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1.1 A schematic of a transiting exoplanet (in black) and its atmosphere (in
red). At transit, we perform transmission spectroscopy. When the planet
is behind the host star, we perform emission spectroscopy at secondary
eclipse. Measuring the emission signature over the orbit constructs an
emission phase curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Masses vs. radii for known exoplanets. A subset has been highlighted to
indicate transiting planets with observed atmospheres. Blue/yellow dots:
planets with transmission/emission data with the Hubble Space Telescope
(HST). Red dots: planets with observations from ground-based facilities.
Saturn, Jupiter, Uranus, and Neptune are marked in black with their
initials and vertical dashed lines. Credit: Madhusudhan (2019), with
data from the NASA Exoplanet Archive at https://exoplanetarchive.
ipac.caltech.edu/. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Schematic of a retrieval model. The forward model takes input values for
its parameters to generate a high resolution spectrum. This spectrum is
binned to match the resolution of the observed data. Next, the binned
model and the data are given to an optimization scheme. In a Bayesian
framework (Section 1.2.3), we repeatedly sample the parameter space and
calculate the likelihood function to construct the posterior probability
distribution function for the parameters. . . . . . . . . . . . . . . . . . 11

2.1 Schematic demonstration of our set up. We assume a planet with two
equally weighted thermal structures with a cloud-free atmosphere of uni-
form composition. The fluxes from both thermal profiles are then aver-
aged to create the disk integrated spectrum upon which we perform the
retrievals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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2.2 HST WFC3 + Spitzer IRAC 1TP vs. 2TP fit and temperature profiles
(insets) retrieval summary. The left panel shows the results for the low
(20%) contrast while the right shows the results for high (80%) contrast.
The data simulated with 2 TP profiles are shown as the black diamonds
with error bars (WFC3 between 1 and 2 µm and the Spitzer IRAC points
at 3.6 and 4.5 µm). The fits and temperature profiles are summarized
with a median (solid line) and 68% confidence interval (spread) generated
from 1000 randomly drawn parameter vectors from the posterior. Red
corresponds to the fits/temperature profiles resulting from a single profile
fit, while blue represents the result of including two temperature profiles
in the retrieval. The black dashed lines in the temperature profile insets
are the two TP profiles used to generate the simulated data (i.e., the
“true” TP profiles). For comparison, we also include the flux-averaged
TP profile (T 4

avg = 1
2(T 4

day + T 4
night)), shown as the solid black line in the

insets. The dot-dashed TP profile is the coldest profile permitted by the
model: a non-irradiated cooling profile governed by the 200K internal
temperature. By eye, the 1TP vs. 2TP performances at 20% contrast
are comparable. Based on the Bayesian evidence, the detection of the
second profile is not significant (< 0.1σ). At 80% contrast, the two
retrieved spectra are visibly different. The second profile is detected to
2.4σ significance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Summary of the posterior probability distributions of the molecular abun-
dances for the low (20%, left) and high (80%, right) contrast cases under
the HST WFC3+Spitzer IRAC observational scenario. The red and blue
1- and 2-D histograms correspond to 1TP and 2TP scenarios. The dashed
lines in the 1-D histograms and intersection of the dashed lines in the 2-
D histograms are the true molecular abundances used to generate the
synthetic data. The detection significance of the second profile from the
2TP retrieval is < 0.1σ at 20% contrast, and the posterior distributions
show that invoking a second profile did not improve our abundance es-
timation. At 80% contrast, where the detection significance is 2.4σ, we
still note the similarities in the posterior distributions for most species.
However, in the case of CH4, the 1TP approach, bound by the radiative
transfer properties of one profile, overestimates both its abundance and
the precision. When we include a second profile, we are able to recover a
more realistic and representative distribution for the CH4 abundance. . 33
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2.4 JWST 1TP vs. 2TP fit and temperature profiles (insets) retrieval sum-
mary. The left shows the results for the low (20%) contrast while the
right shows the results for high (80%) contrast. The data simulated with
2 TP profiles are shown as the black error bars. The fits and temperature
profiles are summarized with a median (solid line) and 68% confidence
interval (spread) generated from 1000 randomly drawn parameter vec-
tors from the posterior. Red corresponds to the fits/temperature profiles
resulting from a single TP profile fit, while blue represents the result of in-
cluding two temperature profiles in the retrieval. The black dashed lines
in the temperature profile insets are the two TP profiles used to generate
the simulated data (e.g., the “true” TP profiles). For comparison, we
also include the flux-averaged TP profile (T 4

avg = 1
2(T 4

day +T 4
night)), shown

as the solid black line in the insets. At 20% contrast, while the retrieved
fits appear similar, we find that the second TP profile is detected to ∼ 5σ
significance. At 80% contrast, the 1TP retrieved spectra poorly fit the
data, especially at 2− 3 µm and at longer wavelengths. . . . . . . . . . 34

2.5 Summary of the posterior probability distributions of the molecular abun-
dances for the low (20%, left) and high (80%, right) contrast cases under
the JWST observational scenario. The red and blue 1- and 2-D his-
tograms correspond to 1TP and 2TP scenarios. The dashed lines in the
1-D histograms and intersection of the dashed lines in the 2-D histograms
are the true molecular abundances used to generate the synthetic data.
When the contrast is 20%, the second profile is detected to ∼ 5σ. When
the contrast is 80%, the second profile is detected to > 20σ. We see
that, at higher contrasts, the 1TP retrieval case is a poor representation
of the abundances. We also note the over-constraint of NH3 under the
1TP prescription. This behavior is analogous to the CH4 abundance in-
ference using one profile that we saw with WFC3+IRAC data. Once a
second profile is included, we recover the true abundance of NH3. . . . 35
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2.6 Summary of the 1 TP vs. 2 TP retrievals on the HST WFC3 + Spitzer
IRAC observations of WASP-43b. In the left panel, the data are shown as
the black diamonds with error bars (WFC3 between 1 and 2 µm and the
Spitzer IRAC points at 3.6 and 4.5 µm). The fits and temperature pro-
files (inset) are summarized with a median (solid line) and 68% confidence
interval (spread) generated from 1000 randomly drawn parameter vectors
from the posterior. Red corresponds to the fits/temperature profiles re-
sulting from a single TP profile fit, while blue are a result of including two
temperature profiles in the retrieval. The dot-dashed TP profile is the
coldest profile permitted by the model: a non-irradiated cooling profile
governed by the 200K internal temperature. At two sigma, the retrieved
night-side TP profile is consistent with the coldest permitted profile, sug-
gesting that the retrieved night-side temperatures are an upper limit.
We also show GCM derived TP profiles for the east terminator (black
dashed) and dayside (purple dashed). The single TP profile fit matches
the east terminator GCM profile well, while the dayside TP in the 2TP fit
matches the GCM derived dayside TP profile reasonably well. The “scale
height” temperature retrieved from the WASP-43b transmission spectra
(Kreidberg et al. 2014a) is shown as the horizontal error bar. This tem-
perature assumes an isothermal profile seen in transmission. Finally, the
water and methane abundance posteriors are shown in the right panel.
For simplicity, we do not show the posteriors of the other molecules whose
abundances were retrieved (NH3, CO, CO2). Note the water abundance
here seems invariant under the 1-(red) or 2-(blue) TP assumptions, but
the methane abundance is artificially well-constrained when assuming
only 1 TP. Approximate thermochemical equilibrium molecular abun-
dances at 1700K, 0.4 bars (dayside photospheric conditions) with solar
elemental composition are shown with the dashed lines. . . . . . . . . . 45

3.1 Diagram of hemisphere visible to the observer at phase angle α. The
visible hemisphere is divided into annuli based on Gaussian quadrature
angles, which are used to define the annulus width φi. The “dayside”
region (in red) intersects the annuli at different points. By determining
the areas of these segments within each annulus, we can determine the
fractional contribution of “day” and “night” for the annulus, as described
more in Appendix A. Within the “2TP” approach, all annuli areas encom-
passed by red will be assigned a “dayside” TP, and in black, a “nightside”
TP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
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3.2 Model comparisons as a function of phase. See text for how detection
significances are computed. The significance values represented here fol-
low: σ2TP ≤ 0.1σ: insignificant (blue), 2.7σ < σ2TP < 3.6σ: moderate
evidence (light pink), 3.6σ ≤ σ2TP < 5σ: strong evidence (deep pink),
and σ2TP ≥ 5σ - significant evidence (red). Left: Detection significance
of the 2TP-Crescent model compared to the 1TP model for the simulated
HST+Spitzer data. Due to symmetry, we only simulated half the orbit.
Phase are labeled by their numbers (Table 3.2). Middle: Detection signif-
icance for observed WASP-43b HST+Spitzer data. Outer ring compares
2TP-Crescent to the 1TP model. Inner ring compares the 2TP-Free and
1TP models. Full orbit is considered. Right: 2TP-Crescent vs 1TP com-
parison on simulated JWST data. Due to symmetry, only half the orbit
is considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Abundance vs. phase results from HST+Spitzer simulated data for H2O,
CH4, CO, CO2, NH3 for the 1TP model (blue) and the 2TP-Crescent
model (dark pink). For each panel, we plot the marginalized posterior
probability distribution of the log of the molecule’s mixing ratio as a func-
tion of orbital phase. For simulated data, we only consider half an orbit
(transit to secondary eclipse), or eight orbital steps. For each molecule,
we indicate the input abundance value with the vertical dashed line.
This simulated data set is only able to accurately constrain H2O abun-
dance; both 1TP and 2TP-Crescent models provide consistent posteriors
for H2O. The other molecules have only upper limit estimates with the
2TP-Crescent model. For most of the phases, the 1TP model produces
biased CH4 abundances (constrained at values orders of magnitude above
the input). CO2 is biased toward higher values under the 1TP model for
half the phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Temperature-pressure (TP) profiles for simulated HST+Spitzer data. We
selected phases 1, 2, 4, and 7 to show the change in TP profile constraint
as a function of phase. In each panel, the dashed line represent the true
input profiles for the day and night sides. The retrieved 2TP-Crescent
profiles are in blue (night) and red (day). The retrieved 1TP profiles are
in yellow. For each distribution, we show the median profile in a solid
line, surrounded by the 2σ spread in profiles. 1TP-retrieved profiles fall
in between the true day and true night profiles, shifting toward hotter
temperatures until reproducing the true day profile at secondary eclipse.
The 2TP-Crescent model provides constraints on the night profiles for
most of the orbit, until secondary eclipse where there is negligible night
side emission. There is a preference for hotter temperatures for the day
side at phases closer to transit (more of the night side visible), but once we
reach quarter phase and above, the day side profile is accurately constrained. 70
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3.5 Simulated HST+Spitzer data and resultant representative fits drawn from
the posterior for phases 2 (just before first quarter), 4 (just after first
quarter) and 7 (secondary eclipse). We include the Spitzer 3.6µm and
4.5µm filter profiles in the phase 7 panel. 1TP spectra are in magenta
while 2TP-Crescent spectra are in green. For each set of model spectra,
we plot the median (solid line), 1σ, and 2σ contour. We include corre-
sponding χν values for the 1TP and 2TP(-Crescent) models, which can
be small because random noise is not included. The spectra from the
two models differ the most at phases close to transit; they become more
similar as the phases advance to secondary eclipse, where they overlap.
The biased CH4 and CO2 abundances result in more spectral contrast
between 3 and 5µm for the 1TP profile scenario. With such distinct
spectra at phases showing more night side emission, data filling the gaps
between HST and Spitzer observations would be able to differentiate be-
tween these two models. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6 Abundance vs. phase results from WASP-43b data for H2O, CH4, CO,
CO2, and NH3 for the 1TP model (blue) and the 2TP-Crescent model
(dark pink). For each panel, we plot the posterior probability distribution
of the log of the molecule’s mixing ratio as a function of orbital phase.
We see artificially tight constraints of CH4 at several phases when using
the 1TP model. With 2TP-Crescent, CH4 at phase 11 is also constrained.
However, considering the constraints (of lack thereof) of all the phases
can help identify potential outlier distributions. H2O constraints from
the two models are consistent, with similar increases in estimates from
transit to secondary eclipse. There is no constraining power within the
data sets for CO or NH3. CO2 is largely unconstrained with the exception
of phases near secondary eclipse. In some cases the 1TP model results
in overconstrained abundances relative to the 2TP-Crescent model. CO2

constraints are challenging to interpret due to the 1-to-1 degeneracy with
CO as a result of the overlapping bands over the 4.5µm Spitzer point. . 73
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3.7 Temperature-pressure (TP) profiles for HST+Spitzer data of WASP-43b.
Phases 2, 4, 7, and 12 are shown to illustrate the constraint behavior
with phase. The retrieved 2TP-Crescent profiles are in blue (night) and
red (day). The retrieved 1TP profiles are in yellow. For each distribu-
tion, we show the median profile in a solid line, surrounded by the 2σ
spread in profiles based on reconstructed from random posterior param-
eter draws. Phases 2 and 12 are symmetric in the orbit (just after and
just before transit, respectively), resulting in similar retrieved profiles
under both models. The retrieved 1TP profile overlaps perfectly with
the 2TP-Crescent dayside profile at secondary eclipse (phase 7) as there
is no contributing flux from the nightside. Retrieved day and night pro-
files from the 2TP-Crescent model are relatively similar from phase to
phase, further evidence of a large day-night temperature contrast in the
atmosphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.8 WASP-43b data (HST+Spizter) and high-resolution spectra generated
with random posterior draws from the retrieval. Shown here are the
spectra for phases 1, 3, 4, 7, 10, and 13. We include corresponding χν
values for the 1TP and 2TP(-Crescent) models. In the panel of phase
7, we overplot the Spitzer 3.6µm and 4.5µm filter transmission. 1TP
spectra are in magenta while 2TP-Crescent spectra are in green. For each
set of model spectra, we plot the median, 1σ, and 2σ contour. The 1TP
model struggles to fit the 4.5µm Spitzer point at more crescent phases
(dominated by night side). The 2TP-Crescent model spectra look more
featureless in comparison at these phases, reflecting the corresponding
unconstrained posteriors of the atmospheric gases. At phases closer to
secondary eclipse, data between 2 and 3µm are needed to separate the
two models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.9 Posterior distribution of fday from the 2TP-Free model using WASP-43b
data. The distributions are bimodal due to the fact that we imposed
no geometric information, thus showing the symmetric nature of each
phase. Overplotted (orange circles connected with black line) is the ex-
pected emitting fraction for each phased based on Equation A.1. These
expected values correspond to the total contribution from the day side
in the 2TP-Crescent model. Phases 2, 9, 11, and 12 have posteriors
constraining lower values than the expected, suggesting a preference for
lower temperatures and less contribution from the day profile. . . . . . 78
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3.10 Abundance vs. phase results from WASP-43b data for H2O (left) and
CH4 (right) for the 2TP-Crescent model (dark pink) and the 2TP-Free
model (light pink). For each panel, we plot the posterior probability
distribution of the log of the molecule’s mixing ratio as a function of
orbital phase. A noticeable difference is how 2TP-Crescent’s constraint
of CH4 at phase 11 becomes a non-detection with 2TP-Free. The H2O
distributions from phases 10 - 13 with the 2TP-Free model look more
similar to one another but these values are larger than estimates from
the rest of the orbit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.11 Abundance vs. phase results from JWST simulated data for H2O, CH4,
CO, CO2, NH3 for the 1TP model (blue) and the 2TP-Crescent model
(dark pink). For each panel, we plot the posterior probability distribution
of the log of the molecule’s mixing ratio as a function of orbital phase. The
distributions are set to show the same total height at each phase and thus
do not show the relative probability. For simulated data, we only consider
half an orbit (transit to secondary eclipse), or eight orbital steps. For each
molecule, we indicate its input abundance value with the vertical dashed
line. The 1TP model produces constrained but bias posteriors for all
molecules at multiple phases. Most of them have incorrect estimates for
half the orbit. With the 2TP-Crescent model, we can get well-constrained
and accurate estimates of H2O and CO. We have upper limits for the
remaining molecules, which do not have large input values to begin with. 82

3.12 Temperature-pressure (TP) profiles for simulated JWST data. We se-
lected phases 1, 2, 4, and 7 to show the change in TP profile constraint
as a function of phase. In each panel, the dashed line represent the true
input profiles for the day and night sides. The retrieved 2TP-Crescent
profiles are in blue (night) and red (day). The retrieved 1TP profiles
are in yellow. For each distribution, we show the median profile in a
solid line, surrounded by the 2σ spread in profiles based on reconstructed
random posterior draws. For certain phases, the 1TP profiles appear to
have a temperature inversion. The 1TP profiles are close to the day-side
profile as early as phase 4 (half day, half night). The 2TP profiles for day
and night are accurate and precise. . . . . . . . . . . . . . . . . . . . . 83

3.13 Simulated JWST data and high-resolution spectra generated with ran-
dom posterior draws from the retrieval. Shown here are the spectra for
phases 2, 4, and 7. 1TP spectra are in magenta while 2TP-Crescent spec-
tra are in green. For each set of model spectra, we plot the median, 1σ,
and 2σ contour. We include corresponding χν values for the 1TP and
2TP(-Crescent) models, which can be small because random noise is not
included. The JWST results are so precise that the contours are difficult
to see. The 1TP spectra do not fit the majority of the data points at
phases besides secondary eclipse. . . . . . . . . . . . . . . . . . . . . . . 84
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3.14 Left: Constraints distributions of the five retrieved molecules from sim-
ulated HST+Spitzer data with: (1) averaged posterior from the phase-
by-phase retrievals from Section 3.3.1, (2) joint retrieval of all phases
using the 2TP-fixed model,(3) joint retrieval of all phases using the 2TP-
Crescent model. Dashed line indicates the input value for each molecule.
Middle: Posterior distributions of the same cases using WASP-43b data.
The joint retrieval is able to return more precise distributions; in some
cases, however, the advantage of combining multiple data sets also en-
hances bias in the result. Right: Posterior distributions of the same cases
using simulated JWST data. Distributions from jointly-done retrievals
indicate stronger, more precise detection. 2TP-Fixed and 2TP-Crescent
approaches yield similar results. . . . . . . . . . . . . . . . . . . . . . . . 89

3.15 Comparing existing H2O estimates and the estimate from this study us-
ing the joint retrieval for WASP-43b. Fig. 3.15(a): We plot the posterior
distribution for H2O from the joint retrieval along with the distribu-
tions from Kreidberg et al. (2014a). These include the posterior based
on secondary eclipse only, transmission only, and the joint distribution
(multiplication of the two posteriors) from the two sets of observations.
Fig. 3.15(b): Illustration of the 1σ range of H2O estimates from the
Kreidberg et al. (2014a) joint distribution, Stevenson et al. (2017), and
this study. The Stevenson et al. (2017) results are based on multiplying
the posteriors from phases grouped as day (first to third quarter) and
night and determine corresponding joint H2O posteriors. Vertical dashed
lines are placed to guide the eye during comparison. The joint retrieval
constraint of H2O is lower than the Kreidberg et al. (2014a) 1σ range, but
it is overall consistent with their joint distribution and with the dayside
estimate from Stevenson et al. (2017). . . . . . . . . . . . . . . . . . . . 90

3.16 WASP-43b data (HST+Spizter) and high-resolution spectra generated
with random posterior draws from the joint retrieval. Shown here are the
spectra for phases 1, 3, 4, 7, 10, and 13. Overplotted are the spectral
fits from the phase-by-phase 2TP-Crescent retrievals (see Figure 3.8).
We include corresponding χν values for the Joint and 2TP(-Crescent)
cases. In the panel of phase 7, we overplot the Spitzer 3.6µm and 4.5µm
filter transmission. Jointly-fit spectra are in magenta while 2TP-Crescent
spectra are in green. For each set of model spectra, we plot the median,
1σ, and 2σ contour. Although the constraints are more precise with
the joint retrievals, the goodness-of-fit is worse compared to the phase-
by-phase scenario. This is expected given only one set of parameters
(abundances, TP profiles) were allowed in order to fit all the phases. . . 91

xiii



3.17 Constraints of day and night temperature-pressure profiles from joint
retrievals of (left) simulated HST/Spitzer data, (middle) observed WASP-
43b data, and (right) simulated JWST data. The profiles shown are the
median fit and 2σ envelope of fits from the retrievals. Also included
are the phase-by-phase retrieval results of the day profile from phase 7
(secondary eclipse) and night profile from phase 1 (right after transit);
see Section 3.3.1. Dashed lines are the input profiles for the simulated
data. The joint retrievals are able to accurately model the true profiles in
simulated cases, and provide more precise constraints on the TP profiles
than the phase-by-phase retrievals for all data sets. . . . . . . . . . . . . 92

4.1 Comparing our model phase function to the analytic Lambertian phase
function (Equation 4.12). No atmospheric absorption or scattering is
present in the forward model. . . . . . . . . . . . . . . . . . . . . . . . 115

4.2 Illustrative schematic of our model atmosphere’s structure. The atmo-
sphere has Nt + Nc + Nb layers. Table 4.1 lists the definitions, fiducial
values, and priors of the presented parameters. . . . . . . . . . . . . . . 118

4.3 Left: High resolution (1 cm−1) H2O opacities from 0.4-1.0 µm at three
different pressures: 0.1 bar, 1 bar, and 10 bars. Right: Absorption fea-
tures in a R = 140 spectrum from 0.3 - 1.05 µm of H2O, O2, and O3

at fiducial mixing ratios listed in Table 4.1 at P = 1 bar and P = 10
bar. For each spectrum here, the atmosphere only contains the stated
molecule and a radiatively inactive filler gas to match the pressure. . . 119

4.4 Left: The spectrum generated with the forward model in this study using
fiducial values from Table 4.1. Key spectral features from the atmospheric
species in our model are labeled. Right, top: Comparison of the cloudy
forward model in this study using fiducial values from Table 4.1 to a
spectrum from a more computationally complex three-dimensional (3D)
forward model of Earth at full phase described in Robinson et al. (2011).
Right, bottom: Comparison of the cloudy forward model to a spectrum
of a planet generated using the 3D model from Robinson et al. (2011)
that is like Earth except it only has ocean coverage. . . . . . . . . . . . 120

4.5 The high resolution (1000 wavelength points from 0.35−1.05 µm) forward
model spectrum, overplotted with simulated WFIRST rendezvous, R =
70, R = 140 data, from top panel to bottom. Key spectral features for
atmospheric gases in our model are labeled. In the top panel, “1” and
“2” mark the span of the WFIRST Design Cycle 7 filters (see Table 4.2). 128

xiv



4.6 Scaling of SNR with wavelength for WFIRST rendezvous, R = 70, and
R = 140 cases. The WFIRST curve is normalized to unity at 600 nm
while the R = 70 and R = 140 curves are normalized to unity at
550 nm, following our definite of simulation SNR at these respective
wavelengths. Also shown is the wavelength-dependent detector quantum
efficiency (QE) that we adopt. . . . . . . . . . . . . . . . . . . . . . . . . 129

4.7 Posterior distributions of Model I from Table 4.3, where we fix all pa-
rameters but P0 and As. We retrieve on R = 140, SNR = 20 data with
wavelength-independent noise. Overplotted in solid light-blue color are
the fiducial parameter values. The 2D marginalized posterior distribu-
tion, used in interpreting correlations, is overplotted with the 1-, 2-, and
3-σ contours. Above the 1D marginalized posterior for each parameter,
we list the median retrieved value with uncertainties that indicate the
68% confidence interval. Dashed lines (left to right) mark the 16%, 50%,
and 84% quantiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.8 Posterior distributions of Model II from Table 4.3, where we fix all pa-
rameters except for P0, As, g, and Rp. We retrieve on R = 140, SNR = 20
data with wavelength-independent noise. Overplotted in solid light-blue
color are the fiducial parameter values. The 2D marginalized posterior
distribution, used in interpreting correlations, is overplotted with the 1-
, 2-, and 3-σ contours. Above the 1D marginalized posterior for each
parameter, we list the median retrieved value with uncertainties that in-
dicate the 68% confidence interval. Dashed lines (left to right) mark the
16%, 50%, and 84% quantiles. . . . . . . . . . . . . . . . . . . . . . . . 135

4.9 Posterior distributions of Model III from Table 4.3, where we retrieve
P0, As, g, Rp, H2O, O2, and O3. We retrieve on R = 140, SNR = 20
data with wavelength-independent noise. Overplotted in solid light-blue
color are the fiducial parameter values. The 2D marginalized posterior
distribution, used in interpreting correlations, is overplotted with the 1-
, 2-, and 3-σ contours. Above the 1D marginalized posterior for each
parameter, we list the median retrieved value with uncertainties that
indicate the 68% confidence interval. Dashed lines (left to right) mark
the 16%, 50%, and 84% quantiles. . . . . . . . . . . . . . . . . . . . . . 136

xv



4.10 Posterior distributions of Model IV, or the complete model, from Table
4.3. We retrieve for 11 parameters: P0, As, g, Rp, H2O, O2, O3, pt, dp,
τ , and fc. We retrieve on R = 140, SNR = 20 data with wavelength-
independent noise. Overplotted in solid light-blue color are the fiducial
parameter values. The 2D marginalized posterior distribution, used in
interpreting correlations, is overplotted with the 1-, 2-, and 3-σ contours.
Above the 1D marginalized posterior for each parameter, we list the me-
dian retrieved value with uncertainties that indicate the 68% confidence
interval. Dashed lines (left to right) mark the 16%, 50%, and 84% quantiles.137

4.11 Comparing 1D marginalized posterior distributions for all parameters
for all SNR cases of R = 70. See Table 4.4 for corresponding median
retrieved value with uncertainties that indicate the 68% confidence in-
terval. Overplotted dashed line represents the fiducial values from Table
4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.12 Comparing 1D marginalized posterior distributions for all parameters for
all SNR cases of R = 140. See Table 4.5 for corresponding median re-
trieved value with uncertainties that indicate the 68% confidence interval.
Overplotted dashed line represents the fiducial values from Table 4.1. . . 143

4.13 Comparing 1D marginalized posterior distributions for all parameters
for all SNR cases of a WFIRST rendezvous scenario. See Table 4.6 for
corresponding median retrieved value with uncertainties that indicate the
68% confidence interval. Overplotted dashed line represents the fiducial
values from Table 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.14 Spectra generated with 1000 randomly drawn sets of parameters sampled
with the retrievals plotted with left: R = 70 data for SNR= 5, 10, 15, 20;
middle: R = 140 data for SNR= 5, 10, 15, 20; and right: WFIRST
rendezvous data at SNR = 5, 10, 15, 20. “1” and “2” mark the span of
the WFIRST Design Cycle 7 filters (see Table 4.2). Lighter contour (light
green) represents 2-σ fits while darker contour (blue-green) represents 1-σ
fits. Solid line represents the median fit. . . . . . . . . . . . . . . . . . 145

4.15 Comparing the posteriors for all parameters for SNR = 10 cases of
WFIRST rendezvous, R = 70, and R = 140. Overplotted dashed line
represents the fiducial values from Table 4.1. . . . . . . . . . . . . . . . 152

xvi



4.16 The top left panel shows one of the 10 noise instances we retrieved on for
R = 70, SNR = 15 data, plotted along with the forward model spectrum
at R ∼ 70. The remaining three panels show the gas mixing ratio poste-
riors (H2O, O3, O2) of all the 10 noise instances of R = 70, SNR = 15. In
addition, we are showing the corresponding posterior distributions from
the non-randomized data set (seen originally in Figure 4.11) for compar-
ison. The set of posteriors that correspond to the noise instance in the
top left panel is the set of bolded distributions. The vertical dashed lines
represent the input values of the parameters. . . . . . . . . . . . . . . . 160

4.17 The combined posteriors distributions from 10 noise instances of R = 70,
SNR= 15 compared to the posteriors from the non-randomized data set
(see also Figure 4.11). The diamond represents the median value of each
combined posterior, while the circle is the median of the non-randomized
data set posterior. Each median is plotted along with the 68% confidence
interval from the same distribution. The vertical dashed lines represent
the input values of the parameters. . . . . . . . . . . . . . . . . . . . . . 161

4.18 The combined posteriors distributions from 10 noise instances of R = 140,
SNR= 10 compared to the posteriors from the non-randomized data set
(see also Figure 4.12). The diamond represents the median value of each
combined posterior, while the circle is the median of the non-randomized
data set posterior. Each median is plotted along with the 68% confidence
interval from the same distribution. The vertical dashed lines represent
the input values of the parameters. . . . . . . . . . . . . . . . . . . . . . 162

A.1 Comparing Morley et al. (2015) disort 3D model’s spectra (dashed) to
this study’s annulus model’s spectra (solid) at four phases from after
transit to secondary eclipse. The simpler annulus model is able to match
the 3D model’s output well throughout the orbit. . . . . . . . . . . . . . 176

A.2 Detailed schematics of annulus geometry. (a) 1D sideview of a section of
the atmosphere in the Gaussian quadrature setup with wi for N points.
We use a unit circle as an example. For each

∑
iwi, there is a corre-

sponding angle θi. The span of each arc between θi is φi. Within each
arc is a beam of radiation. This quadrant is integrated azimuthally over
2π to determine the total outgoing radiation of the hemisphere facing
the observer. (b) View of hemisphere visible to observer at phase α. The
emitting region (in red) intersects the annuli at different points. By de-
termining the areas of these segments, we can calculate how much of each
annulus is emitting as described in the text. (c) A zoom-in of spherical
triangle ZYW for phase α. The known variables are α, β, and A. This
sets up the solution for AAS (angle-angle-side) spherical triangles. See
Equations A.2 to A.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

xvii



List of Tables

2.1 Model parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Retrieval Results and Bayesian Model Evidence for 2nd TP profile . . . 31

3.1 Model parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Reference for phase angles . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Data sets and relevant model scenarios . . . . . . . . . . . . . . . . . . . 63

4.1 List of the 11 retrieved parameters in the complete cloudy model, their
descriptions, fiducial input values, and corresponding priors. . . . . . . 123

4.2 Simulated data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.3 Four cumulative models for retrieval validation, as described in Section
4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4 R = 70 retrieval results, with median value and 1-σ uncertainties of the
parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.5 R = 140 retrieval results, with median value and 1-σ uncertainties of the
parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.6 WFIRST rendezvous retrieval results, with median value and 1-σ uncer-
tainties of the parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.7 R = 70: Strength of detection for a set of key parameters as a function
of SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

xviii



4.8 R = 140: Strength of detection for a set of key parameters as a function
of SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.9 WFIRST : Strength of detection for a set of key parameters as a function
of SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

xix



Abstract

Advancing Retrievals of Exoplanetary Spectra in the Era of Large Space-Based

Telescopes

by

Ying Feng

Exoplanet atmospheres tell the story of diverse worlds: what they are made of and how

they came to be. We use theoretical models to make sense of the narrative encoded in

each atmospheric data set. In particular, we extract information with retrievals, which

couple statistical tools with high signal-to-noise spectral data to derive and estimate

atmospheric properties. The inferred atmospheric structure and molecular abundances

then influence our understanding of the Solar System in the context of exoplanets.

Retrievals have become an essential tool in both understanding existing data

and quantitatively informing the needs of future missions. Consequently, this thesis

focuses on the interplay between data and models, the core components of a retrieval.

First, I demonstrate the need to evaluate model assumptions in order to extract

meaningful constraints from spectra. While varying in sophistication, most model-

spectra comparisons fundamentally assume “1D” model physics. However, we know

that planetary atmospheres are inherently “3D” in their structure and composition.

Within a Bayesian retrieval framework, I show how the assumption of a single 1D

thermal profile can bias our interpretation of the thermal emission spectrum of an

unresolved hot Jupiter’s atmosphere that is composed of two thermal profiles. I extend

xx



the application to full spectroscopic phase curves. For modern data, I reveal that the

constraint for water vapor abundance is robust independent of model setup; however,

methane is artificially well-constrained to incorrect values. Furthermore, I find that

the 1D setup is insufficient at fitting data that the James Webb Space Telescope may

measure, causing many abundance biases.

Next, I develop an inverse modeling framework to estimate the science return

of proposed missions that aim to perform reflected light spectroscopy of rocky exoplan-

ets around Sun-like stars. By combining an albedo model, an instrument noise model,

and a Bayesian inference tool, I explore retrievals of atmospheric and bulk properties as

a function of data signal-to-noise ratio (SNR) and resolution (R). I present the recom-

mended R and SNR combinations to achieve detection or constraint of key indicators

of habitability on rocky planets such as water vapor, oxygen, and ozone.
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Chapter 1

Introduction

The end of the 20th Century saw an expansion in humanity’s exploration of

the universe: ours was no longer the only known solar system in the Galaxy. Thousands

of extrasolar planets, or exoplanets, have since been discovered. As we enter the 2020s

and beyond, we are launching into in-depth characterization of these distant worlds.

From super Earths to hot Jupiters, tightly-packed multi-planet systems to

massive, self-luminous young planets, exoplanets continually present conditions both

similar and unfamiliar to our own planetary system. Without the ability to send probes

like we can in the Solar System, we turn to the power of remote sensing. We rely on

discovery methods to infer bulk properties such as mass and radius. We rely on the

atmospheres to deduce chemical composition, atmospheric circulation, and the presence

of aerosols. But in any flavor of exoplanet characterization, we rely foremost on the

synergy between telescope observations and theoretical models.

As described in this chapter, theory and data have mutually pushed each other
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to improve. A bountiful trove of unprecedented data will follow the launch of future

large space-based telescopes. All the proposed missions considered by the forthcoming

astronomy decadal survey highlight exoplanet characterization as a key area. While it

is difficult to anticipate the phenomena future data will capture, we can still prepare by

improving existing models.

Through this thesis, I present several frameworks that advance statistical mod-

eling of exoplanet atmosphere observations. I also show how these models quantitatively

drive the decisions in the design of upcoming missions. First, in this chapter, I present

relevant characterization methods, modeling approaches, and findings followed by a

summary of questions sparked by future space telescopes and how this thesis intends to

address them.

1.1 Fantastic Atmospheres and How to Study Them

The first planet discovered around another solar-type star exceeded expecta-

tions in many ways. One surprise was its position relative to its host star. 51 Pegasi b

(Mayor & Queloz 1995), at 0.46 Jupiter masses, has an orbital semimajor axis of ∼ 0.05

au.

Core accretion, a commonly proposed formation mechanism for the Solar Sys-

tem, fosters the idea that gas giants like Jupiter were able to reach runaway accretion

and so retain a thick hydrogen and helium (H/He)-dominated atmosphere. Effective

accretion is possible beyond the ice line, where volatile compounds such as water or

carbon dioxide can condense into ices and provide more accretion material. When the
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Solar System was forming, for instance, the water ice line was approximately at 3 au

(e.g., Qi et al. 2013), well within Jupiter’s current orbital distance. A massive planet

like 51 Pegasi b existing so near its host star, where it would be too hot for volatiles

to remain solid, challenged this theory, invoking new theories of migration (Lin et al.

1996). This has also earned planets of this class the title of “hot Jupiter.” Hot Jupiters

can be tidally locked; the intense irradiation on the permanent dayside can lead to large

day-night temperature contrasts.

Novel results from the discovery of exoplanets have refreshed our perspective

on planetary systems in the Galaxy time after time. Two of these discovery methods

are now our main pathways to exoplanet characterization: transits and direct imaging.

1.1.1 Transit Spectroscopy

The transit method detects planets which cross in front of their host star from

the observer’s point of view. Planets with short-periods are prime targets for transit

surveys. Transiting planet atmospheres can be studied through two primary techniques:

transmission spectroscopy and emission spectroscopy. Figure 1.1 illustrates when these

techniques are applied during the orbit of a transiting planet.

Transmission spectroscopy occurs during transit, as we observe the stellar flux

filtering through the planet’s atmosphere. Opacity sources (absorbing or scattering

atoms and molecules, cloud/haze particles) impede the transmission of starlight, caus-

ing the planet to appear “larger” at certain wavelengths. The relative transit depth as

a function of wavelength corresponds to a transmission spectrum. Transmission spec-

troscopy probes the day/night limbs of the atmosphere, giving us access to pressures
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Transit
Transmission Spectroscopy

Secondary Eclipse
Emission Spectroscopy

Emission Phase Curve

Figure 1.1: A schematic of a transiting exoplanet (in black) and its atmosphere (in red).
At transit, we perform transmission spectroscopy. When the planet is behind the host
star, we perform emission spectroscopy at secondary eclipse. Measuring the emission
signature over the orbit constructs an emission phase curve.

higher up in the atmosphere. While transmission spectra are not investigated in this

thesis, they have yielded impactful findings. In particular, they have revealed the promi-

nence of hazes and clouds in exoplanet atmospheres (Kreidberg et al. 2014b; Sing et al.

2016).

Emission spectroscopy, featured in Chapters 2 and 3, measures the thermal

emission from an exoplanet. For a transiting planet, this means monitoring the flux

from the planet-and-star system over its orbit. We can obtain the planet-to-star flux

ratio,

Fp
Fs

=
R2
p I(λ, Tp)

R2
s I(λ, Ts)

, (1.1)

where I(λ, T ) corresponds to the intensity (e.g., blackbody) as a function of wavelength λ

and temperature T . When the planet is behind the star, we observe the secondary eclipse
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and can infer the flux contribution of the planet’s day side. Emission spectroscopy probe

deeper into the atmosphere than transmission spectroscopy. Importantly, these spectra

are sensitive to both the atmospheric composition and thermal structure. Furthermore,

when we have the flux ratios as a function of wavelength for the full orbit, we have

an emission spectroscopic phase curve. Phase curves provide us information about the

atmosphere as a function of longitude.

Space-based observatories such as the Hubble Space Telescope(HST) and the

Spitzer Space Telescope (Spitzer) pioneered atmospheric observations in the optical, UV,

and infrared wavelengths. As Figure 1.2 shows, almost a hundred exoplanets have had

their atmospheres detected by at least one technique (emission or transmission) in at

least one spectral band. Many do not have more than photometric observations, but

tens have high-precision spectra with data typically spanning ∼ 0.5−2µm, depending on

the instrument. Modeling efforts, described in more detail in Section 1.2, are providing

initial constraints on molecular and atomic species in the atmosphere, thermal profiles,

cloud/haze properties, and atmospheric dynamics.

Unlike on Solar System gas giants, where the temperature is too low, water

(H2O) on hot Jupiters is in its gas phase. We can link its constraint to ratios of elemental

abundances, such as the carbon-to-oxygen ratio (C/O). Beyond the iceline, gas becomes

oxygen-poor once water, the dominant carrier of oxygen, becomes solid (Öberg et al.

2011) – the solids are thus oxygen-rich. The composition of a planet depends on the

relative accretion of gas and solids. An estimate of the atmospheric C/O ratio, then,

has implications for the planet’s formation location.
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Figure 1.2: Masses vs. radii for known exoplanets. A subset has been highlighted to
indicate transiting planets with observed atmospheres. Blue/yellow dots: planets with
transmission/emission data with the Hubble Space Telescope (HST). Red dots: planets
with observations from ground-based facilities. Saturn, Jupiter, Uranus, and Neptune
are marked in black with their initials and vertical dashed lines. Credit: Madhusudhan
(2019), with data from the NASA Exoplanet Archive at https://exoplanetarchive.
ipac.caltech.edu/.

A complicating factor to measuring molecular abundances is disequilibrium

chemistry. When chemical reaction rates are slower compared to dynamic processes

(e.g., vertical mixing), we should not expect chemical equilibrium to hold. For example,

Jupiter’s upper atmosphere appears to have higher carbon monoxide (CO) abundance

than predicted by chemical equilibrium. One explanation is the upwelling of CO from

deeper in the atmosphere due to convection, effectively becoming quenched when chemi-

cal reactions slow at lower temperatures (Bézard et al. 2002; Cooper & Showman 2006).

The accurate inference of gas abundances in hot Jupiters is key to identifying such

processes, if present.
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1.1.2 Direct Imaging Spectroscopy

Direct imaging involves suppressing the light from a host star to image orbiting

planets and measure their spectra directly. Starlight suppression is immensely challeng-

ing. The contrast at visible wavelengths between Jupiter and the Sun is ∼ 10−9, and

that of the Earth-Sun system is ∼ 10−10. Depending on the host star’s own spectrum,

going to redder wavelengths helps decrease the contrast. Ground-based instruments

have successfully imaged massive, young exoplanets at wide orbital separations (> 10

au), with contrast levels going down to ∼ 10−6. These young planets are still cooling

off from formation and are self-luminous; their characterization occurs typically occurs

in the infrared (e.g., Macintosh et al. 2014; Rajan et al. 2017).

While this is the science of today, this thesis focuses on the science of the fu-

ture: reflected light spectra from terrestrial planets in visible wavelengths. The goal is

to eventually characterize Earth-like planets around Sun-like stars to better understand

our Earth in the broader context of potentially habitable systems. Reflected light spec-

troscopy of these objects will be likely only be done in space, as ground-based facilities

may not reach the necessary contrast ratios at orbital separations as close in as such a

star’s Habitable Zone (HZ). The HZ (Kasting et al. 1993; Kopparapu et al. 2013) is the

region around a star where a terrestrial planet can sustain liquid water on its surface.

Planets in the HZ around Sun-like stars will be difficult to study with transit spec-

troscopy because transits are infrequent, and the transit probability (based on stellar

radius and planet semimajor axis as Rstar
a ) and transit depth (area of the star blocked

by planet) are low.
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Reflected-light spectra of planets, like emission spectra, can probe deeper into

atmospheres; for rocky planets, this may even be down to the surface. These spectra

represent light directly from the atmosphere (or starlight that has entered and scattered

back out), unlike transmission spectra which consist of starlight traversing through

longer optical paths through the upper atmosphere. In addition, water vapor, needed

to establish habitable conditions, is found lower in the atmosphere on Earth than a

transmission observation may probe. A prominent water band sits at 0.87 − 1.05µm.

Beyond this feature, the visible light regime (0.4− 1µm) hosts a wealth of information

regarding a terrestrial planet’s atmosphere, as discussed in Chapter 4.

A few challenges to interpreting reflected light spectra include the lack of

knowledge about planetary bulk properties (orbit, radius, mass). However, follow-up

observations (e.g., proper motion studies) can complement spectroscopic studies in pro-

viding constraints on bulk parameters.

1.2 Interpreting Atmospheric Data

Once exoplanet spectra have been measured, the next challenge lies in their

interpretation. A spectrum, or even photometric points, encodes the intricate processes

occurring within a distant exoplanet’s atmosphere. Modeling an atmosphere is, in a

sense, like judging a book by its cover. However, astronomers are well-equipped to gain

insight through self-consistent or inverse models.
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1.2.1 Self-Consistent Models

A self-consistent model computes (i.e., predicts) spectra of atmospheres based

on assumptions about macroscopic properties like gravity, irradiation, and elemental

abundances. Self-consistent models range in complexity, from one-dimensional (1D) to

three-dimensional (3D).

A 1D model is typically plane-parallel and maintains thermochemical and

radiative-convective equilibrium (net flux is conserved). Radiative transfer determines

how radiation interacts with matter, like stellar radiation entering a planet’s atmo-

sphere, or the conversion of internal heat flux from the interior to radiation which exits

the atmosphere. By solving radiative transfer for a pressure grid, the resulting thermal

profile and chemical composition then yield a spectrum. We can compare the predicted

spectra from 1D models with different initial assumptions to observed data and get an

intuition of a planet’s atmosphere. Chemical abundances, for instance, are set initially

depending on the metallicity or C/O ratio assumed (e.g., Mollière et al. (2015)). Opac-

ity sources (gas species or clouds and hazes in the atmosphere), which play a key role

in the interaction with radiation, depend on these abundances.

A 3D model is also known as a general circulation model (GCM). GCMs take

as input bulk planetary properties and the irradiation field to solve equations of fluid

motion for the full 3D atmospheric structure, from chemistry to dynamics. Modelers

have coupled the results of the GCMs, which include the thermal profiles as a function

of planetary longitude and latitude, with a radiative transfer scheme to produce spectra.

These models are well-suited for examining phase-resolved spectra and thermal phase
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curves. In fact, GCMs predicted strong equatorial jets in hot Jupiter atmospheres

which can cause the hot spot of the irradiated day side to shift from the sub-stellar

point (Showman & Guillot 2002). This has been observed in several planets, such

as HD 189733b (Knutson et al. 2008). Based on GCM studies, we anticipate diverse

temperature structures and abundances in exoplanet atmospheres.

1.2.2 Inverse Models

Atmospheric retrieval is the process of inferring the atmospheric properties of

an exoplanet from its observed spectrum. Since they back out conditions from data,

they are also called inverse models. Figure 1.3 shows the key components of a retrieval

in relation to one another: a parametric forward model, the observed data, and an

optimization algorithm. The optimization scheme – a statistical inference tool – is a

means of estimating the model parameters by numerous evaluations of the corresponding

generated forward model spectra fitted to the observed data. Parameter estimation per-

formed through Bayesian inference (Section 1.2.3) constructs probability distributions

for each parameter.

Parameter estimation also maps out degeneracies between variables. Such

a process requires at least an order of 105 - 106 model evaluations against the data.

Computational efficiency becomes crucial in this effort. Retrievals are thus designed to

produce spectra far quicker than self-consistent models, enabling wider exploration of

parameter space. Self-consistent models, meanwhile, assume to know the atmospheric

physics and chemistry conditions in order to reach converged steady state solutions;

these assumptions can miss domains that exoplanet atmospheres occupy given their
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Figure 1.3: Schematic of a retrieval model. The forward model takes input values for its
parameters to generate a high resolution spectrum. This spectrum is binned to match
the resolution of the observed data. Next, the binned model and the data are given to an
optimization scheme. In a Bayesian framework (Section 1.2.3), we repeatedly sample
the parameter space and calculate the likelihood function to construct the posterior
probability distribution function for the parameters.

diversity (Madhusudhan 2018).

In general, a retrieval model first defines the atmospheric structure (e.g., how

temperature, gas concentrations, or cloud/haze presence vary with pressure) and then

performs a radiative transfer calculation based on its properties, generating a spec-

trum. The parameterization of the forward model depends on the observational context.

Chapters 2 and 3, for instance, describe the forward modeling of cloud-free hot Jupiter

emission spectra. The thermal profile (temperature as a function of pressure) is a key

property to model, along with chemical composition (gas mixing ratios). Chapter 4

features reflected light spectra from rocky planets. A different set of molecules and

opacities would be in play for terrestrial planets, and modeling these spectra invokes

scattering effects.

Early-on exoplanet atmosphere retrieval relied on a grid-search method. In
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Madhusudhan & Seager (2009), this entailed defining the parameter space for 10 vari-

ables and generating a grid of 107 models. A goodness-of-fit contour map can be calcu-

lated and provide confidence intervals for each parameter. Such an approach is limited

by grid resolution and computational power, especially when trying to explore high-

dimensional parameter spaces with strong degeneracies. Furthermore, the confidence

intervals do not correspond to actual probability distributions for a variable. A Bayesian

framework addresses these issues, and Bayesian inference has since become a prominent

method in exoplanet atmosphere inverse modeling (e.g., Madhusudhan et al. 2011; Lee

et al. 2012; Line et al. 2013; Benneke 2015). In the following sections, we will examine

the setup and implementation of Bayesian retrievals.

1.2.3 Bayesian Inference

Bayesian inference is a widely-adopted approach for parameter estimation. In

this context, Bayes’ theorem is specifically

P (θ|d,M) =
P (d|θ,M)P (θ|M)

P (d|M)
, (1.2)

where θ is the set of parameters for a model M and d is the set of observed data.

P (θ|d,M) describes the posterior probability distribution for θ, i.e., our degree of belief

about the value of θ given the measurements of d. P (d|θ,M) is the likelihood function,

or how likely it is that we would obtain the data under the parameters θ for model M .

Assuming that the data (d1, ..., dN ) are measurements with Gaussian-distributed errors

(σ1, ..., σN ), as I do in this thesis, the likelihood becomes
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L(θ,M) ≡ P (θ|d,M) =
N∏
i=1

1√
2πσi

exp

(
−(di −Mi(θ))

2

2σ2
i

)
. (1.3)

P (θ|M) represents the prior probability distribution, quantifying our knowl-

edge of θ before taking any data. The P (d|M) term, also called the “evidence”, nor-

malizes the posterior to unity. It is defined as

Z ≡ P (d|M) =

∫
L(θ,M)P (θ|M)dθ, (1.4)

and Z is relevant for comparing competing models. Model comparison is further dis-

cussed in Section 1.2.3.

In this thesis, I will employ two implementations of Bayesian inference to

numerically obtain posterior distributions: Markov Chain Monte Carlo and Nested

Sampling.

Markov Chain Monte Carlo

A Markov Chain Monte Carlo (MCMC) algorithm starts from an initial guess

and then chains together a sequence of points in parameter space through random

sampling. The probability of the (n + 1)-th element in a Markov chain only depends

on the probability of the n-th element. Markov chains can converge to a steady state

in which the values no longer change with n. The samples drawn at this stage are

considered to be from the target distribution, i.e., the joint posterior of all parameters.

Typically, a transition probability defines the chance of moving from point θ(n) to θ(n+1)

within the parameter space, thus adding elements to the chain (or not).
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Several techniques exist to guide the exploration of parameter space. One

variant of MCMC is known as affine-invariant ensemble sampling (Goodman & Weare

2010), which has been developed by Foreman-Mackey et al. (2013) into the python

sampler emcee. In Chapter 4, I use emcee to perform my retrievals.

Instead of one chain of samples, Goodman & Weare (2010) proposed ensemble

samplers. Here, the Markov chain is constructed from the state space of ensembles,

where each ensemble, ~X consists of L walkers ~Xk. Generally speaking, affine-invariant

transformation (e.g., y = ax + b) maintains collinearity (e.g., parallel lines are trans-

formed to parallel lines). An affine-invariant algorithm means that the ease of sampling

is independent of how isotropic or anisotropic a probability density function is, and this

characteristic is implemented when updating the position of the walkers in an ensemble

within emcee:

Xk(n)→ Y = Xj + Z(Xk(n)−Xj), (1.5)

where walker Xk is using a complementary walker also from the ensemble, Xj . Z is a

random scaling variable from a distribution g(Z = z) which satisfies

g(
1

z
) = zg(z). (1.6)

For an N -dimensional parameter space, the chain accepts the proposed jump

if r drawn from [0, 1] is less than or equal to q = min(1, ZN−1 P (Y )
P (Xk(n))) (the second

term contains the ratio of the probabilities of the current and proposed positions). The
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position of Xk remains as is if the jump is rejected. Foreman-Mackey et al. (2013) lay

out the algorithm in more detail, including how emcee can easily be parallelized to speed

up computation, which is one of its advantages for atmospheric retrievals. Briefly, this

jump procedure repeats for all walkers, which concludes one iteration, and the ensemble

sampling continues until convergence.

With the posterior distribution constructed, we can obtain the one-dimensional

marginal posterior for, e.g., θ1 among N parameters θ by integrating

P (θ1|d,M) =

∫
P (θ|d,M)dθ2...dθN . (1.7)

In practice, the Markov chains enable us to count the number of samples within

bins defined for the range of θ1 while ignoring the coordinates valued θ2, ..., θN to get

the one-dimensional posterior. The posterior distribution then provides intervals of

constraints (e.g., the 1σ range represents 68% of the samples) for θ1.

Nested Sampling

Models are not one-size-fits-all. Depending on the data, multiple models may

be pertinent. This necessitates the process of model selection. As described in Equa-

tion 1.4, the Bayesian evidence Z is used for this purpose. For model M , we can use

Bayes’ theorem to show that

P (M |d) ∝ P (M)P (d|M). (1.8)

The quantity on the lefthand side is the “model posterior”. By taking the ratio
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of the posterior probability for models M0 and M1, we determine

P (M0|d)

P (M1|d)
= B01

P (M0)

P (M1)
, (1.9)

where B01, the Bayes factor, compares the models’ evidences:

B01 ≡
P (d|M0)

P (d|M1)
=
Z0

Z1
. (1.10)

We interpret B01 > (<) 1 as an increase (decrease) of the support for M0 in

favor of M1, given the data.

However, computing the evidence, a multi-dimensional integral of the likeli-

hood of the data over the parameter space, is complex. Skilling (2004) proposed nested

sampling to efficiently calculate the evidence. Nested sampling is also an algorithm that

constructs the posterior probability distribution. Its efficiency lies in the transformation

of Equation 1.4 into a one-dimensional integral:

Z =

∫ 1

0
L(X)dX. (1.11)

Here, by first defining a prior volume X from dX = P (θ|M)dθ, we get

X(λ) =

∫
L(θ,M)>λ

P (θ|M)dθ, (1.12)

meaning X(λ) represents the volume of parameter space above a level of likelihood as

designated by λ. In other words, L(θ,M) = λ establishes an iso-likelihood contour

(“nested” contours) to carve out this volume. As λ increases, the enclosed volume X
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decrease from 1 to 0. L(X) is then the inverse of Equation 1.12, and Equation 1.11 is

an integral of a function that is positive and decreasing.

Supposing we evaluate the likelihoods Li = L(Xi) for a sequence of decreasing

values Xi (i.e., 0 < Xm < ... < X1 < X0 = 1). We can then numerically approximate

Z as a weighted sum with weights wi (1
2(Xi−1 −Xi+1) for the trapezoidal rule):

Z =
m∑
i=1

wiLi. (1.13)

Skilling (2004) outlines the algorithm in detail. In a nutshell, we start with a

set of N points (“live points”) θ1, ..., θN from the prior. For each step i in j iterations,

we set Li to be the lowest of the current likelihood values and increment Z by wiLi.

The lowest likelihood point is replaced by a new one drawn from L(θ,M) > Li. This

particular constraint of how samples are drawn is a challenge to implement in the nested

sampling approach.

Randomly drawing from the prior results in a decrease of the acceptance of

new samples with decreasing prior volume. Other algorithms were created to address

this. MultiNest, an algorithm developed by Feroz & Hobson (2008) and Feroz et al.

(2009), is one of them. MultiNest follows from the idea of ellipsoidal nested sampling

(Mukherjee et al. 2006). Instead of points, ellipsoidal sampling approximates an iso-

likelihood contour with an ellipsoid defined from the covariance matrix of a set of live

points (wherein the lowest-likelihood point has been rejected). Within this ellipsoid,

new points are selected from the prior until obtaining one with a likelihood greater than

the removed likelihood point.
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While ellipsoidal nested sampling is efficient for unimodal posterior distribu-

tions, Shaw et al. (2007) proposed the use of clusters of active points, each with its

own ellipsoidal bound, to better deal with multimodal distributions. MultiNest, short

for multimodal nested sampling, improves upon this idea. MultiNest later on became

adapted into python (PyMultiNest) by Buchner et al. (2014). Lupu et al. (2016) demon-

strated that emcee and PyMultiNest perform similarly. Given its ability to determine Z

and usefulness for model comparison, PyMultiNest is selected for the retrieval analyses

in Chapters 2 and 3.

1.3 Retrievals: State-of-the-Art and the Future

Retrievals have only just begun revealing the nature of exoplanet atmospheres.

Many studies characterizing transiting planets make use of the Hubble Space Telescope

(HST) and the Spitzer Space Telescope (Spitzer). Spitzer operated in the infrared, and,

after losing its cryogenic cooling, could still perform photometric measurements for

exoplanets with its IRAC (Infrared Array Camera) instrument. The bands at 3.6µm

and 4.5µm in particular were prolific for atmospheric observations up until Spitzer’s

decommissioning in early 2020. The phase curves obtained with Spitzer were studied

with self-consistent 3D GCMs (e.g., Showman et al. 2009; Dobbs-Dixon & Agol 2013;

Wong et al. 2016). However, performing retrievals on only two photometric points would

overfit the data and render the interpretation prone to many degeneracies.

The rise of exoplanet atmosphere retrievals coincided with the installation of

the Wide Field Camera 3 (WFC3) instrument on HST in 2009. The WFC3 G141
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grism, offering spectroscopy at R ∼ 100 between 1.1− 1.4µm, has transformed the data

landscape for transiting planets. Combined with IRAC data, we have even been able

to obtain phase-resolved spectra for several planets.

Based on these data sets, retrievals on emission spectra have successfully con-

strained H2O abundance in atmospheres. The H2O abundance has in turn been used

to infer C/O ratios assuming thermal chemical equilibrium (e.g., Line et al. 2016), sug-

gesting solar or sub-solar quantities. Estimates for other molecules, such as CO2 or CH4

remain unconstrained under the available data.

Most planets studied with retrievals do not show evidence of thermal inver-

sion. These include HD 209458b (Line et al. 2016) and WASP-43b (Stevenson et al.

2014). Yet, for a class of extremely irradiated planets, called ultra-hot Jupiters (with

equilibrium temperature > 2000 K), retrieval studies have found thermal inversions;

WASP-121b (Evans et al. 2017) is an example. Because the thermal profile is intri-

cately linked with abundance inference, its accurate reconstruction is important.

Data with more complete and wider wavelength coverage will allow more pre-

cise inference of atmospheres. The highly anticipated James Webb Space Telescope

(JWST), with its 6.5m primary mirror, will have numerous spectroscopic modes that

span 0.6− 28µm. Numerous studies have employed retrievals to examine the potential

of JWST observations for transiting planets (Greene et al. 2016; Taylor et al. 2020;

Venot et al. 2020). In addition to JWST, the ARIEL mission is the first selected mis-

sion by the European Space Agency that will be dedicated to the characterization of

exoplanet atmospheres (Eccleston et al. 2016; Tinetti et al. 2016). ARIEL expects to
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perform photometry and spectroscopy throughout the 0.5− 7.8µm range for up to 1000

transiting planets (Tinetti et al. 2018).

While the performance of any retrieval depends on the data, in this thesis, I

highlight the need to carefully weigh the choice of models used in a retrieval. Recently,

the accuracy of the 1D forward model in retrievals has been challenged. Studies exam-

ining both transmission and emission spectra are beginning to incorporate 3D effects to

see if the inference changes, for a given data set (Line & Parmentier 2016; Feng et al.

2016; Blecic et al. 2017). I show that, as higher-quality data become available, the 3D

nature of the planet cannot be ignored.

Farther in the future, the astronomical community strives to perform space-

based direct imaging characterization of exoplanets. The Wide Field Infrared Surveying

Telescope (WFIRST) will act as a technology demonstration with its coronagraph in-

strument, which enables high-contrast imaging and visible-light spectroscopy of nearby

exoplanets. The targets are massive, cool planets at much wider orbital separations than

a hot Jupiter, more like our own Jupiter. Lupu et al. (2016) and Nayak et al. (2017)

built a retrieval framework to model gas giants in reflected light and study the tradeoff

between data resolution and signal-to-noise ratio for constraining atmospheric proper-

ties. This work takes advantage of Bayesian inference to make quantitative estimates

of the science expected from a mission like WFIRST.

Two other missions, the Habitable Exoplanet Observatory (HabEx) and the

Large Ultraviolet Optical Infrared Surveyor (LUVOIR), have been proposed to tackle

the feat of reflected light characterization of rocky exoplanets around Sun-like stars
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(Gaudi et al. 2020; The LUVOIR Team 2019). Reflected light spectroscopy is an exciting

next chapter in the study of exoplanets, and further retrieval work is needed to prepare

for its prospects.

1.4 Structure of This Work

Chapters 2 and 3 feature emission spectroscopy data from transiting gas gi-

ants. Chapter 2 tests the assumption of 1D hemispheric averaging in retrieval models.

For a canonical hot Jupiter – WASP-43b – with a day-night temperature contrast, I

consider both the typical 1D model, which assumes one TP profile, and a “2D” model

that averages the fluxes from two TP profiles, one hot and one cool. These two models

are applied to simulated plus actual modern observations and simulated JWST data.

Chapter 3 extends the previous study to spectroscopic phase curve data sets. I investi-

gate the behavior of the 1D vs. 2D models as a function of orbital phase. This study

presents several ways to portray two TP profiles. I highlight once more the differences

in inference between simulated vs. observed data, and modern vs. future data.

Chapter 4 shifts the focus from the importance of data in evaluating the per-

formance of models to the utility of models in identifying the quality of data needed to

meet science goals in mission design. In chapter 4, I introduce a retrieval framework

for rocky terrestrial planets seen with reflected light spectroscopy. I simulated albedo

spectra and data sets of varying wavelength coverage and signal-to-noise ratio. The

retrievals of these data sets then reveal the robustness of detection or constraint for

planetary properties with implications for habitability.
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Chapter 2

The Impact of Non-Uniform

Thermal Structure on the

Interpretation of Exoplanet

Emission Spectra

2.1 Introduction

Even a cursory view of images of solar system planets shows us that these

planets have complex atmospheres. It is readily appreciated that not all latitudes and

longitudes look alike. A view of Jupiter at 5 µm shows bright bands and spots, where,

due to locally optically thin clouds, thermal emission can be seen from deeper, hotter

atmospheric layers. Looking at Mars in visible light, we can often see locations obscured
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by thin cirrus clouds in the atmosphere, and at other locations we can see down to the

surface. These different locations not only appear different to our eyes; the spectra of

light that they reflect and emit also differ. When it is possible to resolve the disk of

the planets under study, quite detailed levels of information can be determined: for

instance, changing cloud properties with latitude, different atmospheric temperature-

pressure (TP) profiles with solar zenith angle, and compositional differences in updrafts

vs. downdrafts.

However, if a planet is tens of parsecs distant, there is no path to spatially

resolving the visible hemisphere (with current technology). Observers probe the spec-

tra reflected or emitted by the visible hemisphere, but there is generally little hope of

assessing how diverse or uniform the visible hemisphere is. Typically, when comparing

observations to the spectra from either self-consistent radiative-convective forward mod-

els (e.g. Burrows et al. 2007; Fortney et al. 2008; Marley et al. 2012; Barman et al. 2011),

or from data-driven retrievals (e.g. Madhusudhan & Seager 2010; Line et al. 2014), the

spectrum, or set of spectra, are generated and aim to represent hemispheric average

conditions. However, while the calculation of such a spectrum, and its comparison to

data, is relatively straightforward, it has been unclear how dependent our inferences

are for TP profile structure, cloud optical depth, and chemical abundances from this

important initial assumption.

Recent work on matching the spectra of some brown dwarfs and directly im-

aged planets points to problems with the homogeneous atmosphere assumption, with

best-fit radiative-convective forward models coming from spectra generated from lin-
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ear combinations of “cloudy” and “clear” atmospheres, or atmospheres with weighted

areas of “thick” and “thin” clouds (Skemer et al. 2014; Buenzli et al. 2014). The vari-

able nature of brown dwarf thermal emission, now well documented over several years

via photometry (e.g., Enoch et al. 2003; Artigau et al. 2009; Radigan et al. 2014) and

spectroscopy (Buenzli et al. 2014, 2015), also indicates inhomogeneity in the visible

hemisphere, with emission that changes due to rotation and/or atmospheric dynamics

(Robinson & Marley 2014; Zhang & Showman 2014; Morley et al. 2014; Zhou et al.

2016).

In the realm of retrievals, could a search through phase space for a best-fit

to a measured spectrum lead to well-constrained yet biased or incorrect constraints on

atmospheric properties when we assume planet-wide average conditions? This seems

like a real possibility, and one well worth investigating in a systematic way. With the

advent of higher signal-to-noise spectroscopy from the ground (Konopacky et al. 2013)

and the coming launch of the James Webb Space Telescope (JWST ), which will deliver

excellent spectra for many planets over a wide wavelength range, we aim to test the

1D planet-wide average assumption systematically. We want to furthermore determine,

when the data quality is high enough, if we can justify a more complex inhomogeneous

model.

Recently, Line & Parmentier (2016) investigated for transmission spectra how

the signal of high atmospheric metallicity inferred under planet-wide average conditions

can be mimicked by a uniform lower metallicity together with a high cloud over a

part of the planet’s terminator. Our work here is on thermal emission and is entirely
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complementary. We take the first step in characterizing how a diverse visible hemisphere

may impact atmospheric retrievals.

Our paper is organized as follows: Section 2.2 describes the setup, retrieval

approach, and methodology. In Section 2.3, we describe our findings. In Section 2.4,

we present the application to WASP-43b. We discuss our results in Section 2.5 and

conclude with future expansions.

2.2 Methodology

2.2.1 Setup

We present a simple case to illustrate the impact of a planet’s spatially vary-

ing thermal structure on retrievals. The model setup features two different TP profiles,

equally weighted in surface area, in a cloud-free atmosphere with planet-wide uniform

abundances. This case is relevant to two simple kinds of atmospheres. One is a “checker-

board” atmosphere of equal-area hotter and colder areas, with applicability to brown

dwarfs and imaged planets. Another is a transiting planet with a hot day side and

cold night side, as viewed at one-quarter or three-quarter phase, meaning half-day and

half-night. The equal-weighting average allows for symmetry in viewing geometry and

limb-darkening effects. Each TP profile generates emitted fluxes at the top of the atmo-

sphere. The observed spectra result from the average of the fluxes. From these averaged

spectra, we generate data as observed with typical Hubble Space Telescope (HST ) Wide

Field Camera 3 (WFC3)+Spitzer Infrared Array Camera (IRAC) and JWST modes.

We then perform atmospheric retrievals on these synthetic data assuming either a single

25



profile (1TP) or two profiles (2TP). Figure 2.1 shows the setup.

As an initial investigation, we primarily explore the role that temperature

contrast has in biasing the retrieval results, specifically on hot Jupiters. The TP profiles

are offset at the top of the atmosphere from each other by a factor (i.e. contrast) defined

as

1−
TTOA,c

TTOA,h
(2.1)

where TTOA,c and TTOA,h are the top-of-atmosphere (TOA) temperatures for the cold

(“night”) and hot (“day”) TP profiles, respectively. Under different observational se-

tups, we (1) determine the biases in the atmospheric abundances when one global TP

profile is assumed for a planet that is actually composed of two TP profiles and (2)

quantitatively determine the justification for the inclusion of a second TP profile within

a nested model hypothesis testing framework (e.g., Trotta 2008; Cornish & Littenberg

2007). In what follows, we describe the necessary tools to accomplish these tasks.

2.2.2 Modeling Tools

The thermal infrared radiative transfer model we use is described in detail

in Line et al. (2013). It numerically solves the thermal infrared radiation problem for

a plane-parallel atmosphere with absorption, emission, and no scattering given a TP

profile and uniform-with-altitude gas abundances. We consider absorption due to CH4,

CO2, CO, H2O, NH3, He, and H2. The molecular abundances for generating the syn-

thetic spectra are chosen to be in rough agreement with solar elemental abundances

in thermochemical equilibrium at a representative photospheric pressure (∼100 mbars)
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Figure 2.1: Schematic demonstration of our set up. We assume a planet with two
equally weighted thermal structures with a cloud-free atmosphere of uniform compo-
sition. The fluxes from both thermal profiles are then averaged to create the disk
integrated spectrum upon which we perform the retrievals.

along the prescribed thermal profile. When computing the spectra for two TP profiles,

we assume the dayside abundances for both, consistent with expectations from horizon-

tal mixing (e.g., Cooper & Showman 2006; Agúndez et al. 2014). The opacity database

is described in Freedman et al. (2014).
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We set and retrieve for the temperature profiles using the Parmentier & Guillot

(2014) 5-parameter prescription (two visible opacity parameters (log γ1, log γ2), parti-

tioning between the two visible streams (α), infrared opacity (log κIR), and the fraction

of absorbed incident flux (β); see Equations 13, 14 in Line et al. (2013) and Table

2.1). The internal temperature, Tint, is an additional parameter we specify, but it is

not one of the retrieved quantities. We fix Tint to 200K (Guillot 2010) which prevents

the TP profiles from ever reaching 0 K. Given the molecular abundances and thermal

structures, we use four point Gaussian quadrature to compute the full disk-integrated

spectrum for the day and night profiles separately. By taking the average of the “hemi-

spheres” or “checkerboard patches” and dividing by a stellar spectrum, we generate the

planet-to-star flux ratios. Taking the average of the disk-integrated fluxes is equiva-

lent to weighting each profile by the same area, thus invoking the same limb-darkening

effects. Note that this need not be true in the case of hot-spot or “crescent phase”

models, where there is asymmetry in limb darkening, which we will investigate in a

later publication.

The high-resolution model spectra are then appropriately convolved and inter-

polated to the “observational” wavelength grid. Poisson noise (no systematic noise is

included) is then added to each data point. For the HST WFC3+Spitzer IRAC setup,

we assume error bars representative of current observations (e.g., 35 ppm error bars at

0.035 µm resolution, R∼40, for WFC3, and 70 ppm error bars for the Spitzer IRAC

3.6 and 4.5 µm channels). For the JWST observational setup, we use the noise model

described in Greene et al. (2016), covering 1-11 µm and combining modes from the
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NIRISS, NIRCam, and MIRI instruments. This noise model simulates the uncertainties

obtainable with the observation of a single transit or secondary eclipse for a hot Jupiter.

We adopt planet and stellar parameters for the HD 189733 system (Table 2.1).

We use an atmospheric retrieval approach to explore the biases introduced in

assuming a single TP profile for a spectrum composed of two separate TP profiles and

the detectability of multiple profiles. Much of the thermal infrared retrieval machinery

is based on the CHIMERA retrieval suite already described in Line et al. (2013) and

Line et al. (2014) and subsequently applied in Kreidberg et al. (2014a) and Stevenson

et al. (2014). However, for the Bayesian inference problem, rather than using the differ-

ential evolution Monte Carlo approach, we use the multinest algorithm (Feroz et al.

2009) as implemented with the pymultinest routine (Buchner et al. 2014) because it

not only has the ability to produce posterior samples, but it also efficiently computes

the Bayesian evidence, or the integral of the posterior over the parameter volume. The

Bayesian evidence is required for model comparison and selection, and it is a numerical

encapsulation of the balance between goodness-of-fit and a model’s simplicity. It can be

thought of as the more rigorous computation of the commonly used Bayesian Informa-

tion Criterion (BIC). For application of the multinest algorithm and model selection

to exoplanet spectra, we refer the reader to Benneke & Seager (2013), Waldmann et al.

(2015b), Waldmann et al. (2015a), and Line & Parmentier (2016). For a summary

of Bayesian model selection and evidence computation, we refer the reader to Trotta

(2008) and Cornish & Littenberg (2007).

From the synthetic model spectra, we aim to determine the constraints on the
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Table 2.1: Model parameter values

Parameter Value TP Parameter Value

Rp (RJ) 1.138 log γ1 -1

R∗ (R�) 0.756 log γ2 -1

T∗ (K) 5040 log κIR -1

a (AU) 0.031 α 0.5

Tint (K) 200 βday 1

log(g) (cm s−2) 3.34 βnight 0.2

log fH2O -3.37 0.4

log fCH4
-9 0.6

log fCO -3.7 0.8

log fCO2 -9

log fNH3 -9

Note. — Nominal system and TP shape parameters
used to generate our synthetic spectra. Stellar and plane-
tary parameters are based on the HD 189733 system. For
definitions of the TP parameters, see Line et al. (2013).
Solar proportion Hydrogen and Helium are assumed to
make up the remaining gas abundance.

uniform-with-altitude abundances for CH4, CO2, CO, H2O, NH3, and both of the TP

profiles. We assume the same 4 “shape” parameters (two visible opacity parameters,

partitioning between the two visible streams, and the infrared opacity) for both TP

profiles but allow for a different ratio of the absorbed-to-incident flux (e.g., some com-

bination of albedo and redistribution), represented by parameter β in Table 2.1. β also

acts as a multiplicative factor between the two contrasting profiles, as illustrated by our

definition of contrast in Equation 2.1. This leads to a total of 11 free parameters for

the 2TP model and 10 for the 1TP model. We assume uniform-in-log10 priors for the

5 gas volume mixing ratios ranging from -12 to 0 and top-of-atmosphere temperatures

ranging from zero to twice the irradiation temperature.
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Table 2.2: Retrieval Results and Bayesian Model Evidence for 2nd TP profile

WFC3 JWST

Contrast ln(B)a σb ln(B) σ

term 2nd TP 2nd TP

0.2 -1.06±0.68 <0.1 12.93 5.44c

0.4 1.12±0.56 2.05±0.37 274.8 >20

0.6 2.49±2.10 2.54±1.00 967.9 >20

0.8 1.77±0.75 2.41±0.34 1836 >20

1TP -1.26 < 0.1 -2.92 < 0.1

Note. — The last row, “1TP”, reports the case for which
we generated the spectrum with one TP profile and retrieved
for two. For both observational setups, in this scenario, a
2nd TP profile is not favored. Contrast term is 1 − βnight
(see Table 2.1), and “σ 2nd TP” is the detection significance
of the 2nd TP profile.

aBayes factor, calculated as the difference in the nat-
ural log of the evidence between the larger model (2TP)
and the smaller model (1TP).

bWe consider a > 3.6σ detection to be strong (Trotta
2008, Table 2)

cUsing a different noise instance, we find a 4.2σ detec-
tion of the 2nd profile. While ln(B) changed, the 2nd
TP is still detected robustly. We also calculate the BIC
for the noise instance with 5.4σ detection significance.
Our ∆ BIC = 23, which is above the threshold (∆ BIC
> 10) for strong evidence against the model with the
larger BIC (in our case, the 1TP scenario). It also cor-
responds to 5σ detection significance, consistent with
the Bayesian evidence result. Small differences in χ2

are magnified if there are many points, as with JWST
data.
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Figure 2.2: HST WFC3 + Spitzer IRAC 1TP vs. 2TP fit and temperature profiles
(insets) retrieval summary. The left panel shows the results for the low (20%) contrast
while the right shows the results for high (80%) contrast. The data simulated with 2 TP
profiles are shown as the black diamonds with error bars (WFC3 between 1 and 2 µm
and the Spitzer IRAC points at 3.6 and 4.5 µm). The fits and temperature profiles are
summarized with a median (solid line) and 68% confidence interval (spread) generated
from 1000 randomly drawn parameter vectors from the posterior. Red corresponds to
the fits/temperature profiles resulting from a single profile fit, while blue represents the
result of including two temperature profiles in the retrieval. The black dashed lines in
the temperature profile insets are the two TP profiles used to generate the simulated
data (i.e., the “true” TP profiles). For comparison, we also include the flux-averaged
TP profile (T 4

avg = 1
2(T 4

day + T 4
night)), shown as the solid black line in the insets. The

dot-dashed TP profile is the coldest profile permitted by the model: a non-irradiated
cooling profile governed by the 200K internal temperature. By eye, the 1TP vs. 2TP
performances at 20% contrast are comparable. Based on the Bayesian evidence, the
detection of the second profile is not significant (< 0.1σ). At 80% contrast, the two
retrieved spectra are visibly different. The second profile is detected to 2.4σ significance.
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2 TP

1 TP

80% Contrast20% Contrast

Figure 2.3: Summary of the posterior probability distributions of the molecular abun-
dances for the low (20%, left) and high (80%, right) contrast cases under the HST
WFC3+Spitzer IRAC observational scenario. The red and blue 1- and 2-D histograms
correspond to 1TP and 2TP scenarios. The dashed lines in the 1-D histograms and in-
tersection of the dashed lines in the 2-D histograms are the true molecular abundances
used to generate the synthetic data. The detection significance of the second profile from
the 2TP retrieval is < 0.1σ at 20% contrast, and the posterior distributions show that
invoking a second profile did not improve our abundance estimation. At 80% contrast,
where the detection significance is 2.4σ, we still note the similarities in the posterior
distributions for most species. However, in the case of CH4, the 1TP approach, bound
by the radiative transfer properties of one profile, overestimates both its abundance and
the precision. When we include a second profile, we are able to recover a more realistic
and representative distribution for the CH4 abundance.
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Figure 2.4: JWST 1TP vs. 2TP fit and temperature profiles (insets) retrieval summary.
The left shows the results for the low (20%) contrast while the right shows the results
for high (80%) contrast. The data simulated with 2 TP profiles are shown as the black
error bars. The fits and temperature profiles are summarized with a median (solid line)
and 68% confidence interval (spread) generated from 1000 randomly drawn parameter
vectors from the posterior. Red corresponds to the fits/temperature profiles resulting
from a single TP profile fit, while blue represents the result of including two temperature
profiles in the retrieval. The black dashed lines in the temperature profile insets are
the two TP profiles used to generate the simulated data (e.g., the “true” TP profiles).
For comparison, we also include the flux-averaged TP profile (T 4

avg = 1
2(T 4

day + T 4
night)),

shown as the solid black line in the insets. At 20% contrast, while the retrieved fits
appear similar, we find that the second TP profile is detected to ∼ 5σ significance. At
80% contrast, the 1TP retrieved spectra poorly fit the data, especially at 2− 3 µm and
at longer wavelengths.
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Figure 2.5: Summary of the posterior probability distributions of the molecular abun-
dances for the low (20%, left) and high (80%, right) contrast cases under the JWST
observational scenario. The red and blue 1- and 2-D histograms correspond to 1TP and
2TP scenarios. The dashed lines in the 1-D histograms and intersection of the dashed
lines in the 2-D histograms are the true molecular abundances used to generate the
synthetic data. When the contrast is 20%, the second profile is detected to ∼ 5σ. When
the contrast is 80%, the second profile is detected to > 20σ. We see that, at higher
contrasts, the 1TP retrieval case is a poor representation of the abundances. We also
note the over-constraint of NH3 under the 1TP prescription. This behavior is analogous
to the CH4 abundance inference using one profile that we saw with WFC3+IRAC data.
Once a second profile is included, we recover the true abundance of NH3.
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2.3 Results

We present our retrieval results on the synthetic spectra simulated with HST

WFC3+Spitzer IRAC and JWST. For each telescope combination, we produce spectra

for four levels of contrast between the two TP profiles (see Equation 2.1) of 0.2, 0.4, 0.6,

and 0.8. For each spectrum, we perform a 1TP and a 2TP retrieval. We also test the

inclusion of two TP profiles in the retrieval when only one profile was used to generate

the spectrum and synthetic data. We compare the performance of the two models by

the Bayes factor, summarized in Table 2.2. Based on the retrievals, we can explore the

biases resulting from retrieving for a single TP profile when the spectrum is generated

with two. We also quantify the detectability of a second TP profile as contrast changes.

We summarize the retrieval results comparing the 1TP and the 2TP retrievals

for only the extreme contrasts, 0.2 and 0.8. In our figures, we also include a flux

weighted (averaging T 4) profile for each contrast to guide the eye when interpreting the

1TP retrievals. One would expect a single representative TP profile to closely match the

flux weighted profile. The gas abundance retrievals are summarized with a pairs-plot

showing both the 1D and 2D marginalized posteriors (Figure 2.3 for HST+Spitzer, and

Figure 2.5 for JWST). The TP profiles and spectra are summarized with a median and

1-sigma spread reconstructed from 1000 randomly drawn posterior samples (Figure 2.2

for HST+Spitzer, Figure 2.4 for JWST).

We note that, because we knew a priori (from test simulations) that the de-

tection significance would be marginal for a 2nd TP profile within the HST+Spitzer

setup, we tested their robustness by performing the retrievals and nested model com-
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parison on six noise instances per contrast setup. At low detection values (less than

∼ 3σ), the exact detection significance is very sensitive to a particular random noise

instance. Thus, in Table 2.2, we show a mean value and error on the results for the

HST+Spitzer observational setup. This is not an issue for the JWST observational

setup as the detection significances are always above a significant threshold.

2.3.1 Findings for Simulated HST WFC3+Spitzer IRAC Observa-

tions

Figure 2.2 and 2.3 summarize the results for the 0.2 and 0.8 contrast cases.

The left panel of Figure 2.2 shows the retrieved TP profiles and model spectra for the

low contrast (0.2) scenario. The spectra are nearly indistinguishable. This results in our

inability to robustly distinguish a 2nd TP profile as the 68% confidence envelopes for

each of the two TP profiles strongly overlap with each other and with the error envelope

for the single TP profile. The retrieved molecular abundance posteriors (Figure 2.3, left

panel) are also nearly indistinguishable between the 1 and 2TP cases. Unsurprisingly,

the nested model comparison results in a non-detection for a 2nd TP profile in the

0.2 contrast scenario (Table 2.2). In fact the Bayes factor, B, is less than 1 (lnB < 0)

suggesting that the improvement in the spectral fit is outweighed by the increased model

complexity.

At higher contrast (0.8), there is a greater deviation in the retrieved model

spectra at longer wavelengths (> 2µm). The 1TP spectra have to contort themselves

with a strong peak-to-trough “N”-shaped feature between 3 and 5 µm in order to fit the

two IRAC points. The broadband integration over wavelength does not allow us to tell
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the difference between the two scenarios. The day and night TP profiles, in contrast

to the 0.2 scenario, are widely separated outside of their 68% confidence intervals.

However, the 68% confidence envelope of the 1TP profile largely encompasses the flux-

weighted TP profile, especially over the range where the observations probe (between

1 and 0.01 bars, Stevenson et al. 2014). We note that the fixed internal temperature

of 200 K sets a lower limit for the night side profile, while the retrieved profiles serve

as an upper limit. We saw this by examining the histogram of retrieved temperatures

at a certain pressure (4 mbar); the distribution is unbounded but consistent with the

coldest permitted temperature. While the detection significance for the 2nd TP profile

in Table 2.2 is higher than in the 0.2 contrast case, it is still not considered significant.

However, it makes sense that an increase in contrast should result in higher evidence

for a 2nd TP profile.

Perhaps the most striking find in this high-contrast scenario is the strong

differences in the molecular abundance constraints, in particular that of CH4. While the

2TP scenario (the “true” model) results in an upper limit on the methane abundance,

as expected given the low (non-detectable) input value used, the 1TP profile scenario

results in a strong methane constraint. This strong constraint, however, is several

standard deviations away from the true input abundance. In essence, assuming only

one TP profile results in an artificial constraint on the methane abundance. This is a

key result that we would like to highlight. The narrow constraint is due to the high

sensitivity of the fit (due to the topology of the hyper-dimensional likelihood volume)

to small changes in the CH4 abundance within the 1TP setup, very much like what
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would happen if one were to fit a constant to linear data. This is largely driven by the

IRAC 3.6 µm point. In terms of the other species, we find that the distribution for CO2

is sensitive to the noise instance of the data points (especially 4.5 µm), and performs

more closely to the true value under a 2TP retrieval depending on the noise instance.

The dramatic change in emission from 3 − 5µm in the 1TP-retrieved spectra

for WFC3+IRAC (Figure 2b), showing strong emission and then absorption, merited

additional modeling to investigate its cause. To investigate these prominent absorption

features present across the IRAC bands we performed a 1TP retrieval where all the

abundances were fixed to their true values, to better understand the role of TP profile

shape in generating the spectrum. With this reduced parameter space, it was more

readily apparent that the retrieved TP profiles featured a significant temperature gra-

dient – 1000 K – that spanned ∼ 700− 1700 K over a relatively narrow pressure range

(0.01 − 1 bar). These large differences in temperatures probed naturally leads to the

striking features (strong emission and absorption) seen in the spectrum, while a more

isothermal profile would yield more muted contrasts in emission.

Finally, from Table 2.2, we find that the detection of a 2nd TP profile is

below what is commonly considered significant (3-4σ), especially when considering the

uncertainties, but that all contrasts greater than 0.2 are more justified in including the

2nd TP profile. The marginal detections are a result of the complex interplay between

the intrinsic temperature contrast, wavelength coverage, and feature signals-to-noise.

Furthermore, as a sanity check, we find evidence against (lnB < 0) the inclusion of a

2nd TP profile when only one is used to create the spectra.
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2.3.2 Findings for Simulated JWST data

Figure 2.4 and 2.5 summarize the findings for 0.2 and 0.8 contrast cases. We

find that for low contrast (0.2) there is not a significant bias in the retrieved molecular

abundance when using one TP profile, and that the retrieved single TP profile matches

the flux-averaged TP profile quite well. However, we still find a significant detection

(> 5σ) of a 2nd TP profile. This suggests that fit with the single TP profile is not quite

as good as the fit with two, though apparently indistinguishable by eye, even when

taking into account the Occam’s penalty (Table 2.2; Gregory 2005, page 49).

The situation changes, however, for large contrasts (0.8). The 1TP fit is no-

ticeably worse between ∼ 1.6 and 3.3µm, and then again at the longest wavelengths

(Figure 2.4). The shape of the spectrum is different enough with two TP profiles that

a model with single TP profile simply cannot accommodate. Because WFC3+IRAC do

not cover 2 − 3 µm, we would not have known that this range is sensitive to the large

TP contrasts in our particular toy atmosphere. Thanks to JWST s wavelength coverage,

we see that, at large contrasts, a second profile is needed, and this profile is detected to

> 20σ. Furthermore, the 1TP model results in significant abundance biases. The H2O

abundance is much higher (relative to the uncertainty) than the truth, CO is slightly

underestimated, and ammonia off by ∼ 4 orders of magnitude, with an artificially small

uncertainty. This is a cautionary note that small uncertainties on parameter values

should be taken with a grain of salt if a model is inadequately fitting the data. This

behavior is analogous to the CH4 abundance inference using one profile that we saw

with WFC3+IRAC data. Once a second profile is included, we recover a distribution
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representative of the true abundance of NH3.

For the remaining contrast cases (0.4 and 0.6), we find overwhelming evidence

(> 20σ) for the presence of a 2nd TP profile. We also find, as expected, that there

is little evidence for a 2nd TP profile from an object with only one TP profile. All

of this taken together suggests that JWST observations of thermal emission spectra

will be extremely sensitive to the presence of multiple TP profiles (given reasonable

observational assumptions).

2.4 Application to WASP-43 b

As an application to real observations, we test our two TP profile assumption

on the well-characterized hot Jupiter WASP-43b. WASP-43b was observed as part of a

large HST Legacy program (PI Jacob Bean) with WFC3 providing 3 primary transits,

2 secondary eclipses, and 3 full spectroscopic phase curves (Kreidberg et al. 2014a;

Stevenson et al. 2014). Such phase curve observations provide a glimpse into the 3-

dimensional structure of a planet as different wavelengths probe different atmospheric

pressures and the different phases probe different planetary longitudes. These published

results were interpreted (using CHIMERA, the same model used here) assuming a single

TP profile representation for each spectrum at every phase. We now know from our

synthetic tests above that, for objects with strong day-night contrasts (as WASP-43b

possesses), assuming a single TP profile for a single disk-integrated spectrum may result

in biased abundances. Motivated by recent full phase IRAC 3.6 and 4.5 µm observations

of WASP-43b (Stevenson et al., in prep), we decided to revisit interpretation of the
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spectral energy distribution of non-secondary or primary eclipse phases within our newly

developed two-TP profile framework. For an initial exploration, we focus on the first

quarter HST WFC3+Spitzer IRAC data (eastern hemisphere). This phase represents

exactly the geometry explored in above examples: half “day”, half “night”. We utilize

the same forward model and retrieve for the identical set of molecules as on our simulated

data. Figure 2.6 summarizes the relevant results. In addition to the first quarter, we

examined the third quarter (western hemisphere) as well as the day side emission data.

For the first quarter, as in our synthetic WFC3+IRAC example, we find evi-

dence for a bias in the CH4 abundance. Assuming a single TP profile forces a solution

that results in an overly well constrained methane abundance, an abundance that is a

few sigma larger than anticipated from solar composition gas in thermochemical equi-

librium at dayside photospheric conditions (1700K, 400 mbars). Once again, one would

not expect such a good constraint given that these particular observations only provide

a single measurement, the 3.6 µm band, on a methane absorption feature. However, as

in the above synthetic examples, we find that the water abundance is robust against

the 1 vs. 2 TP profile assumption. This is because water is primarily constrained at

shorter wavelengths where the impact of including a second TP profile is minimized.

We determine the justification for the inclusion of a second TP profile by

comparing the Bayesian evidence for a model with and without the second profile. Upon

doing so, we determine that the second TP profile is justified at the 3.3 σ level (just

below what would be considered “strong” on a Jeffery’s scale (Trotta 2008)). The Bayes

factor is ln(B) = 3.99. While this is not the strongest of detections, when combined with
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the CH4 bias, it warrants the inclusion of the second TP profile. We also find that the

two retrieved profiles match remarkably well with the hemispheric TP profiles retrieved

for the day side and night side spectra presented in Stevenson et al. (2014) as well as the

hottest day side profile from the General Circulation Model (GCM) in Kataria et al.

(2015). The projected spectra between 3.8 and 5 µm show the strongest divergence

between the 1- and 2-TP profile fits, followed by wavelengths between 2.2 and 3.5 µm

. Future higher resolution observations should focus on these spectral regions to boost

the detection level of a “2nd TP profile”.

When we investigated the day side emission data, the one and two TP profile

scenarios yielded similar results, consistent with what we saw when the contrast is low

between two profiles: on the day side, a second, cooler profile is not needed to explain

the data.

We then examined the role of multiple TP profiles for the the third quarter.

We found that the second TP profile is not justified by the data (2.7σ). Like the

first quarter single TP profile fit, we find a well-constrained methane abundance using

one profile. However, after including a second profile, the methane posterior remained

constrained unlike in the case of the first quarter.

While the first and third quarters seem in conflict with regards to the impact

of a second TP profile, the full phase curve for WASP-43b shows asymmetry, suggesting

that the third quarter is not the exact “opposite” to the first quarter in the sense of

contrast. When it comes to seeking trends or consistency throughout the phase, we have

to be wary and investigate more thoroughly to differentiate what is truly representative
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of the atmosphere and what is the artificial manifestation of e.g., the sensitivity to the

slope between band-integrated data points.

The full phase curve data of WASP-43b continue to serve as a benchmark

data set in the context of the 3D nature of planets and push us to better our model

interpretations, which are especially important for future exoplanet characterization

observatories.
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Figure 2.6: Summary of the 1 TP vs. 2 TP retrievals on the HST WFC3 + Spitzer
IRAC observations of WASP-43b. In the left panel, the data are shown as the black di-
amonds with error bars (WFC3 between 1 and 2 µm and the Spitzer IRAC points at 3.6
and 4.5 µm). The fits and temperature profiles (inset) are summarized with a median
(solid line) and 68% confidence interval (spread) generated from 1000 randomly drawn
parameter vectors from the posterior. Red corresponds to the fits/temperature profiles
resulting from a single TP profile fit, while blue are a result of including two tempera-
ture profiles in the retrieval. The dot-dashed TP profile is the coldest profile permitted
by the model: a non-irradiated cooling profile governed by the 200K internal temper-
ature. At two sigma, the retrieved night-side TP profile is consistent with the coldest
permitted profile, suggesting that the retrieved night-side temperatures are an upper
limit. We also show GCM derived TP profiles for the east terminator (black dashed) and
dayside (purple dashed). The single TP profile fit matches the east terminator GCM
profile well, while the dayside TP in the 2TP fit matches the GCM derived dayside TP
profile reasonably well. The “scale height” temperature retrieved from the WASP-43b
transmission spectra (Kreidberg et al. 2014a) is shown as the horizontal error bar. This
temperature assumes an isothermal profile seen in transmission. Finally, the water and
methane abundance posteriors are shown in the right panel. For simplicity, we do not
show the posteriors of the other molecules whose abundances were retrieved (NH3, CO,
CO2). Note the water abundance here seems invariant under the 1-(red) or 2-(blue) TP
assumptions, but the methane abundance is artificially well-constrained when assuming
only 1 TP. Approximate thermochemical equilibrium molecular abundances at 1700K,
0.4 bars (dayside photospheric conditions) with solar elemental composition are shown
with the dashed lines.
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2.5 Discussion and Summary

The interpretation of exoplanet spectra is complex; the conclusions we draw

about the composition, thermal structures, and other properties of exoplanet atmo-

spheres strongly depend on our model assumptions. In this pilot study, we explored

the biases in thermal structure and molecular abundances as a result of the commonly

used assumption of “1D” on the interpretation of transiting exoplanet emission spectra.

We generated spectra from a simple “2D” setup of a planetary hemisphere composed of

two thermal profiles, representative of either a “checkerboard” hemisphere, which may

physically correspond to a planet peppered with various convective cells, or a “half-and-

half” planet, similar to simultaneously observing a hot day side and cooler night side.

We then applied commonly used atmospheric retrieval tools under the assumption of a

single 1D homogeneous hemisphere to one that is inherently “2D”.

Within this setup, we explored how the biases in the abundances and 1D ther-

mal profile are influenced by varying degrees of “contrast” between the two TP profiles

for two different observational situations. We found that, for current observational se-

tups, HST WFC3+Spitzer IRAC, while the inclusion for a 2nd thermal profile is largely

unjustified within a nested Bayesian hypothesis testing framework (i.e., the fits do not

improve enough to justify the additional parameter), significant biases in the abundance

may exist at large contrasts. In particular we found that an artificially precise constraint

on the methane abundance can be obtained when assuming a hemisphere composed of

a single 1D thermal profile. For a representative JWST observational scenario (1-11

microns requiring the NIRISS, NIRCam, and MIRI instruments), we found strong ev-
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idence of a 2nd profile in all contrast cases. While little molecular abundance biases

appeared to exist for the lowest contrast (0.2), significant biases exist in the water, car-

bon monoxide, and ammonia abundances for high contrast (0.8). We also found that the

retrieval was able to accurately recover both TP profiles when included in the model.

Conceptually, we can understand why the 1TP retrieval performs poorly in

the case of large contrast by considering just the blackbody spectra of the day and the

night sides. Because the night side flux is much lower, the averaged flux we observe is

essentially half of the day side flux. This averaged spectrum is then not of a blackbody

form. The 1TP approach can be thought of the attempt to fit one blackbody to the

averaged spectrum – it cannot simultaneously fit for both the peak location and the

amplitude. An alternative way to fit for the lowered flux, and allowing the fitting of

the peak, is to change the emitting area. In our case, that area is fixed, making that

not applicable. The 1TP retrieval has to rely on the flexibility provided by tweaking

the thermal profile and abundances. With a 2TP approach, we are able to halve one of

the blackbodies in the same way the data are generated, and we can better characterize

this simple day-night atmosphere.

As a practical real-world example, we tested the 1 TP vs. 2 TP profile on

the first quarter phase, third quarter phase, and day side emission spectra of the hot

Jupiter WASP-43b as observed with HST WFC3 (Stevenson et al. 2014) and Spitzer

IRAC (Stevenson et al., in prep). For the dayside, the results are analogous to the

low contrast synthetic cases. For the first quarter, we found, much like in our high

contrast synthetic model scenarios, that a strong methane bias appears when assuming
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only a single 1D profile, but that the retrieved water abundance remains robust under

the different assumptions. The artificially strong methane constraint is driven by the

requirement to fit the IRAC 3.6µm point given only a single TP profile to work with,

whereas the water abundance constraint is driven primarily by the WFC3 data of which

is less impacted by the assumption of one or two TP profiles. The inclusion of a 2nd

TP profile in this particular scenario is justified at the moderate to strong 3.3 σ level.

It is prudent for us to note, however, that for WASP-43b vertical mixing could

potentially reproduce our single TP scenario retrieved methane abundance (∼ 10−5).

The abundance of methane near the base of the single TP profile at typical CH4-CO

quench pressures of ∼10 bars (e.g., Moses et al. 2011; Line et al. 2011, 1600 K) is a few

×10−5. So, in a sense, if we assume a single TP profile, we would arrive to the conclusion

that the measured methane abundance is indicative of disequilibrium chemistry to a

high degree of constraint (i.e., solar composition thermochemical equilibrium would

have been ruled out at several sigma in this scenario). Instead, if we assume two TP

profiles, the methane upper limit would be consistent with both pure thermochemical

equilibrium at solar composition or solar composition with quenched methane. We are

inclined to believe the latter scenario (two profiles) given our synthetic test cases and

the fairly strong detection thresh-hold for the 2nd TP profile. The broad methane

upper limit permits both chemical situations. Furthermore, Kreidberg et al. (2014a)

found only an upper limit on the methane abundance from the day side emission and

transmission spectra of WASP-43b. Had disequilibrium methane been as present as it

appeared so here, under the single TP assumption, we would have expected a similar,
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if not higher, degree of constraint on the methane abundance due to the slightly higher

signal-to-noise of the feature during occultation. This WASP-43b example clearly points

out a degeneracy in the interpretation of the spectrum, non-equilibrium chemistry or

not, which can only be lifted with a robust determination of additional TP profiles that

comes from higher S/N spectra over a wider wavelength range.

For the third quarter, the posterior for methane remains constrained regardless

of the retrieval set-up. Instead of a statement on the chemical processes present at this

phase, we take this result to highlight future work that should be done to examine the

effects of utilizing broadband photometric points and the consistency of retrievals for a

full phase curve.

2.6 Future Work

As we continue to push the envelope in exoplanet atmosphere observations,

at the cutting edge we will always be trying to make initial inferences about planetary

climate and atmospheric abundances from data with limited wavelength ranges and less

than ideal signal-to-noise. Here we have shown that with sparse data, and even with

outstanding data over a wide wavelength range, that modeling choices can dramatically

impact our view of an atmosphere’s retrieved parameters. In addition to considering

and defending choices made for observational strategies and data reduction methods,

it would be wise for us to also consider choices made in the construction of our model

retrievals.
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This manuscript serves as an initial investigation of the impact of spatial in-

homogeneities on our interpretation of emission spectra. Much work remains to be ex-

plored, including, but not limited to the impacts of: spatially non-homogeneous molec-

ular abundances driven by disequilibrium processes or instantaneous equilibrium, day

side single or multiple “hot-spots”, optically thick non-uniform clouds (like in brown

dwarfs), and a more thorough sweep of the observational parameter space (wavelength

coverage, signal-to-noise, resolution).

The exploration of observational set-ups is especially important in the com-

ing years. The current wavelength coverage provided by WFC3+IRAC does not offer

the information necessary to differentiate between potentially contrasting profiles. The

JWST results show the potential wealth of information at wavelengths not currently

probed by space-based observations. For our explored case, with its prescribed abun-

dances and parameters, 2−3µm are essential in highlighting thermal contrast. It will be

worthwhile to explore this behavior under different conditions. We also emphasize this

characteristic because it demonstrates our ability to determine diagnostic wavelengths

indicative of key features in an atmosphere with future observations in mind. Moving

forward, we aim to explore how we can minimize the observational coverage needed

while maximizing our inference.

Our investigation, along with the recent exploration of non-uniform terminator

cloud cover by Line & Parmentier (2016), serves to demonstrate that there is a strong

need to consider the non-homogeneous nature of transiting exoplanets when interpret-

ing their spectra. While there has been a push to develop ever more sophisticated and
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complicated 1D models, we have shown that even the simplest of 2D assumptions can

strongly impact the models, and may even potentially dwarf the impact of the more

sophisticate physics being explored in the 1D models. Moving forward, we suggest a

balanced approach between complicated 1D models and simple 2D models when inter-

preting transit (both emission and transmission) spectra. Starting from simple models

and working toward more complicated models permits us to better understand the im-

portance of the inclusion of additional model physics (e.g., Showman & Polvani 2011).
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Chapter 3

2D Retrieval Frameworks for Hot

Jupiter Phase Curves

3.1 Introduction

Hot Jupiters have complex atmospheres; they are expected to be tidally-locked

and experience large day-night temperature contrasts, along with significant variations

in abundances and cloud properties (Parmentier & Crossfield 2018). Phase curve ob-

servations of tidally locked exoplanets probe the longitudinal variations in temperature,

composition, and cloud properties, acting as a powerful diagnostic of energy and chem-

ical transport (e.g., Agúndez et al. 2012; Komacek et al. 2017; Drummond et al. 2018;

Steinrueck et al. 2019). Furthermore, precision abundance ratios can potentially be tied

back to models of planet formation (e.g., Öberg et al. 2011; Madhusudhan et al. 2014;

Espinoza et al. 2017). With the promise of better precision on the horizon from future
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observatories such as the James Webb Space Telescope, we will be able to deepen the

level of our characterization of exoplanet atmospheres. It is critical to our understanding

of these worlds to assess the accuracy with which this information can be constrained

by leveraging the synergies between observations and modeling efforts.

Atmospheric retrievals have emerged as a powerful tool for determining at-

mospheric properties such as molecular/elemental abundances, cloud properties, and

thermal structures from exoplanet spectra (Madhusudhan & Seager 2009; Line et al.

2012; Lee et al. 2012; Benneke 2015; Madhusudhan 2018). Inverse modeling is driven by

the data set, wavelength coverage, and observation uncertainty; just as much, retrieval-

based atmospheric inference is highly model dependent, a realization that has recently

received well-deserved attention. As more inverse models are developed and data diver-

sity continues to increase, we face a growing suite of choices regarding radiative transfer,

chemistry, and aerosol treatment. (Changeat et al. 2019; Mollière et al. 2019; Mai &

Line 2019; Iyer & Line 2020; Barstow et al. 2020). The specifics are ever evolving as

it can be complex to pinpoint what a model may be lacking within the context of a

specific data set.

A challenging aspect of retrievals is maintaining a computationally efficient

forward model within common Bayesian frameworks while balancing adequately sophis-

ticated implementation of the necessary atmospheric physics. Given the disk-integrated

nature of the observed spectra, retrieval models have typically assumed 1D treatment of

the temperature-pressure (TP) profile and chemistry. Yet, for instance in the case of a

planet observed at quadrature, where half the dayside and half the nightside are visible,
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the hemispherically averaged spectrum would include contribution from contrasting hot

and cool temperature-pressure (TP) profiles. Consequently, we used this case in our

previous work (Feng et al. 2016) to demonstrate that a 1D retrieval model assumption

affects atmospheric inference and can introduce unwanted biases. The significance of

the impact depends on the type of data set and temperature contrast between the day

and the night. This work found that methane is mischaracterized for simulated Hubble

Space Telescope Wide Field Camera 3 (WFC3) and Spitzer Space Telescope Infrared

Array Camera (IRAC) data (hereafter HST+Spitzer) - biased to a precise but inac-

curate posterior distribution. Furthermore, for simulated JWST data, even water is

mischaracterized.

In addition to Feng et al. (2016), numerous other works have explored the

impacts of the 1D treatment for inherently-3D exoplanet atmospheres. Line & Par-

mentier (2016) demonstrated how nonuniform terminatory cloud cover can mimic high

mean molecular weight atmospheres in transmission spectra observations. Caldas et al.

(2019) identified biases in interpreting transmission spectra associated with the day-

night temperature gradient through the limb of the atmosphere. Specifically, the 1D

retrieval models perfectly fitted 3D generated spectra, but resulted in substantial biases

in retrieved abundance. Blecic et al. (2017) used 3D general circulation model (GCM)

outputs to generate synthetic emission spectra at secondary eclipse on which to test a

1D retrieval, finding that the 1D TP profile resembles the arithmetic average over the

profiles within the 3D model. These results were dependent on the data quality, from

the wavelength coverage to instrument resolution.
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One promising avenue for elucidating the 3D structure of an exoplanet’s atmo-

sphere is the spectroscopic phase curve. With a different hemispheric average observed

at each phase, we use phase curves to investigate energy transport, atmospheric dynam-

ics, chemistry, and cloud distribution and composition.

Typically, sophisticated 3D general circulation models have been the preferred

approach for interpreting spectrophotometric phase curve observations (e.g., Showman

et al. 2009; Kataria et al. 2015; Mendonça et al. 2018b). Stevenson et al. (2014, 2017)

provide the first spectrophotometric phase curve data set of a hot Jupiter (WASP-43b,

Hellier et al. 2011) of which at the time was interpreted with the simplistic 1D model.

This likely has resulted in strong abundance biases, as shown in Feng et al. (2016).

Retrievals that can accommodate the inherent 3D nature of phase data are relatively new

due to the challenge of adding the necessary complexity in a computationally efficient

manner as well as higher fidelity data (as for WASP-43b).

Recently, Irwin et al. (2020) adapted the NEMESIS optimal estimation re-

trieval code to perform “2.5-D” retrievals on the spectroscopic phase curve of WASP-

43b. By using a parameterized prescription of assigning temperature and composition

as a function of longitude and latitude, Irwin et al. (2020) are able to retrieve thermal

structures for WASP-43b that are more consistent with GCM predictions than the sim-

plified 1D models. However, the optimal estimation method is limited in its ability to

provide a wide enough sampling of parameter space or a means of model comparison

based on data quality.

While state-of-the-art phase curves obtained with HST+Spitzer only exist for
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a handful of exoplanets (e.g., Maxted et al. 2013; Stevenson et al. 2017; Kreidberg et al.

2018; Arcangeli et al. 2019), JWST will enhance this technique and measure phase curves

across longer wavelength ranges (Bean et al. 2018). Irwin et al. (2020) identify JWST as

an important avenue to explore in the context of spectroscopic phase curves. Venot et al.

(2020) simulated JWST MIRI (5−12µm) observations of the phase curve of WASP-43b;

while thorough, their retrieval study uses the typical 1D approach. Potential pitfalls

resulting from a 1D approach need clarifying. Recently, Taylor et al. (2020) consider

the possibility of identifying non-uniform thermal structure from emission spectra of

WASP-43b given different observing modes of JWST NIRSpec. Taylor et al. (2020) also

find evidence of biased molecule abundance estimates described in Feng et al. (2016),

detailing the dependence on model choice and wavelength range.

As such, we seize a unique opportunity in this study to complement previous

work by incorporating phase geometry within a Bayesian retrieval framework such that

we can robustly explore the following questions: What inferences remain consistent as a

function of phase for a planet with 2 contrasting TP profiles? What will we gain when

we use JWST? Is there any advantage in leveraging the full set of phase curve data

together? With our nested sampling retrieval, we are able to illustrate the posterior

distribution of parameters as a function of phase. In this way, we build on previous

work by Feng et al. (2016) to systematically explore biases resulting from retrieval

assumptions by introducing additional model complexity.

In this paper, we present a new framework that uses spherical trigonometry

to properly model the phase geometry within the CHIMERA retrieval suite (Line et al.
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2013). Section 3.2 describes the relevant adaptations and our investigation setup. We

simulated HST+Spitzer phase curves to anchor our understanding of thermal inhomo-

geneity based on the 1TP and 2TP models. We then retrieve on Stevenson et al. (2017)

WASP-43b data as well as simulated JWST phase curves of a model planet. Section

3.3 compiles these results. As in Feng et al. (2016) and Taylor et al. (2020), we focus

on model comparison in the this study; we provide a guide as to which phases need the

appropriate 2TP modeling of the large day-night temperature contrast to accurately

interpret the atmosphere. We conclude with Section 3.4 through a discussion of our

findings and future work.

3.2 Methodology

In Feng et al. (2016), we tackled thermal inhomogeneity with a simplified

experiment: A fully symmetric scenario where half the emitting area is attributed to

a hotter TP profile, while the other half is from a colder profile, permitting a simple

averaging of the resultant spectra. Such a scenario would be applicable to the quadrature

phases, assuming the day and night side can each be well-represented by a single thermal

profile, as well as a planet “checkered” with hot and cold patches. For non-symmetric

cases, we need a more sophisticated geometry to account for the differing contributions

as well as the appropriate limb darkening. In the subsections that follow, we provide

an overview of the radiative transfer and retrieval analysis. Next, we describe the

modifications to the model used in Feng et al. (2016) to generate spectra at arbitrary

orbital phases. We also detail our validation and lay out the investigation plan.
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3.2.1 Overview of modeling tools

The core radiative transfer routines remain identical to those in Feng et al.

(2016). Line et al. (2013) provide a detailed description. Given a TP profile and

vertically uniform gas mixing ratios, we solve for the outgoing thermal radiation in a

cloud-free, plane parallel atmosphere. We retrieve for H2O, CH4, CO, CO2, and NH3,

and assume solar composition H2/He as the background filler. As in Feng et al. (2016),

opacities for these gases are drawn from the database described in Freedman et al.

(2014) and Lupu et al. (2014, Table 2).

As in our previous work, we consider the distinction between 1TP and 2TP. We

focus on a large temperature contrast case (80%) to see what effects may be dominant

across phase. Table 3.1 lists the parameters we retrieve for in the 2TP model. We

calculate the TP profile using the approach from Parmentier & Guillot (2014) (see also

Equations 13 and 14 in Line et al. (2013)). Each profile is defined by five parameters:

two visible-to-infrared mean opacity ratios (log γ1 and log γ2), the partitioning between

the two visible streams (α), the infrared opacity (log κIR), and the fraction of absorbed

incident flux (βTP). We specify βday for the day profile and βnight for the night profile

while letting the two profiles share the other parameters. For values βday = 1 and

βnight = 0.2, we establish the contrast of 80% between the day and night sides. The

contrast factor can also be thought of as 1− TTOA,c

TTOA,h
(Feng et al. 2016). The second term

is a ratio between the temperature at the top of the atmosphere (TOA) from the cool

profile (c) and the TOA temperature from the hot profile (h).

In other words, the 2TP model retrieves for 12 parameters (6 molecules + 6
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TP parameters) while the 1TP model retrieves for 11 (6 molecules + 5 TP parameters).

All scenarios assume an internal temperature, Tint = 200K (although higher values

can be expected in hot Jupiters; see Thorngren et al. (2019)). We assume constant-

with-altitude and constant-with-longitude (e.g., Cooper & Showman 2006; Mendonça

et al. 2018b) mixing ratios loosely consistent with thermochemical equilibrium and solar

composition abundances. We adopt WASP-43b planetary properties (Hellier et al. 2011)

in our model (see also Table 3.1).

Typical radiative transfer uses an “N-point” (4 in Feng et al. (2016)) Gaussian

quadrature to compute the TOA outgoing fluxes whereby the observed disk can be

divided up into concentric “annuli” (Figure 3.1) with intensities computed independently

at each annulus (given the quadrature µ). An example crescent phase in Figure 3.1 shows

how each annulus contains different contributions of “dayside“ and “nightside” regions

(and properties thereof). In this work, we adopt the same Gaussian quadrature scheme

but have to apply geometric corrections to account for the varying viewing geometry

as a function of phase (e.g., for uneven day-night temperature variations). Rather than

“pixelating” the planet (e.g., Fortney et al. 2006; Showman et al. 2009; Cahoy et al.

2010), we divide it up in annuli (a natural radiative transfer coordinate system) whereby

we can assign individual atmospheric properties (temperature, composition, etc.) that

will dictate the upwelling intensity beam. Summing over these beams will produce the

appropriate disk-integrated flux accounting for atmospheric inhomogeneity. Appendix

A describes in detail the adjustments needed to accommodate arbitrary phase angles

within the Gaussian quadrature/concentric annuli radiative transfer framework. We
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Figure 3.1: Diagram of hemisphere visible to the observer at phase angle α. The visible
hemisphere is divided into annuli based on Gaussian quadrature angles, which are used
to define the annulus width φi. The “dayside” region (in red) intersects the annuli at
different points. By determining the areas of these segments within each annulus, we can
determine the fractional contribution of “day” and “night” for the annulus, as described
more in Appendix A. Within the “2TP” approach, all annuli areas encompassed by red
will be assigned a “dayside” TP, and in black, a “nightside” TP.

will refer to this updated model as 2TP-Crescent.

Table 3.2 lists the orbit fraction and phase angle we consider, consistent with

the phase curve data set presented in Stevenson et al. (2014, 2017). Hereafter, we will

refer to orbital phases by a corresponding number as listed in Table 3.2. The new

geometric implementation also allows for the retrieval of day-side hot spot properties

(modeled as inner annuli with higher temperature than remaining annuli, Figure 3.1),

a thorough exploration of which is beyond the scope of our current study.

We pair our modified forward model with pymultinest (Buchner et al. 2014),

the python implementation of the multinest algorithm (Feroz et al. 2009), to perform

Bayesian parameter estimation and model selection, following standard guidelines (e.g.,

Trotta 2008; Cornish & Littenberg 2007).
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Table 3.1: Model parameter values

Parameter Value TP Parameter Value

Rp (RJ) 0.93 log γ1 -1

R∗ (R�) 0.598 log γ2 -1

T∗ (K) 4400 log κIR -1

a (AU) 0.01424 α 0.5

Tint (K) 200 βday 1

log(g) (cm s−2) 3.34 βnight 0.2

log fH2O -3.37 fday
1 see eq. A.1

log fCH4
-9

log fCO -3.7

log fCO2 -9

log fNH3 -9

Note. — Nominal system and TP shape parameters used to
generate our synthetic spectra. Stellar and planetary param-
eters are based on the WASP-43 system (Hellier et al. 2011).
For definitions of the TP parameters, see Line et al. (2013).
Solar proportion Hydrogen and Helium are assumed to make
up the remaining gas abundance.

3.2.2 Investigation set-up

Within our new framework, we explore three phase curve observational setups

under four different retrieval model assumptions. The three observational scenarios are:

• Simulated (of which we know the “truth” values) HST+Spitzer observations based

on the Stevenson et al. (2017) WASP-43b data set

• The actual Stevenson et al. (2017) WASP-43b HST+Spitzer phase curve data set

• Simulated JWST phase curve observations of WASP-43b

For the simulated data, we only consider phases between transit and secondary

eclipse due to symmetry over the orbit (i.e., we do not assume hot spot offsets or other

asymmetries). We assume cloud-free atmospheres in order to not confuse any degeneracy
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Table 3.2: Reference for phase angles

Phase Angle (◦) Fraction

0 22.5 0.0625

1 45.0 0.125

2 67.5 0.1875

3 90.0 0.25 (quadrature)

4 112.5 0.3125

5 135.0 0.375

6 157.5 0.4375

7 180.0 0.5 (secondary eclipse)

8 202.5 0.5625

9 225.0 0.625

10 247.5 0.6875

11 270.0 0.75 (quadrature)

12 292.5 0.8125

13 315.0 0.875

14 337.5 0.9375

Note. — We assume the full orbit (360◦) is
divided into 15 phases. Phase 0 is right after
transit; phase 7 is secondary eclipse; and phase
14 is right before transit. Orbital fraction is the
phase value between 0 and 1. The phase angle
(between the sub-observer point and sub-stellar
point) is defined from transit; see Figure A.2(b).
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Table 3.3: Data sets and relevant model scenarios

Scenario HST+ WASP-43b JWST Joint

Spitzer Phases

1TP × × × –

2TP-Crescent × × × ×

2TP-Free – × – –

2TP-Fixed – – – ×

Note. — Tabulating the results presented in Section 3.3. “×”
indicates which models were used to perform retrievals on which
data sets; “–” indicates the results are not included in Section
3.3.

arising between the geometric/model assumptions and basic atmospheric properties, like

abundances and thermal profiles. Future work looking into the nature of inhomogeneous

clouds is most certainly a next step.

The synthetic HST+Spitzer uncertainties are pulled phase-by-phase from the

Stevenson et al. (2017) WASP-43b data set. For the simulated JWST data, we use the

same data setup as described in Feng et al. (2016) (based on the Greene et al. (2016)

noise model), which assumes a single transit each in NIRISS, NIRCam, and MIRI LRS,

covering 1-10 µm at a resolution (R) of 100. For the synthetic data, we do not apply

random noise to the instrument-resolution points. As in past works (Feng et al. 2018;

Krissansen-Totton et al. 2018; Mai & Line 2019; Changeat et al. 2019), we opt not to

randomize the simulated data points as to mitigate random bias due to outlier noise

instance draws.

Table 3.3 lists the data sets considered in our study along with corresponding

model scenarios whose results are presented in Section 3.3. In total, we examine four

retrieval model assumptions:
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• 1TP: assumes a single TP profile and and one set of gas mixing ratios regardless

of the observed phase, like in Feng et al. (2016) and applied in Stevenson et al.

(2014, 2017).

• 2TP-Crescent: retrieves a hot day profile and cool night profile. Hot and cool

fluxes are distributed according to phase and combined with annuli (Appendix

A), such that any limb darkening differences between hot and cold are included.

• 2TP-Fixed: retrieves two profiles. Hot and cool fluxes are combined via linear

combination using Ftotal = Fhot ∗fday +(1−fday)∗Fcool. Equation A.1 determines

phase-dependent day-side contribution fday

• 2TP-Free: retrieves two profiles. Fluxes calculated in the same way as 2TP-

Fixed, but the retrieval treats the dayside area fraction fday as an additional free

parameter (as in Taylor et al. 2020).

We first retrieve on each “phase” independently (phase-by-phase). In this

situation, the “day” and “night” TP profiles are allowed to vary from phase to phase.

We then use the 2TP-Crescent and 2TP-Fixed schemes to perform a joint retrieval on all

phases simultaneously, assuming the same day and night TP profiles at each phase. The

likelihood used in the retrieval is the sum of individual likelihoods from each phase. This

latter investigation aims to determine if improved abundance constraints are achievable

if we assume a priori that the “day” and “night” profiles remain the same throughout

the orbit.
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3.3 Results

Sections 3.3.1 through 3.3.4 provide detailed retrieval results for each of the

data sets we explored. We show the posteriors of the abundances as a function of phase,

retrieved pressure-temperature profiles at several points in the orbit, and the spectral

fits to the data for select phases.

The first data set is a simulated HST+Spitzer phase curve, where all input pa-

rameters are known. Next, we perform a similar analysis on real WASP-43 HST+Spitzer

phase curve data and examine the differences. We expand next to a simulated JWST

data set with a higher signal-to-noise and wider wavelength range. Finally, we explore

the concept of “joint retrieval” where we use the full suite of phase curve data to seek

tightened error bars on atmospheric quantities.

The focus of our study is on the difference between 1TP and 2TP models as

a function of phase and determining the phases at which we are justified in employing

a more complex 2D model. We thus synthesize our different scenarios by presenting an

overview comparing the use of a homogeneous 1D model and a more complex model

(2TP-Crescent and 2TP-Free specifically) on phase-resolved spectra. Figure 3.2 sum-

marizes the justification of the 2TP model over the 1TP model as a function of phase for

each of our cases. We will return to the figure throughout the paper. Following Trotta

(2008) and Gordon & Trotta (2007), we convert the Bayes factor into detection signif-

icance of the 2TP model. For each set of data we consider, we illustrate the degree to

which it is justified to use the more complex 2TP model (Crescent or Free) to interpret

the data. For example, for HST simulated data, the leftmost panel of Figure 3.2, phases
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Figure 3.2: Model comparisons as a function of phase. See text for how detection
significances are computed. The significance values represented here follow: σ2TP ≤
0.1σ: insignificant (blue), 2.7σ < σ2TP < 3.6σ: moderate evidence (light pink), 3.6σ ≤
σ2TP < 5σ: strong evidence (deep pink), and σ2TP ≥ 5σ - significant evidence (red).
Left: Detection significance of the 2TP-Crescent model compared to the 1TP model
for the simulated HST+Spitzer data. Due to symmetry, we only simulated half the
orbit. Phase are labeled by their numbers (Table 3.2). Middle: Detection significance
for observed WASP-43b HST+Spitzer data. Outer ring compares 2TP-Crescent to the
1TP model. Inner ring compares the 2TP-Free and 1TP models. Full orbit is considered.
Right: 2TP-Crescent vs 1TP comparison on simulated JWST data. Due to symmetry,
only half the orbit is considered.

1-3 moderately favor the addition of the night profile (indicated by red color). For the

rest of the half orbit from transit to secondary eclipse, there is insufficient evidence to

suggest the 2TP model should be used for the data (indicated by blue color). However,

as we will see in the posteriors of the abundances, phases 4 and 5 also reveal biased

methane constraints if we use the 1TP model.

3.3.1 Control Case: HST and Spitzer Synthetic Data

The results from our synthetic data set of HST+Spitzer observations serve as

a guide for our intuition, allowing us to identify trends and biases before considering

measured spectroscopic phase curves. Figure 3.3 presents the 1TP and 2TP posteriors
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Figure 3.3: Abundance vs. phase results from HST+Spitzer simulated data for H2O,
CH4, CO, CO2, NH3 for the 1TP model (blue) and the 2TP-Crescent model (dark pink).
For each panel, we plot the marginalized posterior probability distribution of the log of
the molecule’s mixing ratio as a function of orbital phase. For simulated data, we only
consider half an orbit (transit to secondary eclipse), or eight orbital steps. For each
molecule, we indicate the input abundance value with the vertical dashed line. This
simulated data set is only able to accurately constrain H2O abundance; both 1TP and
2TP-Crescent models provide consistent posteriors for H2O. The other molecules have
only upper limit estimates with the 2TP-Crescent model. For most of the phases, the
1TP model produces biased CH4 abundances (constrained at values orders of magnitude
above the input). CO2 is biased toward higher values under the 1TP model for half the
phases.

of the molecular abundances as a function of phase for the simulated HST+Spitzer

data. Phase 0, just after transit, exhibits no constraining power for the mixing ratio of

any molecule under either model due to the low feature signal-to-noise. The posteriors

are identical for phase 7 (secondary eclipse), as expected, given that there is no visible

night-side flux.

H2O and CO are the only two molecules with high enough abundances in

the input model such that we should expect detection. We find no significant bias in

the H2O abundance when using the overly simplistic 1D TP profile. The “truth” falls

within the 1σ range of the retrieved distribution at most phases (2σ, at worst). Phases
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for which there is more viewable “dayside” (hotter), the constraints are more precise

(about 0.5 dex), and gradually decline towards the cooler phases (phase 0), simply due

to the reduced feature signal-to-noise. CO is largely unconstrained at all phases in both

models as only the Spitzer 4.5µm photometric point is sensitive to this molecule .

The original input mixing ratios for CH4, CO2, and NH3 are all well below

typical detectable amounts (10−9), such that only upper limits would be anticipated. As

such, biases become obvious when the retrieved distributions for some of these molecules

are tightly constrained at elevated abundances. For example, we find that in Figure 3.3

between phases 1 and 5, the 1TP model retrieves a tight constraint on CH4 a few orders

of magnitude higher than the input (median of ∼ 3.5 × 10−5 vs. 10−9), as seen in

our 2016 paper. However, using the correct 2TP-Crescent model (which was used to

generate the simulated data), we retrieve only an upper limit at all phases, as expected.

NH3 shows similar behavior as CH4: The 1TP model appears to produce more of a

constraint at higher values (while still an upper limit) than the 2TP-Crescent model, as

seen in phases 2 - 5 in Figure 3.3. This suggests that the 1TP model results in an NH3

bias as well, though not as extreme as in the case for CH4.

CO and CO2 show similar trends in Figure 3.3 due to their overlapping spectral

features over single 4.5µm Spitzer point (Line et al. 2016). In fact, CO2 presents more

bias when using the incorrect 1TP model. This apparent bias appears even at full

phase (phase 7) in the correct 2TP-Crescent model because a large sample of models

accumulate at high CO and CO2 abundances simply due to the overlapping degeneracy.

Figure 3.4 shows the progression of the retrieved pressure-temperature profiles
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from the two models as a function of phase. For 1TP, as the phase gets closer to

secondary eclipse, the retrieved profile matches more closely with the input dayside

profile. The 1TP retrieved profiles are biased towards hotter temperatures at phases

near primary transit (< phase 3). This is because the 1TP profile is attempting to strike

a balance between the nightside and dayside fluxes, as discussed in Feng et al. (2016).

When implementing the 2TP-Crescent model, the retrieved day and night profiles more-

or-less retrieve the input profiles, with mild bias for phases before phase 3, where more

of the nightside TP profile is present. At secondary eclipse, there is no emission signal

from the night, so the TP profile for the night at this phase is completely unconstrained,

effectively filling out the prior.

Posterior-representative spectra are shown in Figure 3.5 for both the 1TP

and 2TP-Crescent scenarios. The 2TP profile properly fits the data but the 1TP case

struggles for phases between transit and first quarter (0 - 2). Given the sparse data

coverage with HST and Spitzer, model differences are most noticeable in unmeasured

spectral regions, with resultant 1TP spectra presenting deeper absorption features owing

to the steeper temperature gradients retrieved in the 1TP model. At phases closer to

secondary eclipse, the discrepancy wanes as the dayside TP/spectra more prominently

represent the total.

3.3.2 Application to the Observed WASP-43b Data Set

Here, we consider the retrieval outcome using actual observations of WASP-

43b from Stevenson et al. (2014); Kreidberg et al. (2014a); Stevenson et al. (2017) using

HST+Spitzer. We consider results from the 1TP, 2TP-Crescent, and 2TP-Free models.
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Figure 3.4: Temperature-pressure (TP) profiles for simulated HST+Spitzer data. We
selected phases 1, 2, 4, and 7 to show the change in TP profile constraint as a function
of phase. In each panel, the dashed line represent the true input profiles for the day and
night sides. The retrieved 2TP-Crescent profiles are in blue (night) and red (day). The
retrieved 1TP profiles are in yellow. For each distribution, we show the median profile
in a solid line, surrounded by the 2σ spread in profiles. 1TP-retrieved profiles fall in
between the true day and true night profiles, shifting toward hotter temperatures until
reproducing the true day profile at secondary eclipse. The 2TP-Crescent model provides
constraints on the night profiles for most of the orbit, until secondary eclipse where there
is negligible night side emission. There is a preference for hotter temperatures for the
day side at phases closer to transit (more of the night side visible), but once we reach
quarter phase and above, the day side profile is accurately constrained.

The two different 2TP retrieval implementations allow for comparison to simulated data

results and exploration of asymmetry in the atmosphere as a function of phase. The

2TP-Free model enables the latter because the dayside contribution, as parameterized

by fday, is a retrieved quantity.
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As Figure 3.2 (middle panel, outer ring) shows, phases 1-3, 10, 12, and 13

are moderately in favor of the 2TP-Crescent model. The inner ring in the same panel

compares the 1TP model and the 2TP-Free model. For this case, phases 1-3, 10, and

13 are moderately in favor of the Free model; phases 11 and 12 are strongly in favor.

Figure 3.6, like Figure 3.3, summarizes the molecular abundance constraints

for the 1TP and 2TP-Crescent scenarios, in this case for all 15 phases in the Stevenson

et al. (2017) WASP-43b data set.

We find that the retrieved distributions for all gases mostly resemble the trends

seen from the simulated data set (Figure 3.3). There are no substantial biases in the

constraints on H2O, CO, CO2, or NH3, though the water abundance appears to increase

at phases between first and third quarter (e.g., around secondary eclipse)
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Figure 3.5: Simulated HST+Spitzer data and resultant representative fits drawn from
the posterior for phases 2 (just before first quarter), 4 (just after first quarter) and 7
(secondary eclipse). We include the Spitzer 3.6µm and 4.5µm filter profiles in the phase
7 panel. 1TP spectra are in magenta while 2TP-Crescent spectra are in green. For
each set of model spectra, we plot the median (solid line), 1σ, and 2σ contour. We
include corresponding χν values for the 1TP and 2TP(-Crescent) models, which can be
small because random noise is not included. The spectra from the two models differ
the most at phases close to transit; they become more similar as the phases advance
to secondary eclipse, where they overlap. The biased CH4 and CO2 abundances result
in more spectral contrast between 3 and 5µm for the 1TP profile scenario. With such
distinct spectra at phases showing more night side emission, data filling the gaps between
HST and Spitzer observations would be able to differentiate between these two models.
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H2O is the only well-constrained (i.e., bounded) species. Overall, there is no

significant difference in the posteriors between the 1TP and the 2TP-Crescent models

for H2O, NH3, CO, or CO2. Although, at phase 10 (almost at third quarter), the 2TP

H2O posterior indicates slightly elevated values than the rest of the orbit.

We see the same constrained distributions for CH4 that are only present under

the 1TP model as seen in the simulated data set. Once again, the affected phases are

when the visible hemisphere is dominated by the night side. The only phase that does

not have an upper limit distribution under the 2TP model is phase 11. In this case, we

see a well-constrained posterior consistent with what the 1TP finds.

Figure 3.7 summarizes the retrieved TP profiles for select phases, as in Figure

3.4. The behavior of the retrieved profiles over the orbit resemble what is seen from

simulated data. We note that the overlap between the 1TP model profiles and the day

side profiles from the 2TP-Crescent model at phase 4 is smaller than in the simulated

case. The day side profiles also appear more isothermal, with a smaller temperature

gradient through photospheric pressures.

In Figure 3.8, we show representative model fits for both the 1TP and 2TP-

Crescent scenarios. The fits of these two models are statistically similar (e.g., at phase 7,

1TP model’s χν = 1.71, while 2TP-Crescent’s χν = 2.00) for phases around secondary

eclipse (6 - 8). There is little “nightside” contribution in these cases, permitting an

adequate representation with a single TP. At most phases shown, the 1TP model requires

significantly larger abundances (sometimes for NH3 or CH4 depending on the phase)

and a steeper temperature gradient than the 2TP-Crescent model, resulting in much
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Figure 3.6: Abundance vs. phase results from WASP-43b data for H2O, CH4, CO,
CO2, and NH3 for the 1TP model (blue) and the 2TP-Crescent model (dark pink). For
each panel, we plot the posterior probability distribution of the log of the molecule’s
mixing ratio as a function of orbital phase. We see artificially tight constraints of CH4

at several phases when using the 1TP model. With 2TP-Crescent, CH4 at phase 11 is
also constrained. However, considering the constraints (of lack thereof) of all the phases
can help identify potential outlier distributions. H2O constraints from the two models
are consistent, with similar increases in estimates from transit to secondary eclipse.
There is no constraining power within the data sets for CO or NH3. CO2 is largely
unconstrained with the exception of phases near secondary eclipse. In some cases the
1TP model results in overconstrained abundances relative to the 2TP-Crescent model.
CO2 constraints are challenging to interpret due to the 1-to-1 degeneracy with CO as a
result of the overlapping bands over the 4.5µm Spitzer point.
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Figure 3.7: Temperature-pressure (TP) profiles for HST+Spitzer data of WASP-43b.
Phases 2, 4, 7, and 12 are shown to illustrate the constraint behavior with phase. The
retrieved 2TP-Crescent profiles are in blue (night) and red (day). The retrieved 1TP
profiles are in yellow. For each distribution, we show the median profile in a solid line,
surrounded by the 2σ spread in profiles based on reconstructed from random posterior
parameter draws. Phases 2 and 12 are symmetric in the orbit (just after and just
before transit, respectively), resulting in similar retrieved profiles under both models.
The retrieved 1TP profile overlaps perfectly with the 2TP-Crescent dayside profile at
secondary eclipse (phase 7) as there is no contributing flux from the nightside. Retrieved
day and night profiles from the 2TP-Crescent model are relatively similar from phase
to phase, further evidence of a large day-night temperature contrast in the atmosphere.
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Figure 3.8: WASP-43b data (HST+Spizter) and high-resolution spectra generated with
random posterior draws from the retrieval. Shown here are the spectra for phases
1, 3, 4, 7, 10, and 13. We include corresponding χν values for the 1TP and 2TP(-
Crescent) models. In the panel of phase 7, we overplot the Spitzer 3.6µm and 4.5µm
filter transmission. 1TP spectra are in magenta while 2TP-Crescent spectra are in green.
For each set of model spectra, we plot the median, 1σ, and 2σ contour. The 1TP model
struggles to fit the 4.5µm Spitzer point at more crescent phases (dominated by night
side). The 2TP-Crescent model spectra look more featureless in comparison at these
phases, reflecting the corresponding unconstrained posteriors of the atmospheric gases.
At phases closer to secondary eclipse, data between 2 and 3µm are needed to separate
the two models.

more spectral contrast, which yields deep absorption features, to fit the spectra and

photometry. The 2TP fitted spectra, in comparison, have less spectral contrast overall.

Interestingly, while Phases 4 and 10 are in theory geometrically symmetric, the overall

flux at phase 10 is lower and the difference between the two models is more noticeable

at that phase. This is possibly due to the presence of an offset hotspot, leading to

asymmetry between phases before and after secondary eclipse and a difference in fitted

model parameters.
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2TP-Crescent vs. 2TP-Free

As introduced in Section 3.2.2, we consider several ways to retrieve an atmo-

sphere with two contrasting thermal profiles. For observed data in particular, we are

interested in identifying longitudinal asymmetry in the atmosphere (e.g., due to a hot

spot offset). Using the 2TP-Free model can inform us about potential inhomogeneity,

and we may study how the interpretation of an atmosphere changes when there is more

flexibility in geometry. Here we highlight the differences between the 2TP-Crescent

model and the 2TP-Free model on the WASP-43b data set.

As described in Section 3.2.2, the 2TP-Crescent model uses the geometry de-

scribed in Figure A.2. The 2TP-Free model uses a linear combination of fluxes from the

day side and fluxes from the night side, parameterized with fday, which accounts for the

fraction contributed by the day side. There is no assumption of geometry or symmetry

in the free model. The fday parameter determines how much of the final spectrum is

contributed by the hot TP profile, while the remaining flux is then attributed to the

cool TP profile. We have the ability to see whether the retrieved fday from a certain

phase’s data set is different from the corresponding value based on Equation A.1

In Figure 3.9, we show the posterior distributions as a function of phase for

the parameter fday from the 2TP-Free model. In particular, we note the lower-than-

expected value at phase 2, 9, 11, and 12. This suggests a preference for lower flux from

the day side or hotter temperatures and more flux from the night side or lower temper-

atures. Furthermore, this preference is seen mostly past secondary eclipse. WASP-43b

has a known hot spot offset such that the maximum flux occurs before secondary eclipse
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(Stevenson et al. 2017); the behavior in fday as a function of phase is thus evidence for

the offset. We can also examine phases 5 through 7 (right before to during secondary

eclipse) and see that the fday posteriors appear similar rather than finding higher values

at secondary eclipse.

Next, we consider how the additional geometric flexibility impacts atmospheric

inference. Figure 3.10 shows the posterior distributions for H2O and CH4 for these two

models. CO, CO2, and NH3 are virtually identical and these comparisons have been left

off the figure. The most significant differences for H2O and CH4 occur on the night side

as seen after secondary eclipse, in particular at phases 11 and 12. These correspond to

some of the phases that returned lower-than-expected day side flux contribution in the

2TP-Free model. The 2TP-Crescent model constrains CH4 at these two phases. The

2TP-Free model, on the other hand, shows no detection of the molecule.

In terms of H2O, the 2TP-Free model shows similar posterior distributions

from phases 10 through 13. These values are consistent with the findings at phases

10 and 13 under the 2TP-Crescent model. However, the 2TP-Free values are elevated

compared to the posteriors for phases 11 and 12 with 2TP-Crescent. These are the two

phases that became non-detection under 2TP-Free for CH4.

We find that only phase 11 has significance greater than 0.1σ when justify-

ing the 2TP-Free model, which has one additional free parameter fday, over the 2TP-

Crescent model. The detection significance at phase 11 is 3σ, or moderately in favor of

2TP-Free (see Figure 3.2). As a result, the more justified 2TP model appears to be the

2TP-Crescent model for modern observations. The 2TP-Free model, however, is able
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Figure 3.9: Posterior distribution of fday from the 2TP-Free model using WASP-43b
data. The distributions are bimodal due to the fact that we imposed no geometric
information, thus showing the symmetric nature of each phase. Overplotted (orange
circles connected with black line) is the expected emitting fraction for each phased based
on Equation A.1. These expected values correspond to the total contribution from the
day side in the 2TP-Crescent model. Phases 2, 9, 11, and 12 have posteriors constraining
lower values than the expected, suggesting a preference for lower temperatures and less
contribution from the day profile.

to account for existing asymmetries in the phase curve. In this regard, we note that the

2TP-Crescent model can be modified in the future to retrieve for an arbitrary phase

angle such that the dayside contribution is not pre-determined based on geometry.

3.3.3 Simulated JWST data

From the above analysis on both simulated and true HST+Spitzer data, we

found that substantial abundance and temperature biases exist when applying a sin-

gle TP profile to several planetary phases. A challenging aspect emerged: standard

Bayesian nested modeling tools seemed unable to rule out the simpler model which

resulted in biased results. We now present the effects of the 1TP vs 2TP-Crescent as-

sumption on simulated JWST data with the anticipation that the more suitable model

will be more obvious.

A look back at the rightmost panel of Figure 3.2 shows that all phases (with
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Figure 3.10: Abundance vs. phase results from WASP-43b data for H2O (left) and
CH4 (right) for the 2TP-Crescent model (dark pink) and the 2TP-Free model (light
pink). For each panel, we plot the posterior probability distribution of the log of the
molecule’s mixing ratio as a function of orbital phase. A noticeable difference is how
2TP-Crescent’s constraint of CH4 at phase 11 becomes a non-detection with 2TP-Free.
The H2O distributions from phases 10 - 13 with the 2TP-Free model look more similar
to one another but these values are larger than estimates from the rest of the orbit.
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the exception of secondary eclipse due to the complete lack of nightside contribution)

demonstrate a clear preference for the more complex 2TP-Crescent model. We describe

this result here.

The broad (1-10µm) and higher resolution (R = 100) simulated JWST data

provides ultra-precise constraints on the gas mixing ratios when using the correct model.

This high quality data permits us to readily disprove the 1TP hypothesis at all phases

(> 5σ), at least in this scenario of a phase curve from a planet with large day-night

temperature contrast. Figure 3.11 shows the retrieved molecular abundance constraints

as a function of phase. Phase 7, or secondary eclipse, is the only phase where the 1TP

model does not produce a bias, as expected. Phase 0 is not informative for abundances

for either model, owing to the overall low night-side flux. For many phases, strong

abundance biases across all the gases persist under the incorrect 1TP profile model.

While for the simulated HST data there is negligible difference in H2O inference

between the two models, all of the 1TP posteriors here for H2O miss the input value until

phase 6. The problem is worsened by the precision in the biased posterior distributions.

For example, the 1TP H2O constraint in phase 1 is log H2O = −5.28+0.14
−0.15 when in fact

the true mixing ratio is log H2O = −3.37 (or a 1TP bias of 12.7σ). The 2TP-Crescent

(true model) at phase 1, however, results in a less precise (+
−0.35), but more accurate

(unbiased) constraint. Unsurprisingly, the water precision improves (up to +
−0.5 dex at

secondary eclipse) as more dayside is visible due to the higher emission feature signal

to noise. We see up to a factor of 5 improvement in precision over the phase 7 posterior

with 2TP-Crescent model using simulated HST data.
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The 1TP CO constraints present less of a bias than H2O, as seen in Figure

3.11. CO begins to largely deviate from the truth between phases 0 and 4. Although,

phase 2 provides an unbiased yet over-constrained abundance compared to the 2TP-

Crescent constraint. By phase 7, we can constrain CO using the 2TP-Crescent model

to a 1σ of ∼ 90ppm (log CO = −3.69+0.1
−0.09).

The poor performance of the 1TP model is further evident in CH4, CO2, NH3

estimates. We find biased posteriors that are well constrained to 1/10th of an order of

magnitude but their median values are several orders of magnitude away from the truth.

CH4, for instance, suffers from bias at phases 2-4. CO2 is biased at phases 1 through

5, and NH3 from phase 2 to 5. Meanwhile, the 2TP-Crescent model only detects upper

limits for these molecules.

Figure 3.12 summarizes the retrieved TP profiles based on the two models.

While overall trends are similar to what we see in simulated HST data, we find much

more precisely constrained profiles across the orbit, by a factor of several better than

with current data. Consequently, we note the presence of artificial temperature inver-

sions at phases 2 and 4 under the 1TP model between 10−1 bar and 10−4 bar. At

other phases, such as phase 3 and 5 (not shown in Figure 3.12), we do not find this

phenomenon. This is yet another example of false conclusions that could arise from the

overly simplistic 1TP profile assumption.

Figure 3.13 shows the simulated data and fitted spectra from the two models.

As anticipated based on the abundance inference, the 1TP model produces poor fits.

At phase 2, we see that the model spectra miss the data points between 1.4 − 3.2µm,
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Figure 3.11: Abundance vs. phase results from JWST simulated data for H2O, CH4,
CO, CO2, NH3 for the 1TP model (blue) and the 2TP-Crescent model (dark pink). For
each panel, we plot the posterior probability distribution of the log of the molecule’s
mixing ratio as a function of orbital phase. The distributions are set to show the same
total height at each phase and thus do not show the relative probability. For simulated
data, we only consider half an orbit (transit to secondary eclipse), or eight orbital steps.
For each molecule, we indicate its input abundance value with the vertical dashed line.
The 1TP model produces constrained but bias posteriors for all molecules at multiple
phases. Most of them have incorrect estimates for half the orbit. With the 2TP-Crescent
model, we can get well-constrained and accurate estimates of H2O and CO. We have
upper limits for the remaining molecules, which do not have large input values to begin
with.
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Figure 3.12: Temperature-pressure (TP) profiles for simulated JWST data. We selected
phases 1, 2, 4, and 7 to show the change in TP profile constraint as a function of phase.
In each panel, the dashed line represent the true input profiles for the day and night
sides. The retrieved 2TP-Crescent profiles are in blue (night) and red (day). The
retrieved 1TP profiles are in yellow. For each distribution, we show the median profile
in a solid line, surrounded by the 2σ spread in profiles based on reconstructed random
posterior draws. For certain phases, the 1TP profiles appear to have a temperature
inversion. The 1TP profiles are close to the day-side profile as early as phase 4 (half
day, half night). The 2TP profiles for day and night are accurate and precise.
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Figure 3.13: Simulated JWST data and high-resolution spectra generated with random
posterior draws from the retrieval. Shown here are the spectra for phases 2, 4, and 7.
1TP spectra are in magenta while 2TP-Crescent spectra are in green. For each set of
model spectra, we plot the median, 1σ, and 2σ contour. We include corresponding χν
values for the 1TP and 2TP(-Crescent) models, which can be small because random
noise is not included. The JWST results are so precise that the contours are difficult
to see. The 1TP spectra do not fit the majority of the data points at phases besides
secondary eclipse.
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with a reduction in flux with respect to the data. Then, between 3.6 − 10µm, we see

elevated flux. The quality of fit from the two models is easily distinguishable due to

the precise 1σ and 2σ contours, and the 1TP model is not able to properly fit the data

until just before secondary eclipse.

3.3.4 Joint Phase Retrieval

The previous phase-by-phase analyses are useful for determine phase-dependent

properties like abundance variations. They also demonstrated the possibility of strong

biases when using too simplistic of a model. Here we explore the feasibility of a joint

phase curve retrieval whereby we simultaneously retrieve upon all phases, locking cer-

tain properties at each phase. The goal is to determine if improved precision can be

obtained on atmospheric properties that are expected to be uniform with phase. For in-

stance, while we expect temperatures and the abundances of some species (and clouds)

to vary with longitude, the overall atmospheric metallicity, or carbon-to-oxygen ratios

should not (provided the appropriate chemistry is taken into account). This in a sense

would be an intermediate step before employing full “3D GCM-retrievals”.

We explore the joint phase curve retrieval on three cases: both the simu-

lated and Stevenson et al. (2017) HST+Spitzer WASP-43b phase curve data as well

as simulated JWST phase curve data. In all three observational scenarios, we explore

two separate 2TP modeling assumptions: the first is our new geometric method where

limb darkening is appropriately accounted for per Gaussian quadrature annulus (2TP-

Crescent), and the second is 2TP-Fixed, where we apply parameter fday, a set value

based on Equation A.1, to account for phase-dependent fluxes.
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In these examples, we assume that the gas mixing ratios are the phase-independent

quantities with only the contribution of the temperature profiles changing with phase.

Figure 3.14 summarizes the abundance constraints under these conditions. We also

include the constraints from Sections 3.3.2 and 3.3.3 at phase 7 (secondary eclipse) for

comparison.

For most molecules, the joint retrieval shows similar results to the phase 7

retrieval in the case of simulated data. This is expected as the abundances are designed

to remain constant with phase. The only case where the two joint methods differ sig-

nificantly is for CH4. While the joint 2TP-Crescent retrieval does not retrieve phantom

elevated amounts of CH4, the joint 2TP-Fixed retrieval suffers from this bias. CO is

detected at the input value while having a large tail to the distributions that does not

rule out lower values. Both models also detect CO2 for the simulated data; however,

we attribute these to the correlation seen between CO and CO2 based on Spitzer data

points.

For WASP-43b phase curve data, we see larger discrepancies between the two

joint approaches as well as the results from the individual phase 7 retrieval. In contrast

to the simulated case, it appears that the secondary eclipse conditions are not repre-

sentative of the planet over the orbit. We do not see any CH4 bias for either model.

The CO distributions peak at different values, unlike in the simulated data results.

CO2, which is constrained again, exhibits similar results, with secondary eclipse peak-

ing at the higest value, followed by joint 2TP-Crescent and then joint 2TP-Fixed; this

is demonstration of the CO-CO2 correlation.
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We find a well-constrained distribution for water from the observed data,

log H2O = −3.71+0.31
−0.24, when using the joint 2TP-Crescent retrieval. This is consistent

with the 2TP-Fixed model finding within 1σ but about 3σ away from the constraint at

secondary eclipse.

Kreidberg et al. (2014a) demonstrated the power of combining posteriors from

multiple HST WFC3 data sets (secondary eclipse and transit) to precisely estimate

the H2O abundance for WASP-43b. Stevenson et al. (2017) added Spitzer data in the

atmospheric analysis of WASP-43 b. Using a 1TP retrieval model, Stevenson et al.

(2017) grouped dayside-dominant and nightside-dominant phases together, providing

a H2O estimate for each as there appeared to be lower H2O on the nightside. Figure

3.15 compares the H2O distribution from the joint retrieval of WASP-43b spectroscopic

phase curve data to the estimates from Kreidberg et al. (2014a) and Stevenson et al.

(2017). Our approach differs in that we did not combine posteriors from the phase-

by-phase retrievals after the fact but instead utilized the sum of log-likelihoods at each

phase to derive a “self-consistent” posterior. The joint phase retrieval places the mixing

ratio of H2O to be between a 1σ range of 1.1× 10−4 – 3.9× 10−4, more consistent with

the Stevenson et al. (2017) estimate using dayside phases (1σ of 1.4×10−4 – 6.1×10−4).

We see less variation as a function of phase in H2O abundance using the 2TP-Crescent

model, thus we did not differentiate between day and night phases. As seen in Figure

3.15(a), our H2O estimate is not only consistent with Kreidberg et al. (2014a) but is

also more precise. We note that we agree with the constraint determined by Irwin et al.

(2020) as well, where H2O is (2 − 10) × 10−4 for WASP-43b based on Stevenson et al.
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(2017) data.

Another noteworthy result from the joint WASP-43b retrievals is the constraint

of NH3. Both 2TP-Fixed and 2TP-Crescent approaches agree on log NH3 = −4.89+0.29
−0.34.

Strong constraints should always be met with skepticism. However, we note that the re-

trieved constraint is consistent with expectations from solar-composition disequlibirum

chemical models of similar hot Jupiters (∼ 1 × 10−7 − 1 × 10−4 over the atmospheric

pressures probed in emission; e.g., Moses et al. (2011), although this depends on the

value of Tint (Thorngren et al. 2019)).

Figure 3.16 shows the spectra fits from the joint retrieval of the observed

WASP-43b data compared to the 2TP-Crescent phase-by-phase retrievals. The fits

from the joint retrieval are poorer fits to the data than the phase-by-phase case. We

expect this result because the joint retrieval is restricted by needing to fit the same set

of abundances and profiles to different phases at once. The only change from phase

to phase in the joint retrieval is the relative area between the hotter and the cooler

profile, and thus the shape of the overall spectra from the joint retrieval looks the same

at all phases, just at varying levels of total flux. Yet, the use of the full phase curve

data set is worth further development since the data from one phase is not independent

to the next. Together they paint a holistic image of a planet’s atmosphere, and that

relationship between phases should be reflected in a retrieval framework for phase curves

(e.g., Irwin et al. 2020).

For completeness, in Figure 3.17, we show TP profile constraints under the

joint retrieval for all three data sets. The joint retrievals place tighter constraints on
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Simulated 
HST+Spitzer

(a) Simulated HST+Spitzer:
Constraints from joint retrievals

WASP-43 b

(b) WASP-43b: Constraints
from joint retrievals

Simulated 
JWST

(c) JWST: Constraints from
joint retrievals

Figure 3.14: Left: Constraints distributions of the five retrieved molecules from simu-
lated HST+Spitzer data with: (1) averaged posterior from the phase-by-phase retrievals
from Section 3.3.1, (2) joint retrieval of all phases using the 2TP-fixed model,(3) joint
retrieval of all phases using the 2TP-Crescent model. Dashed line indicates the input
value for each molecule. Middle: Posterior distributions of the same cases using WASP-
43b data. The joint retrieval is able to return more precise distributions; in some cases,
however, the advantage of combining multiple data sets also enhances bias in the result.
Right: Posterior distributions of the same cases using simulated JWST data. Distribu-
tions from jointly-done retrievals indicate stronger, more precise detection. 2TP-Fixed
and 2TP-Crescent approaches yield similar results.
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(a) Comparing H2O constraints: joint vs. Krei-
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(b) Comparing 1σ for H2O estimates

Figure 3.15: Comparing existing H2O estimates and the estimate from this study using
the joint retrieval for WASP-43b. Fig. 3.15(a): We plot the posterior distribution for
H2O from the joint retrieval along with the distributions from Kreidberg et al. (2014a).
These include the posterior based on secondary eclipse only, transmission only, and the
joint distribution (multiplication of the two posteriors) from the two sets of observations.
Fig. 3.15(b): Illustration of the 1σ range of H2O estimates from the Kreidberg et al.
(2014a) joint distribution, Stevenson et al. (2017), and this study. The Stevenson et al.
(2017) results are based on multiplying the posteriors from phases grouped as day (first
to third quarter) and night and determine corresponding joint H2O posteriors. Vertical
dashed lines are placed to guide the eye during comparison. The joint retrieval constraint
of H2O is lower than the Kreidberg et al. (2014a) 1σ range, but it is overall consistent
with their joint distribution and with the dayside estimate from Stevenson et al. (2017).
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Figure 3.16: WASP-43b data (HST+Spizter) and high-resolution spectra generated with
random posterior draws from the joint retrieval. Shown here are the spectra for phases
1, 3, 4, 7, 10, and 13. Overplotted are the spectral fits from the phase-by-phase 2TP-
Crescent retrievals (see Figure 3.8). We include corresponding χν values for the Joint
and 2TP(-Crescent) cases. In the panel of phase 7, we overplot the Spitzer 3.6µm and
4.5µm filter transmission. Jointly-fit spectra are in magenta while 2TP-Crescent spectra
are in green. For each set of model spectra, we plot the median, 1σ, and 2σ contour.
Although the constraints are more precise with the joint retrievals, the goodness-of-fit
is worse compared to the phase-by-phase scenario. This is expected given only one set
of parameters (abundances, TP profiles) were allowed in order to fit all the phases.

the TP profiles for all data sets; based on the simulated cases, we can see that the

joint retrieval is able to accurately reconstruct the true profiles. That is to say, if an

atmosphere is indeed dominated by two contrasting profiles, the joint approach is able

to identify them.

Finally, Figure 3.14(c) summarizes the abundance constraints resulting from

the joint-phase fits for the simulated JWST data. The major advantage seen in simu-

lated retrieval results of JWST data is once again the precision along with the accuracy;

here, the precision improvement is almost a factor of two. We also find that 2TP-Fixed

and 2TP-Crescent provide similar constraints. This suggests that 2TP-Fixed imposes
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(c) TP constraints from joint re-
trievals, simulated JWST

Figure 3.17: Constraints of day and night temperature-pressure profiles from joint re-
trievals of (left) simulated HST/Spitzer data, (middle) observed WASP-43b data, and
(right) simulated JWST data. The profiles shown are the median fit and 2σ envelope
of fits from the retrievals. Also included are the phase-by-phase retrieval results of the
day profile from phase 7 (secondary eclipse) and night profile from phase 1 (right after
transit); see Section 3.3.1. Dashed lines are the input profiles for the simulated data.
The joint retrievals are able to accurately model the true profiles in simulated cases, and
provide more precise constraints on the TP profiles than the phase-by-phase retrievals
for all data sets.

little bias in the context of our simulated JWST data.
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3.4 Discussion and Conclusions

Spectroscopic phase curves offer insight into planetary climate and chemistry

by providing a measure of the 2D nature of species abundances and temperature. We

can maximize our leverage of these powerful data sets with atmospheric retrievals.

We have generalized our previous non-homogeneous temperature retrieval method-

ology (Feng et al. 2016) to arbitrary phases using a new geometry scheme. We inves-

tigated several TP modeling scenarios: 1TP, 2TP-Crescent, 2TP-Free, and 2TP-Fixed.

A 2TP setup uses two profiles to explain the variation in flux as a function of phase

while a 1TP setup relies on a changing profile throughout the orbit. We combined these

scenarios with different observational setups: simulated HST WFC3 spectroscopy with

Spitzer IRAC photometry, actual HST+Spitzer data for WASP-43b from Stevenson

et al. (2017), and simulated JWST data (NIRISS + NIRCam + MIRI LRS). By both

using Bayesian model selection and examining the posteriors with respect to the input

values for simulated data, we were able to determine which phases need the use of a

2TP model to accurately interpret the atmosphere.

Our simulated HST+Spitzer data setups provided the following insights:

• Even phases closer to transit (i.e., more nightside) can constrain the dayside profile

because the hotter profile provides more flux.

• We are justified in using a 2TP model for three out of eight phases (which span

half an orbit).

• For HST+Spitzer, several of the phases that favored the 1TP model in model-
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comparison context returned biased abundance posterior distributions. In par-

ticular, CH4 appeared artificially constrained at higher values than the input for

phases 1 through 5 of the simulated HST+Spitzer data.

• H2O constraints are robust regardless of model choice.

• Upper limits are placed on CO but CO2 has biased detection; this results from

the correlation between the two molecules given overlapping features within the

Spitzer photometric bands.

In the case of simulated JWST data:

• Every phase strongly justified the use of two profiles except for secondary eclipse

(as there is no second TP contribution to the flux). The 1TP model was severely

biased in terms of abundance retrievals for all molecules.

• Certain instances of the 1TP model also showed signs of temperature inversion in

the profile, adding another layer to its inaccuracy.

• With the 2TP-Crescent model, JWST provides precise constraints on the mix-

ing ratios of H2O and CO, offering up to a factor of five improvement over

HST+Spitzer results.

• We found that the wavelengths of 1.4-3.2 and 3.6-10 micron best differentiated

the 1TP and the 2TP models.

The important distinguishing wavelength ranges we identified are missing in

modern observations. Taylor et al. (2020) examined the information content for different
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JWST observing modes for a planet with inhomogeneous temperature structure, estab-

lishing NIRSpec’s observing range (∼1-5 µm) as especially effective. By considering

four different amounts of hot profile contribution, Taylor et al. (2020) also investigated

the impact of phase angle, finding prominent abundance biases when relying on the 1D

model as we have. When we combine longitudinal information from different phases,

we can leverage the retrieval technique to better optimize JWST observations.

Meanwhile, our application of the different model approaches to the Stevenson

et al. (2017) WASP-43b phase curve data reveals:

• A little under half of the phases have moderate evidence in favor of a 2D model,

mostly for phases with more night side visible.

• The 2TP-Crescent model retrieved consistent profiles for the day and night sides

over the orbit.

• The 1TP model finds peaked CH4 distributions at 8 out of the 15 orbital phases

that are reminiscent of the biased distributions seen in the simulated data set.

• There is no evidence of CO, while CO2 is constrained. This is likely the same

artificial behavior seen in the simulated data caused by the CO-CO2 correlation.

• H2O is mostly consistent from phase to phase. However, the 2TP-Free model

prefers higher values at phases 10-13 than 2TP-Crescent (and 1TP). Thus, the

implementation of a more complex model (thermal inhomogeneity in our case)

can affect interpretation.
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• We identified the evidence of the hot-spot offset on WASP-43b based on the 2TP-

Free model results.

We also found that we can combine observed data and our phase-dependent

retrieval approach to identify interesting phenomena associated with asymmetry over an

orbit. The 2TP-Crescent model retrieves upper limits for CH4 except at phase 11; with

the Free model, that phase is an upper limit instead. The relaxed assumption about

day-side emission fraction in the 2TP-Free model allows the model to fit for the slope

between the Spitzer points with less day side flux contribution while the 2TP-Crescent

model needed significant absorption due to CH4 to do so. It is helpful to look at the

full orbit to spot consistency or outliers.

Recently, Mendonça et al. (2018a) and Morello et al. (2019) reanalyzed the

Spitzer points from Stevenson et al. (2017) - several of the “anomalous” phases (e.g.,

phase 11, or 0.75) where we detected CH4 in the 2TP-Crescent model have had their

points shifted upwards, particularly the 3.6µm band point. While we did not retrieve on

this reanalysis to be consistent with the approach in Irwin et al. (2020), this could yield

different results of CH4, CO, and CO2 abundances. Further investigation is warranted;

however, this is another reason why retrieving on the full phase curve can be beneficial

to provide a more holistic picture of an atmosphere.

Finally, we introduced the concept of a joint phase curve retrieval and applied

that to simulated HST+Spitzer data, the Stevenson et al. (2017) WASP-43b data set,

and simulated JWST observations and found:

• The 2TP-Crescent and 2TP-Fixed models were consistent in performance, al-
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though the 2TP-Fixed model was more prone to biased detection.

• NH3 is tightly constrained (about half a dex) to ∼ 10−5 for WASP-43b by the

2D models. This is an interesting constraint that is plausibly consistent with

expectations from disequilibrium chemistry models of similar temperature hot

Jupiters. JWST will show if this is real or another bias.

• We can place a constraint on H2O for WASP-43b at 1σ range of 1.1 × 10−4 –

3.9× 10−4, increasing precision while remaining consistent with previous studies.

• For simulated JWST data, the increase in precision of the constraints compared

to the phase-by-phase approach is notable for H2O and CO, approximately by a

factor of two.

Based on these results, it would be best to combine both the phase-by-phase

and joint retrieval approaches. Phase-by-phase retrievals identify outliers, providing

more insight to accuracy, while the joint can improve precision for molecules with accu-

rate inference. We should also be strategic about applying different models to different

phases in order to probe the different temperature structures (e.g., 1D for secondary

eclipse).

3.4.1 Future Work

The value of phase curve retrievals is clear. The promise of richer data sets will

necessarily demand the advancement of 3D retrieval techniques, in turn improving our

understanding of the 3D-nature of planets. In this study, we used our forward model to

generate the data. Onwards, we plan to use 3D GCM models (e.g., Blecic et al. 2017;
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Irwin et al. 2020) to provide the spectra that we retrieve to better identify degeneracies

and inform retrieval forward model expansions, including:

1. Non-uniform chemistry. As our model currently assumes the same chemical

composition and distribution for the day and night profiles, an important next upgrade

should be to allow differences in the mixing ratios. Bayesian model comparison will

once again be important in determining if the data quality justifies the inclusion of the

extra parameters associated with more complex chemical profiles. Three-dimensional

modelling has shown evidence of species transport (Drummond et al. 2020), so retrievals

should study its detectability and differentiate between transport and biased constraints.

Another important consideration is that we are not seeing the constraint capabilities of

observations for molecules such as CO2, CH4, or NH3, which were chosen to be low in

abundance in our study.

2. Various temperature contrasts. We note that unlike in Feng et al. (2016),

where we vary the temperature contrast between the day and night side, we maintained a

fixed, large contrast to better isolate differences. This contrast also models the observed

WASP-43b data well. In follow-up work, we suggest implementing multiple contrasts to

better model other hot Jupiters. It may be worthwhile to include a means of modeling

a more gradual temperature change from the day to night side, as done in Irwin et al.

(2020); this could be done in conjunction with abundance variation.

3. Clouds. Our scenarios remain cloud-free, so the implementation of clouds

in our retrieval framework can extend our study of existing and future data sets. Irwin

et al. (2020)’s 2.5D retrieval does not assume clouds either, and infer the presence of
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clouds on the night side of WASP-43b based on the retrieved low temperatures, which

are evident in our retrievals as well. Venot et al. (2020) perform cloudy and cloud-

free retrievals on simulated JWST MIRI phase curves of WASP-43b. This important

groundwork finds that the 5 − 12µm range can confirm or rule out the presence of

clouds, although this is dependent on cloud bulk properties and composition. With a

variety of aerosol implementation available, there is much to be done in cloudy retrievals

(Barstow et al. 2020). It is, however, worth noting that strong evidence for relatively

cloud-free daysides.

4. More specialized geometry. We can apply our annulus framework to ge-

ometries beyond crescent phases. For instance, we can explore hot spots on the dayside

prominent near secondary eclipse, complementing future eclipse mapping studies. Ohno

& Zhang (2019) presented the impact of planetary obliquity on phase curves, and our

retrieval model can be adapted to study the detection of obliquity.
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Chapter 4

Characterizing Earth Analogs in

Reflected Light: Atmospheric

Retrieval Studies for Future

Space Telescopes

4.1 Introduction

The scientific field of exoplanets has been rapidly advancing since the hallmark

discovery of the first planet orbiting a Sun-like star (Mayor & Queloz 1995). Following

the launch of NASA’s Kepler mission (Borucki et al. 2003, 2011), the field has seen the

discovery of thousands of transiting exoplanets and the exciting result that planets with

radii between 0.75–2.5 R⊕ are common around solar-type stars (Burke et al. 2015). Only
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within the last decade have observational studies for exoplanet atmospheric characteri-

zation seen substantial development, starting with the first detection of an exoplanet’s

atmosphere by Charbonneau et al. (2002).

To date, the majority of exoplanet atmospheric characterization investigations

have focused on transiting worlds. Hot Jupiters, owing to their large sizes and short

orbital periods, are typically emphasized as targets for these studies. Characterization

of small, potentially rocky exoplanets is limited to worlds with cool stellar hosts (K

and M dwarfs), which offer favorable planet-to-star size ratios. Recently, de Wit et al.

(2016) studied the combined transmission spectra of two transiting Earth-sized planets

orbiting the ultracool dwarf TRAPPIST-1 using the Hubble Space Telescope. While no

gas absorption features were detected by de Wit et al. (2016), this work highlights the

improvements in signal size when terrestrial-sized transiting planets are studied around

low-mass stars. Additionally, since the Habitable Zone (Kasting et al. 1993) around

a low-mass star is relatively close-in, characterization studies of potentially habitable

exoplanets around cool stars can benefit from the frequency of transit events. However,

for Sun-like hosts, the planet-to-star size ratio is much less favorable and the Habitable

Zone is located far from the star, thus severely limiting the potential for atmospheric

characterization.

Direct, high-contrast imaging has now emerged as an essential technique for

studying the atmospheres of planets at larger orbital separations from their host star

(i.e., at orbital distances & 1 au). Thus far, high-contrast imaging has been proven

successful in studying atmospheres of young, self-luminous gas giants in the near-infrared
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and mid-infrared (e.g., Barman et al. 2011; Skemer et al. 2014; Macintosh et al. 2015).

These worlds, owing to their intrinsic brightness, have typical contrast ratios of 10−4

with respect to their hosts. A true Jupiter analog at visible wavelengths, by comparison,

would have a contrast ratio of 10−9, while an Earth analog would have a contrast ratio

of order 10−10. Reflected light in the visible probes to atmospheric depths of up to ∼ 10

bar for giant planets (Marley et al. 2014), which is complimentary to the relatively low

pressures probed in transit observations (typically less than 10–100 mbar). Additionally,

the wavelength range of 0.4–1.0 µm holds rich information about a planet’s atmosphere,

including signatures of methane, water vapor, and haze (Marley et al. 2014; Burrows

2014).

In spite of the incredible technological challenges, there are multiple planned

or in-development space-based missions that would be capable of high-contrast imaging

of exoplanets in reflected light. First among these will be NASA’s Wide-Field InfraRed

Survey Telescope (WFIRST, Spergel et al. 2013), which was identified as the top priority

space mission in the 2010 National Academy of Sciences Decadal Survey of Astronomy

and Astrophysics2. The WFIRST mission will carry a Coronagraphic Instrument (CGI)

with imaging capability and a visible-light integral field spectrograph of wavelength

resolution ∼ 50 (Noecker et al. 2016; Trauger et al. 2016; Seo et al. 2016; Cady et al.

2016; Balasubramanian et al. 2016; Groff et al. 2018). Although envisioned primarily

as a technology demonstrator, it may study the atmospheres of relatively cool gas giant

exoplanets that have been previously detected using the radial velocity technique (Traub

et al. 2016).

2http://sites.nationalacademies.org/bpa/bpa_049810
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While WFIRST could also have some capability to survey stars in the solar

neighborhood for lower-mass planetary companions (Burrows 2014; Greco & Burrows

2015; Spergel et al. 2015; Savransky & Garrett 2016; Robinson et al. 2016), it is antic-

ipated that the core optical throughput of the WFIRST CGI will be low for planetary

signals. This stems primarily from the complexities of accommodating for WFIRST’s

on-axis secondary mirror and support structures within the high-contrast instruments

(Traub et al. 2016; Krist et al. 2016). Low throughput drives long requisite integration

times, thereby likely making spectroscopic observations of smaller, less-bright worlds

(such as super-Earth exoplanets) unfeasible except around the very closest stars (Robin-

son et al. 2016). However, if the WFIRST spacecraft were to be paired with an external

starshade (Cash 2006; Kasdin et al. 2012), the CGI can be operated in a direct mode

without coronagraphic masks, substantially increasing throughput. High-contrast imag-

ing of sub-Neptune and terrestrial-sized exoplanets may then become possible. The

feasibility of a starshade “rendezvous” with the WFIRST spacecraft is under active

investigation (Seager et al. 2015; Crill & Siegler 2017).

In advance of the 2020 astronomy and astrophysics decadal survey, several

large-scale space-based mission concepts are being studied3. Of these, two have a

strong focus on the characterization of rocky exoplanets with direct imaging: the Hab-

itable Exoplanet Imaging Mission (HabEx; Mennesson et al. 2016) and the Large Ultra-

Violet/Optical/InfraRed Surveyor (LUVOIR; Peterson et al. 2017). HabEx and LU-

VOIR are incorporating aspects of design that would allow the detection of water vapor

and biosignatures on planets in the Habitable Zones of nearby Sun-like stars. It is

3https://science.nasa.gov/astrophysics/2020-decadal-survey-planning
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therefore timely and critical that we explore observational approaches that maximize

science yield during the development of these large-scale mission concepts as well as the

WFIRST rendezvous concept. To accomplish this, we must perform atmospheric and

instrument modeling to simulate the types of spectra we can expect to measure, and we

must develop tools to infer planetary properties from these simulated observations.

Traditionally, the comparison to a limited range of forward models has been

used to infer atmospheric properties (such as temperature structure and gas abundances)

from spectral observations. This involves iterating to a radiative-convective solution for

a given set of planetary parameters (e.g., gravity, metallicity, equilibrium abundances,

incident flux), and can include detailed treatment of aerosols, chemistry, and dynamics

within the model atmosphere (Marley & Robinson 2015). The goal is to generate a

spectrum that matches available data and, thus, offers one potential explanation for the

world’s atmospheric state (e.g., Konopacky et al. 2013; Macintosh et al. 2015; Barman

et al. 2015). A more data-driven interpretation of atmospheric observations is accom-

plished through inverse modeling, or retrievals. Developed for Solar System studies and

remote sensing (e.g., Rodgers 1976; Irwin et al. 2008), retrievals have become a valu-

able tool in constraining our understanding of the atmospheres of transiting exoplanets.

Early exoplanet retrieval work invoked grid-based optimization schemes (Madhusudhan

& Seager 2009), while subsequent works have taken advantage of Bayesian inference

with methods such as optimal estimation and Markov chain Monte Carlo (MCMC)

(e.g., Lee et al. 2012; Benneke & Seager 2012; Line et al. 2013).

Several studies have examined the hypothetical yield from characterizing giant
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exoplanets observed with a space-based coronagraph (such as WFIRST ) with retrieval

techniques. Marley et al. (2014), for example, modeled spectra we could expect from

known radial velocity gas giants if observed by the WFIRST CGI. Given the diversity

of cool giant planets, the model spectra have a variety of input assumptions for clouds,

surface gravity, and atmospheric metallicity. Marley et al. (2014) then applied retrieval

methods to these synthetic spectra, enabling the exploration of how well atmospheric

parameters are constrained under varying quality of data. Lupu et al. (2016) further

investigated the feasibility of characterizing cool giant planet atmospheres through re-

trieval, focusing on the ability to constrain the CH4 abundance and cloud properties.

The systematic study of the impact of conditions like signal-to-noise ratios or wave-

length resolution is essential to quantifying the scientific return of these reflected-light

observations. Nayak et al. (2017) considered the impact of an unknown phase angle on

the inference of properties such as planet radius and gravity. In all of these studies, the

signal-to-noise ratio (SNR) of the data has a significant influence on the constraints of

atmospheric properties.

Previous work on smaller planets in the context of possible future space mis-

sions includes von Paris et al. (2013), who synthesized infrared emission observations

of a cloud-free, directly-imaged Earth-twin, and employed a least-squares approach and

χ2 maps to perform retrievals and explore parameter space (considering the effects of

instrument resolution and SNRs). A collection of recent studies (Wang et al. 2017b;

Mawet et al. 2017; Wang et al. 2017a) examined atmospheric species detection using

“High Dispersion Coronagraphy”, which couples starlight suppression technologies with
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high resolution spectroscopy. In these studies, simulated observations (typically at spec-

tral resolutions, R = λ/∆λ, of many hundreds to tens of thousands) are cross-correlated

with template molecular opacity spectra to explore the feasibility of species detection.

While this novel approach can yield detections of key atmospheric constituents, the

abundance of these these atmospheric species cannot be robustly constrained.

To date, there still does not exist a systematic study of atmospheric character-

ization of small exoplanets using retrieval techniques on reflected light observations at

spectral resolutions relevant to WFIRST rendezvous, HabEx, and LUVOIR. Motivated

by this need, we present here our extension of Bayesian retrieval techniques into the

terrestrial regime. We construct a forward model suitable for simulating reflectance

spectra of Earth-like planets in the visible wavelength range of 0.4 µm to 1.0 µm. We

explore retrievals of planetary and atmospheric properties from simulated data sets at

varying spectral resolutions and SNRs. A retrieval framework such as this allows us to

quantify uncertainties we expect for key planetary parameters given certain observing

scenarios. Thus, our approach enables us to search for the minimal observing conditions

that achieve the scientific goal of identifying traits associated with habitability and life.

In particular, we are interested in our ability to detect and constrain abundances of

molecules such as water, oxygen, and ozone, characterize basic properties of a cloud

layer, and measure bulk parameters such as radius.

In section 4.2, we describe our forward model and construction of simulated

data. In section 4.3, we validate our forward model by building up retrieval complex-

ity (i.e., number of retrieved parameters). We perform a study of retrieval perfor-
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mance with respect to spectral resolution and SNR in section 4.4, with implications

for HabEx/LUVOIR. We also study the retrieval performance for data sets expected

from a WFIRST rendezvous scenario, where the CGI would provide modest-resolution

spectroscopy in the red (600–970 nm) and photometry in the blue (480–600 nm). We

present our discussion and conclusions in sections 4.5 and 4.6, respectively.

4.2 Methods

The observed quantity for a directly imaged exoplanet in reflected light at a

given phase (i.e., planet-star-observer) angle, α, is the wavelength dependent planet-to-

star flux ratio,

Fp
Fs

= AgΦ(α)
(Rp
r

)2
, (4.1)

where Ag is the geometric albedo, Φ(α) is the phase function, Rp is the radius of

the planet, and r is the orbital separation. The phase function (which depends on

wavelength) translates the planetary brightness at full phase (i.e., where α = 0◦) to

its brightness at different phase angles. The wavelength dependent geometric albedo

is the ratio between the measured flux from the planet at full phase to that from

a perfectly reflecting Lambert (i.e., isotropically-reflecting) disk with the size of the

planet. We denote the product of the geometric albedo and the phase function as the

phase dependent “reflectance” of the planet. In general, the geometric albedo encodes

information about the composition and structure (i.e., “state”) of an atmosphere, while

the phase function is strongly related to the scattering properties of an atmosphere (e.g.,

Marley et al. 1999; Burrows 2014).
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To understand the information contained in direct imaging observations of ex-

oplanets in reflected light, we employ a retrieval (or inverse analysis) framework that

consists of several linked simulation tools and models. Of central importance is a well-

tested three-dimensional albedo model—described in greater depth below—that com-

putes a reflectance spectrum at high resolution for a planet given a description of its

atmospheric state (McKay et al. 1989; Marley et al. 1999; Cahoy et al. 2010; Lupu

et al. 2016; Nayak et al. 2017). When coupled with a simulator for degrading a high

resolution spectrum to match the resolution of an instrument, we refer to these two

tools as the “forward model.” By adding simulated noise to forward model spectra,

we generate faux “observations” of worlds as would be studied by future high-contrast

imaging missions. To create “observed” spectra, we adopt a widely-used direct imaging

instrument simulator (Robinson et al. 2016) that generates synthetic observations given

an input, noise-free spectrum.

Given an “observed” planet-to-star flux ratio spectrum, our inverse analyses

use a Bayesian inference tool that compares the observation to forward model out-

puts to sample the posterior probability distributions for a collection of atmospheric

state parameters. In other words, our inverse analyses indicate what range of atmo-

spheric state parameters (e.g., gas abundances) adequately describe a direct imaging

observation. Our Bayesian parameter estimations use an open-source affine invariant

Markov-Chain Monte Carlo (MCMC) ensemble sampler—emcee (Goodman & Weare

2010; Foreman-Mackey et al. 2013).

In this work, retrieval analyses generally proceed by first simulating a noise-
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free spectrum of a world with a known atmospheric state (e.g., Earth). We then add

simulated observational noise to this spectrum to create a synthetic observation. Fol-

lowing Bayesian parameter estimation on this synthetic observation, we can compare a

retrieved atmospheric state to the original, known atmospheric state, thereby allowing

us to understand how observational noise affects our ability to deduce the true nature

of an exoplanetary atmosphere.

4.2.1 Albedo Model

Our three-dimensional albedo model (see also Cahoy et al. 2010) divides a

world into a number of plane-parallel facets with coordinates of longitude (ζ) and co-

latitude (η), with the former referenced from the sub-observer location and the latter

ranging from 0 at the northern pole to π at the southern pole. A single facet has

downwelling incident stellar radiation from a zenith angle µs = cos θs = sin η cos (ζ − α),

where, as earlier, α is the phase angle. The facet reflects to the observer in a direction

whose zenith angle is given by µo = cos θo = sin η cos ζ. Note that, at full phase (where

the geometric albedo is defined) the observer and the source are colinear such that

µo = µs for all facets.

The atmosphere above each facet is divided into a set of pressure levels, and we

perform a radiative transfer calculation to determine the emergent intensity. With the

intensities calculated for an entire visible hemisphere, we follow the methods outlined by

Horak (1950) and Horak & Little (1965) to perform integration using Chebychev-Gauss

quadrature, thus producing the reflectance value at a given wavelength. We repeat

this procedure at each of the wavelength points within a specified range to build up a
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reflectance spectrum.

Taking I(τ, µ, φ) to be the wavelength-dependent intensity at optical depth τ

in a direction determined by the zenith and azimuth angles µ and φ, we ultimately need

to determine the emergent intensity from each facet in the direction of the observer,

I(τ = 0, µo, φo). Thus, for each facet we must solve the one-dimensional, plane-parallel

radiative transfer equation,

µ
dI

dτ
= I(τ, µ, φ)− S(τ, µ, φ), (4.2)

where S is the wavelength dependent source function. Following Meador & Weaver

(1980), Toon et al. (1989), and Marley & Robinson (2015), the source function is

S(τ, µ, φ) =
ω̄

4π
Fs · p(τ, µ, φ,−µs, φs) · e−τ/µ�

+ ω̄

∫ 2π

0
dφ′
∫ 1

−1

dµ′

4π
· I(τ, µ′, φ′) · p(τ, µ, φ, µ′, φ′),

(4.3)

where ω̄ is the single scattering albedo, Fs is the incoming stellar flux at the top of

the atmosphere (which we normalize to unity so that emergent intensities correspond to

reflectivities), φs is the stellar azimuth angle, and p is the scattering phase function. Note

that our source function does not include an emission term since we are not computing

thermal spectra. Recall that the first term in Equation 4.3 describes directly scattered

radiation from the direct solar beam while the final term describes diffusely scattered

radiation from the (µ′, φ′) direction scattering into the (µ, φ) direction.

Like most standard tools for solving the radiative transfer equation, we sepa-

rate treatments of directly-scattered radiation from diffusely-scattered radiation, and,
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for both, it is convenient to express the scattering phase function in terms of a unique

scattering angle, Θ. As single scattered radiation typically has more distinct forward

and backward scattering features, we choose to represent the scattering phase func-

tion for the direct beam with a two-term Henyey-Greenstein (TTHG) phase function

(Kattawar 1975),

pTTHG(Θ) = fpHG(gf ,Θ) + (1− f)pHG(gb,Θ) (4.4)

where pHG is the Henyey-Greenstein (HG) phase function with,

pHG =
1

4π

1− ḡ2

(1 + ḡ2 − 2ḡ cos Θ)3/2
. (4.5)

Recall that a TTHG phase function can represent both forward and backward scatter-

ing peaks, while the (one term) Henyey-Greenstein phase function only has one peak

(typically in the forward direction). In the previous expressions, ḡ is the asymmetry

parameter, f is the forward/backward scatter fraction, gf is the asymmetry parameter

for the forward-scattered portion of the TTHG, and gb is the asymmetry parameter for

the backward-scattered portion of the TTHG. For the forward and backward scattering

portions of the TTHG phase function, we use gf = ḡ, gb = −ḡ/2, and f = 1 − g2
b.

Substituting these into the TTHG phase function expression yields,

pTTHG =
ḡ2

4
pHG(−ḡ/2,Θ) + (1− ḡ2

4
)pHG(ḡ,Θ). (4.6)

For radiation that is single-scattered from the solar beam to the observer, the scattering
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geometry is fixed by the planetary phase angle such that Θ = π − α. Our choice of

parameters, and their relation to ḡ, in the TTHG was designed by Cahoy et al. (2010)

to roughly reproduce the phase function of liquid water clouds. This parameterization,

however, is different from that proposed by Kattawar (1975). We do not expect our

results to be sensitive to the details of a particular phase function treatment as Lupu

et al. (2016) showed that scattered-light retrievals struggle to constrain phase function

parameters.

We adopt a standard two-stream approach to solving the radiative transfer

equation (Meador & Weaver 1980). In this case, the diffusely-scattered component of

the source function is azimuthally averaged. Combined with our representation of the

directly-scattered component, we have,

S(τ, µ, µs, α) =
ω̄

4π
Fs · pTTHG(µ,−µs) · e−τ/µs

+
ω̄

4π

∫ 1

−1
I(τ, µ′)p(µ, µ′)dµ′,

(4.7)

where the azimuth-averaged phase functions are given by,

p(µ, µ′) =
1

2π

∫ 2π

0
p(µ, φ, µ′, φ)dφ . (4.8)

We represent the azimuth-averaged scattering phase functions as a series of Legendre

polynomials, Pl(µ), expanded to order M with,

p(µ, µ′) =

M∑
l=0

glPl(µ)Pl(µ
′) , (4.9)
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where the phase function moments, gl, are defined according to,

gl =
2l + 1

2

∫ 1

−1
p(cos Θ)Pl(cos Θ)d cos Θ . (4.10)

The first moment of the phase function is related to the asymmetry parameter, with

ḡ = g1/3. We use a second order expansion of the phase function, giving,

p(µ, µ′) = 1 + 3ḡµµ′ +
g2

2
(3µ2 − 1)(3µ′2 − 1) . (4.11)

In a given atmospheric layer of our albedo model, the optical depth is the

sum of the scattering optical depth and the absorption optical depth, τ = τscat + τabs.

The scattering optical depth has contributions from Rayleigh scattering and clouds,

so that τscat = τRay + ω̄cldτcld, where ω̄cld is the cloud single scattering albedo. The

single scattering albedo for a layer is then ω̄ = τscat/τ . We determine the asymmetry

parameter, ḡ, with an optical depth weighting on the Rayleigh scattering asymmetry

parameter (which is zero) and the cloud scattering asymmetry parameter, yielding ḡ =

ḡcld(τcld/τscat). When representing the second moment of the phase function, we use

g2 = 1
2(τRay/τscat) so that g2 tends towards the appropriate value for Rayleigh scattering

(i.e., 1/2; Hansen & Travis 1974) when the Rayleigh scattering optical depth dominates

the scattering optical depth.
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4.2.2 Model Upgrades

As compared to prior investigations that have used the Cahoy et al. (2010)

albedo tool (e.g., Lupu et al. 2016; Nayak et al. 2017), we have updated the model to

include an optional isotropically-reflecting (Lambertian) lower boundary (mimicking a

planetary surface), and have added pressure-dependent absorption due to H2O, O3, O2,

and CO2. CH4 remains a radiatively active species in the model, as in previous studies.

We also include Rayleigh scattering from H2O, O2, CO2, and N2 (in addition to H2

and He from previous studies). As in Lupu et al. (2016), we allow for an extended

gray-scattering cloud in our atmospheres.

In Lupu et al. (2016), their two-layer cloud model atmosphere includes a

deeper, optically thick cloud deck that essentially acts as a reflective surface. Un-

like the gas giants within that study, though, terrestrial planets have a solid surface we

can probe. We characterize our isotropically-reflecting lower boundary using a spherical

albedo for the planetary surface, As, which represents the specific power in scattered,

outgoing radiation compared to that in incident radiation. For this study, we simply

adopt gray surface albedo values, which reduces complexity and computation time. For

the inhomogeneous surface of a realistic Earth, featuring oceans and continents, the

surface albedo is wavelength-dependent, and we hope to investigate the significance of

such surfaces in future work.

We undertook a test to check our reflective lower boundary condition in the

limit of a transparent atmosphere. Without atmospheric absorption or scattering, our

assumption of a Lambertian surface would imply that the reflectivity (or phase function)
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determined by our albedo code should follow the analytic Lambert phase function,

ΦL(α) =
sinα+ (π − α) cosα

π
. (4.12)

Figure 4.1 compares the model phase function with the analytic phase function and

shows complete agreement, confirming that our treatment of the surface is correct.
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Figure 4.1: Comparing our model phase function to the analytic Lambertian phase
function (Equation 4.12). No atmospheric absorption or scattering is present in the
forward model.

Previous work featuring the albedo model adopted here used a pre-defined

atmospheric pressure grid. To accommodate the finite surface pressures of rocky planets

as well as the various combinations of cloud parameters our retrievals will explore, we

instead establish an adaptive method of determining the pressure grid. Here, we divide

the atmosphere into a pressure grid of Nlevel, bounded by P = Ptop at the top of the

atmosphere and P = P0 at the surface. In a cloud-free scenario, we simply divide the

atmosphere evenly in log-P space.

For our simulations that include a single cloud deck, we adaptively determine
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the pressure value at each level depending on the location, thickness, and optical depth

of the cloud. The quantities that define the cloud deck are pt, the cloud-top pressure,

dp, the atmospheric pressure across the cloud, and τ , the cloud optical depth. We

begin by assigning a number of layers to the cloud, imposing two conditions: (1) there

should be at least three model pressure layers to each atmospheric pressure scale height

(perH = 3), and (2) the cloud optical depth in a layer must remain below at most 5

(maxtau = 5). This allows us to avoid any one layer from spanning a large extent within

the atmosphere, and also avoids cloud layers that have extremely large scattering optical

depths.

When beginning our gridding process, we propose an initial number of cloud

layers, Nc = perH × numH, where numH = ln pt+dp
pt

is the number of e-folding distances

through the cloud (serving as a proxy for scale height). The aerosol optical depth for

each pressure layer within the cloud would then simply be ∆τ = τ
Nc

. However, if ∆τ >

maxtau, we adjust the cloud resolution by increasing Nc by a factor of ∆τ
maxtau

and then

round up to the nearest integer. In other words, we increase the resolution of the pressure

grid through the cloud until the layer optical depth is under maxtau. We determine

successive pressure level values through the cloud with p[i] = p[i − 1] + ∆ ln p, where

∆ ln p = ln (pt+dp)−ln pt
Nc

, starting from the top of the cloud. We divide the remaining

Nlevel − Nc levels in uniform ln p space on either side of the cloud, weighted by the

number of pressure scale heights above (Nt) and below (Nb) the cloud. Figure 4.2

visualizes the three portions of the atmosphere.

For simplicity, we assume an isothermal atmosphere (at T = 250 K), as tem-
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perature has little effect on the reflected-light spectrum (Robinson 2017). Pressure,

however, has a strong impact on molecular opacities, as seen in Figure 4.3. We in-

corporated high-resolution pressure-dependent opacities for all molecules in our atmo-

sphere. The absorption opacities are generated line-by-line from the HITRAN2012 line

list (Rothman et al. 2013) for seven orders of magnitude in pressure (10−5 − 102 bar)

at T , spanning our entire wavelength range at < 1 cm−1 resolution. Figure 4.3 also

illustrates how absorption features of H2O, O2, and O3 change when in an atmosphere

of 1 bar versus one of 10 bar.

We interpolate our high-resolution opacity tables to the slightly lower resolu-

tion of the forward model in order to maintain short model runtimes while not affecting

the accuracy of the output spectra. For each model layer, we interpolate over the

opacities from our table given the pressure. The chemical abundances in our forward

model atmosphere are constant as a function of pressure, and we also adopt a uniform

acceleration due to gravity.

We have also added an option to include partial cloudiness across a planetary

disk, whose fractional coverage is described by fc. To mimic partial cloudiness as we

see on Earth, we call the forward model twice. We use the same set of atmospheric and

planetary parameters for both calls, except for the cloud optical depth. “Cloudy” is

the call that has a non-zero cloud optical depth, while “cloud-free” is the call where we

set cloud optical depth to zero. Each call returns a geometric albedo spectrum, and we

combine the two sets with the fractional cloudiness parameter such that the combined

spectrum follows fc × cloudy + (1− fc)× cloud-free.
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Figure 4.2: Illustrative schematic of our model atmosphere’s structure. The atmosphere
has Nt +Nc +Nb layers. Table 4.1 lists the definitions, fiducial values, and priors of the
presented parameters.

4.2.3 Albedo Model Fiducial Values and Validation

The generalized three-dimensional albedo model described above can simulate

reflected-light spectra of a large diversity of planet types, spanning solid-surfaced worlds

to gas giants with a variety of prescribed atmospheric compositions. For the present

study, however, we choose to focus on Earth-like worlds, which are described in detail

below. Thus, we define a set of fiducial model input parameters that are designed to

mimic Earth and thereby enable us to generate simulated observational datasets for an

Earth twin.
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Figure 4.3: Left: High resolution (1 cm−1) H2O opacities from 0.4-1.0 µm at three
different pressures: 0.1 bar, 1 bar, and 10 bars. Right: Absorption features in a R = 140
spectrum from 0.3 - 1.05 µm of H2O, O2, and O3 at fiducial mixing ratios listed in Table
4.1 at P = 1 bar and P = 10 bar. For each spectrum here, the atmosphere only contains
the stated molecule and a radiatively inactive filler gas to match the pressure.

Table 4.1 summarizes the fiducial model parameter values adopted for our

Earth twin. Also shown are the priors for these parameters, which we use when per-

forming retrieval analyses. For an Earth-like setup, the surface atmospheric pressure is

P0 = 1 bar and we adopt a surface albedo of As = 0.05, which is representative of mostly

ocean-covered surface. We adopt a uniform acceleration due to gravity of g = 9.8 m s−2

and set the planetary radius to R⊕. For convenience, we sometime refer to these four

variables (P0, As, g, and Rp) as the bulk planetary and atmospheric parameters.

We focus on molecular absorption due to H2O, O3, and O2. While our albedo

model includes opacities from CH4 and CO2 as well, we omit these two species as the

reflected-light spectrum of Earth in the visible contains no strong features for these

molecules. The input values for the molecular abundances (or volume mixing ratios)

are H2O = 3× 10−3, O3 = 7× 10−7, and O2= 0.21. These abundance values are based

on column weighted averages from a standard Earth model atmosphere with vertically-
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Figure 4.4: Left: The spectrum generated with the forward model in this study using
fiducial values from Table 4.1. Key spectral features from the atmospheric species in our
model are labeled. Right, top: Comparison of the cloudy forward model in this study
using fiducial values from Table 4.1 to a spectrum from a more computationally complex
three-dimensional (3D) forward model of Earth at full phase described in Robinson
et al. (2011). Right, bottom: Comparison of the cloudy forward model to a spectrum of
a planet generated using the 3D model from Robinson et al. (2011) that is like Earth
except it only has ocean coverage.

varying gas mixing ratios (McClatchey et al. 1972). The primary Rayleigh scatterer and

background gas in our fiducial model is N2, whose abundance makes up the remainder

of the atmosphere after all other gases are accounted for (i.e., roughly 0.79). Rayleigh

scattering is treated according to Hansen & Travis (1974) with constants to describe the

scattering properties of N2, O2, and H2O from Allen & Cox (2000). We do not include

polarization or Raman scattering effects.

Our cloud model was designed to be minimally parametric while still enabling

us to sufficiently reproduce realistic spectra of Earth. Our single-layer gray H2O cloud

has ω̄ = 1 and ḡ = 0.85, which are characteristic of water clouds across the visi-

ble range. These two parameters were fixed to minimize retrieval model complexity,

as we believe that water is the most likely condensate for worlds in the Habitable
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Zone. Nevertheless, future studies may not wish to assume values of ω̄ and ḡ a pri-

ori. Cloud top pressure (pt) and fractional coverage (fc) are set at 0.6 bar and 50%,

respectively, which are roughly consistent with observations of optically thick cloud cov-

erage on Earth (Stubenrauch et al. 2013). Cloud thickness (dp) and optical depth (τ)

were set to 0.1 bar and 10, respectively, based on results from the MODIS instrument

(http://modis-atmos.gsfc.nasa.gov) used in Robinson et al. (2011).

With fiducial values chosen, we validate our forward model against a simulated

high-resolution disk-integrated spectrum of Earth at full phase, as shown in Figure 4.4.

The comparison spectrum is produced by the NASA Astrobiology Institute’s Virtual

Planetary Laboratory (VPL) sophisticated 3D line-by-line, multiple scattering spectral

Earth model (Robinson et al. 2011). The Robinson et al. (2011) tool can simulate images

and disk-integrated spectra of Earth from the ultraviolet to the infrared. It has been

validated against observations at visible wavelengths taken by NASA’s EPOXI mission

(Robinson et al. 2011) and NASA’s LCROSS mission (Robinson et al. 2014).

Features of the Robinson et al. (2011) model include Rayleigh scattering due

to air molecules, realistic patchy clouds, and gas absorption from a variety of molecules,

including H2O, CO2, O2, O3, and CH4. Surface coverage of different land types (e.g.,

forest, desert) is informed by satellite data, and water surfaces incorporate specular

reflectance of sunlight. A grid of thousands of surface pixels are nested beneath a

grid of 48 independent atmospheric pixels, all of equal area. For each surface pixel,

properties from the overlying atmospheric pixels are used as inputs to a full-physics,

plane-parallel radiative transfer solver— the Spectral Mapping Atmospheric Radiative
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Transfer (SMART) model (Meadows & Crisp 1996). Intensities from this solver are

integrated over the pixels with respect to solid angle, thereby returning a disk-integrated

spectrum.

The sophistication of the Robinson et al. (2011) model makes it unsuitable to

retrieval studies, however, as model runtimes are measured in weeks for the highest-

complexity scenarios. This, in part, justifies our adoption of a minimally-parameteric

albedo model (whose runtime is measured in seconds). Furthermore, as in Figure 4.4,

our efficient albedo model reproduces all of the key features of the Robinson et al.

(2011) model. The most notable differences—that the efficient model, as compared to

the Robinson et al. (2011) model, is more reflective in the blue and less reflective in the

red—are simply due to our adoption of a gray surface albedo. Land and plants, which

cover roughly 29% of Earth’s surface, are generally more reflective in the red than in the

blue. Figure 4.4 also compares a spectrum from our forward model against a spectrum

of a partially clouded ocean planet generated with the Robinson et al. (2011) model.

This ocean world is identical to Earth except for the fact that its surface is covered

entirely by an ocean, with no land present. The surface albedo in the ocean model is

gray beyond 500 nm; shortward of this the reflectivity increases, likely leading to the

discrepancy in our comparison at the bluest wavelengths. Still, with a more accurate

match to a planet that has a nearly gray albedo through the visible, we consider our

assumption of gray surface albedo to be the main reason for the discrepancies when

compared to the Robinson et al. (2011) realistic model.

Finally, in our albedo model we set 100 facets for the visible hemisphere and
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Table 4.1: List of the 11 retrieved parameters in the complete cloudy model, their
descriptions, fiducial input values, and corresponding priors.

Parameter Description Input Prior

logP0 (bar) Surface pressure log (1) [-2,2]

log H2O Water vapor mixing ratio log (3× 10−3) [-8,-1]

log O3 Ozone mixing ratio log (7× 10−7) [-10,-1]

log O2 Molecular oxygen mixing ratio log (0.21) [-10,0]

Rp (R⊕) Planet radius 1 [0.5, 12]

log g (m s−2) Surface gravity log (9.8) [0,2]

logAs Surface albedo log (0.05) [-2, 0]

log pt (bar) Cloud top pressure log (0.6) [-2,2]

log dp (bar) Cloud thickness log (0.1) [-3,2]

log τ Cloud optical depth log (10) [-2,2]

log fc Cloudiness fraction log (0.5) [-3,0]

calculate a high-resolution geometric albedo spectrum at 1000 wavelength points be-

tween 0.35µm and 1.05µm. Like Lupu et al. (2016), we only consider a planet at full

phase (α = 0◦). While direct imaging missions will not obtain observations of exoplan-

ets at full phase, this assumption makes little difference for our results as we are not

computing integration times and only work in SNR space. Additionally, as Nayak et al.

(2017) followed up Lupu et al. (2016) by retrieving phase information from giant plan-

ets in reflected light, we anticipate performing a similar expansion in the future. Our

forward model has 61 pressure levels in an isothermal atmosphere of 250 K, bounded

below by a reflective surface. The top of the atmosphere is set at Ptop = 10−4 bar.

4.2.4 Retrieval Setup and Noise Model

We convert a high resolution geometric albedo spectrum to a synthetic planet-

to-star flux ratio spectrum given the resolution of an instrument and a noise model. We
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Table 4.2: Simulated data sets.

R = 70, R = 140 WFIRST Rendezvous a

Wavelength (µm) 0.4 – 1.0 0.506, 0.575b, R = 50: 0.6 – 0.97c

Data quality SNR550nm = 5, 10, 15, 20 SNR600nm = 5, 10, 15, 20

Note. — We do not randomize the noise for any of the data sets.
aUsing WFIRST Design Cycle 7 values from https://wfirst.ipac.

caltech.edu/sims/Param_db.html
bThe first photometric band is centered on 0.506 µm and covers 0.48–0.532

µm. The second photometric band is centered on 0.575 µm and covers 0.546–0.6
µm. We assume 100% transmission.

cWe combine three integral field spectrograph bands into one at R = 50 from
0.6 µm to 0.97 µm. Separated, they are 0.6–0.72 µm, 0.7–0.84 µm, and 0.81-0.97
µm.

Table 4.3: Four cumulative models for retrieval validation, as described in Section 4.3.

Model Variant Retrieved Parameters Nparam

I Surface conditions P0, As 2

II + Bulk properties P0, As, g, Rp 4

III + Gas mixing ratios P0, As, g, Rp 7

H2O, O2, O3

IV + Cloud properties P0, As, g, Rp 11

H2O, O2, O3

pt, dp, τ , fc

Note. — See Table 4.1 for the corresponding definition and
prior of each parameter. Model IV represents the full suite of
parameters and can serve as a reference for the fixed parameters
in Models I through III.
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then apply a Bayesian inference tool on the synthetic data set to sample the posterior

probability distributions of the forward model input parameters. To perform Bayesian

parameter estimation, we utilize the open-source affine invariant Markov-Chain Monte

Carlo (MCMC) ensemble sampler emcee (Goodman & Weare 2010; Foreman-Mackey

et al. 2013). Ensemble refers to the use of many chains, or walkers, to traverse parameter

space; as a massively parallelized algorithm, it is computationally efficient. Affine-

invariance refers to the invariant performance under linear transformations of parameter

space, enabling the algorithm to be insensitive to parameter covariances (Foreman-

Mackey et al. 2013). With a cloudy retrieval, we can expect complex correlations that a

sampler should be able to reveal. As it is more agnostic to the shape of the posterior, we

choose emcee following Nayak et al. (2017) over Multinest, another sampler Lupu et al.

(2016) considered that yielded consistent results. The albedo model is coded in Fortran;

we convert it into a Python-callable library with the F2PY package. Each call to the

forward model takes approximately 10 seconds of clock time on an 8-core processor.

To visualize the MCMC results, we utilize the corner plotting package developed by

Foreman-Mackey (2016).

Table 4.1 lists the priors for our parameters. We offer a generous range on the

molecular abundances; we allow O2 in particular to be able to dominate the atmospheric

composition. Our choice of radius range (0.5–12 R⊕) reflects the range of of planetary

sizes from Mars to Jupiter. Also, when performing retrievals, we impose two limiting

conditions to maintain physical scenarios. First, we limit the mixing ratio of N2, fN2 =

1 −
∑

(gas abundances), to be between 0 and 1. Second, for the cloud pressure terms,
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we reject any drawn value that does not satisfy 10pt + 10dp < 10P0 (i.e., that the cloud

base cannot extend below the bottom of the atmosphere). Note that for the purposes

of the retrieval, we consider pressures in log space.

We simulate noise in our observations following the expressions given in Robin-

son et al. (2016). For simplicity, we include only read noise and dark current, as

(Robinson et al. 2016) showed that detector noise will be the dominant noise source

in WFIRST -type spectral observations of exoplanets. Detector and instrument param-

eters for the HabEx and LUVOIR concepts are only loosely defined, and advances in

detector technologies for these missions may move observations out of the detector-noise

dominated regime. In the detector-noise dominated regime the signal-to-noise ratio is

simply,

SNR =
cp × tint√

(cd + cr)× tint

(4.13)

where tint is the integration time, cp is planet count rate, and cd is the dark noise

count rate, and cr is the read noise count rate. More rigorously, it can be shown that,

at constant spectral resolution, SNR ∝ qT AgΦ(α)Bλλ, where q is the wavelength-

dependent detector quantum efficiency, T is throughput, and Bλ is the host stellar

specific intensity (taken here as a Planck function at the stellar effective temperature).

We use a stellar temperature of 5780 K for the blackbody. When the SNR at one

wavelength is specified, this scaling implies that the the calculation of the signal-to-noise

ratio at other wavelengths is independent of the imaging raw contrast of the instrument.

We can expect the noise at the redder end of our range to be large, as the detector

quantum efficiency (taken to be appropriate for the WFIRST/CGI) rapidly decreases.
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Since we treat only SNR rather than modeling exposure times, the exact mix of noise

sources is not relevant (so that, e.g., dark current and readnoise are indistinguishable).

The key relevant properties of the noise model is that it is uncorrelated between spectral

channels and its magnitude only depends on wavelength via a dependence on point

spread function area (Robinson et al. 2016, their Equation 26), which will be true for

detector-limited cases but may not be true for large-aperture instruments limited by

speckle noise.

For our study, we will consider multiple wavelength resolutions, R, and SNRs.

Working in SNRs (instead of integration times) makes our investigations independent of

telescope diameter, target distance, and other system-specific or observing parameters.

Because the SNR is dependent on wavelength, we reference our values to be at V-band

(550 nm) for all resolutions for HabEx/LUVOIR. Since the WFIRST/CGI spectrograph

is currently planned to only extend to 600 nm at the blue end, we opt to reference our

WFIRST SNRs to this wavelength. Unlike previous studies (Lupu et al. 2016; Nayak

et al. 2017), our simulated WFIRST rendezvous data include two photometric points in

the blue, which is consistent with current CGI designs. We set the SNR in the WFIRST

filters to be equal to that at 600 nm.

Our simulation grid setup is shown in Table 4.2, where the spectral resolutions

and SNRs assumed for different observing scenarios are indicated. Figure 4.5 demon-

strates the WFIRST rendezvous scenario data along with R = 70 and R = 140 data

points (for HabEx/LUVOIR) plotted over the forward model spectrum before noise is

added. The scaling of SNR with wavelength for WFIRST rendezvous (normalized to
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Figure 4.5: The high resolution (1000 wavelength points from 0.35− 1.05 µm) forward
model spectrum, overplotted with simulated WFIRST rendezvous, R = 70, R = 140
data, from top panel to bottom. Key spectral features for atmospheric gases in our
model are labeled. In the top panel, “1” and “2” mark the span of the WFIRST Design
Cycle 7 filters (see Table 4.2).

unity at 600 nm) as well as our R = 70 and R = 140 cases (normalized to unity at

550 nm) is shown in Figure 4.6. The impact of the host stellar SED sets the overall

shape of the SNR scaling, with additional influence from atmospheric absorption bands

detector as well as quantum efficiency effects (that have strong impacts at red wave-

lengths). Thus, Figure 4.6 can be used to translate our stated SNR to the SNR at any
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other wavelength (e.g., a SNR= 10 simulation has a SNR in the continuum shortward

of the 950 nm water vapor band of roughly 0.3× 10 = 3).

Figure 4.6: Scaling of SNR with wavelength for WFIRST rendezvous, R = 70, and R =
140 cases. The WFIRST curve is normalized to unity at 600 nm while the R = 70 and
R = 140 curves are normalized to unity at 550 nm, following our definite of simulation
SNR at these respective wavelengths. Also shown is the wavelength-dependent detector
quantum efficiency (QE) that we adopt.

When generating simulated data with a noise model, there are several options

for handling the placement/sampling of the mock observational data points. Previous

studies (Lupu et al. 2016; Nayak et al. 2017) have generated a single, randomized dataset

for a given SNR. The placement of a single spectral data point is determined by ran-

domly sampling a Gaussian distribution whose width is determined by the wavelength-

dependent SNR. While this treatment can accurately simulate a single observational

instance, it also runs the risk (especially at lower spectral resolution and SNR) of bias-

ing retrieval results, as the random placement of only a small handful of spectral data

points can significantly impact the outcome. Given this, it is ideal to retrieve on a large

number (& 10) of simulated data sets at a given spectral resolution and SNR, where a

comprehensive view of all the posteriors from the collection of instances will indicate

129



expected telescope/instrument performance. Unfortunately, given the large number of

R/SNR pairs in our study (10) and the long runtime of an individual retrieval (of or-

der 1 week on a cluster), running ∼10 noise instances for each of our R/SNR pairs is

computationally unfeasible (requiring ∼100 weeks of cluster time). Thus, we opt for

an intermediate approach that maintains computational feasibility and avoids potential

biases from individual noise instances. Here, we run only a single noise instance at a

given R/SNR pair, but we do not randomize the placement of the individual spectral

points. In other words, the individual simulated spectral points are placed on the “true”

planet-to-star flux ratio point and are assigned error bars according to the SNR and

noise model. While this approach prevents having a small handful of randomized data

points from biasing retrieval results, it does lead to likely optimistic results, especially at

modest SNR (i.e., SNR∼10), since data point randomization is, in effect, an additional

“noise” source that we are omitting. This means that the posterior distributions will

usually be centered on the true values in an unrealistic fashion. However, the width

and shape of the posterior covariances will be representative of real observations, so the

fidelity of retrievals can be assessed. We keep this optimism in mind when discussing

results in later sections; in particular, we compare the performance of retrievals on mul-

tiple noise instances of a subset of the cases we consider to the non-randomized case in

Section 4.5.2.
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4.3 Retrieval Validation

Before using our framework on simulated data, we validate its accuracy and ex-

amine its performance. For this initial validation, we use non-randomized, wavelength-

independent noise at a signal-to-noise ratio of 20 for a spectrum at a resolution of

R = 140. Table 4.3 lists our four validation model variants, each increasing in com-

plexity as we systematically explore how the addition of retrieved parameters influences

the posterior distributions and correlations. In Model I, we fix all parameters except

P0 and As. In Model II, we add g and Rp; in Model III, we then add in gases as

retrieved parameters (H2O, O3, O2); and in Model IV, we add all cloud parameters.

Incrementally increasing the number of free parameters (from 2 to 11) allows us to see

the interconnections between them, and helps us understand how clouds can obscure

our inferences.

In Figure 4.7, we present the posterior distributions for Model I. In the two-

dimensional correlation histogram, a higher probability corresponds to a darker shade.

With all else held constant, we see narrow posterior distributions and a slight correlation

between P0 and As. For lower values of surface pressure, which controls the turn off

of the Rayleigh scattering slope, we need a brighter surface to maintain the measured

brightness, especially in the red end of the spectrum, and vice versa. We mark the 16%,

50%, and 84% quantiles in the marginalized one-dimensional posterior distributions.

The posterior distributions for Model II are shown in Figure 4.8, and are generally

narrow (as only four parameters are being retrieved). There are two key correlations,

one between g and P0, and one between Rp and As. Both gravity and surface pressure
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influence the column mass, so that, when attempting to fit a spectrum, we can trade a

larger gravity with a larger surface pressure and maintain a similar column mass (which

controls, e.g., the Rayleigh scattering feature). Additionally, we can trade off a larger

reflecting surface area (i.e., larger Rp) with a darker surface (lower As), which is a

statement of the typical “radius/albedo degeneracy” problem. The posterior for surface

albedo is now an upper limit instead of a constraint. As a result, the radius posterior

distribution appears truncated at larger values given the tight correlation between these

two parameters. The correlation seen originally in Model I, between P0 and As, then acts

as a chain between the other two, more prominent, correlations to induce correlations

between parameters such as As and g or Rp and P0.

Once we allow gases to be free parameters in Model III (Figure 4.9), the P0

and As correlation becomes diminished as H2O, due to its numerous bands across the

spectral range, becomes a primary control of brightness. The significant impact of H2O

on the spectrum leads to a strong, positive correlation between H2O abundance and

planetary size, as additional water vapor absorption can be compensated by a larger

planetary size to maintain fixed brightness. We now see gravity linked to the molecular

abundances, which is expected as surface gravity directly influences the column abun-

dance of a species. This key correlation also causes the individual gas abundances to

be correlated with each other. The main correlations from Model II are still present.

We note once more that we do not have constraint on the surface albedo, again leading

to an asymmetric distribution for radius. Thus, from the strong correlation of H2O

with with Rp, and the fundamental correlation between Rp and As, we see correlations
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between planetary radius, surface albedo, and all gas abundances. Weak correlations

between surface pressure and the gas abundances are due to column abundance effects.

Finally, as shown by Figure 4.10, we retrieve on the data with the full forward

model, adding in the cloud parameters pt, dp, τ , and fc. This version of the model

is what we apply when simulating direct-imaging data in the upcoming sections, and

represents our most realistic (i.e., true to the actual Earth) scenario. The optical depth

is shown to only have a lower limit constraint. Thus, the retrieval detects a cloud but

cannot constrain the optical depth beyond showing that the cloud is optically thick.

There is an expected correlation between τ and fc; a higher cloudiness fraction can

complement a less optically thick cloud, and vice versa. There is only an upper limit to

dp, which is a result of the lack of vertical sensitivity given the constant-with-pressure

abundance distributions. The posterior distribution for O2 becomes a lower limit instead

of a constraint as in Model III. Surface gravity is less precisely and less accurately

constrained compared to the previous, less complex renditions of the model.

For optically thin clouds, we expect to better constrain surface albedo; how-

ever, we do not consider this scenario in our study. We examined instead the perfor-

mance of a completely cloud-free model on data generated with our cloudy model. We

find that while the model can fit the data and return accurate estimates of e.g., the

mixing ratios, we get inaccurate estimates of the surface albedo and the surface pres-

sure. These two parameters are biased, with lower surface pressure paired with higher

surface albedo as the preferred configuration in the cloud-free case. As a result, we

move forward with utilizing our cloudy forward model on our simulated data. However,
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we note that in realistic cases where we do not know the true state of a planet’s atmo-

sphere, we could obtain complementary information relating to the presence of clouds

(e.g., variability) such that we may choose the most appropriate forward model.
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Figure 4.7: Posterior distributions of Model I from Table 4.3, where we fix all parameters
but P0 and As. We retrieve on R = 140, SNR = 20 data with wavelength-independent
noise. Overplotted in solid light-blue color are the fiducial parameter values. The 2D
marginalized posterior distribution, used in interpreting correlations, is overplotted with
the 1-, 2-, and 3-σ contours. Above the 1D marginalized posterior for each parameter,
we list the median retrieved value with uncertainties that indicate the 68% confidence
interval. Dashed lines (left to right) mark the 16%, 50%, and 84% quantiles.
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Figure 4.8: Posterior distributions of Model II from Table 4.3, where we fix all param-
eters except for P0, As, g, and Rp. We retrieve on R = 140, SNR = 20 data with
wavelength-independent noise. Overplotted in solid light-blue color are the fiducial
parameter values. The 2D marginalized posterior distribution, used in interpreting cor-
relations, is overplotted with the 1-, 2-, and 3-σ contours. Above the 1D marginalized
posterior for each parameter, we list the median retrieved value with uncertainties that
indicate the 68% confidence interval. Dashed lines (left to right) mark the 16%, 50%,
and 84% quantiles.
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Figure 4.9: Posterior distributions of Model III from Table 4.3, where we retrieve P0,
As, g, Rp, H2O, O2, and O3. We retrieve on R = 140, SNR = 20 data with wavelength-
independent noise. Overplotted in solid light-blue color are the fiducial parameter val-
ues. The 2D marginalized posterior distribution, used in interpreting correlations, is
overplotted with the 1-, 2-, and 3-σ contours. Above the 1D marginalized posterior
for each parameter, we list the median retrieved value with uncertainties that indicate
the 68% confidence interval. Dashed lines (left to right) mark the 16%, 50%, and 84%
quantiles.
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Figure 4.10: Posterior distributions of Model IV, or the complete model, from Table
4.3. We retrieve for 11 parameters: P0, As, g, Rp, H2O, O2, O3, pt, dp, τ , and fc. We
retrieve on R = 140, SNR = 20 data with wavelength-independent noise. Overplotted in
solid light-blue color are the fiducial parameter values. The 2D marginalized posterior
distribution, used in interpreting correlations, is overplotted with the 1-, 2-, and 3-σ
contours. Above the 1D marginalized posterior for each parameter, we list the median
retrieved value with uncertainties that indicate the 68% confidence interval. Dashed
lines (left to right) mark the 16%, 50%, and 84% quantiles.
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4.4 Results

We generate data sets for HabEx and LUVOIR-like missions (0.4− 1.0 µm at

R = 70, R = 140) at SNR= 5, 10, 15, 20, and for the WFIRST rendezvous scenario (two

photometric points within 0.4−0.6 µm plus a spectrum of R = 50 for 0.6−0.96 µm) also

at SNR= 5, 10, 15, 20. In all cases, we used the noise model to generate uncertainties

expected for high-contrast imaging instead of the wavelength-independent noise for the

validations in the previous section. As Section 4.2.4 described, the SNR refers to the

value at 0.55 µm for R = 70, 140, and at 0.6 µm for WFIRST. We record the specific

runs in Table 4.2. In place of showing the correlations for all parameters for all cases, we

refer to Figure 4.10, which represents the ideal case correlations among the parameter

posteriors. We only show the posterior probability distributions themselves to better

highlight any trends with respect to SNR and/or R. We grouped the posteriors in terms

of bulk atmospheric and planetary parameters (P0, Rp, g, As), then cloud parameters

(pt, dp, τ , fc), and finally gases (H2O, O3, O2). For each case, emcee was run with 16

MCMC chains (walkers) per parameter for at least 12000 steps, the last 5000 of which

are used to determine the posterior distributions. From those 5000 steps, we randomly

selected 1000 sets of parameters to calculate their corresponding high resolution spectra.

These spectra are plotted with the data to show the 1-σ, 2-σ, and median fits.

4.4.1 Results for R = 70, R = 140 simulated data

For both R = 70 and R = 140, we simulated data sets at SNR = 5, 10, 15,

20. Table 4.4 lists the median and 1-σ values of all retrieved parameters for each SNR
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at R = 70. Figure 4.11 shows the marginalized posterior distributions for the model

parameters for all SNR cases for R = 70, plotted with the fiducial or “truth” values.

Table 4.5 lists the median and 1-σ values of all retrieved parameters for each SNR at

R = 140. Figure 4.12 shows the posterior distributions for R = 140 for the model

parameters for all SNR cases compared against their input values. Figure 4.14 shows

the corresponding spread in fits and the median fit to the data for each SNR for both

resolutions.

4.4.2 Results for WFIRST rendezvous simulated data

For the WFIRST rendezvous scenario, we utilized the Design Cycle 7 instru-

ment parameters to set the locations of the two photometric points and the range and

resolution of the spectrometer (R = 50; see Table 4.2). Because of this particular set-up,

we reference the SNRs in our grid (5, 10, 15, 20) at 600 nm, and assign the photometric

points the same SNR as at 600 nm. Table 4.6 lists the median and 1-σ values of all

retrieved parameters for each SNR variant. Figure 4.13 presents the posterior distribu-

tions for the four WFIRST rendezvous variants with respect to the input values. Figure

4.14 shows the spread in fits and median fit to the data for each variant.
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Table 4.4: R = 70 retrieval results, with median value and 1-σ uncertainties of the
parameters.

Parameter Input SNR= 5 SNR= 10 SNR= 15 SNR= 20

log H2O −2.52 −5.07+2.34
−1.92 −3.85+1.77

−2.60 −3.12+0.97
−1.71 −2.76+0.62

−0.88

log O3 −6.15 −7.55+1.49
−1.46 −6.79+0.93

−1.81 −6.37+0.55
−0.84 −6.24+0.47

−0.60

log O2 −0.68 −5.12+3.25
−3.23 −4.51+3.24

−3.61 −1.86+1.29
−3.99 −1.00+0.66

−1.01

log P0 0.0 0.02+1.35
−0.84 −0.03+0.87

−0.70 0.28+0.85
−0.56 0.25+0.56

−0.49

Rp 1.0 1.23+1.54
−0.58 1.33+1.23

−0.52 0.97+0.68
−0.27 0.98+0.44

−0.25

log g 0.99 1.33+0.48
−0.77 1.48+0.38

−0.68 1.28+0.51
−0.66 1.24+0.55

−0.69

log As −1.3 −0.96+0.58
−0.74 −1.05+0.55

−0.59 −0.70+0.37
−0.62 −0.63+0.29

−0.46

log pt −0.22 −1.14+0.97
−0.61 −1.19+0.93

−0.56 −0.92+0.86
−0.71 −0.94+0.84

−0.73

log dp −1.0 −1.67+1.24
−0.92 −1.71+1.18

−0.91 −1.35+1.17
−1.14 −1.43+1.11

−1.06

log τ 1.0 0.10+1.30
−1.43 0.21+1.23

−1.48 0.49+1.03
−1.66 0.61+0.93

−1.66

log fc −0.3 −1.43+0.99
−1.07 −1.33+0.94

−1.12 −0.93+0.71
−1.32 −1.05+0.80

−1.27

Table 4.5: R = 140 retrieval results, with median value and 1-σ uncertainties of the
parameters.

Parameter Input SNR= 5 SNR= 10 SNR= 15 SNR= 20

log H2O −2.52 −4.56+2.14
−2.35 −2.74+0.69

−1.07 −2.61+0.47
−0.65 −2.43+0.39

−0.56

log O3 −6.15 −7.36+1.26
−1.65 −6.26+0.53

−0.68 −6.18+0.42
−0.48 −6.03+0.34

−0.48

log O2 −0.68 −4.45+3.08
−3.69 −1.06+0.76

−1.43 −0.76+0.51
−0.79 −0.60+0.43

−0.59

log P0 0.0 0.07+1.01
−0.84 0.20+0.72

−0.49 0.12+0.49
−0.36 0.07+0.39

−0.31

Rp 1.0 1.25+1.16
−0.52 1.01+0.60

−0.28 0.99+0.42
−0.23 1.05+0.42

−0.27

log g 0.99 1.36+0.46
−0.74 1.31+0.49

−0.77 1.14+0.56
−0.65 1.20+0.50

−0.64

log As −1.3 −0.98+0.54
−0.60 −0.67+0.32

−0.50 −0.68+0.29
−0.44 −0.79+0.34

−0.69

log pt −0.22 −1.23+1.03
−0.55 −0.96+0.80

−0.71 −0.79+0.70
−0.82 −0.66+0.53

−0.85

log dp −1.0 −1.72+1.25
−0.91 −1.43+1.13

−1.09 −1.55+1.10
−1.00 −1.49+1.00

−0.98

log τ 1.0 0.18+1.31
−1.49 0.50+1.09

−1.66 0.61+0.98
−1.61 0.79+0.87

−1.40

log fc −0.3 −1.30+0.93
−1.13 −1.31+0.94

−1.21 −0.99+0.76
−1.27 −0.76+0.54

−1.26
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Table 4.6: WFIRST rendezvous retrieval results, with median value and 1-σ uncertain-
ties of the parameters.

Parameter Input SNR= 5 SNR= 10 SNR= 15 SNR= 20

log H2O −2.52 −4.94+2.35
−2.05 −4.89+2.48

−2.11 −4.03+1.87
−2.52 −3.11+1.17

−1.71

log P0 0.0 −0.16+1.32
−0.80 −0.19+1.03

−0.71 0.03+1.16
−0.74 0.45+1.01

−0.85

log O3 −6.15 −7.66+1.65
−1.59 −7.53+1.54

−1.66 −7.16+1.19
−1.66 −6.80+0.94

−1.30

log O2 −0.68 −5.05+3.26
−3.39 −4.89+3.43

−3.54 −3.43+2.50
−4.41 −2.26+1.71

−3.88

log P0 0.0 −0.16+1.32
−0.80 −0.19+1.03

−0.71 0.03+1.16
−0.74 0.45+1.01

−0.85

Rp 1.0 1.13+1.60
−0.50 1.13+1.27

−0.48 1.02+1.10
−0.38 0.80+0.81

−0.19

log g 0.99 1.42+0.42
−0.82 1.45+0.41

−0.75 1.41+0.43
−0.83 1.26+0.52

−0.83

log As −1.3 −0.89+0.63
−0.74 −0.84+0.56

−0.70 −0.95+0.64
−0.68 −0.76+0.53

−0.79

log pt −0.22 −1.26+0.98
−0.52 −1.24+0.83

−0.55 −1.23+0.84
−0.57 −0.84+0.89

−0.73

log dp −1.0 −1.75+1.16
−0.87 −1.70+1.12

−0.87 −1.46+1.14
−1.06 −1.49+1.49

−1.03

log τ 1.0 0.03+1.33
−1.39 0.05+1.42

−1.40 0.61+0.94
−1.55 0.99+0.73

−1.44

log fc −0.3 −1.41+0.96
−1.07 −1.42+1.00

−1.07 −0.82+0.60
−1.28 −0.58+0.41

−0.97
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Figure 4.11: Comparing 1D marginalized posterior distributions for all parameters for
all SNR cases of R = 70. See Table 4.4 for corresponding median retrieved value
with uncertainties that indicate the 68% confidence interval. Overplotted dashed line
represents the fiducial values from Table 4.1.

142



2 1 0 1 2
log P0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.5 1.0 1.5 2.0 2.5 3.0
Rp

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Input
SNR = 5
SNR = 10
SNR = 15
SNR = 20

0.0 0.5 1.0 1.5 2.0
log g

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

2.0 1.5 1.0 0.5 0.0
log As

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) R = 140 bulk parameters

2 1 0 1 2
log pt

0.0

0.2

0.4

0.6

0.8

1.0

3 2 1 0 1 2
log dp

0.0

0.2

0.4

0.6

0.8

1.0

2 1 0 1 2
log

0.0

0.2

0.4

0.6

0.8

1.0

3.0 2.5 2.0 1.5 1.0 0.5 0.0
log fc

0.0

0.2

0.4

0.6

0.8

1.0
Input
SNR = 5
SNR = 10
SNR = 15
SNR = 20

(b) R = 140 cloud parameters

6 4 2
log H2O

0.0

0.2

0.4

0.6

0.8

1.0

9 8 7 6 5
log O3

0.0

0.2

0.4

0.6

0.8

1.0

8 6 4 2 0
log O2

0.0

0.2

0.4

0.6

0.8

1.0 Input
SNR = 5
SNR = 10
SNR = 15
SNR = 20

(c) R = 140 gas mixing ratios

Figure 4.12: Comparing 1D marginalized posterior distributions for all parameters for
all SNR cases of R = 140. See Table 4.5 for corresponding median retrieved value
with uncertainties that indicate the 68% confidence interval. Overplotted dashed line
represents the fiducial values from Table 4.1.

143



2 1 0 1 2
log P0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.5 1.0 1.5 2.0 2.5 3.0
Rp

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Input
SNR = 5
SNR = 10
SNR = 15
SNR = 20

0.0 0.5 1.0 1.5 2.0
log g

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2.0 1.5 1.0 0.5 0.0
log As

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(a) WFIRST bulk parameters

2 1 0 1 2
log pt

0.0

0.2

0.4

0.6

0.8

1.0

3 2 1 0 1 2
log dp

0.0

0.2

0.4

0.6

0.8

1.0
Input
SNR = 5
SNR = 10
SNR = 15
SNR = 20

2 1 0 1 2
log

0.0

0.2

0.4

0.6

0.8

1.0

3.0 2.5 2.0 1.5 1.0 0.5 0.0
log fc

0.0

0.2

0.4

0.6

0.8

1.0

(b) WFIRST cloud parameters

6 4 2
log H2O

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

9 8 7 6 5
log O3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

8 6 4 2 0
log O2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Input
SNR = 5
SNR = 10
SNR = 15
SNR = 20

(c) WFIRST gas mixing ratios

Figure 4.13: Comparing 1D marginalized posterior distributions for all parameters for
all SNR cases of a WFIRST rendezvous scenario. See Table 4.6 for corresponding
median retrieved value with uncertainties that indicate the 68% confidence interval.
Overplotted dashed line represents the fiducial values from Table 4.1.
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4.5 Discussion

The results from our retrieval analyses enable us to identify the SNR required,

at a given spectral resolution, to constrain key planetary and atmospheric quantities.

These findings have important implications for the development of future space-based

direct imaging missions. We discuss these ideas below, and also touch on impacts of

certain model assumptions and ideas for future research directions.

In what follows, we define a “weak detection” for a given parameter as having

a posterior distribution that has a marked peak but which also has a substantial tail to-

wards extreme values (indicating that, e.g., for a gas we could not definitively state that

the gas is present in the atmosphere). A “detection” implies a peaked posterior without

tails towards extreme values but whose 1-σ width is larger than an order of magnitude.

We use the term “constraint” to indicate a detection whose posterior distribution has

1-σ width smaller than an order of magnitude. A non-detection would be indicated by

a flat posterior distribution across the entire (or near-entire) prior range. For planetary

radius, which is not retrieved in logarithmic space, we distinguish between a “detec-

tion” and a “constraint” when the 1-σ uncertainties are small enough to firmly place

the planet in the Earth/super-Earth regime (i.e., with a radius below 1.5R⊕, Rogers

2015; Chen & Kipping 2017). A visual summary of weak detections, detections, and

constraints as a function of SNR for our different observing scenarios and for a selection

of key parameters are given in Tables 4.7, 4.8, and 4.9.
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4.5.1 Influence of SNR on Inferred Properties

For R = 70 at SNR = 5, Figure 4.11 shows there is only a weak detection of

P0 and a detection of Rp, which merely suggests the planet has an atmosphere and is

not a giant planet. As SNR increases to 10, the O3 posterior distribution has a weak

peak near the fiducial value, and the gas is only weakly detected. Once the SNR is

equal to 15, we weakly detect H2O, O3, and O2. At a SNR of 20, it is possible to

detect each of H2O, O3, and O2. At this SNR, the oxygen mixing ratio is estimated

to be above roughly 10−3, indicating that we are unable to determine if O2 is a major

atmospheric constituent (i.e., present at the 1% level or more). Gravity (and, thus,

planetary mass) remain undetected at all SNRs, similar to the findings of Lupu et al.

(2016). The surface albedo is unconstrained (or worse) at all SNRs, but shows a weak

bias toward a higher value of As ≈ 0.3 (logAs ≈ −0.5) at the highest SNRs, which is

likely due to the relatively large error bars at red wavelengths (driven primarily by low

detector quantum efficiency) where we have the most sensitivity to the surface. We are

able to get weak detections of τ and fc, which are shown in Figure 4.10 to be correlated.

Yet, with these posteriors, we cannot rule out scenarios without cloud cover. We note

the drop-off in the posteriors of pt and dp at higher pressure values likely result from the

limiting conditions that the cloud base cannot extend below the surface pressure and

the upper limit of the P0 prior. The improved signal-to-noise ratio leads to a posterior

more concentrated around the true value for pt, dp, and Rp. For improved constraints

on cloud properties, it may be beneficial to observe time variability with photometry

(e.g., Ford et al. 2001) or use polarimetry (e.g., Rossi & Stam 2017).
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At a higher spectral resolution (R = 140), the improvement in detections

and constraints begin at a lower SNR, as illustrated by Figure 4.12. Gravity remains

undetected for all SNRs. At a SNR equal to 5, P0 and Rp have a weak detection and a

detection, respectively. At SNR = 10, it is possible to detect H2O, O3, and O2. As with

the R = 70 case, surface albedo is unconstrained (or worse) at all SNRs, and, at the

highest SNRs, the model is biased towards As ≈ 0.3 (as with R = 70). Moving to SNR =

15 adds a constraint to Rp, P0, and O3, as well as weak detections of cloud parameters.

Increasing the SNR to 20 does not dramatically change the posterior distributions,

although the posteriors for H2O and O2 become narrow enough to offer constraints.

Here, the constraint on O2 suggests it is a major constituent in the atmosphere. In

spite of the generous SNR, though, the 1-σ uncertainties on the gas mixing ratios are

not more precise than roughly an order of magnitude (see Table 4.5).

Considering both R = 140 and R = 70, we see that SNR = 5 data offer very

little information about the planetary atmosphere. In the case of R = 140, SNR = 10

data offer detections but no constraints, and SNR = 20 data are required to constrain

all included gas species. In other words, the conclusions we would draw about the planet

(e.g., the amount of gases, the bulk and cloud properties) improve significantly between

SNR = 10 and SNR = 20. With R = 70, the boost from SNR = 10 to SNR = 15

provides weak detections of key atmospheric and surface parameters, and SNR = 20

data offer detections but few constraints (i.e., except on planetary radius).

For the WFIRST rendezvous data sets, we are able to infer very little informa-

tion at a SNR of 5 or 10 except for weak detection of surface pressure and a detection
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of the planetary radius. All gases remain undetected at these SNRs. The posterior

distributions for most parameters do not vary much as SNR improves, although there

are weak detections of cloud optical depth and fractional coverage at the highest SNRs.

Like all previous cases, we do not detect the surface gravity. At SNR = 15, 20, the

detection of fc is unable to rule out scenarios with little cloud cover. To obtain weak de-

tections of the atmospheric gases we require a SNR of 20, but, even here, the posteriors

have tails that extend to near-zero mixing ratios.

To compare the performance of a WFIRST rendezvous scenario against HabEx

or LUVOIR scenarios at R = 70 and R = 140, we plot together the posterior distribu-

tions of the parameters for the SNR = 10 results from WFIRST rendezvous, R = 70,

and R = 140 in Figure 4.15. While this comparison sheds light on the corresponding

trade-off in terms of parameter estimation for the same SNR, these cases do not rep-

resent equal integration times, which scales with resolution and SNR. If the dominant

noise source does not depend on resolution (e.g., detector noise), the cases of R = 140

at SNR = 10, R = 70 at SNR = 20, and R = 50 at SNR = 28 would be roughly equal

in integration times. However, if the dominant noise source does depend on resolution

(e.g., exozodiacal dust), the cases of R = 140 at SNR = 10, R = 70 at SNR = 14,

and R = 50 at SNR = 17 would roughly have equivalent integration times. Tables

4.7 through 4.9 allow approximate comparisons of these different scenarios, excluding a

WFIRST rendezvous scenario at high SNR = 28 that we have not considered.

From Figure 4.15, we see that the performance of the WFIRST rendezvous

retrieval is similar to that of R = 70 at SNR = 10. The noticeable difference is a weak
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Table 4.7: R = 70: Strength of detection for a set of key parameters as a function of
SNR.

Parameter SNR= 5 SNR= 10 SNR= 15 SNR= 20

H2O − − W D

O3 − W W D

O2 − − W D

P0 W W W D

Rp D D D C

Note. — Weak detection (“W”) corresponds to a posterior
distribution with a marked peak but also a substantial tail to-
wards extreme values. Detection (“D”) refers to a peaked poste-
rior without tails towards extreme values but a 1-σ width larger
than an order of magnitude. Constraint (“C”) is defined as a
peaked posterior distribution with a 1-σ width less than an or-
der of magnitude. Non-detection, or flat posteriors across the
entire (or near-entire) prior range, are marked with “−”.

Table 4.8: R = 140: Strength of detection for a set of key parameters as a function of
SNR.

Parameter SNR= 5 SNR= 10 SNR= 15 SNR= 20

H2O − D D C

O3 − D C C

O2 − D D C

P0 W D C C

Rp D D C C

Note. — Weak detection (“W”) corresponds to a posterior
distribution with a marked peak but also a substantial tail to-
wards extreme values. Detection (“D”) refers to a peaked poste-
rior without tails towards extreme values but a 1-σ width larger
than an order of magnitude. Constraint (“C”) is defined as a
peaked posterior distribution with a 1-σ width less than an or-
der of magnitude. Non-detection, or flat posteriors across the
entire (or near-entire) prior range, are marked with “−”.
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Table 4.9: WFIRST : Strength of detection for a set of key parameters as a function of
SNR.

Parameter SNR= 5 SNR= 10 SNR= 15 SNR= 20

H2O − − − W

O3 − − − W

O2 − − W W

P0 W W W W

Rp D D D D

Note. — Weak detection (“W”) corresponds to a posterior
distribution with a marked peak but also a substantial tail to-
wards extreme values. Detection (“D”) refers to a peaked poste-
rior without tails towards extreme values but a 1-σ width larger
than an order of magnitude. Constraint (“C”) is defined as a
peaked posterior distribution with a 1-σ width less than an or-
der of magnitude. Non-detection, or flat posteriors across the
entire (or near-entire) prior range, are marked with “−”.

detection of O3 with R = 70. Because we adopt the photometric setup from WFIRST

Design Cycle 7 through the shorter wavelengths, the data do not provide complete

spectroscopic coverage across the significant O3 feature from 0.5 − 0.7 µm, as in the

case of HabEx/LUVOIR simulated data. Figure 4.5 shows the sampling of the forward

model spectrum for the three types of data sets we considered. We compare the spectral

fits in Figure 4.14 and note the much wider spread in the possible fits for wavelengths

shorter than 0.6 µm for WFIRST rendezvous versus R = 70 or R = 140, which have

continuous coverage in the full range. The R = 140, SNR = 10 data set was able to

offer detections of all atmospheric gases, setting it apart from the other two. We stress,

however, that constraints were only found at SNR = 20 and R = 140.
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Figure 4.15: Comparing the posteriors for all parameters for SNR = 10 cases of WFIRST
rendezvous, R = 70, and R = 140. Overplotted dashed line represents the fiducial values
from Table 4.1.

4.5.2 Considering Multiple Noise Instances

Our parameter estimations are likely to be optimistic as a consequence of our

adoption of non-randomized spectral data points in our faux observations. Thus, the

requisite SNRs for detection detailed above should be seen as lower limits. Ultimately,

our decision to use non-randomized data points stemmed from computational limitations

(preventing us from running large numbers of randomized faux observations for each of
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our R/SNR pairs) and from a desire to avoid the biases that can occur from attempting

to make inferences from retrievals performed on a single, randomized faux observation

(Lupu et al. 2016).

However, we deemed it necessary to investigate the consistency of our findings

with respect to different noise instances. To work within our computational restrictions,

we realized that cases such as R = 70 with SNR = 5 yielded little detection information

for any parameter even in the ideal scenario of non-randomized data. We then decided

to focus on two “threshold” cases based on the results from the non-randomized data:

R = 140 with SNR = 10 and R = 70 with SNR = 15. We ran 10 noise instances

of these two cases where it is likely the optimistic non-randomized data makes the

difference between detection and constraint for several parameters (see Tables 4.7 and

4.8).

Each noise instance is run for at least 10000 steps in emcee. Figure 4.16 shows

all the individual posteriors for the gas mixing ratios from each noise instance for R = 70,

SNR = 15. We highlight the posteriors from one “outlier” case where there is no oxygen

detection. The corresponding set of data points are shown as well. This highlights the

fact that single noise instances can mislead our interpretation and the benefit of having

many noise instances run to obtain a more comprehensive understanding of the state of

an atmosphere.

To summarize the noise instance results, we concatenate samples from the last

1000 steps in each noise instance and construct an averaged set of posteriors. We are

able to do this because the noise instances are equally likely, having been drawn in the

153



same manner from a Gaussian with set parameters (i.e., the same SNR as the standard

deviation). In Figure 4.17, we plot up the combined posteriors of the 10 noise instances

of R = 70, SNR = 15 and compared them to the posterior from the last 5000 steps of

the non-randomized data case. We illustrate the same comparison for R = 140, SNR

= 10 in Figure 4.18. We overplot the truth values as well as the 68% confidence interval

and median value for each parameter from the combined noise-instances posterior and

the non-randomized data posterior.

For all parameters in both the R = 70 and R = 140 cases, we find that the

average posterior from the 10 noise instances agree with the posterior from the non-

randomized data set qualitatively. Their medians and 68% confidence interval ranges

are also similar with significant overlap. The overall conclusions we can draw from the

average posteriors do not appear to differ much from those using the non-randomized

data set posteriors.

4.5.3 Implications for Future Direct Imaging Missions

Future space-based direct imaging missions will have a diversity of goals for

exoplanet studies, and will likely emphasize the detection and characterization of Earth-

like exoplanets. For the detection of oxygen and ozone—which are key biosignature

gases—in the atmospheres of Earth twins, our results indicate that spectra at a minimum

characteristic SNR of 10 will suffice if at R = 140, while data at SNR of at least 15–20

would be needed at R = 70. For a WFIRST rendezvous-like observing setup, these

gases would only be weakly detected even at a SNR of 20. Methane, which is another

important biosignature gas, has no strong signatures in the visible wavelength range for
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the modern Earth, so we did not consider detection of this gas. Thus, we could not

use our simulated data and retrievals to argue for detections of atmospheric chemical

disequilibrium (Sagan et al. 1993; Krissansen-Totton et al. 2016).

Key habitability indicators include atmospheric water vapor and surface pres-

sure. Detecting the former requires a SNR of 15–20 at R = 70, but only a SNR of

10 at R = 140. Surface pressure can be constrained to within an order of magnitude

for SNR & 15 at R = 140, although the overall lack of temperature information in

these reflected-light spectra would make it impossible to use pressure/temperature data

to argue for habitability (Robinson 2017). Surface temperature information may then

need to come from climate modeling investigations that are constrained by retrieved gas

mixing ratios.

For all of our observing setups, the data yield detections of, and in some cases

constraints on, the planetary radius. Except at SNR of 20 for R = 70 or SNR > 15 for

R = 140, the posterior distributions are not well-enough constrained to distinguish a

Earth/super-Earth (Rp < 1.5R⊕) from a mini-Neptune based on size alone, although

the data do rule out planetary sizes larger than Neptune. Additional atmospheric

information (e.g., composition) could potentially be used to help distinguish between

terrestrial planets and mini-Neptunes. These findings are consistent with the gas giant-

focused work of Nayak et al. (2017), who note that observations at multiple phase

angles can also help to better constrain planetary size. Our overall lack of surface

gravity constraints, paired with the weak constraints on planet size, implies that we do

not have a constraint on the planetary mass. Follow-up (or precursor) radial velocity
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observations (or, potentially, astrometric observations) could offer additional constraints

on planet mass.

We can make rough comparisons of our R/SNR results to those of Brandt

& Spiegel (2014), who used minimally parametric models to investigate detections of

O2 and H2O for Earth twins. These comparisons are not direct, however, as Brandt

& Spiegel (2014) were fitting for fewer parameters (8 versus our 11) and also only as-

sumed that SNR was proportional to planetary reflectance (versus our more complicated

scaling, as shown in Figure 4.6). For O2, Brandt & Spiegel (2014) find R = 150 and

SNR = 6 for a 90% detection probability, which is consistent with our R = 140 pos-

teriors moving from a non-detection at SNR = 5 to a detection at SNR = 10. When

investigating H2O, Brandt & Spiegel (2014) find R = 40 and SNR = 7.5 or R = 150

and SNR = 3.3 for a 90% detection probability. Using Figure 4.6 to scale our SNRs to

890 nm (i.e., to the continuum just shortward of 950 nm water vapor band), at R = 50

we only find a weak detection of H2O for SNR890 nm = 10, and at R = 140 we transition

from a water vapor non-detection to detection between a SNR890 nm of 2.5–5. Taken

altogether, these comparisons indicate that we agree with Brandt & Spiegel (2014) at

higher spectral resolution (R = 140–150), but that detection of H2O at lower spectral

resolution (R = 50) will likely require higher SNRs than originally indicated.

The discussion above emphasizes mere detections, not constraints (which,

again, we define as having peaked posterior distributions with 1-σ widths less than

an order of magnitude). While uncertain, we anticipate that characterization of cli-

mate, habitability, and life likely require constraints, not simple detections. Here, as
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is shown in Table 4.8, only R = 140 and SNR = 20 observations offer the appropri-

ate constraints. Thus, future space-based high contrast imaging missions with goals of

characterizing Earth-like planetary environments are likely to need to achieve R = 140

and SNR = 20 observations (or better). Of course, combining near-infrared capabilities,

which would provide access to additional gas absorption bands, may help loosen these

requirements.

4.5.4 Impacts of Model Assumptions

Several key assumptions adopted in this study warrant further comment. First,

as noted earlier, we do not retrieve on planetary phase angle and planet-star distance,

both of which influence the planet-to-star flux ratio. Thus, in effect, we are assuming

that the planetary system has been revisited multiple times for photometric and astro-

metric measurements, such that the planetary orbit is reasonably well-constrained (i.e.,

that the orbital distance and phase angle are not the dominant sources of uncertainty

when interpreting the observed planet-to-star flux ratio spectrum). If the orbit is not

well-constrained, Nayak et al. (2017) showed that strong correlations can exist between

the retrieved phase angle and the planet radius.

Second, we have assumed detector-dominated noise and a quantum efficiency

appropriate for the WFIRST/CGI for all of our observational setups. While this is

likely a fair assumption for our WFIRST rendezvous studies, it is likely that detector

development will lead to major improvements in instrumentation for a HabEx/LUVOIR-

like mission. Here, the rapid decrease into the red due to detector quantum efficiency

may not be as dramatic, implying that spectra would have relatively more informa-
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tion content at red wavelengths as compared to the present study. Furthermore, a

HabEx/LUVOIR-like mission may no longer be in the detector-dominated noise regime.

In the limit of noise dominated by astrophysical sources (e.g., exo-zodiacal light or stellar

leakage), the SNR only varies as
√
qT Bλ.

Finally, we adopt a relatively simple parameterization of cloud three-dimensional

structure. Specifically, we allow for only a single cloud deck in the atmosphere, and we

then permit these clouds to have some fractional coverage over the entire planet. This

parameterization of fractional cloudiness implies uniform latitudinal and longitudinal

distribution of patchy clouds. In reality, clouds on Earth have a complex distribution in

altitude, latitude, and longitude (Stubenrauch et al. 2013), and variations in time also

have an observational impact (Cowan et al. 2009; Cowan & Fujii 2017). However, given

the overall inability of our retrievals to constrain cloud parameters (at least at the SNRs

investigated here; see also Lupu et al. 2016; Nayak et al. 2017), it seems challenging

for future space-based exoplanet characterization missions to detect (or constrain) more

complex cloud distributions with the types of observations studied here and data of

similar quality.

4.5.5 Future Work

Our current forward model is able to include both CO2 and CH4, although we

did not retrieve on these gases in the current study due to their overall lack of strong

features in the visible wavelength range for modern Earth. However, these species do

have stronger features in the near-infrared wavelength range. As both of the HabEx

and LUVOIR concepts are considering near-infrared capabilities, it will be essential
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to extend our current studies to longer wavelengths and to investigate whether or not

constraints on additional gases (i.e., beyond water, oxygen, and ozone) can be achieved

at these wavelengths.

Additionally, given the likely huge diversity of exoplanets that will be discov-

ered by future missions (and that have already been identified and studied by Kepler,

Hubble, and Spitzer), it will be necessary to extend our parameter estimation studies

to include a wider range of worlds. Both super-Earths and mini-Neptunes are more-

favorable targets for a WFIRST rendezvous mission, and may also be easier targets

for HabEx/LUVOIR-like missions. Our forward model is already capable of simulating

these types of worlds, and we anticipate emphasizing a variety of exoplanet types in

future studies. Such future studies may also include retrievals on planetary phase an-

gle, which would be relevant to observing scenarios where the planetary orbit is poorly

constrained.
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Figure 4.16: The top left panel shows one of the 10 noise instances we retrieved on for
R = 70, SNR = 15 data, plotted along with the forward model spectrum at R ∼ 70. The
remaining three panels show the gas mixing ratio posteriors (H2O, O3, O2) of all the 10
noise instances of R = 70, SNR = 15. In addition, we are showing the corresponding
posterior distributions from the non-randomized data set (seen originally in Figure 4.11)
for comparison. The set of posteriors that correspond to the noise instance in the top
left panel is the set of bolded distributions. The vertical dashed lines represent the input
values of the parameters.
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ter posteriors from 10 noise instances
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(b) R = 70, SNR= 15: Combined cloud param-
eter posteriors from 10 noise instances
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(c) R = 70, SNR= 15: Combined gas mixing ratio posteriors from 10 noise instances

Figure 4.17: The combined posteriors distributions from 10 noise instances of R = 70,
SNR= 15 compared to the posteriors from the non-randomized data set (see also Figure
4.11). The diamond represents the median value of each combined posterior, while the
circle is the median of the non-randomized data set posterior. Each median is plotted
along with the 68% confidence interval from the same distribution. The vertical dashed
lines represent the input values of the parameters.
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(a) R = 140, SNR= 10: Combined bulk param-
eter posteriors from 10 noise instances
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(b) R = 140, SNR= 10: Combined cloud param-
eter posteriors from 10 noise instances
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(c) R = 140, SNR= 10: Combined gas mixing ratio posteriors from 10 noise instances

Figure 4.18: The combined posteriors distributions from 10 noise instances of R = 140,
SNR= 10 compared to the posteriors from the non-randomized data set (see also Figure
4.12). The diamond represents the median value of each combined posterior, while the
circle is the median of the non-randomized data set posterior. Each median is plotted
along with the 68% confidence interval from the same distribution. The vertical dashed
lines represent the input values of the parameters.
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4.6 Summary

We have developed a retrieval framework for constraining atmospheric prop-

erties of an Earth-like exoplanet observed with reflected light spectroscopy spanning

the visible range (0.4 − 1.0µm). We have upgraded an existing, well-tested albedo

model to generate high-resolution geometric albedo spectra used to simulate data at

resolutions and quality relevant to future telescopes, such as the HabEx and LUVOIR

mission concepts. We combined our albedo model with Bayesian inference techniques

and applied MCMC sampling to perform parameter estimation. The data we considered

were for WFIRST paired with a starshade (i.e., the rendezvous scenario), R = 70, and

R = 140 at SNR= 5, 10, 15, 20. We validated our forward model, and we demonstrated

the successful application of our retrieval approach by gradually adding complexity to

our inverse analyses.

Following work by Lupu et al. (2016) and Nayak et al. (2017), who have con-

structed a retrieval framework for gas giants in refleted light, we made several modifica-

tions to the albedo model featured in these previous studies. Our model has a reflective

surface, absorption due to water vapor, oxygen, and ozone, Rayleigh scattering from

nitrogen and other key gases, pressure-dependent opacities, an adaptive pressure grid,

and a single-layer water vapor cloud layer with fractional cloudiness. We performed our

retrievals with the goal of estimating our ability to detect and constrain the atmosphere

of an Earth twin. We found that R = 70, SNR = 15 data allowed us to weakly detect

surface pressure as well as water vapor, ozone, and oxygen. At R = 140, we found that

SNR = 10 was needed to more firmly detect these parameters. At R = 140, a SNR of 20
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was needed to constrain key planetary parameters, and R = 70 data at this SNR offered

extremely few constraints. A WFIRST rendezvous scenario, with its photometric points

and lower resolution spectrum (R = 50), is only able to offer limited diagnostic informa-

tion. For example, at SNR = 10, we only weakly detect and detect surface pressure and

planetary radius, respectively. To weakly detect the gases, WFIRST rendezvous data

needed to be at least SNR = 20. Throughout our runs, we found that we are unable to

accurately constrain surface albedo or place estimates on the surface gravity, although

we can straightforwardly rule out planetary sizes above roughly the radius of Uranus or

Neptune.

Our findings demonstrate that direct imaging of Earth-like exoplanets in re-

flected light offers a promising path forward for detecting and constraining atmospheric

biosignature gases. Instrument spectral resolution for future missions strongly impacts

requisite SNRs for detection and characterization, and this must be taken into consid-

eration during mission design. Thus, the scientific yield of future space-based exoplanet

direct imaging missions can only be maximized by simultaneously considering mission

characterization goals, integration time constraints, and instrument spectral perfor-

mance.
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Chapter 5

Summary and Future Directions

For as long as we observe and ponder the universe, the challenge of interpreting

remote data will remain a hurdle we must clear. Advancements in engineering will con-

tinue to bolster our access to distant objects and phenomena. Meanwhile, developments

in theoretical models will map further destinations for our voyage of cosmic exploration.

This thesis, in particular, examined the intricate symbiosis between data and

models in the context of exoplanet atmosphere characterization. Retrievals are a data-

driven modeling tool that will only become more utilized as future missions improve

the quality of data. I first studied the implications that arise from our assumption

that spectra from unresolved planets can be adequately interpreted via 1D models in

retrievals. After demonstrating one such significant consequence – biased abundance

estimation – from hot Jupiters in emission, I investigated ways to use 2D models to

understand spectroscopic phase curves of transiting planets. Finally, I showed that

retrievals are not only valuable in inferring properties from data but also identifying the
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data we should obtain from future missions. To this end, I built a retrieval framework for

reflected light spectra from rocky exoplanets. I outlined observational set ups capable

of meeting science goal thresholds.

Astronomers pioneered the techniques for characterizing exoplanet atmospheres

in the last decade, laying the groundwork for upcoming and proposed missions that will

give us unprecedented insight to exoplanet diversity. The next few decades hold exciting

discoveries for planets from hot Jupiters to terrestrial worlds, and retrievals will play a

key role along the way.

5.1 Prospects for Transit Characterization of Irradiated

Exoplanets

Transiting hot Jupiters have been excellent subjects of state-of-the-art theoret-

ical models and observing facilities. However, less than a dozen have had spectroscopic

data sets with high signal-to-noise ratio in emission (Madhusudhan 2018). Fewer still

data sets exist for less massive planets. The much-aniticipated JWST will vastly expand

the pool of exoplanets with well-characterized atmospheres. We also look forward to the

ARIEL mission, expected to launch in the late 2020s. ARIEL will perform photometry

and spectroscopy of around 1000 close-in planets around host stars of various spectral

types.

With such exciting data on the horizon, now is the time to hone our modeling

tools. In chapter 2, I was motivated to inspect whether simplified retrieval model

assumptions can lead us astray, and how that may take shape given modern data,
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compared to more precise future data. I generated synthetic spectra of a planet with

two dominant TP profiles, representative of a tidally-locked hot Jupiter with a day-

night temperature contrast observed at first or third quarter phase with respect to the

observer. I then retrieved on simulated observations from modern Hubble and Spitzer

Space Telescopes and the future JWST.

I compared the performance of a 1D (1TP) model against a 2D (2TP) model.

The modern data told a cautionary tale: CH4 can appear artificially constrained with

the 1D model, but the data do not strongly justify the inclusion of a second profile in

the fit. Biased abundances can mislead the interpretation of the atmosphere, possibly

causing speculation of disequilibrium chemistry where there is none. The future data,

on the other hand, showed a more clearcut message: a 1D model is insufficient at fitting

the data for a planet with thermal inhomogeneity, and all gas species suffered biased

abundances.

While I also applied the 2D model to actual WASP-43b observations in chap-

ter 2, it became clear that modeling the full phase curve can illuminate trends of inho-

mogeneity from retrievals. This need propelled the work in chapter 3. I used spherical

trigonometry to appropriately capture limb darkening in a computationally efficient way

for 2D retrievals of spectroscopic phase curves, where the observed day and night con-

tributions can be asymmetrical. I then applied 1TP and 2TP retrievals to phase curves

from simulated Hubble and Spitzer data, observed WASP-43b Hubble and Spitzer data,

and simulated JWST data.

For modern data, almost half the orbit justified the inclusion of 2TP in the
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fits. H2O constraints are consistent from phase to phase. CH4 is biased to higher

values for half the orbit. When considering actual WASP-43b observations, I also saw

evidence of the offset hotspot (asymmetry in the phase curve) when phase geometry

was allowed to be a free parameter. For JWST data, the only phase where 1TP was

acceptable was secondary eclipse. Joint retrievals from simultaneously fitting for the

full phase curve data set revealed increase in precision for molecular abundances and

TP constraints. However, additional work is needed to further develop the simultaneous

retrieval approach to tease apart artificial biases from true phenomenon when applying

to real data sets.

More phase curves of wider wavelength coverage and increased precision are

indeed expected when JWST and ARIEL launch. Finally, we will have exquisite access

to multidimensional information from exoplanet atmospheres. We can anticipate map-

ping the distribution of clouds. This will enable detailed study of atmospheric dynamics

and chemical processes. We will constrain more molecules than H2O, bringing us closer

to robust measurements of C/O ratios which link to planetary formation conditions. To

prepare for these developments, the field will certainly shift more heavily toward the

two following approaches:

• Using 3D General Circulation Models (GCMs) to benchmark retrievals. The work

presented in this thesis relies on computationally efficient forward models that are

simple by design to perform parameter estimation. GCMs, however, can include

more complex self-consistent physics and chemistry. While GCMs are time in-

tensive to run and thus unsuitable as the forward model in a Bayesian retrieval,
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they can be used to generate synthetic data sets with which to test retrieval per-

formance (Blecic et al. 2017). The use of model comparison tools can identify

when features from GCMs are robustly detected, from quenched abundances to

the extent of a hot spot.

• Increasing vetting and ease of access to retrieval frameworks. The value of open

source code is clear: it offers transparency, version control, ease of community

use, and invites collaboration. As new retrieval codes continue to be developed,

there needs to be benchmark cases to vet their results (Barstow et al. 2020). This

collaborative effort will allow modelers to more clearly interpret results from their

own retrievals and that of other teams.

5.2 Prospects for Direct Imaging Characterization of Rocky

Exoplanets

Space-based direct imaging is one of the most technologically challenging ways

to study exoplanets. Yet it will be our only access to the atmospheres of rocky planets

orbiting in the Habitable Zone of Sun-like stars. Planned and proposed missions for the

2030s onward will perform reflected light spectroscopy of directly imaged targets.

In Chapter 4, I presented a retrieval framework to quantify our ability to

constrain atmospheric properties using simulated data that such missions might collect.

I focused on the visible wavelength range (0.4 - 1µm). For the Earth, this range captures

Rayleigh scattering and absorption features of H2O and key potential biosignatures, O2

and O3. I examined data sets of different R and SNR. Detection was achieved for
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the gases at SNR = 20, R = 70; SNR = 20, R = 140 data constrain them. These

are configurations applied with HabEx/LUVOIR in mind. For scenarios relevant to the

WFIRST starshade rendezvous mission, SNR = 20, the highest considered, only allowed

weak detection of the gases.

I demonstrated the value in providing uncertainties for parameters to help

quantify the tradeoff between instrument resolution and target SNR. These results in-

formed set-ups presented in the HabEx/LUVOIR final reports for the 2020 astronomy

decadal survey (Gaudi et al. 2020; The LUVOIR Team 2019). The final reports also

consider the near-infrared (NIR) region of the spectrum. As described in Chapter 4,

molecules like CH4 and CO2 have features at such wavelengths. A natural next step

would be to investigate the value added by simulated NIR observations.

The inclusion of CH4 and CO2 will be significant because both are possible

biosignatures. Although much of Chapter 4 is based on modern Earth and its char-

acteristics, Earth’s atmosphere has evolved much over the past 4.6 billion years. One

example of major development was the buildup of O2 only 2.5 billion years ago (e.g.,

review by Kasting & Catling 2003). We should anticipate anoxic biological activity on

exoplanets; Krissansen-Totton et al. (2018) presented the case for using simultaneous

CO2 and CH4 detection within an anoxic environment as evidence for atmospheric dis-

equilibrium due to methanogenic life. It is expected that the exoplanets we will study

are at different ages and thus stages in their own atmospheric history. Missions like

HabEx and LUVOIR could capture biospheres that were once prevalent on earth, and

the improvement of tools such as retrievals go hand in hand in making that a reality.
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In addition to an extended wavelength range, two other enhancements to the

retrieval framework will help meet the needs of pioneering science possible with future

missions. The first is the implementation of a wavelength-dependent surface albedo.

The surface albedo presented in Chapter 4 utilizes a constant surface albedo.

With the presence of oceans and continents, the Earth’s albedo depends on wavelength.

The vegetation “red edge,” in particular, corresponds to a jump in reflectivity around

0.7µm (Seager et al. 2005). A parameterized step function can model a straightforward

wavelength-dependence in albedo. However, given the radius-albedo degeneracy and the

inclusion of additional free parameters, we need to perform a careful model comparison.

We need to establish how detectable a “red edge” or other biological pigment-

induced albedo discontinuities (e.g., Hegde et al. 2015) can be, given the data. The

retrieval framework from Chapter 4 is well-suited to tackle this investigation and evalu-

ate the robustness of surface albedo as a biosignature. In addition, a variety of surface

minerals that exist for rocky bodies in our Solar System. It behooves us to consider a

slew of minerals or surface types (e.g., olivine, water ice) and their reflection features

when considering rocky exoplanets in general (Hu et al. 2012). Retrievals can tell us if

future data can constrain surface composition.

Another exciting prospect is monitoring for temporal variability of the surface.

From season to season on Earth, vegetation coverage - and hence albedo - changes.

Keeling et al. (1976) showed seasonal variations in CO2 concentrations associated with

photosynthetic activity and decomposition following increase or decrease of solar radia-

tion. Long-term observations of planets in the Habitable Zone can reveal this behavior,
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if present. They can also be used to infer planetary rotation and reconstruct surface

maps (Cowan et al. 2009; Lustig-Yaeger et al. 2018).

The second promising enhancement is retrieving background gas as a free pa-

rameter. While N2 is the expected background gas for Earth, it will be important to

study how well we can discern the properties of the background gas for a planet of inter-

est. The Kepler mission determined that planets between the sizes of Earth and Neptune

(∼ 4 Earth-radii) are commonplace in our Galaxy (Petigura et al. 2018). Such planets

are called super-Earths or mini-Neptunes, and their atmospheric composition is still

under study. They may have H2-rich atmospheres, and radius is not a well-constrained

property based on Chapter 4 results. Consequently, we will need to rely on any con-

straining power the data may have for background gas to shed light on the nature of

these planets. In the process of studying potentially habitable targets, HabEx and LU-

VOIR expect to capture plenty of data (following the long exposures) for sub-Neptune

planets present in the same system. This data set would offer access to a variety of

atmospheric compositions and evidence of different clouds and hazes (e.g., Morley et al.

2015). The comparative planetology enabled by future large space-based telescopes will

undoubtedly transform our perspective on planet formation and evolution in systems

around different stellar types.

Certainly there are a plethora of new parameters we can add to our retrieval

framework. However, chapters 2 and 3 warn us of adopting more complexity than neces-

sitated by the data. An essential extension of reflected light retrievals will be to study

the conditions where a 1D model is appropriate. Recently, Batalha et al. (2019) de-
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veloped PICASO (Planetary Intensity Code for Atmospheric Scattering Observations),

an albedo model that has the advantage of being python-based and more easily com-

patible with existing Bayesian inference tools. PICASO can be incorporated into a

retrieval framework to examine whether inhomogeneities are justified for a given data

set. Yet, chapter 4 showed us that cloud parameters are difficult to constrain for the

HabEx/LUVOIR-like data considered. While retrievals of reflected light spectra from

HabEx/LUVOIR will likely remain 1D for the near future, these data will be thoroughly

groundbreaking and drive the iterative improvement of models.

We are at the frontier of space missions that could discover evidence of life

elsewhere in the universe. Both HabEx and LUVOIR outline a systematic approach

to achieve this goal. The initial steps aim to confirm that a target is a planet in the

Habitable Zone of its host. The next steps aim to detect the presence of atmospheric

water. To eventually validate the biosignatures of promising candidates, we need to

quantify the thresholds. The retrieval framework I developed in this thesis has already

clarified the ease with which we can screen candidates for water and ultimately search for

signs of life (Feng et al. 2018; Smith et al. 2020). With this tool and future advancements

to be added, we may finally help answer the question: Are we alone?
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Appendix A

Incorporating and validating

phase geometry

Because our goal in chapter 3 is to perform computationally intensive retrievals

on spectroscopic phase curve data, we need the forward model to remain simple enough

while capturing the complexity of the geometry. Here we describe the construction of

the 2TP-Crescent model geometry.

We consider the case of an orbit observed at N phases, where phase angle is

defined as α. At a given phase, we leverage the fact that limb darkening is treated

for intensities at the relevant viewing angles following Line et al. (2013). Radiative

transfer and fluxes are calculated with integration by Gaussian quadrature. For an

approximation of NGauss points, we have the same number of intensities, each at an angle

of µi with a weight of wi. The upwelling intensity is given by Iλ =
∑
Bλe

−
∑

∆τ∆τ (Line

et al. 2013, Eq. 8). We integrate these intensities over 2π with Gaussian quadrature,
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leading to an annulus at each µi, similar to the formalism from Barman et al. (2005).

Each annulus can be a linear combination of arbitrary TP profiles: 2π
∑
µiwiI.

In our study, I = AIhot + (1 − A)Icold, where A is the fractional area that is emitting

with the hotter profile in a 2TP setup. Ihot represents the intensities calculated using a

profile based on the TP parameters including βday, while Icold uses the same parameters

except βnight.

We take advantage of a hot Jupiter’s (assumed) tidally locked configuration,

which leads to a large temperature contrast, as well as our knowledge of the phase

geometry, i.e., the amount of a planet that is seen to be illuminated at angle α. The

equation for illuminated fraction (k) as a function of phase angle (α) is

k =
1− cosα

2
. (A.1)

The next step is determining the fraction within each annulus at a given phase

that corresponds to the hotter emission on the visible hemisphere. As seen in Figure

A.2(a) , for the Gaussian quadrature integration of N points, there is a set of weights wi

and corresponding θi that indicates the direction of the radiation beam for each point

i. The arc that spans between two θi is the angular width of an annulus. We use the

width to determine the area of each annulus, summing up to 2π, the surface area of half

a sphere (the visible hemisphere). The covered area of a spherical lune of angle α (at

phase α) is 2α (Fig A.2(b)). We can calculate the fractional area in each annulus that

then sum up to 2α for one profile.

An important choice in balancing forward modeling speed and model accuracy
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Figure A.1: Comparing Morley et al. (2015) disort 3D model’s spectra (dashed) to
this study’s annulus model’s spectra (solid) at four phases from after transit to sec-
ondary eclipse. The simpler annulus model is able to match the 3D model’s output well
throughout the orbit.
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Figure A.2: Detailed schematics of annulus geometry. (a) 1D sideview of a section of the
atmosphere in the Gaussian quadrature setup with wi for N points. We use a unit circle
as an example. For each

∑
iwi, there is a corresponding angle θi. The span of each arc

between θi is φi. Within each arc is a beam of radiation. This quadrant is integrated
azimuthally over 2π to determine the total outgoing radiation of the hemisphere facing
the observer. (b) View of hemisphere visible to observer at phase α. The emitting
region (in red) intersects the annuli at different points. By determining the areas of
these segments, we can calculate how much of each annulus is emitting as described in
the text. (c) A zoom-in of spherical triangle ZYW for phase α. The known variables are
α, β, and A. This sets up the solution for AAS (angle-angle-side) spherical triangles.
See Equations A.2 to A.4.
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is setting NGauss. We first verify that our annulus model produces the emitting fractions

as determined by Equation A.1 for the set of phase angles in Table 3.2. A 3D model

with higher spatial resolution and individually calculated fluxes would better simulate

a realistic planet atmosphere at partially illuminated phases. However, 3D models are

time-consuming to run even once. If one attempts to fold that into a retrieval framework,

where numerous calls to the forward model are necessary, then it will not be an effective

way to estimate properties of the atmosphere. However, we can make use of 3D models

to validate our annulus approach. If the spectrum from the annulus method matches

that of a 3D output, then we would be confident in the retrieval inferences (similar to

Blecic et al. 2017).

We compare the spectra from a 3D model to spectra generated with the an-

nulus model using NGauss = 4. Our 3D model combines the 1D radiative transfer code

disort as adapted by Morley et al. (2015) with a 3D longitude-latitude grid. We assign

atmospheric properties and a TP profile to each point in the grid and integrate for the

emerging flux from the planet. For the visible hemisphere, the grid has 16 longitudes

and 32 latitudes. As orbital phase increases from transit to secondary eclipse, points

along additional longitudes adopt the day-side temperature profile.

Our test case is an atmosphere with only water vapor as an opacity source

with 60% day-night temperature contrast (βnight = 0.4) for an HD 189733b-like planet.

Past phase angle 22.5◦ (0.0625 if one phase goes from 0 to 1; see also Table 3.2), we find

good agreement between the 3D spectra and our annulus model, as seen in Figure A.1.

This phase is in fact the smallest we consider in our paper, as it is the first phase in the
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WASP-43b data we use (Stevenson et al. 2017). We attribute the small mismatches to

differences in opacity libraries. Furthermore, our simulated data will be generated and

retrieved using the same forward model, providing us with self-consistency in evaluating

the results. Thus, NGauss = 4 offers accurate spectra for a given phase geometry and

is computationally efficient within our retrieval framework. We use NGauss = 4 for

2TP-Crescent and for all models in this work.

Figure A.2(b) shows a view of NGauss = 4 where we divide the visible hemi-

sphere into annuli, and the planet is viewed at phase α. Because the top and bottom

halves are symmetric, we only need to determine the illuminated areas of the top and

multiply by two. To calculate the area of Region II as marked in Figure A.2(b), we uti-

lize the AAS (angle-angle-side) solution to solving spherical triangles. Spherical AAS

is where one Side, one adjacent Angle, and one opposite Angle are known for a tri-

angle on a sphere, as illustrated in Figure A.2(c). Because angle β is marked by the

intersection between a great circle arc from the center of the sphere and the equator

(viewed top down), its value is β = π
2 . We know α as the phase angle. Side A is the

width of the annulus, φi. To calculate side B, side C, and angle γ, we follow Equations

A.2 through A.4. Once side C, or arc ZY in Figure A.2(b), is obtained, we get arc

ZX = XY − ZY = π
2 − C. The area of a spherical triangle is the sum of the angles;

for Region II, the area is thus α + β + γ. The area of Region I is calculated as the

area of a longitude-latitude patch, using I = ZX · |sin lat1− sin lat2|, where lat1 = π
2 ,

lat2 = (π2 − θ1) for the outermost annulus in Figure A.2(a). The area of Region III is

then α− (I + II). Based on these methods, we calculate the set of areas for hot regions
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in the annuli as a function of phase.

B =
sinA sinB

sinα
(A.2)

C = 2 arctan
[

tan
(1

2
(A−B)

)sin
(

1
2(α+ β)

)
sin
(

1
2(α− β)

)] (A.3)

γ = 2 arccot
[

tan
(1

2
(α− β)

)sin
(

1
2(A+B)

)
sin
(

1
2(A−B)

)] (A.4)
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