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Professor Thomas G. Graeber, Co-Chair 

 

Cellular differentiation is a fundamental process in growth and multicellular development. Trans-

differentiation from adenocarcinoma to small cell neuroendocrine carcinoma in lung and prostate 

cancers can occur de novo or induced by targeted therapies. To understand the evolving process 

of the trans-differentiation, a temporal multi-omics study on a forward transformation in vitro/in 

vivo model of small cell neuroendocrine prostate cancer was performed. By analyzing samples 

taken from various time points including human basal cells, in vitro transformed organoids, early, 

transitional, and late xenograft tumors, an arc-like transformation trajectory with bifurcated 

endpoints defined by ASCL1 and ASCL2 is identified. Concurrently, the transcriptional programs 

shift from stress-response to cellular reprogramming, to neuroendocrine differentiation. With 

further experimental testing, additional transcription factors such as TFAP4 exhibit dynamic 

control between ASCL1 and ASCL2 expression. This study provides comprehensive epigenetic 

landscape of trans-differentiation and potential therapeutic targets for advanced prostate cancer.   
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Chapter 1:  Introduction 

Treatment resistance remains a serious hurdle in modern medicine. One of the mechanisms 

adopted by cancer cells to escape from targeted therapies is to take advantage of cellular 

“plasticity” – an intrinsic potential to change and modify the cell identity in response to outside 

stimulus and environmental cues. Both genetics (DNA sequence) and epigenetics (how a cell 

controls gene expression without changing the DNA sequence) contribute to how a cancer cell 

adapts and responds to the changes. This thesis focuses on the epigenetic regulation in the 

process of trans-differentiation and highlights the pan tissue parallels between prostate and lung 

cancers.  

The first part of this chapter (1.1, 1.2 and 1.3) takes a deep dive into the basic theories and pivotal 

experiments of cellular differentiation from developmental and stem cell biology. A pathological 

example in cancer, trans-differentiation, is an adverse consequence in adenocarcinoma evolving 

into more aggressive small cell neuroendocrine (SCN) carcinoma. The second part of this chapter 

(1.3 and 1.4) examines in detail specific transcription factors and chromatin modifiers in SCN 

trans-differentiation, where the discoveries were made using Next Generation Sequencing with 

single cell resolution and bioinformatic algorithms.  

 

1.1: Cellular differentiation and lineage plasticity - From One to Infinite Possibilities 

1.1.1 Introduction of cellular differentiation  

Cellular differentiation is broadly defined as the process of a cell becoming specialized and 

maturing during development 1,2. In adults, different types of stem cells (undifferentiated) give rise 

to various types of specialty cells (differentiated) in the body. For example, hematopoietic stem 

cells become white and red blood cells, and neural cells give rise to astrocytes and 

oligodendrocytes in the brain 3. The concept of cellular differentiation can be dated back to as far 
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as 1893 in the book, The germ-plasm: A theory of heredity by August Weismann 4, invoking a 

one-way evolution in the multicellular organism by two cell types: one that passes down genetic 

material to the next generation (germline cells), and another produces other cell types in the body 

(somatic cells). This instigated the idea that each somatic cell is destined with an irreversible path 

in the development of certain cell type5. 

However, the concept was challenged by decades of research in stem cell biology and tissue 

regeneration, in which new tissue is generated from the pre-existing tissue or terminally 

differentiated cells5. In the early twentieth century, Spemann-Mangold experiment showed that a 

secondary body axis at the gastrula of an amphibian embryo can be generated by grafting a series 

of cells taken from the left dorsal lip6. This pivotal finding demonstrated that the fate of embryonic 

cells is not irreversible, and more than one differentiation path is possible.   

The concept of “competence” - the ability of cells to react to inducing signals, was first introduced 

in 1940 by Conrad Waddginton7. Subsequently, he introduced “epigenetic landscape” in 1953, 

one of the most popular metaphors for non-singular cellular differentiation pathways8. The 

landscape was demonstrated as a multi-dimensional surface with a marble rolling down various 

permitted valleys/pathways (“chreodes”). Each valley signifies a differentiated state. Besides the 

conceptualization of cellular differentiation, the “Waddington landscape” emphasized how 

epigenetic (modification to epigenome), rather than the altercation in DNA sequence, affects the 

plasticity of a cell in lineage differentiation. 

1.1.2 Trans-differentiation, dedifferentiation and reprogramming 

Trans-differentiation refers to a cell that goes from one cell type to another without going through 

de-differentiation (or back to stem cell)9,10, also known as direct reprogramming11. The concept of 

trans-differentiation was first introduced as a statement describing the transformation from the 

cuticle-producing cells to salt-secreting cells in silk moths by Selman and Kafatos in 197512. This 
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was subsequently adopted by Okada and Euchi to describe the lens cells generated from 

pigmented epithelial cells in newt13,14. In 1987, the first experimental evidence of rewriting the cell 

identity was demonstrated by overexpressing MyoD, a mammalian transcription factor expressed 

in skeletal muscle that directly converts mouse embryonic fibroblasts to myoblasts15. This 

pioneering work opened a new era of discovering critical transcription factors that can induce 

specific cell fates through reprogramming.   

In parallel, reprogramming cellular differentiation from a differentiated to an undifferentiated state 

in vitro was demonstrated by a revolutionary discovery: Yamanaka factors16,17. Yamanaka factors 

are composed of four transcription factors (proteins that control the transcription and expression 

of certain genes), Sox2, Oct4, Klf4, and c-Myc. When ectopically expressed, they can reprogram 

adult somatic cells to induced-pluripotent stem cells (iPSC) in vitro16,17. At the same time, Yu et al 

also published a different set of transcription factors that can reprogram human somatic cells to 

iPSC exhibiting embryonic stem cell characteristics18. Since then, decades of research in the 

regeneration field have showcased successful reprogramming both in vitro and in vivo, as well as 

their therapeutic application19-25.  

These breakthrough discoveries convey several critical messages. That 1) cellular differentiation 

is a dynamic process, and 2) master regulators in epigenetics are capable to sufficiently 

reprogram a cell fate and control lineage differentiation. 

 

1.2: Trans-differentiation: Part I - From Adenocarcinoma to Small Cell Carcinoma 

1.2.1 Cancer differentiation  

Cancer cells, often described as resulting from an error during the normal cellular development, 

exploit cellular stress response to differentiate or de-differentiate under various condition and 

stress26-28. For example, hypoxia and metastasis, in which cancer cells promote undifferentiation 
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or undergo epithelial-mesenchymal transition to disseminate to a new site during the tumor 

progression29-31. Moreover, as a resistance mechanism to targeted therapy or response to 

different stress conditions, cancer cells can also trans-differentiate or de-differentiate to a different 

cellular state32-34, such as the transition from an adenocarcinoma state to a stem-like small cell 

neuroendocrine state35,36. In cancers, the differentiation stage of tumor cells is central for the 

histopathological classification27. Well differentiated tumors tend to be less aggressive and grow 

slower than their less differentiated counterparts27. A poorly differentiated tumor such as small 

cell neuroendocrine tumor exhibits more aggressive characteristics including uncontrolled cell 

proliferation and visceral metastasis37.   

1.2.2 Neuroendocrine differentiation and small cell carcinoma of prostate and lung 

Small cell carcinoma is a histopathological classification that often occurs with neuroendocrine 

characteristics. The histological characteristics include small and rounded cells with scant 

cytoplasm, as well as positive immunohistochemical staining of clinical markers such as SYP, 

CHGA, NCAM1 and NSE38-40. Despite its rarity, small cell carcinoma occurs in multiple cancers 

including but not limited to prostate, lung, pancreatic, head and neck, and ovarian cancers37,41-43. 

In this thesis, emphasis is placed on small cell lung cancer and neuroendocrine prostate cancer, 

as they share high degrees of overlap in molecular features and epigenetics44. 

Early-stage prostate cancer including localized disease has mostly an adenocarcinoma 

phenotype, which is often treatable with surgery (radical prostatectomy) and radiotherapy (i.e. 

brachytherapy)45,46. Androgen deprivation therapy (ADT) is a hormonal therapy that targets 

advanced prostate cancer systematically through various regime. For instance, surgical castration 

(orchiectomy), luteinizing hormone-releasing hormone agonists (i.e. leuprolide), and next 

generation androgen signaling inhibitors (i.e. enzalutamide and abiraterone acetate) that inhibits 

androgen receptor47-49. However, castration resistant prostate cancer (CRPC or CRPC-adeno) 

tumors no longer respond to ADT therapy50. When treatment resistance persists, CRPC trans-
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differentiates into an aggressive variant, small cell neuroendocrine prostate cancer (SCNPC or 

NEPC) or CRPC-NE, a variant of CRPC with neuroendocrine features and mixture of 

adenocarcinoma35,51-56. De novo SCNPC is very rare and stemmed from a small population of 

neuroendocrine cells39,57, whereas trans-differentiation cases of SCNCP accounts for 15-20% of 

CRPC and become an increasing challenge in the clinic40.  

In parallel, trans-differentiation from adenocarcinoma to small cell carcinoma is a salient problem 

in lung cancer. Lung cancer is broadly divided into non-small cell lung cancer (NSCLC) and small 

cell lung cancer (SCLC)58. NSCLC includes lung adenocarcinoma (LUAD), large-cell carcinoma 

and squamous carcinoma based on histopathological classification58. SCLC is a malignant variant 

that is highly associated with tobacco carcinogen and accounts for about 15% of all lung 

cases41,42,59. Besides arising de novo from neuroendocrine cells, SCLC has a rising number in 

clinical cases reported as transformed SCLC from LUAD patients treated with tyrosine kinase 

inhibitors (TKI). TKI targets epidermal growth factor receptors (EGFR), such as afatinib, erlotinib, 

gefitinib, dacomitinib and osimertinib60-63. LUAD with EGFR mutation and transformation to SCLC 

are the major resistance mechanisms to the first and second lines of EGFR-TKIs64. LUAD with 

wild-type EFGR also experiences transformation, however at a much lower rate65.  

Small cell neuroendocrine trans-differentiation poses a major setback in the clinic due to the lack 

of options in the current treatment regime66. Both SCNPC and SCLC have poor prognosis with a 

median survival of 7 months and 2-4 months if left untreated, respectively57,67,68. There’s no 

effective standardized treatment for small cell carcinoma. Platinum-based chemotherapy such as 

cisplatin and etoposide are only effective for a short amount of time until the cancer progresses69,70. 

To develop better therapeutics against small cell neuroendocrine cancers, a systematic molecular 

profiling study is crucial to understand the underlying biology and vulnerability of this challenging 

malignancy35,66,70.  

1.2.3 Pre-clinical SCNPC models  
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To study neuroendocrine trans-differentiation in prostate cancer, there are different in vitro and in 

vivo models available, with various degrees of advantages and disadvantages71. The Genetically 

Modified Mouse Model (GEMM) is one of the most common models that may be beneficial for the 

complex studies of the tumor environment, trans-differentiation, and therapy resistance. 

Examples include the usage of PBCre4, Nk3.1CreERT or Tmpress2CreERT2 with the 

combination of double floxed alleles of Pten, Rb1 and/or Trp5372-75.  Overexpression of MYCN 

has also shown promising in modeling neuroendocrine progression such as the PRN model driven 

by T2-Cre and Pten loss76,77. In addition, co-expression of constitutively active AKT and MYC in 

basal cells lead to the neuroendocrine transformation in vivo78,79.  

Patient Derived Xenograft (PDX) is a useful model to study tumoral heterogeneity and genetic 

assessment of SCNPC. For example, the LuCAP series encompasses a collection of genomic 

and phenotypic features in prostate cancer patients80. Another group has also established LTL 

series (Living tumor Laboratory) with comprehensive histopathology and gene expression 

profiling of donor tumors, with LTL331R being the most widely used model with an induced 

neuroendocrine phenotype81. The MDA PCa series has provided valuable information of 

SCNPC82. In parallel, the patient derived organoid model has gained popularity over the years. 

Beltran’s group developed patient-derived organoids from metastatic biopsies from SCNPC 

patients83. These types of patient-derived organoids present a useful tool for drug screening and 

testing83,84.  

Despite these models, there is a very limited number of SCNPC cell lines available: NCI-H660 

and LASCPC-0178. Other groups have utilized a LNCAP cell line, which is derived from a patient 

with metastatic prostate carcinoma85, to study trans-differentiation from adenocarcinoma to 

SCNPC86-88.  
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1.3: Trans-differentiation – Part II: From Epigenetics to Key Transcription Factors 

1.3.1 Transcriptional convergence of small cell carcinoma  

Besides the resemblance of small cell histology and the neuroendocrine marker expression, 

prostate, bladder, and lung cancers with small cell neuroendocrine phenotypes share similar 

transcriptomic and gene expression pattern 44,79,89. In SCNPC and SCLC, the majority of clinical 

cases have inactivating mutations of P53 and RB190-92. Experimental evidence has also shown 

that the loss of P53 and RB1 is essential for the advanced transformation and lineage plasticity 

in various small cell neuroendocrine cancer model in addition to the amplification of oncogenes, 

such as MYC and AKT72,73,78,79,93-96. These factors together contribute to the overall epigenetic 

landscape, promote neuroendocrine trans-differentiation, treatment resistance and malignant 

transformation in small cell carcinoma.  

1.3.2 Epigenetic reprogramming in small cell carcinoma 

Trans-differentiation from adenocarcinoma to small cell carcinoma entails epigenetic 

reprogramming35,96. Epigenetic reprogramming includes chromatin remodeling, histone 

modification and DNA methylation that downstream changes gene expression, driving cancer 

cells towards plasticity and neuroendocrine differentiation95,97-99. There is growing interest in 

identifying clinically targetable epigenetic regulator in advanced prostate cancer, such as the 

polycomb group gene family and DNA methyltransferases (DNMT) family95,98,100-102. For example, 

EZH2, a histone methyltransferase and a catalytic subunit of the polycomb repressive complex 2 

(PRC2), is responsible for the oncogenic activation in advanced prostate cancer.77,103,104. EZH2 is 

also tightly coupled with DNMTs through recruitment105. DNMT1 is also found to be significantly 

enriched in SCNPC and SCLC compared to non-small cell carcinoma. Ablation of DNMTs in pre-

clinical advanced prostate cancer has proven effective attenuation in tumor growth106. Other 

epigenetic modifiers such as SIRT1, a histone deacetylase (HDAC), induces neuroendocrine 
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differentiation through activation of the AKT pathway107. Together, these epigenetic modulators 

regulate a unique transcriptomic landscape of small cell carcinoma, facilitating a higher level of 

gene regulation towards neuroendocrine trans-differentiation. 

1.3.3 Pioneer factors instigate neuroendocrine differentiation in prostate cancer 

Besides epigenetic editing, pioneer transcription factors play an important role in instigating 

activation of the neuroendocrine transcriptional program in prostate cancer108,109. Pioneer factors 

are capable of binding to closed chromatin and inducing DNA accessibility that leads to cell fate 

reprogramming110,111. Forkhead box protein family genes such as FOXA1 are one of the most 

studied pioneer factors in prostate cancer108. High expression of FOXA1 in prostate cancer is 

associated with poor prognosis, potentially contributed by its role in activating AR transcriptional 

program through recruitment and direct interaction with AR112-114. Particularly, 25% of SCNPC 

have FOXA1 mutations that alter the lineage plasticity, including the blockage of luminal 

differentiation and activation of the neuroendocrine program115-117. In parallel, FOXA2 is not only 

a sensitive marker with specificity in SCNPC, but also responsible for KIT signaling pathway 

activation and driving the neuroendocrine trans-differentiation75,118. Nonetheless, ASCL1, a 

classical pioneer factor in neuronal and glioblastoma development119-122, activates neuronal and 

stem-like programs through chromatin remodeling in SCNPC123.  

1.3.4 Subtypes of small cell carcinoma defined by transcription factors 

Small cell carcinoma is a heterogeneous malignancy. SCLC can be divided into two categories: 

neuroendocrine (NE) and non-neuroendocrine (non-NE). Each category contains two subtypes 

that are molecularly defined as SCLC-A (ASCL1) and SCLC-N (NEUROD1), as well as SCLC-P 

(POU2F3) and SCLC-Y (YAP), respectively124-126. These four transcription factors represent the 

subtypes of SCLC based on not only the individual expression pattern, but also comprehensive 

transcriptomic and histopathological profiling on various tumor tissues and models124,127. Distinct 
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clinical characteristics presented by these four subtypes also implicate therapeutic treatments 

and outcomes128,129. Similarly, there are two clinical subtypes of SCNPC defined by ASCL1 and 

NEUROD1 through transcriptomic analysis on cell lines, patient-derived xenografts, and clinical 

samples130.  

Functionally, ASCL1 is a class II basic-helix-loop-helix (bHLH) transcription factor that 

heterodimerizes with other class I bHLH proteins to activate specific transcriptional programs. It 

is involved in neurogenesis, neural stem cells, and glioblastoma through various signaling 

pathways such as Wnt and Notch pathways119,122,131-136. Combinatorial expression of ASCL1, 

BRN2 and MTY1L are sufficient to reprogram fibroblasts into neurons135,137. In small cell 

carcinoma, around 70% of SCLC clinical cases expresses ASCL1 by immunochemical 

analysis127,138,139. ASCL1 is required for pulmonary neuroendocrine differentiation and 

tumorigenesis, presenting a potential therapeutic target for SCLC140-144. In prostate cancer, 

ASCL1 is further demonstrated to drive and support neural and plastic lineage, as well as 

contribute to the ferroptosis resistance123,145,146. 

Another neuroendocrine subtype of SCLC and SCNPC is defined by NEUROD1. NEUROD1 is a 

bHLH factor involved in the development of enteroendocrine cells in the gastrointestinal tract and 

plays an important role in the central nervous system and neurogenesis147-149.  NEUROD1 is 

highly expressed in aggressive SCLC and promotes tumor cell survival and migration, via 

regulation of the receptor tyrosine kinase tropomyosin-related kinase B (TrkB)150,151. The 

molecular profiling of SCNPC identified that this NEUROD1 subtype, despite sharing similar 

chromatin accessibility of neuroendocrine transcription factors with the ASCL1 subtype, contains 

a distinct transcriptional landscape enriched in EBF and LHX transcription factor motifs130.  

In the non-neuroendocrine class of small cell carcinoma, the POU2F3 subtype is identified with 

higher frequency in SCLC than SCNPC76,152. POU2F3, also known as OCT11, is a transcription 

factor that is important for specification of a rare chemosensory cell type, tuft cells, found in 
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gastrointestinal and respiratory tracts153,154. It is also found to be essential for the tuft cell-like 

variant of SCLC through binding to OCA-T complex155,156. In addition, ASCL2 is identified as one 

of the unique dependencies in the POU2F3 subtype in SCLC155, and is co-expressed with 

POU2F3 in subpopulations of SCNPC tumor cells76.   

The YAP1 subtype is considered the rarest subtype of SCLC due to low expression and lack of 

exclusivity in clinical cases127. Silencing YAP1 by RB1 mutation is found to be important for SCLC 

cells to metastasize157. However, the YAP1 subtype exhibits the worst clinical outcome comparing 

to other SCLC subtypes and acquires a distinct inflammatory phenotype including high interferon-

Ɣ response genes, PD-L1 and T-cell functional impairment158,159. YAP1 is known to be a 

transcription co-regulator downstream of the canonical Hippo pathway in controlling organ size 

and development160. Its involvement in tissue regeneration and cancer is extensive161,162. 

Interestingly, YAP1 activity defines pan-cancer into binary classes (YAP on/YAP off) with distinct 

adhesion phenotypes and vulnerability163. The YAP off solid cancer group has neuroendocrine 

features and loss of RB1, including retinoblastoma, SCLC and SCNPC163. YAP1 is also found to 

drive chemoresistance and change cell fate from neuroendocrine to non-neuroendocrine by 

induction of REST expression164.  

These four subtypes of small cell carcinoma in prostate and lung defined by these transcription 

factors are the current foundation in the field to classify clinical cases and identify unique 

molecular vulnerabilities for targeted therapies. However, with more single cell resolution-based 

studies, a mixture of these four transcription factors defined cell population have been identified 

within the same tumor, suggesting a high intra-tumoral heterogeneity as an emerging challenge 

in targeting small cell carcinoma130.  

1.3.5 Critical transcription factors in SCNPC 
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Neuroendocrine trans-differentiation requires a rewrite of the transcriptional landscape 

coordinated by various transcription factors165. Several transcription factors have been shown to 

be responsible for the neuroendocrine trans-differentiation and the survival of small cell cancer 

cells. For example, BRN2 (also known as POU3F2), is an AR-dependent transcriptional driver for 

neuroendocrine differentiation in CRPC86. Continuous investigation of BRN2 led to a first-in-field 

orally available inhibitor through the disruption between BRN2 and DNA in SCNPC166. Moreover, 

BRN4 is found to be actively released in prostate cancer extracellular vesicles with BRN2, 

promoting CRPC to SCNPC transition167. In SCLC, ablation of BRN2 significantly decreases 

neuroendocrine genes such as NCAM1, ASCL1 and CHGA, and vice versa. TTF1 is subsequently 

identified as a lineage-specific transcription factor through co-expression with BRN2 in SCLC168.  

One of the transcription factors that is BRN2-dependent is SOX286. SOX2 belongs to SRY 

homolog box protein family. It is well known as one of the reprogramming factors in stem cell 

biology and has a pivotal role from embryogenesis to adult homeostasis16,169,170. In cancers, SOX2 

amplification is found in about 27% of the SCLC clinical samples171,172. It is identified as an 

oncogenic driver for neuroendocrine transformation and required for cancer cell proliferation in 

SCLC171,173, exhibiting higher sensitivity upon inhibition in the ASCL1 subtype than in the YAP1 

subtype174. In addition, SOX2 is found to be indispensable for activating lineage plasticity and 

antiandrogen resistance in P53-RB1 negative prostate cancer73 alongside the previous report that 

SOX2 is required for tumor initiation in the RB1 loss retinoblastoma175. Despite direct targeting of 

SOX2 being a challenge in small cell carcinoma, research has shown that the exportin 1 inhibitor, 

Selinexor, prevents neuroendocrine differentiation through down regulation of SOX2 in SCLC176. 

ONECUT2, also known as OC-2, is associated with a wide range of biological processes including 

cell proliferation and differentiation in both normal and cancer development177,178. In SCNPC, 

ONECUT2 is identified as a targetable master regulator of the AR signaling network179,180. The 

underlying molecular mechanism is the activation of SMAD3 dependent regulation of hypoxia 
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signaling in SCNPC, leading to the possibility of targeting hypoxic metastatic CRPC with a 

hypoxia-activated prodrug such as evofosfamide (TH-302)180.  

 

1.4: Bioinformatic Deconvolution of Differentiation – From Bulk to Single Cell Resolution      

1.4.1 Transcriptional network and chromatin accessibility in small cell carcinoma 

With multiple transcription factors identified in regulating neuroendocrine trans-differentiation, 

more systematic and data-driven approaches have been applied to deconvolute the overall 

transcriptional network, to investigate the relationship between these transcription factors and 

associated phenotypes. For example, simulation analysis by Boolean modeling identifies a “hybrid” 

phenotype that explains the tumoral heterogeneity in SCLC, by using attractor states that are 

defined by neuroendocrine or mesenchymal signatures181. Similarly, the other research group 

adopts an archetype approach to further characterize the transition of the cellular states and 

suggests that cell plasticity may be driven by the response to the microenvironmental 

perturbations and treatments in SCLC182. Other analyses rely on more of a structural graph theory 

concept that recognizes the critical components in a complex network, termed “hubs”, which helps 

generate more leads for functional testing of the targeted pathways in SCLC183.  

Gene expression data from bulk RNA sequencing is crucial for studying the above-mentioned 

transcriptional network. However, to determination of which and how transcription factors regulate 

the transcriptional program will rely on chromatin accessibility analysis by the use of Assay of 

Transposase Accessible Chromatin (ATAC) sequencing. ATAC-sequencing utilizes the 

hyperactivity of Tn5 transposase with a simple protocol to allow epigenetic profiling at the open 

chromatin regions184. The application of ATAC-sequencing is extensive across fields and 

downstream analyses such as motif enrichment, nucleosome positioning and transcription factor 

footprinting are useful tools for studying transcriptional control and epigenetic regulation185.  
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1.4.2 Single cell RNA based technology in studying lineage differentiation 

Next generation sequencing revolutionized genomic research by providing higher efficiency and 

throughput capabilities than Sanger sequencing186. In cancer studies, bulk RNA sequencing 

contributes to the most widely available datasets such as TCGA, Cancer Cell Line Encyclopedia, 

and DepMap187,188, for its predominant usages in studying general trends, tumor classification, 

and gene expression patterns in cancers189. With the advanced developments in sequencing 

technologies, single cell-based sequencing offers higher resolution than bulk sequencing, in terms 

of studying cellular heterogeneity, differentiation status, cell types and the transcriptional 

landscape of individual cells188,190,191 .  

One of the most common applications of single cell-based technology in studying cellular 

differentiation is single cell RNA sequencing. It offers a powerful approach in reconstructing 

differentiation trajectories within a single cell by different algorithm and methods, including 

inference-based lineage tracing and prediction of differentiation states192,193. This type of 

prediction algorithm, though does not necessarily reflect genetic relationship, overcomes the 

challenge in experimentally labeling a cell with a heritable mark and tracking its progeny194. To 

name a few, CytoTRACE is a framework that is based on one simple observation: total number 

of genes expressed in a cell decreases during differentiation. Validation of the platform has been 

shown in identifying less-differentiated cell population with target genes that contribute to 

treatment resistance within the luminal progenitor epithelium in breast cancer195. RNA velocity, 

which utilizes the dynamic relationship between unspliced and spliced RNA to predict the 

differentiation status of a given cell196. The extensive application of RNA velocity unravels the 

transcriptional kinetics of embryonic brain development, pancreatic endocrinogenesis and 

identification of transient cellular states196-198. Another bioinformatic tool such as Monocle2 is 

based on reverse graph embedding, a type of machine learning, to predict the differentiation state 

with no requirement of priori genes in the biological process199. 
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The other wide application of single cell RNA based technology is in situ hybridization (ISH). With 

the advancement from traditional radiolabel based fluorescence ISH to non-radioisotopic 

technology, the technique has evolved to allow multiplex detection and spatial arrangement of 

single cells on tissue sections200. One of the popular platforms for researchers is RNAscope. 

RNAscope utilizes a proprietary double-Z branched DNA probe design strategy to eliminate non-

specific hybridization201. It allows detection of lower expressed genes and multiple genes in one 

setting, both of which are the limitation for traditional ISH technique, and has been used to support 

multiple clinical biomarker discoveries and transcriptional basic science studies since its invention 

in 2012201,202.  

1.4.3 Studying small cell carcinoma using a multi-omics approach  

Small cell carcinoma is a heterogeneous malignancy and challenging to study due to limited 

models and clinical materials. Efforts have been put into maximizing the usage of the samples 

and conducting more comprehensive transcriptomic profiling, such as single cell RNA sequencing 

on needle biopsy samples and small pieces of resected tumors. By comparing over 50,000 single 

cell transcriptomes of SCLC to lung adenocarcinoma from patient biospecimens, Chan et al 

identifies a PLCG2-high subpopulation that is responsible for the pro-metastatic phenotype in 

SCLC203. In SCNPC, Dong et al profiles over 20,000 single cell transcriptomes from needle biopsy 

samples of 6 CRPC patients and determines that neuroendocrine trans-differentiation arises from 

a luminal-like rather than basal cell compartment204. These studies provide valuable insights into 

tumor heterogeneity and the clinical relevance in studying the pathogenesis of small cell 

carcinoma. 

A multi-omics approach includes usage of a combination of different sequencing and profiling 

methods to deconvolute a complex biological system205. It is a powerful integrative approach to 

characterize samples and allow more in-depth analysis from various perspectives. In studying 

neuroendocrine trans-differentiation, Tang et al uses ATAC-sequencing, RNA-sequencing, and 
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DNA sequencing to profile CRPC organoids, patient-derived xenografts, and tumor derived cell 

lines. The study identified four subtypes including AR dependent, neuroendocrine, Wnt-

dependent and stem cell-like that guide therapeutic decisions206. With single cell resolution, Han 

et al combined both single cell RNA and ATAC-sequencing in a pre-clinical in vivo study to 

investigate the FOXA2-driven lineage plasticity75. In SCLC, integration of genomics, 

transcriptomics, proteomics, and phospho-proteomics of 112 paired tumor and adjacent lung 

tissues from SCLC patients yields subtype-specific therapeutic strategy207.  

With the advancement of sequencing technology and immense studies on the epigenetic 

regulation in small cell cancers, we set forth to understand the chronical order of transcriptional 

changes and to pinpoint each above-mentioned transcription factors during the neuroendocrine 

trans-differentiation. We performed a comprehensive transcriptomic profiling on an established 

small cell carcinoma model (termed PARCB)79 using multi-omics sequencing208. The study 

reveals distinct transcriptional patterns of gene expression and chromatin accessibility at each 

stage of the SCNPC development, along with single cell based sequencing and histopathological 

analysis. 
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SUMMARY 

Trans-differentiation from an adenocarcinoma to a small cell neuroendocrine state is associated 

with therapy resistance in multiple cancer types. To gain insight into the underlying molecular 

events of the trans-differentiation, we perform a multi-omics time course analysis of a pan-small 

cell neuroendocrine cancer model (termed PARCB), a forward genetic transformation using 

human prostate basal cells and identify a shared developmental, arc-like, and entropy-high 

trajectory among all transformation model replicates. Further mapping with single cell resolution 

reveals two distinct lineages defined by mutually exclusive expression of ASCL1 or ASCL2. 

Temporal regulation by groups of transcription factors across developmental stages reveals that 

cellular reprogramming precedes the induction of neuronal programs. TFAP4 and ASCL1/2 

feedback are identified as potential regulators of ASCL1 and ASCL2 expression. Our study 

provides temporal transcriptional patterns and uncovers pan-tissue parallels between prostate 

and lung cancers, as well as connections to normal neuroendocrine cell states.  
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INTRODUCTION 

Small cell neuroendocrine (SCN) cancer is an aggressive variant that arises from multiple tissues 

such as the lung and prostate 1,2. SCN is characterized by its histologically defined small cell 

morphology of densely packed cells with scant cytoplasm, poor differentiation, and aggressive 

tumor growth, as well as expression of canonical neuroendocrine markers including SYP, CHGA 

and NCAM1 3. In addition to their phenotypic resemblance, SCN cancers across multiple tissues 

show a striking transcriptional and epigenetic convergence in clinically annotated tumors 4,5. This 

molecular signature convergence is recapitulated by our established SCN transformation model 

that utilizes either normal lung epithelial cells, patient-derived benign prostate epithelial or bladder 

urothelial cells as the cells of origin 6,7.  

Small cell neuroendocrine prostate cancer (SCNPC) occurs either de novo (<1% of untreated 

prostate cancer cases), or through therapy-mediated transversion of castration resistant prostate 

cancer (CRPC) (~20% of the resistance cases). CRPC is a resistant variant of prostate 

adenocarcinoma (PRAD), which often responds to androgen deprivation therapy 8,9. Trans-

differentiation from PRAD to the SCNPC state entails complicated epigenetic reprogramming at 

the chromatin level, resulting in transcriptional changes driven by a number of key master 

regulators 10,11. For example, methylation modulated by EZH2 and activation of transcriptional 

programs by SOX2 are required in TP53 and RB1 loss-mediated neuroendocrine differentiation 

in mouse transgenic models of SCNPC 12,13. Oncogenic mutation of FOXA1 potentiate pioneering 

activity and differentiation status of prostate cancer 14,15. Lastly, knockdown of transcription factors 

such as ONECUT2 has been shown to inhibit SCN differentiation 16,17. While the importance of 

these factors has been demonstrated, the chronological sequence of the associated epigenetic 

and transcriptional changes remains uncharacterized during the progression to SCNPC. 

Examination of the temporal evolution of lung cancer revealed a connection between transcription 

factor defined subtypes and cell plasticity 18,19. In our study, we sought to answer the following 
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questions: 1) when do SCN-associated transcription factors emerge during SCNPC progression, 

2) how do they coordinate SCN differentiation, and 3) can we identify a transition state defined by 

transcription factors that can be targeted? 

Leveraging our previously developed human pan-small cell neuroendocrine cancer model, the 

PARCB forward genetics transformation model (driven by knockdown of RB1, alongside 

exogenous expression of dominant negative TP53, cMYC, BCL2 and myristoylated AKT1 via 

three lentiviral vectors) 6,7, tumor samples were harvested at different time points for multi-omics 

analyses. The transcriptional and epigenetic status of each time point was determined using 

integrative bulk RNA sequencing, ATAC sequencing, and single cell RNA sequencing. This 

longitudinal study provides insight into the temporal evolution of the epigenetic and transcriptional 

landscape during trans-differentiation and small cell cancer progression. We found consistent 

transcriptional patterns and differentiation trajectories across samples generated from 

independent patient tissues, as well as a bifurcation of end-stage neuroendocrine lineages, 

defined by ASCL1 and ASCL2 and their associated programs.   

Achates-scute complex (AS-C) proteins are basic helix-loop-helix (bHLH) transcription factors, 

first identified in Drosophila Melanogaster 20. They are important in the development of peripheral 

nervous systems and sensory organs 21. Mammalian ASCL1 is a well-known neuroendocrine 

transcription factor in small cell cancers 22-24. Independently, ASCL2 is involved in embryonic 

development, colorectal stem cell biology and cancer 25-30. ASCL2 is largely understudied in 

SCNPC, mainly shown to be co-expressed with POU2F3 in non-neuroendocrine cell populations 

5,31. Here, our study reveals temporal transcriptional patterns during small cell neuroendocrine 

differentiation in prostate cancer and associated lineage programs governed by general mutually 

exclusivity between ASCL1 and ASCL2. Follow-up analysis elucidated a transcriptional network 

circuity between ASCL1, ASCL2, and the transcription factor TFAP4 which was implicated by the 

trajectory data. 
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RESULTS 

Temporal gene expression programs of the PARCB transformation model reveal SCNPC 

trans-differentiation pathways 

To determine the timing of SCN differentiation events during prostate cancer development, we 

utilized the PARCB model system 6. Independent transformations were performed on basal cells 

extracted from benign regions of epithelial tissue from 10 prostate adenocarcinoma patients. 

Basal cells were transformed by the oncogenic lentiviral PARCB cocktail and subsequently 

cultured in an organoid system in vitro6. Transformed organoid-expanded cells from each patient 

tissue sample were subcutaneously implanted into multiple immunocompromised mice to allow 

for time-course collection of tumors from the matched starting material (Figure 1A). The tumors 

were collected at approximately two-week intervals until reaching 1 cm3 in size or occurrence of 

ulceration, whichever came first. The transformed tumor cells were triply fluorescent due to the 

lentiviral integration6, which allowed for cancer cell purification by fluorescence-activated cell 

sorting (FACS) followed by multi-omics sequencing and analysis (Figure 1A). Each patient series 

(P1-P10) contains five to six time point samples ranging from basal cells (TP1) to organoids (TP2) 

to tumors (TP3-TP5/TP6) (Figure 1A). Upon histological examination of the tumor issues by 

pathologists, we found that the time course tumors transitioned from squamous, to 

adenocarcinoma, then to mixed and eventually SCN phenotypes (Figure 1A and Figure S1A-C). 

Furthermore, clinically defined neuroendocrine markers, including SYP and NCAM1, emerge 

during the transition to late stages of the tumor progression (Figure 1A). The basal cell marker 

p63 were only positive in early-stage tumors by immunohistochemistry (IHC) staining (Figure 

S1D).  

We first performed a temporal analysis of gene expression using bulk RNA sequencing to 

understand the changes in the transcriptional landscape during SCNPC trans-differentiation. By 

projection of PARCB samples onto principal component analysis (PCA) of clinical lung and 
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prostate cancer tumor samples4,10,32-36, we validated that PARCB time course samples follow the 

transcriptionally defined convergence trajectory from adenocarcinoma to SCN states (Figure 1B 

and Figure S1E). Additional SCNPC associated factors including ASCL1 and NEUROD1 were 

also elevated during the progression (Figure 1C). The mRNA of androgen receptor (AR) was 

expressed in tumors at the early stage (Figure 1C), but the protein level was not detectable by 

immunostaining (Figure S1D). Taken together, the histological and omics data indicate that 

PARCB time course tumors recapitulate both the phenotypic and transcriptional changes 

observed in the clinic and provide a model system for studying the temporal evolution of SCNPC 

development. 

To determine the transformation trajectories among the time course series generated from the 10 

independent patient samples (P1-P10), we performed clustering and PCA of the transcriptomic 

data. To account for potential asynchronous development among each patient series and each 

individual tumor, we defined hierarchical clusters (HCs) of samples by their corresponding 

differential gene modules and found the resulting 6 clusters (HC1-6) to generally correspond with 

the time of collection (Figure 1D and Table S1A). This provides a clustering-based trans-

differentiation reference frame and informs our subsequent multi-omics analyses. Unsupervised 

PCA demonstrates that the individual transformation paths of each series follow a generally 

consistent “arc-like” trajectory with a discernable bifurcation in late-stage samples (Figure 1E, 

Figure S1E-F and Table S1B). The late tumors were hence further defined as “Class I” and 

“Class II” tumors with correspondent HC5 and HC6 gene modules, respectively. HC2 to HC6 had 

elevated SCNPC signature scores compared to adenocarcinoma signature score (Figure S1G). 

This last finding supports the existence of two transcriptional programs or end points defining the 

terminal SCNPC tumor phenotypes.  

Gene ontology enrichment analysis of the corresponding 6 differential gene modules identified 

biological processes enriched uniquely or shared among HCs, including Inflammatory response 
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(HC1 and HC3, patient derived basal cells and early tumors, respectively), cell proliferation (HC2, 

in vitro organoids), epidermis development (HC3, early tumors), cell activation (HC4, transitional 

tumors), stem cell differentiation (HC5, Class I late tumors) and neuro-/chemical synapse (HC5 

and HC6, both classes of late tumors) (Figure 1E and Table S1C). The transcriptome evolution 

supports the idea that trans-differentiation from adenocarcinoma to the SCN state is a 

systematically coordinated process, that involves a transitional stage followed by bifurcated 

pathways enriched in neuronal/neuroendocrine gene signatures. 

 

Sequential transcription regulators modulate reprogramming and neuroendocrine 

programs through a highly entropic and accessible chromatin state 

Temporal analyses on single transcription factor defined subtypes of small cell lung cancer (SCLC) 

models have delineated lineage plasticity in the development of lung neuroendocrine tumors 18. 

We sought to define the transcriptional evolution in SCNPC through an extensive survey of over 

1600 transcription factors 37 by chromatin accessibility analyses using ATAC sequencing 38. A 

significant increase in overall accessible chromatin peaks across chromosomes is observed 

starting at the tumors at transitional stage (HC4) to late stages (HC5 and HC6) (Figure 2A). 

Unsupervised PCA using ATAC-sequencing data showed an arc-like and bifurcated trajectory 

consistent with the pattern observed using the RNA-sequencing data (Figure 1D and 2B). The 

Shannon entropy has been used to estimate the plasticity potential of a biological sample to 

change cellular state 39,40. We found that transitional samples (HC4) have the highest entropy 

(Figure 2B), suggesting there exists a high potential and less well-defined transcriptional state 

during the trans-differentiation process.  

To identify transcription factors that recognize the chromatin accessible regions at each stage of 

the transformation trajectory, we first looked at the overall accessibility near the transcription start 



54 
 

sites (TSS) (Figure 2C). Transitional samples (HC4) have a strong increase in the accessible 

peaks as estimated by Shannon entropy calculations (Figure 2B and 2C), consistent with the 

gene-expression-based entropy calculations (Figure S2A). Next, motif enrichment analysis was 

performed on the accessible peaks from each HCs in a “one versus the rest” fashion. Since 

transcription factors from the same family share similar motifs and are deposited into a variety of 

databases, we used a pipeline that applies an ensemble of existing computational tools and suites 

of motifs (de novo and known) 41 (Figure 2D and Table S1D). Motif enrichment analysis 

implicated that 1) representative stress-responsive factors such as NFkB, JUN, ATF and STAT 

proteins were active from early to transition stage (HC1-4),  2) reprogramming factors such as 

POU/OCT and SOX families were active in Class I (HC5) tumors, and 3) neuronal/neural factors 

including ASCL and NEUROD family proteins were found at the later stage in Class II (HC6) 

tumors (Figure 2D). Due to ASCL1, ASCL2 and other bHLH factors sharing the same E-box motif, 

and the stringent “one HC versus the rest” differential accessibility analysis, the motif suite 

containing ASCL1 and ASCL2 factors is highly enriched and ranked in HC6 compared to HC5 

(Figure 2D). Nonetheless, when HC6 is left out of the analysis, HC5 does demonstrate strong 

enrichment for the motif suite containing ASCL1 and ASCL2 factors, compared to HC1-4. (Figure 

S2B). The enrichment of stem-like and neuroendocrine programs in HC4-5 and HC6, respectively, 

was further confirmed by signature scores derived from the literature 33,42 (Figure S2C). This 

analysis provides a view of the overall transcriptional shift of the chromatin accessibility during 

trans-differentiation. 

To determine whether expression of the transcription factors corresponds to their inferred activity 

from the motif enrichment analysis, we summarized the top ranked transcription factors (based 

on PC1, PC2 and PC3 loadings) across the transformation stages (HC1-HC6) (Figure 2E and 

Figure S2D, Table S1E) from the perspective of the PCA-based transformation trajectory (Figure 

1E and Figure S1F). Overall, we observed that 1) AR mRNA expression is lost during progression  
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towards late-stage tumors, 2) FOXA1, a known transcription factor of SCNPC 14,15, is shown to 

emerge at the early-transition stage, and 3) well-known neuroendocrine transcription factors such 

as ASCL1, NEUROD1, ONECUT2, SOX2, INSM1 and FOXA2 were increased towards the late 

stage (Figure 2E and Figure S2D)43-45. This analysis also revealed additional candidate stage-

specific transcription factors that are largely understudied in SCNPC, such as LTF, ESR1, ZIC2 

and TBX10 (Figure 2E). ASCL1 and ASCL2 expression were elevated in the late tumor stages 

(Figure 1C and Figure 2E-F). Notably, their expression was enriched in separate tumor 

endpoints (HC5: ASCL2+ and HC6: ASCL1+), supporting their probable contribution to the 

bifurcated trajectories (Figure 2E-F and Figure S2D).  

 

Transcription factor-defined cell populations contribute to lineage divergence and tumor 

heterogeneity 

To determine the degree of heterogeneity within the time course tumors, we performed single cell 

RNA sequencing on four time-defined serial tumor sets: P2, P5, P7 and P8 (TP3-TP6) (Figure 

3A). Dimension reduction analysis (Uniform Manifold Approximation and Projection, UMAP) was 

used to visualize the overall distribution of cell populations at each time point of SCNPC 

development (Figure 3A-B and Figure S3A). Overall, a lineage differentiation from basal (KRT5+) 

to luminal (KRT18+) was observed from early to late tumors (Figure 3B-C). YAP1, whose 

expression defines a non-neuroendocrine SCLC subtype 46 and whose high expression is 

frequently seen in CRPC-PRAD but not SCNPC 47, is enriched in the early tumor cell populations 

(Figure 3B-C).  

To understand the association of known SCN transcription factors in contributing to intra-tumoral 

heterogeneity, we first assigned a SCNPC score 33 to each cell (Figure S3B). Despite the high 

SCNPC scores across populations of single cells, the number of NEUROD1 and/or ONECUT2 
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positive cells is very low, while deeper single cell sequencing depth would be required to fully 

investigate this result (Figure 3C and Figure S3B). Other well-known neuroendocrine 

transcription factors such as ASCL1, INSM1 and FOXA2 are enriched in the same cell cluster 

with high SCNPC score (Figure 3C and Figure S3B). However, in another cell cluster, ASCL2, 

POU2F3 and SOX9 were co-expressed with a medium level of SCNPC score (Figure 3C and 

Figure S3B). The general mutual exclusivity of ASCL1 and ASCL2 in single cells further supports 

ASCL1 and ASCL2 contributing to the bifurcated endpoint trajectories observed in the bulk tumors 

(Figure 3C and Figure S3C-D).  

Single cell datasets available as reference from longitudinal clinical samples in advanced prostate 

cancer are rare, thus a cell type inference analysis using reference pure cell types was applied to 

infer the identity of individual cells in PARCB tumors 48. Five out of a total of 36 reference cell 

types from the Human Primary Cell Database were highly enriched in the PARCB time course 

tumor samples (Figure 3D). All tumor cells share a similar transcriptome as epithelial cells (Figure 

3D). Particularly, a majority of tumor cells (other than early-stage cells) exhibit stem-like gene 

expression patterns reflective of embryonic stem cells and induced pluripotent stem cells, 

indicative of a de-differentiation shift during SCNPC development and trans-differentiation 

(Figure 3D). Additionally, later-stage cells expressing either ASCL1 or ASCL2 had neuronal-like 

gene expression profiles, confirming the emergence of SCN differentiation (Figure 3B-D).  

Single cell analysis supports the overall gene expression and chromatin accessibility patterns 

observed in bulk tumors. Projection of single cells onto the PCA framework generated from bulk 

RNA-sequencing samples (Figure 1E and Figure S1F) demonstrated that tumors clustering 

distinctly by bulk RNA-sequencing indeed consist primarily of single cells in the corresponding 

different transcriptional states, with some degree of heterogeneity (Figure 3E). Furthermore, 

transcription factors with high expression in tumors defined by bulk RNA-sequencing analysis 

(Figure 2E) show heterogenous patterns among single cells (Figure S3E). Tumors at transitional 
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stage (HC4) and late stage (HC5) have the highest degree of gene fluctuation, further highlighting 

a potential role for increased intratumoral heterogeneity during the trans-differentiation process 

(Figure S3E). Importantly, we further validated the mutually exclusive expression pattern of 

ASCL1 and ASCL2 in multiple clinical and GEMM single cell RNA-sequencing datasets31,49-51. 

This analysis confirmed that ASCL2 is generally enriched in non-NE cells/adenocarcinoma and 

ASCL1 is more abundant in high NE cells/SCNPC clinically (Figure 3F), consistent with the 

PARCB temporal study (Figure S3F). ASCL1 and ASCL2 double-positive cells are observed at 

a low frequency, primarily in SCNPC tumors, and may reflect a transitional state between 

adenocarcinoma and SCN phenotypes (Figure 3F). 

 

ASCL1 and ASCL2 specify independent transcriptional programs and sub-lineages in 

SCNPC 

Given that ASCL1 and ASCL2 expression levels are mutually exclusive in single cells, we asked 

whether ASCL1 and ASCL2 represent separate cellular sub-lineages by inferred clonal tracing 

analyses52. With KRT5 (basal marker) set as the beginning of the tracing, the inferred tracing 

results in three primary lineage branches/states (Figure 4A). As hypothesized, single cells 

expressing either ASCL1 or ASCL2 are enriched in different lineage branches (Figure 4A-B). 

This result is further supported by a different analytic tool (RNA velocity) that measures the 

temporal ratio of un-spliced to spliced mRNAs to infer lineage trajectory 53 (Figure S4A). The 

inferred clonal tracing results complemented the real-time-based analysis visualized as the total 

composition of ASCL1- or ASCL2- positive, double positive and negative populations over time 

(Figure 4C), supporting that ASCL1 and ASCL2 are associated with independent sub-lineages. 

Double-positive cells are very infrequent in the PARCB temporal tumors. The double-positive 

population observed in the P2-TP5 tumor may capture the cells undergoing the transitional state 
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(Figure 4C), and the overall low double-positive frequency is consistent with the clinical results 

above (Figure 3F).   

To further characterize the transcriptional difference between cells expressing a high level of 

ASCL1 or ASCL2, we analyzed their differential gene expression profiles (Figure 4D and Table 

S1F). Genes that are involved in synaptic and neuroendocrine regulation such as DDC, 

CACNA1A and INSM1 are enriched in ASCL1+ cells. ASCL2+ cells express genes with stem-like 

characteristics such as SOX9 and POU2F3 (Figure 4D). SOX9 is directly regulated by ASCL2 in 

intestinal stem cells 29, suggesting a possible contribution to stem-like properties in SCNPC trans-

differentiation. Upon further investigation, we observed that genes implicated in the intestinal stem 

cell program such as EPBH3 and TNFRSF9 29 are positively correlated with ASCL2, but not 

ASCL1 (Figure S4B). In contrast, a well-known intestinal stem cell marker, LGR5 54, has no 

correlation with either ASCL1 or ASCL2, consistent with it having a more tissue specific intestinal 

role (Figure S4B).  

To identify the transcriptional programs that are associated with either ASCL1 or ASCL2 in 

prostate cancer, we constructed an inferred network 55 using multiple bulk RNA sequencing 

prostate cancer and model datasets including The Cancer Genome Atlas (TCGA), additional 

patient tumor (Beltran), and SCNPC model (Park) datasets 6,33. The analysis identified 336 and 

352 genes regulated independently by ASCL1 or ASCL2 (Figure 4E and Table S1G). Strikingly, 

there are only 5 genes from the inference analysis that are regulated by both factors: TMEM74, 

RGS16, LHFPL4, CDCA7L and SOX2 (Figure 4E). This result is consistent with the 

demonstrated role of SOX2 in regulating neuroendocrine differentiation in null TP53 and RB1 

backgrounds 13, hence showing that SOX2 is involved in both ASCL1 and ASCL2 associated 

neuroendocrine sub-lineages. Genes that are regulated by ASCL1 are enriched in 

neuroendocrine differentiation markers and factors such as SYP, CHGA, NCAM1, and NEUROD1 

(Figure 4E). ASCL2 is associated with genes including PTGS1/COX1, POU2F3, ANXA1 which 
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are generally immune and stress responsive, and stem-like (Figure 4D-E). We further confirmed 

that PARCB tumor-derived cell lines from different tissues of origin (prostate, bladder, and lung) 

all have only one or the other gene expression patterns associated with either ASCL1 or ASCL2 

expression (Figure 4F and Figure S4C). We next validated the predicted transcriptional 

programs of ASCL1 and ASCL2 by exogenously expressing either ASCL1 or ASCL2 in ASCL2+ 

or ASCL1+ cell lines, respectively. ASCL1 exogenous expression in ASCL2+ cells, increased the 

ASCL1 transcriptional program as indicated by increased signature score (Figure S4D). However, 

ASCL2 exogenous expression in ASCL1+ cells, did not have notable effect, suggesting that the 

ASCL1 endpoint state has higher stability (Figure S4D). 

In situ hybridization of ASCL1 and ASCL2 mRNA in the transitional PARCB tumor samples further 

confirmed the mutually exclusive expression pattern (Figure 4G). The staining patterns 

demonstrated both ASCL1 and ASCL2 mixed populations (left, Figure 4G), as well as patch 

regions potentially resulting from local clonal expansion (right, Figure 4G) of ASCL1+ or ASCL2+ 

cells. Our combined results support that ASCL1 and ASCL2 define independent cellular sub-

lineages and transcriptional programs with stem-like and neuroendocrine enrichment in SCNPC.  

 

ASCL1 and ASCL2 as pan-cancer classifiers 

Clinical subtypes are fairly well-defined in SCLC 46,56, but molecular subtyping remains an evolving 

challenge in SCNPC 8. By performing projection analysis of our samples onto a gene expression 

or chromatin accessibility PCA framework defined by the Tang et al. dataset of patient metastatic 

CRPC phenotypes57, we found that PARCB temporal samples share similar transcriptome and 

epigenome signatures, including a shared stem-cell like (SCL) group and a shared NEPC group 

(Figure 5A).  
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Given the high degrees of similarity in transcriptional profiles of SCLC and SCNPC 4, we 

compared our HC classification of the PARCB time course samples to the SCLC clinical subtypes: 

ASCL1 (A), NEUROD1 (N), POU2F3 (P) and YAP1 (Y) (Figure 5B) 32,46. The class I/ASCL2+ 

(HC5) tumor group shares transcriptome similarity with SCLC-P (Figure 5B), which is consistent 

with the co-expression pattern of ASCL2 and POU2F3 observed in multiple analyses (Figure 3C 

and 4D). Likewise, and concordant, the Class II/ASCL1+ (HC6) tumor group is transcriptionally 

aligned to SCLC-A (Figure 5B).  

To investigate whether the ASCL1 and ASCL2 sub-classes from PARCB temporal study 

recapitulate patterns observed in clinical samples of prostate cancer, we compared ASCL1 and 

ASCL2 expression in PARCB temporal samples versus numerous clinical profiling datasets10,33-

36. The results demonstrate that the expression levels of ASCL1 and ASCL2 are comparable 

between the PARCB model and clinical samples, and the transcriptional patterns of HC1 to HC6 

generally corresponded with the transition from PRAD/CRPC-PRAD to SCNPC (Figure 5C).  We 

further confirmed the general mutual exclusivity and low double positivity of ASCL1/2 expression 

using an RNA in situ hybridization assay on both CRPC-PRAD and SCNPC clinical samples and 

CRPC PDX models (Figure 5D and Figure S5A-B).  

By comparing the expression levels of ASCL1 and ASCL2 across a broad panel of pan-cancer 

cell lines, we found that almost all cancers, apart from lung cancers, can be divided into three 

categories (i) demonstrating expression of ASCL1 (neuroblastoma), (ii) of ASCL2 (colorectal and 

breast cancers), and (iii) double negative (other cancers) (Figure 5E). Only SCLC and other lung 

cancer cell lines have mixed levels of ASCL1 and ASCL2. Combined with our results, this 

suggests a potential role for ASCL2 and POU2F3 in specifying intermediate, and/or heterogenous 

states in (small cell) lung cancer (Figure 5E). Protein expression analysis in lung squamous 

carcinoma (NCI-H1385), SCLC-A (NCI-H1385, NCI-H146 and DMS79), SCLC-P (NCI-H526 and 

COR-L311) and SCNPC (NCI-H660) cell lines further highlighted a mutually exclusive pattern of 
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ASCL1 and ASCL2 (Figure S5C). SCLC-N (NCI-H1694) is double negative for ASCL1 and 

ASCL2 and positive for NEUROD1 as expected (Figure S5C). Last but not the least, in patient 

tumor pan-cancer data, the exclusive expression of either ASCL1 or ASCL2 is again observed, 

highlighting that binary distinctions defined by ASCL1 and ASCL2 occur across multiple tissue 

types (Figure 5F). In sum, an inverse and generally mutually exclusive relationship between 

ASCL1 and ASCL2 is observed in multiple and pan-cancer contexts, and mutual exclusivity is 

strongly observed at the single cell level. 

 

Alternating ASCL1 and ASCL2 expression through reciprocal interaction and TFAP4 

epigenetic regulation 

With the evidence that ASCL1 or ASCL2 expression levels are mutually exclusive in single cells 

during SCNPC trans-differentiation, we explored two hypotheses: 1) These two factors mutually 

regulate each other’s expression, or 2) they share a common upstream transcription factor that 

alternates their transcription through regulated differential binding to respective gene regulatory 

elements. To test the first hypothesis, we expressed V5-tagged ASCL2 in multiple PARCB tumor 

derived cell lines (lung and prostate) and observed that ASCL1 protein expression was 

significantly suppressed in these cells (Figure 6A). In contrast, expression of V5-tagged ASCL1 

increased ASCL2 expressions both at protein and mRNA levels (Figure 6A and Figure S6A). 

Thus in our model cells, ASCL1 and ASCL2 mutually regulate each other at the protein level, but 

each in the opposite manner.  

To test the second hypothesis of a common regulator, known promoter and enhancer regions of 

ASCL1 and ASCL2 were first annotated in the PARCB time course ATAC-sequencing data 

(Figure 6B). An opposing pattern of open and closed chromatin formation is found on both the 

ASCL1 promoter and the ASCL2 enhancer regions (Figure 6B). A rank list of transcription factors 



62 
 

that have matching motifs in the regions was generated to determine potential shared regulators 

58 (Figure 6C and Table S1H). An extensive literature search of all the factors whose motifs were 

found in both ASCL1 and ASCL2 regulatory regions revealed that TFAP4 was reported to form 

different transcription complex to either activate or repress target genes, including facilitating 

epithelial-to-mesenchymal transition in colorectal cancer and repressing neuronal programs in 

non-neuronal cells 59,60. The TFAP4 motif was shared in both the ASCL1 promoter (ranked 2nd) 

and the ASCL2 enhancer region (ranked 6th) in the top 8 list of shared transcription factor motifs 

(Figure 6C), and is expressed across all the SCLC, SCNPC and PARCB tumor derived cell lines 

tested (Figure S5C and S6B). Interestingly, NCI-H1385, a lung squamous carcinoma (non-small 

cell) cell line, has lower TFAP4 expression compared to other small cell neuroendocrine cell lines 

(Figure S5C).  

The direct differential binding of TFAP4 to the ASCL1 promoter and the ASCL2 enhancer region 

was confirmed by the CUT&RUN technique 61, a chromatin immunoprecipitation experiment using 

TFAP4 antibody in both ASCL1+ and ASCL2+ PARCB tumor derived cell lines. Despite cell lines 

having various degrees of TFAP4 binding signals due to potential mixed cell clones within the cell 

lines, TFAP4 was found to have higher binding affinity near the ASCL1 promoter in ASCL1+ cell 

lines (P7-TP6) than ASCL2+ cell lines (P2-TP6 and T3-TP5) (Figure S6C). In contrast, TFAP4 

consistently bound to ASCL2 enhancer regions in ASCL2+ cell lines compared to ASCL1+ cell 

line (Figure S6C). This result supports that TFAP4 potentially regulates transcription of ASCL1 

and ASCL2 in a context-specific manner.  

To determine whether TFAP4 directly regulates the expression of ASCL1 and ASCL2, we 

introduced a doxycycline-inducible CRISPR sgRNA targeting TFAP4 in multiple ASCL1+ and 

ASCL2+ cell lines, including PARCB tumor-derived cell lines and the patient-derived cell line NCI-

H660. Both ASCL1 and ASCL2 expression decreased, with various strength, after TFAP4 

knockout was induced by the addition of doxycycline in the respective cell lines (Figure 6F and 
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Figure S6D). However, other lineage associated proteins did not change (Figure 6F and Figure 

S6D). Cell growth assays showed a mild decrease in P7-TP6 (ASCL1+) cell growth, and in 

contrast a drastic increase in P3-TP5 (ASCL2+) growth upon the knockout of TFAP4 (Figure 6E). 

To explore the clinical relevance of TFAP4 in cancer and SCNPC, we surveyed the expression of 

TFAP4 across subtypes of cancers compared to normal tissue. There is a substantial increase in 

TFAP4 expression in small cell cancers compared to adenocarcinoma, and compared to normal 

tissue, in both prostate and lung cancer indications (Figure 6F), as well as in pan cancer tumors 

(TCGA) vs. normal tissue (GTEx) (Figure S6E). 

Thus in our transcriptional regulatory circuit studies, we found a reciprocal, non-symmetric 

regulatory relationship between ASCL1 and ASCL2; and that within this circuit, ASCL1 and 

ASCL2 have a shared positive regulatory factor, TFAP4. In the sum of our studies, the PARCB 

model provided a blueprint of SCNPC trans-differentiation as specified by temporal transcription 

factors (Figure 6G). In particular, ASCL1 and ASCL2 define distinct bifurcated sub-lineage trans-

differentiation trajectories in small cell cancers, and binary transcriptional profiles in a pan-cancer 

context.  
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DISCUSSION 

SCNPC has a rare de novo presentation, however, trans-differentiation from prostate 

adenocarcinoma to SCN cancer is a frequent adverse consequence of cancer cells acquiring 

resistance to therapeutics repressing AR signaling 8,9. In a pan-cancer context, therapy-induced 

trans-differentiation from adenocarcinoma to SCN cancer is a growing clinical challenge in lung 

cancer with the expansion of effective targeted therapies, such as EGFR, ALK, BRAF, KRAS 

inhibitors 62. Genetically engineered mouse models of SCNPC and SCLC have been generated 

to provide insight into the tumorigenesis of SCN cancers 12,18,31,43,63,64, with some models 

demonstrating evidence of the adenocarcinoma to SCN cancer transition 13,31,65,66. Patient tumor-

derived organoids and circulating tumor cells have also provided models for monitoring 

differentiation state transitions 50,67, including reversion to non-SCN states via specific signaling 

inhibition 50. Our PARCB froward genetics in vivo temporal transformation model further adds to 

these resources by being human cell-based, recapitulating the adenocarcinoma to SCN 

phenotype trans-differentiation at both the histological and molecular signature levels, and 

providing the temporal resolution to reveal an arc-like plasticity trajectory and associated stem 

cell-like (reprogrammed) intermediate states. A limitation of the PARCB model is that inhibition of 

the AR axis is not an initiating component of the trans-differentiation process. 

Such an arc-like trajectory is commonly observed in unbiased profiling of development and 

differentiation processes, including in cancer contexts 39,68-74. The pattern is reminiscent of 

temporal regulation in development, with the differentiation transition stage promoted by 

temporally regulated epigenetic and transcriptomic plasticity programs 75-77.  

The transcription profiles of the transition stage from adenocarcinoma to SCNPC provide 

evidence for an initial de-differentiation or reprogramming step when cells enter the trans-

differentiation process, with enrichment of stem cell and iPSC programs. Furthermore, we find 

samples in the transitional state have a higher degree of entropy at both the epigenetic and gene 
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expression level. Our findings are in concordance with a recent study in an adenocarcinoma lung 

cancer mouse model where a highly plastic intermediate state was seen as cells transitioned from 

lung hyperplasia to adenocarcinoma 19, and with past observations of increased entropy 

proceeding differentiation processes 39. Together these findings support the idea that de-

differentiation, and epigenetic loosening and/or cellular heterogeneity are prerequisites for further 

lineage trans-differentiation during cancer evolution.  

At the end-stages, the trans-differentiation trajectory demonstrates a bifurcation, resulting in two 

neuroendocrine states, one characterized by ASCL2 and POU2F3 expression (Class I tumors), 

the other by ASCL1 expression (class II tumors). Throughout the trans-differentiation trajectory, 

individual cells demonstrate mutually exclusive expression of either ASCL1 or ASCL2, with 

emergence of ASCL2 generally earlier and more prominent than ASCL1. Thus, the ASCL2 state 

and double positive state may reflect a semi-stable and transitional state. The molecular switch 

from ASCL2 to ASCL1 demonstrates the dynamic transcriptional control in SCNPC. An analogous 

temporal shift from FOXA1 to FOXA2 orchestrated transcriptional programs was observed in an 

independent SCNPC temporal GEMM model 43, and the FOXA1 to FOXA2 transition is reflected 

in the PARCB model (Figure S2D). 

SCLC tumor subtypes are canonically defined by the predominant expression of one of four 

master regulators (ASCL1, NEUROD1, POU2F3, and YAP1) 46, and tumors expressing ASCL1 

have been reported in therapy induced SCNPC 5,51. Nevertheless, single cell data from mouse 

models of SCNPC have identified both a distinct cell subpopulation with co-expression and open 

chromatin accessibility of ASCL2 and POU2F3 motifs 31, and a POU2F3 expression-dominant cell 

subpopulation 50. Upon close examination of clinical prostate cancer expression datasets 31,49-51, 

and upon performing RNA hybridization studies of prostate tumor histology sections, we found 

that ASCL2+ cells are common in castration-resistant and therapy-exposed prostate cancers. 

Thus, the previous reports combined with our findings support a potential cancer physiology role 
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for the ASCL2/POU2F3 subtype in prostate cancer trans-differentiation. In parallel, NEUROD1, a 

marker of a previously defined prostate (and SCLC) cancer subtype 5,46 has relatively low 

expression in the PARCB temporal study. However, a NEUROD1-expressing cell cluster is 

situated between the ASCL1 and ASCL2 cell clusters in the lineage analysis, suggesting a 

potential facilitating role in lineage bifurcation and trans-differentiation.  

Prior links between master regulators POU2F3 and ASCL2 have previously been reported, such 

as a unique dependency on ASCL2 in the POU2F3 subtype of SCLC cell lines 78. Whether ASCL2 

and POU2F3 regulate highly overlapping transcriptional targets remains to be determined. One 

potential mechanism is through the co-activation of E-box and octamer DNA binding by ASCL2 

and POU2F3, respectively. This interaction mechanism was observed previously between ASCL1 

and POU3F2 (BRN2) in neurogenesis 79. Further work will help answer if ASCL2 facilitates the 

transitional stage and/or is a more default program during the de-differentiated transition stage.  

Despite sharing similar nomenclature and pro-neuronal properties in the literature 20, ASCL1 and 

ASCL2 are known to play different roles in stem cell, lineage, and cancer biology 22,29. ASCL1 is 

a prominent driver for neuroendocrine differentiation in normal cells 22. However, recent cancer 

studies have shown that ASCL1 contributes to high lineage plasticity, resulting in subtype 

changes via remodeling of the global epigenetic state 18,24. The role of ASCL2 requires further 

investigation to determine its balance of compensatory and competitive characteristics in regard 

to ASCL1 function in small cell neuroendocrine cancers. In our mechanistic studies, we found that 

increased ASCL1 leads to increased ASCL2 expression, whereas ASCL2 suppresses ASCL1 

expression using PARCB tumor-derived cell lines from multiple tissues of origin (prostate and 

lung). This leads to a future testable hypothesis on whether existence or absence of ASCL2 is 

required to arrive at an ASCL1-positive neuroendocrine state via trans-differentiation.  

A dynamic lineage plasticity among subtypes of SCLC has been reported 18. However, the triggers 

and mechanisms underlying cancer cells switching to different lineages remain elusive. In SCNPC, 
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beyond our discovery of the reciprocal regulation between ASCL1 and ASCL2, our results 

identified TFAP4 as an additional candidate member of this transcriptional circuitry. In particular, 

TFAP4 can alternate the expression of ASCL1 and ASCL2 by differential binding to cis regulatory 

elements on both genes. TFAP4 has been shown to have both activating and repressing 

properties in gene regulation through interactions with distinct transcription factors 59,60. TFAP4 

demonstrates substantial increased expression in small cell vs. non-small cell cancers and is 

elevated in cancers compared to normal tissue. Future mechanistic and functional studies on 

TFAP4 will help clarify its master regulator role in lineage trans-differentiation in SCNPC and 

SCLC.  

In clinical therapy, different forms of tumor plasticity define the battle grounds for acquired 

resistance. In the primary prostate cancer setting, the vast majority of prostate cancers are 

adenocarcinomas while all other histologic types are rare. In the castration-resistant setting, 

especially with the clinical introduction of next-generation anti-AR therapies, many different 

variant histology has been observed, including rare cases of squamous carcinoma80. In this 

combat, trans-differentiation to a small cell neuroendocrine state in response to otherwise 

effective molecular therapies is an emerging challenge across multiple cancer types. The 

temporal profiling of SCNPC development in the human cell based PARCB model revealed that 

trans-differentiation from an adenocarcinoma to neuroendocrine state is a temporally complicated, 

yet systematically coordinated process. The combination of bulk and single cell profiling 

approaches allowed for the identification of an arc-like trajectory and a transitory period 

characterized by epigenetic loosening, which are shared in general by other differentiation and 

development processes. Consistent with genetically engineered mouse SCNPC models, and with 

the multiple subtypes of SCLC, we find a role for both ASCL1 and ASCL2/POU2F3 in trans-

differentiation to SCNPC. The results from our model have provided insight into the regulatory 

crosstalk between different neuroendocrine master regulators and provide a resource for 
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identifying candidate approaches for blocking this clinically challenging case of trans-

differentiation. 
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MAIN FIGURE LEGENDS 

Figure 1. Temporal gene expression programs of the PARCB transformation model reveal 

SCNPC trans-differentiation pathways. (A) Schematic summary of PARCB time course study 

and representative Hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) 

staining of neuroendocrine markers (SYP and NCAM1) on sequential tumors from the tissue 

microarray. Time point (TP1-6) samples were sequenced using bulk RNA sequencing (green 

circle), bulk ATAC-sequencing (red circle) and/or single cell RNA sequencing (blue circle, tumors 

only). (B) Projection of the PARCB time course samples onto the PCA framework defined by pan-

cancer clinical tumor datasets 4,10,32-36. LUAD: Lung adenocarcinoma. LUAD norm: lung 

adenocarcinoma adjacent normal tissue. SCLC: small cell lung cancer. PRAD: prostate 

adenocarcinoma. PRAD norm: prostate adenocarcinoma adjacent normal tissue. CRPC: 

castration resistant prostate cancer. SCNPC: small cell neuroendocrine prostate cancer. (C) 

Average gene expression of selected SCNPC-associated proteins and markers. (D) Heatmap of 

hierarchical clusters (HC) of samples (columns) and corresponding differentially upregulated 

gene modules (rows). Differential expression defined by one HC vs all other HCs).  (E) PCA of 

the PARCB time course samples and trans-differentiation trajectories including primary arc and 

secondary bifurcation. A 3-dimensional rotatable version of this figure is available on the PARCB 

Multi-omics Explorer website. [For review, a 3D rotatable version is included as Data S1.] (F) 

Selected enriched GO terms across HC. See also Figure S1. 

 

Figure 2. Sequential transcription regulators modulate reprogramming and 

neuroendocrine programs through a highly entropic and accessible chromatin state. (A) 

Overall differential chromatin accessibility across HC. (B) PCA of chromatin accessibility of 

PARCB time course samples with entropy analysis using ATAC sequencing. (C) Overall mean 

accessible peaks near TSS of each HC in PARCB time course study. (D) Enriched motifs from 
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suites of transcription factors in each HC using ATAC-sequencing. Top 5 motif suites for each 

comparison are shown, with additional analysis in Figure S2B, and full results in Table S1D. (E) 

Top ranked transcription factors and known neuroendocrine transcription factors across PARCB 

time course using bulk RNA sequencing. HOXC TFs avg: Average expression of HOXC4, HOXC5, 

HOXC6, HOXC8, HOXC9, HOXC10, HOXC11, HOXC12 and HOXC13. (F) Expression of ASCL1, 

ASCL2, NEURDO1 and POU2F3 in each HC. See also Figure S2. 

 

Figure 3. Transcription factor-defined cell populations contribute to lineage divergence 

and tumor heterogeneity. (A) Dimension reduction UMAP analysis of four patient series (P2, 

P5, P6 and P7) over time (TP3-6) using single cell RNA sequencing. (B) Temporal UMAP analysis 

of all the samples. (C) Expression of selected markers and transcription factors. KRT5 marks 

basal cells. KRT15 marks luminal cells. The expression is presented in log normalized counts. (D) 

Top enriched inferred cell types from the Human Cell Type Database using SingleR 48. (E) 

Projection of single cell RNA-sequencing samples on PCA framework by bulk RNA-sequencing 

samples (top panel) and the expression of selected markers and transcription factors (bottom 

panel). Each data point is a single cell colored by their corresponding HC. (F) Expression of 

ASCL1 (top) and ASCL2 (middle) and percentage of ASCL1/2 positive cells (cells with expression 

value >0) (bottom) in human biopsy and GEMM model tumors from five single cell RNA-

sequencing datasets 31,49-51. Other: prostatic intraepithelial neoplasia. NMYC_RB_M: Ptenf/f; 

Rb1f/f;MYCN + (PRN) and  RB_M: Ptenf/f; Rb1f/f (PR) mouse model in Brady et al31. See also 

Figure S3.   

 

Figure 4. ASCL1 and ASCL2 specify independent transcriptional programs and sub-

lineages in SCNPC. (A) Inferred clonal tracing analysis of the PARCB time course samples using 
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Monocle 2 52. (B) Relative expression of KRT5, ASCL1 and ASCL2 in the inferred clonal tracing 

analysis (pseudo-time). (C) Percentages of ASCL1 or ASCL2 positive, double positive and double 

negative cell populations over time. (D) Volcano plot of differential gene expression in high 

ASCL1+ vs high ASCL2+ cell populations. (E) Representative genes from the predicted 

transcriptional programs of ASCL1 and ASCL2 trained on data from patient and model prostate 

cancer tumors (6,10,33 including TCGA), as determined by the ARACNE algorithm 81. (F) Western 

blot of panel of genes in the PARCB tumor derived cell lines from different tissue of origin (prostate, 

bladder and lung) 6,7 . (G) Representative images of in situ hybridization of ASCL1 and ASCL2 

mRNA analysis on transitional tumors (P7-TP5 and P9-TP4). See also Figure S4. 

 

Figure 5. ASCL1 and ASCL2 as pan-cancer classifiers. See also Figure S5. (A) Projection of 

the PARCB time course samples on the PCA framework defined by the CRPC subtypes using 

RNA sequencing (left) and ATAC-sequencing (right) 57. SCL: stem-cell like. NEPC: 

Neuroendocrine prostate cancer. 3-dimensional rotatable versions of these figures are available 

on the PARCB Multi-omics Explorer website. [For review, 3D rotatable versions are included as 

Data S2 and Data S3.] (B) Projection of the PARCB time course samples on the PCA framework 

defined by the SCLC subtypes 32,46. (C) mRNA expression of ASCL1 and ASCL2 in the PARCB 

time course samples and multiple sets of clinical CRPC-PRAD and SCNPC samples including 

TCGA and different research groups 10,33-36. (D) Representative images of in situ RNA 

hybridization of ASCL1 and ASCL2 in clinical SCNPC tissues. (E) mRNA expression of ASCL1 

and ASCL2 in pan cancer cell lines (CCLE). (F) mRNA expression of ASCL1 and ASCL2 in pan 

cancer tumors from TCGA. 
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Figure 6. Alternating ASCL1 and ASCL2 expression through reciprocal interaction and 

TFAP4 epigenetic regulation. See also Figure S6. (A) Western blot analysis of exogenously 

expressing either V5 tagged ASCL2 in ASCL1+ cell lines 6 (left) or V5-tagged ASCL1 in ASCL2+ 

cell lines (right). (B) Schematic of putative cis regulatory elements (CREs) of ASCL1 and ASCL2 

(top) and the heatmap of open chromatin accessibility across CREs of ASCL1 and ASCL2 using 

the PARCB time course ATAC-sequencing (bottom). Red box: CREs containing predicted TFAP4 

binding sites by HOMER motif enrichment analysis 58. (C) Top 8 ranked transcription factor motifs 

in ASCL1 promoter and ASCL2 enhancer regions, ranked by p-values. (D) Western blot analysis 

of doxycycline-inducible knockout of TFAP4 and proteins of interest in P7-TP6 (ASCL1+) and P3-

TP5 (ASCL2+) cell lines. DOX: doxycycline. (E) Cell proliferation analysis of P7-TP6 (ASCL1+) 

and P3-TP5 (ASCL2+) cell lines with doxycycline-inducible knockout of TFAP4. Ctrl: no addition 

of doxycycline. TFAP4: with addition of doxycycline. (G) Schematic summary of the PARCB time 

course study. 
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MATERIAL AND METHOD DETAIL 

PARCB transformation temporal model 

Prostate tissues from donors were provided in a de-identified manner and therefore exempt 

from Institutional Review Board (IRB) approval. Processing of human tissue, isolation of basal 

cells, organoid transformation, and xenograft assay were described in detail previously 6. 20,000 

cells FACS-sorted cells per organoid were plated in 18-20ul of growth factor-reduced Matrigel 

(Cat# 356234, Corning) with PARCB lentiviruses (MOI=50/lentivirus). Organoids were cultured 

in the prostate organoid media82 for about 10-14 days. Transduced organoids were harvested 

by dissociation of Matrigel with 1mg/mL Dispase (Cat# 17105041, Thermo Fisher Scientific). 

The organoids were washed three times with 1xPBS to remove Dispase and re-suspended in 

10μl of growth factor reduced Matrigel and 10ul Matrigel with High Concentration (Cat# 354248, 

Corning). The organoid-Matrigel mixture was implanted subcutaneously in immunodeficient 

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice 83.Tumors were extracted in every two-week 

window, with the last tumor collection of the time course series determined by either reaching 

around 1cm in diameter in tumor size or ulceration, whichever came first. NSG mice had been 

transferred from the Jackson Laboratories and housed and bred under the care of the Division 

of Laboratory Animal Medicine at the University of California, Los Angeles (UCLA). All animal 

handling and subcutaneous injections were performed following the protocols approved by 

UCLA’s Animal Research Committee. 

 

Cell lines 

NCI-H1385 (Cat# CRL-5867), NCI-H1930 (Cat# CRL-5906), NCI-H1694 (Cat# CRL-5888), NCI-

H146 (Cat# HTB-173), DMS79 (Cat# CRL-2049), NCI-H526 (Cat# CRL-5811), and NCI-H660 

(Cat# CRL-5813)  were purchased from American Type Culture Collection (ATCC). COR-L311 

was obtained from Sigma Aldrich (Cat# 96020721). All commercially available cell lines were 

cultured and maintained based on the instruction from the vendors. PARCB tumor derived cell 
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lines were generated using the previous method 6. All the cell lines in the study are free of 

Mycoplasma using a MycoAlert™ PLUS Mycoplasma Detection Kit (Cat# LT07-703, Lonza).  

 

Lentiviral vectors and lentiviruses 

The myristoylated AKT1 vector (FU-myrAKT1-CGW), exogenous expression of cMYC and BCL2 

(FU-cMYC-P2A-BCL2-CRW), dominant TP53 mutant (R175H) and shRNA targeting RB1 vector 

(FU-shRB1-TP53DN-CYW) have been described previously 6. Exogenous expression of V5 

tagged ASCL1 (pLENTI6.3-V5-ASCL1) is obtained from DNASU (Cat#: HsCD00852286) 84. For 

making exogenous expression of ASCL2 containing vector (pLENTI6.3-V5-ASCL2), Gateway 

cloning (Cat# 11791020, Thermo Fisher) was performed using pLenti6/V5-DEST Gateway Vector 

(Cat# V49610, Thermo Fisher) and the entry plasmid (pDONR221-ASCL2) was obtained from 

DNASU (Cat# HsCD00829357) 84. For making doxycycline- inducible sgTFAP4 (TLCv2-Cas9-

BFP-sgTFAP4), TLCv2 (Cat# 87360, Addgene) was first digested with BamHI-HF (Cat# R3136, 

New England Biolabs) and Nhel-HF (Cat# 3131, New England Biolabs) at 37℃ for 1 hour and 

inserted with a synthesized fragment containing T2A-Hpal-BFP sequence (gBlock service 

provided by IDT) using Gibson Assembly (Cat# E5510, New England Biolabs). sgTFAP4 

sequence was cloned into the previously described TLCv2-BFP vector using an established 

protocol 85. sgTFAP4-primers are listed in the key resources table. Lentiviruses were produced 

and purified by a previously established method 86.  

 

Tissue section, histology, and immunohistochemistry (IHC) 

PARCB model tumor tissues were fixed in 10% buffered formaldehyde overnight at 4℃ and 

followed by 70% ethanol solution. Tissue microarray construction and hematoxylin and eosin 

(H&E) staining were performed by Translation Pathology Core Laboratory (TPCL) in UCLA 

using standard protocol. TPCL is a CAP/CLIA certified research facility in the UCLA Department 
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of Pathology and Laboratory Medicine and a UCLA Jonsson Comprehensive Cancer Center 

Shared Facility. For immunohistochemistry staining, formalin-fixed, paraffin-embedded (FFPE) 

sections were deparaffinized and rehydrated with a washing sequence of xylene and different 

concentration of ethanol. Citrate buffer (pH6.0) was used to retrieve antigens. The sections 

were incubated in citrate buffer and heated in a pressure cooker. 3% of H2O2 in methanol was 

used to block endogenous peroxidase activity for 10 mins at room temperature. The sections 

were blocked then incubated with primary antibodies overnight at 4°C. Anti-mouse/rabbit 

secondary antibodies were used to detect proteins of interest and DAB EqV substrate was used 

to visualize the staining. All components were included in the ImmPRESS Kit (MP-7801-15 and 

MP-7802-15, Vector Laboratories)  The slides were then dehydrated and mounted with Xylene-

based drying medium (Cat# 22-050-262, Fisher Scientific). 

Western blot 

Cells were lysed on ice using UREA lysis buffer (8M UREA, 4% CHAPS, 2x protease inhibitor 

cocktail (Cat# 11697498001, Millipore Sigma)). Genomic DNA was removed by ultracentrifuge 

(Beckman Optima MAX-XP, rotor TLA-120.1, 48,000 rpm for 90 min). Protein concentrations 

were measured using the Pierce BCA Protein Assay Kit (Cat#: 23227, Thermo Scientific). 

Samples were electrophoresed on polyacrylamide gels (Cat# NW04120BOX, Thermo Fisher), 

transferred to nitrocellulose membranes (Cat# 88018, Thermo Fisher). Western blots were 

visualized using iBright CL1500 Imaging system (Cat#44114, Thermo Fisher). 

 

RT-qPCR 

Total RNA was isolated from cells using miRNeasy Mini Kit (Cat# 217004, Qiagen). cDNA was 

synthesized from 2 ug of total RNA using the SuperScript IV First-Strand Synthesis System 

(Cat# 18091050, Thermo Fisher). RT-qPCR was performed using SYBR Green PCR Master 

Mix (Cat# 4309155, Thermo Fisher). Amplification was carried out using the StepOne Real-

Time PCR System (Cat# 4376357, Thermo Fisher) and analysis was performed using the 
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StepOne Software v2.3. with the following primers were used at a concentration of 250 uM: 

Relative quantification was determined using the Delta-Delta Ct Method. Primer sequences are 

listed in the key resources table. 

 

In situ RNA hybridization assay and image analysis 

The RNAscope Multiplex Fluorescent V2 kit was used to perform in situ hybridization on FFPE 

tissue microarray slides following the manufacturer’s protocol (Cat# 323270, ACDBio). The 

Institutional Review Board of the University of Washington approved this study (protocol no. 

2341). All rapid autopsy tissues were collected from patients who signed written informed 

consent under the aegis of the Prostate Cancer Donor Program at the University of Washington. 

The establishment of the patient-derived xenografts was approved by the University of 

Washington Institutional Animal Care and Use Committee (protocol no. 3202-01). For multiplex 

hybridization, the Double Z probes targeting ASCL1 (Cat# 459721-C2, ACDBio) and ASCL2 

(Cat# 323100, ACDBio) were hybridized to the samples for 2 hours at 40°C. ASCL1 signal was 

visualized using Opal dye 520 (Cat# FP1487001KT, Akoya Biosciences) and ASCL2 signal was 

visualized using Opal dye 570 (Cat# FP1488001KT, Akoya Biosciences). DAPI (Cat# D3571, 

Thermo Fisher) was used to visualize nuclei. Confocal fluorescence images were acquired 

using an inverted Zeiss LSM 880 confocal microscope. All images were processed using 

Fiji (https://imagej.net/software/fiji/). 

 

Cell proliferation assay 

3000 cells per cell line in five replicates were seeded on 96-well plates on Day 0. Cell viability 

was measured on Day 1, 3, 4, 5 and 6. using Cell Titer-Glo Luminescent Cell Viability Assay 

(Cat# G7570, Promega). Luminescence was measured at an integration time of 0.5 second per 

well. 

 

https://imagej.net/software/fiji/
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Bulk RNA sequencing and dataset collection 

Tumors were dissociated into single cells, followed by cell sorting of triple colors (RFP, GFP and 

YFP) by flow cytometry. Total RNA was extracted from the cell lysates using miRNeasy mini kit 

(Cat# 217084, Qiagen). Libraries for RNA-sequencing of PARCB time course samples were 

prepared with KAPA Stranded mRNA-Seq Kit (Cat# KK8420, Roche). The workflow consists of 

mRNA enrichment and fragmentation. Sequencing was performed on Illumina Hiseq 3000 or 

NovaSeq 6000 for PE 2x150 run. Data quality check was done on Illumina SAV. Demultiplexing 

was performed with Illumina Bcl2fastq v2.19.1.403 software. Raw sequencing reads were 

processed through the UCSC TOIL RNA Sequencing pipeline1 for quality control, adapter 

trimming, sequence alignment, and expression quantification. Briefly, sequence adapters were 

trimmed using CutAdapt v1.9, sequences were then aligned to human reference genome 

GRCh38 using STAR v2.4.2a and gene expression quantification was performed using RSEM 

v1.2.25 with transcript annotations from GENCODE v23 87.  

The FASTQ files of the Park dataset 6, Beltran dataset 33, George dataset 32 and Tang dataset 57 

were all processed through the TOIL pipeline with the same parameters to get RSEM expected 

counts. The TOIL-RSEM expected counts of TCGA pan cancer samples were obtained directly 

from UCSC Xena browser (https://xenabrowser.net/datapages) and gene expression (log2(TPM 

+ 1)) of pan-cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE) were downloaded 

from DepMap Portal (DepMap Public 22Q1) (https://depmap.org/portal/download/all/). The RSEM 

counts of all combined datasets were upper quartile normalized, log2(x+1) transformed (referred 

to as log2(UQN+1) counts) and filtered down to HUGO protein coding genes 

(http://www.genenames.org/) for the downstream analyses. SCLC subtypes 46 and CRPC 

subtypes 57were previously defined. The details of the bulk RNA-sequencing of PARCB time 

course are described in Table S1I. 

Differential gene expression analysis and hierarchical clustering 

https://xenabrowser.net/datapages
https://depmap.org/portal/download/all/
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PARCB time course samples were grouped into 6 hierarchical clusters (HC) by performing Ward’s 

hierarchical clustering (k=6) on log2(UQN + 1) counts using the hclust function from the base R 

package, Stats (https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html). 

Differential gene expression analysis was then performed on each HC in a “one vs. rest” fashion, 

i.e., between one cluster vs. the remaining five clusters, using DESeq2 with the following 

parameters: independentFiltering=F, cooksCutoff=FALSE, alpha=0.1 88. For each HC vs. rest 

comparison, genes with a log2FC > 2 and p-adjusted value < 0.05 were considered upregulated 

for that HC gene module. However, four genes (IL1RL1, KRT36, PIK3CG, NPY) were upregulated 

among multiple HC vs. rest comparisons. As a result, these genes were assigned to the HC gene 

module with the smaller p-adjusted value for that gene. Z-scores for upregulated genes in each 

cluster were then plotted in a heatmap using pheatmap function. PARCB time course samples 

were subsequently categorized by this HC definition in downstream analyses.  

 

GO enrichment analysis 

Enrichment analysis was performed using the “GO_Biological_Process_2021” database and the 

enrichr function from the R package, enrichR, using upregulated genes for each HC 89. Pathways 

were selected based on their adjusted p-value for each HC. The results were plotted using ggplot(). 

 

Bulk ATAC sequencing and dataset collection 

Tumors were dissociated into single cells, followed by cell sorting of triple colors (RFP, GFP and 

YFP) by flow cytometry. ATAC-sequencing samples were prepared following the previously 

published protocol38. Bulk ATAC sequencing was performed in  the Technology Center for 

Genomics & Bioinformatics Core in UCLA. Sequencing was performed on Illumina NovaSeq 6000 

for PE 2x50 run. Data quality check was done on Illumina SAV. Demultiplexing was performed 

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html
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with Illumina Bcl2fastq v2.19.1.403 software. The raw FASTQ files were processed using the 

published ENCODE ATAC-Seq Pipeline (https://github.com/ENCODE-DCC/atac-seq-pipeline). 

The reads were trimmed and aligned to hg38 using bowtie2. Picard was used to de-duplicate 

reads, which were then filtered for high-quality paired reads using SAMtools. All peak calling was 

performed using MACS2. The optimal irreproducible discovery rate (IDR) thresholded peak output 

was used for all downstream analyses, with a threshold P value of 0.05. Other ENCODE3 

parameters were enforced with the flag-encode3. Reads that mapped to mitochondrial genes or 

blacklisted regions, as defined by the ENCODE pipeline, were removed. The peak files were 

merged using bedtools merge to create a consensus set of peaks across all samples, and the 

number of reads in each peak was determined using bedtools multicov 90. A variance stabilizing 

transformation was performed on peak counts using DESeq2 88 and batch effects were removed 

using removeBatchEffect() from limma 91. All downstream ATAC-sequencing analysis was 

performed using this matrix (referred to as VST peak counts), unless otherwise specified. P1-TP1 

was not collected for ATAC-sequencing due to insufficient cell number for sequencing. P7-TP2 

was not included for the processing due to low read counts (total of 1536). P1-TP5, P2-TP6 and 

P10-TP2 were not included in PCA due to reaching within 95th percentile of calculated Shannon 

entropy for all ATAC-sequencing samples. The details of the bulk ATAC-sequencing processing 

of PARCB temporal samples are described in Table S1J 

Raw FASTQ files of Tang ATAC-sequencing dataset were downloaded from GSE193917 57. The 

raw FASTQ files were processed using the same ENCODE pipeline described above with the 

same parameters.  

 

Differential chromatin accessibility and Transcription start site (TSS) analysis 

Differential peak analysis was performed on each HC in a one vs. rest fashion, as described 

above in the bulk RNA-sequencing analysis. Peaks were called hyper- or hypo- accessible if the 

https://github.com/ENCODE-DCC/atac-seq-pipeline
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log2 fold change was greater than 2 or less than 2, respectively, and had an adjusted p-value of 

less than 0.05. The z-scores of the union of all differentially accessible peaks were used to plot 

the heatmap using VST peak counts, with the rows ordered by chromosomal location.   

For mapping peaks near TSS sites, the bigwig files containing ATAC-sequencing readings were 

first converted into wig files. Wig files from samples within the same HC were then merged by 

calculating the mean across peak regions using wiggleTools 92. The TSS analysis was performed 

using deepTools and computeMatrix in reference-point mode with parameters 

referencePoint=TSS, a=2000, b=2000 to compute the scores from merged bigwigs in regions 2 

kbp flanking the region of interest. plotHeatmap was used with parameters zMin=0, zMax=5, 

binSize=10 was to plot the TSS figure from the score matrix 93.  

PCA and projection analyses 

Unsupervised PCA of the PARCB time course samples using log2(UQN +1) counts was 

performed using the prcomp function from the stats package available on R (described above). 

PC2 and PC3 sample scores were then multiplied by a 30-degree clockwise rotation matrix. 

Ellipses were drawn around samples with 95% confidence based on real time labels using 

stat_ellipse() from ggplot2. The PCA projection of PARCB time course samples onto the 

framework using pan small cell cancer combined gene expression datasets have been discussed 

previously 4. In brief, the input matrix for this PCA was centered but not scaled. PARCB time 

course samples were then projected by multiplying the data matrix by the PCA loadings. For 

projection of PARCB time course samples onto the framework using gene expression data of 

CRPC subtypes 57 or SCLC subtypes 46, the same methodology was applied.  

For projection of PARCB time course samples onto the framework using ATAC-sequencing data 

of CRPC subtypes 57, peak coverage of the Tang dataset was determined using the consensus 

set of peaks from the PARCB time course data with function bedtools multicov 90. Tang dataset 

peak read counts were then variance stabilized transformed using DESeq2 88. PCA was 
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performed on VST peak read counts of the Tang dataset using the prcomp function with the 

parameters center = T, scale = F. PARCB time course samples were then projected onto the 

framework by multiplying PARCB time course VST peak read counts by PCA loadings.  

For projection of PARCB time course single cells onto the framework defined by the bulk RNA-

sequencing data, the single cell data after integration by batch was down-sampled for 1000 cells 

within each patient series or cluster. The single cell and bulk RNA-sequencing data were centered 

separately prior to projection. The projection was carried out by multiplying the single cell data 

matrix by PCA loadings of PARCB bulk samples. 

 

Transcription factor analysis  

Top ranked transcription factors (TF) were selected using the gene loading scores derived from 

the unsupervised PCA of gene expression described above. PC2 and PC3 loading scores were 

rotated 30 degrees clockwise by multiplying a 30-degree clockwise rotation matrix to the gene 

loading scores (resulting components called PC2’ and PC3’, respectively). The loading scores 

were then filtered to include only transcription factors 37. The center of the TF loading scores was 

determined by taking the average of PC1, PC2’, and PC3’. The Euclidean distance from the center 

was calculated for each TF, and the top 60 TFs furthest from center were selected. Hierarchical 

clustering (k = 5) was performed on the log2(UQN +1) counts of the top 60 TFs. The z-scores for 

each TF were plotted using pheatmap. Average z-score of HOXC genes was calculated from 

HOXC 4-13 (except for HOXC7) in each PARCB time course sample. 

 

Shannon Entropy analysis 

Shannon entropy for each PARCB time course sample was calculated on variance stabilized 

transformed (VST) ATAC-sequencing peak counts using the Entropy() function from the R 
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package DescTools (https://cran.r-project.org/web/packages/DescTools/index.html). PARCB 

samples falling within the 95th percentile of calculated Shannon entropy scores were included in 

the following PCA. PCA was performed on VST peak counts and was plotted using ggplot2 with 

samples colored by their Entropy scores and ellipses with 95% confidence were drawn around 

each time point group using stat_ellipse(). 

Prostate cancer gene regulatory network analysis 

The RNA-sequencing data of PARCB time course study, Park dataset 6, Beltran dataset 33, and 

TCGA PRAD/PRAD-norm dataset were included in this analysis. TCGA PRAD/PRAD-norm data 

was down sampled to match the sample size of other cohorts. Gene network was built on the 

combined datasets using ARACNe-AP 81. 

 

Signature scores (adult stem cell, adenocarcinoma and SCNPC) 

SCNPC signature was derived using Beltran dataset 33, following the methods described 

previously 6. The adult stem cell (ASC) signature in our analysis is defined in literature 42. For 

prostate adenocarcinoma signature, differential gene expression analysis was performed on 

TCGA PRAD samples vs CRPC-PRAD and SCNPC samples from the Beltran dataset 10,33 

using DESeq2. The adenocarcinoma signature was defined by all the upregulated genes 

(log2FoldChange >2 and padj < 0.05) from the differential gene expression analysis. 

Adenocarcinoma and SCNPC signature scores of our PARCB time course samples were 

calculated using gsva with method=”ssgsea”. 

 

Motif analysis 

Hyper-accessible peaks in each HC from the differential peak analysis described previously were 

used for motif enrichment analysis using GimmeMotifs 41,90. Differential motif analysis was 

performed on hyper-accessible peaks for each HC against a hg38 whole-genome background 

https://cran.r-project.org/web/packages/DescTools/index.html
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using the maelstrom function with default parameters. The top 5 enriched motifs and their 

aggregated z-scores for each HC are shown in the heatmap (each individual HC vs all others). 

Additionally, we performed differential peak analysis on HC5 vs HC1-HC4 and HC6 vs HC1-HC4 

with the same parameters as described previously using DESeq2. Likewise, hyper-accessible 

peaks for HC5 and HC6 in these comparisons were defined by a threshold of log2FoldChange > 

2 and padj < 0.05. Differential motif analysis was performed on the set of hyper-accessible peaks 

from HC5 vs HC1-4 and HC6 vs HC1-4 using the maelstrom function as described above. Note 

that in the GimmeMotif enrichment analysis, transcription factors are culled to minimize 

redundancy, and this step is impacted by the exact input data and sample group comparison 

indicated. Thus, each motif suite may contain slightly different enriched transcription factors. 

However, the transcription factor sets remain highly consistent between each case. 

For identifying transcription factors that recognize ASCL1 and ASCL2 regulatory sequences, 

ASCL1 and ASCL2 promoter and enhancer regions were mapped using UCSC Genome Browser 

Gateway (https://genome.ucsc.edu/cgi-bin/hgGateway). Motif analysis was then performed on 

each ASCL1 and ASCL2 promoter and enhancer region using the findMotifGenome function from 

HOMER with the parameters -size 200 and -mask 58. Resulting motifs were then ranked by their 

p-value. Additionally, ASCL1 and ASCL2 enhancer and promoter regions were mapped to 

accessible peaks from ATAC-sequencing data of the PARCB time course to identify chromatin 

changes of ASCL1 and ASCL2 cis-regulatory sequences. Peak regions from the PARCB 

consensus peak set overlapping with the ASCL1 and ASCL2 enhancer and promoter regions 

were then plotted in a heatmap using VST peak counts and scaled per sample.  

 

Single-cell RNA sequencing 

PARCB time course samples were sequenced in two batches: P2/P5 and P6/P7 series. Single 

cell gene expression libraries were created using Chromium Next GEM Single Cell 3' (v3.1 

https://genome.ucsc.edu/cgi-bin/hgGateway


86 
 

Chemistry) (Cat# PN1000123, 10x Genomics), Chromium Next GEM Chip G Single Cell Kit (Cat# 

PN1000120, 10x Genomics), and Single Index Kit T Set A (Cat# PN1000213, 10x Genomics) 

according to the manufacturer’s instructions. Briefly, cells were loaded to target 10,000 cells to 

form GEMs and barcode individual cells. GEMs were then cleaned cDNA and libraries were also 

created according to manufacturer’s instructions. Library quality was assessed using 4200 

TapeStation System (Cat# G2991BA, Agilent) and D1000 ScreenTape (Cat# 5067-5582,  Agilent) 

and Qubit 2.0 (Cat# Q32866, Invitrogen) for concentration and size distribution. Samples were 

sequenced using Novaseq 6000 sequencer (Catl# A00454, Illumina) using 100 cycles (28+8+91). 

The illumina base calling files were converted to FASTQ using the mkfastq function in Cell Ranger 

suite (https://support.10xgenomics.com/single-cell-gene-expression/). The reads were then 

aligned to GRCh38 for UMI counting with cellranger count function. The details of the single cell-

seq of PARCB time course are described in Table S1K. 

 

UMAP analysis 

The downstream quality control, statistics and visualization of PARCB single cell RNAseq data 

were performed mainly using the Seurat (v3.2.3) R package 94. Briefly, the data from all four 

patient series was first filtered for cells with total number of unique features above 500 and below 

10000 as well as mitochondria feature counts below 10%. The mitochondrial genes and ribosomal 

genes were then removed from the count matrix for the downstream analysis. To overcome batch 

effect, we performed Seurat integration between batch 1 (Series P2 and P5) and 2 (Series P6 

and P7). Briefly, for each batch, the two corresponding matrices were combined first, and log 

transformation and library size normalization were performed with NormalizeData function. Then 

the 2500 most variable genes were selected as anchor features to integrate for all coding genes. 

After integration, the top 30 principal components were used to perform UMAP analysis. 

https://support.10xgenomics.com/single-cell-gene-expression/
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Processed single cell RNA-sequencing data of advanced prostate cancers were downloaded from 

the Single Cell Portal hosted by Broad Institute 

(https://singlecell.broadinstitute.org/single_cell/study/SCP1244/transcriptional-mediators-of-

treatment-resistance-in-lethal-prostate-cancer)49. For this dataset, UMAP analysis was performed 

on TPM values of prostate cancer cells only as defined in the paper using the umap function in 

base R. For UMAP visualization of this dataset, TPM values were log2 transformed with a pseudo 

count of +1. Single cell RNA-sequencing data of N-myc GEMM tumors 31, and human biopsy and 

GEMM tumors 50 were downloaded from the Gene Expression Omnibus (GEO) database with the 

accession numbers GSE151426 and GSE21035, respectively, and processed with cellranger 

count. In the Brady et al paper, single-cell data were first filtered for cells with total number of 

unique features > 200 and < 10000 as well as mitochondrial feature counts < 10%. We then 

performed Seurat SCTransform integration on each sample. Briefly, for each sample, the matrices 

were first combined and normalized using SCTransform function. Then the top 3000 most variable 

genes were selected as anchor features to integrate all genes. After integration, the top 15 

principal components were used to perform UMAP analysis. In the Chan et al paper, GEMM 

single-cell data were filtered with the following thresholds nFeature_RNA >200 & nFeature_RNA 

< 8000 & percent.mt < 5 and human biopsy tissues single-cell data were filtered with 

nFeature_RNA > 200 & nFeature_RNA < 10000 & percent.mt < 5. Seurat integration of filtered 

cells for both datasets were then performed as described above. After integration, the top 50 

principal components were used to perform UMAP analysis. 

In the Dong et al analysis, the human biopsy scRNA-sequencing data was downloaded from 

GSE137829. We used the filtration parameters of the manuscript, total number of unique features 

> 500 and <7000, and mitochondrial feature counts < 10%. We filtered cells to only include 

epithelial (cancer) cells, as described by the CellType column in the annotation. Seurat 

https://singlecell.broadinstitute.org/single_cell/study/SCP1244/transcriptional-mediators-of-treatment-resistance-in-lethal-prostate-cancer
https://singlecell.broadinstitute.org/single_cell/study/SCP1244/transcriptional-mediators-of-treatment-resistance-in-lethal-prostate-cancer
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NormalizeData was used with the LogNormalize method and a scale factor of 10000. The top 30 

principal components were used to perform UMAP analysis. 

 

Inferred cell type and cellular lineages analysis 

The cell type inferences of PARCB single cells were implemented using the singleR R package 

48.  For scoring each cell for each general cell type, the Human Primary Cell Atlas data from 

LTLA/celldex package that contains normalized expression values was used as the reference.  

Single cell trajectory analysis of PARCB samples was performed using two different methods, 

expression-based method Monocle2 52 and RNA Velocity based method scVelo 53. For Monocle2, 

the integrated Seurat object was used as the input for the program. DDRtree was used as the 

reduction method. Cells were ordered by the most variable 3000 genes in Seurat. For calculating 

pseudotime, the KRT5 population was selected as the root state. For RNA velocity, the spliced 

and unspliced counts were quantified by velocyto accounting for repeat masking. The spliced 

counts were then normalized using Seurat sctransform method followed by integration by batch. 

The integrated data was used for UMAP visualization. In scVelo, the data was filtered for genes 

with a minimum of 5 shared counts. The top 3000 highly variable genes were extracted based on 

the dispersion. Velocities were estimated by dynamical model and then projected onto the UMAP 

embedding. 

 

Differential gene expression analysis in single cells 

FindMarkers function in Seurat R package (described above) was used to identify differential 

expressed genes between ASCL1+ and ASCL2+ single cell populations. Patient series was 

regressed out by including it as the covariate. ASCL1+ cells and ASCL2+ cells are defined as 

cells with log normalized expression counts > 0 for ASCL1 or ASCL2, respectively. Genes that 
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are differentially expressed in ASCL1+ population were defined by the difference of gene 

expression in ASCL1+ cells minus the one in ASCL2 expression (log and library size normalized) 

above 3. Genes that are differentially expressed in ASCL2+ cells were defined by such a 

difference below -1.  

 

CUT&RUN sequencing 

The CUT&RUN experiment was performed using previously established method 61 (Skene et al., 

2018) and the manufacturer’s protocol (Cat# 86652, Cell Signaling). 100k live cells were used per 

reaction. 50pg of Spike-In DNA (Cat# 12931, Cell Signaling) was added per reaction for 

downstream normalization. DNA was purified using MinElute PCR Purification Kit (Cat# 28004, 

Qiagen), followed by fragmentation by using sonicator (Cat# M202, Covaris). Dual size selection 

was applied using KAPA Pure beads (Cat# KR1245, Roche). DNA Libraries were prepared with 

the KAPA DNA HyperPrep kit (Cat# KK8504, Roche).  

 

Sequencing was performed on Illumina HiSeq3000 for a SE 1x50 run. Data quality check was 

done on Illumina SAV. Demultiplexing was performed with Illumina Bcl2fastq v2.19.1.403 

software. Raw FASTQ files were processed using the published ENCODE-TF CHIP Seq pipeline. 

Batch 1 samples (P3-TP5 and P7-TP6) were processed with the parameter "chip.paired_end" : 

false while Batch 2 sample (P2-TP6) were processed with the parameter “chip.paired_end” : true.  

(https://github.com/ENCODE-DCC/chip-seq-pipeline2). For all samples, the reads were trimmed 

and aligned to hg38 (target) and S. cerevisiae strain S288C (spike-in) reference genomes using 

bowtie2. After alignment, Picard was used to remove PCR duplicates reads and SAMtools was 

used to further filter high-quality paired reads (i.e., remove reads that were unmapped, not primary 

alignment, reads failing platform, and/or multi-mapped). Peak calling was performed using 

MACS2. Peaks overlapping with blacklisted regions were removed 

https://github.com/ENCODE-DCC/chip-seq-pipeline2
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(https://www.encodeproject.org/files/ENCFF356LFX/). Lastly, spike-in normalization factors were 

calculated following established protocol 95. The details of the CUT&RUN sequencing of PARCB 

time course are described in Table S1L. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

All data were analyzed and processed using R v4.1.2, Python v3.11.5 and Excel. Error bars 

show mean ± SD unless otherwise specified. Significance was determined by Student’s two-

tailed unpaired t tests or Wald test with 95% confidence intervals. P values <0.05 is considered 

statistically significant. P values were adjusted based on various methods dependent on the 

analysis including Benjamin-Hochberg method (Figure 1D and Figure 1F) and Bonferroni 

correction (Figure 4D). No statistical methods were used to predetermine sample sizes. Other 

details such as sequencing processing can be found in Table S1. All statistical methods for the 

bioinformatic analyses are described in detail in the method section. 

 

ADDITIONAL RESOURCES 

PARCB Multi-omics Explorer provides an interactive platform for visualization of gene 

expression using bulk RNA-sequencing and single cell RNA-sequencing of this time course 

study (https://systems.crump.ucla.edu/transdiff/).  

 

 

 

  

https://www.encodeproject.org/files/ENCFF356LFX/
https://systems.crump.ucla.edu/transdiff/
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SUPPLEMENTAL TABLE (Available on Chen et al 2023) 

Table S1. Supplemental information of bioinformatic analyses, related to Figure 1, 2, 4 

and 6. A) Upregulated genes in each hierarchical clusters (HC); B) PCA scores of PARCB time 

course samples with HC and timepoint annotations; C) Enrichr GO Biological Processes 2021 

results of upregulated genes per HC; D) Motif enrichment analysis per HC; E) List of weighted 

transcription factors for PCA loadings of PARCB time course data; F) Differential genes in 

ASCL1 vs ASCL2 cell populations; G) List of predicted gene network of ASCL1 and ASCL2; H) 

Ranked transcription factors motifs in ASCL1 and ASCL2 cis regulatory sequences; I) RNA-seq 

sequencing statistics; J) ATAC-seq sequencing statistics; K) Single Cell RNA sequencing 

statistics of PARCB time course sample; L) CUT&RUN sequencing statistics.  

 

SUPPLEMENTAL DATA (Available on PARCB Multi-omics Explorer) 

Data S1. PCA of PARCB time course as a 3D rotatable object, related to Figure 1E. 

Data S2. Projection of RNA-seq as a 3D rotatable object, related to Figure 5A. 

Data S3. Projection of ATAC-seq as a 3D rotatable object, related to Figure 5A 

 

  

https://doi.org/10.1016/j.ccell.2023.10.009
https://systems.crump.ucla.edu/transdiff/
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 

 

  



97 
 

Figure 6 
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Chapter 3: Discussion and Closing Remarks 
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Most trans-differentiation cases from adenocarcinoma to small cell neuroendocrine carcinoma 

result from acquired resistance against prior targeted treatments in both prostate and lung 

cancers. It becomes evident that though the underlying biology of trans-differentiation is 

complicated, it is systematically coordinated by distinct stages of transcriptional changes and 

master regulators.  

This study provides a blueprint for the development of small cell neuroendocrine prostate cancer. 

With a multi-omics approach integrated with time, the study shows that there exists a bifurcation 

from a common neuroendocrine differentiation trajectory towards the end stage of the disease 

progression96. Continued work in identifying subtype-specific therapeutic vulnerability presents a 

potential avenue for precision medicine. Emerging evidence has also suggested that cross-

functional profiling such as proteogenomics and spatial transcriptomic analysis could add more 

dimensions to deepening our understanding of this seemly complex disease97.  

Besides targeting the advanced small cell neuroendocrine stage of cancers, a prevention or re-

direction of the differentiation pathway during the disease course may suggest an alternative 

treatment option for poorly differentiated tumors. Our research opens such potentiality by 

delineating temporal transcriptional events and pinpointing the emergence of various transcription 

factors during SCNPC development. Differentiation therapy for solid tumors has been explored 

but not yet matured in clinical development. Several mechanisms adopted by differentiation 

therapy include reprogramming, elimination of cell renewal and induction of antitumor immune 

responses to achieve therapeutic outcomes98. Despite the technical challenges in the research 

and design of clinical trials, which may be difficult for differentiation therapy, identifying more 

targetable candidates and understanding their mechanisms will accelerate such developments. 

Much appreciation and emphasis have been put on identifying transcriptional master regulators 

in neuroendocrine trans-differentiation. Although some transcription factors may not be directly 

druggable, targeting the transcriptional axis, such as trans-activator, may provide an alternative 
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approach. For example, the Chen group identified a BET inhibitor that disrupts the physical 

interaction between BET bromodomain proteins and NEUROD1, reducing SCLC-N subtype 

growth in vitro and in vivo99.  Besides the extensive study on inhibitors of chromatin modifier EZH2, 

the other group has explored the possibility of targeting the nucleosome remodeling SWI/SNF 

complex with a proteolysis-targeting chimera degrader in CRPC100.  Prospective development of 

such therapeutic approaches is anticipated in the next generation as more pre-clinical models in 

prostate cancer are established and our knowledge of pathogenesis is strengthened. 

An increasing number of transcriptional parallels and similarities between SCNPC and SCLC 

have been identified. Outside of tissue-specific molecular events, SCNPC and SCLC share 

distinct transcriptional patterns from their adenocarcinoma counterparts. In this study, we have 

validated transcriptional events such as the mutual exclusivity and feedback loop between ASCL1 

and ASCL2 expression and their associated transcriptional programs. More work in applying this 

knowledge to study the molecular mechanism and explore therapeutic opportunity is needed.  

This dissertation unravels a timely coordination of transcription factors, suggesting that a 

combinatorial approach of targeting factors may be warranted. Decades of research has shown 

that a simple combination of lineage-determining transcription factors are essentially responsible 

for cell type differentiation58. The elimination of passenger events and identification of driver 

transcription factors is an important attribute for the combinatorial strategy. Our collaborators have 

made significant progress in determining the minimal number of critical factors that sufficiently 

transform prostate cancer in vitro, which will provide a powerful tool for future studies.  

The main objective of the dissertation is to study transcriptional development of SCNPC through 

multi-omics profiling, however, we anticipate a broader application to pan small cell cancers 

including lung, bladder and ovarian. Future work is needed to identify the shared molecular 

mechanism and vulnerability.  




