
Lawrence Berkeley National Laboratory
Recent Work

Title
Video Movie Making Using Remote Procedure Calls and 4BSD UNIX Sockets on UNIX,
UNICOS, and MS-DOS Systems

Permalink
https://escholarship.org/uc/item/68z7t9jt

Authors
Robertson, D.W.
Johnston, W.E.
Hall, D.E.
et al.

Publication Date
1990-03-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/68z7t9jt
https://escholarship.org/uc/item/68z7t9jt#author
https://escholarship.org
http://www.cdlib.org/

LBL.:22767

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Information and Computing
Sciences Division

Presented at the Cray User's Group, Toronto, Canada,
April 9-13, 1990, and to be published in the Proceedings

Video Movie Making Using Remote Procedure Calls
and 4BSD Unix Sockets on Unix, UNICOS, and
MS-DOS Systems

D.W. Robertson, W.E. Johnston, D.E. Hall, and M. Rosenblum

March 1990

. Prepared for the U.S. Department of Energy under Contract Number DE-AC03.76SF00098

III
~
a.
IQ .
[JJ
IS

r
!:Tn
"'1 0
III '0
"'1'<
'< . I\)

r
III
r
I

I\)
I\)
'-J
(T'I
'-J

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

o

March I, 1990 LBL-22767

VIDEO MOVIE MAKING USING

REMOTE PROCEDURE CALLS AND 4BSD Unix SOCKETS

ON Unixt, UNICOSt, AND MS-DOS SYSTEMS

David W. Robenson, William E. Johnston,

Dennis E. Hall, and Mendel Rosenblum l

Advanced Development Group
Information and Computing Sciences Division

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

ABSTRACT

We describe the use of the Sun Remote Procedure Call and Unix socket interprocess communi­
cation mechanisms to provide the network transport for a distributed, client-server based, image han­
dling system. Clients run under Unix or UNICOS and servers run under Unix or MS-DOS. The use
of remote procedure calls across local or wide-area networks to make video movies is addressed.

IThe first three authors can be reached via US Mail at Lawrence Berkeley Laboratory, Bldg. 50B,
Rm. 3238, Berkeley, CA 94720. Email addresses are: dwrobertson@lbl.gov, wejohnston@lbl.gov,
dehall@lbl.gov. The work presented in this paper is supported by the Director, Office of Energy
Research, Office of the Scientific Computing Staff, of the U.S. Department of Energy, under contract
DE-AC03-76SF00098. Any conclusions or opinions, or implied approval or disapproval of a com­
pany or product name are solely those of the authors and not necessarily those of The Regents of the
University of California, the Lawrence Berkeley Laboratory, or the U.S. Department of Energy.
Trademarks are acknowledged by t.

1. INTRODUCTION

The computer modelling of physical phenomena often results in a sequence of images, which
must be displayed fairly rapidly to gain insight into the dynamics of the process being modelled.
Displaying such a sequence rapidly enough requires either the computational power for real-time
display or the ability to record the results a frame at a time and then play back the frames in real time.
In the past, film recorders were used to record movies of the results of computer modelling on 16 mm
or 35 mm film. Their use involved the expenditure of much time, money, and equipment. TIle film
medium is no longer in the mainstream of most A V operations. The recording process is less time­
consuming if videotape instead of film is used. However, the equipment necessary to record a single
computer-generated image at a time on videotape is usually expensive. The least expensive video ani­
mation system involves using IBM PC compatible microcomputers.

The philosophy of the LBL Video Animation Project has been that scientific movies resulting
from computer simulation would be made more frequently if scientists had access to a low-cost video
movie making system. Movies produced with this system, while not of broadcast quality, would
enable insight into the results of computer modelling. The system put together to reach this goal is
df~scribed in Johnston, et al. [7].

The main hardware components of this video workstation include an IBM PC compatible micro­
computer, a 16-bit color frame buffer, and an Ethernet controller. Video recording is done through the
use of a video animation controller and a videotape recorder (VTR), or the use of a videodisk player.
The Ethernet controller has associated software allowing communication over the network using the
TCPIIP [17] protocol. The frame buffer is supplied with software implementing graphics primitives
(Le. for points, lines, etc.). The video animation controller is supplied with software that permits the
use of simple commands like' 'edit in a certain frame at location xxx and record this frame until loca­
tion yyy". The videodisk player used is a Panasonic TQ2026 model. It has a repertoire of one-line·
commands that can be sent to it over a serial line that allow seeking to a specified frame, playing at
half speed, etc. Several current videodisk models have an animation controller associated with them.

2. MOTIVATION FOR USING REMOTE PROCEDURE CALLS

The video workstation uses an IBM PC compatible to allow inexpensive video movie making.
However, both the modelling of physical phenomena. and the generation of images representing the
modelling are often too time-consuming or too memory-intensive to perform on such a machine. The
problem thus becomes how to deliver images resulting from scientific modelling to the video worksta­
tion for display, and how to control the video recording from the more powerful computer generating
the images.

The first movie made using the video workstation, depicting 2D flow over a backward-facing
step, was produced in a convoluted manner. The flow field representing the numerical result of fluid
modelling was generated on a Cray XMP-48 [18]. It was moved by tape to a V AX-VMS system, and
then to a V AX-Unix system. The poSitions of flowing particles used to ascertain the dynamics of the
flow were determined from the flow field at each time step with software written and run on the
V AX-780 Unix system. The positions and colors of the particles, along with the position of the boun­
dary, were recorded in a graphics metafile. This metafile was then sent to the PC using FfP [3]. The
amount of data being sent over the network was so large that the movie was made in sections. After
transfer, a program [7] was started on the PC to read the metafile, display the colored particles, and
control the recording process.

This three-step process requires the user to know something about two operating systems, and
the file transfer program that operates between them. Another drawback is that human intervention is
required after each step is completed in order to start the next step, making it difficult to leave the pro­
cess running unattended for long periods.

1

The three-step mechanism could be avoided if the process generating the image on the more
powerful CPU could communicate directly with a process on the PC that controls display and record­
ing on the video workstation. However, inter-process communications (IPC) programming is difficult
In Unix, for example, the low-level IPC primitives are sockets and calls to send and receive data.
Limited to them, the user has to develop higher-level ways of converting from one machine data
representation to another, ensuring security, dealing with network byte ordering, and various other
details [14].

3. RPC'S BETWEEN CLIENT AND SERVER

An attractive approach to hiding these details from the user is that of remote procedure calls
(hereafter referred to as RPC's). A remote procedure call is similar to a conventional procedure call,
but is made between processes which are potentially on separate machines. An RPC made by one
machine (the client) causes the invocation of a procedure on another (the server) through the media­
tion of the RPC package. The RPC package communicates the arguments across the network, handles
data format conversion, and finds the desired procedure on the server [1]. Another way of looking at
the client-server relationship is that of a master process (on the client) controlling the slave process (on
the server). The server performs no actions on its own; it waits for incoming RPC calls from the client
to tell it what to do. The implementation described here uses the Sun RPC library [14]. The Sun RPC
implementation uses the Berkeley Unix socket interface to TCP/IP to provide the underlying network
transport [14, 17].

The clienf must first specify the address of the server to communicate with it. Sun RPC uses the
Internet mode of addressing. In this mode the address of a socket (communication point on the client
and server) is composed of a pair of numbers: the, address of the machine on the network, and a
receiving process identifier, the port. The two protocols of communication which are used by Sun
RPC are UDP (User Datagram Protocol) and TCP (Transmission Control Protocol). TCP is a stream,
or connection oriented protocol, and data transmitted by a single RPC using TCP can be of any length
up to 231 - 1 bytes (in Sun RPC) [4]. UDP is a datagram protocol. The data transferred by a single
RPC is limited by the maximum packet length. This length is system dependent, but modern Unix
systems, including Sun, typically allow 8K [14]. UDP transmission is not error-free, while TCP is
guaranteed to be reliable, at the cost of error-checking overhead [17].

Because internal data representation on various machines differs, data is converted to XDR
(eXternal Data Representation) before sending it over the network. Machine dependencies may
extend beyond different byte ordering, for example, for floating point data types. Once it reaches the
other machine, RPC uses XDR routines to convert from the XDR representation to that particular
machine's representation.

The main scenario to be discussed in this paper is that of running an RPC animation server on an
IBM PC compatible under the MS-DOS operating system. The server is started on the PC and listens
for incoming RPC calls to service. The client (running on a Sun or a Cray) performs the necessary
protocol to establish communication with the PC and then uses RPC's to control the video worksta­
tion. Once it is done, it closes the connection, allowing other clients to use the PC video server.

While the PC does not run Berkeley Unix, the Ethernet board [13] has associated software which
emulates sockets, though the semantics of the operations on sockets are slightly different. In addition,
a Microsoft compiler and run-time library is used, which provides a similar C environment to that of
Berkeley Unix. The availability of these two items on the PC made possible porting most of the
server portion of the Sun RPC package to the PC. The details of the changes necessary to make the
port, which requires some familiarity with the Berkeley socket library, are given in Appendix B.

A tutorial description of Sun's implementation of RPC's and of BSD inter-process communica­
tion is also given in Appendix B. Knowledge of Sun's implementation would help in understanding

2

how a port might be achieved with a different Ethernet controller installed on the PC.

Alternatively, the server can run on a window based workstation, such as a Sun workstation. On
the workstation the image is displayed in a window on the screen. There can be more than one win­
dow open, so more than one server can run on the workstation.

One problem was encountered because the window-based servers utilize an 8-bit color look-up
table. There is no difficulty in decompressing an image when color quantization had been used; color
quantization generates the look-up table, and converts each pixel color into an index into the table.
However, flickering between frames can occur if the color map changes. Also, since the color map
changes, frame-to-frame differencing cannot be used on this window-based server. (The PC worksta­
tion server does not use a color map; pixels that do not change are not written over from frame to
frame.)

The compressed raster images from the rendering module can be saved on disk by the window­
based server. If the images are part of a movie, then when the movie frame generation is complete a
preview program (Anima) can be used to display a portion or the entire sequence on the workstation in
forward or reverse at various speeds. The speed of decompressing and displaying a 512x400 image is
several frames per second on a Sun 4-110. The color map problems mentioned above are more notice­
able if not corrected, because of the rate of display.

4. VIDEO MOVIE MAKING USING RPC'S

To make a video movie, each image in the sequence of images to make up the movie must be
displayed in the hardware frame buffer attached to the PC, at which point the associated video
recorder can record that frame. The approach taken on the client to produce an image describing the
results of scientific modelling is to scan convert graphics primitives (points, lines, text, and polygons)
into a software frame buffer residing in main memory. See Robertson [15] for the details. Alterna­
tively, there is an interface to accept an existing image (for example from remote sensing). In all
cases, the result on the client is a software representation of a specific frame buffer format (T ARGA
[21] in the current implementation). This software frame buffer is transferred to the workstation using
RPC's, either directly after the image generation step or from Sun disk using Anima (see previous sec­
tion), and written into the PC frame buffer several scan lines at a time.

The T ARGA software frame buffer requires storage of about 400 kilobytes of data, and the
bandwidth observed in the Ethernet connecting a Sun 4-110 and the PC server is roughly 50-60
kilobytes/second with the TCP protocol. This network/system bandwidth, taken together with the
compression-decompression time, usually makes it advantageous to compress the frame buffer before
transmission. A detailed explanation of the types of compression used is given in Texier [22], Johns­
ton [8], and Robertson [15]. After the data is compressed, the RPC package calls a speciaI XDR rou­
tine, ulr _opaque, to take the data and place it in a buffer with no conversion for transferral (at this
point the data is of type char, so byte ordering is not an issue).

4.1. THE MOVIE-MAKING CLIENT

Most of the work involved in using RPC's to display and record images was done to implement
the server on the PC based video workstation. Only minor changes had to be made to the way Sun
RPC's are used on the client side. No changes had to be made to the Sun RPC software at the lowest
user level and below. The Sun library can be linked in as is. Some changes are made in the way Sun
RPC is utilized.

The client runs on the user system and provides the user interface to the movie system. Most of
the user-level calls on the client that control the video server look like regular library calls. There is
no evidence that an RPC is being used unless the RPC call fails. The client's use of RPC's is not
exactly like RPC calls in Sun RPC because in Sun RPC a connection is opened and closed every time

3

. ,

a RPC is made when the TCP protocol is used. The way Sun RPC was modified, in porting it to the
PC, made this way of handling the closing of a connection undesirable (see Appendix B). Instead, the
connection is created once at the beginning of a session involving the video server, is reused for all
RPC's, and is only destroyed when the client process is finished. Similarly, only one server program
(dispatch routine) is available on the PC, since the connection must be closed to communicate with a
different dispatch routine.

The movie-making client provides a library of subroutines upon which a variety of higher-level
graphics-generation algorithms can sit. The client has run on several different systems that provide
the 4BSD Unix, socket based IPC mechanisms, and enough of the Unix run-time library to support the
Sun RPC library. (For example, it has run under 4.3BSD Unix and Cray UNICOS.) For the availabil­
ity of code giving an example of the client calls in a program, and the code for the underlying client,
the server, and the modified Sun RPC library, see Appendix A.

The client module has been made as data-independent as possible. It neither knows nor cares
how a particular image has been generated; it only needs to know what type of compression to apply
and where to send the resulting byte stream. The content, independent of the format, can be a remote
sensed image, the result of scan converting polygons making up an object, etc. The storage format of
this image is currently in a 15 bit TARGA format (5 bits R, 5 bits G, and 5 bits B).

Since this module does not know the characteristics of the image that it is dealing with, it is not
possible to automatically select an optimal compression technique. Several compression techniques
are provided, some lossy, some lossless, some suitable for synthetic images (those generated by scan
converting the graphics primitives generated by many visualization algorithms) and some suitable for
natural (remote sensed) images. Generally speaking, the compression techniques are: (1) block trun­
cation coding (BTC) [2]; (2) Heckbert's median cut color map algorithm in conjunction with BTC [5];
(3) frame-to-frame differencing [22]; and (4) Lempel-Ziv coding [10]. A detailed analysis of the
characteristics of all of the useful combinations of these is too tedious here [22], but a few rules of
thumb are useful. If the final display is to be a video movie, fairly inexact compression works well.
Usually a combination of BTC and the color map algorithm is used2, with Lempel-Ziv cascaded if the
images are being sent via a wide-area network. For natural images color map compression and/or
Lempel-Ziv compression are sometimes useful.

Usually images to be displayed by the animation previewer, mentioned in section 3, are
compressed using only BTC and a color map by the client. Lempel-Ziv decompression for each frame
will slow the playback speed by more than half. If a movie is not going to be viewed for some period
of time, the UNIX "compress" function, which performs Lempel-Ziv compression, is used on the
entire sequence, which has resulted in an observed compression rate on the already compressed
images of between 2 and 40 to one.

The typical sequence of client calls is (1) scry_open; (2a) scry_seccompress, and/or (2b)
scry_secrecord (if the image(s) will be recorded), and/or (2c) scry_seccopynum (if the image(s) will
be recorded on videotape); (3) scry_sendJrame for each image to be displayed; and (4) scry_close. 2a
through 2c do not necessarily have to occur in that order.

scry_secrecord provides a PREVIEW option. Often a user will want to look at the images to
make up a movie before recording them, in case there are mistakes. With the PREVIEW option set,

2 BTC encoding divides the frame buffer (raster image of 15 bits per pixel) into 4x4 blocks. Two "best"
colors are chosen to represent the block. These two colors, along with a bitmap which has l's for pixels closer
to one color and 0' s for pixels closer to the other, are the compressed version of the original 4x4 block of pixels.
Using Heckbert's color map ap~roach, 256 colors are selected which are most representative of the colors found
in the uncompressed image (2 5 - 1 colors). The two best colors found by BTC encoding are represented by
pointers into a lookup table containing 256 colors [5].

4

images are displayed and not recorded.

scry_open, which establishes communication with the video workstation, requires the user to
specify the Internet name or address of the server, the protocol used, and the remote program number.
The client can also communicate with a Sun based server as mentioned above. On the Sun, several
servers may run at the same time, displaying images from different clients. The RPC program number
identifies which server (and therefore which window) the image is to be sent to. The PC server runs
only one remote program, which has a fixed RPC program number. If the user specifies the PC's pro­
gram number, a fixed port number is chosen. Having the port number built in guarantees that a call
will not be made to the non-existent port mapper on the PC.

The user also specifies the protocol, that is UDP or TCP. The server must be invoked with an
argument specifying whether it will accept calls using the UDP or TCP protocol. Thus the user must
specify the matching protocol. This is a disadvantage -- if the server is expecting TCP and the client
is sending using UDP, the client program will time out with no clue as to what has happened. If it is
the opposite error, the client process will exit when a connection is attempted, saying it cannot estab­
lish the connection. This design choice was made to avoid an initial UDP negotiation via RPC's
which specifies which protocol the client wants, and then closing the server socket and reopening a
TCP connection if the client desires TCP.

Nine remote procedures are available on the server. RPC's are identified by name, for example
INITPROC (actually an integer constant which the RPC-handling dispatch routine on the server uses
to find the correct code to execute).

scry_open potentially makes the first RPC call, AUTHPROC, which at present is #ifdefd out. If
used, it sends a structure describing the user [4] to the server, which then checks to see if that is the
same person currently controlling it, and then sends back a yes/no reply. It is used to avoid usage
conflicts, i.e., if the reply is "no", the client exits. It is not desirable to generate a few frames of the
phase space of a heavy-ion beam in the middle of a fluid-flow animation. At present, it is not used,
because CLOSEPROC, which relinquishes control of the server, is not guaranteed to be called.
CLOSEPROC is either made by scry_close or on the detection of some signals such as segmentation
fault3•

scry_secrecord makes the recorder initialization call (the RPC call identified by the constant
INITPROC). This causes the video recorder to seek to the frame number specified as an argument to
scry_secrecord. If the server is connected to a videodisk recorder, the frame number sent can be
ignored and the frame number set to the beginning of the first block of frames sufficient for the
sequence of images. The type of video recorder and the starting frame number is returned to the
client. If the client finds that it is communicating with a server with a videodisk, the number of copies
recorded per image set by scry_seccopynum is ignored, instead being set to one. The videodisk can
trivially play back a sequence at any frame rate.

The rest of the RPC's are made as a result of scry_sendJrame. They are made depending on the
type of compression used. scry_sendJrame sends a compressed image to the PC server to be
displayed. (Alternatively, the image can be sent to a user workstation server to be displayed and
recorded on disk). The call identified by SHUTDOWN is provided for use by the animation playback
editor, Anima, when it is communicating with a PC connected to a videodisk recorder. SHUTDOWN
takes the videodisk out of the recording state so that INITPROC can be called again and a new

3 However, if the client is running under dbx, and the user says quit without first saying kill, CLOSEPROC
will not be called. If CLOSEPROC is not called, the same user running a client from a different machine, not to
mention other users, will all be bumped off when they attempt to begin a session. The server bas to be interrupt­
ed and started again. This annoyance could be tolerated if the video recorders were in almost continuous use,
but this is not the case at present.

5

sequence recorded with Anima.

NUILPROC is a constant defined by Sun. It is used for a remote procedure which takes no argu­
ments and receives no arguments in reply. However, in the RPC protocol, the fact that a procedure
returns is an indication that the server has sent a low-level reply indicating that it is processing or has
completed executing its portion of the code. TIlis determination is used by the client to test the PC
server to ensure it is not otherwise busy (see section 4.2).

RECORDPROC records a frame once it has been entered into the server hardware frame buffer.
It is called when no compression, or color map compression only, is used. In the other cases, where
more substantial compression is used, there is a fair amount of control information to be received after
the compressed image has been stored in main memory on the PC. In those cases the recording infor­
mation (beginning and ending frames to record on) is bundled with the rest of the control information
and received by a separate RPC.

COWRSEND sends a group of color map compressed scan lines to the server, which converts
each pixel representation from color map index to ROB form, and places the result in the hardware
frame buffer. The number of scan lines sent is dependent on the protocol. As mentioned in Appendix
B, 2K packets seem to work best when UDP is used. With UDP, 4 scan lines are sent at a time. With
TCP 50 scan lines are sent at a time (there are 400 scan lines total), since there is effectively no limit
to the amount of data that can be sent with TCP.

When color map compression is used, pixels are represented by indices into a color map. In
several cases the color map itself is sent to the PC by MAPPROC. MAPPROC is not used when
DISPLAY is called with the TCP protocol, since all information for display and recording is sent with
that particular RPC.

SENDUDP sends, using the UDP protocol, a group of scan lines that has been compressed using
BTC, or BTC and a color map. Again, the size of a UDP packet is the limiting factor. The
compressed scan lines are stored in PC memory until the DISPLAY call occurs.

DISPLAY triggers the decompression, display, and (optionally) recording of an image that has
been compressed using BTC, and any combination of frame-to-frame differencing, color map
compression, and Lempel-Ziv compression.

4.2. IMPLEMENTATION ISSUES

RPC's were first implemented on the PC using the UDP protocol on a local area network (Ether­
net). Since UDP is not reliable, the Sun RPC package provides some mechanisms for reliability. In
particular, the client re-transmits data if an acknowledgement to a RPC is not received within a set
time limit. A problem arises in the proper setting for this time limit. If the time limit is too long
excessive delays in displaying the data may result when a packet of data is lost because the client will
wait to re-transmit until the time-out period expires. If the time limit is too short. the slowness of the
PC server in performing an RPC may cause duplicate calls, because the client could re-transmit
several times before the server has a chance to acknowledge. Based on experience over many runs,
the retransmission delay was chosen as 4 seconds for a local-area network.

At first this 4 second setting caused problems when transferring the software frame buffer
because one RPC was used to transfer one scan line, resulting in 400 RPC's per image. One or two
scanlines per image were sometimes lost, causing a delay of 4 or 8 seconds. This problem is allevi­
ated when compression is used, allowing dozens of scan lines to be sent in a packet via an RPC. The
percentage of lost packets might be the same, but with compression there are· many fewer packets
being sent.

The problems associated with using UDP are eliminated when using the RPC library with the
TCP protocol. No packets are lost. The price is a slower rate of transmission over the network, since
additional tasks~ such as retransmission of data upon detection of error are performed by layers of the

6

protocol below the socket level. In the version of the software currently being worked on, the option
of using the UDP protocol has been eliminated. In practice, it was not much used, and had the
aforementioned reliability problem.

Another advantage of TCP became evident when the client side of the package was ported to a
Cray XIMP-14, UNICOS system. When the Cray is heavily used there is a sizeable delay after each
RPC. (The 2-megaword executable gets swapped out on this small memory Cray.) Even with
compression, the amount of data associated with the software frame buffer exceeds the 8K limit
imposed by UDP. Since the compressed image of the torus and particles [15] is on the order of 25K
bytes, several RPC's have to be made to transfer the data, with the accompanying delays. With TCP
the entire compressed frame buffer is sent with one RPC. There is still a small delay evident after a
certain amount of data (estimated at 10K) is sent, but the total transfer time is much smaller.

Normally the server does not reply to a RPC, allowing the client to continue, until it has finished
all its processing. However, some operations are time consuming. For example, recording a frame on
videotape takes about 15 seconds. In this case, to allow the client to be generating the next frame
while the recording process is going on, the server sends a reply to the client's RPC before the record­
ing is started.

A problem with sending a reply to the client before the recording process is finished is that the
"record" command is initiated by a write to the PC's com1, and there is no blocking. If the next
image is generated before recording is finished, it is possible that half of the old frame and half of the
new will be recorded. (The hardware frame buffer is not cleared for each frame, merely written over.)
To prevent this, a busy wait routine is executed on the PC to effect a "block" for the time needed to
complete the recording process.

On a VTR, the recording takes a long time because a preroll of the videotape transport is
required. This preroll is necessary on most VTR's for single-frame recording in order to stabilize the
mechanical tape transport mechanism [6]. The time for this preroll can be modified by changing
parameters that are sent to the animation controller. When using the wait routine, the wait time must
be adjusted if the preroll time is changed.

If a videodisk is used instead of a VTR, recording only takes 0.5 seconds. However, the server
still sends the reply before recording. The Panasonic TQ2026 videodisk has a repertoire of character­
sequence commands to control it. The commands are sent over a serial line and the videodisk can be
instructed to send a reply back over the com line indicating that it is finished recording.

Several seconds per frame can also be saved if computation on the client is overlapped with
decompression and display of the image data on the server. This is done by having the server return
from a client RPC before the decompression and recording are complete. When this is done, the PC
server is busy performing these activities and cannot respond to an incoming RPC. Both with
decompression, and with the recording RPC (where the PC is busy-waiting or waiting for the video­
disk to say it's done) packets can be re-transmitted with UDP because the timeout period expires. It is
useful to make the NULLPROC RPC (sending no data, but indicating a response) before the first RPC
in each frame to make sure the PC is ready.

Even over a local-area network, compressing the frame buffer (with a typical compression ratio
of 20: 1 for 400K images, resulting from 3D rendering) saves around 6 seconds per frame, real time,
between a PC server and a Sun 4-110. Over a wide-area network the savings are more substantial. As
a feasibility study, a program, using the video client library, which renders a 3D object (a torus) has
been sent to a Sun 4-110 at Duke in North Carolina, where a sequence of frames has been generated,
compressed, and then sent over the wide-area network. A bandwidth of roughly 6K per second was
observed. It took about 70 minutes to send over 50 of uncompressed 400K images, as opposed to only
12 minutes for 50 compressed versions (20K) of the same images.

7

5. CONCLUSIONS

The server portion of Sun RPC was ported to the PC. The two items that made this possible are
the Microsoft C run-time library, and the Excelan Ethernet controller board and associated BSD-like
socket software. There are now several such software packages, for example Sun's PC-NFS
Programmer's Toolkit. Not many changes were necessary to the RPC code; the main change neces­
sary was substituting Excelan syntax for Unix syntax socket calls.

Porting the server to the PC allows the use of RPC's to control the video workstation, accruing
Significant advantages. Instead of the three-step process described in section 2 of generating a metafile
on the front end, transferring the metafile over the network, and then reading the metafile and generat­
ing the graphics calls on the pc, a one-step process occurs in which the data is automatically sent
across the network and displayed and recorded. RPC's hide the details of the socket level and the
video workstation from the user. It is relatively easy to build a high-level interface on top of RPC's
which hides the details of RPC's as well.

The client can handle a variety of applications at the lowest level; it only expects a raster image
in a specified form, and does not care how that image is arrived at. Scan converted 2D and 3D graph­
ics resulting from scientific visualization, PostScript interpreted files, and images in various other for­
mats have been converted to T ARGA form, and have been sent by clients to the video workstation.

To allow time consuming processes on the PC to be overlapped with computation on the client,
the display and recording RPC's on the video workstation return and send an acknowledgement back
to the client before commencing the display and/or recording processes. The preroll-record-postroll
on the VTR takes about 20 seconds (it was set this high to reduce the number of glitched frames).
Thus this "asynchronous" acknowledgement provides the client more than 20 seconds real time per
frame with the VTR, and several seconds per frame with the videodisk, if the process of generating an
image on the client is lengthy. For images that are generated and compressed rapidly, use of the video
optical disk is advantageous. For example, the generation of a 2D particle image often takes only a
few seconds, after which the client has to wait if a VTR is used. With a 20-second record sequence, it
still takes at least 30 minutes to record 100 images. Using the videodisk, with its roughly 0.5 second
recording time, the same number of frames can be recorded in a matter of minutes.

The distributed graphics system software has been given to a number of supercomputer centers.
It provides one solution to the problem of interpreting data produced at remote sites, a typical one for
a user of a remote supercomputer center. Many types of scientific modelling generate huge amounts
of floating-point data, which are incomprehensible (and unmanageable) unless translated into visual
form [11]. Sending uncompressed raster images across a wide-area network is impractical even today,
with high-bandwidth backbones. As mentioned in section 4.2, it can still be more than five times fas­
ter to send compressed, as opposed to uncompressed, images across a wide-area network. The video
recording server, controlled by RPC's from the remote supercomputer, provides an economical, time­
saving, and easy way to automatically display and record images generated from modelling at remote
sites.

8

..

6. REFERENCES

1. Birrell, Andrew D. and Bruce Jay Nelson. Implementing Remote Procedure Calls. CSL-83-7,
October 1983 [P83-00008] Xerox Parc Publication.

2. Campbell, G., T. A. DeFanti, J. Frederiksen, S. A. Joyce, L. A. Leske, J. A. Lindberg, and D. J.
Sandin. Two BitJPixel Full Color Encoding. SIGGRAPH 1986 Proc. 20,4 (Aug. 1986), 215-
223.

3. Comer, D. Operating System Design. Volume II, Internetworking with XlNU. Prentice Hall,
Inc., Englewood Cliffs, NJ. 1987.

4. External Data Representation Protocol Specification. Sun 3.0 Documents, Revision G of 17
February 1986. Sun Microsystems, 2550 Garcia Avenue, Mountain View, CA 94043.

5. Heckbert, P. Color Image Quantization for Frame Buffer Display. SIGGRAPH 1982 Proc. 16,3
(July 1982),297-307.

6. Johnston, W. E., D. E. Hall, F. Renema, and D. Robertson. Principles and Techniques for Low
Cost Computer Generated Movies. LBL-22330. University of California. 1986.

7. Johnston, W. E., D. E. Hall, F. Renema, and D. Robertson. Low Cost Scientific Video Movie
Making. Computer Physics Communications 45 (1987),479-484. North Holland, Amsterdam.

8. Johnston, W. E., D. E. Hall, J. Huang, M. Rible and D. W. Robertson. Distributed Scientific
Video Movie Making. Proceedings of the Supercomputing Conference 1988 (The Computer
Society of the IEEE).

9. Leffler, Samuel 1., Robert S. Febry, William N. Joy, Phil Lapsley, Steve Miller and Chris Torek.
An Advanced 4.3 BSD Interprocess Communication Tutorial. 4.3 Berkeley Software Distribu­
tion, Virtual VAX-II Version. University of California, Berkeley, CA. April, 1986.

10. Lynch, T. J. Data Compression: Techniques and Applications. Wadsworth, Inc., London.
1985.

11. McCormick, B. H., T. A. DeFanti, and M. D. Brown, eds. Visualization in Scientific Comput­
ing. Special Issue on Visualization in Scientific Computing. Computer Graphics 21, 6 (Nov.
1987).

12. Microsoft C Compiler for the MS-DOS Operating System. Run-Time Library Reference. Ver­
sion 5.0. 1987. Microsoft Corporation, 16011 NE 36th Way, Box 97017, Redmond, W A.

13. Network Software for IBM Personal Computers Running DOS. Reference ManUal. Revision A,
May 1986. Excelan, Inc., 2180 Fortune Drive, San Jose, CA.

14. Remote Procedure Call Programming Guide. Sun 3.0 Documents, Revision G of 17 February
1986. Sun Microsystems, 2550 Garcia Avenue, Mountain View, CA 94043.

15. Robertson, D. W. Use of a Distributed Movie Making System for Presentation of Fluid Flow
Data. San Francisco State University, San Francisco, CA, (Masters Thesis - available as
LBL-25274 from Lawrence Berkeley Laboratory), 1988 ..

16. Robertson, D. W., W. E. Johnston, T.-J. Chua, James Huang, F. Renema, M. Rible, N. Texier,
and B. 1. Wi shinsky. Scry: A Distributed Image Handling System. LBL-27696. University of
California, Lawrence Berkeley Laboratory, Berkeley, CA. 1989.

17. Sechrest, S. An Introductory 4.3 BSD Interprocess Communication Tutorial. 4.3 Berkeley
Software Distribution, Virtual V AX-ll Version. Univers.ity of California, Berkeley, CA. April,
1986.

18. Sethian, 1. A., and A. F. Ghoniem. A Validation Study of Vortex Methods. 1. Computational
PhYSics 74, 2 (Feb. 1988),283-317.

9

19. Sun RPC 1.1 Software Distribution. Sun Microsystems, 2550 Garcia Avenue, Mountain View,
CA 94043.

20. Tan, See-Mongo Personal communication.

21. TARGA Software Tools Notebook. Version 4.0. 1988. Truevision Inc., 7351 Shadeland Sta­
tion, Suite 100, Indianapolis, IN.

22. Texier, N., W. E. Johnston and D. W. Robertson. Encoding Synthetic Animated Pictures.
LBL-24236, University of California, Lawrence Berkeley Laboratory, Berkeley, CA. 1987.

23. Unix 4.3 Berkeley Software Distribution, Virtual V AX-ll Version. University of California,
Berkeley, CA. April, 1986.

10

AppenrlixA

Availability of Code

The code for sample programs, the underlying client, the server, and the modified Sun RPC
library is available as public domain software, called Scry [16]. Scry is provided as a professional
academic contribution for joint exchange. Thus it is experimental, is provided "as is", with no war­
ranties of any kind whatsoever, no support, promise of updates, or printed documentation.

The latest version of Scry is available by anonymous ftp (login: "anonymous", password: user
e-mail address) from george.lbl.gov (128.3.196.93) in pub/scry.tar.Z (a compressed tar file, so don't
forget to set binary mode in ftp). Be aware that the compressed file is about 4.7 megabytes. Once on
your machine, run uncompress on scry.tar.Z, and extract the files using "tar xvf scry.tar scry" The
resulting files total roughly 7 megabytes, which is mostly sample data.

11

Appendix B

Remote Procedure Calls and 4BSD Unix Sockets Tutorial

A summary of Sun's implementation is given here to facilitate describing how the port was
achieved, and how the client uses RPC's to control the video workstation. Knowledge of Sun's imple­
mentation also would help in understanding how a port might be achieved with a different Ethernet
controller installed on the PC.

A user interface to Sun RPC exists at three levels. At the highest level the user doesn't have to
be aware that a remote procedure call is being used. The call looks like a regular library call [14]. In
the intermediate layer, the programmer uses the caUrpc call to make the RPC. At this level the pro­
grammer has to know the address of the server, the program, version, and procedure number of the
desired procedure on the server, and the XDR routines necessary to encode/decode the arguments
(more on XDR below). On the server side registerrpc registers the procedure number with the RPC
package and associates a port with the program number if the port mapper is being used [14].

The lowest user-level RPC call, upon which the two previous levels are built, has three hidden
layers that handle transmitted and received data. The topmost layer handles the details of the RPC
protocol, e.g. finding the remote program and procedure, sending and receiving arguments and replies,
and establishing whether the RPC was successful. The next lowest layer converts the procedure argu­
ments and results into a machine-independent representation and handles buffering of input and out­
put The lowest layer, the socket level, performs the actual transfer of the data.

The low-level user interface is difficult to use because, while the data transfer calls themselves
are invisible, some setup is necessary which requires the user to know about sockets. To underscore
the difficulties with using low-level primitives for communications, Sun documentation notes that:
"This [user] level should be avoided if possible" [14].

7. THE SOCKET LEVEL

Sockets provide the mechanism of mapping addresses of target systems and processes into the
Unix file system 110 mechanism. read and write (for stream 110), or sendto and recvfrom (for
datagram 110) provide the methods of data transfer between processes on the same or different
machines in Unix. Operations on sockets can be classified as to which domain or name space the
address of a socket is taken from, and what type of communications protocol is used [17].

Sun RPC uses the Internet mode of addressing. In this mode the address of a socket is composed
of a pair of numbers: the address of the machine on the network, and a receiving process identifier,
the port. The two protocols of communication which are used by Sun RPC are UDP (User Datagram
Protocol) and TCP (Transmission Control Protocol). TCP is a stream, or connection oriented proto­
col, and data transmitted by a single RPC using TCP can be of any length up to 231 - 1 bytes (in Sun
RPC) [5]. UDP is a datagram protocol. The data transferred by a single RPC is limited by the max­
imum packet length. This length is system dependent, but modem Unix systems, including Sun, typi­
cally allow 8K [14]. UDP transmission is not error-free, while TCP is guaranteed to be reliable, at the
cost of error -checking overhead [17]. (It was noticed during the course of this study, that while up to
8K can be sent in a UDP packet, performance suffered at larger packet sizes. A formal analysis was
not made, but it appears that 2K is closer to the optimum amount sent by a Sun 3 communicating with
the PC Ethernet board.)

The type of protocol to be used is specified when a socket is created (using the socket call). On
the server side, the internet address is bound to the socket with the bind call; on the client side binding

12

occurs when a sendto or connect call is made (see below). These two activities are performed inter­
nally by a Sun routine at the lowest user level. Before binding occurs, the port number must either be
specified or automatically assigned by the system. If one specifies the port number, it must be con­
verted to network byte order by the routine htons (host to network, short). Conversion to network byte
order is necessary to ensure machine-independent representation of 16-bit and 32-bit integers [17].
The routines RPC uses for transmitting and receiving messages through a socket using UDP are sendto
and recvjrom, and read and write using TCP [19].

Under the UDP protocol, the destination address is included with each packet; with the TCP pro­
tocol, a explicit connection exists between the client and server sockets. This connection is set up
internally in Sun RPC with the connect call on the client, and the listen and accept calls on the server.
After a socket is created on the server, the listen call is made to indicate that the socket can accept one
of a specified-length queue of incoming connection requests. accept accepts one of these requests and
returns a socket with the same characteristics as the original bound socket [17,23]. When the connec­
tion is closed, this new socket is destroyed. If the listen and accept calls have been made on the
server, a connect call by the client will establish the connection [17]. More information will be pro­
vided on the socket-level calls in Section 11.

8. THE XDR LEVEL

The transmitted data is sent and received unaltered by sendto, etc. Since data representation on
different machines differs, data is converted to XDR (eXternal Data Representation) before sending it
over the network. (This process is also called serializing or encoding.) Machine dependencies may
extend beyond different byte ordering, for example, for floating point data types. Once it reaches the
other machine, RPC uses XDR routines to convert from the XDR representation to that particular
machine's representation (also called deserializing or decoding) [14]. Each of the data type primitives
used (e.g. short, long, bool, enum) is converted to one or more groups of 4 bytes externally (XDR
form) [14]. At this point all that is left is to convert these four-byte groups to network byte ordering.
The very lowest level routines, which are used in all the other XDR routines, are the in-line routines
IXDR_GEJ'_LONG and IXDR_PUT_LONG, or the routines x...,getlong and x.,JJutlong. To give the
flavor, the in-line routines are repeated below: [19]

long *buf;

#define IXDR_GET_LONG (buO
#define IXDR_PlIT_LONG (huf,v)

ntohl (*buf++)
(*buf++ = htonl (v»

ntohl and htonl are macros that convert to and from network byte order for longs [9]. If the machine
byte order is the same as the network byte order, as on the Sun, the macros do nothing.

It should be noted that the enCOding or decoding done inside an XDR routine is machine depen­
dent. For example, the conversion to or from the XDR representation for floating point numbers will
be different for every differing machine representation.

Sun RPC makes use of structures whose members are pointers to functions. One place such
structures are used is in the implementation of XDR streams, which are the manner of buffering data
for transmission/receipt through sockets after the data has been converted to an external representa­
tion. The relevant data structure is the XDR handle, reproduced with Sun's comments below: [19]

13

1*
* The XDR handle.
* Contains operation which is being applied to the stream,
* an operations vector for the particular implementation (e.g. see x_mem.c),
* and two private fields for the use of the particular implementation.
*1

typedef struct {
enumxdcop
struct xdcops {

booU
booU
booU
booU
u_int
booU
long *
void

}XDR;

} *x_ops;
caddct
caddct
caddct
int

(*x-&etlong)();
(*x_putlong)();
(*x-&etbytes)();
(*x_putbytes)O;
(*x-&etpostn)O;
(*x_setpostn)O;
(*x_inline)O;
(*x_destroy)();

x_public;
x_private;
x_base;
x_handy;

1* operation; fast additional param *1

1* get a long from underlying stream *1
1* put a long to " *1
1* get some bytes from " *1
1* put some bytes to " *1
1* returns bytes off from beginning *1
1* lets you reposition the stream *1
1* buf quick ptr to buffered data *1
1* free privates of this xdr_stream *1

1* users' data *1
1* pointerto private data *1
1* private used for position info *1
1* extra private word *1

x_op contains the type of operation being performed, that is, encoding, decoding, or freeing memory
that was allocated by XDR (e.g. to provide space for an array being passed) [5].

Sun provides three kinds of streams. These are: (1) streams for use with standard 110; (2)
memory streams, which send data to (in serializing) or get data from (in deserializing) a buffer in
memory; (3) and record streams, which allow for data up to 231 -1 bytes in length to be sent, a special
marker indicating the end of the data. Memory streams are used with the UDP protocol, where the
entire buffer that has been built up is sent at once. Record streams are used with the TCP protocol.
where data is transmitted and received once the fixed-size buffer has been filled. or the special marker
indicating the end of data is reached [5].

When a stream is initialized. the structure x_ops is set to the functions used by that particular
stream. For example. the routine corresponding to x....getlong for the memory stream is
xdrmem....getlong. In the case of the memory stream. initialization is done by xdrmem3reate. The
routines' 'filling the place of" x....getposm. x_serpostn. x_inline. and x_destroy are used to control posi­
tioning in and destruction of the memory buffer [19]. Since the memory stream uses UDP. the size of
the buffer is limited, with the actual limit being machine dependent (up to 8K bytes [14]). x~rivate
contains the address of the buffer. x_base contains the current position in the buffer and x_handy con­
tains the current size of the buffer. x~ublic is provided for user data when XDR is accessed directly
without the mediation of the RPC package [5].

In the case of the record stream, x~rivate contains the address of the RECSTREAM data struc­
ture. RECSTREAM contains. among other things. the addresses of the ingoing and outgoing buffers,
the next input and output poSition, the addresses of the ends of the incoming and outgoing buffers, and
the pointers to the routines performing the actual data transfer. x_handy and x_base are not used with
record streams.

Sending a more complicated data structure to a stream, such as a structure or array, involves
writing an XDR routine for that structure which decomposes the data structure into its component data
types and uses the appropriate XDR routine for each primitive data type. That is, the XDR routine for
the structure contains as many XDR routines for primitives as there are components. Identical XDR

14

routines (on client and server) are used for decoding and encoding; thus the same routine will on
decoding build the structure up out of its components [5]. The XDR handle must be passed to every
XDR routine since it contains the operation to be performed, the pointers to the functions that will be
used for that particular stream, and the buffer from or to which the components will be sent [19].

As an example of the use of XDR routines, the svc~etargs macro (which decodes the arguments
for the server) is passed an argument that is to hold the decoded data, a pointer to the XDR routine that
decodes it, and the service transport handle (more on this below) [14]. To get an integer argument. the
call would be svc~etargs (transp,xdr_int,&incarg). (In the Sun RPC package the name of every
XDR routine begins with xdr.-J. Another place where pointers to functions are used is in the server
routines. For example, svc~etargs expands to:

(*(xprt)->xp_ops->xp~etargs) «xprt), (xargs), (argsp» [19]

The relevant data structure is the SVCXPRT handle, reproduced below from [19] with Sun's com­
ments.

1*
* Server side transport handle
*1
typedef struct {

int
u_short
struct xp_ops {

booU (*xp_recv)O;
enum xprt_stat (*xp_stat)O;
booU (*xp~etargs)O;
booU (*xp_reply)O;
booU (*xp_freeargs)O;
void (*xp_destroy)O;

) *xp_ops;
int
struct sockaddcin
struct opaque_auth
caddct
caddr_t

} SVCXPRT;

xp_addrlen;
xp_raddr;
xp_verf;
xp....p1;
xp....p2;

1* associated port number *1

1* receive incomming requests *1
1* get transport status *1
1* get arguments *1
1* send reply *1
1* free mem allocated for args *1
1* destroy this struct *1

1* length of remote address *1
1* remote address *1
1* raw response verifier *1
1* private *1
1* private *1

Different routines will be called depending on the transport protocol, that is, TCP or UDP. For
UDP the routine svcudp ~etargs would be called for the macro above. The function pointers in the
xP _ops structure are initialized when the service transport handle is created with svcudp _create, which
also creates the appropriate stream. xp....p2 is the address of the structure svcudp_data in the case of
UDP. It contains among other things the address of the XDR handle and the size of the memory
buffer. For the memory stream the address of the buffer is kept in XP""pi (as mentioned above, it is
also kept in the x""private field in the XDR structure) svcudp_create also creates the socket through
which data is transferred. The number identifying the socket is kept in xp_sock. In the case of TCP,
XP""p2 is unused. XP""pi contains the address of a structure tCPJendezvous during the period of time
after a socket has been created but before a TCP connection has been established. tcp Jendezvous
contains the size of the sending and receiving buffers. After a connection has been established, XP""pi
contains the address of a structure tcp_conn, which has among other fields the XDR handle [19].
These two states are explained in more detail in Section 11.

15

The analogous data structure for the client side is the client handle eUENI'. It is reproduced
below with Sun's comments [19].

1*
* Client rpc handle.
* Created by individual implementations, see e.g. IJlC_udp.c.
* Client is responsible for initializing auth, see e.g. auth_none.c.
*1

typedef struct (
AUfH *cCauth;
,struct clnt_ops (

enum clncstat
void
void
bool_t
void

) *cl_ops;
caddct

} CLIENT;

(*cl_call)O;
(*cCabort)O;
(*ct.geterr)O;
(*cCfreeres)O;
(*cCdestroy)O;

1* authenticator *1

1* call remote procedure *1
1* abort a call *1
1* get specific error code *1

1* frees results *1
1* destroy this structure *1

1* private stuff *1

The default authentication, Le. none, was chosen. If security is important it is really up to the user to
provide it, because with the authentication RPC provides, "It is easy to impersonate a user" [14].

As above, the pointers to the functions will be set when cCops is initialized in the client handle
creation routine. In the case of UDP, this is clntudp_create. As above, in this routine the appropriate
stream is created, as well as the socket to transmit data and receive a reply. ctprivate is the address
of the structure cu_data in the case of UDP, and cCdata in the case of TCP. Both contain among
other things the socket number, the address of the destination, and the address of the XDR handle.
[19].

9. THE RPC PROTOCOL LEVEL

Sun RPC requires that the client and server communicate additional information besides the
actual arguments of the remote procedure call and the reply sent back. This information is kept in the
RPC message data structure, which is reproduced below with an expansion of its constituent data
structures, along with Sun's comments [19]. The data in the fields of this structure is inserted before
the arguments or the reply in the particular stream used (Le. memory or record).

1*
* The rpc message
*1
struct rpc_msg (

u_Iong
enum mS!L.type
union (

rm_xid;
rm_direction;

struct call_body RM_cmb;
structreply_body RM_rmb;

) ru;
} ;

The rpc message contains the transaction id nn_xid, to make sure the reply is received from the
process that the arguments were sent to and to make sure that the appropriate data structures haven't
been corrupted. rm_direction gives the direction, Le. call or reply. Depending on the direction, the
union ru contains the structure call_body or reply_body [19].

16

1*
* Body of an rpc request call.
*1

struct call_body (
u_Iong cb_rpcvers;
u_Iong cb_prog;
u_long cb_vers;

1* must be equal to two *1

u_Iong cb_proc;
struct opaque_auth cb_cred;
struct opaque_auth cb_ verf; 1* protocol specific - *1

1* provided by client *1
) ;

call_body contains the information necessary to identify the desired procedure on the server, along
with some authentication fields, which are unused in this implementation. cb-prog contains the pro­
gram number, cb_vers the version of the program, and cb""proc the desired procedure number [14,19].

1*
* Body of a reply to an rpc request.
*1

struct reply_body (

}; .

enum reply_stat rp_stat;
union (

) ru;

struct accepted_reply RP _ar;
struct rejected_reply RP _dr;

reply _body contains information about what happened as a result of the call, i.e. rp _stat tells whether
there the call was accepted or denied. Depending on rp_stat, the union ru contains the structure
acceptedJeplyor rejectedJeply [19].

1*
* Reply to an rpc request that was accepted by the server.
* Note: there could be an error even though the request was
* accepted.
*1
struct accepted_reply (

};

struct opaque_auth ar_ verf;
enum accepCstat ar_stat;
union (

} ru;

struct {
u_Iong low;
u_Iong high;

} AR_versions;
struct (

caddr_t where;
xdrproc_t proc;

) AR_results;
1* and many other null cases *1

17

1*
* Reply to an rpc request that was rejected by the server.
*1

struct rejected_reply {
enum rejeccstat l:LStat;
union {

. struct {
u_Iong low;
u_Iong high;

} RL versions;
enum auth_stat RLwhy; 1* why authentication did not work *1

} ru;
};

acceptedJeply contains the authentication parameter ar _verf, and ar _stat, which tells whether
there was success or some error, such as the program being unavailable on the server. The
AR_versions structure, and analogously, the RJ_versions structure in rejectedJeply, contain informa­
tion on whether there was a program version mismatch. rLstat in rejectedJeply tells why the mes­
sage was rejected. where in acceptedJeply contains the address of where to place the results and proc
the address of the XDR routine used for the results. These are filled in on the the client side and are
used when, during the decoding of the reply, the pointer to the stream buffer advances to where the
server had placed the identical fields of the reply_accepted structure. The appropriate XDR call is
then made to decode the results of the RPC [19].

The server uses information in call_body (the program and version number) to find the desired
procedure. This is done through the use of the service callout list. The relevant data structure is repro­
duced below, along with Sun's comments [19].

1*
* The services list
* Each entry represents a set of procedures (an rpc program).
* The dispatch routine takes request structs and runs the
* appropriate procedure.
*1

static struct svc_callout {
struct svc3allout *sc_next;
u_Iong sc-prog;
u_Iong sc_ vers;
void (*sc_dispatch)();

} *svc_head;

sc_next is a pointer to the next entry in the callout list. sc-prog is the program number and severs is
the program version number. sc_dispatch is a pointer to the dispatch routine associated with the pro­
gram and version numbers. The dispatch routine is the remote "program": cases within it correspond
to the remote "procedures".

At the lowest user-level of Sun RPC, the service must be registered by the server with the rou­
tine svcJegister (transport handle, program #, version #, dispatch address, protocol) to place it on
the service callout list. After that the server goes into an infinite loop. The routine called inside this
loop uses select to accept remote procedure calls (thus avoiding busy-waiting) and uses the RPC mes­
sage to search through the callout list. If found, the dispatch routine is called, which calls the
appropriate procedure and sends back the results to the caller with svc_sendreply [14].

18

..

10. POTENTIAL DIFFICULTIES

There are a few areas where RPC's as implemented by Sun might present some difficulties. At
the intermediate and lowest levels, only one call argument and one reply argument can be sent at a
time. If there are many arguments, they must be bundled up into a structure or otherwise placed in
contiguous memory. This doesn't present a problem at the highest level since the bundling can take
place at the intermediate level. A more serious problem is that of the XDR routines for int's and
long's. If there is a standard service that takes int's as arguments and if the client does not know the
identity of the server, as in the case where broadcasting of a RPC is used, it does not know whether
int's correspond to long's or short's on the destination machine. This is a problem because in the
XDR routine for int's, xdr_int, decodes an int depending on sizeof(int). If int corresponds to short,
xdr _shon is called, and if not, xdr _long is called. An analogous problem occurs when it is known that
int's are long's on the client and short's on the server. In that case, one could send and receive all int's
as long's.

11. PORT OF RPC TO THE PC

The portion of the Sun RPC package that a server is built upon was ported to an mM PC-AT
compatible, using the Excelan socket library4, and the Microsoft C compiler and runtime library.
(Hereafter "server" will refer either to this portion of the Sun RPC library, or the program that uses
it)

The first change made was to change file names so that they contained no more than 8 characters
(DOS specifications). The next change made was to replace slash by backslash in all the include state­
ments that used it. All the standard header files are part of the Microsoft run-time library.
sys/param.h was replaced by stdio.h in rpc-prot.c since all that was used from param.h was NULL.
The standard typedefs for unsigned types (e.g. u_int, u3har) were added to a new header file.

bcopy and bzero, which are used in a number of places in Sun RPC, are changed to the analo­
gous Microsoft library routines memcpy and memset. The form of the calls is as below:

Unix (ref [23])

1. bcopy (src,dest,length)

char *src, *dest ;
int length;

2. bzero (buf,length)

char *buf;
int length;

Microsoft (ref [12])

memcpy (dest,src,length)

char *dest,*src ;
unsigned length ;

memset (buf,a,cnt)

char *buf;
unsigned cnt ;

All socket calls are changed from BSD Unix to the corresponding EXCELAN specifications.
The mapping is given in the table below:

4 Enhancement: It is possible to convert to the PC NFS toolkit.

19

Unix (ref [23])

1. sock = socket (domain,type,
protocol)

int domain, type, protocol ;

2. bind (sock,&server,sizeof(server»

struct sockaddcin server ;
int sock;

3. hp = gethostbynarne (anarne)

struct hostent *hp ;
char *anarne ;

4. ce = recvfrom (sock,buf,buflen,
flags,from,fromlen)

int ce, sock, buflen, flags;
int *fromlen ;
char *buf;
struct sockaddr *from ;

5. cc = sendto (sock,buf,buflen,
flags,to,tolen)

int ce, sock, buflen, flags;
int tolen;
char *buf;
struct sockaddr *to ;

6. connect (sock, addr, addrlen)

int sock;
struct sockaddr *addr ;
int addrlen ;

7. listen (sock, backlog)

int sock, backlog ;

EXCELAN (ref [13])

sock = socket (type,protocol,
server,options)

int sock, type, options;
struct sockaddr *server ;
struct sockproto *protocol ;

corresponding functionality is merged
into the socket call

addr = rhost (anarne)

unsigned long addr ;
char **anarne;

ce = soreceive (sock,from,buf,buflen)

int cc, sock, bufien ;
struct sockaddr *from ;
char *buf;

ce = sosend (sock,to,buf,buflen)

int cc, sock, buflen ;
struct sockaddr *to ;
char *buf;

connect (sock, addr)

int sock;
struct sockaddr *addr ;

corresponding functionality is merged
into the socket call

20

8. ns = accept (s, from, addrlen)

int ns, s;
struct sockaddr *from ;
int *addrlen ;

9. n = select (width, rfds, wfds,
excfds, timeout)

int n, width ;
fd_set *rfds, wfds, excfds ;
struct timeval *timeout ;

10. cc = read (sock,buf,buOen)

int cc, sock, buOen ;
char *buf;

11. cc = write (sock,buf,buOen)

int cc, sock, buOen ;
char *buf;

12. close (sock)

int sock;

accept (s, from)

int s ;
struct sockaddr *from ;

n = soselect (width, rfds, wfds,
timeout)

int n, width ;
long *rfds, *wfds, timeout;

cc = soread (sock,buf,buOen)

int cc, sock, buOen ;
char *buf;

cc = sowrite (sock,buf,buOen)

int cc, sock, boOen ;
char *buf;

soclose (sock)

int sock;

On the Unix side, the socket call creates a socket. Domain is AFjNET for the internet
domain, and type is SOCK_DGRAM for the UDP protocol, and SOCK_STREAM for the TCP
protocol. protocol should be assigned the value o. bind binds an internet address to the
socket [17,23]. On the Excelan side the socket call combines the Unix socket and bind calls.
As before, type is SOCK_DGRAM for UDP and SOCK_STREAM for TCP. protocol should
be assigned the pointer (sock proto *) O. server contains the internet address of the server.
options is obtained by or'ingtogether the various options desired. An example of an option is
SO_DEBUG, which enables debugging infonnation [13]. gethostbyname on the Unix side and
rhost on the Excelan side are used to find the internet address of the server if only the sym­
bolic host name is known [13,17].

recvfrom on the Unix side receives a datagram through a socket, while sosend on the
Excelan side sends a datagram through a socket. This pair of calls works together, that is,
data is transmitted and received without error due to mismatch between Excelan and Unix
IPC implementations. sendto on the Unix side sends a datagram while soreceive receives
one. This pair also works together. The from argument in soreceive is filled in with the
address of the sender, which is used by RPC to send back the reply. read can receive data
sent through a connected socket, while sowrite sends data through a connected socket. write
can write data through a connected socket, while soread performs the corresponding read on
the Excelan side. read and write are also used with file descriptors [17].

21

close on the Unix side (among other things) and soclose on the Excelan side close a
socket [13,23]. Since the only way the server will stop running on the PC is through an inter­
rupt, the break handler must close any open sockets. Otherwise the PC hangs [13].

The connect call made on the client side establishes a TCP connection. Since only the
server was brought up on the PC, the Excelan connect has not been tested. As mentioned in
Section 7, listen and accept prepare the server to accept a connection. In Unix, listen estab­
lishes a queue on which incoming connections wait until they can be accepted. accept takes
one request, and accepts a connection on a duplicate of the original socket (ns in the table
above). When a connected TCP socket on the client side is closed, the connection is des­
troyed, and the corresponding server socket is also closed [17].

When using Excelan software, specifying ACCEPTCONN as an option on the socket call
readies it for an accept, as does the explicit Unix listen, with the difference that no queue for
incoming connections is established. The Excelan accept accepts a connection, but does not
return a new socket, since there can be only one connection accepted per open socket [13].

The Unix select uses a mask of width bits to determine which sockets are ready for read­
ing (readfds) and writing (writefds) [13]. According to the Excelan manual (Revision A, May
1986), soselect, performing much the same function, only works under TCP. In practice it
does not work under UDP or TCP. (This may very well have changed under later revisions.)
Another port of the server portion of the RPC library using UDP substituted the Excelan
soioctl call (with the FIONREAD option) to determine if there were bytes waiting in a
socket's receive buffer [20].

soselect was the only Excelan call that was an obstacle to porting the portion· of Sun
RPC using UDP. However, the video server is only suitable for use by a single client at a
time. Two or more clients attempting to access the server at once would result in images
composed of groups of scan lines from different sources, and disjointed movies having, say,
one frame of a mathematical surface and the next of a fluid-flow simulation. (An attempt at
enforcing single-client usage is described in Section 4.1.) Thus the fix described in the previ­
ous paragraph is not necessary. The call that receives incoming data, soreceive, blocks until a
message arriving at the single open socket is available [13].

The port of the portion of the Sun RPC server using TCP was more difficult. In Sun
RPC, when a socket is created, a portion of the server handle SVCXPRT, tcp_rendezvous (see
Section 8), is kept in a data structure located in an array (xports) at a position corresponding
to the socket number. In particular, this occurs for the original socket created when the server
starts running. A connection request for that original socket is treated as incoming data by
select, and the data structure for that socket is used to call a routine that handles the accep­
tance of a new connection. At this point a duplicate socket is created, and the information
associated with this new connection socket is placed in xports. When select shows that this
new socket is ready for reading, the xports data structure for this new socket is used to call a
routine that reads data from incoming RPC calls. After the connection is closed, and the
duplicate socket destroyed, this process repeats when a new connection request is made for
the original socket. .

In this case, the soioctl call described above would have to be made to substitute for
select's functionality, since more than one socket is open (assuming soioctl would treat an
incoming connection request as incoming data -- this has not been tested). Another alterna­
tive might be to use the soioctl call to make a socket non-blocking. However, the non-

22

functional soselect is not the only difficulty with the Excelan routines. As mentioned above,
accept does not create a duplicate socket. The connection must be made with the original
socket, which is then closed when the connection is destroyed.

To solve this problem, soselect is bypassed as in UDP. The routine accepting incoming
data, in this case soread, blocks until data is received. When the connection is closed, the
next soread returns an error, which is used to notify the server that it must start again from the
beginning. This involves the overhead of making the socket call again (with its implicit
bind), and filling in some data structures. In the case of the video server, connections are
fairly lengthy, especially to record a movie, so this overhead is not a problem.

The remaining major change is that the port mapper routines were bypassed5. The port
mapper is like a server "server" in that is is an independent process that servers consult when
they want to associate a program number with a port number. The port number is chosen by
the port mapper [14]. To allow the use of the port mapper on the PC (which uses the uni­
tasking operating system MS-DOS), the port mapper would have to run concurrently with the
server. Thus it was bypassed. This was possible without a major rewrite of the code by
ensuring that the port mapper is never called. The only routine on the server side that would
cause a call to the port mapper (besides the unused port mapper routines) is svc_register. The
svc_register call is made with the last argument set to zero, which causes the port mapper to
be bypassed [14]. Since the port number cannot be ascertained by the client from the non­
existent port mapper on the PC, it cannot be arbitrary. The port number of the socket on the
PC is fixed (given by PCPOR1). The client and the server must define PCPORT consistently.
This is hard wiring, but as justification it can be said that the client already had to know the
program, version, and procedure number for a RPC call to work.

The server and the XDR routines tested (and thus the routines that they call) seem to work with
no modifications beyond those described above. As mentioned above, the way XDR encodes from or
decodes to a particular machine data representation is machine dependent. For example, the XDR rou­
tine for doubles (which we do not use) would need to be modified for the PC.

5 Enhancement: It is possible that a third-party port mapper running on a machine other than a PC could be
used to assign PC port numbers.

23

-.:. t-.,..;.i_1"::

LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA

INFORMATION RESOURCES DEPARTMENT
BERKELEY, CALIFORNIA 94720

-;.:..}~ I!"--.~ "..,-

