop stability region during normal operation (Figure

4.2) and after a drift takes place (Figure 4.3). The region contained inside the unit contour

line (the uncolored region) represents the stable region of operation where λmax(M) <

1. It can be seen that before the drift occurs, the operating ranges of update periods

and actuator locations are quite broad; however, after the drift takes place, the range

of possible operating update periods shrinks symmetrically around the middle actuator

location za = π/2. This suggests that placing the actuator closer to the boundaries helps

reduce the communication cost, since the system can be operated at a longer update

period without loss of closed-loop stability. This trend is a result of the fact that the

closed-loop response is faster when the actuator is located at za = π/2 and the response

is more sensitive to model uncertainties.

Initially, the closed-loop system is stabilized using an update period of h = 0.15.

When the parametric drift takes place, however, this operating point is no longer stable

and safe-parking must take place in order to stabilize the closed-loop system and re-
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identify the model parameters. Safe-parking in this case can be performed in one of

two ways: one can either safe-park the system by decreasing the update period (i.e.,

increasing the communication frequency) or by moving the control actuator towards the

boundaries of the feasible actuator locations. In what follows, we focus only on the first

safe-parking approach where the system is stabilized during the drift by decreasing the

update period and increasing sensor-controller communication. The temporary increase in

communication serves the dual purpose of maintaining closed-loop stability and collection

of frequent and sufficient data for the parameter re-identification step. Figures 4.4 - 4.8

show the time-evolution of the amplitude of the dominant eigenmode, the manipulated

input profile, the maximum eigenvalue magnitude as a function of the update period for

different operating conditions, the operating update period as a function of time, and the

closed-loop state profile, respectively.
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Figure 4.4. Dominant eigenmode profile for the closed-loop system at a fixed actuator
location za = π/2 and a pole-placement based gain design

The blue line in Figure 4.4 represents the eigenmode profile when the process is op-

erating normally. A drift is introduced after roughly 30 minutes of operation, and the

closed-loop state starts to diverge from the steady-state as represented by the red line.

When the norm of the state violates a pre-determined instability threshold, safe-parking
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Figure 4.5. Manipulated input profile for the closed-loop system at a fixed actuator
location za = π/2 and a pole-placement based gain design
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Figure 4.8. Closed-loop state profile
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is initiated and the closed-loop system is stabilized. This is represented by the dashed

red line. After a sufficient amount of data is collected, parameter re-identification is ini-

tiated and the model parameters are updated upon verification of closed-stability. This

is represented by the green line.

To visualize the maximum allowable update period, in Figure 4.6 the maximum eigen-

value magnitude of the test matrix M is plotted for the different operating conditions.

Values below the unit line represent the stable eigenvalue magnitudes. It can be seen

that initially during normal operation the system can be operated up to an update period

of hmax = 0.15 and maintain closed-loop stability. However, when a drift is introduced

the maximum allowable update period drops to hmax = 0.01. This means that we need

to achieve a higher communication frequency to maintain closed-loop stability which is

realized during the safe-parking period. After the model parameters are re-identified we

are able to reduce the communication frequency back to its original value while main-

taining stability. Figure 4.7 captures the change in update period values for the different

operating conditions over the operating time course of the simulated scenario (normal

operation, safe-parking and post-identification regimes).

4.5 Conclusions

In this chapter, we presented a methodology for the integration of time-triggered model-

based networked control and event-triggered model parameter re-identification for spatially-

distributed processes modeled by highly-dissipative PDEs subject to sensor-controller

communication constraints and process parametric drift. A monitoring scheme was de-

vised to detect increased plant-model mismatch due to parameter drift using a time-

varying instability alarm threshold. A breach of the threshold triggered a safe-parking

protocol that aimed to maintain closed-loop stability while allowing the collection of ad-

ditional input and state data that were used to re-identify the model parameters and

minimize the plant-model mismatch. A stability check was then performed for the newly-

identified model to determine if the model parameters could be updated and pre-drift

operating conditions could be restored. The results were illustrated using a diffusion-
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reaction process example.
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Chapter 5

Model-Based Event-Triggered

Networked Control of

Spatially-Distributed Processes with

Parameter Re-identification

While the approach in Chapter 4 is successful at improving the achievable level of commu-

nication savings by keeping the plant-model mismatch to a minimum, the implementation

of this approach requires that a minimum fixed communication rate be established in order

to achieve closed-loop stability, and model re-identification is triggered only in response

to destabilizing parametric drifts. The use of a fixed communication rate strategy is not

always optimal with respect to the achievable savings in network resource utilization.

Event-triggered control strategies, on the other hand, can lead to more substantial reduc-

tions in network utilization and provide the process with the flexibility needed to adapt

to changes in the operating environment.

Motivated by these considerations, in this chapter we present an event-based approach

for the integration of model-based control and parameter identification in networked dis-

tributed processes subject to sensor-controller communication constraints and process

parametric drift. The approach aims to improve the performance and communication

constraint-handling capabilities of the networked closed-loop system, and simultaneously

address practical implementation issues arising from the uncertainty in process parame-
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ter values. The rest of the chapter is organized as follows: following some preliminaries

and an overview of the control problem in Section 5.1, a model-based event-triggered con-

troller is designed and analyzed in Section 5.2. The proposed methodology for augmenting

model-based event-triggered control with parameter re-identification is then presented in

Section 5.3 and the implementation of the developed methodology is illustrated in Section

5.4 using a chemical process example. The results of this chapter were first published in

[71].

5.1 Preliminaries

Our focus in this work is on processes that are spatially-distributed and can be modeled

by highly-dissipative PDEs with low-order dominant dynamics. A representative example

of these systems are those described by parabolic PDEs:

∂x̄(z, t)

∂t
= ᾱ

∂2x̄(z, t)

∂z2
+ β̄x̄(z, t) + ω̄

m∑
i=1

bi(z)ui(t) (5.1)

subject to the following boundary and initial conditions:

x̄(0, t) = x̄(π, t) = 0; x̄(z, 0) = x̄0(z) (5.2)

where t ≥ 0 is the time, 0 ≤ z ≤ π is the spatial domain, x̄(z, t) ∈ IR is the state variable,

ui ∈ IR is the i-th manipulated input, bi(z) is the spatial distribution function associated

with the i-th control actuator and m > 0 is the number of manipulated inputs. The

process parameters ᾱ > 0, β̄ and ω̄ are constants and x̄0(z) is a smooth function of its

argument.

An infinite-dimensional state-space formulation of the PDE in (5.1)-(5.2) can be ob-

tained as follows:

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 (5.3)

where x(t) ∈ H = L2(0, π) is the state function defined on the Hilbert space of square

integrable functions, A is the spatial differential operator, B is the input operator which

describes the spatial placement of the control actuators and u ∈ IRm is the vector of

manipulated inputs.
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For parabolic PDEs, a key structural characteristic of the spectrum of A is the large

separation that exists between a finite set of slow (possibly unstable) eigenvalues and

an infinite set of fast stable eigenvalues (e.g., see [63]), which enables the application of

standard modal decomposition techniques to transform the system of (5.3) to the following

interconnected subsystems:

ẋs(t) = Asxs(t) + Bsu(t), xs(0) = Psx0

ẋf (t) = Afxf (t) + Bfu(t), xf (0) = Pfx0

(5.4)

where xs = Psx is the state of a finite-dimensional slow subsystem that describes the

evolution of the slow eigenmodes, xf = Pfx is the state of an infinite-dimensional system

that describes the evolution of the fast stable eigenmodes, As = PsA, Af = PfA, Bs =

PsB, Bf = PfB; Ps and Pf are the orthogonal projection operators for the slow and fast

eigenmodes, respectively.

An alternative representation of the above subsystems – and one which is more con-

venient for practical controller synthesis and analysis – is in terms of the time evolution

of the amplitudes of the slow and fast eigenmodes. To this end, let ai denote the am-

plitude of the i-th eigenmode (which can be obtained by taking the inner product of

the state, x̄(z, t), with the i-th eigenfunction of the differential operator). We define

as = [a1 · · · am]T ∈ IRm as the slow state, which contains the amplitudes of the first m

slow eigenmodes, and define af as the fast state, which contains the amplitudes of the

remaining fast stable eigenmodes. The dynamics of the slow and fast subsystems can be

described by:

ȧs = Asas +Bs(za)u

ȧf = Afaf +Bf (za)u
(5.5)

where As is an m × m diagonal matrix containing the first m slow eigenvalues of A,

Bs is an m ×m input matrix whose elements are parameterized by the control actuator

locations, za. Af and Bf are ”infinite-dimensional” state and input matrices associated

with the fast subsystem, where Af contains the stable fast eigenvalues of A. Owing to its

finite-dimensional nature, only the slow subsystem of (5.5) is used for controller design

as explained in the next section.
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5.2 Model-Based Control with Event-Triggered Sensor-

Controller Communication

In this section, we use the finite-dimensional slow subsystem of (5.5) to design a model-

based networked controller that utilizes event-triggered sensor-controller communication

and characterize its closed-loop stability properties under full-state measurements. The

model-based control strategy involves embedding a finite-dimensional dynamic model of

the slow subsystem within the controller and using the model to generate estimates of

the slow states which are used to generate the control action for as long as the com-

munication between the controller and the sensor is suspended. When communication

is re-established, the model states are updated based on the available sensor-measured

values.

We consider a model-based controller of the following form:

u(t) = −Kâs(t)

˙̂as(t) = Âsâs(t) + B̂su(t)
(5.6)

where âs is the state of the model estimating the slow state as, Âs and B̂s are constant

matrices that approximate the matrices of the slow subsystem As and Bs, respectively,

and satisfy the following bounds:

‖δA‖ := ‖As − Âs‖ ≤ ∆A, ‖δB‖ := ‖Bs − B̂s‖ ≤ ∆B (5.7)

where ∆A > 0 and ∆B > 0 are bounds on the plant-model mismatch; and K is the

feedback gain which is chosen to exponentially stabilize the origin of the closed-loop model.

This choice guarantees the existence of a positive-definite symmetric matrix P = P T > 0

that satisfies the following Lyapunov equation:

−Q = (Âs − B̂sK)TP + P (Âs − B̂sK) (5.8)

for some positive-definite symmetric matrix Q, which in turn implies that the time-

derivative of the Lyapunov function V = âTs P âs along the trajectories of the closed-loop

model satisfies a bound of the form V̇ (âs) ≤ −α ‖âs‖2, where α = λmin(Q) > 0 is the

minimum eigenvalue of Q.
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To assess the stabilizing capabilities of the controller of (5.6) when implemented on

the slow subsystem of (5.5), we consider the Lyapunov function V (as) = aTs Pas, where P

satisfies (5.8), and evaluate the time-derivative of V along the trajectories of the closed-

loop slow subsystem as follows:

V̇ (as) = ȧTs Pas + aTs P ȧs (5.9)

= (Asas −BsKâs)
TPas + aTs P (Asas −BsKâs)

Introducing the model estimation error, e = as − âs, and exploiting (5.8) together

with the uncertainty bounds ‖δA‖ ≤ ∆A and ‖δB‖ ≤ ∆B, an upper bound on the time-

derivative of V can be obtained as follows:

V̇ (as) ≤ −α‖as‖2 + 2∆A‖P‖‖as‖2 (5.10)

+ 2‖PBsK‖‖as‖‖e‖

= −α
2
‖as‖2 − γ̄‖as‖(ε‖as‖ − ‖e‖)

where γ̄ = 2(‖PB̂sK‖+ ∆B‖P‖‖K‖) > 0 and the parameter ε is given by:

ε =
α− 4∆A‖P‖ − 4∆B‖P‖‖K‖

4(‖PB̂K‖+ ∆B‖P‖‖K‖)
(5.11)

From (5.10) it can be seen that if the norm of the model estimation error ‖e(t)‖ satisfies

the following bound:

‖e(t)‖ ≤ ε‖as(t)‖ ∀t ≥ 0, (5.12)

where α > 4∆A‖P‖ + 4∆B‖P‖‖K‖, the time-derivative of V is guaranteed to satisfy

V̇ (as(t)) ≤ (−α/2)‖as(t)‖2 for all t ≥ 0, which ensures exponential closed-loop stabil-

ity. The right-hand side in (5.12) can be viewed as a time-varying alarm threshold that

the model estimation error needs to remain below to ensure closed-loop stability. This

condition can therefore be used to devise an event-triggered control strategy whereby the

controller uses the model state (i.e., sensor-controller communication is suspended) as

long as (5.12) is satisfied, and when (5.12) is violated the model state gets updated (i.e.,

sensor-controller communication is permitted) to reset the model estimation error to zero
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and ensure the negative-definiteness of V̇ . This event-based update logic can be formally

described as follows:

‖e(tk)‖ > ε‖as(tk)‖ =⇒ âs(tk) = as(tk) , k ∈ {0, 1, 2, · · · } (5.13)

where tk is the k-th update time.

Remark 5.1. Note that the implementation of this strategy requires monitoring the evo-

lution of the model estimation error over time to determine if (and when) it breaches the

time-varying alarm threshold. Under full-state feedback (where measurements of the slow

states are assumed to be available), the event-triggered control strategy can be implemented

directly since the availability of the slow states as measurements enables the determination

of both the estimation error and the communication-triggering threshold.

Remark 5.2. The frequency of model state updates (which is an indicator of the extent of

sensor-controller communication) is dictated by how often the time-varying alarm thresh-

old in (5.12) is breached. This is determined in part by the size of the threshold coefficient,

ε, where a large value of ε makes it less likely for the threshold to be breached (leading to

smaller communication frequency) whereas a small value of ε makes it more likely that

a breach may take place (leading to higher communication frequency). In this sense, the

threshold coefficient may be used as an (indirect) measure of the extent of network uti-

lization. The advantage of using the threshold coefficient as such is that, as shown in

(5.11), it is explicitly parameterized by the model and controller design parameters and

can therefore be computed and optimized a priori (prior to controller implementation).

Remark 5.3. The expression in (5.11) provides an explicit characterization of the de-

pendence of the communication-triggering threshold coefficient, ε, on the size of the plant-

model mismatch, which is reflected in the uncertainty bounds ∆A and ∆B. As these

bounds get smaller, ε gets larger and less frequent model updates are triggered. How-

ever, it is crucial to note that it is possible for ε to become negative if the uncertainty

bounds are too large. In such cases, the event-triggered communication strategy becomes

infeasible, leading to continuous communication with no a priori guarantees of closed-

loop stability. To mitigate this effect, we require that α be large enough such that α >
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4∆A‖P‖ + 4∆B‖P‖‖K‖. In the presence of large uncertainty, this requirement can be

fulfilled by increasing α appropriately. As a consequence of doing so, the controller will

become more aggressive in order to compensate for the large model uncertainty. This

requirement may also be viewed as an implicit constraint on the size of the uncertainty

that the system can tolerate, in the sense that ε will be positive if the uncertainty is small

enough. While α can be used to try to mitigate the effect of the uncertainty, ultimately

there is a limit on how large the uncertainty bounds can be without jeopardizing closed-loop

stability.

Remark 5.4. The event-triggered control strategy described in this section guarantees

exponential stability not only for the closed-loop slow subsystem of (5.5), but also for the

infinite-dimensional system of (5.5). Specifically, under the model state update law of

(5.13), the slow state is guaranteed to converge exponentially to zero owing to the fact

that V̇ (as) ≤ (−α/2)‖as‖2. Furthermore, the fact that the fast operator, Af , in (5.5) is

itself stable, together with the fact that the model state âs (which drives the fast subsystem

through the control input) is exponentially stable by controller design, implies that the fast

state is also exponentially stable.

5.3 Integrating Event-Based Parameter Identification

and Model-Based Control

In this section, we present a methodology for integrating the event-triggered model-based

networked control approach discussed in Section 5.2 with an event-based parameter re-

identification scheme to mitigate the impact of process parametric drift on both closed-

loop stability and the extent of network utilization. We first present an overview of the

proposed integration methodology followed by a discussion of the key implementation

steps. Figure 5.1 summarizes the proposed approach.

5.3.1 Overview of the proposed methodology

Initially, the networked control system is operated at a suitably chosen communication-

triggering threshold coefficient, ε, that minimizes communication while ensuring closed-

loop stability. Under full-state feedback the evolution of the closed-loop slow state is
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continuously monitored and the model estimation error is checked against the threshold

in (5.12) to determine when the model states need to be updated. This event-triggered

communication strategy is highlighted in green in Figure 5.1.
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Figure 5.1. Algorithm of integrating parameter identification and event-triggered
model-based control

To detect process parametric drift and determine when model parameters need to

be re-identified, the frequency of sensor-controller communication over the network is

continuously monitored. When a sustained increase in the communication frequency is

observed, parameter identification is triggered and new model parameters are identified.

A new communication-triggering threshold coefficient value, ε, is calculated based on the
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newly identified model parameters and is checked for feasibility. A desirable ε value is one

that results in a lower communication frequency. When this is achieved, the model param-

eters are updated. This event-triggered parameter identification strategy is highlighted

in blue in Figure 5.1.

5.3.2 Communication frequency monitoring

When model state updates occur, the sensor-controller communication frequency is con-

tinuously monitored in order to detect possible process parametric drift. As the process

parameters drift, the plant-model mismatch increases and the event-triggered control

strategy compensates for the increased mismatch by increasing the sensor-controller com-

munication to stabilize the closed-loop system (note that closed-loop stability is guar-

anteed as long as the drift does not exceed the uncertainty bounds ∆A and ∆B). To

detect this increase in the communication frequency, we introduce the following indicator

function:

δi =

1 , (ti − ti−1) < (ti−1 − ti−2)

0 , otherwise

(5.14)

where ti is the i-th update time. This function takes a value of 1 whenever the time

interval between the most recent consecutive update instances, (ti− ti−1), is smaller than

interval between the previous two update instances, (ti−1−ti−2). While this decrease in the

update period can be taken as a sign of potential increase in communication, this increase

by itself is not sufficient to indicate the need for model re-identification because under

normal event-triggered control the update period is expected to be non-uniform to begin

with as there can be short-lived (transient) increases and decreases in the communication

frequency. What the monitoring scheme, therefore, should be designed to look for is a

sustained increase in the communication frequency. To this end, we consider comparing

the sizes of consecutive update intervals over some horizon, N , and add up the values

of δi over that horizon. The resulting sum at any given time indicates the number of

instances that the update period decreased over the horizon. The need for parameter

re-identification is then triggered if the sum exceeds a certain pre-defined threshold, i.e.,∑k−N
i=k δi > γ′.
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Remark 5.5. The choice of the horizon length, N , and the update frequency threshold

magnitude, γ′, in (5.14) influence the accuracy of the parametric drift detection algo-

rithm. A longer horizon or a larger threshold value could make the algorithm indifferent

to communication frequency changes, whereas a short horizon or a smaller threshold value

could make the algorithm very sensitive to minor frequency changes which could lead to

unnecessary parameter identification events. The choice of these parameters requires some

experience and knowledge of the system being controlled, and can also serve as tuning pa-

rameters to strike the desired balance between the describable level of control performance

and the frequency of parameter re-identification events.

Remark 5.6. It should be noted that unlike the algorithm proposed in [52] for the case

of periodic sensor-controller communication, no safe-parking of the process following the

parametric drift is needed in the current approach. In [52], the drift was detected when the

state became unstable. Since the communication period was held constant, safe-parking

was utilized to temporarily stabilize the system immediately following the drift by either

increasing the communication frequency or by adjusting the actuator location. Realization

of the safe-parking step requires a search for the stabilizing update periods and/or the fea-

sible actuator locations. By contrast, the use of event-triggered control in the current work

eliminates the need for safe-parking as the sensor-controller communication frequency is

automatically adjusted by the control system in response to the parametric drift.

5.3.3 Model parameter re-identification

Once the parametric drift is detected as described in the previous subsection, new model

parameters need to be identified. The choice of the model re-identification method de-

pends on the particular application. In this study, subspace identification techniques for

finite-dimensional discrete linear time-invariant systems are used to identify new model

parameters, Ās and B̄s, based on the input and state data (under full-state feedback).

The aim of parameter re-identification is to minimize the plant-model mismatch. For

most identification methods, the quality of the model fit is based on how well the newly

identified parameters are consistent with the data, and the quality of the results are de-

pendent on the choice of the re-identification technique. For example, grey box estimation
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tools take advantage of prior knowledge of some system parameters which enables it to

identify the drifted parameters more accurately. On the other hand, black box estimation

tools do not require prior knowledge of system parameters, but could result in fits that

are less accurate.

5.3.4 Feasibility check and model parameter updates

Once new model parameters are identified using the subspace identification method as

discussed in Section 5.3.3, a decision has to be made in terms of whether to actually

update the model parameters or not. A key consideration in making this decision is

whether the newly identified parameters achieve a desirable post-drift level of sensor-

controller communication. Note that standard parameter identification methods do not

in general account for sensor-controller communication considerations, and the newly

identified parameters are typically based solely on how well they are represented by the

data. This, however, does not guarantee that the desired communication requirements

will be met. Recall also that the communication-triggering threshold ε can be used as a

measure of the communication frequency (see Remark 5.2), where a large value usually

indicates less frequent updates. In light of this, the new model parameters need to be

analyzed to determine what the new ε value will be before a decision on whether the

new parameters should be updated or not is made. Note that it is possible for the newly

calculated ε value to be less than the original value obtained prior to the drift, resulting in

more frequent communication. In this case, the decision to update the model parameters

hinges on the whether the decrease in ε is acceptable or not. For example, if we denote

by ε∗ the minimum value of the communication-triggering threshold coefficient that is

deemed appropriate for the desired communication level, the model parameters can be

updated as long as the newly obtained ε is greater than ε∗, i.e.,

εnew(tu) ≥ ε∗ =⇒ Âs(tu) = Ā, B̂s(tu) = B̄, (5.15)

where tu is the time at which the model parameter updating takes place. At a minimum,

the new ε has to be greater than zero to ensure that the event-triggered update strategy

continues to be feasible.
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5.4 Simulation Example

In this section, we demonstrate the application of the proposed methodology using a

simulated diffusion-reaction process with the following dynamics:

∂x̄(z, t)

∂t
=
∂2x̄(z, t)

∂z2
+ [βT γ̂e

−γ̂ − βU ]x̄(z, t) (5.16)

+ βU

2∑
i=1

bi(z)ui(t)

subject to the initial and boundary conditions in (5.2). For this system with u1 = u2 = 0,

the spatially-uniform steady-state, x̄(z, t) = 0, can be shown to be unstable for the fol-

lowing choice of process parameter values: βT = 120, γ̂ = 4 and βU = 2.0. The control

objective is to stabilize the state profile at the open-loop unstable steady-state using two

point-control actuators (with finite-support) with minimal sensor-controller communica-

tion, subject to process parametric variations. The variations in process parameters are

simulated by a drift in the heat of reaction, βU .

Based on the solution to the eigenvalue problem associated with the differential oper-

ator of above diffusion-reaction PDE, it can be shown that only the first two eigenvalues

are unstable. Therefore, we consider the first two unstable eigenvalues to be the dominant

ones and apply modal decomposition to obtain the following slow subsystem:

ȧs =

λ1 0

0 λ2

 as + ω

φ1(za1) φ1(za2)

φ2(za1) φ2(za2)

u
where λi = β̄ − i2 is the i-th eigenvalue, ω = 2, φi(z) =

√
2/π sin(iz) is the i-th

eigenfunction, za1 = π/4 is the location of the first actuator and za2 = π/2 is the location

of the second actuator. We initially consider a finite-dimensional model with

Âs =

5.792 0

0 2.792

 , B̂s =

1.128 1.596

1.596 0


and set the controller gain at:

K =

 0 −14.3

−9.9 10.1


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in order to place the poles of the closed-loop model at [−10 −20]. With these settings the

communication-triggering threshold coefficient was determined to be ε = 0.1248. In the

remainder of this section, we explore the implementation of the proposed approach under

parametric drift. In this scenario, the control and identification approaches are based

on the finite-dimensional model, but are applied to a sufficiently high-order Galerkin

discretization of the PDE.

Parametric drift is introduced in the heat of reaction coefficient, βU , at time t = 24

min. Figures 5.2 - 5.8 show the results of the simulation. After the drift occurs, the plant-

model mismatch increases, and the event-triggered communication strategy compensates

for this by increasing the sensor-controller communication in order to stabilize the system.

This can be seen in the continuous red band of update instances in Figure 5.4. Figure 5.6

shows how the resulting sustained increase in communication is detected by the frequency

monitoring algorithm.
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Figure 5.2. Dominant eigenmode profile for the closed-loop system under the integrated
event-triggered feedback control and event-based parametric re-identification approach

A horizon value of N = 50 and a frequency threshold value of γ
′
= 40 are utilized in the

communication frequency monitoring scheme. In this figure, the cumulative sum of the

indicator function values over the chosen horizon is plotted at each time instance, and it
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can be seen that at t = 26 min the sum breaches the specified threshold, indicating that a

drift has occurred and triggering parameter re-identification. Using subspace identification

techniques, the following model system and input matrices are identified:

Ā =

0.238 0

0 −1.000

 , B̄ =

1.128 1.596

1.596 0


Based on the new model, a new communication-triggering threshold coefficient value is

computed and found to be εnew = 0.3512. Since this value exceeds the pre-drift threshold

coefficient value, the model parameters are updated. This is represented by the green

color in Figures 5.2 - 5.8. It can be seen from Figure 5.4 that by identifying new model

parameters and minimizing the model estimation error along with increasing the model

estimation error threshold coefficient, the overall post-update communication rate is de-

creased compared to the nominal (pre-drift) operating conditions (blue region) and the

operating conditions during drift (red region).

5.5 Conclusions

In this chapter, we presented a methodology for the integration of time-triggered model-

based networked control and event-triggered model parameter re-identification for spatially-

distributed processes modeled by highly-dissipative PDEs subject to sensor-controller

communication constraints and process parametric drift. A monitoring scheme was de-

vised to detect increased plant-model mismatch due to parameter drift using a time-

varying instability alarm threshold. A breach of the threshold triggered a safe-parking

protocol that aimed to maintain closed-loop stability while allowing the collection of ad-

ditional input and state data that were used to re-identify the model parameters and

minimize the plant-model mismatch. A stability check was then performed for the newly-

identified model to determine if the model parameters could be updated and pre-drift

operating conditions could be restored. The development and implementation of the

proposed framework were demonstrated using a representative diffusion-reaction process

example. A key point of investigation in the simulation example has been the tradeoff

between the achievable closed-loop performance and the extent of network utilization re-
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alized by different safe-parking approaches. It was shown that safe-parking by adjusting

the update period yields better performance but comes at the expense of increased com-

munication cost, where as safe-parking via actuator re-location avoids the communication

cost increase but could cause performance deterioration.
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Chapter 6

Output Feedback Event-Triggered

Networked Control of

Spatially-Distributed Processes with

Parameter Re-Identification

The objective of this chapter is to address the limitations imposed by the lack of full-

state measurements on the implementation of the integrated control and identification

approach developed earlier in the context of event-based networked control of distributed

processes. In practical applications, full-state measurements are not always available,

especially in the case of spatially-distributed systems where it might be difficult to mea-

sure the entire spatial profile of a given state variable (as this requires a large number

of measurement sensors), or to measure certain physical variables in real-time due to

physical or technological constraints (e.g., species concentrations). In this chapter, we

focus on systems described by highly-dissipative PDEs subject to parametric drift and a

limited number of measured outputs, and address the problem on the basis of a suitable

reduced-order model that captures the slow dynamics of the infinite-dimensional system.

The rest of the chapter is organized as follows: Section 6.1 introduces some preliminaries

that define the scope of the current study. The event-based model-based control strat-

egy is presented in Section 6.2, where the state feedback design is initially reviewed and

then augmented with a state estimation scheme to generate estimates of the slow states
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using the available output measurements. Taking the state estimation error into account,

the state feedback-based communication-triggering criterion is modified to allow the im-

plementation of the event-triggered communication strategy based on the available state

estimates. The methodological framework for the integration of event-triggered parameter

re-identification and updates into the developed event-triggered output feedback control

strategy is the described in Section 6.3. Finally, an illustrative simulation case study is

presented in Section 6.4. The results of this chapter were first published in [72].

6.1 Preliminaries

In this study we consider a class of spatially-distributed processes described by highly-

dissipative PDEs that lend themselves to finite-dimensional control techniques owing to

their low-order dominant dynamics. An example are systems modeled by parabolic PDEs

with distributed control actuators and measurement sensors as follows:

∂x̄(z, t)

∂t
= ᾱ

∂2x̄(z, t)

∂z2
+ β̄x̄(z, t) + ω̄

m∑
i=1

bi(z)ui(t)

yi(t) =

∫ π

0

qi(z)x̄(z, t)dz, i ∈ {1, 2, · · · , l}
(6.1)

subject to the following boundary and initial conditions:

x̄(0, t) = x̄(π, t) = 0; x̄(z, 0) = x̄0(z) (6.2)

where t ≥ 0 is the time, 0 ≤ z ≤ π is the spatial domain, x̄(z, t) ∈ IR is the state

variable, ui ∈ IR is the i-th manipulated input, bi(z) is the spatial distribution function

associated with the i-th control actuator, and m > 0 is the number of manipulated inputs.

The constants ᾱ > 0, β̄, and ω̄ are process parameters, yi(t) ∈ IR is the i-th measured

output, qi(z) is the spatial distribution function associated with the i-th measurement

sensor, l > 0 is the number of measurement sensors, and x̄0(·) is a smooth function of its

argument.

An infinite-dimensional state-space formulation of the PDE in (6.1)-(6.2) can be ob-

tained as follows:

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Qx(t)
(6.3)
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where x(t) ∈ H = L2(0, π) is the state function defined on the Hilbert space of square

integrable functions, A is the spatial differential operator, B is the input operator which

dictates the spatial placement of the control actuators, u ∈ IRm is the vector of ma-

nipulated inputs, y ∈ IRl is the vector of measured outputs, and Q is the output (or

measurement) operator which dictates the spatial placement of the measurement sensors.

An integral structural characteristic of highly-dissipative PDEs, such as the one de-

scribed above, is the existence of a large separation in the spectrum of A between a finite

set of slow (possibly unstable) eigenvalues and an infinite set of fast stable eigenvalues

(e.g., see [63, 65–67, 69]). This characteristic enables the application of standard modal

decomposition techniques to transform the system of (6.3) to the following interconnected

subsystems:

ẋs(t) = Asxs(t) + Bsu(t), xs(0) = Psx0

ẋf (t) = Afxf (t) + Bfu(t), xf (0) = Pfx0

(6.4)

y(t) = Qsxs(t) +Qfxf (t) (6.5)

where xs = Psx is the state of a finite-dimensional slow subsystem that describes the

evolution of the slow eigenmodes, xf = Pfx is the state of an infinite-dimensional system

that describes the evolution of the fast stable eigenmodes, As = PsA, Af = PfA, Bs =

PsB, Bf = PfB; Ps and Pf are the orthogonal projection operators for the slow and fast

eigenmodes, respectively; and Qs and Qf are the measurement operators associated with

the slow and fast subsystems, respectively.

The above subsystems can be represented in a more convenient form, in terms of

the time evolution of the amplitudes of the slow and fast eigenmodes, for the purpose

of practical controller synthesis and analysis. To that end, we define the vector of slow

eigenmodes as as = [a1 · · · am]T ∈ IRm (where ai denotes the amplitude of the i-th eigen-

mode and can be obtained by taking the inner product of the state, x̄(z, t), with the i-th

eigenfunction of the differential operator), and define af as the vector of the remaining

fast eigenmodes. The dynamics of the slow and fast subsystems can now be described by:

ȧs = Asas +Bs(za)u, ys = Qs(zs)as (6.6)

ȧf = Afaf +Bf (za)u, yf = Qf (zs)af (6.7)
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y = ys + yf (6.8)

where As is an m×m diagonal matrix containing the first m slow eigenvalues of A, Bs is

an m×m input matrix whose elements are parameterized by the spatial locations of the

control actuators, za, and Qs is an l ×m output matrix with its elements parameterized

by the spatial locations of the measurement sensors; Af , Bf and Qf are the ”infinite-

dimensional” state, input and output operators associated with the fast subsystem, where

Af contains the stable fast eigenvalues of A. The outputs of the slow and fast subsystems

are denoted by ys and yf , respectively. As will be discusses in the next section, only the

slow subsystem of (6.6) is used for controller design owing to its finite-dimensional nature.

Remark 6.1. It should be noted that while the example of a single parabolic PDE subject to

Dririchlet boundary conditions is used for motivation and illustration purposes, the results

of this work are not limited to this class of systems. The results apply to parabolic PDEs

with other types of boundary conditions (including Neumann and mixed-type), as well as

systems of parabolic and other highly-dissipative PDEs for which the spectral separation

property discussed above holds and the decomposition of (6.4) can be written.

6.2 Design and Implementation of Event-Triggered

Model-Based Feedback Control

In this section we discuss the design and implementation of a model-based networked

control strategy that utilizes event-triggered sensor-controller communication and char-

acterize the closed-loop stability properties under both full and incomplete state mea-

surements, all based on the finite-dimensional slow subsystem of (6.6). The model-based

control strategy requires that a finite-dimensional dynamic model of the slow subsystem

be embedded within the controller. Utilizing this model, estimates of the slow states used

to generate the control action when the communication between the controller and the

sensor is suspended are generated, and when communication is re-established, the model

states are updated using the available sensor-measured values. In the remainder of this

section, we first recall the state feedback result for this type of control and then extend

these results to the case when only output measurements are available.
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6.2.1 Implementation using full-state measurements

Following [71], a model-based controller of the following form is considered:

u(t) = −Kâs(t)

˙̂as(t) = Âsâs(t) + B̂s(za)u(t)
(6.9)

where âs is the state of the model estimating the slow state as; Âs and B̂s are constant

matrices that approximate the matrices of the slow subsystem As and Bs, respectively,

and satisfy the following bounds:

‖δA‖ := ‖As − Âs‖ ≤ ∆A, ‖δB‖ := ‖Bs − B̂s‖ ≤ ∆B

where ∆A > 0 and ∆B > 0 are bounds on the parametric model uncertainty; and K

is the feedback gain which is chosen to exponentially stabilize the origin of the closed-

loop model. This choice guarantees the existence of a positive-definite symmetric matrix

P = P T > 0 that satisfies the following Lyapunov equation:

−Q = (Âs − B̂sK)TP + P (Âs − B̂sK) (6.10)

for some positive-definite symmetric matrix Q. This, in turn, implies that the time-

derivative of the Lyapunov function V = âTs P âs along the trajectories of the closed-loop

model satisfies V̇ (âs) ≤ −α ‖âs‖2, where α = λmin(Q) > 0 is the minimum eigenvalue of

Q.

To map the stabilizing capabilities of the controller of (6.9) when implemented on

the slow subsystem of (6.6), the Lyapunov function candidate V (as) = aTs Pas, where P

satisfies (6.10), is considered and its time-derivative along the trajectories of the closed-

loop slow subsystem is evaluated.

By doing this, it can be shown that if the norm of the model estimation error ‖e(t)‖,

where e(t) = as(t)− âs(t), satisfies the following bound:

‖e(t)‖ ≤ ε‖as(t)‖, ∀t ≥ 0, (6.11)

where

ε =
α− 4∆A‖P‖ − 4∆B‖P‖‖K‖

4(‖PB̂K‖+ ∆B‖P‖‖K‖)
, (6.12)
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and α > 4∆A‖P‖ + 4∆B‖P‖‖K‖, the time-derivative of V is guaranteed to satisfy

V̇ (as(t)) ≤ (−α/2)‖as(t)‖2 for all t ≥ 0, which ensures exponential closed-loop stabil-

ity for both the slow subsystem and the infinite-dimensional system (the latter is due to

the fact the the fast subsystem itself is stable and driven by a bounded and converging

input).

The right-hand side of the inequality in (6.11) represents a state-dependent threshold

that the model estimation error needs to respect to ensure closed-loop stability. Using this

condition we can devise an event-triggered control strategy where the controller uses the

model state during times when communication is suspended as long as (6.11) is satisfied.

When (6.11) is violated the model state gets updated through the network to reset the

model estimation error to zero and ensure the negative-definiteness of V̇ . This event-based

update logic can be formally described as follows. Let tk > 0 be a time instant such that

the estimation error breaches the threshold:

‖e(tk)‖ > ε‖as(tk)‖ (6.13)

Then resetting the model state according to the following update law:

âs(tk) = as(tk) (6.14)

resets the estimation error to zero and ensures exponential closed-loop stability (for both

the finite-dimensional slow subsystem and the infinite-dimensional system).

6.2.2 Implementation using limited state measurements

When only a finite number of measured outputs are available, the event-triggered control

strategy discussed in the previous subsection cannot be implemented directly due to the

unavailability of the slow state measurements, and must therefore be modified. One way

to address this problem is to generate estimates of the slow states from the available

outputs and use those estimates to redesign and implement the model state update logic.

To this end, we consider as an illustration the case when the measurement operator is

invertible (or pseudo-invertible in the case of a non-square system). This requirement can

typically be achieved by the appropriate choice of the number and location of the sensors.

An estimate of the slow state can be generated as follows:
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ãs(t) = Q−1
s (zs)y(t) (6.15)

where ãs is an estimate of as. Since the output reflects the contributions of both the

slow and fast states, the above estimation approach introduces an error that needs to be

accounted for in the design and implementation of the sensor-controller communication

logic. To illustrate how this error can be accounted for, let us first consider a “certainty-

equivalence” approach whereby the slow state in the state feedback design, as, is simply

replaced by the estimate, ãs. Recall that closed-loop stability under full-state feedback is

guaranteed as long as (6.11) is satisfied. What is needed here is an alternative condition,

expressed in terms of ãs, whose satisfaction suffices to guarantees that (6.11) is satisfied.

Let us define the new error variable ẽ = ãs−âs, and analyze the consequences of requiring:

‖ẽ(t)‖ ≤ ε‖ãs(t)‖ (6.16)

Using (6.15), and the definition of ẽ, it can be verified that:

‖ẽ(t)‖ = ‖Q−1
s y(t)− âs(t)‖

≥ ‖as(t)− âs(t)‖ − ‖Q−1
s Qfaf (t)‖

= ‖e(t)‖ − ‖Q−1
s Qfaf (t)‖

(6.17)

Therefore, if (6.16) holds, we will have:

‖e(t)‖ ≤ ε‖as(t)‖+ (ε+ 1)‖Q−1
s Qfaf (t)‖ (6.18)

Comparing this result with the condition in (6.11), it is clear that satisfaction of (6.16)

does not ensure satisfaction of (6.11) due to the additional term on the right-hand side of

the inequality in (6.16), which is related to the error introduced in the estimation of the

slow state. To ensure that (6.11) is satisfied, one idea is to tighten the upper bound in

(6.16) by subtracting the additional term containing the contribution of the fast states.

Specifically it can be shown that if the following condition is satisfied:

‖ẽ(t)‖ ≤ ε‖ãs(t)‖ − (ε+ 1)‖Q−1
s Qfaf (t)‖ (6.19)

then (6.11) is also satisfied and closed-loop stability is guaranteed (provided that the

right-hand side in (6.19) is positive; see Remark 6.2 below). To eliminate the need for the
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fast states in evaluating the new time-varying alarm threshold in (6.19), we can exploit

the stability properties of the fast subsystem which, together with the boundedness of the

input and measurement operators, implies the existence of positive real constants, γ1, γ2,

and β, such that

‖Q−1
s Qfaf (t)‖ ≤ γ1e

−βt + γ2

∫ t

0

e−β(t−τ)u(τ)dτ := ϕ(t) (6.20)

where the control action, u(τ), is computed based on the model state from (6.9) and ϕ(·)

is a monotonically decreasing function of time. Notice that the evaluation of the above

bound requires storing the control input profile (or the model state profile) over time.

Recall also that the closed-loop model is exponentially stable by design and, therefore,

the control input term can be upper-bounded by an exponentially-decreasing function of

time that can be integrated explicitly leading to a more explicit time-varying upper bound

that eliminates the need for the integral in the above expression (albeit at the expense of

a possibly more conservative bound).

Using the bound in (6.20), it can now be shown that the following chain of inequalities

holds:

‖ẽ(t)‖ ≤ ε‖ãs(t)‖ − (ε+ 1)ϕ(t)

=⇒ ‖ẽ(t)‖ ≤ ε‖ãs(t)‖ − (ε+ 1)‖Q−1
s Qfaf (t)‖

=⇒ ‖e(t)‖ ≤ ε‖as(t)‖ =⇒ V̇ (as) < 0

(6.21)

The above analysis can be used to devise a modified event-triggered control strategy

to be implemented under incomplete state measurements. The idea is to monitor the

evolution of the error variable, ẽ, over time, and trigger an update of the model state

using the available estimate, ãs, whenever the modified threshold is breached. This can

be formalized as follows. Let tk be a time instance such that the modified threshold is

breached as follows:

‖ẽ(tk)‖ > ε‖ãs(tk)‖ − (ε+ 1)ϕ(tk) (6.22)

Then the model state update law given by

âs(tk) = ãs(tk) (6.23)
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resets the error variable to zero and ensures that (6.19) and (6.21) are satisfied, thus

ensuring stability.

Remark 6.2. It should be noted that for the implementation of this modified update

strategy to be feasible, the estimation error (arising due to the contribution of the fast states

to the output) needs to be small enough such that the new update-triggering threshold is

positive. This implies that we need to have ‖ãs(t)‖ > (1 + ε−1)ϕ(t), which in turn requires

that the fast states decay sufficiently fast to ensure that ϕ(t) is sufficiently small. A

singular perturbation framework can be used here to establish that this fast convergence is

achievable provided that the separation between the fast and slow eigenvalues is sufficiently

large (i.e, the finite-dimensional slow subsystem is chosen to be of sufficiently high order),

at least after an arbitrarily small boundary layer time interval has elapsed. It is also worth

noting that owing to the dependence of the estimation error on the measurement operator

(which in turn depends on the locations of the measurement sensors), a judicious choice

of the sensor locations can also help maintain small estimation errors.

Remark 6.3. A possible alternative approach to address the implementation of the state

feedback event-triggered control strategy under limited state measurements is to use a dy-

namic slow state observer (in lieu of the static estimator in (6.15)) to generate estimates of

the slow states. While this approach does not require the invertibility of the measurement

operator, it is challenged by the need to impose additional assumptions on the conver-

gence properties of the observer estimation error to ensure implementation feasibility and

closed-loop stability (see [73] for a discussion on this issue).

6.3 Augmenting Model-Based Control with Event-

Based Parameter Re-Identification

To address the potential impact of process parametric variations on both the stability

of the closed-loop system and the extent of sensor-controller communication required,

we describe in this section a methodology for augmenting the event-triggered model-

based networked control strategy presented in the previous section with an event-based

parameter re-identification scheme that aims keep the plant-model mismatch.
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Initially, an appropriate communication-triggering threshold coefficient, ε, that ensures

closed-loop stability with reduced sensor-controller communication is chosen (based on

(6.12)) and the networked control system is operated at that value. The time evolution of

the estimated closed-loop slow states is then continuously monitored and the estimation

error variable, ẽ(t), is computed and compared to the threshold on the right-hand side in

(6.22) to determine if a threshold breach has taken place, at which time the model states

need to be updated.

As the drift in process parameter values acts to exacerbate the size of the plant-model

mismatch over time (i.e., causing the error ẽ(t) to become larger), the alarm thresh-

old in (6.22) is more easily violated, thus jeopardizing closed-loop stability. While the

event-triggered control strategy has the ability to compensate for this by increasing the

sensor-controller communication rate (provided the parametric drift does not exceed the

prescribed uncertainty bounds), this solution may not be as efficient in terms of net-

work resource utilization in the sense that it may lead to a premature increase in the

communication rate.

A potentially more efficient solution is to have the model parameters re-identified and

updated if necessary. To assess the need for parameter re-identification at any give time,

a monitoring scheme is utilized wherein the sensor-controller communication pattern over

the network is continuously monitored. The idea is to detect possible sustained increases

in the communication rate and use them as an indication of parametric drift. To this end,

an indicator function of the following form is utilized:

δi =

1 , (ti − ti−1) < (ti−1 − ti−2)

0 , otherwise

(6.24)

where ti refers to the i-th update time. Whenever the time interval between the most

recent consecutive update instances, (ti − ti−1), is shorter than the interval between the

previous two update instances, (ti−1−ti−2) (see Figure 6.1 for an illustration), the indicator

function records a value of 1. Otherwise, the function takes a value of zero. By summing

up the values recorded over some horizon, one can identify a sustained increase in the

communication frequency if the accumulated sum over the horizon exceeds a certain pre-
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defined threshold; i.e., if the following holds

k−N∑
i=k

δi > γ′ (6.25)

where N > 0 is the horizon and γ′ > 0 is the threshold. Both N and γ′ can be viewed

as design parameters which can be used to tune the sensitivity of the monitoring scheme

and how frequently the model parameters are re-identified. When a sustained increase in

Figure 6.1. Illustration of communication frequency monitoring by tracking update
instances over a moving horizon

the communication frequency is observed, parameter re-identification is triggered and new

model parameters are identified using the available input and output data (e.g., using sub-

space identification techniques which are appropriate for linear systems). Once new model

parameters are identified, a new communication-triggering threshold coefficient value, ε,

is calculated and compared to the pre-drift value used originally to decide whether an

update of the model parameters should be triggered. Specifically, if the newly-obtained ε

is larger, then the model parameters should be updated since a larger threshold coefficient

generally will lead to reduced communication occurrences.
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6.4 Simulation Study

In this section, we use a simulated diffusion-reaction process to illustrate the application

of the methodology presented in the previous two sections. The process dynamics and

output measurements are given by:

∂x̄(z, t)

∂t
=
∂2x̄(z, t)

∂z2
+ [βTγe

−γ − βU ]x̄(z, t) + βU

2∑
i=1

bi(z)ui(t)

yi(t) =

∫ π

0

qi(z)x̄(z, t)dz, i ∈ {1, 2}

subject to the initial and boundary conditions in (6.2). For a choice of process parameter

values such that βT = 120, γ = 4, and βU = 2.0, the spatially-uniform open-loop steady-

state, x̄(z, t) = 0, is unstable. The control objective is to stabilize the state profile at the

open-loop unstable steady-state using two point-control actuators (with finite-support)

and two point-measurement sensors (with finite support) with minimal sensor-controller

communication, in the presence of process parametric variations which are simulated by

a drift in the heat of reaction parameter, βU .

By solving the eigenvalue problem for the differential operator, it can be shown that,

for the given process parameters, only the first two eigenvalues are unstable, and as a

result we take the first two unstable eigenvalues as the dominant ones and apply modal

decomposition to obtain the following second-order slow subsystem:

ȧs =

λ1 0

0 λ2

 as + ω

φ1(za1) φ1(za2)

φ2(za1) φ2(za2)

u

ys =

φ1(zs1) φ2(zs1)

φ1(zs2) φ2(zs2)

 as
where λi = β̄ − i2 is the i-th eigenvalue, ω = 2, φi(z) =

√
2/π sin(iz) is the i-th

eigenfunction, and za1 = π/4 and za2 = π/2 are the locations of the first and second

control actuators, respectively, and zs1 = π/3 and zs2 = 2π/3 are the locations of the first

and second measurement sensors. For controller implementation, we initially consider a
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finite-dimensional nominal model of the slow subsystem with

Âs =

5.792 0

0 2.792

 , B̂s =

1.128 1.596

1.596 0


Based on this model, a choice of the controller gain as:

K =

 0 −14.3

−9.9 10.1


is made to place the poles of the closed-loop model at [−10 −20]. Based on these settings,

the communication-triggering threshold coefficient was determined to be ε = 0.125. In

the remainder of this section, we explore the implementation of the proposed approach

both under normal operating conditions and when parametric drift is introduced. In all

scenarios, the controller design and parameter re-identification are based on the finite-

dimensional model, but are applied to a sufficiently high-order Galerkin discretization of

the PDE.

6.4.1 Nominal operation under event-triggered control

Figures 6.2 - 6.6 show the time evolution of the two dominant eigenmodes, the manipulated

input profiles, the model state update instances, the evolution of the model estimation

error relative to the communication-triggering threshold, and the closed-loop state profile

under the event-triggered control strategy when no parametric drift is introduced. It can

be seen that the event-triggered control strategy is able to successfully stabilize the system

at the desired steady state with frequent communication as can be seen from Figure 6.4.

6.4.2 Operation subject to parametric drift

In this case, a drift in the heat of reaction coefficient, βU , is introduced into the simulation

starting at time t = 24 min. The simulation results for this case are given in Figures 6.7

- 6.13. The dense red band of update instances in Figure 6.9 represents the immediate

response of the event-triggered communication strategy aimed at maintaining closed-loop

stability following the drift as the plant-model mismatch increases. The detection of this

sustained increase in sensor-controller communication by the monitoring scheme is shown
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Figure 6.2. Dominant eigenmode profile for the closed-loop system under event-
triggered output feedback control and no parametric drift
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Figure 6.3. Manipulated input profile for the closed-loop system under event-triggered
output feedback control and no parametric drift
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Figure 6.5. Model estimation error evolution relative to the alarm threshold

92



Figure 6.6. Closed-loop state profile

in Figure 6.11, where the time evolution of the cumulative sum of the recorded indicator

function values over the horizon (N = 50) is plotted, and can be seen to exceed the

specified threshold (γ′ = 40) at t = 26 min, thus indicating that a drift has occurred and

triggering parameter re-identification. It should be noted here that, without monitoring

the communication frequency and taking action to re-identify the model parameters, the

post-drift continuous red band in Figure 6.9 would continue for all future times.

Following the detection of a sustained increase in communication, the input and output

data (available from the infinite-dimensional system) are used, together with subspace

identification techniques, to identify the following model matrices:

Ā =

0.238 0

0 −1.000

 , B̄ =

1.128 1.596

1.596 0

 (6.26)

Based on the newly-identified model parameters, the new communication-triggering

threshold coefficient value is found to be εnew = 0.351, which exceeds the pre-drift value

of ε = 0.125. As a result, the model parameters are updated according to (6.26). The

post-update phase of operation is depicted by the green color in Figures 6.7 - 6.13. Figure

6.9 shows that, as a result of applying the integrated control and identification approach,
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Figure 6.7. Dominant eigenmode profile for the closed-loop system under event-
triggered output feedback control and parametric drift
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Figure 6.8. Manipulated input profile for the closed-loop system under event-triggered
output feedback control and parametric drift
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Figure 6.10. Model estimation error evolution relative to the alarm threshold
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Figure 6.13. Closed-loop state profile

the post-update communication rate is reduced compared to that in the pre-drift phase

(blue region) and in the initial drift phase (red region).

6.5 Conclusions

In this chapter, we presented a methodology for the integration of time-triggered model-

based networked control and event-triggered model parameter re-identification for spatially-

distributed processes modeled by highly-dissipative PDEs subject to sensor-controller

communication constraints and process parametric drift. A monitoring scheme was de-

vised to detect increased plant-model mismatch due to parameter drift using a time-

varying instability alarm threshold. A breach of the threshold triggered a safe-parking

protocol that aimed to maintain closed-loop stability while allowing the collection of ad-

ditional input and state data that were used to re-identify the model parameters and

minimize the plant-model mismatch. A stability check was then performed for the newly-

identified model to determine if the model parameters could be updated and pre-drift

operating conditions could be restored. The development and implementation of the

proposed framework were demonstrated using a representative diffusion-reaction process

example. A key point of investigation in the simulation example has been the tradeoff
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between the achievable closed-loop performance and the extent of network utilization re-

alized by different safe-parking approaches. It was shown that safe-parking by adjusting

the update period yields better performance but comes at the expense of increased com-

munication cost, where as safe-parking via actuator re-location avoids the communication

cost increase but could cause performance deterioration.
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Chapter 7

Nonlinear Networked Control of

Parabolic PDE Systems with

Parametric Drift and

Re-Identification

To address the implementation issues of nonlinear systems control, in this chapter we

present a framework for augmenting model-based feedback control with error-triggered pa-

rameter re-identification in spatially-distributed systems described by nonlinear parabolic

PDEs subject to sensor-controller communication constraints and process parametric vari-

ations. The framework aims to maintain closed-loop stability in the presence of varying

levels of plant-model mismatch during periods of parametric drift, while simultaneously

keeping the rate of sensor-controller communication to a minimum and accounting explic-

itly for the presence of nonlinearities.

The rest of the chapter is organized as follows: following some preliminaries in Section

7.1, a stabilizing nonlinear state feedback controller is designed in Section 7.2 based on an

approximate finite-dimensional model of the infinite-dimensional system, and an explicit

characterization of the closed-loop stability region is obtained in terms of the commu-

nication rate, the parametric uncertainty bounds, and the controller design parameters.

An error monitoring scheme with a time-varying instability alarm threshold is then in-

troduced in Section 7.3 to determine on-line if and when the model parameters need to
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be updated. A breach of the instability threshold triggers a safe-parking step in which

the sensor-controller communication rate is adjusted to mitigate the destabilizing impact

of increased plant-model mismatch. The measurements collected during the safe-parking

mode are used to obtain new estimates of the process parameters using nonlinear grey-box

parameter estimation techniques. An explicit characterization of the closed-loop stability

region associated with the new model parameters is obtained to determine the appropri-

ate post-drift sensor-controller communication rate that should be used when the model

parameters are updated. Finally, the results are illustrated using a simulation case study

in Section 7.4.

7.1 Preliminaries

In this work we consider spatially-distributed systems modeled by nonlinear parabolic

PDEs of the following form:

∂x̄

∂t
= α

∂2x̄

∂z2
+ βx̄+ f̄(x̄, p) + ω

m∑
i=1

bi(z)ui(t) (7.1)

x̄(0, t) = x̄(π, t) = 0, x̄(z, 0) = x̄0(z) (7.2)

where x̄(z, t) ∈ IR represents the state variable, z ∈ [0, π] and t ∈ [0,∞) are the spatial

and temporal coordinates, respectively, f̄(·) is a smooth nonlinear function that satisfies

f̄(0, p) = 0, p is a vector of constant parameters associated with the nonlinear part of the

dynamics, ui is the i-th manipulated input, bi(·) is the i-th actuator distribution function,

m is the number of control actuators, the parameters α > 0, β, and ω are constants, and

x̄0(z) is a smooth function of z.

To facilitate controller synthesis and subsequent analysis, the PDE of (7.1)-(7.2) is

initially formulated as an infinite-dimensional system of the following form (e.g., see [63]):

ẋ(t) = Ax(t) + Bu(t) + f(x(t), p), x(0) = x0, (7.3)

where x(t) = x̄(z, t), for t > 0 and z ∈ [0, π], is the state function defined on the

Hilbert space H = L2(0, π), A is the spatial differential operator whose spectrum can

be partitioned into a finite set of slow (possibly unstable) eigenvalues and an infinite
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complement of fast stable eigenvalues, B is the input operator that describes the spatial

placement of the control actuators, u = [u1 · · ·um]T ∈ IRm is the manipulated input

vector, f(·) is a smooth nonlinear function, and x0 is the initial condition. Leveraging

the low-order dynamics of this class of systems, standard modal decomposition can be

applied to transform the system in (7.3) into the following interconnected subsystems:

ẋs(t) = Asxs(t) + Bsu(t) + fs(xs, xf , ps), xs(0) = Psx0

ẋf (t) = Afxf (t) + Bfu(t) + ff (xs, xf , pf ), xf (0) = Pfx0

(7.4)

where xs = Psx is the state of a finite-dimensional slow subsystem that describes the evo-

lution of the slow eigenmodes, xf = Pfx is the state of an infinite-dimensional fast sub-

system that describes the evolution of the fast stable eigenmodes, As = PsA, Af = PfA,

Bs = PsB, Bf = PfB, fs(·) = Psf(·) and ff (·) = Pff(·) are nonlinear functions associ-

ated with the fast and slow subsystems, respectively, and Ps and Pf are the orthogonal

projection operators for the slow and fast eigenmodes, respectively. The vectors ps and pf

are the parameters associated with the nonlinear terms in the slow and fast subsystems,

respectively.

Applying model reduction techniques to the system of (7.4), a finite-dimensional sys-

tem that describes the time evolution of the amplitudes of the dominant (slow) eigenmodes

can be obtained as follows:

ȧs = Asas +Bs(za)u+ fs(as, ps) (7.5)

where as = [a1 · · · am]T ∈ IRm, ai is the amplitude of the i-th eigenmode, As is an m×m

diagonal matrix that contains the first m slow eigenvalues of A, and Bs is an m×m input

matrix whose elements are parameterized by the spatial placement of the control actuator

locations, za, and fs(·) is a sufficiently smooth function that satisfies fs(0, ps) = 0.

The system of (7.5) will be used in the remainder of the chapter as the basis for the

integrated controller design and parameter identification methodology. This is justified

by the fact that, for sufficiently large separation between the slow and fast eigenvalues,

closed-loop stabilization of the finite-dimensional system of (7.5) is sufficient to stabi-

lize the infinite-dimensional closed-loop system (see [63] for a justification using singular

perturbation arguments).
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7.2 Model-Based Networked Control

7.2.1 Problem formulation

Referring to the system of (7.5), the overarching control objective is to asymptotically

stabilize the origin of the closed-loop system using minimal sensor-controller communi-

cation so as to conserve the limited resources of the communication channel. To meet

this objective, we consider a model-based networked control configuration with periodic

sensor-controller communication. The general idea is to initially design a model-based con-

troller that stabilizes the closed-loop model, implement the model-based control action on

the plant, and periodically update the model state using the actual state measurement at

discrete times to curb the potentially destabilizing influence of the plant-model mismatch.

The main task is to characterize the maximum allowable update period that can be used

without loss of closed-loop stability. To help illustrate the key ideas, we focus on the state

feedback control problem.

7.2.2 Model-based controller synthesis and implementation

To aid in controller synthesis, we assume that an approximate model of the system of

(7.5) is available and takes the following form:

˙̂as = Âsâs + B̂s(za)u+ f̂s(âs, p̂s) (7.6)

where âs is the state of the model and Âs, B̂s and f̂s(·) are models that approximate As,

Bs and fs(·), respectively. It is important to note that Âs, B̂s and f̂s(·) are in general not

equal to As, Bs and fs(·) to allow for possible plant-model mismatch. The plant-model

mismatch is defined as:

Ãs = As − Âs, B̃s = Bs − B̂s

θ(·, δp) = fs(·, ps)− f̂s(·, p̂s)
(7.7)

where δp = ps − p̂s and the functions f̂s(·) and θ(·) are assumed to be sufficiently smooth

(with f̂s(0, p̂s) = 0 and θ(0, δp) = 0) and therefore satisfy the following growth bounds:∥∥∥f̂s(x, p̂s)− f̂s(y, p̂s)∥∥∥ ≤ Lf (p̂s)‖x− y‖

‖θ(x, δp)− θ(y, δp)‖ ≤ Lθ(δp)‖x− y‖
(7.8)
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for all x, y in some compact neighborhood Ω ⊂ IRm containing the origin in its interior,

where Lf (p̂s) and Lθ(δp), are positive constants.

Based on model of (7.6), the next step is to design a nonlinear state feedback control

law of the general form:

u(t) = k(âs(t)) (7.9)

such that the origin of the closed-loop model of (7.6)-(7.9) satisfies a bound of the form:

‖âs(t)‖ ≤ α ‖âs(t0)‖e−β(t−t0), ∀ t ≥ t0 (7.10)

where t0 is the initial time, α ≥ 1, β > 0, for all âs(t0) ∈ Ω. The controller function, k(·)

is a sufficiently smooth function and satisfies the following growth bound:

‖k(x)− k(y)‖ ≤ Lk‖x− y‖ (7.11)

for all x, y in Ω, where Lk is a positive constant.

We note that the above stability requirement is imposed to ensure that during times

of sensor-controller communication suspension (when the controller uses the model state),

the input to the plant is stable. However, the requirement of exponential stability is not

necessary and can be relaxed and replaced by either asymptotic or bounded stability.

The advantage of exponential stability, however, is that it facilitates the formulation of

an explicit stability condition for the networked closed-loop system which is presented in

the next subsection.

The implementation of the model-based controller can now be described as follows:

u(t) = k(âs(t)), t ∈ [tk, tk+1)

˙̂as(t) = Âsâs(t) + B̂s(za)u(t) + f̂s(âs(t), ps)

âs(tk) = as(tk), k ∈ {0, 1, 2, · · · }

(7.12)

where tk is the k-th update time, and h = tk+1− tk is defined as the update period, which

is the time period between two consecutive updates. The update period is the measure

that we use to quantify the extent of network resource utilization, and is therefore an

important parameter to be optimized in the resource-constrained stabilization problem.
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7.2.3 Networked closed-loop stability characterization

To achieve the goal of closed-loop stabilization with minimal communication, it is impor-

tant to first characterize the range of feasible update periods that can be used for the

networked control system without loss of stability. This characterization can be obtained

by analyzing the dynamics of the model estimation error, e = as − âs, and exploiting the

available growth bounds in (7.8) and (7.11). Specifically, it can be shown that the origin

of the closed-loop system of (7.5) and (7.12) is asymptotically stable if the update period

is chosen to satisfy the following condition:

F1(h) := 1− α
(
e−βh +

(
eLeh − e−βh

) Lw
β + Le

)
> 0 (7.13)

where Le =
∥∥∥Âs∥∥∥ +

∥∥∥Ãs∥∥∥ + Lθ(δp) + Lf (p̂s) and Lw =
∥∥∥Ãs∥∥∥ +

∥∥∥B̃s

∥∥∥Lk + Lθ(δp). The

proof of this result is conceptually similar to the one given in [74]. This result implies

that there exists a class KL function, βs(·, ·), such that the norm of the closed-loop state

satisfies a bound of the following form:

‖as(t)‖ ≤ βs(‖as(t0)‖, t− t0), ∀t ≥ t0 (7.14)

The condition in (7.13) captures the influence of plant-model mismatch on the range

of allowable update periods, and how the controller design parameters can be used to

modulate this influence. It can be seen, for example, that as the uncertainty bound Lw

(which combines the uncertainties in As, Bs and fs(·)) increases, the range of stabilizing

update periods shrinks. Conversely, as the uncertainty bound shrinks, the range of sta-

bilizing update periods increases. In the limit as Lw tends to zero and we approach the

case of a perfect model, the update period attains its maximum feasible range, which for

the case when α = 1, includes any update period no matter how large. Note also that

the parameter β, which quantifies the response speed of the closed-loop model state, also

influences the stabilizing range of update periods, where larger values of β help expand

the feasible range, for a given uncertainty bound.
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7.3 Augmenting Model-Based Control Using Param-

eter Re-Identification

As discussed earlier, process parametric drift over time can increase the level of plant-

model mismatch and thus may force the networked control system to operate at reduced

update periods to maintain closed-loop stability. To alleviate the resulting increased de-

mand on network resources, it becomes necessary to enhance the predictive capabilities

of the model by updating its parameters. In this section, a framework for augmenting the

model-based networked control strategy discussed in Section 7.2 with an event-triggered

parameter re-identification scheme is presented. An overview of the proposed framework

is first presented and then followed by a more detailed discussion of the various imple-

mentation steps.

7.3.1 Overview of proposed framework

Figure 7.1 summarizes the proposed approach. As shown in this figure, and following

initialization of the networked control system at some suitable update period, the impact

of parametric drift is continuously assessed by monitoring the evolution of the closed-

loop state relative to a pre-specified instability alarm threshold. When the threshold is

breached at some time, operation is switched temporarily to a safe-parking mode where

the update period is adjusted to avert instability. During this mode, nonlinear parame-

ter estimation tools are employed to identify the drifted plant parameters based on the

available closed-loop state and input data. The estimated parameters are then examined

for stability, and a characterization of the new closed-loop stability region is obtained to

decide whether to move the system out of the safe-parking mode and update the model

parameters. Following parameter updates, process monitoring continues and the afore-

mentioned steps are repeated every time the instability alarm threshold is breached in the

future.

7.3.2 Initialization step

In this step, a suitable update period is chosen to operate the networked control system

in a way that ensures minimal network resource utilization without compromising closed-
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Figure 7.1. Summary of the proposed framework for integrated model-based control
and parameter identification

loop stability. The initial update period is denoted by h0, where F1(h0) > 0.

7.3.3 Closed-loop system monitoring step

To assess the impact of parametric drift on closed-loop stability and determine if new

model parameters need to be identified at any time, a closed-loop monitoring scheme

is implemented. The scheme involves continuously tracking the evolution of the closed-
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loop states relative to a certain alarm threshold. The threshold is designed to allow the

detection of potential instabilities that could be caused by the drift. The instability alarm

can be designed on the basis of the nominal closed-loop stability properties highlighted in

Section 7.2. Specifically, the closed-loop stability bound in (7.14) is a natural candidate for

use as a time-varying alarm threshold, and utilizing it enables the detection of instability

once the given bound is violated. This is captured by the following criterion:

‖as(tb)‖ > βs(‖as(t0)‖, tb − t0) (7.15)

where tb is the time that the alarm threshold is exceeded. The threshold breach at

tb triggers a chain of events which include safe-parking and parameter re-identification.

The use of a time-varying threshold is advantageous in that it helps reduce the lag that

generally exists between the onset of the drift and the triggering of the alarm.

7.3.4 Safe-parking and data collection step

Following the instability threshold breach described by (7.15), the closed-loop system

needs to be stabilized prior to proceeding with the parameter re-identification step. In

this safe-parking step, the model state update period is reduced to maintain closed-loop

stability. Recall from (7.13) that an increase in the plant-model mismatch reduces the

maximum allowable update period. The operating update period is adjusted according

to the following switching criterion:

h(t) =

 h0 , t0 ≤ t < tb

hsp , t ≥ tb
(7.16)

where hsp is the stabilizing (safe-parking) update period chosen such that F1(hsp) > 0.

This update period is typically based on the worst-case plant-model mismatch that is

expected to be caused by the drift, and may therefore be conservative and costly from a

communication standpoint. This highlights the fact that the safe-parking action generally

comes at the cost of increased communication frequency, but it is nonetheless necessary

to maintain closed-loop stability and to collect sufficient data for the model parameter

identification step.
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7.3.5 Model parameter re-identification

Following the stabilization of the drifted closed-loop system, when a sufficient amount

of data has been collected, parameter re-identification is initiated and new parameter

estimates are obtained. The choice of the parameter re-identification method depends on

the particular system structure. In this work, nonlinear grey-box parameter estimation

techniques are used to identify the new model parameters based on the input and state

data. In this class of estimation methods, the structure of the model is assumed to be

known, but the parameters are unknown and are estimated using uniformly sampled time

data. The nonlinear model is generally represented in this approach using the following

form:

ẋ(t) = G(t, x(t), u(t), p1, p2, . . . , pN)

y(t) = H(t, x(t), u(t), p1, p2, . . . , pN) + e(t) (7.17)

x0 = x(tb)

where G(·) and H(·) are the known nonlinear functions, x(t) and u(t) are the state and

input data (which are collected during the safe-parking mode), p1, . . . , pN are the unknown

parameters that need to be estimated following the drift, y(t) is the output data, e(t) is

possible noise which maybe present in the output measurements, and x0 is the initial state

data available at the breach time.

The general idea is to determine the values of the unknown parameters, p1, . . . , pN ,

that minimize the mismatch between the predicted state values obtained from (7.17) and

the actual state measurements. For the state feedback problem under consideration, we

have y(t) = x(t). In cases where the model structure is unknown, black-box nonlinear

model identification techniques can be used instead.

It should be noted that the use of nonlinear model identification tools is motivated by

the presence of strong nonlinearities and the need to represent the system operation over

a range of operating points. In cases of weak nonlinearities, however, it maybe acceptable

(and also less computationally demanding) to fit several linear models, where each model

is accurate at specific operating conditions. Such linear models can also serve as initial

108



models for nonlinear estimation that can further improve the fit.

7.3.6 Post-identification analysis of closed-loop stability

Whereas parameter estimation methods generally aim to determine the parameter values

that minimize the discrepancy between the predicted and actual state values, an additional

key requirement that needs to be imposed on the parameter estimation in the context of

the resource-constrained stabilization problem is to find parameter values that reduce the

communication load as well. This consideration is not typically taken into account in

the optimization-based estimation problem formulation. For this reason, it is important,

once the new parameters are identified, to verify that the networked closed-loop stability

condition for the newly-obtained model is satisfied. This can be achieved by analyzing

the stability of the closed-loop system with the new model parameters. Specifically, using

(7.13), the range of stabilizing update periods associated with the new model can be

obtained. If the resulting maximum allowable update period is not greater than hsp, then

the closed-loop system remains safe-parked until a stabilizing model with a lower update

frequency is found; otherwise, the model parameters are updated and the corresponding

update period is implemented as follows:

Âs(tu) = Ās(tu), B̂s(tu) = B̄s(tu), p̂s(tu) = p̄s(tu)

h(t) = hf , t ≥ tu

(7.18)

where Ās, B̄s and p̄s are the newly identified parameters, tu is the time when the model

parameters are updated, and hf is the newly determined stabilizing update period which

satisfies F1(hf ) > 0.

It is important to note here that in the course of parametric drift, the process parame-

ters are generally assumed to change slowly over time. This gradual change would trigger

future alarm threshold breaches and subsequent safe-parking, parameter re-identification

and parameter update events. Handling situations involving time-varying parametric drift

therefore requires that the steps of the proposed algorithm be implemented repeatedly.

This point will be investigated further in the simulation case study.

Following the model parameter update, closed-loop state monitoring needs to continue
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to account for possible future parametric drifts. To this end, a new alarm threshold based

on the new model parameters needs to be designed and implemented.

7.4 Simulation Example

For illustration purposes, we consider in this section a nonlinear diffusion-reaction process

with the following space-time dynamics:

∂x̄

∂t
=
∂2x̄

∂x2
− βU x̄+ βT [e−γ/(1+x̄) − e−γ] + βUb(z)u(t)

subject to the following initial and boundary conditions:

x̄(0, t) = x̄(π, t) = 0, x̄(z, 0) = x̄0(z)

where x̄(z, t) represents the dimensionless temperature; the manipulated input, u, rep-

resents the dimensionless temperature of the coolant; βT = 50 is the dimensionless heat

of reaction, γ = 2 is the dimensionless activation energy, βU = 4 is the dimensionless

heat transfer coefficient and b(z) is the control actuator distribution function. It can be

shown that for the chosen process parameter values (βT , γ, and βU), the zero steady-state

solution of the open-loop system is unstable. The control objective is to stabilize the tem-

perature at this unstable steady-state by manipulating u with reduced sensor-controller

communication.

To achieve the control objective, we consider the use of a single point control actuator

(with finite support) and assume that a sufficiently large number of point measurement

sensors that provide accurate state measurements are available. Parametric uncertainty in

the heat of reaction coefficient, βT , will be considered when simulating process parametric

drift.

By solving the eigenvalue problem associated with (7.4) and taking the first eigenvalue

as the dominant one, we can obtain the following ODE using Galerkin’s method:

ȧ1 = λ1a1 + g(za)u+ f(a1) (7.19)

where x̄(z, t) =
∑∞

i=1 ai(t)φi(z), φi(z) =
√

2
π

sin(iz), λ1 = −1−βu, g(za) = βU〈φ1(z), b(z)〉,

f(a1) = βT 〈φ1(z), h(a1)〉, h(a1) = e−γ/(1+a1φ(z))−e−γ and 〈·, ·〉 is the inner product defined

on H = L2(0, π).
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An approximate model of (7.19) for controller synthesis is constructed as follows:

˙̂a1 = λ̂1â1 + ĝ(za)u+ f̂(â1) (7.20)

where, for simplicity, λ̂1 = λ1, ĝ(za) = 1.6, f̂(a1) = (βTnom + δT )〈φ1(z), h(â1)〉, with

βTnom = 50. The model-based controller is of the feedback linearizing type and takes the

form:

u = ĝ−1(za)[λc − f̂(â1)] (7.21)

where the actuator location is set to za = π/2 and λc is a controller parameter that

is chosen to place the eigenvalue of the closed-loop model at the desired value. In the

following subsections, we will investigate the stability region of the closed-loop system

and show the results of the implementation of the proposed integration methodology

when time-varying parametric drift takes place.

7.4.1 Characterization of the closed-loop stability region

To understand how the closed-loop stability region as defined by the stability condition in

(7.13) is affected by the choice of the controller design parameters (which is represented by

β in (7.10)) and the parametric uncertainty (δT ), a sensitivity analysis is performed on each

of those variables independently. Figure 7.2 shows the effect of varying β while holding

δT constant (note that for the closed-loop model of (7.20)-(7.21), β = −λ̂1 − λc). Values

of F1(h) above the zero line correspond to the range of feasible stabilizing update period

values. It can be observed generally that as β increases in value (i.e., as the controller

becomes more aggressive), higher update period values can be utilized to stabilize the

networked closed-loop system. Figure 7.3 shows the effect of varying δT while holding

β constant. The trend here is reversed from the previous case; as δT increases in value,

the range of stabilizing update period values becomes smaller (notice that theoretically

at δT = 0, any update period value h no matter how large can be used to stabilize the

system since this is the limiting case of a perfect model). This result is expected since

a larger plant-model mismatch would result in control actions that are based on model

estimates of the state that are far from the actual states. For the controller to stabilize

the closed-loop system under these conditions, knowledge of the actual system states is
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Figure 7.2. F1 as a function of the update period for different β values when δT = 5
and α = 1. Larger β values correspond to a larger feasible range of stabilizing update
period values

Figure 7.3. F1 as a function of the update period for different δT values when β = 100
and α = 1. Larger δT values correspond to a smaller feasible range of stabilizing update
period values
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required, thus more frequent feedback through communication between the controller and

the sensor needs to be established.

7.4.2 Simulation results

Initially, an update period value of h = 1.2 hr is chosen to operate the control system, and

as can be seen from Figure 7.5 (see the initial blue portion of the profile) it successfully

stabilizes the closed-loop system. Meanwhile, a time-varying drift in the heat of reaction

parameter is assumed to take place according to the following logistic function form:

βT = a+
130− a

1 + exp
(
c−t
b

) (7.22)

where a = 50, c = 3000, b = 500, and t is time. Figure 7.4 captures the behavior

of the time-varying drift in βT (blue profile) as well the value of the estimated model

parameter β̂T over time (red profile) as parameter re-identification takes place at discrete

times. As the parametric drift continues to increase, the plant-model mismatch continues

Figure 7.4. Time-varying drift in the parameter βT , and the identified model parameter
value β̂T obtained at discrete times

to grow and the initial update period value no longer stabilizes the closed-loop system.

Specifically, it can be seen from the plot of the amplitude of the dominant eigenmode in

Figure 7.5 that at t = 2.4 hr the closed-loop state starts to diverge noticeably away from
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the steady-state. At this point, the first safe-parking step is initiated to restore stability

by reducing the update period to hsp = 0.1 hr (this is represented by the red portion of

the profile; see also Figure 7.6). Once enough data is collected, β̂T is re-identified and the

corresponding maximum allowable update period is determined (h = 0.55 hr), checked

for stability and implemented together with the parameter update at t = 2.8 hr. At this

time, the system is switched out of the safe-parking step, and as can be seen from the

green portion of the state profile in Figure 7.5, the closed-loop system is stabilized.

As the drift continues to grow, however, the mismatch between the drifting parameter

value and the previously estimated one grows (see Figure 7.4), and as a result a second

alarm is triggered now at t = 4.5 hr and a second safe-parking step is initiated. During

this second safe-parking period, the closed-loop system is re-stabilized (by returning the

update period to h = hsp), a new value for β̂T is identified from the available data, and a

new update period is computed and verified for stability (h = 0.3 hr). The system exists

the safe-parking mode when the model parameter is updated and the new stabilizing

update period is implemented at t = 4.8 hr (see Figure 7.6).

This process repeats one more time as the drift continues to grow, leading to the third

and final alarm breach at t = 5.5 hr followed by the third safe-parking period which lasts

until t = 6.5 hr. By the end of this period, the actual parameter value has settled, and

a new (improved) estimate of the model parameter is obtained. Based on the newly-

identified parameter value, a new stabilizing update period is computed and implemented

for all future times (h = 0.7 hr).

Figure 7.6 shows the operating update period over the time of the simulation for

the normal operation step, the safe-parking steps, and the post-parameter-update steps.

It can be seen that, overall, as the difference between the plant and model parame-

ter increases, the update period value decreases (communication frequency increases) to

maintain stability. This mismatch, however, is minimized after the third parameter re-

identification event as can be seen in Figure 7.4 where the actual parameter settles at

its final value. Due to the diminished mismatch at this point, the achievable stabilizing

update period after the third re-identification event is greater than update period values
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Figure 7.5. Closed-loop evolution of the amplitude of the dominant eigenmode under
time-varying parametric drift, with β = 100 and α = 1

Figure 7.6. Operating update period as a function of time during normal operation,
safe-parking and after each parameter update

obtained in the previous two parameter identification events.

This is further confirmed by analyzing the closed-loop stability region prior to the drift

and during the different drift conditions (this is depicted in Figure 7.7). It is important to
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Figure 7.7. F1 as a function of the update period for normal operation, safe-parking
and for each re-identification step

note here that the update period value used during the safe-parking steps is the same and

determined from the maximum allowable update period obtained under the worst-case

uncertainty bound caused by the drift. This safe-parking update period value guarantees

that stability is achieved between the parameter re-identification events.

7.5 Conclusions

In this chapter, a framework for augmenting model-based feedback control with error-

triggered parameter re-identification in spatially-distributed systems described by nonlin-

ear parabolic PDEs subject to sensor-controller communication constraints and process

parametric variations was presented. The framework aims to maintain closed-loop stabil-

ity in the presence of varying levels of plant-model mismatch during periods of parametric

drift, while simultaneously keeping the rate of sensor-controller communication to a min-

imum and accounting explicitly for the presence of nonlinearities. We were able to show

through simulations that the developed framework was successful at stabilizing the process

subject to time varying drifts using parameter re-identification.
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Chapter 8

Nonlinear Sampled-Data Control of

Parabolic PDE Systems with

Measurement Errors, Parametric

Drift, and Re-Identification

An issue that is not considered in earlier chapters is the presence of measurement errors

and its impact on the stability of the closed-loop system. Such errors can arise from

sensor faults or measurement noise, and in some cases can be the direct result of deliberate

measurement falsification attempts such as the case in cyber-security attacks which will

be discussed in more detail in Chapter 9. Explicit account of the nonlinear process

dynamics as well as the measurement errors must therefore be taken not only in the

controller synthesis but also in subsequent closed-loop stability characterization. The

current chapter aims to bridge this gap.

Motivated by these considerations, we present in this chapter a model-based frame-

work for the design of finite-dimensional sampled-data feedback controllers for spatially-

distributed systems described by nonlinear parabolic PDEs subject to discretely-sampled

measurements, bounded measurement errors, and bounded model uncertainty. The rest

of the chapter is organized as follows: following some preliminaries in Section 8.1 that de-

fine the class of systems considered, standard modal decomposition and model reduction

techniques are applied to obtain an approximate finite-dimensional system that captures
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the dominant dynamics of the infinite-dimensional system. The control problem is then

formulated in Section 8.2 and a finite-dimensional nonlinear model-based state feedback

controller that stabilizes the closed-loop model is then introduced. The controller uses the

model predictions to compute the control action between sampling times, and its state is

updated using the available state measurements at the sampling times. The sampled-data

closed-loop system, subject to the measurement errors, is analyzed in Section 8.3 and a

sufficient condition for closed-loop stability is derived. The analysis leads to an explicit

characterization of the closed-loop stability region in terms of the sampling period, the

measurement error bound, the model uncertainty bounds, and the controller design pa-

rameters. Finally, the results are illustrated using a simulated diffusion-reaction process

in Section 8.4.

8.1 Preliminaries

In this work we consider spatially-distributed systems modeled by nonlinear parabolic

PDEs of the following form:

∂x̄

∂t
= α

∂2x̄

∂z2
+ βx̄+ f̄(x̄) + ω

m∑
i=1

bi(z)ui(t) (8.1)

subject to the following boundary and initial conditions:

x̄(0, t) = x̄(π, t) = 0, x̄(z, 0) = x̄0(z) (8.2)

where x̄(z, t) ∈ IR represents the state variable; z ∈ [0, π] and t ∈ [0,∞) are the spatial

and temporal coordinates, respectively; f̄(·) is a smooth nonlinear function that satisfies

f̄(0) = 0; ui is the i-th manipulated input; bi(·) is the i-th actuator distribution function,

m is the number of control actuators; the parameters α > 0, β, and ω are constant process

parameters, and x̄0(·) is a smooth function of its argument.

To facilitate controller synthesis and subsequent analysis, the PDE of (8.1)-(8.2) is

initially formulated as an infinite-dimensional system of the following form (e.g., see [63]):

ẋ(t) = Ax(t) + Bu(t) + f(x(t)), x(0) = x0, (8.3)

where x(t) = x̄(z, t), for t > 0 and z ∈ [0, π], is the state function defined on the

Hilbert space H = L2(0, π), A is the spatial differential operator whose spectrum can
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be partitioned into a finite set of slow (possibly unstable) eigenvalues and an infinite

complement of fast stable eigenvalues, B is the input operator that describes the spatial

placement of the control actuators, u = [u1 · · ·um]T ∈ IRm is the manipulated input

vector, f(·) is a smooth nonlinear function, and x0 is the initial condition. Exploiting

the low-order dynamics of this class of systems, standard modal decomposition can be

applied to transform the system in (8.3) into the following interconnected subsystems:

ẋs(t) = Asxs(t) + Bsu(t) + fs(xs, xf ), xs(0) = Psx0

ẋf (t) = Afxf (t) + Bfu(t) + ff (xs, xf ), xf (0) = Pfx0

(8.4)

where xs = Psx is the state of a finite-dimensional slow subsystem that describes the evo-

lution of the slow eigenmodes, xf = Pfx is the state of an infinite-dimensional fast sub-

system that describes the evolution of the fast stable eigenmodes, As = PsA, Af = PfA,

Bs = PsB, Bf = PfB, fs(·) = Psf(·) and ff (·) = Pff(·) are nonlinear functions associ-

ated with the fast and slow subsystems, respectively, and Ps and Pf are the orthogonal

projection operators for the slow and fast eigenmodes, respectively.

Applying model reduction techniques to the system of (8.4), a finite-dimensional sys-

tem that describes the time evolution of the amplitudes of the dominant (slow) eigenmodes

can be obtained as follows:

ȧs = Asas +Bs(za)u+ fs(as) (8.5)

where as = [a1 · · · am]T ∈ IRm, ai is the amplitude of the i-th eigenmode, As is an m×m

diagonal matrix that contains the first m slow eigenvalues of A, and Bs is an m×m input

matrix whose elements are parameterized by the spatial placement of the control actuator

locations, za, and fs(·) is a sufficiently smooth function that satisfies fs(0) = 0. The

system of (8.5) will be used in the remainder of the chapter as the basis for the sampled-

data controller design and analysis. This is justified by the fact that, for sufficiently

large separation between the slow and fast eigenvalues, closed-loop stabilization of the

finite-dimensional system of (8.5) is sufficient to guarantee stabilization of the infinite-

dimensional closed-loop system (see [63] for a justification using singular perturbation

arguments).
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8.2 Model-Based Sampled-Data Feedback Controller

Design

8.2.1 Control problem formulation

Referring to the system of (8.5), the control objective is to stabilize the origin of the

closed-loop system using discretely-sampled measurements in the presence of measurement

errors. To this end, we consider the case where all states are sampled periodically at a

constant sampling rate, ∆. To capture the effect of measurement errors, we define the

vector of measured states as follows:

ym(t) = ΞMas(t) (8.6)

where ym(t) ∈ IRm, ΞM := diag{σi} is a diagonal matrix that multiplies the state vector

and thus distorts its values. Each element in this matrix, σi, scales the value of the i-th

state by a certain factor whose size reflects status and severity of the error in each state

measurement. A value of σi = 1, for example, indicates that the measured value of the

i-th state is error-free, while any other value, i.e., σi 6= 1, reflects the presence of some

error. The size of the scaling factor, and how much it deviates from 1, determines the

severity of the measurement error.

To achieve the control objective, we consider a model-based sampled-data control

structure in which an inter-sample model predictor is used to compensate for the unavail-

ability of measurements between sampling times. The basic idea is to initially design a

model-based controller that stabilizes the closed-loop model, implement the model-based

control action on the plant, and periodically update the model state using the sampled

state measurement at discrete times to curb the potentially destabilizing influence of the

plant-model mismatch. The main task is to characterize the maximum allowable sampling

period that can be used without loss of closed-loop stability in terms of the measurement

error and the controller design parameters. To help illustrate the key ideas, we focus

in the following development on the state feedback control problem. Extensions to the

output feedback problem are possible and the subject of other research work.
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8.2.2 Controller synthesis and implementation

To compute the control action between sampling times, we assume that an approximate

model of the system of (8.5) is available and takes the following form:

˙̂as = Âsâs + B̂s(za)u+ f̂s(âs) (8.7)

where âs is the state of the model, and Âs, B̂s and f̂s(·) are models that approximate As,

Bs and fs(·), respectively. It is important to note that Âs, B̂s and f̂s(·) are in general not

equal to As, Bs and fs(·) to allow for possible plant-model mismatch. The plant-model

mismatch is defined by:

Ãs = As − Âs, B̃s = Bs − B̂s

θ(·) = fs(·)− f̂s(·)
(8.8)

where the functions f̂s(·) and θ(·) are assumed to be sufficiently smooth and therefore

satisfy the following growth bounds:∥∥∥f̂s(x)− f̂s(y)
∥∥∥ ≤ Lf‖x− y‖

‖θ(x)− θ(y)‖ ≤ Lθ‖x− y‖
(8.9)

for all x, y in some compact neighborhood, Ω ⊂ IRm, containing the origin in its interior,

where Lf and Lθ are positive constants.

Based on the model of (8.7), the next step is to design a nonlinear state feedback

control law that exponentially stabilizes the closed-loop model. To avoid limiting the

analysis to a particular class of nonlinear control laws, we assume that a controller with

the desired closed-loop properties is available as stated in the following Assumption.

Assumption 8.1. There exists a smooth nonlinear feedback control law of the general

form:

u = k(âs) (8.10)

such that the origin of the closed-loop model of (8.7)-(8.10) satisfies a bound of the form:

‖âs(t)‖ ≤ α ‖âs(t0)‖e−β(t−t0), ∀ t ≥ t0 (8.11)

where t0 is the initial time, α ≥ 1, β > 0, for all âs(t0) ∈ Ω := {âs ∈ IRm : ‖âs‖ ≤ M},

for some compact neighborhood Ω ⊂ IRm, containing the origin in its interior.
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The controller function, k(·) is assumed to be sufficiently smooth and satisfies a growth

bound of the form:

‖k(x)− k(y)‖ ≤ Lk‖x− y‖ (8.12)

for all x, y in Ω, where Lk is a positive constant.

Remark 8.1. We note that the above stability requirement is imposed to ensure that be-

tween sampling times (when the controller uses the model state), the input to the plant

is stable. However, the requirement of exponential stability is not necessary and can be

relaxed and replaced by either asymptotic or bounded stability. The advantage of exponen-

tial stability, however, is that it facilitates the formulation of an explicit stability criterion

for the sampled-data closed-loop system which is presented in the next section.

The implementation of the model-based controller can now be described as follows:

u(t) = k(âs(t)), t ∈ [tk, tk+1)

˙̂as(t) = Âsâs(t) + B̂s(za)u(t) + f̂s(âs(t))

âs(tk) = ym(tk) = ΞMas(tk), k ∈ {0, 1, 2, · · · }

(8.13)

where tk is the k-th sampling time at which the model state is updated, and ∆ = tk+1− tk
is the sampling period, which is the time interval between two consecutive sampling times.

Note that the model state is updated using the measured state which generally contains

errors. The impact of such errors on closed-loop stability is analyzed in the next section.

8.3 Closed-loop stability analysis

In this section, we characterize the stability properties of the sampled-data closed-loop

system in terms of the interplay between the various system and control parameters,

including the sampling period, the plant-model mismatch, the measurement errors, and

the controller parameters. We first formulate the sampled-data closed-loop system and

then present and discuss the stability criteria.

8.3.1 Formulation of the sampled-data closed-loop system

To formulate the sampled-data closed-loop system, we first define the model estimation

error, e = as − âs, which represents the difference between the system state and the
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model state. Substituting the model-based control law of (8.13) into (8.5), and using

(8.8), the dynamics of the closed-loop system can be captured by the following combined

discrete-continuous system:

ȧs = Asas +Bs(za)k(âs) + fs(as)

ė = Ase+ Ãsâs + B̃s(za)k(âs) + f̂s(e+ as)

− f̂s(âs) + θ(as)

e(tk) = (I − ΞM)as(tk), k ∈ {0, 1, 2, · · · }, ∆ = tk+1 − tk

(8.14)

where the process state evolves continuously in time, while the model estimation error

is reset at each sampling instance when the model state is updated. Note that in the

absence of any measurement errors, i.e., when ΞM = I, the model estimation error is

reset to zero.

8.3.2 Characterization of closed-loop stability properties

The following theorem provides a sufficient condition for the stability of the sampled-data

closed-loop system in terms of the sampling period, the model uncertainty, the size of the

measurement error, and the controller design parameters. To simplify the statement of

the theorem, we introduce the following definitions:

LF = ‖As‖+ Lf + Lθ (8.15)

Lw = ‖Ãs‖+ ‖B̃s‖Lk + Lθ, L0 = θ(0) (8.16)

F1(s) := 1− α‖ΞM‖
(
e−βs + (eLF s − e−βs) Lw

β+LF

)
− ‖I − ΞM‖eLF s

(8.17)

ψ1 = max
s∈[0,∆]

(1− F1(s)) (8.18)

F2(s) =
L0

LF
(eLF s − 1) (8.19)

ψ2 = max
s∈[0,∆]

F2(s) (8.20)

M ′ =
M − ψ2

ψ1

(8.21)
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Theorem 8.1. Consider the closed-loop system of (8.5), subject to the control and update

laws of (8.13) for which Assumption 1 holds, with ‖as(t0)‖ ≤ M ′. Then, if ∆ is chosen

such that

F1(∆) > 0 (8.22)

and

ψ1r(∆) + ψ2 ≤M ′, (8.23)

where r(∆) = F2(∆)/F1(∆), the states of the sampled-data closed-loop system are bounded

and satisfy: ∥∥as(t−k+1)
∥∥ < ‖as(tk)‖ for all ‖as(tk)‖ > r(∆) (8.24)

for k ∈ {0, 1, 2, · · · }. Furthermore, lim
t→∞
‖as(t)‖ ≤ ψ1r(∆) + ψ2.

Remark 8.2. The result of Theorem 8.1 establishes that if the sampling period is chosen

such that (8.22) and (8.23) are satisfied, the norm of the sampled closed-loop state is

guaranteed to decrease at successive sampling times as long as it is outside some terminal

neighborhood of the origin (the size of which is fixed by the choice of the sampling period).

This implies that the sampled closed-loop state is guaranteed to converge in finite-time to

the terminal set where it remains confined for all future times. Note that the continuous

closed-loop state is also guaranteed to converge in finite time to a terminal set around

the origin; albeit one that is larger than that for the sampled state owing to the fact that

between consecutive sampling times, the closed-loop state can grow a certain amount (see

(A.7) in Appendix A). This growth, however, is limited since the sampling period is finite.

Remark 8.3. The restriction on the set of initial conditions such that ‖as(t0)‖ ≤ M ′,

where M ′ is given in (8.21), is imposed to ensure that the closed-loop state remains con-

fined for all times within the set Ω, which in turn ensures that the growth bounds in

(8.9) and (8.12) remain valid for all times. This restriction takes account of the maximal

growth of the closed-loop state between sampling times. Note that for the problem to be

well-posed, M ′ must be positive, and this imposes a restriction on the choice of the sam-

pling period. Also the requirement in (8.23) is needed to ensure that the terminal set to
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which the closed-loop state ultimately converges is a subset of the set of initial conditions.

This requirement represents another constraint on the choice of the sampling period.

Remark 8.4. Notice that the stability test function, F1(·), defined in (8.17), is depen-

dent on several important parameters that influence closed-loop stability, including the size

of the plant-model mismatch, the size of the measurement error, the choice of the sam-

pling period and the choice of the control parameters. The stability condition of (8.22)

represents a constraint that ties all these parameters together, and can therefore be used

to assess the interplay between these parameters in shaping the stability region of the

sampled-data closed-loop system. For example, for a fixed inter-sample model predictor, a

fixed controller, and a fixed measurement error, (8.22) can be used to estimate the range

of stabilizing sampling periods. Alternatively, for a fixed choice of the sampling period,

(8.22) can be used to estimate the range of measurement errors that can be tolerated by

the closed-loop system for a given model-based controller.

Remark 8.5. The condition in (8.22) captures the influence of measurement errors on

the range of allowable sampling periods. It can be seen, for example, that as the size of the

errors increase (i.e., as either ‖ΞM‖ or ‖I − ΞM‖ becomes larger), the range of sampling

periods that satisfy (8.22) shrinks. In the limit as the bound on the measurement error

‖ΞM‖ shrinks and approaches 1 (or as ΞM approaches I), the range of stabilizing sampling

periods increases until it attains its maximum feasible range, which is ultimately limited

at that point by the size of the plant-model mismatch. Note that in the absence of any

measurement errors (ΞM = I) and in the absence of any plant-model mismatch (Lw = 0),

and for the case when α = 1, any sampling period, no matter how large, satisfies (8.22).

Note also that the parameter β, which quantifies the response speed of the closed-loop

model state, also influences the stabilizing range of sampling periods, where larger values

of β could help expand the feasible range; however, this influence is limited by the size of

the measurement error and the plant-model mismatch.

Remark 8.6. Another important implication of the result of Theorem 8.1 is that it sug-

gests ways by which the influence of measurement errors on closed-loop stability could be
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mitigated. By inspection of (8.22), for example, it can be seen that for large errors, which

may destabilize the closed-loop system, reducing the sampling period and/or increasing the

control parameter β (i.e., making the controller more aggressive) tend to have a restora-

tive stabilizing effect. These measures, however, are ultimately limited by the the size of

the errors as well as the plant-model mismatch.

Remark 8.7. The result of Theorem 8.1 is developed for the general case where the

plant-model mismatch is assumed to be non-vanishing in the sense that the plant and the

model do not have the same equilibrium point. In the special case where the uncertainty is

vanishing (i.e., θ(0) = 0), the terminal set collapses to the origin. This follows from that

fact that F2(∆) = 0 when L0 = 0. In this case, and in lieu of ultimate boundedness, the

stability condition of (8.22) guarantees asymptotic convergence of the closed-loop state to

the origin.

Remark 8.8. Since the focus of this work is on the analysis and characterization of the

impact of measurement errors on the stability of the sampled-data closed-loop system, it

is assumed that a mechanism for the detection and estimation of measurement errors

is already in place. While beyond the scope of this work, such mechanism is important

since knowledge of the error bound is required for the characterization of the closed-loop

stability region. Generally speaking, data-based fault detection and estimation methods

could be used for this purpose and are the subject of other research work.

8.4 Simulation Example

As an illustrative example, we consider in this section a nonlinear diffusion-reaction pro-

cess described by:

∂x̄

∂t
=
∂2x̄

∂x2
− βU x̄+ βT [e−γ/(1+x̄) − e−γ] + βUb(z)u(t) (8.25)

subject to the following boundary and initial conditions:

x̄(0, t) = x̄(π, t) = 0, x̄(z, 0) = x̄0(z) (8.26)

where x̄(z, t) represents the dimensionless temperature; the manipulated input, u, rep-

resents the dimensionless temperature of the coolant; βT is the dimensionless heat of
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reaction, γ = 2 is the dimensionless activation energy, βU = 4 is the dimensionless heat

transfer coefficient and b(z) is the control actuator distribution function. It can be verified

that for the given process parameter values, the zero steady-state solution of the open-

loop system is unstable. The control objective is to stabilize the process temperature at

this unstable, spatially-uniform steady-state using a single point-control actuator (with

finite support) and a sufficiently large number of point-measurement sensors that provide

discretely-sampled temperature measurements.

By solving the eigenvalue problem associated with (8.25)-(8.26) and taking the first

eigenvalue as the dominant one, we can obtain the following ODE using Galerkin’s

method:

ȧ1 = λ1a1 + g(za)u+ f(a1) (8.27)

where x̄(z, t) =
∑∞

i=1 ai(t)φi(z), φi(z) =
√

2
π

sin(iz), λ1 = −1−βu, g(za) = βU〈φ1(z), b(z)〉,

f(a1) = βT 〈φ1(z), h(a1)〉, h(a1) = e−γ/(1+a1φ(z))−e−γ and 〈·, ·〉 is the inner product defined

on H = L2(0, π). An approximate model of (8.27) for controller synthesis is constructed

as follows:

˙̂a1 = λ̂1â1 + ĝ(za)u+ f̂(â1) (8.28)

where, for simplicity, λ̂1 = λ1, ĝ(za) = 1.6 and f̂(a1) = (βTnom + δT )〈φ1(z), h(â1)〉, where

δT = βT − βTnom represents the model uncertainty. A model-based feedback linearizing

controller is synthesized and takes the form:

u = ĝ−1(za)[λc − f̂(â1)] (8.29)

where the actuator location is set to za = π/2 and λc is a controller parameter that

is chosen to place the eigenvalue of the closed-loop model at the desired value. In the

following subsections, we will characterize the closed-loop stability region and show the

influences of the sampling rate, the measurement error, the pole placement and plant-

model mismatch on the stability region.

8.4.1 Interplay between sampling rates and measurement errors

The result of Theorem 8.1 suggests that a potential method for stabilizing systems that

may become unstable due to measurement errors is to manipulate the sampling period
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∆. In this section, we will investigate the interplay between the sampling rate and the

measurement error and show the effect their sizes have on the closed-loop stability re-

gion. Figure 8.1 shows the values of the stability test function, F1(∆), as a function of

the sampling period ∆ for different measurement error values σ. Values above the zero

line represent the stable region. Generally, it can be seen that as the measurement error

increases, the range of stabilizing sampling periods shrinks; and that, for a given mea-

surement error, closed-loop stability is lost when the sampling period becomes too large.

A more detailed representation of these trends is captured by the contour plot in Figure

8.2 where the stability region is the area enclosed by within the zero contour line.

Figure 8.1. A plot of F1 as a function of the sampling period ∆ for different error
values with δT = 25, α = 1 and λc = 25

It can be seen that the closed-loop stability region shrinks as σ deviates from 1 (the

error-free case). The region also tends to shrink as the sampling period increases. An

important implication of these trends is that if the measurement error drives the system

outside the stability region, it may be possible to mitigate the problem and restore stability

by reducing the sampling period.

To confirm these trends, a simulation of the closed loop system is shown in Figures

8.3 - 8.8. In both scenarios, the sampling period was fixed at ∆ = 0.4 hr; however, the
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Figure 8.2. A contour plot of F1 as a function of the measurement error σ and the
sampling period ∆ with δT = 25, α = 1 and λc = 25

Figure 8.3. Evolution of dominant eigenmode for the closed-loop system for ∆ = 0.4hr
σ = 1.2, δT = 25, α = 1 and λc = 25
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Figure 8.4. Manipulated input profile for the closed-loop system for ∆ = 0.4hr σ = 1.2,
δT = 25, α = 1 and λc = 25

Figure 8.5. Closed-loop state profile for ∆ = 0.4hr σ = 1.2, δT = 25, α = 1 and
λc = 25
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Figure 8.6. Evolution of dominant eigenmode for the closed-loop system for ∆ = 0.4hr
σ = 1.7, δT = 25, α = 1 and λc = 25

Figure 8.7. Manipulated input profile for the closed-loop system for ∆ = 0.4hr σ = 1.7,
δT = 25, α = 1 and λc = 25
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Figure 8.8. Closed-loop state profile for ∆ = 0.4hr σ = 1.7, δT = 25, α = 1 and
λc = 25

measurement error was varied from σ = 1.2 (a stable operating point) as shown in Figures

8.3 - 8.5 to σ = 1.7 (an unstable operating point) as shown in Figures 8.6 - 8.8. It can be

seen that the closed-loop system becomes unstable when operating outside the stability

region.

8.4.2 Interplay between pole-placement and measurement er-

rors

An alternative approach to stabilizing a system that can potentially become unstable due

to measurement errors is through the manipulation of the pole placement parameter λc.

To understand the the interplay between λc and σ, we generated a plot of the stability

test function, F1, as a function of the measurement error, σ, for different λc values. This

is shown in Figure 8.9. It can observed that the range of tolerable errors (for which

F1(σ) > 0) expands as λc increases (i.e., as the controller becomes more aggressive).

This trend is further confirmed by the contour plot in Figure 8.10 which shows the

closed-loop stability region (the area within the zero contour line) as a function of σ and

λc. This plot shows that as the error size increases (greater departure of σ from 1), the

minimum λc need for stability increases as well indicating that the closed-loop pole needs
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Figure 8.9. A plot of F1 as a function of the measurement error σ, for different λc
values, with ∆ = 0.3, δT = 25 and α = 1

Figure 8.10. A contour plot of F1 values as a function of the measurement error, σ,
and λc, with ∆ = 0.3, δT = 25 and α = 1
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Figure 8.11. Evolution of dominant eigenmode for the closed-loop system for ∆ = 0.3,
λc = 75, σ = 1.0, δT = 25 and α = 1

Figure 8.12. Manipulated input profile for the closed-loop system for ∆ = 0.3, λc = 75,
σ = 1.0, δT = 25 and α = 1
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Figure 8.13. Closed-loop state profile for ∆ = 0.3, λc = 75, σ = 1.0, δT = 25 and
α = 1

Figure 8.14. Evolution of dominant eigenmode for the closed-loop system for ∆ = 0.3,
λc = 75, σ = 1.3, δT = 25 and α = 1
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Figure 8.15. Manipulated input profile for the closed-loop system for ∆ = 0.3, λc = 75,
σ = 1.3, δT = 25 and α = 1

Figure 8.16. Closed-loop state profile for ∆ = 0.3, λc = 75, σ = 1.3, δT = 25 and
α = 1
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to be pushed further to the left in the left half of the complex plane. It can also be

seen that there is a minimum value for λc below which the closed-loop system is unstable

even in the absence of measurement errors. An implication of these trends is that if the

measurement error is severe enough to drive the closed-loop system outside the stability

region, one may be able to mitigate this effect and restore stability by increasing λc.

Illustrative simulation results for the cases when σ and λc are chosen such that the

operating point is within and outside the stable region are shown in Figures 8.11 - 8.16. It

can be seen that the closed-loop state profile in both cases follows the expected outcome

based on the stability trends depicted in Figures 8.9-8.10.

8.5 Conclusions

In this chapter, a model-based approach for sampled-data feedback control of spatially-

distributed processes modeled by nonlinear PDEs with measurement errors and model

uncertainty was presented. The interplay between the sampling rate, the measurement

errors, the model uncertainty and the controller design parameters in shaping the closed-

loop stability region was analyzed and explicitly characterized. The implications of the

results for the development of strategies to mitigate the effect of measurement errors were

discussed and demonstrated using a simulated diffusion-reaction process example.
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Chapter 9

Machine Learning Based

Classification and Mitigation of

Cyberattacks in Model-Based

Networked Process Control Systems

In this chapter, we present in an integrated approach for the active detection, identifica-

tion and mitigation of cyberattacks in a class of networked control systems subject to false

data injection cyberattacks. The approach brings together tools from supervised machine

learning, which are used for attack detection and identification, and model-based net-

worked controller stabilization techniques, which are used for attack mitigation. Initially,

a model-based networked control architecture in which the sensor and the controller com-

municate over a resource-limited communication medium is designed, and the networked

closed-loop stability region is explicitly characterized in terms of the measurement error

resulting from the falsified measurement cyberattack, as well as the communication rate

and the controller design parameters. This characterization is obtained by modeling the

cyberattack in the closed-loop system formulation thus making it possible to identify the

range of feasible operating conditions that guarantee robust stability under the attack.

This characterization reveals the key parameters that can be used to actively mitigate

the effects of these attacks when they arise. The implementation of these mitigation mea-

sures requires knowledge of the existence of the cyberattack as well as an estimate of its
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magnitude. To that end, we utilize machine learning methods (e.g., [53], [54], [55], [56])

to build a neural network (NN) based detection system. To detect both the existence and

the magnitude of the cyberattack, the NN is trained using data obtained from simulating

the system under normal operation and the system under different cyberattack magni-

tudes. While NN models are generally utilized as classification tools, training the NN

with different cyberattack magnitudes allows for the classification of both the existence

of a cyberattack and the approximate magnitude of this attack. Finally, the implementa-

tion of the integrated cyberattack identification and mitigation strategies is demonstrated

using a chemical process example.

9.1 Preliminaries

9.1.1 Process system description

We consider process systems described by continuous-time nonlinear ordinary differential

equation systems with the following state-space representation:

ẋ = f(x) + g(u), (9.1)

where x ∈ Rn is the vector of process state variables, u ∈ Rm is vector of manipulated

inputs, and f(·) and g(·) and sufficiently smooth n × 1 nonlinear vector functions given

by:

f(x) = f̂(x) + w(x)

g(u) = ĝ(u) +m(u)

(9.2)

where f̂(·), w(·), ĝ(·), and m(·) are sufficiently smooth nonlinear functions that satisfy

the following growth bounds for all x and y in some compact (closed and bounded)

neighborhood of the origin:

‖ f̂(x)− f̂(y) ‖ ≤ Lf ‖x− y ‖

‖ ĝ(x)− ĝ(y) ‖ ≤ Lg ‖x− y ‖

‖w(x)− w(y) ‖ ≤ Lw ‖x− y ‖

‖m(x)−m(y) ‖ ≤ Lm ‖x− y ‖

(9.3)

139



where Lf , Lg, Lw and Lm are positive real constants. The functions f̂(·) and ĝ(·)

represent the known (or certain) part of the process dynamics, whereas the functions w(·)

and m(·) capture the uncertain part (i.e., the plant-model mismatch). Without loss of

generality, it is assumed that the origin of, (x, u) = (0, 0), is an equilibrium point of the

nominal system, i.e., f̂(0) = ĝ(0) = 0.

The control architecture under consideration is a networked control system in which

the embedded controller of a process communicates with the neighboring process’ em-

bedded controllers at discrete times over a shared, resource-constrained, communication

medium. The objective is to design a model-based networked process control system that

has well-characterized robustness margins in the presence of false data injection cyberat-

tacks and to develop active strategies for mitigating the impact of such attacks.

False data injection cyberattacks are ones wherein the attacker deliberately falsifies

the sensor measurements sent to the feedback controller, resulting in incorrect signals to

the control actuators [28]. These types of attacks can be modeled as multiplicative attacks

and take the following form:

y(t) = Φ x(t) (9.4)

where y ∈ Rn is the vector of falsified state measurements and Φ = diag{φi} ∈ Rn×n is

a diagonal matrix (denoted as the cyberattack matrix for the rest of the paper) where φi

captures the extent of the cyberattack on the i-th measurement sensor. A value of φi = 1

represents a healthy sensor measurement with no cyberattack present, while values of

φi 6= 1 represent the existence of a cyberattack of magnitude φi. If left unaddressed, the

falsification of process state measurements can have detrimental effects of the stability

and performance of the closed-loop system and must therefore be addressed.

9.1.2 Illustrative Example

In this section, we introduce a benchmark example of a process composed of two non-

isothermal continuous stirred-tank reactors (CSTRs) in series with a recycle stream as

shown in the process flow diagram in Figure 9.1. This example will be used in subsequent

sections to demonstrate the implementation of the model-based networked control system

design discussed in Section 9.2, and to evaluate the efficacy of the integrated cyberattack
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Figure 9.1. Process flow diagram of two interconnected non-isothermal continuous
stirred tank reactors

detection and mitigation framework to be proposed. The reactions occurring in this

process are three parallel irreversible exothermic reactions that consume reactant A. The

temperature is stabilized in each reactor through a heat exchange jacket. A model of

this process that is based on first principles can be described by the following differential

equations:

Ṫ1 =
F0

V1

(T0 − T1) +
Fr
V1

(T2 − T1) +
3∑
i=1

Gi(T1)CA1 +
Q1

ρcpV1

ĊA1 =
F0

V1

(CA0 − CA1) +
Fr
V1

(CA2 − CA1)−
3∑
i=1

Ri(T1)CA1

Ṫ2 =
F1

V2

(T1 − T2) +
F3

V2

(T3 − T2) +
3∑
i=1

Gi(T2)CA2 +
Q2

ρcpV2

ĊA2 =
F1

V2

(CA1 − CA2) +
F3

V2

(CA3 − CA2)−
3∑
i=1

Ri(T2)CA2

(9.5)

where Ri(Tj) = ki0 exp(
−Ei

RTj
), Gi(Tj) = −∆Hi

ρcp
Ri(Tj), for j = {1, 2}. Tj, CAj, Fj, Vj and Qj

represent the temperature, reactant concentration, flow rate, volume, and heat rate for

the j-th reactor, respectively. The process parameters ∆Hi, ki, Ei, i = {1, 2, 3}, represent

the enthalpies, pre-exponential constants and activation energies of the three reactions,
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respectively; and cp and ρ represent the heat capacity and density, respectively. Given

the process parameters in Table 9.1, and specifying that at steady-state Q1 = Q2 = 0,

CA0 = Cs
A0, CA3 = Cs

A3 and r = 0.5, where r is the recycle rate, it can be shown that

the process has three steady-states; two locally asymptotically stable and one unstable at

T s1 = 457.9K, Cs
A1 = 1.77kmol/m3, T s2 = 415.5K and Cs

A2 = 1.75kmol/m3.

Table 9.1. Process parameters and steady-state values

F0 = 4.998 m3/h

F1 = 39.996 m3/h

F3 = 30.0 m3/h

Fr = 34.998 m3/h

V1 = 1.0 m3

V2 = 3.0 m3

R = 8.314 kJ/kmolK

T0 = 300.0 K

T3 = 300.0 K

Cs
A0 = 4.0 kmol/m3

Cs
A3 = 2.0 kmol/m3

∆H1 = −5.0× 104 kJ/kmol

∆H2 = −5.2× 104 kJ/kmol

∆H3 = −5.4× 104 kJ/kmol

k1 = 3.0× 106 hr

k2 = 3.0× 105 hr

k3 = 3.0× 105 hr

E1 = 5.0× 104 kJ/kmol

E2 = 7.53× 104 kJ/kmol

E3 = 7.53× 104 kJ/kmol

ρ = 1000.0 kg/m3

cp = 0.231 kJ/kg K

T s1 = 457.9 K

Cs
A1 = 1.77 kmol/m3

T s2 = 415.5 K

Cs
A2 = 1.75 kmol/m3

The control objective is to stabilize the process at the open-loop unstable steady-state

by manipulating Q1, CA0, Q2 and CA3, while actively detecting and mitigating potential

cyberattacks.

To help illustrate the key ideas of the proposed framework, we focus in this case study
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on cyberattacks taking place in the temperature sensor in the first reactor, such that:

Φ =


φ1 0 0 0

0 φ2 0 0

0 0 φ3 0

0 0 0 φ4

 =


φ1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (9.6)

Attacks in the other measurement sensors (i.e., φ2, φ3, φ4), as well as simultaneous attacks

in multiple sensors, can also be considered within the proposed framework, but are not

pursued in this study.

9.2 Model-Based Networked Controller Design

To achieve the desired control objective, we present in this section a model-based control

strategy in which a model of the plant is embedded in the control system, and is utilized

to generate estimates of the plant states when communication between the sensors and

the controller is suspended. The control action is calculated based on these estimates.

When communication is re-established, the model states are updated using the state

measurements transmitted over the shared communication medium. This strategy enables

the controller to operate independent of the sensor measurements (for certain periods of

time) and adds some leverage for enhanced cyber-security.

In designing this model-based control system, the first step is to use a nominal model

of the process to synthesize a nonlinear feedback controller that stabilizes the closed-

loop model at the origin. Once the controller is synthesized, its closed-loop stability

properties are analyzed and explicitly characterized in the presence of both communication

constraints and cyberattacks.

Based on the process description in (9.1), we consider the following nominal model

which captures the known part of the process dynamics:

˙̂x = f̂(x̂) + ĝ(u) (9.7)

where x̂ ∈ Rn is the vector of model states, and the functions f̂(·) and ĝ(·) are sufficiently

smooth nonlinear functions that satisfy the growth bounds in (9.3) over some compact
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neighborhood of the origin. Based on the model in (9.7) a nonlinear feedback control of

the following general form:

u = k(x̂) (9.8)

can be designed to exponentially stabilize the origin of the closed-loop model of (9.7)-

(9.8), where k(·) is a sufficiently smooth nonlinear function that satisfies a growth bound

of the form:

‖ k(x)− k(y) ‖ ≤ Lk ‖x− y ‖ (9.9)

for all x, y in Ω, where Ω is a compact neighborhood of the origin, and Lk is a positive

constant. In the interest of generalizing the results presented in this work, we will not

restrict the choice of the function k(·) to any particular class of nonlinear control laws;

instead we will assume that a suitable control law with the desired closed-loop stability

properties exists, such that the state of the closed-loop model of (9.7)-(9.8) satisfies an

exponentially decreasing bound of the form:

‖ x̂(t) ‖ ≤ α ‖ x̂(t0) ‖ e−β(t−t0) (9.10)

for some α ≥ 1, β > 0, for all x̂(t0) ∈ Ω ⊂ Rm, where Ω is a compact set given by

Ω := {x̂ ∈ Rm : ‖ x̂ ‖ ≤M}.

The implementation of the model-based controller of (9.7)-(9.8) in the presence of

periodic sensor-controller communication and falsified state measurement attacks can now

be described as follows:

u(t) = k(x̂(t)), t ∈ [tk, tk+1)

˙̂x(t) = f̂(x̂(t)) + ĝ(k(x̂(t))

x̂(tk) = y(tk) = Φx(tk), k ∈ {0, 1, 2, · · · }

(9.11)

where tk is the k-th update time at which the model state is updated, and h = tk+1− tk is

the update period, which is the time interval between two consecutive update times (and is

assumed to be constant for the purposes of this study). Note that at the update instances,

tk, the model state is updated using the falsified state measurement, y, which contains

the cyberattack matrix Φ that captures the size of the attack. This formulation implies

that the model state is directly impacted by the cyberattack only at the update instances.
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The impact of the falsified model state updates on the stability of the closed-loop system

is analyzed in the next section.

9.3 Closed-loop Stability Analysis

The objective of this section is to characterize the stability properties of the networked

closed-loop system in terms of the sensor-controller communication rate and the size

of the measurement falsification attack. This characterization will serve as the basis

for the development of cyberattack mitigation strategies. We begin by formulating the

networked closed-loop system and then proceed to present a sufficient condition for closed-

loop stability.

9.3.1 Networked closed-loop system formulation

To analyze closed-loop stability, the networked closed-loop system must be first formu-

lated. To this end, we define the estimation error:

e(t) = x(t)− x̂(t)

where e represents the difference between the process state and the model state. It can

be shown that the closed-loop system of (9.1) subject to (9.11) can be formulated as a

combined discrete-continuous system of the following general form:

ẋ(t) = F (x(t), e(t))

ė(t) = F̂ (x(t), e(t)), t ∈ (tk, tk+1)

e(tk) = (I − Φ)x(tk), k ∈ {0, 1, 2, · · · }

(9.12)

where the process state evolves continuously in time, while the model estimation error

is reset at each update instance, and F (·) and F̂ (·) are smooth nonlinear functions that

depend on the process and model dynamics, the plant-model mismatch, and the control

law. It is important to note that in the absence of cyberattacks, the cyberattack matrix

is the identity matrix, i.e., Φ = I, and the model estimation error is reset to zero.

9.3.2 Sufficient condition for closed-loop stability

To achieve closed-loop stability with minimal communication, it is important to charac-

terize the maximum allowable update period for the control system. This corresponds
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to the minimum rate at which state measurements need to transmitted by the sensor

to the controller. Owing to the presence of falsified measurements, it is expected that

this parameter will be dependent on the size of the measurement error introduced by

the data falsification attack. The following theorem provides a sufficient condition for

the stability of the networked closed-loop system in terms of all the relevant system and

controller parameters, including the model state update period, the model uncertainty,

the cyberattack matrix and the choice of the control law.

Theorem 9.1. Consider the closed-loop system of (9.1) subject to the control law of

(9.11) and the initial condition x(t0) = x̂(t0) ∈ Ω. If the update period is chosen to satisfy

the following condition:

F1(h) := 1− α ‖Φ ‖

[
e−βh +

(
eLeh − e−βh

) Lθ
β + Le

]
− ‖ I − Φ ‖ eLeh > 0, (9.13)

where Le = Lf +Lw, Lθ = Lw+LmLk, and L0 = ‖w(0) ‖ + ‖m(0) ‖ , then the state of the

networked closed-loop system is bounded and its norm satisfies the decreasing sequence:

‖x(t−k+1) ‖ < ‖x(tk) ‖ , ∀ ‖x(tk) ‖ > r(h) (9.14)

for k ∈ {0, 1, 2, · · · }, where x(t−k+1) = lim
t→t−k+1

x(tk+1), r(h) = F2(h)/F1(h) and F2(h) is

defined as:

F2(h) =
L0

Le

(
eLeh − 1

)
(9.15)

Remark 9.1. According to Theorem 9.1, if the update period for the model state is chosen

such that the stability test function is positive, i.e., F1(h) > 0, the norm of the closed-

loop state is guaranteed to decrease at successive update times, as long as it is outside

some terminal neighborhood of the origin (i.e., ‖x(tk) ‖ > F2(h)/F1(h)). The size of this

terminal neighborhood is dependent on the choice of the update period. The immediate

implication of this result is that the sampled closed-loop state, x(tk), is guaranteed to

converge, in finite time, to the terminal neighborhood, where it remains confined for all

future times. Note that the continuous closed-loop state, i.e., x(t), is also guaranteed to

be ultimately bounded and converge in finite-time to a terminal set around the origin.
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However, the terminal set in this case is larger than that for the sampled state owing to

the fact that between consecutive update times, the closed-loop state can grow a certain

amount (see (B.9) in Appendix B). This growth, however, is bounded since the update

period is finite.

Remark 9.2. The stability test function F1(·), which is defined in (9.13), is dependent

on several key parameters that influence closed-loop stability. These include the size of the

plant-model mismatch (which is captured by Lw and Lm), the magnitude of the cyberattack

(which is captured by ‖Φ ‖ and ‖ I − Φ ‖ ), the choice of the update period (h), and

the choice of the controller design parameters (which is reflected in the values of α and

β). The stability condition of (9.13) can be viewed as a constraint that links all these

parameters together, and as such can be used to analyze the various interplays between

these parameters in shaping the stability region of the closed-loop system. For example,

for a given model-based controller design and a given update period, the condition in

(9.13) can be used to estimate the range of cyberattack magnitudes that can be tolerated by

the closed-loop system (i.e., attacks that do not cause instability). Conversely, for a fixed

model-based controller design and a fixed cyberattack magnitude, one can use the condition

in (9.13) to estimate the range of stabilizing update periods. Once can also use the stability

condition to explore a host of other important interplays, including the interplay between

the size of the plant-model mismatch size and the update period, the interplay between the

magnitude of the cyberattack magnitude and the choice of control parameters.

Remark 9.3. To gain some insight into how the stability condition of (9.13) captures

the influence of cyberattacks on the range of allowable update periods, we note that as

the magnitude of the cyberattack increases (i.e., as either ‖Φ ‖ or ‖ I − Φ ‖ becomes

larger), the range of update periods that ensure positivity of the stability test function

shrinks. In the limit as the bound on the cyberattack matrix ‖Φ ‖ shrinks and approaches

1 (or as Φ approaches I), the range of stabilizing update periods increases until it reaches

its maximum feasible range, which is ultimately limited at that point by the size of the

plant-model mismatch. Note that in the absence of cyberattacks (i.e, when Φ = I) and

in the absence of any plant-model mismatch (i.e., when Lw = Lm = 0), and for the case
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when α = 1, any update period, no matter how large, satisfies (9.13). Note also that

the parameter β, which quantifies the response speed of the closed-loop model state, also

influences the stabilizing range of update periods, where larger values of β could provide

some leverage to help expand the feasible range. However, this influence is ultimately

limited by how large the magnitudes of the cyberattack and the plant-model mismatch are.

Remark 9.4. In relation to the problem of handling cyberattacks, a key significance of

the result of Theorem 9.1 is that it suggests ways by which the influence of cyberattacks on

closed-loop stability could be mitigated. By inspecting the stability condition of (9.13), for

example, it can be seen that for large cyberattack magnitudes, which may destabilize the

closed-loop system, reducing the update period and/or increasing the control parameter β

(i.e., making the controller more aggressive) tend to have a restorative stabilizing effect.

These measures, however, are ultimately limited by the the magnitude of the cyberattack

as well as the size of the plant-model mismatch.

Remark 9.5. The result of Theorem 9.1 applies to the general case where the plant-model

mismatch is assumed to be non-vanishing in the sense that the plant and the model do not

have the same equilibrium point. In the special case where the uncertainty is vanishing

(i.e., w(0) = m(0) = 0), the terminal set collapses to the origin. This follows from that

fact that F2(h) = 0 when L0 = 0. In this case, the stability condition of (9.13) guarantees

not only boundedness of the closed-loop trajectories, but also asymptotic convergence of

the closed-loop state to the origin.

9.3.3 Application to the illustrative example

To gain an understanding of how cyberattacks influence the stability of the networked

closed-loop system, we apply in this section the results of Theorem 9.1 to the illustrative

example introduced in Section 9.1.2. This will allow us to determine the feasible range of

operating parameters that stabilize the networked closed-loop system close to the desired

steady-state subject to cyberattacks.

Following our framework outline in Figure 9.7, we must first design the model-based

148



Figure 9.2. Stability region contour plot that demonstrates the dependence of F1(h)
on φ1 and h

Figure 9.3. Dependence of F1(h) on h for specific cyberattack magnitudes φ1
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controller. To that end, the plant proposed in (9.5) can be cast in the following form:

ẋ = f(x) +Gu (9.16)

where x and u are dimensionless state and manipulated input vectors, respectively, f(·) is

a sufficiently smooth nonlinear function, and G is a constant matrix. In our application,

each CSTR has a local controller, within each controller an uncertain model of the plant

is embedded and takes the following form:

˙̂x = f(x̂) +Gû (9.17)

where û is chosen such that the plant model is exponentially stabilized and takes the

following form:

û = −G−1
(
f(x̂) + λx̂

)
(9.18)

where λ > 0 is a controller design parameter that enables us to place the closed-loop

eigenvalues at −λ. Note that for the purposes of this example, the plant-model mismatch,

w(0), is chosen to be zero and λ is placed at -10. The next step is to characterize the

stability region to investigate the tolerable range of cyberattacks and the appropriate range

of update period values necessary for mitigation. The results of this characterization are

detailed in Section 9.3.3.

Figure 9.2 shows a contour plot of the stability test function, F1(·) as a function of the

the cyberattack magnitude, φ1 and the update period, h. This plot was generated using

the following values: α = 1, β = 100, and the following Lipschitz constants: Lf1 = 110.3,

Lf2 = 38.4, Lm1 = 162.0, Lm2 = 106.0 and Lw = L0 = 0.

This plot demonstrates the dependence of F1(h) on both φ1 and h. Values enclosed

by the zero contour lines represent the estimated region within which the closed-loop

nonlinear plant can be stabilized. It can be seen that, generally, as the update period

increases (the communication frequency decreases) the range of tolerable cyberattacks

becomes narrower. The same trend can be further confirmed in Figure 9.3 where the

dependence of F1(h) on h for different φ1 values is shown. Values above the zero (red-

dashed) line represent the estimated values by which the closed-loop nonlinear plant can
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be stabilized; the larger the cyberattack magnitude, the smaller the stabilizing region of

update periods.

Remark 9.6. Investigating Figure 9.2 one would expect that at update period values

close to zero (i.e., high sensor-controller communication frequencies) the range of tolerable

cyberattack magnitudes should be the greatest, however, this is not reflected in the contour

plot. This is due to the fact that the stability region analysis performed in Section 9.3 is

conservative, after all the stability criterion is sufficient but not necessary.

9.4 Cyberattack Classification and Mitigation

While modeling the effect of the cyberattack on system stability is helpful, knowledge

of the existence of a cyberattack and its magnitude is crucial for the mitigation of these

attacks. To that end, in this work we utilize machine learning classification methods

to determine the existence and magnitude of a cyberattack. Specifically, we utilize NN

algorithms to classify the operating condition of the system; whether it be nominally

operating or being subjected to cyberattacks, and we couple this with the knowledge of

the system’s stability regions to mitigate these attacks.

9.4.1 Neural network based classification

Neural network algorithms generate a general class of nonlinear functions using input and

output data. An example of a basic feed-forward NN with one hidden layer is shown

in Figure 9.4. The NN structure is divided into three main layers: (1) an input layer

with n neurons, each representing an input variable ui, i = {1, 2, · · · , n}, (2) a hidden

layer (which can consist of a single or multiple layers) with m neurons, N l
i , where i =

{1, 2, · · · ,m}, l = {1, 2, · · · , L} and L is the number of hidden layers, and (3) an output

layer with an output neuron yNN which is the classification outcome of this network,

based on the input values. The hidden layer neurons are fed the weighted sum of the

input values from each neuron in the input layer and using an activation function σ1(x),

such as the Sigmoid function
(
σ(x) = 1/(1 + e−x)

)
or the Rectifier (ReLu) function(

σ(x) = max(0, x)
)
, a nonlinear correlation between the inputs and outputs is established

such that the output is not a simple linear combination of the inputs. This is represented
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Figure 9.4. An example of a basic feed-forward NN with one hidden layer

by the following equation:

N (2)
m = σ1

( n∑
i=1

W
(2)
mi ui + b

(2)
i

)
(9.19)

where W
(2)
mi is the weight of the input value from input neuron i to hidden layer neuron m

in the second layer and b
(2)
i is the bias of the i-th neuron in the second layer. Note that

we use the notation W
(l)
jk to denote the weight for the signal from the k-th neuron in the

(l − 1)-th layer to the j-th neuron in the l-th layer. The output neuron yNN generates

a classification label based on the linear combination of the hidden layer neurons fed to

an activation function σ2(x), such as the Sigmoid function for binary classification or the

Softmax function
(
σi(x) = exi/

∑c
j=1 e

xj where c is the number of classes
)

for non-binary

classification, using the following equation:

yNN = σ2

( m∑
i=1

W
(3)
1i N

(2)
i + b

(3)
i

)
(9.20)

where W1i is the weight of the hidden layer neuron value from neuron i to the output

layer neuron.

In order for the NN to generate accurate classifications, the weights and biases must

be optimized through training. To achieve this, a training dataset that includes input
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vectors ui, i = {1, 2, · · · , Q}, and the expected classification labels vector, ŷNNi, is fed to

the NN. A model is generated by minimizing the following cost function (cross-entropy

loss function):

C = − 1

Q

n∑
i=1

[
ŷNNi ln(yNNi) + (1− ŷNNi) ln(1− yNNi)

]
(9.21)

where n is the number of input neurons, using the stochastic gradient descent (SGD)

method (which does not require the cost function to be convex) with backpropagation in

order to guarantee that the global minimum is found. Note that we utilize the binary

cross-entropy loss function to optimize the NN learning process. During each iteration

of this training process, the weights, W
(l)
jk , and biases, b

(l)
k , are updated in one sweep

according to the following equation:

W = W − η ∂C
∂W

(9.22)

where W is a matrix that represents all the weights and biases and η is the learning rate

that allows us to control the rate of convergence.

To improve the NN model performance and accuracy, a k-fold cross-validation algo-

rithm is utilized to randomly split the dataset into k-1 subsets for training and 1 subset

for testing. Once the model is trained and tested using the assigned training and testing

subsets, the model classification accuracy (test accuracy) is calculated using the following

equation A = Nc/Q, where NC is the number of correctly predicted classes. The dataset is

then randomly split again and the process is repeated. This ensures that all of the dataset

inputs are used for testing at some point during the training (note that the testing subsets

are not used for training). Furthermore, to avoid over-fitting the data, a dropout regular-

ization technique is utilized to randomly deactivate selected neurons during training. This

effectively temporarily removes these deactivated neurons’ contributions to the activation

of downstream neurons. The result of this is a NN model that is more generalized and

not specialized for the training dataset.

9.4.2 Neural network model training

To detect the existence and magnitude of cyberattacks, we train a feed-forward NN using

data obtained from our illustrative example proposed in Section 9.1.2. The feed-forward
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NN is constructed using the Keras Python library. To enable us to detect the magnitude

of the cyberattack, the system is simulated for different values of φ1 and the input values,

u, are recorded. A dataset consisting of 5500 data samples of the input values for four

different φ1 values: 0.25, 0.5 0.75 and 1 (see Remark 9.7 for a discussion about this

discretization of φ during training) are fed to the NN which consists of an input layer, two

hidden layers, and an output layer. The number of neurons and activation functions used

for each layer are summarized in Table 9.2. By conducting a sensitivity analysis test on

Table 9.2. Neural network structure

Neurons Activation Function

First Hidden Layer 60 ReLu

Second Hidden Layer 100 ReLu

Output Layer 1 Softmax

Figure 9.5. Neural network training model accuracy

the size of the dataset fed to the NN with respect to the resulting classification accuracy

it was concluded that a 5500 sample dataset results in the optimal accuracy; smaller

datasets resulted in a lower accuracy and larger datasets did not significantly increase
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Figure 9.6. Neural network training model loss function

Table 9.3. Confusion matrix

Actual Class 0 Actual Class 1 Actual Class 2 Actual Class 3

φ1 = 0.25

(Cyberattack)

φ1 = 0.50

(Cyberattack)

φ1 = 0.75

(Cyberattack)

φ1 = 1.0

(Nominal)

Predicted Class 0 1067 11 3 0

Predicted Class 1 18 1023 41 44

Predicted Class 2 0 39 1019 32

Predicted Class 3 0 34 20 1050

accuracy. Before training the model, the dataset is split into a 4455 training subset, a

495 validation set and a 550 testing set. Figure 9.5 shows a summary of the training and

validation accuracy of the NN model throughout the training process. The final training

accuracy is 94.98%± 0.56% and the validation accuracy is 94.25%. Additionally, Figure

9.6 shows how the loss function is minimized throughout the training process. Finally,

the confusion matrix for the NN is shown in Table 9.3 for the four different classes. The

results in the confusion matrix further confirm the obtained accuracy.
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9.4.3 Cyberattack mitigation

Once the NN model is trained, it can be used to generate classifications based on the

input vectors fed to the model. In our application, the NN will be trained based on input

data for different cyberattack magnitudes, φi. The resulting classification will help us

determine the existence of a cyberattack and its magnitude. Once this value is obtained,

mitigation is achieved by modifying the update period value h based on the stability region

analysis performed on the plant as described in Section 9.3.3. Figure 9.7 summarizes the

proposed mitigation strategy for a cyberattack.

Initially, and offline, a model-based controller is designed for the system under investi-

gation and the system stability in terms of cyberattack magnitude φi is analyzed. Based

on this stability region analysis, and a suitable update period value h0 is chosen. A NN

model is then trained for different cyberattack magnitude values φi. The system operation

then commences and the process is placed online and the NN based classification takes

place every sampling instance. While the classification result obtained from the NN model

provides us with the magnitude of φi, the accuracy of this result is only as good as the

accuracy of the NN model. Thus, if a φi value that is not equal to 1 is detected; meaning

that there is a potential cyberattack, we could not, with a 100% accuracy, conclude that

a cyberattack is taking place. To counteract this, a moving window detection algorithm is

activated when a φi 6= 1 value is detected at ta wherein the frequency of φi is tracked over

a range of update periods. If the value of φi is persistent over the horizon of the moving

window (a value determined by the user) then we can with greater certainty conclude

that a cyberattack of magnitude φi is taking place. Note that although the cyberattack

only manifests itself at update times h, monitoring the cyberattacks at sampling instances

allows us to track the persistence of the attack and to take mitigation actions far ahead

of any corrupt state updates.

With the knowledge of the magnitude of φi and the system stability criterion, we can

now determine if there is an update period value that will stabilize the system subject

to this cyberattack. If a stabilizing hm exists, the controller update period is modified

to hm at tm, and the process of classification continues to track for possible additional
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Controller (offline)

Compute Stabil-
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Figure 9.7. Summary of the proposed framework for integrated model-based control
and NN based classification
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cyberattacks. If no stabilizing h exists, however, the system is shut down and alternate

methods need to be taken to secure the system.

Remark 9.7. In this framework, there is an interplay between the classification scheme

and the mitigation scheme. To reduce the computational cost associated with NN training,

in this work we consider a finite set of cyberattack magnitude values when training the

NN model. Due to this discretized nature of the NN model training, the resulting NN

model effectiveness depends on the resolution of the discretization. If a high resolution

discretization of the cyberattack magnitudes is performed (i.e., the NN model is trained

using more values of φi) the NN model becomes more effective at classifying finer values of

φi; albeit at the possible cost of model accuracy. However, if a low resolution discretization

is chosen, the NN model becomes less effective at accurately classifying finer values of φi.

In this case, if an attack takes place of a magnitude that is outside of this discretized

set, the result of NN classification will be the nearest trained φ value and there will be

a mismatch between the actual cyberattack magnitude and the classified value. Thus,

when determining the range of stabilizing update periods during the mitigation step, one

must take into account this possible cyberattack-classification mismatch and identify the

update period values that will fully contain, not just the classification of the φi value but,

a confidence interval of φi values determined by the resolution of the discretization.

9.5 Simulation Study: Application to Chemical Re-

actors

In this section, we will bring together all of the previous concepts to illustrate how our

proposed model-based networked cyberattack classification and mitigation strategy works

using our motivating example detailed in Section 9.1.2. Following our framework outline

in Figure 9.7, we must first design the model-based controller. To that end, the plant

proposed in (9.5) can be cast in the following form:

ẋ = f(x) +Gu (9.23)

where x and u are dimensionless state and manipulated input vectors, respectively, f(·) is

a sufficiently smooth nonlinear function, and G is a constant matrix. In our application,
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each CSTR has a local controller, within each controller an uncertain model of the plant

is embedded and takes the following form:

˙̂x = f(x̂) +Gû (9.24)

where û is chosen such that the plant model is exponentially stabilized and takes the

following form:

û = −G−1
(
f(x̂) + λx̂

)
(9.25)

where λ > 0 is a controller design parameter that enables us to place the closed-loop

eigenvalues at −λ. Note that for the purposes of this example, the plant-model mismatch,

w(0), is chosen to be zero and λ is placed at -10. The next step is to characterize the

stability region to investigate the tolerable range of cyberattacks and the appropriate range

of update period values necessary for mitigation. The results of this characterization are

detailed in Section 9.3.3. After the NN model is trained (see Section 9.4.2), the system

operation commences and the NN classification takes place every sampling instance.

Initially, the plant is initialized with an update period h0 = 0.13hr under no cyberat-

tack, φ1 = 1. Figure 9.8 shows the closed-loop state stable profiles for the temperatures

and concentrations in both CSTRs. At time ta = 0.4hr a false data injection cyberattack

of magnitude φ1 = 0.6 is introduced to the temperature sensor in CSTR 1, T1. To un-

derstand the effect of this cyberattack on the system if no detection or mitigation takes

place, we simulate the closed-loop state portfolio of T1 in CSTR 1. Figure 9.9 shows the

effect of this attack on the sensor measurements (solid line) in comparison to the actual

state measurement (dashed line). It can be observed that the normal sensor measurement

trajectory is stable, however, the data is being falsified and the sensor measurements sub-

ject to this falsification attacks appear to diverge from steady-state. Not knowing that

they are false, the controller calculates control actions based on these sensor measure-

ments which lead to actuator manipulations that are otherwise not necessary. Likewise,

the input values for each manipulated input variable, Q1, CA0, Q2 and CA3, follow suit

and their trajectories can be seen in Figure 9.10. The dashed lines represent the con-

trol actions that would have been calculated under no false sensor measurements and the
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Figure 9.8. Closed-loop state profiles for T1, T2, CA1, and CA2 under nominal condi-
tions with no cyberattack φ1 = 1 and an update period h0 = 0.13hr

Figure 9.9. Actual state profile vs. false sensor measurements for T1 subject to a
φ1 = 0.6 magnitude cyberattack at ta = 0.4hr and an update period h0 = 0.13hr
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Figure 9.10. Closed-loop manipulated input profiles for Q1, Q2, CA0, and CA3 subject
to a φ1 = 0.6 magnitude cyberattack at ta = 0.4hr and an update period h0 = 0.13hr

solid lines are the false inputs. If left unaddressed, this attack renders the plant unstable

as demonstrated in Figure 9.11 where the dashed lines represent the normal closed-loop

state profiles for the temperatures and concentrations and the solid lines represent the

closed-loop state profiles resulting from the attack.

At this point, the NN based classification comes into play to detect the attack. Re-

member that the controller input values, u, are continuously fed to the NN model (estab-

lished in Section 9.4.2) to obtain a classification at each sampling instance. If an attack

is detected, the moving window detection algorithm is activated and the attack magni-

tude frequency is monitored over a horizon to confirm the persistence of the attack. It is

important to note that in this example, the cyberattack introduced to the T1 sensor at

ta = 0.4hr has a magnitude of φ1 = 0.6 which is not included in the set of discretized φ

values used during the NN training step. We consider this attack value so that we can

test the robustness of the proposed detection and mitigation framework to possible clas-
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Figure 9.11. Closed-loop state profiles for T1, T2, CA1, and CA2 subject to a φ1 = 0.6
magnitude cyberattack at ta = 0.4hr and an update period h0 = 0.13hr

sification mismatches that may be present. The NN classification, however, classified this

cyberattack as having a magnitude of φ1 = 0.5 and as a process operator, we would not

have prior knowledge of this classification mismatch. Figure 9.12 summarizes the actual

cyberattack magnitude value φ1 vs the classified cyberattack value over time and helps

visualize the mismatch between these two values. Due to this mismatch, when attempting

to mitigate this attack, one must assign a confidence interval to the resultant classification

value before investigating the possible stabilizing update period values. In this case, since

the discretization of the φ values is specified in Section 9.4.2 as 0.25, a confidence interval

of 0.125 is chosen for analysis purposes. Figure 9.13 depicts the stability region contour

plot with the resultant classification and its confidence intervals; the solid red line shows

where the value of the resultant classification lies and the dashed red lines are the upper

and lower limits of the confidence interval. To select a update period value that will stabi-

lize this attack subject to a classification mismatch, one must find an update period value
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Figure 9.12. Actual cyberattack magnitude value φ1 vs the classified cyberattack value
over time

that encloses, not only the classification result value φ = 0.05 but also, the confidence

interval in the stability region. A brief visual inspection of Figure 9.13 reveals that for our

given attack and confidence intervals, an update period of hm = 0.002 would stabilize the

system even if the actual cyberattack within the range of attacks φ1 = 0.5± 0.125. Now

that a stabilizing update period value is identified, the last step is to modify the update

period to stabilize the system subject to the cyberattack. Figure 9.14 summarizes the

result of this mitigation step. It can be seen that at ta = 0.4hr the states start to diverge

from steady-state due to the cyberattack, however, the cyberattack is not confirmed and

mitigated until tm = 0.6hr due to the moving window horizon algorithm. Once the update

period is modified to hm = 0.002, the states converge again and the system is stabilized

successfully.

9.6 Conclusions

In this chapter, we propose a framework for the classification and mitigation of cyberat-

tacks in model-based networked process control systems using machine learning methods.

We first designed a model-based controller and analysed the closed-loop stability of the

163



Figure 9.13. Stability region contour plot with φ1 confidence intervals

system to characterize the stability region within which the system can tolerate different

magnitudes of false data injection cyberattacks. A NN model was then trained offline

using data from the simulated process for different cyberattack magnitudes as classes to

enable us to classify both the existence and magnitude of a cyberattack. The NN model

was then utilized online during the process operation and a classification was generated

at every update instance. If an attack is detected, moving window detection algorithm

was utilized to track the persistence of the attack. If the attack was indeed persistent,

the updated period is modified and a stabilizing value is sought using the previously gen-

erated stability region. A chemical process example subject to a cyberattack was used

to demonstrate the proposed framework and it was shown that using the trained NN

model we were able to detect the cyberattack existence and determine its magnitude and,

using the stability region analysis, were able to determine a feasible update period value

that stabilized the system. A few considerations for future work include investigating the

robustness of this approach to simultaneous, yet different magnitude, false data injection

cyberattacks occurring to the same sensor as well as multiple false data injection cyber-

attacks occurring to different sensors at once, and exploring the effect of disturbances on
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Figure 9.14. Closed-loop state profiles for T1, T2, CA1, and CA2 subject to a φ1 = 0.6
magnitude cyberattack at ta = 0.4hr, an update period hm = 0.002hr and mitigation
at tm = 0.6hr

the NN model training and classification.
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Appendix A

Proofs of Chapter 8

A.1 Proof of Theorem 8.1

Proof. We proceed by analyzing the behavior of the norm of the closed-loop state between

consecutive model updates. The stability of the closed-loop system can be established if

‖as(t)‖ decreases such that ‖as(tk)‖ >
∥∥as(t−k+1)

∥∥, where tk and tk+1 are sampling times

with tk+1 − tk = ∆. From the definition of the model estimation error and the triangular

inequality, we have that for any t ∈ [tk, tk+1):

‖as(t)‖ ≤ ‖âs(t)‖+ ‖e(t)‖ (A.1)

and therefore ‖as(t)‖ will decrease over the period [tk, tk+1) if ‖âs(t)‖ + ‖e(t)‖ decreases

over the same period. We now establish a bound on the norm of the error as a function

of the sampling period ∆. To this end, we can solve the error equation in (8.14) to obtain

∀t ∈ [tk, tk+1):

e(t) = e(tk) +

∫ t

tk

(
Ase+ Ãsâs + B̃s(za)k(âs)

)
ds

+

∫ t

tk

(
f̂s(e+ as)− f̂s(âs) + θ(as)

)
ds

(A.2)

166



Taking the norm of both sides and using the fact that e(tk) = (I − ΞM)as(tk), we have

that ∀t ∈ [tk, tk+1):

‖e(t)‖ ≤ ‖I − ΞM‖‖as(tk)‖

+

∫ t

tk

(
‖As‖‖e‖+

∥∥∥Ãs∥∥∥‖âs‖) ds
+

∫ t

tk

(∥∥∥B̃s(za)
∥∥∥‖k(âs)‖

)
ds

+

∫ t

tk

(∥∥∥f̂s(e+ as)− f̂s(âs)
∥∥∥+ ‖θ(as)‖

)
ds

(A.3)

Substituting the growth bounds of (8.9) and (8.12), as well as the inequality of (A.1),

into (A.3) and noting that

‖θ(as)− θ(0)‖ ≤ Lθ‖as‖ =⇒ ‖θ(as)‖ ≤ Lθ‖as‖+ ‖θ(0)‖ (A.4)

the following bound can be obtained ∀t ∈ [tk, tk+1):

‖e(t)‖ ≤ ‖I − ΞM‖‖as(tk)‖

+

∫ t

tk

(LF‖e(s)‖+ Lw‖âs(s)‖+ L0) ds
(A.5)

Applying the Gronwall-Bellman inequality yields:

‖e(t)‖ ≤ ‖I − ΞM‖‖as(tk)‖eLF (t−tk)

+ ‖âs(tk)‖
αLw
β + LF

(eLF (t−tk) − e−β(t−tk))

+
L0

LF
(eLF (t−tk) − 1), ∀t ∈ [tk, tk+1)

(A.6)

With this bound on the estimation error and the bound on the closed-loop model state

in (8.11), we can proceed to calculate a bound on the system state using (A.1), where it

can be shown after some algebraic manipulations that ∀ t ∈ [tk, tk+1):

‖as(t)‖ ≤ ‖âs(tk)‖(1− F1(t− tk)) + F2(t− tk) (A.7)

where F1(·) and F2(·) are defined in (8.17) and (8.19), respectively. Using the above

estimate to calculate ‖as(t−k+1)‖ and noting that ‖âs(tk)‖ ≤ ‖ΞM‖‖as(tk)‖, we finally

obtain: ∥∥as(t−k+1)
∥∥− ‖as(tk)‖ ≤ F2(h)− F1(h)‖as(tk)‖ (A.8)
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∀ t ∈ [tk, tk+1). Clearly, if F1(∆) > 0 and ‖as(tk)‖ > F2(∆)/F1(∆), then
∥∥as(t−k+1)

∥∥ −
‖as(tk)‖ < 0 and (8.24) holds. This implies that lim

k→∞
‖as(tk)‖ ≤ r(∆). Substituting this

estimate into (A.7), we have that lim
t→∞
‖as(t)‖ ≤ ψ1r(∆) + ψ2.

To ensure that the bounds in (8.9) and (8.12) are valid, we must verify that ‖as(t)‖ ≤

M for all t ≥ t0. From (A.7), it can be verified that if ‖as(t0)‖ ≤ M ′, then for all

t ∈ [t0, t1), ‖as(t)‖ ≤ M ′ψ1 + ψ2 = M . Considering that
∥∥as(t−k+1)

∥∥ < ‖as(tk)‖, we have

that if ‖as(t0)‖ ≤ M ′ is satisfied, then ‖as(t)‖ ≤ M for all t ≥ t0. This completes the

proof of the theorem.
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Appendix B

Proofs of Chapter 9

B.1 Proof of Theorem 9.1

Proof. To establish closed-loop stability, we need to show that the norm of the state of the

closed-loop system ‖x(t) ‖ decreases over successive update times such that ‖x(tk) ‖ >

‖x(t−k+1) ‖ for all k ∈ {0, 1, 2, · · · }. To show this, we start with the triangular inequality,

which establishes that, over any period of time [tk, tk+1), the following relationship holds:

‖x(t) ‖ ≤ ‖ x̂(t) ‖ + ‖ e(t) ‖ (B.1)

Based on this, to establish that ‖x(t) ‖ is decreasing over the period [tk, tk+1), it is suffi-

cient to show that ‖ x̂(t) ‖ + ‖ e(t) ‖ is decreasing over the same period.

To obtain a suitable bound on the norm of the model estimation error in terms of the

model state update period h, we use the definition of the estimation error, together with

the system and model dynamics, to describe the time evolution of the estimation error as

follows:

ė(t) = ẋ(t)− ˙̂x(t)

= f̂
(
x(t)

)
− f̂

(
x̂(t)

)
+ w

(
x(t)

)
+m

(
k
(
x(t)

)) (B.2)

Solving for e(t), we have that ∀t ∈ [tk, tk+1):

e(t) = e(tk) +

∫ t

tk

(
f̂
(
x(s)

)
− f̂

(
x̂(s)

)
+ w

(
x(s)

))
ds +

∫ t

tk

m
(
k
(
x̂(s)

))
ds (B.3)
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Taking the norm of both sides, we have that ∀t ∈ [tk, tk+1):

‖ e(t) ‖ ≤ ‖ e(tk) ‖ +

∫ t

tk

‖ f̂
(
x(s)

)
− f̂

(
x̂(s)

)
‖ ds +

∫ t

tk

‖w
(
x(s)

)
‖ ds

+

∫ t

tk

‖m
(
k
(
x̂(s)

)
‖ ds

(B.4)

Substituting the bounds in (9.3) into (B.4), and noting that:

‖w(x)− w(0) ‖ ≤ Lw ‖x ‖ =⇒ ‖w(x) ‖ ≤ Lw ‖x ‖ + ‖w(0) ‖ ,

‖m(u)−m(0) ‖ ≤ Lm ‖u ‖ =⇒ ‖m(u) ‖ ≤ Lm ‖u ‖ + ‖m(0) ‖ ,

the following bound can be obtained ∀t ∈ [tk, tk+1):

‖ e(t) ‖ ≤ ‖ e(tk) ‖ +

∫ t

tk

Lf ‖ e(s) ‖ ds +

∫ t

tk

(
Lw ‖x(s) ‖ + ‖w(0) ‖

)
ds

+

∫ t

tk

(
LmLk ‖ x̂(s) ‖ + ‖m(0) ‖

)
ds

(B.5)

Using the fact that ‖x ‖ ≤ ‖ e ‖ + ‖ x̂ ‖ , the above bound can be expressed as follows:

‖ e(t) ‖ ≤ ‖ e(tk) ‖ +

∫ t

tk

(Lf + Lw) ‖ e(s) ‖ ds +

∫ t

tk

(
LmLk + Lw

)
‖ x̂(s) ‖ ds

+

∫ t

tk

(
‖w(0) ‖ + ‖m(0) ‖

)
ds

(B.6)

‖ e(t) ‖ ≤ ‖ e(tk) ‖ + Le

∫ t

tk

‖ e(s) ‖ ds + Lθ

∫ t

tk

‖ x̂(s) ‖ ds + L0(t− tk) (B.7)

where Le = Lf + Lw, Lθ = LmLk + Lw and L0 = ‖w(0) ‖ + ‖m(0) ‖ . Substituting the

bound on the closed-loop model state given in (9.10) into (B.7) and applying the Gronwall-

Bellman inequality, it can be shown that ∀t ∈ [tk, tk+1):

‖ e(t) ‖ ≤ ‖ e(tk) ‖ eLe(t−tk) +
L0

Le

[
eLe(t−tk) − 1

]
+

αLθ
β + Le

‖ x̂(tk) ‖
[
eLe(t−tk) − e−β(t−tk)

]
(B.8)

Now that a bound on the estimation error has been established, we can calculate a bound

on the closed-loop state, ∀t ∈ [tk, tk+1), using the bound in (9.10), the triangular inequality
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in (B.1) and the fact that ‖ x̂(tk) ‖ = ‖Φx(tk) ‖ and ‖ e(tk) ‖ = ‖
(
I − Φ

)
x(tk) ‖ . This

bound can be expressed as follows:

‖x(t) ‖ ≤ ‖x(tk) ‖
(
1− F1(t− tk)

)
+ F2(t− tk) (B.9)

where the forms of the functions F1(·) and F2(·) are given in (8.17) and (8.19), respec-

tively. Finally, using (B.9), we can calculate ‖x(t−k+1) ‖ to obtain:

‖x(t−k+1) ‖ − ‖x(tk) ‖ ≤ F2(h)− F1(h) ‖x(tk) ‖ (B.10)

where we have used the fact that h = t−k+1−tk. It can be seen from the result in (B.10) that

if F1(h) > 0 and ‖x(tk) ‖ > F2(h)/F1(h), then ‖x(t−k+1) ‖ − ‖x(tk) ‖ < 0 and (9.14)

holds.
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