UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Cognitive Architecture and Modeling Idiom: An Examination of Three Models of the
Wickens's Task

Permalink

bttgs:géescholarshiQ.orggucéitem46828428;|

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 20(0)

Authors

Lallement, Yannick
John, Bonnie E.

Publication Date
1998

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/68z84282
https://escholarship.org
http://www.cdlib.org/

Cognitive Architecture and Modeling Idiom:
An Examination of Three Models of the Wickens’s Task

Yannick Lallement (yannick@cs.cmu.edu)
Bonnie E. John (bej@cs.cmu.edu)
Human Computer Interaction Institute
Carmnegie Mellon University
5000 Forbes avenue, Pittsburgh, PA 15212 USA

Abstract

Cooper and Shallice (1995) raise many issues regarding the
unified theories of cognition research program in general,
and Soar in particular. In this paper, we examine one
specific criticism of Newell's (1990) treatment of
immediate behavior and use it to explain the notion of the
modeling idiom within a cognitive architecture. We
compare a dual-task model using Newell's architecture and
idiom to two other models that use different architectures
and idioms (EPIC and an experimental version of Soar). We
also look at the models’ dependency on their respective
cognitive architectures, and the theory/implementation
gap also identified by Cooper and Shallice (1995).

Introduction

Unified theories of cognition seek to provide a unique,
consistent framework for modeling all types of cognitive,
perceptual, and motor activities. Several unified theories, or
cognitive architectures, have been proposed: among them are
Soar (Newell, 1990) , ACT-R (Anderson, 1993) and EPIC
(Meyer & Kieras, 1995). Cooper and Shallice (1995) raise
many issues regarding the unified theories of cognition
research program in general, and Soar in particular (although
we believe these objections apply to other architectures as
well). In this paper, we examine some of Cooper and
Shallice’s issues by modeling dual-task behavior.

Newell (1990) described an idiom, or style of modeling
that is possible within an architecture but not required by the
architecture, called PEACTIDM for immediate behavior
tasks. PEACTIDM is an acronym for the operators the
idiom allows at the immediate behavior level (without
problem-solving): Perceive, Encode, Attend, Comprehend,
Task, Intend, Decode, and Motor, (pronounced pee-ack-ti-
dim). According to Cooper and Shallice (1995),
Soar/PEACTIDM “would seem to provide only a rigidly
single channel mode of operation...” and, therefore, in a
model of a dual task “...the primary task will inevitably be
slowed by up to 120 ms” (p. 134-135), which is not
confirmed by data they cite. To investigate the criticism, we
chose a specific dual task that allows us to compare a
Soar/PEACTIDM model to two other existing models of the
task: one written in EPIC and one in an experimental
version of Soar with a different idiom.

In addition to examining Soar/PEACTIDM's
appropriateness for immediate behavior, we also discuss the
dependence of each model’s behavior on its underlying

cognitive architecture, and the theory/implementation gap
identified by Cooper and Shallice.

The Wickens’s Task & Modeling Results

The Wickens's task (Martin-Emerson & Wickens, 1992)
illuminates phenomena associated with heads-up displays in
aviation. It consists of a continuous tracking task interrupted
by a choice-reaction task. The Wickens's task display is
shown in Figure 1. The upper part of the display shows a
target and a cursor in the tracking window. The cursor
moves randomly and the participant must keep the cursor
inside the target by moving a joystick with his right hand.
While the participant performs the tracking task, a left- or
right-pointing arrow appears at random intervals in the
information display, below the tracking window. The
stimulus is displayed for one second. The participant must
reply to this stimulus by pressing one of two keys with his
left hand, while still attempting to keep the cursor in the
target. Experiments were run with different separations of
the target and information display to study how this affects
two performance measures. Tracking error is the RMS error
measured only during the two seconds after the stimulus is
displayed. Reaction time is the time difference between the
onset of the stimulus and the response of the user.

Two previous models of this task, one written in EPIC,
with the PPS cognitive processor (Kieras & Meyer, 1995)
and one written in an experimental version of Soar (called
“Soar-Operand”) using EPIC’s peripherals (Chong & Laird,
1997), give results very close to human performance. We
wrote a third model, based on the existing models, using the
current Soar7 release and Newell’s PEACTIDM idiom,
which also matches well (Figure 2). For each model, each

Tracking window
Target

Cursor | Vertical

separation

Information display {

Figure 1: The Wickens’s task environment

597

mailto:yannick@cs.cmu.edu
mailto:bej@cs.cniu.edu

point on Figure 2 represents an average over 300 trials, The
observed performance is an average over 24 participants. The
absolute average error for all three models is always less
than 10% for both the choice and the tracking tasks.
Clearly, the Soar/PEACTIDM model is no worse than the
other two models, which do not share the “rigidly single
channel mode of operation” that worried Cooper and
Shallice. In examining the commonalities and differences
between these models, we will illustrate two other issues
brought up by Cooper and Shallice, how little the behavior
of these models depends on the cognitive aspect of the
architecture alone, and the theory/implementation gap.

30
25 ‘ v @
TEEREREE
: ® % x
o 13
§1s
w
- & Operand
Tracking error : :z': 3
;
9 X Observed
0
S a = © o 2 & = © @ 8§ w
a = @ o 2 a4 & & 3
Separations
1200 »
i ¢ +« o £ & ¢ &
A 4 x x x
B x
BOO X
s ¢ 8 ¥
§soo
Em :Dpsrand
Reaction times A xr?
200 X Observed
0
= o - © @ © o -] © o o
7 © o o e § 83 g]
Separations

Figure 2: tracking error and reaction times of the three
models and observed human data

The Three Models

Commonalities of the Models

EPIC Perceptual and Motor Processors EPIC is a
cognitive architecture originally intended to model multiple
tasks performance (Meyer & Kieras, 1997). It is composed
of a specific cognitive processor, PPS (discussed below) and
of a set of perceptual and motor processors. EPIC’s
perceptual and motor processors are used for all three
models. These processors are native to EPIC and were
adapted to communicate with Soar’s cognitive processor by
Chong and Laird (1997). This union answered a common
criticism of Soar (e.g., Cooper & Shallice, 1995; Vincente
& Kirlik, 1992) that it does not take motor and perceptual
constraints into account.

The perceptual and motor processors communicate with

598

the cognitive processor via the working memory (WM).
They work independently, in parallel with each other and
with the cognitive processor in all the models. The
Wickens’s task models use the visual perception, the tactile
perception, the oculomotor and the manual-motor
processors. These processors do not perform any actual
information processing; they provide precise timings for the
functions they simulate. For example, when an object
appears on EPIC’s “retina”, its location will be reported by
the visual perceptual processor to WM with a 50 ms
latency, and if the object is in EPIC’s “fovea”, its shape will
be appear in WM after an additional 50 ms latency (Kieras &
Meyer, 1996). These delays mimic those of the human
processes for localization and shape-recognition, but the
features are provided as input to the visual processor by the
simulation of the environment.

Some processors can perform actions by themselves; for
example the oculomotor processor can produce small
centering saccades to keep a slowly moving object in the
fovea. The motor processors “jam” if they receive more than
one command at a time, i. €., they will ignore all of them.
The manual-motor processor does not require cognition to
calculate a specific direction to push the joystick (pushing
the joystick in any direction is assumed to take the same
time). However, it requires the name of the button to press
(LEFT or RIGHT) because the finger may or may not have to
move to the new button, changing the time to execute the
operation.

Finally, the motor processors have a separate preparation
and execution phase. That is, under certain conditions, the
preparation of a motor movement can be overlapped with the
execution of the previous movement. In addition, the
preparation phase can be skipped altogether if a movement is
identical to the immediately previous movement (Kieras &
Meyer, 1996).

Eye-Movement Hypothesis All three models are based
on the assumption (formulated by Kieras & Meyer, 1995)
that the eye must be kept on the cursor to ensure successful
tracking, and that the eye must be moved to the choice
stimulus in order to discriminate it.

Task Simulation The simulation of the task is done in
an EPIC ‘“device processor” for all three models. This
processor informs the perceptual processors of changes in
the environment (e.g., the onset of the stimulus), and
responds to motor commands from the models.

Human Data Finally, all three models are matched against
the same human performance data. The data is aggregated
over 24 participants who were instructed to perform as well
as they could. The collection procedure is described in
(Martin-Emerson & Wickens, 1992).

Differences Between the Models

Execution Traces for the Three Models Figure 3
shows the execution traces of the three in PERT charts. The
models have been tracking the cursor prior to this figure and
the first stimulus comes up at what we’ve labeled 0 ms.

IEM: Move joystick]

| Execule: Move jaystick]

Execule: Press bution '

Ocular-motor

Exec Eye mnvsl

Move Muve
Joystick Jayitick

LFrq)lra: Press button I Prapare: Mova joystick I

Recog | Verly | Erest | Move Move
amow |arrow | bulien | joystick doyatick
Soar7 model

Vesual |

Stimulus parception

I Execute: Move joystick I

I Execute Move joystick J [Execute; Press bution I

Manual-motor IPrspare: Press button I I Prepare: Move joystick]
Maxe

: Mave evd More Wach | Recog idasasi] Press Move

Gogritve Jjoystick cusor | arow | Verly | puiron Joystick
/_ arraw /
Prepare Prepa

oo = —_— Soar-Operand model

far-mator Exec: Eyamove| Execute: Eye move l Exscute: Eye move I
1 Stimulus perceplion
Visual Arrow [I

appears
%, Move joystick | | Execute: Move joystick | Execute: Move joystick Execute: Press button |
Manual-motor Erepare: Press button I Prepare; Move joystick I
e el

- Mave [Start ch-|No mat-| Match BStop | Press Fesume Move

Cognitive gyitick pice tasich lght | right Rracking | bution Bracking Joystick
-
Prapare| Erware /
Ocularmiotor Execute: Eye move I Execule: Eye move I EPIC model
Visual [Stimulus perception J
L | 1 | | 1 1 1 1 1 |
] 100 200 300 400 500 600 700 800 900 1000

Figure 3: the execution traces of the three models. The critical path for the answer task is grayed.

Complete operation of the manual-motor and oculomotor
processors are shown, as well as visual perception delays.
Only critical operations of the cognitive processors are
shown (described below). Cognitive operations that send
commands to the motor processors are in italics and
underlined. The gray boxes denote the critical path (the
longest path through the task) for the choice reaction-time
task.

Not surprisingly, given the good fit to the human data,
the three models take similar motor actions at similar times
(though each model has a slightly different initialization
phase and are therefore not in perfect synch on the tracking
task). More precisely, during the 1s interval shown in
Figure 3, each model moves the joystick three times, and
the motor actions that respond to the choice task are
executed with at most one cycle difference. However, their
internal cognitive operations are different, reflecting the
different cognitive processors and idioms they use.

Cognitive Processors and Idioms Each model uses a
different cognitive processor, Soar7, Soar-Operand, or
EPIC(PPS) and a different modeling idiom. All three

cognitive processors are production systems and each
decision cycle is estimated to approximate 50 ms of human
behavior. The cognitive processors and idioms differ on
other aspects listed below.

Soar7’s cognitive processor and the PEACTIDM idiom.
In Soar (both Soar7 and Soar-Operand), an operator is
implemented by a set of fine-grain productions that propose,
apply and terminate it. At the end of each decision cycle, an
operator is selected, which will typically be applied (i.e.,
make changes to WM) at the beginning of the next decision
cycle. Operators that request motor actions, however, may
not be applicable in the very next decision cycle because the
peripheral processor may be busy completing the last
request. Soar’s architecture allows the application of an
operator to be separated in time from its selection, as long
as nothing intervenes to make its conditions invalid. The
distinction is shown in the Soar7 model in Figure 3 by
plain font (motor-operator-selection without immediate
application) and italics (motor-operator-application either
immediately after its selection or from a previously-selected
and still valid operator).

599

If appropriate knowledge is not available to select or to
apply an operator, an impasse occurs, and a new state is
created where more knowledge can be brought into play.
When the impasse is solved, Soar’s learning mechanism
creates a new production that associates the conditions under
which the impasse occurred with the actions that resolved it.
If this situation arises again, the newly leamed production
can often prevent another impasse. In Figure 2 (to avoid
clutter) impasses are implicit in the gaps between cognitive
operators. For instance, the gap between a plain-font MOVE-
JOYSTICK operator and its italicized application is an
impasse, where the “missing knowledge” is that the manual
processor is free and the “solution” is to wait for the manual
processor to finish what it was doing. This type of impasse
can never be eliminated through learning; it is the Soar
architecture’s response to a constraint dictated by the
peripheral processors.

The Soar7 model has no explicit control process. The
actions to be taken are determined by the state of current
perceptions and motor processor states in WM. There is no
explicit record of which procedural steps have been
accomplished.

The Soar7 model uses the PEACTIDM idiom proposed by
Newell (1990) for immediate behavior tasks. Newell
successfully applied this idiom on several such tasks, but no
dual tasks. The PEACTIDM idiom assumes that reaction to
events in the real world begins with a Perceive operation
that is handled by EPIC’s perceptual processors. Encode
productions translate the signals delivered by EPIC's
perceptual processors into meaningful symbols in WM (not
shown in Figure 3). Once in central cognition, the
PEACTIDM idiom allows only four types of elementary
cognitive operators to be selected and applied without
impasse: Attend operators direct perception to a new
stimulus (e.g. WATCH-CURSOR); Comprehend operators
interpret the perceptual inputs (e.g. RECOGNIZE-ARROW);
Task operators select the next task to be done (none appear
in Figure 3; these happen at the start of the trial, before this
timeline begins); Intend operators initiate a motor response
(e.g. MOVE-JOYSTICK). After central cognition has intended a
motor command, Decode productions translate this
command into symbols recognized by the EPIC motor
processor (not shown in Figure 3), which then perform the
Motor actions.

A Soar model using the PEACTIDM idiom sends output
commands sequentially from central cognition to the motor
processors, no more than one command per decision cycle.
Therefore, there is no risk of jamming the EPIC peripherals.

Our Soar7 model learns when to propose motor operators.
Before learning, the model knows the available motor
operators, but not when they are applicable in the real world.
Therefore, it generates an impasse at each decision cycle and
reasons about operators in an internal “imagined” world to
determine which operator to propose. After leamning, it
knows when each action is applicable and proposes
appropriate operators without impasse. Figure 3 shows
performance after leamning.

Soar-Operand's cognitive processor and the hierarchical-
operator idiom. Soar-Operand is an experimental version of
Soar that was developed in response to a perceived difficulty

with the interaction between Soar’s learning mechanism,
action in the real world, and a modeling idiom that uses a
hierarchical operator structure (John, 1996).' In certain cases,
a model with a hierarchical operator structure would leamn to
perform strings of actions that were no longer appropriate by
the time they were learned. To avoid this problem, Soar-
Operand is restricted to making only one round of persistent
changes to WM per decision cycle. Although multiple
persistent changes to WM can be made in a single decision
cycle, no change can depend on a previous change being
made (i.e., no strings of changes are allowed). Since
initiating a motor action requires a persistent change to
WM, this restriction affects the behavior of dual tasks like
the Wickens task.

As with the Soar7, the Soar-Operand model has no
executive control. The hierarchical-operator modeling idiom
used with Soar-Operand proposes a DUAL-TASK operator that
is always selected in this task. Before learning, the model
does not know how to apply the DUAL-TASK, so an impasse
arises. Under different perceived conditions in the task
environment, the model learns to apply the DUAL-TASK
operator by taking different motor actions (watching the
cursor, moving the joystick, etc.). After learning, the same
operator is always selected, but the automatic application of
that operator differs depending on the current environmental
conditions.

With this approach, the Soar-Operand model can make
simultaneous requests to the same motor processor and jam
EPIC’s peripherals. This conflict also causes an impasse to
arise and, using task knowledge (i.e., the choice task has
priority over the tracking task), the Soar-Operand model
learns how to avoid jamming. Figure 3 shows the
applications of the DUAL-TASK operator along the Cognition
line. The selection of the DUAL-TASK operator itself is not
shown because it is ubiquitous and its differing applications
display the model’s actual behavior.

EPIC’s PPS cognitive processor and the executive control
idiom. PPS (parsimonious production system) is the
cognitive processor used by the EPIC model. PPS is a fully
parallel production system: as soon as the conditions of a
production rule are satisfied by the contents of the WM, its
actions will be executed, without any conflict resolution
mechanism. Any number of productions can be executed
simultaneously. An operation in PPS (such as issuing a
command to a motor processor) is implemented by one
single production, so PPS’s productions are similar to
Soar’s operators. PPS has no leaming mechanism.

The EPIC modeling idiom emphasizes the executive
process that coordinates between the two tasks. Executive-
process productions explicitly keep track of which procedural
step is currently being worked on in order to decide on the
next procedural step or to switch to a task with higher
priority. In addition, executive control knowledge is hand-
coded so two motor commands will never be sent to the
same motor processor. Thus, the EPIC model’s peripherals

" In contrast, PEACTIDM uses a flat operator structure
consisting only of the A, C, T & I operators described above.
The problem does not arise in the models using the PEACTIDM
idiom.

600

never jam. Kieras and Meyer (1995) show how a strongly
interleaved executive control was necessary to obtain good
match to the data.

Parallelism issues The main difference in the three
architecture/idiom combinations is how they handle
parallelism. Both PPS and Soar-Operand allow their models
to initiate several task-related actions in a single cycle: for
example the EPIC model sends two motor commands at
time 100 ms; the Soar-Operand model sends a command and
performs an internal cognitive operation at time 550 ms
(Figure 3).

Although Soar7/PEACTIDM has completely sequential
operator selection it still provides a good matching to the
data. This can be explained by the strong interruptibility of
this model accomplished through Soar’s separation between
selection and application of an operator. For instance, at
100 ms, the Soar7/PEACTIDM model initiates a MOVE-
JOYSTICK command but it cannot be applied right away.
Two decision cycles later the model realizes that its eye is
no longer on the cursor, so it should not move the joystick
to try to track the cursor. It interrupts the MOVE-JOYSTICK

operator in favor of a WATCH-CURSOR operator. Thus, a .

highly-interruptible Soar7/PEACTIDM model can function
as effectively in this task as the other more parallel models.
Only at two cycles in EPIC, and one cycle in Soar-Operand
is the parallel-action feature of the respective architectures
used. In the end, it appears that parallelism in cognition is
not required to perform even as rapid and tightly measured a
task as the Wickens task.

Discussion

The PEACTIDM Idiom

Contrary to Cooper and Shallice’s (1995) concern that the
PEACTIDM idiom’s single channel mode of operation
would be inappropriate for dual-task situations, our
Soar7/PEACTIDM model provides as good fit to the data as
the more parallel Soar-Operand and EPIC models. We
believe this is evidence that the PEACTIDM idiom,
sequential though it may be, should not be dismissed out of
hand for dual-tasks.

As noted in previous work with complex real-time tasks
(e.g., Nelson, Lehmann & John, 1994), the behavior of the
PEACTIDM idiom in this model can be explained by the
small granularity of the operators, by their tight
interleaving, and by the feature of the Soar architecture that
operator selection and operator application can be separated.
This enables the selection of another operator before the
application of the current one is completed, as well as the
ability to be interrupted in reaction to changes in the
environment. Thus, the PEACTIDM idiom provides more
parallelism that Cooper and Shallice realized.

Exploiting the selection/application separation capability
of the Soar architecture is essential to obtaining a good fit to
the human data with the PEACTIDM idiom. A preliminary
version of our model, which differed from the final version
only in that it did not exploit this separation, had a tracking-
error twice as high as reported here. Although we believe our
model demonstrates that the Soar architecture with the

PEACTIDM idiom is more flexible than Cooper and
Shallice thought, this also demonstrates another of Cooper
and Shallice’s points. The complexity of these architectures
(and Soar is not alone) requires a substantial effort,
programming as well as reading the theory, to make valid
pronouncements of what they can and cannot do.

Role of the Architecture and the Idiom

In the case of these specific models, it seems that the
choice of the architecture and of the modeling idiom,
together with matching human data, imposed enough
constraint to lead to specific models whose output is
similar. Each model has a history of successive versions that
were quite far from human performance, and had to be
improved upon. Kieras and Meyer (1995) present an earlier
model with a simpler executive process that gave
unsatisfactory results (correct reaction times, but tracking
error more than 100% higher than human data). Chong and
Laird (1997) give the whole path from the first preliminary
Soar-Operand models (with results similar to the first EPIC
model) to the final model discussed here. They describe
successive small modifications (sometimes as small as one
condition added to a production) that strongly improved the
results, In our own model, the dissociation between
selection and application of operators, leading to more
interruptibility and interleaving, shrunk the tracking error by
more than 50%.

This answers an objection to Soar brought up by Hunt
and Luce (1992), that two Soar modelers could come up
with two different models of a same task. This is certainly
true. For example, a PEACTIDM model could have been
implemented in Soar-Operand with the same results as the
Soar7 model. Alternatively, executive-process knowledge
could be hand-coded into either version of Soar to make
those models similar to EPIC's. However, when the
architecture/idiom couple is considered, this may not remain
true, the field of the possible models seems to be much
more restrained. The role of the modeling idiom may turn
out to be as important at that of the architecture itself.

Role of the Cognitive Processor

Copper and Shallice noted that performance of Newell's
immediate behavior models did not depend heavily on the
Soar cognitive architecture. We see that all three models of
Wickens's task also suffer from this complaint. In each of
the three models, more than a third of the cognitive cycles
are spent waiting or doing nothing. For the choice task,
where participants were instructed to respond as quickly as
possible, cognition is on the critical path (in gray on Figure
3) only 20 to 30% of the time. On the other hand. the
perceptual and motor processors (identical for the three
models) are the most important contributors. For example,
the ascending slope of the tracking error with target
separation results from the fact that, in each model, tracking
is disabled while the eye moves and it takes more time for
the eye to move between the choice stimulus and the cursor
when they are further apart.

Our experience modeling immediate behavior in these
three architectures leads us to question whether it is possible
to find a task that would shed more light on the underlying

cognitive architecture. To differentiate between architectures,
we need a task with a higher percentage of cognitive
operations on the critical path. However, if the task is even
faster, but still requires perception and motor response, the
behavior of the peripherals will likely dominate. If the task
is slower but more complex so more cognition is needed,
then this introduces opportunity for individual differences in
task execution. Even what seem like rapid tasks, a video-
game like the Kanfer-Ackerman ATC task© (John &
Lallement, 1997), or sentence verification (Reder, 1988), or
a simple arithmetic task (Siegler, 1996), have been shown
to have substantial differences in the strategy people use to
perform the task. Thus, the effects of an individual's prior
knowledge, problem-solving skill, visual-search skill, etc.
will dominate over the effects of the underlying cognitive
architecture. This might be addressable by making models of
individuals rather than of aggregate data, but then the
modeling work multiplies intractably.

It appears that finding a single task that would
discriminate among different cognitive architectures is not
easy, if not impossible. Newell’s (1990) solution to this
problem is not to look for a single task, but to bring to
“bear large, diverse collections of quasi-independent sources
of knowledge -- structural, behavioral, functional -- that
finally allow the system to be pinned down.” (p. 22). If the
Wickens's task can be equally well modeled with a set of
idiom/architecture pairs, and a lower-level task can be
equally well modeled with a different set, and a higher-level
problem-solving or learning task with still a third set, then
the intersection of these sets may point toward a single
idiom/architecture pair that explains this large amount of
behavioral data. Thus, multiple models of the same task in
different idiom/architecture pairs, and consistent use of an
idiom/architecture pair across multiple tasks, both make
contributions to such a research program.

Theory/Implementation Gap

Our work also corroborates Cooper and Shallice’s point
about a theory/implementation gap. Each of these models
are very sensitive to details; small changes have big effects
and every detail of the implementation is important for the
final results. All the details are not always provided by the
relevant documentation (especially short conference papers),
but reside only in the code itself. For example, Copper and
Shallice’s worry about a rigid single channel did not
materialize within the details of a running Soar program.
Also, there is a production in the EPIC model that allows it
to bypass some operations relevant to the choice task if the
same stimulus appears two consecutive times, saving one
cognitive cycle. Being activated in 50% of the cases, this
single production lowers the average reaction time by half
the duration of a cognitive cycle, or 25 ms (~3% of the
observed response time). Our work extends Cooper and
Shallice’s comments on the gap between the theory and
implementation of architectures to the individual cognitive
models themselves. In order to completely understand what a
model does and how it does it, every detail counts, and the
access to the program code is necessary.

602

Acknowledgments

Thanks to Ronald Chong and David Kieras for their
continuous support with EPIC, EPIC-Soar, and their
respective models of the Wickens's task. This research is
supported by the ONR, Cognitive Science Program,
Contract Number N0O014-89-J-1975N158. The views and
conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the ONR or
the US Government.

References

Anderson, J. R. (1993) Rules of the mind. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Chong, R. S. & Laird, J. E. (1997) Towards learning dual-
task executive process knowledge using EPIC-Soar.
Proceedings of the 19th annual conference of the cognitive
science society (pp. 107-112). Hillsdale, NJ: Lawrence
Erlbaum Associates.

Cooper, R. & Shallice, T. (1995) Soar and the case for
unified theories of cognition. Cognition, 55, 115-149.

Hunt, E & Luce, R. D. (1992) Soar as a world view, not a
theory. Behavioral and brain sciences, 15:3, p 147.

John, B. E. (1996) Discussion: task matters. In D. M.
Steier and T. M. Mitchell (Eds.), Mind matters, a tribute
to Allen Newell (pp. 313-324). Hillsdale, NJ: LEA.

John, B & Lallement, Y. (1997) Strategy use while learning
to perform the Kanfer-Ackerman Air Traffic Controller
Task. Proc. of the 19th annual conference of the cognitive
science society (pp. 337-342). Hillsdale, NJ: LEA.

Kieras, D. E. & Meyer, D. E. (1995) An overview of the
EPIC architecture for cognition and performance with
application to human-computer interaction (Tech. report
TR-95). Ann Arbor, MI: University of Michigan.

Kieras, D. E. & Meyer, D. E. (1996) The Epic architecture:
principles of operation. Electronically published at
ftp.eecs.umich.edu:/people/kieras/EPICarch.ps.

Martin-Emerson, R. & Wickens, C. D. (1992) The vertical
visual field and implications for the head-up display.
Proceedings of the human factors society (pp. 1408-1412).

Meyer, D. E. & Kieras, D. E. (1997) A computational
theory of executive cognitive processes and multiple task
performance: Part 1. Basic mechanisms. Psychological
review, 104:1, 3-65.

Nelson, G., Lehmann, J. F., John, B. E. (1994) Experiences
in interruptible language processing, In Proceedings of the
1994 AAAI Spring Symposium on Active Natural
Language Processing, 1994.

Newell, A. (1990) Unified theories of cognition. Cambridge,
MA: Harvard University Press.

Reder, L. M. (1988). Strategic control of retrieval strategies.
In G. Bower (Ed.) The psychology of learning and
motivation, vol. 22 (pp. 227-259). NY: Academic Press.

Siegler, R. (1996). Emerging minds: The process of change
in children's thinking. NY: Oxford University Press.

Vincente, K. J & Kirlik, A. (1992) On putting the cart
before the horse: Taking perception seriously in unified
theories of cognition. Behavioral and Brain Sciences 15:3,
461-462.

ftp://ftp.eecs.umich.edu:/people/kieras/EPICarch.ps

	cogsci_1998_597-602

