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Long-Term Variability of Soil Moisture in the Southern Sierra: 
Measurement and Prediction

Carlos A. Oroza,* Roger C. Bales, Erin M. Stacy, Zeshi Zheng, and Steven D. 
Glaser

C.A. Oroza, R.C. Bales, Z. Zheng, and S.D. Glaser, Dep. of Civil and Environmental 
Engineering, Univ. of California, Berkeley, CA 94720; R.C. Bales and E.M. Stacy, Sierra 
Nevada Research Institute, Univ. of California, Merced, CA 95343. *Corresponding author 
(coroza@berkeley.edu).

Using 6 yr (Water Year [WY] 2009–WY 2014) of hourly in situ measurements 
from a spatially distributed water-balance cluster, we quantified the long-
term accuracy of an algorithm used to predict spatial patterns of depth-
integrated soil-water storage within the rain–snow transition zone of the 
southern Sierra Nevada. The algorithm—the multivariate, non-parametric 
regression-tree estimator Random Forest—was used to predict soil-water 
storage based on a combination of attributes at each instrument cluster (soil 
texture, topographic wetness index, elevation, northness, and canopy cover).
Out-of-bag R2 (similar to cross-validation for Random Forest) was used to 
quantify the accuracy of the estimator for unobserved data. Accuracy was 
consistently high during the wet-up, snow-cover, and early recession periods 
of average and wet years. The accuracy declined at the end of a 3-yr dry 
period, and the relative rank of the independent variables in the model 
shifted. Soil texture was the highest-ranked independent variable across all 
years, followed by elevation and northness. Topographic wetness increased 
in importance during dry periods. Northness exhibited high importance 
during the wet-up and early recession periods of most water years. During 
dry years, the importance of elevation declined. In dry years, notable 
differences in soil-water storage at each depth include lower-than-average 
storage in the deeper regolith at the beginning of the water year and lower 
storage in near-surface layers during the winter resulting from transient 
snow cover.

Abbreviations: CART, classification and regression tree; CZO, Critical Zone 
Observatory; VWC, volumetric water content; WY, water year.

Predicting spatial patterns of soil-water storage in montane regions is 
confounded by complex topography, heterogenous subsurface properties, 
snow–soil interactions (Williams et al., 2009), maximum snow depth during 
the prior winter season (Molotch et al., 2009), and spatial variability of snow 
depth resulting in meter-scale runoff (Bales et al., 2011). Interannual 
patterns of precipitation and snowpack are also highly variable (Harrington 
et al., 1995), resulting in both inter- and intra-annual variability of the 
processes governing the spatial distribution of soil moisture. Although 



passive-microwave monitoring enables remote observation of surface soil 
moisture, it is too coarse to capture spatial variability in the complex terrain 
of montane regions (Bales et al., 2006). Remotesensing techniques also 
capture only near-surface soil-moisture storage (Njoku et al., 2003; Wagner 
et al., 2007). Observing only near-surface storage is insufficient for 
understanding controls on ecological functioning, as tree roots and thus root-
water uptake occur well below the surface (Bales et al., 2011). Thus a major 
challenge is estimating deeper soil-water storage from spatially extensive 
remotely sensed measurements.

Recent advances in low-cost sensor networks are enabling the deployment of
spatially extensive in situ soil-moisture measurements at deeper soil layers 
than are accessible from remote sensing. These deeper in situ 
measurements could be combined with remotely sensed terrain attributes to 
predict soil-water storage at un-instrumented regions in a basin. Developing 
a strategic and systematic approach for in situ observation networks requires
understanding the long-term accuracy of these methods, as well as the inter-
and intraannual controls on soil moisture. As the amount and timing of water
entering the soil exhibit considerable interannual variability, predictors 
designed to extrapolate in situ soil-water storage in average water years 
may not work well for years that are significantly wetter or drier. While there 
have been limited reports of catchment-scale soil-moisture variability in 
these regions (Williams et al., 2009; Bales et al., 2011), a long-term study of 
the accuracy of spatial soil-water storage estimates has not been reported. It
is presently unclear how long-term variability will affect the accuracy, and 
relative independent-variable ranking, of soil-moisture prediction.

In the present study, we used long-term records of soil-water storage at 
multiple depths to quantify the accuracy of an algorithm that predicts soil-
water storage. In situ measurements of soil-water storage and soil texture 
were combined with remotely sensed topographic attributes using a 
statistical regression algorithm to predict soil-water storage at un-
instrumented regions. The aims of the present study were to: (i) quantify 
inter- and intra-annual trends in the algorithm accuracy; (ii) identify which 
landscape attributes are most informative for predicting intra-annual and 
interannual patterns of soil moisture, and (iii) compare temporal soil-water 
storage patterns at each layer during wet and dry years to determine which 
sensor layer is most representative of overall soil-water storage.

Methods

We used a 6-yr dataset of spatially distributed water-balance measurements 
at the Southern Sierra Critical Zone Observatory (CZO) in the Kings River 
basin. Soil moisture was measured at 10-, 30-, 60-, and 90-cm depths at 27 



sensor-node locations and depthintegrated to compute spatial soil-water 
storage. The data included a very wet water year (2011), years with near- or 
above-average precipitation (2009–2010), and a record dry period (2012–
2014). Annual precipitation values are summarized in Table 1.

The distribution of sensor nodes was designed to capture the variability of 
physiographic features expected to affect snow and soil-moisture variability 
(Bales et al., 2011). Soil-moisture variability has been found to be controlled 
by multiple factors, including soil texture, topographic wetness, spatial 
variability of snow depth, and solar radiation (Moore et al., 1993, 1988; 
Dunne and Black, 1970; Zaslavsky and Sinai, 1981; Western et al., 1999). 
Sensor nodes at the Southern Sierra CZO were placed into distinct high- and 
low-elevation clusters, and within each cluster, sensor nodes were designed 
to sample a variety of slopes, soil-texture values, and aspect (north, south, 
and flat). Additionally, node placements were designed to capture variability 
in canopy cover, with sensors placed in open, under-canopy, and drip-edge 
locations.

The statistical regression algorithm Random Forest was then used to predict 
soil-water storage at un-instrumented locations based on the in situ 
measurements and five independent variables at each node: column-
average soil texture, topographic wetness, northness, elevation, and location
with respect to the canopy. Random Forest was selected because it enables 
multivariate prediction from both continuous and categorical independent 
variables (e.g., soil texture and location with respect to canopy, 
respectively).

Site Description and Data Collection

The Southern Sierra CZO is located in the Kings River basin of the Southern 
Sierra Nevada (Fig. 1). It is situated in a mixedconifer forest east of Fresno, 
CA, and contains sensors distributed across the rain–snow transition. The 
region receives mainly rain below 1500-m and snow above 2200-m 
elevations (Bales et al., 2011). Soils are weakly developed and formed from 
decomposed granite (Dahlgren et al., 1997). Higher elevation soils have a 
hard soil–bedrock interface, whereas soils at lower elevations have a deeper 
paralithic contact (Bales et al., 2011).

Data were collected at distributed sensor clusters in the watershed (37.059° 
N, −119.192° W). Two sites are situated at the upper (1981 m) and lower 
(1745 m) elevations of the Providence Creek watershed, co-located with the 
upper and lower meteorological sites of the US Forest Service’s Kings River 
Experimental Watersheds project. Within each site are clusters of 
instruments distributed according to the predominant aspect. The Upper 
meteorological (met) site has three clusters, with north, south and flat 



aspects. The Lower meteorological (met) site has two clusters (north and 
south facing). Each instrument cluster has five to seven nodes stratified by 
canopy (open, drip edge, and under canopy) and by tree species found at 
each aspect. The higher elevation site has a cluster of 17 nodes, and the 
lower elevation site has 10 nodes. Sensors were installed in December 2007.

Data control and storage are on a Campbell Scientific CR1000 datalogger 
with an AM16/32B multiplexer (Campbell Scientific). Snow depth was 
measured with an ultrasonic depth sensor with analog control from Judd 
Communications. Soil volumetric water content and soil temperature were 
measured using Decagon Device’s (now METER Group) ECHO-TM (now 
equivalent to the 5TM). Daily soil-moisture storage, S(t)i for each ith node 
was determined by depth-integrating the volumetric water content (VWC) 
within the 0- to 90-cm layers:

where Δz represents the thickness of the soil layer to which the VWC value is
applied.

The 90-cm sensors are installed only at a subset of nodes (16 total) owing to 
limitations on hand excavation for installations in rocky saprolite. Data for 
the present study are from the hourly Level-2 dataset, sampled four times 
each day (midnight, 06:00, 12:00, and 18:00) and were analyzed after 
formatting, calibration, and gap-filling by interpolation or regression.

Node locations were measured with a Trimble GeoXT GPS (horizontal 
accuracies between 0.6 and 1.4 m for points in the present study). 
Topographic properties at each node (elevation, slope, and aspect) were 
extracted from a lidar-derived digital elevation model of the region from the 
National Science Foundation’s open topography database 
(opentopography.org, accessed September 2016). The grid size of the 
computed variables was 1 m (derived from an average of 11.65 returns per 
square meter).

Precipitation was collected using Belfort 5-780 rain gauges (Safeeq and 
Hunsaker, 2016). Evapotranspiration was measured at a nearby flux tower 
(Goulden et al., 2012; Rungee and Bales, 2017) (location shown in Fig. 1), 
and data were analyzed after gap filling.

Soil-Moisture Prediction

To determine the long-term accuracy of soil-moisture prediction from the in 
situ measurements, we applied a regression-tree ensemble algorithm 



(Random Forest; see Breiman, 2001) to the daily depth-integrated storage 
data. Classification and regressiontree (CART) algorithms can be used to 
build predictors when independent variables are a mix of continuous and 
categorical features (e.g., topographic wetness index and location type in the
present study). Ensemble tree algorithms such as Random Forest combine 
predictions from multiple CART models to arrive at an estimate of the true 
output. These methods have seen recent adoption in a variety of fields, such 
as land-cover classification (Gislason et al., 2006) and upscaling eddy-
covariance measurements (Jung et al., 2009).

Five independent variables were used in the predictor for the present study: 
soil texture, topographic wetness, elevation, northness, and location type. 
Column-average soil-texture data for each node were extracted from a prior 
survey (see Table 2). Finer texture proportions (clay + silt) were used 
because they have been shown to affect soil-moisture variability at the 
hillslope scale (e.g., Famiglietti et al., 1998, Fig. 11b, who observed a 
generally high correlation coefficient between moisture content and clay 
content). Note that the texture of the lower elevation nodes is significantly 
finer than that at the higher elevation nodes. The topographic wetness index 
(TWI) was derived from the lidar elevation raster using the equation of Beven
and Kirkby (1979):

where a is the upslope contributing area per unit contour and tan(b) is the 
local slope. Topographic wetness was processed using the built-in module 
available at opentopography.org, which uses TauDEM 
(http://hydrology.usu.edu/taudem). Elevation was represented as an integer-
based categorical variable representing the high- and low-elevation clusters 
because the elevation differences within the clusters are small compared 
with the elevation difference between the upper and lower clusters. 
Representing elevation as a categorical variable ensures that the feature 
importance measured by the algorithm represents differences between the 
high- and low-elevation clusters rather than meter-scale elevational 
differences within each cluster. Northness was computed from the lidar slope
and aspect rasters (Molotch et al., 2004):

Finally, location type was encoded as one of three categorical variables 
representing drip-edge, under-canopy, and open measurements. The node 
properties are summarized in Table 2.



We implemented the regression using the Random Forest module in Scikit-
learn Version 19.0, an open-source Python-based package for machine 
learning (Pedregosa et al., 2011). Details and source code for the algorithms 
used in this study are available at scikit-learn.org.

A new regression was performed at the four daily intervals for each day in 
the 6-yr study period using all 27 nodes. The predictive accuracy of the 
algorithm was quantified using the out-of-bag R2 of the model. The out-of-
bag R2 is computed from the unused samples in the randomly sampled set of
independent and dependent variables. This is similar to a cross-validation 
procedure, which better quantifies the ability of the model to predict unseen 
data (Breiman, 2001). The relative importance of each independent variable 
was determined from the feature importance method of the predictor, which 
determines the relative contribution of each independent variable based on 
the error reduction resulting from a split on a given variable in CART 
predictor, averaged across all trees in the ensemble (Pedregosa et al., 2011).

The parameters of the Random Forest algorithm that have the largest 
influence on the accuracy and feature importance are the tree depth and the
number of trees in the ensemble. Tree depth affects how many splits are 
performed within each tree in the ensemble. Deeper trees have a greater 
tendency to overfit data, increasing the accuracy on the training data but 
reducing the out-of-bag accuracy. A larger number of trees in the ensemble 
will mitigate the overfitting of any individual tree and will tend to produce 
more stable out-of-bag error estimates and feature importance measures 
(because these quantities will be derived from a greater number of splits on 
the independent variables). Fifty trees were used in the ensemble, and the 
threshold for the minimum number of samples required to be at a leaf node 
was set to 3. With these values, stable out-of-bag accuracy and independent 
variable ranking was observed. Increasing the minimum samples required to 
be at a leaf node was found to reduce the algorithm accuracy. The mean 
squared error criterion was used to determine split quality. The maximum 
number of independent variables was left as the default, which allows the 
algorithm to consider all independent variables when performing a split. The 
maximum tree depth was not set because the tree depth is controlled by the
minimum samples on a leaf-node parameter. Bootstrapped samples were 
used when building trees (enabling out-of-bag error computation), and the 
out-of-bag score parameter was set to true. Other parameters were left as 
the defaults because they either implicitly control tree depth (which we 
already control by specifying the minimum samples at a leaf node), assume 
the use of weighted samples (all samples had even weight in the present 
study), or reuse a previous solution when building the ensemble (we built a 
new ensemble for each regression).



Soil-Moisture Deviations by Layer

To determine which soil layer was most representative of total storage in a 
soil column during the study period, we computed an idealized storage value
by using the VWC of the lth layer as a function of time, t, to represent the 
VWC of the entire profile, S(t). We then compared this idealized storage for 
each layer with the actual measured storage. The layer with the deviation 
percentage, Dl, closest to 0 was determined to be the most representative 
layer. The deviation percentage for a given soil layer was computed as

where Θl(t)μ is the mean of the VWC measurements across a set of nodes for 
the lth layer, and S(t)μ represents the mean total storage across the same 
node set (Eq. [1]). The deviation percentage will be zero if the depth-
integrated value at the sensor layer matches the storage, S(t)μ, positive if the
storage estimated from that layer exceeds S(t)μ, and negative if it is less 
than S(t)μ. In this computation, we considered only the subset of nodes with 
90-cm-depth sensors and continuous records for all soil layers.

Results

The average soil-moisture storage across all nodes in an average-
precipitation year (WY 2009) is shown in Fig. 2. We discuss the results with 
respect to the wet-up, snow-cover, recession, and dry phases, which are 
labeled on the figure. The wet-up period occurs early in the water year (1 
October 1–30 September), as initial precipitation inputs increase storage 
throughout the soil column. The snow-cover period occurs just after the first 
layers of snow begin to melt, typically in the months of November and 
December. Recession occurs just after the last of the snow cover has melted 
(typically mid-May). The inflection point during the dry-down process defines 
the beginning of the dry period.

The variably of soil-water storage is illustrated by the relative duration of 
each period in Fig. 3. Water Year 2009 had the closest to average 
precipitation of any year in the present study (Table 1). The longest period 
for these years is the snow-cover period (approximately 4 mo: mid-
December–April), when soilwater storage averages about 25 to 30 cm; the 
shortest period is the dry period (approximately 2 mo: August and 
September), when soil-water storage averages about 10 cm (Fig. 3). Water 
Year 2011 was unusually wet: the snow-cover period was longer than in any 
other year (>5 mo), and there was no discernible dry period. The wet-up and
snow-cover periods were notably shorter for drier-thanaverage years (2012–



2014), and dry periods were notably longer (up to 4 mo in the case of WY 
2013).

Soil-Moisture Prediction

The algorithm accuracy (out-of-bag R2) is high when soils are wet and 
declines when soils are dry (Fig. 3). The accuracy is consistently high during 
the snow-cover and early recession periods of average and wet years (2009–
2011). Dry periods exhibit extended periods of low accuracy: the out-of-bag 
R2 declined to 0.3 or lower during the dry phase of each year. The lowest 
accuracy periods occurred during the wet-up phases of dry years (WY 2013–
2014) when there was minimal snowpack and less precipitation than in 
average or wet years. Large changes to the snowpack state can result in a 
temporary decrease in accuracy, e.g., out-of-bag R2 decreased from 0.7 to 
0.1 during an early-season melt event in 2009 and from 0.7 to 0.3 during 
melt events in 2010.

Soil texture is the highest ranking predictor of soil-water storage during 
snow-cover periods, with elevation and northness contributing as well. The 
importance of texture declines during early recession, with that of elevation 
and northness increasing. The importance of northness is typically highest 
during the wet-up phases of typical years, when soil pores are not near field 
capacity. In the late-recession and dry periods, northness exhibits some 
importance, but less than soil texture.

Topographic wetness becomes important as dry-down progresses and during
dry years; however, the out-of-bag R2 is low during these periods. The 
importance of elevation is typically highest just as the last of the snowpack is
melting, slightly earlier than topographic wetness. In dry years, the 
importance of elevation declined relative to prior years, although it regained 
importance during snow-on/snow-off periods in 2014. Finally, location type 
exhibits minimal importance in any year. The increase in its importance in 
2013 should be disregarded, as it corresponds to a near-zero-accuracy 
period for the predictor.

Differences in Soil-Water Storage at Each Layer during Dry vs. Wet Years

In comparing the temporal soil-moisture patterns in the driest year (WY 
2014) with an average year (WY 2009), differences in the wet-up period were
associated with drier lower soil layers, which are not affected by initial inputs
of precipitation (Fig. 4). The figure shows the mean VWC for the subset of 
nodes containing 90-cm-depth sensors. Conditions at the end of the 
recession period were nearly identical in wet and dry years, reflecting 
depletion of root-accessible water at this depth. Lower layer soils were all 
just below 10% VWC. In wet years, early-season precipitation affected all soil



layers, resulting in a highly correlated response across the soil column. In WY
2014, shallow soil layers responded to precipitation, but lower soil layers 
remained dry well into the snow-cover period.

During the snow-cover period, interannual differences in the temporal 
patterns of soil moisture for each layer appear to have resulted from a 
transition to discontinuous snow cover during dry years (Fig. 5). Unlike the 
wet-up period, which was characterized by dry lower layer soils, upper soil 
layers during snow cover showed greater declines due to multiple winter–
spring melt events. During the snow-off periods (second panel, Fig. 5), soil 
temperature and evapotranspiration increased (first and third panels of Fig. 
5, respectively). This suggests that the more-rapid decline of water storage 
in the surface layers (10-cm layer compared with 60-cm layer in the third 
panel of Fig. 5) may be attributable to increased evaporation from upper soil 
layers during snow-off periods.

Decreased precipitation and transient snow cover in dry years affect how 
closely each soil layer tracks overall storage (Fig. 6). In most water years, the
idealized storage using the 10-cm VWC underestimated true storage by 
approximately 25 to 30% by the end of the recession period. For dry years, 
underestimates are 40% or more for a longer portion of the water year. 
During the wet-up and early snow-cover periods of the driest year (2014), 
drier lower layer soils resulted in the 10-cm layer overestimating storage by 
>40%, which was not observed in average or wet years. As the dry years 
progressed, the idealized storage predicted from the 60-cm layer 
overestimated storage in dry periods to a greater degree than in average or 
wet years. Overall, the idealized storage using the 60-cm VWC is closest to 
depth-integrated storage across the clusters.

Discussion

The variability of the predicator accuracy and independentvariable ranking in
the present study is in accord with the results of Western et al. (1999) and 
Williams et al. (2009), who found significant seasonal variability in the 
degree to which terrain indices explain the distribution of soil moisture. We 
found that topographic features exhibit predictable seasonal controls on soil 
moisture storage in average-precipitation years but are altered by drought 
conditions.

The high accuracy observed during wet periods in the present study is 
probably due to the fact that the soil was close to field capacity (therefore 
the spatial distribution of soil texture strongly controlled soil-water storage). 
Nonetheless, there are high-accuracy periods in which the importance of 
texture is low and other terrain attributes contribute significantly (e.g., the 
high importance of northness during wet-up periods and the high importance



of elevation during recession). We also found that the short-term predictive 
accuracy can decrease even when the soil is near field capacity (e.g., due to 
significant changes in the snowpack during January 2009 and 2010).

Other low-accuracy periods, such as during wet-up in 2013 and 2014, may 
have resulted from minimal precipitation input to exceptionally dry soils. The
spatial distribution of soil water storage in these periods may be driven by 
spatial heterogeneity in precipitation and interception patterns rather than 
topographic features and texture. Given these findings, confidence in the 
statistical spatial prediction of daily soil-water storage from in situ sensors 
must incorporate knowledge of current and prior snowpack, precipitation, 
and soil-moisture conditions. Because the accuracy of the estimate is 
affected by the temporal variability of snow depth, deploying more-complete 
water-balance measurements (i.e., including snow-depth and air-
temperature sensors) may be useful for quantifying the accuracy of the 
algorithm in real time.

Our results suggest that sensor-placement strategies must account for the 
relative importance of predictive features, which vary across seasons and 
years. Capturing the spatial variability of soil texture should be prioritized 
across all years. Sampling strategies focused on the wet-up period would 
benefit from a representative sampling of northness, and sampling strategies
focused on the recession period should sample along an elevation transect. 
The relative importance of elevation declined in dry years, perhaps due to 
the decreasing differences in snowpack between the upper and lower 
elevation sites; therefore, sampling elevation gradients may be less 
important for dry years, except during transient snow-cover conditions. 
Location with respect to the canopy (“location type”) did not appear to be 
important for the model in any period of any year. This is consistent with the 
findings of Bales et al. (2011), who observed little variability in soil moisture 
resulting from location with respect to tree canopy (Bales et al., 2011, Fig. 
8b).

The increased importance of topographic wetness during dry periods is 
counter-intuitive, given that this variable is expected to be more informative 
for wet periods (Western et al., 1999). Because the increased importance of 
this variable occurs only in comparatively low-accuracy periods, this finding 
should be interpreted with caution.

The interannual variability of soil-water storage in the present study may 
also have implications for remote sensing, which measures only near-surface
soil moisture. During normal and wet years, tightly coupled soil layers make 
observations of the surface storage a good proxy for lower level storage. In 
dry years, we observed greater decoupling of shallower and deeper soil 



moisture storage, particularly during the wet-up and snow-cover periods. 
During the wet-up periods of dry years, minimal input precipitation resulted 
in near-surface soil moisture increasing more rapidly than in lower soil 
layers. In the snow-cover period of dry years, transient snowcover resulted in
surface layers drying more rapidly than lower soil layers. Remote sensing 
tools may therefore overestimate soil-water storage in the lower soil column 
during the wet-up period of dry years and may underestimate soil-water 
storage in the lower soil column during transient snow-off conditions.

Conclusion

There are three conclusions relevant to the aims of this study. First, a 
regression tree ensemble algorithm using topographic features and soil 
texture as independent variables exhibits higher accuracy in predicting 
depth-integrated water storage during wet years than during dry years. 
Second, soil texture has consistently high feature importance in the 
algorithm for predicting spatial soil-water storage across all years. Other 
landscape attributes exhibited seasonal trends: the importance of northness 
peaked during the wet-up period, and the importance of elevation and 
topographic wetness index peaked during the recession and dry periods. 
Third, the 60-cm layer tracked depth-integrated soil-water storage more 
closely than did the individual 10-, 30-, or 90-cm layers. Deviations of each 
layer from depth-integrated storage were exacerbated by transient snow-
cover conditions during dry years, as well as lower-than-average deep soil 
storage in the wet-up period of the driest year, resulting in a decoupling of 
upper and lower layers of the soil column.

This study underscores the importance of in situ measurements for 
monitoring soil moisture in montane regions, which feature topographic 
complexity, heterogenous soil and vegetation properties, and coupled snow–
soil interactions. Future studies could evaluate these methods using more in 
situ sensors deployed across greater elevation gradients in the rain–snow 
transition. It would be informative to deploy sensors that capture gradients in
variables not included in this study, particularly to investigate features that 
could better predict soil moisture in dry years such as large biomass 
gradients. Future studies could also develop methods to synthesize the 
findings from this study into sensor placement and modeling strategies for 
basin-scale soil monitoring. Remote sensing, in situ, and deterministic 
modeling could then be combined to better predict soil-moisture storage in 
atypical water years. Finally, it would be beneficial to extend the 
representative-layer analysis to different regions to assess the applicability 
of these findings to other catchments.
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