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SIMULATION AND ANALYSIS OF ANIMAL MOVEMENT PATHS USING NUMERUS

MODEL BUILDER
Wayne M. Getz Richard Salter
Ludovica Luisa Vissat
Numerus Inc.
Depart. ESPM, University of California 850 Iron Point Rd.
Berkeley, CA 94720-3114, USA Folsom, CA 95630, USA
wgetz@berkeley.edu, 1.luisavissat@berkeley.edu richard.salter @ numerusinc.com

ABSTRACT

We address the question of how best to fit animal movement paths, represented by point relocation time
series, to a novel stochastic walk model—referred to as M-cubed—in a way that captures movement patterns
at several different spatio-temporal scales. We test our approach on simulated data obtained from a high-
frequency, multi-mode model constructed using the Numerus Model Builder platform. The advantage of
using simulated over empirical data is that we know the processes generating movement. Fitting M-cubed
to data requires that we extract movement modes and phases at various scales ranging from subhourly to
daily. After fitting the M-cubed model, we evaluate how well it captures movement patterns and find that
it performs exceptionally well at minute to hourly scales but needs to be extended to capture daily scale
patterns driven by particular landscape features.

Keywords: random walks, multi-CAM metaFuME Markov model, cluster analysis, step length, turning
angle

1 INTRODUCTION

The purpose of this paper is to present and evaluate the utility and performance of a new method for numer-
ically simulating an animal movement path. The importance of the models arising from this new method
ranges from gaining insights into the relationships between movement and disease in animal populations
(Altizer, Bartel, and Han 2011) to understanding the impacts of global warming on population viability
(Grémillet and Boulinier 2009). Our method is based on segmenting empirically acquired, relatively high-
frequency, relocation data (i.e., minute-by-minute sequential locations of an individual as it moves over a
landscape) into moderate scale “Canonical Activity Modes” (CAMs: scales ranging from tens of minutes to
several hours) then extracting finer scale statistics of step-sizes, turning angles and correlations among these
values for each activity mode. Following (Getz 2019), we refer to this model as an M-cubed model; which
is an acronym, clarified below, for multi-CAM metaFuME Markov model.

High-frequency relocation data appropriate for the extraction of an M-cubed model is relatively expensive
to come by and not yet widely shared by groups currently collecting such data for specific systems. Here,
in place of high-frequency empirical data, we use relocation data generated from a multi-mode, biased,
correlated, random walk (MBCRW) model. The multi-mode component is used to create specific kinds
of local movement patterns (e.g., browsing within and movement among resource acquisition patches).
The biases component is used to add directed movement to the global path structure. In the next section,
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we define the tasks needed to construct our new M-cubed model from a set of relocation data (in this
case generated by simulating our MBCRW model). We then provide an example of this workflow and
compare features of the relocation data sets generated by simulating the two different models (MBCRW
and extracted M-cubed). We evaluate the extent to which an M-cubed model is able to identify different
local modes in a movement path, as induced by step-length and turning-angle switches among modes in
the movement patterns produced by our MBCRW model. We also discuss how the M-cubed method for
building an extracted model from high-frequency movement data might be enhanced to enable it to capture
global structures in animal movement paths.

The standard form of a relocation data set in the x-y plane for an individual movement path that nominally
begins at ¢ = 0 and ends at ¢ = t¢, takes the form

W(0,17) = { (t;x(t), (1)) |t = 0,....1¢ }. (1)

For convenience, we selected the units of 7 to be the time between two consecutive relocation points. Such
movement paths reflect elements of the underlying movement behavior repertoires of animals that typically
are influenced by seasonally related episodic and cyclic phases. Embedded within the structure of sea-
sonal phases we are likely to observe finer movement modes that switch amongst one other at a within-day
scale. Thus movement at the daily scale can be viewed as a mixture of movement behavioral modes, also
known as Canonical Activity Modes (CAMs; Getz and Saltz 2008), which themselves can be segmented into
fixed-length segments of Fundamental Movement Elements (FuMEs; Getz and Saltz 2008) that are referred
to as metaFuME segments. Additional factors influencing the movement pathway structure of individuals
may include an individual’s physiological or emotional state, the time-of-day, territoriality, distances from
attractive centers (e.g., watering points, nests), the presence of both conspecifics and heterospecific competi-
tors and enemies, the physical and ecological structure of the landscape itself, and memories of favorable
locations both near and far that provide access to food, water, and safety.

Our ability to extract the role that the various factors listed above play in determining the mode and phase
structure of W (0,7¢) (Eq. 1) depends on the resolution of the data—specifically, the frequency at which
it was collected or the units of . Coarse data (e.g., hourly or subdaily) may only permit us to uncover
environmental factors driving seasonal movement phases, intermediate resolution data (e.g., subhourly)
may only allow us to uncover environmental and internal state factors driving diel (daily) cycles, while high
resolution data (minute or sub-minute) is needed to answer questions that relate to behavior lasting a few to
several minutes.

No matter the resolution of the relocation data, however, the first step in dealing with such data is to extract
bivariate step-length (SL, s(7)) and turning-angle (TA, a(t)) time-series, using the approach described below.
Once this has been done, then various methods have been used to extract information from the derived bi-
variate time series (s(t),a(r)), along with available covariate data (environmental, individual state, location
of conspecifics, and also of heterospecific competitors and enemies), to confront the challenge mentioned
above. The efficacy of such methods—which include hidden Markov models (Zucchini et al. 2016) and
behavioral change point analysis (Gurarie et al. 2009, Gurarie et al. 2016)—is most easily evaluated using
data that is derived from processes known to be causative in driving the observed movement patterns. One
way to do this is to analyse simulation data derived from movement models of varying complexity (e.g.,
MCBRW models) to see how much information can be extract from the relocation and covariate data sets.

In summary, relocation data sets of the type depicted in Eq. 1 can either be empirical, (which we flag using
the notation W¢(0,7¢)) or derived from simulation models (which we flag using the W*(0,¢)). In addition,
the simulation model can be fitted to empirical relocation data using some appropriately formulated “best-
fitting” procedure.
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We use the notation W (0,/) to denote the i instance of the relocation data set derived from the i simu-
lation of a model that “best fits” an empirical relocation data set W¢(0,7¢). In addition, we use calligraphic
notation to denote sets of sets, so that an ensemble of N simulated “best fitting” walks W} is denoted by

#(0,17) = {W?(0,t7)|i=1,..,N} isa “best-fitting” ensemble to empirical path W*(0,7y).
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Figure 1: Segmentation of a daily activity routine (DAR) of a central-placed forager. The logic behind
our study. A. Left-hand side: a simple two-CAM DAR with water stop is depicted along with a magnified
depiction of a traveling CAM generated from two types of metaFuMEs. Right-hand side: an ensemble
of DARs of a particular type (h=home, w=water). B. An illustration of the time sequence index sets T;,
i=1,2,...., obtained from an analysis of the metaFuME types that constitute a particular CAM sequence.
(Figure adapted from Getz 2019). C. The logic of fitting the MBCRW model to data to for the producution
of ensembles of DAR segments that can then be analysed as surrogates for real data (see text for discussion).
Model names are in blue and actions are in green.

The challenge lies in first finding a suitable class of appropriate complexity models with which to model
the process producing the data W¢(0,77). It then moves on to finding the best-fitting set of parameters for
this model such that the data W¢(0,7;) are more likely to lie within the ensemble %/ (0,7/) than any other
ensemble that can be generated by the model using a different set of parameters. Solving the above problem
represents a program of research and study that will be with us for decades to come because it is both model-
structure and estimation-method dependent. Models with improved and refined structures will be proposed
over time as we learn more about the process that generate the movement paths of individuals belonging
to particular species. In addition, we will steadily develop better methods of estimation as computational
technologies and parameter-fitting algorithms improve over time.

The approach we take draws upon a hierarchical, appropriate complexity, segmentation framework—using
methods recently reviewed in Getz 2019—that we use to breakdown empirical Life-history Tracks (LiTTs)
into particular Life-history Movement Phases (LiMPs) that then consist of a series of Diel Activity Routines
(DARs), which characterize each LiMP (e.g., a ranging phase versus a migratory phase—see Getz 2019
for further discussion). These DARs can then be further segmented into sequences of different types of
canonical activity modes (CAMs; Fig. 1A.) that, in turn, can be modeled as sequences of “meta” fundamental
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movement elements (metaFuMEs). Additionally, we assume that each type of CAM is constructed from
the same basis set of metaFuMEs, with differences among CAM types characterized by the lengths and
frequencies in the occurrence of particular metaFUME sequences (Fig. 1B.). As an aside, we note that
fundamental movement elements themselves, as discussed in (Getz and Saltz 2008, Getz 2019), cannot
generally be extracted directly from relocation data. Rather, current data are typically only suitable for
identifying CAMs from step-size and turning-angle time series using hidden Markov model (HMM) and
behavioral change point analysis (BCPA) methods. Such methods have been used to identify CAMs at a
particular sampling frequency resolution. Aggregating all the CAMs of the same type together allows us to
construct bivariate step-length and turning-angle distributions for the CAM ensembles.

2  GOALS, TASKS AND WORKFLOW

For clarity, we provide an outline of the tasks undertaken in our study and the workflow needed to carry out
the required analyses and simulations. Our methods are intended to be applied to relatively high-frequency
empirical data (viz., collected at frequencies around 1 to 0.01 Hz). Lacking such data, and also taking up
the challenging of building models that can be fitted to such data for predictive purposes (e.g., addressing
management and response to global change questions), we first focus on building stochastic simulation
models that can realistically simulate daily activity routines (DARs) with respect to their underlying CAM
structure. We refer to this model as our multi-mode, biased, correlated random walk (MBCRW) model.

As shown in Figure 1C., we use our MBCRW model to produce ensembles of DAR segments that can
then be analysed as surrogates for real data (a). The approach we take is to extract a best-fitting basis
set of metaFuMEs and associated sequence index sets (b) that can then be used to construct a multi-CAM
metaFuME Markov (M-cubed) model (c). This M-cubed model, extracted from our surrogate data, could
also be extracted directly from empirical data, collected at the appropriate frequency. When extracted either
from surrogate or real data, the M-cubed model can be used to predict responses to changes in environment
and management (d) but also CAMs can be identified (e) to see how well the M-cubed model reproduces (f)
the CAMs evident in the original empirical/surrogate data (g).

We use a stochastic process model to generate relocation data. These relocation data are created at a fre-
quency of 0.2 Hz (i.e., locations are generated five seconds apart) for a 24 hour period (i.e., 17,280 time
steps). Thus we use the model to create ensembles of DARs. The output from this model, evenly subsam-
pled to create data sets with an order of magnitude fewer points will be used as surrogate empirical DAR
segments to create ensembles W*(0,24h) (Eq. 1) of relocation data sets. These data will then be used to
apply our deconstructive methods and use the results to evaluate our approach. In particular, the relocation
sets that we use to represent these DARs will be a subsampling of every sixth point of the generated data.
This provides us with relocation sets for which one unit of 7 equals 30s, implying 7, = 2,880 units over a 24
hour period. The tasks involved are the following:

A. Simulation of DAR ensembles

Al.  We provide a mathematical description of the underlying simulation model as a generalized random
walk with step length and directional heading correlations and biases that depend on the time of day,
structure of local environment, and knowledge of the regional location of critical resources.

A2.  We build the model using the Numerus Model Builder software platform and generate the code
necessary to run our simulations.

A3.  For a selected set of model parameter values, we run the model to obtain an ensemble of N DARs.

B. Deconstruction of DAR ensembles
B1.  We prepare our simulated relocation data sets for analysis by thinning them from 17,280 to 2,880
points for each DAR, excluding the initial location (0,0).
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B2.  We carry out BCPA with running windows of different widths (e.g., 5, 20 and 60) or HMM analysis
to identify both short and long duration CAMs.

B3.  From the set of CAMs, we extract step length (SL) and turning angle (TA) time series and calculated
means, variances, auto-correlations and covariances (cross-correlations).

B4.  We perform cluster analysis on SL and TA point locations statistics to extract metaFuME sets and
accompanying metaFuME sequence index sets.

BS.  We group SL and TA data identified in B4 as belonging to metaFuME of a particular type, and
we use the data in the sequence index sets to estimate metaFuME transition probabilities. We also
estimate transition probabilities between CAMs using the CAM sequence extracted in B2.

Once A. and B. are completed, we use the metaFuME and CAM data sets and transition probabilities esti-
mated in B5 to simulate ensembles of walks. We then compare these ensembles to those generated under
Task A to assess similarities and differences. In particular, in our study we will look at SL. and TA dis-
tributions, time spent in each CAM, area coverage and distance from a given point to compare the two
ensembles.

3 MODEL: DESCRIPTION AND IMPLEMENTATION

In terms of movement models, two contrasting approaches are common. The first is the use of numeri-
cal event-oriented (e.g. Gillespie’s event oriented algorithm—(Gillespie 1976, Gillespie 1977), or time-
discretizations methods to compute solutions to stochastic differential equations that model continuous time
stochastic processes. In increasing order of complexity, these include a pure random walk (Wiener process;
e.g. see (McClintock et al. 2014)), a linear- and angular-velocity-biased random walk (Ornstein-Uhlenbeck
process, (Gurarie et al. 2017)), and location salient random walk (e.g., walks in a force field, (Magdziarz
et al. 2012); or movement dependent on the local landscape, (Harris and Blackwell 2013)), where the loca-
tion itself could be a function of time (e.g., the centroid of a moving group—see (Langrock et al. 2014)).
The second is to use rule-based simulations of movement over rectangularly or hexangonally rasterized
landscapes without the benefit of a compact underlying differential equation structure (Getz et al. 2015, del
Mar Delgado et al. 2018)

Our path simulation algorithm of the movement of individuals over landscapes is an outgrowth of Brownian
motion (Pozdnyakov et al. 2014), correlated random walks (Kareiva and Shigesada 1983) and, even Levy
walks (Benhamou 2007) simulation methods. Within the context of appropriate modeling methods (Getz
et al. 2018), our elaborations to these earlier approaches in formulating our MBCRW include both biased
directionality and mixed-distribution (Morales et al. 2004) components. The multiple modality aspect of
our model arises in two ways. First, from switching movement modes locally at a frequency that assumes
a particular level of landscape heterogeneity (e.g., moving within and among resource acquisition patches).
Second, from switching directional movement biases at some slower daily-activity-related frequency in
terms of attraction to distant (peripheral) geographic locations such as water holes or resource rich areas,
and then attraction back to centrally located nest sites or home range centers. A detailed mathematical
description of this model can be found in the supporting online file (SOF). In short, our model is an MBCRW,
with daily walks between and around two points of attraction, that always starts around the same central
point, followed by a daily excursion towards and around a peripheral point that may change each day, with
a final end-of-each-day movement back towards the central point (see right-hand panel in Fig. 2).

Our model is implemented using the Numerus Model Builder (NMB) platform, which allows us to code
a digital simulation using a set of graphically implemented, drag-and-drop icons, as shown in Figure 2, in
which mathematical expressions of model equations are inserted. NMB was chosen since it facilitates a
quick and accurate representation of the model and greatly diminishes coding tasks, as discussed in more
detail in (Getz et al. 2015, Getz et al. 2018). Once all the necessary equations and segments of code
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have been inserted into equation windows and code chip frames, NMB then generates a script that can be
used to run simulations of the model over the desired interval of time. The NMB modelling panel and the
output of the simulation for the MBCRW model are shown in Fig. 2. We generate the set of relocation data
W[B,T] by simulating the model for a 10-day temporal horizon (T = 172,800), where one time-unit in NMB

corresponds to 5s and one spatial unit to 100m. In SOF we provide the parameters used in this simulation.

& MBCRW model
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Figure 2: A graphical construction of our NMB model (left panel; values and equations are inserted into a
form that is opened when a component icon is selected) and output from one instance of a stochastic 10-day
simulation (right panel)

4 DECONSTRUCTION OF DAR ENSEMBLES

The approach we develop here is to use the time interval that corresponds to the same frequency at which
the data were collected and to either use actual step-size and turning-angle data, or smoothed/idealized
functions that are fitted to or theoretically represent these data. As part of the simulation, considerations of
directional biases, step-size and turning-angle serial correlations, step-size/turning-angle cross-correlations,
and context-dependent environmental and individual internal-state step-size and turning-angle distributions
may be considered (Ahearn et al. 2017, Langrock et al. 2014). Although, individuals may also take the
locations and directions of heading of other individuals into account as they move across landscapes (Couzin
et al. 2005, Conradt et al. 2009, Langrock et al. 2014), we do not consider this level of complexity here.

We undertook analyses of the relocation data using the R Studio implementation of the R programming
language, where in our case these data were obtained in a CSV format from our NMB simulations. Our
analyses were designed to extract from the data all the information needed to construct our M-cubed model.

First, we subsampled the output of the NMB simulation data at a frequency appropriate for extracting rela-
tively fast canonical activity modes (i.e., CAMs at a sub-hourly to hourly scale—see Getz 2019) by selecting
every 60" point, which corresponds to a 5 min interval between relocation points and is in the range of re-
location data that is now practical to collect over multiple months. Using the R package moveHMM, we then
applied the Viterbi algorithm to sort our subsampled relocation data into the most likely sequence of CAMs
and identified every distinct CAM as one of K types. Each CAM segment can be represented by

W[ff+1,zi+1] ={(x, ) [t =t:+1,. . tiy1},

such that a complete path W, ., is then made up of p such segments strung together over an interval [0, T]:

[0,7]
i.e.,
Wo.r1 = o Wi 1 Wi Wi, 1 b

with a corresponding set of p — 1 change points Tcp = {t1,t,- - ,fp—1}.
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Second, we subsampled the output of the NMB simulation data at a frequency appropriate for extracting
metaFuMEs (i.e., around 10 s to 1 min—see Getz 2019) by selecting every 5 point, which corresponds to
a 30 s interval between relocation points. Thus, given the extracted sequence of CAM at a 5-min relocation
point interval, we assigned the same CAM index to each of the corresponding 10 time-points included in
each step of the 5-min interval identified in the first step as belonging to a particular CAM type.

For each resulting segment at a 30 s time-scale, we extracted the step length s(7) and turning angle a(r)
time-series, by calculating the following values:

s(t) = \/(X(t+1)—X(t))2+(y(t+1)—y(l))z,
_ ye+1)=y@) y(6) =yt —1)
a(t) = arctan m—arctan A —x(=1)

for t = 1,...,T. Note that for t+ = 0 a(r) is not defined. = We then obtained the mean
and the variance (l,0y), where x = s,a, and calculated the running-term auto-correlation time-
series v™*(¢) for r = 2,...,7 and running-term cross-correlation time-series v*(z) for t = 1,...,T:

O, ’ /0,05

We also computed the time-series of the turning-angle cosines, which we subsequently used in our meta-
FuME cluster analysis in place of the the turning angles themselves: i.e., we generated the values:

cq(t) = cos(a(t)).

vxx(t) — (x(t) _I'Lx) (x(f — 1) _ .ux) Vas(l‘) (a(l) — [.La) (s(t) — I,LS)

We performed data standardization through min-max normalization (Van Moorter, Visscher, Jerde, Frair,
and Merrill 2010), as data pre-processing before carrying out a cluster analysis:

x; —min(x)

" max(x) — min(x)’

We collected the standardized sets §(¢), ¢4(), v**(¢), v*«“(¢) and v**(r) for each ¢ identified as part of the
same CAM to perform cluster analysis. We used Ward’s method, provided by the R package stats, to
extract the set of clusters of metaFuMEs for each CAM and the elbow method to estimate the optimal
number of clusters. Once we have extracted the clusters of metaFuMEs for each CAM, we evaluated if
some metaFuME clusters could be associated and grouped together. To accomplish this, we performed
cluster analysis of mean and variance of §(7) and ¢,(¢) values for each metaFuME initial cluster, again using
Ward’s method and then estimating the optimal number of clusters through the elbow method. The results
of the elbow method are shown in the SOF (Figure S2). Once we have identified the final clusters of J
metaFuMEs, we extract the corresponding sets of step-lengths §; and turning-angles A ; for each metaFuME
type j =1,...,J. In our study, when simulating the M-cubed model, we sampled from these data, according
to the chosen or current metaFuME type such that each element in S; and A; had an equal probability of
being selected.

As a following step in our analysis, we extracted the sequences of metaFuME types for each CAM segment.
Using the R package markovchain, we fitted the transition probability matrix for each sequence and
calculated the weighted average (depending on the sequence length) to extract the metaFuME transition
probability matrices for each CAM. Given n sequences for a given CAM, the weighted average for a matrix
entry was calculated as follows:

e m X Uy

mij = n )
s=1°%s
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where [ is the length of the sequence s and m;; is the (i, ) entry of the matrix extracted from sequence s.
Note that some CAMs might not contain all the J metaFuMEs. Assuming that Mg, indicates the index set
of the metaFuME types that compose a given CAM k, for i ¢ Mg, the matrix My will need to contain entries
m;; equal to fj’-‘, for j € Ms,, and equal to 0, for j & Ms,, where f;‘ represents the frequencies of metaFuME
J in CAM k. Moreover, the entries m;;, for all i and j & Mg, , will be equal to 0. Defining these rows in the
transition probability matrices, facilitates the change to the correct metaFuME sets when switching between
CAMs.

Recalling the first task of our analysis, we identify the most likely sequence of CAMs again using the Viterbi
algorithm. In this case, however, we used the R package markovchain and the CAM sequence to extract
the CAM transition probability matrix Mc. In our simulation, we assumed the same CAM always persisted
for at least 10 time points (i.e., 5 mins) and therefore we evaluated the transitions between CAMs using M¢
every 10 time points.

5 M-CUBED MODEL SIMULATION

By performing the tasks defined in Section 2, and described in more detail in Section 4, we extracted
all the data related to metaFuMEs and CAMs which are necessary to construct an M-cubed model. To
summarise, these data are the following: a finite set of / metaFuME SL and TA variables set S; and A,
a K x K transition probability matrix M¢, representing the probability to switch between CAMs, and K,
J x J transition probability matrices My, k =1, ..., K for each of the K CAM types, to describe the transition
probabilities between metaFuMEs while in a given CAM type.

The simulation of this model produces a set of relocation data W*(0,T)), as described in Algorithm 1
(Fig. 5A.). This algorithm is an amalgam of an “outer” and “inner” process. The outer process is a Markov
transition process governing the probability that the current CAM will switch to a different CAM at every
5-min time interval. The inner process is a within-CAM stochastic dynamical systems process that controls
the change of location from one time-step to the next (30 s time-scale) according to the selected metaFuME.

Algorithm To initialize the simulation, we declare the initial location (xo,yo), initial CAM k, initial meta-
FuME j, initial heading 6y and final time 7,. For each time step ¢, we generate location data by drawing
step length and turning angle (s; and a;) pairs from the sets S; and A, according to the metaFuME type j in
operation at time 7. The location data and the elapsed times are updated every step and the switch between
metaFuME types is ruled by the matrix M; (when in CAM k). After the given time in CAM k has elapsed
(10 time steps, counted using the variable 7), the CAM update is defined by the transition probability matrix
M.. We use the function f to represent the process by which both metaFuMe and CAM values are updated
according to their current values and the given transition probability matrices.

6 M-CUBED MODEL PARAMETERS

In our study, the extracted M-cubed model has the following features. It is composed of 3 CAM types and
3 metaFuME types. Results of the HMM analysis are shown in Fig. 3.

From Fig. 3, we see that CAM 1 represents random movement mostly around the centers of attractions while
CAM 2 represents more correlated movement around these centers. On the other hand, CAM 3 represents
highly directed movement that occurs between centers of attraction. From our cluster analysis (details in
SOF) CAM 1 is composed of metaFuME:s of type 1 and 2 (frequencies: 0.51, 0.49), CAM 2 of metaFuMEs
of type 1, 2 and 3 (frequencies: 0.4, 0.1, 0.5) while CAM 3 by type 1 and 3 (frequencies: 0.16, 0.84).
Distributions of SL and TA for the 3 metaFuME types are shown in Fig. 4. MetaFuME of type 1 is a
variable step/persistent direction metaFuME while metaFuME of type 2 is a variable step/random direction
one. MetaFuMe 3 is a large step/persistent direction metaFume type.
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Figure 3: Results of the CAM extraction from our HMM analysis (plotted using the R package moveHMM).
Left panel: CAM segments plotted using legend colors. Middle panel: SL distribution in 100m bins. Right
panel: TA distribution in radians.

The CAM transition probability matrix Mc and the matrices Mj for each CAM of type k = 1,...,K for the
M-cubed analysis of the MBCRW data generated for this study can be found in our SOF. The initial con-
figuration of our M-cubed model was (0,0) for the initial location, CAM 1 as initial CAM and metaFuME
1 as initial metaFuME. We implemented this model in NBM and run a simulation for 28,800 time steps
(10 days). The NMB modelling panel and the output of the simulation are shown in Fig. 5B,C. Additional
examples of the M-cubed model simulation output are provided in our SOF (Figure S3).
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Figure 4: Distribution of SL (100m bins) and TA (radians) for metaFuME types, from subsampled MBCRW
data

7 MODEL COMPARISONS

The structure of the paths obtained from of our MBCRW and M-cubed models are very similar at the
metaFuME and multi-CAM scales by design. This is illustrated in SOF where the SL and TA distributions
are plotted side by side in Fig. S4 and S5 for each of the CAM types. We used the R package trajr
to calculate the sinuosity of the two simulated paths and, unsurprisingly, obtained similar results because
sinuosity is a relatively fine scale structure of a movement path: viz., 2.75 for the MBCRW model and
2.90 for the M-cubed model. Moreover, we extracted the time spent in each CAM, for both models (Fig.
S6 of SOF) and these were similar as well. The two models, as expected, varied quite considerably, when
comparing the more global scale features of the paths they produce. In particular, the total area covered over
time, the area covered each day and the distance from the origin over time (Fig. S7, S8 and S9 in SOF) were
notably different. These results confirm that the M-cubed model captures local features of movement paths
(e.g., SL and TA distributions and sinuosity) but fails to capture global features which arise in our MCBRW
model from movement bias due to the presence of centers of attraction that periodically switch over time.
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M-cubed model
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Figure 5: A. Algorithm 1. B. NMB model canvas. C. One instance of a simulation of our M-cubed model

Thus, derived statistical movement models, such as M-cubed, need to be improved to capture global features
by considering not only turning angles, but actual angles of heading.

8 CONCLUSION

Recently, stochastic walk models that do not include switches in directional movement bias beyond meta-
FuME and CAM time scales, have been promoted as a way to capture global features of walks from em-
pirical relocation data—e.g., the use of autocorrelated-kernel-density estimation (AKDE) to compute home
range size (Fleming and Calabrese 2017, Noonan et al. 2019) from movement paths. Such methods, how-
ever, as demonstrated through our comparison of output from our MBCRW and M-cubed models, will fail
to provide reliable estimates of global properties of walks when the relocation data is fitted to models that
fail to take directional biases into account at the multi-CAM scale. This includes the Ornstein-Uhlenbeck
stochastic process model that is the bases for path analysis and home range estimation using the increasingly
popular ctmm R package (Calabrese, Fleming, and Gurarie 2016). As with the Ornstein-Uhlenbeck model,
our M-cubed models fails to take account for key processes that primarily affect global rather than local
structure of paths and thus needs to be extended to include such processes. The answer is not to try to fit
our MBCRW model directly to relocation data since, as with any approach that tries to simultaneously fit
data created by processes occurring at different scales, the approach is likely to dramatically fail. Rather, an
extended M-cubed that first fits an M-cubed model to relocation data, as outlined here, and then accounts
for processes taking place at the multi-CAM time scale and beyond, is needed; and is a topic that remains
to be addressed in future studies, as does an evaluation of the basic M-cubed model itself using real rather
than manufactured data.
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