
UCLA
UCLA Electronic Theses and Dissertations

Title
Exploring the Frontier of Graph-based Approaches for Image and Document Analysis

Permalink
https://escholarship.org/uc/item/68w374k5

Author
Chen, Bohan

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/68w374k5
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Exploring the Frontier of Graph-based Approaches for Image and Document Analysis

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Bohan Chen

2024

© Copyright by

Bohan Chen

2024

ABSTRACT OF THE DISSERTATION

Exploring the Frontier of Graph-based Approaches for Image and Document Analysis

by

Bohan Chen

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2024

Professor Andrea L. Bertozzi, Chair

Graph-based machine learning is a powerful framework for analyzing and understanding

complex data structures in various domains. This thesis introduces novel graph-based meth-

ods in multiple image analysis tasks, including classification, segmentation, and unmixing,

as well as their application in enhancing large language models. The key contributions

include: (1) the development of new core-set selection and batch active learning methods

that significantly improve the efficiency of graph-based active learning while maintaining its

effectiveness; (2) the integration of graph learning, active learning, and advanced feature

embedding methods to construct pipelines for SAR image classification and multi- or hyper-

spectral image segmentation, outperforming neural network-based classifiers or segmenters

in semi-supervised learning tasks with limited training data; (3) the incorporation of graph-

based regularization into the optimization problem of hyperspectral unmixing, enabling the

utilization of a small amount of labeled pixels to greatly improve the performance compared

to blind unmixing; and (4) the extension of graph Laplacian-based methods to automat-

ically construct knowledge graphs in combination with large language models, enhancing

their information retrieval and response generation capabilities.

ii

The proposed methods showcase the effectiveness and versatility of graph-based ap-

proaches in addressing challenges such as limited labeled data, computational efficiency,

and knowledge representation. The thesis demonstrates the potential of graph-based meth-

ods in pushing the boundaries of image and document analysis and their applicability in a

wide range of machine learning problems.

iii

The dissertation of Bohan Chen is approved.

Luminita A. Vese

Marcus L. Roper

Stanley J. Osher

Andrea L. Bertozzi, Committee Chair

University of California, Los Angeles

2024

iv

To my advisor, Andrea Bertozzi, thank you for your guidance, insights, and patience.

You have not only shaped me as a researcher but also taught me invaluable life lessons.

To all those who have helped and inspired me throughout this doctoral journey.

Thank you for being an integral part of my life.

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 A Review of Graph-Related Learning Approaches 2

1.2 Overview and Contributions . 5

1.3 Preliminaries and Notation . 7

2 Background of the Graph Learning and Active Learning 13

2.1 Graph and Related Concepts . 13

2.2 Graph Learning . 16

2.2.1 Graph Construction . 17

2.2.2 Graph Laplace Learning . 20

2.2.3 Extended Schemes for Low Label Rates 24

2.3 Graph-based Active Learning . 26

2.3.1 Bayesian Interpretation and Low-Rank Covariance Matrix 27

2.3.2 Acquisition Functions . 31

2.3.3 Query Set Selection . 36

3 Novel Batch Active Learning Approaches with Application to SAR and

Hyperspectral Imagery . 39

3.1 Background . 41

3.1.1 Classification on Synthetic Aperture Radar (SAR) Imagery 41

3.1.2 Segmentation on Multi- or Hyperspectral Imagery 44

3.2 Core-Set Selection and Batch Active Learning 45

vi

3.2.1 Dijkstras Annulus Core-Set (DAC) Selection 46

3.2.2 LocalMax Batch Active Learning . 50

3.3 Feature Extraction and Preprocessing . 53

3.3.1 Neural Network Feature Embedding for SAR Imagery 54

3.3.2 Non-local Means Feature Extraction for MSI and HSI 55

3.4 Experiments and Results: SAR Image Classification 57

3.4.1 Accuracy And Efficiency . 59

3.4.2 Sensitivity Analysis . 63

3.5 Experiments and Results: MSI and HSI Segmentation 64

3.5.1 Comparison between LocalMax and Sequential Active Learning: Ac-

curacy and Efficiency . 66

3.5.2 Semi-Supervised Image Segmentation with Low Label Rates 68

3.5.3 Comments on Our Experiments . 72

3.6 Conclusion . 77

4 Graph-based Active Learning for Surface Water and Sediment Detection

in Multispectral Images . 79

4.1 Introduction . 80

4.2 Graph-based Active Learning Pipeline . 84

4.2.1 Contrastive Learning . 85

4.2.2 Feature Preprocessing . 86

4.2.3 Create the Representative Set . 90

4.2.4 Pipeline Structure . 93

4.3 Experiments and Results . 95

vii

4.3.1 Comparison between different methods 98

4.3.2 Performance on other regions . 103

4.3.3 Efficiency Analysis . 107

4.3.4 Low-dimensional Visualization of Feature Vectors 107

4.4 GraphRiverClassifier: A Global Classifier for Water and Sediment Pixels in

Satellite Images . 108

4.4.1 Google Platforms . 109

4.4.2 Global Classifier of Water and Sediment 109

4.4.3 Robustness to Different Resolutions 110

4.5 Conclusion and Future Directions . 110

5 Graph-based Active Learning for Nearly Blind Hyperspectral Unmixing 115

5.1 Introduction . 116

5.1.1 Literature Review of HSU . 116

5.1.2 Motivation and Our Contributions 118

5.2 Semi-supervised Hyperspectral Unmixing . 120

5.2.1 Training Data Selection . 121

5.2.2 Graph Learning Unmixing (GLU) . 123

5.2.3 Graph-regularized Semi-supervised Unmixing (GRSU) 124

5.3 Experiments and Results . 129

5.3.1 Method Comparison . 130

5.3.2 Discussion on the Number of Training Pixels 136

5.3.3 Robustness Study . 142

5.4 Conclusion . 144

viii

6 AutoKG: Efficient Automated Knowledge Graph Generation for Language

Models . 146

6.1 Introduction . 147

6.2 Automated KG Generation . 150

6.2.1 Keywords Extraction . 150

6.2.2 Graph Structure Construction . 152

6.2.3 Time Complexity Analyzation . 155

6.2.4 Remarks . 156

6.3 hybrid search: Incorporating KG and LLM 157

6.4 Experiments and Results . 159

6.4.1 A Simple Example: Why We Need KG? 160

6.4.2 An Example with Article References 162

6.4.3 Efficiency Analyzation . 164

6.5 Conclusion . 165

7 Conclusion . 167

References . 170

ix

LIST OF FIGURES

2.1 An example of the graph Laplacian L = D −W 16

2.2 Flowchart of the active learning process. The active learning loop is based on a

fixed graph. In each step, we apply Laplace learning on the graph and update

the labeled set with a query set selected based on the current acquisition function

values. It should be noticed that it might need the human-in-the-loop process to

obtain the label of the selected query set in each step of the active learning process. 28

3.1 Three samples of SAR images. From left to right, the images show vehicles or

ships from MSTAR [AD], OpenSARShip [HLL17], and FUSAR-Ship [HAS20]. . 43

3.2 An example of the sampling process of the DAC algorithm with an outer density

radius of 0.3. The dataset is generated by sampling uniformly at random in the

unit square. The blue, black and gold points denote the unseen points, the seen

points and the points in the annular set, respectively. In iteration 0, the annular

set is empty and the unseen set isn’t empty. This means the algorithm picks a

point at random from the unseen points to add to the core-set. In subsequent

iterations, the algorithm picks a point at random from the annular set. It then

updates the annular region as described in Algorithm 2. This process terminates

at iteration 14 when the entire dataset is the seen set. The set of red points in

panel (e) is the output DAC core-set, which is nearly uniformly distributed in the

whole dataset. 48

x

3.3 An example of DAC and LocalMax on the checkerboard dataset. In all panels, red

points denote the labeled core-set generated by DAC. Panel (a) shows the ground

truth classification. Panel (b) shows the classification results of Laplace learning

based on the labeled core-set. Panel (c) shows the heatmap of the uncertainty

acquisition function evaluated on the dataset. For the uncertainty acquisition

function, high acquisition values concentrate near the decision boundary. In panel

(c), the purple stars denote points in the query set returned by LocalMax with a

batch size of 10. 51

3.4 Flowchart for fine-tuned transfer learning. The parameters in the convolutional

layers (contained in dotted boxes) of the pretrained CNN are transferred to the

new CNN. In fine-tuned transfer learning, all the transferred parameters are

trained for a few iterations on the new dataset. The training occurs by first

adding new fully connected layers at the end of the neural network and perform-

ing supervised learning with the new dataset. When training is complete, only

the layers in the dotted boxes are kept for the embedding process. The orange

layer denotes the feature layer, and the outputs of this layer provide the feature

vectors used later in the pipeline. 55

3.5 The feature extraction process for a single pixel. The feature vector is a Gaussian-

weighted patch centered on the pixel. 56

3.6 Our graph-based active learning pipeline for the image segmentation task. Red

box: feature extraction; Blue box: Graph Construction (Section 2.2.1); Yellow

box: Batch Active Learning (Section 2.3 and 3.2.2); Green box: Graph Learning

(Section 2.2.2). 57

xi

3.7 Plots of accuracy v.s. the number of labeled points for five different active learning

methods. Details about these active learning methods are shown in the caption

of Table 3.2. Panel (a) and (b) contain the results for the OpenSARShip and

FUSAR-Ship datasets, respectively. In each panel, our LocalMax method (blue

curve) and the sequential active learning (purple curve) are almost identical and

are the best-performing methods. According to Table 3.2, LocalMax is much

more efficient, proportional to the batch size. 61

3.8 Plots of accuracy v.s. Number of labeled points for each embedding and dataset.

In each panel, we show four curves generated by LocalMax with acquisition

functions (Section 2.3.2), together with the SOTA CNN-based method [ZZK21].

Three rows from top to bottom correspond to the OpenSARShip, FUSAR-Ship,

and MSTAR datasets. Three columns from left to right correspond to CNNVAE

embedding, zero-shot transfer learning embedding and fine-tuned transfer learn-

ing embedding. The UC acquisition function performs best among all the acqui-

sition functions tested. The parameters for these experiments are the same as

those specified in Table 3.1. 62

3.9 Urban Dataset. Panel(a) shows the raw hyperspectral image we used for experi-

ments. Panel(b) shows the ground-truth labels. Label information: asphalt (navy

blue), grass (light blue), trees (yellow), roof (red). 65

3.10 Comparison between batch and sequential active learning methods for four ac-

quisition functions. Each panel includes four curves, of which the X-axis is the

number of labeled pixels and the Y-axis is the accuracy. The blue, yellow, green,

and red curves correspond to the Random, Top-Max, LocalMax, and Sequential

sampling method respectively for the active learning process. More details on

accuracy values and time consumption are shown in Table 3.5. Descriptions of

each sampling method are in Section 3.5.1. 69

xii

3.11 The ground-truth labels and segmentation results of a Landsat-7 multispectral

image from the RiverPIXELS dataset. The segmentation was performed using

0.3% labeled pixels sampled with the LocalMax batch active learning method, a

batch size of 20, and the UC acquisition function, with feature vectors of 7×7

neighborhood patches. 74

3.12 The segmentation result of the Urban dataset with 0.3% labeled pixels sampled

according to LocalMax batch active learning with batch size 10 with different

acquisition functions, (a): UC; (b): MCVOpt. Label information: asphalt (navy

blue), grass (light blue), trees (yellow), roof (red). The ground-truth labels are

in Figure 3.9. 75

3.13 The ground-truth (a) of 5211 pixels and segmentation result (b) of the KSC

dataset. The segmentation result is with 6% labeled pixels sampled according to

LocalMax batch active learning with batch size 10 and the UC acquisition function. 75

4.1 The flowchart of our basic contrastive graph-based active learning pipeline (CGAP):

1. (Red Boxes) Use a neural network trained by contrastive learning to preprocess

images into feature vectors. 2. (Yellow Box) Condense the labeled feature vector

set into a smaller representative set (RepSet) using active learning approaches.

3. (Cyan Box) Build a graph based on the union of the RepSet and the unlabeled

feature set. Then, apply graph learning approaches to predict labels for unlabeled

features. 82

4.2 The architecture of our feature embedding neural network. 88

4.3 The creation of the RepSet with active learning. This process uses the graph

Laplace learning [ZGL03], the Uncertainty acquisition function [BLS18, MLB20,

QSW19], and the LocalMax batch active learning [CCT23] approaches. 89

xiii

4.4 Results for a Patch of Waitaki River. Original Patch name: “Waitaki River 1

2019-03-02 074 091 L8 413 landsat”. This Patch contains an estuary and a coast-

line. Panel (k) is the original DWM prediction for water and non-water pixels

while other panels (b)-(j) are 3-class results of land, water, and sediment. . . . 104

4.5 Results for a Patch of the Colville River. Original Patch name: “Colville River 2

2015-07-11 076 011 L8 125 landsat”. This Patch contains a complex network of

water, including a mainstream, some lakes and small tributaries. Panel (k) is

the original DWM prediction for water and non-water pixels while other panels

(b)-(j) are 3-class results of land, water, and sediment. 104

4.6 Experiment on images of Yana river. Original “Yana River 1 1991-08-13 122 012

L5 511 landsat”. This Patch contains a complex network of water, including a

mainstream, some lakes and small tributaries. Panel (k) is the original DWM

prediction for water and non-water pixels while other panels (b)-(j) are 3-class

results of land, water, and sediment. 105

4.7 Results for the Ucayali River. Original Patch name: “Ucayali River 1 2018-09-

11 006 066 L8 549 landsat”. This Patch includes two mainstreams and some

small tributaries. Purple, cyan, and yellow represent land, water, and sediment

respectively. 105

4.8 Results from a Patch of the Ucayali River. Original Patch name: “Ucayali River 1

2018-09-11 006 066 L8 316 landsat”. This patch includes some light clouds.

Purple, cyan, and yellow represent land, water, and sediment respectively. . . . 113

4.9 This figure shows low-dimensional visualizations of feature vectors with UMAP

(panels (a)-(c)) and t-SNE (panels (d)-(f)). Three columns are about raw, Sim-

CLR, and SupCon feature vectors of pixels in the whole RiverPIXELS dataset.

Purple, cyan, and yellow represent land, water, and sediment respectively. . . . 113

xiv

4.10 Results from an image of the Ucayali River which is not included in the River-

PIXELS dataset. Region information: a rectangle centering at -73.4487, -4.45291

with a longitude range of 0.2 and a latitude range of 0.15. Panel (a) is the RGB

visualization of the 30-meter resolution. Panels (b) - (d) are three predictions

of the same region with different resolutions. Purple, cyan, and yellow represent

land, water, and sediment respectively. Our predictions are robust among various

resolutions. 114

4.11 Results from an image of the Murray River which is not included in the River-

PIXELS dataset. Region information: a rectangle centering at 138.88, -35.559

with a longitude range of 0.3 and a latitude range of 0.15. Panel (a) is the RGB

visualization of the 30-meter resolution. Panels (b) - (d) are three predictions

of the same region with different resolutions. Purple, cyan, and yellow represent

land, water, and sediment respectively. Our predictions are robust among various

resolutions. 114

5.1 The flowchart of our semi-supervised hyperspectral unmixing models. The gray

box indicates an input hyperspectral image. The orange boxes are the graph con-

struction and graph-based active learning to select labeled nodes (pixels) for the

training process (Section 2.2.1, 2.3, and 5.2.1). Two red boxes are our proposed

models, Graph Learning Unmixing, GLU, (Section 5.2.2) and Graph-regularized

Semi-Supervised Unmixing, GRSU, (Section 5.2.3). GLU applies graph Laplace

learning directly to the unmixing task while GRSU combines the graph-based

regularization term with the linear unmixing model from hyperspectral imaging

into a joint optimization to be solved. GLU also serves to initialize the GRSU

optimization process. The blue boxes are the outputs of GLU and GRSU, i.e.,

estimated endmembers and abundance map. 119

xv

5.2 Results estimated by different methods on the Jasper Ridge dataset. The first

five columns are (unsupervised) blind unmixing methods and the following four

columns are our semi-supervised methods. Each row corresponds to an endmem-

ber, including Tree, Water, Dirt, and Road.

Panel (a) Abundance maps. The last two columns are the ground truth and

the label pixels selected by active learning (red dots) for our GLU and GRSU

methods. Each red dot corresponds to a labeled pixel, which is enlarged for vi-

sual illustration. Note that active learning successfully identifies pixels with high

abundance values for Road to acquire labels.

Panel (b) Endmember matrices estimated by different methods (in orange) with

the ground truth (in blue). All the endmember vectors are normalized to have

the unit norm. 137

5.3 Results estimated by different methods on the Samson dataset. The first five

columns are (unsupervised) blind unmixing methods and the following four columns

are our semi-supervised methods. Each row of the plot matrix corresponds to an

endmember of the dataset, including Soil, Tree, and Water.

Panel (a) Abundance maps. The last two columns are the ground truth and the

label pixels selected by active learning (red dots) for our GLU and GRSU meth-

ods. Each red dot corresponds to a labeled pixel, which is enlarged for visual

illustration.

Panel (b) Endmember matrices estimated by different methods (in orange) with

the ground truth (in blue). All the endmember vectors are normalized to have

the unit norm. 138

xvi

5.4 Results estimated by different methods on the Urban4 dataset. The first five

columns are (unsupervised) blind unmixing methods and the following four columns

are our semi-supervised methods. Each row of the plot matrix corresponds to an

endmember of the dataset, including Asphalt, Grass, Tree, and Roof.

Panel (a) Abundance maps. The last two columns are the ground truth and the

label pixels selected by active learning (red dots) for our GLU and GRSU meth-

ods. Each red dot corresponds to a labeled pixel, which is enlarged for visual

illustration. Note that both GLU-OH and GRSU-OH well preserve the contrast

of the rectangular rooftop in the Roof abundance.

Panel (b) Endmember matrices estimated by different methods (in orange) with

the ground truth (in blue). All the endmember vectors are normalized to have

the unit norm. 139

5.5 Results estimated by different methods on the Apex dataset. The first five

columns are (unsupervised) blind unmixing methods and the following four columns

are our semi-supervised methods. Each row of the plot matrix corresponds to an

endmember of the dataset, including Road, Tree, Roof, and Water.

Panel (a) Abundance maps. The last two columns are the ground truth and the

label pixels selected by active learning (red dots) for our GLU and GRSU meth-

ods. Each red dot corresponds to a labeled pixel, which is enlarged for visual

illustration.

Panel (b) Endmember matrices estimated by different methods (in orange) with

the ground truth (in blue). All the endmember vectors are normalized to have

the unit norm. 140

xvii

5.6 RMSE and SAD curves with respect to the number of labeled pixels for the Jasper

Ridge and the Apex datasets. For each plot, the x-axis on the top shows the per-

centage of labeled pixels, while the bottom one is the number of labeled pixels.

In the active learning process, we apply the MCVOpt and VOpt acquisition func-

tions for the Jasper Ridge and Apex datasets, respectively. Each curve starts

with only one random pixel per endmember and samples up to 5% of labeled pixels.141

5.7 RMSE (for A) and SAD (for S) curves concerning the SNR values of noisy input

of the Jasper Ridge dataset corrupted by Gaussian white noise. In both panels,

the performance of other blind methods is illustrated by dashed lines, whereas

solid lines represent our proposed semi-supervised methods. 143

6.1 Flowchart of the KG Construction Process. This figure illustrates the different

steps involved in the construction of the KG. The blue blocks represent the core

components of the KG, the yellow blocks indicate the embedding process, the

green blocks focus on keyword extraction, and the red blocks correspond to the

establishment of relationships between keywords and the corpus as well as among

the keywords themselves. 151

6.2 Subgraph Visualization:

Keyword Nodes . 163

6.3 Subgraph Visualization:

Keyword and Text Block Nodes . 163

xviii

LIST OF TABLES

1.1 A comprehensive list of abbreviations utilized throughout this thesis, arranged in

alphabetical order for ease of reference (Part 1). 9

1.2 A comprehensive list of abbreviations utilized throughout this thesis, arranged in

alphabetical order for ease of reference (Part 2). 10

1.3 A comprehensive list of notations utilized throughout this thesis, arranged in

alphabetical order for ease of reference (Part 1). 11

1.4 A comprehensive list of notations utilized throughout this thesis, arranged in

alphabetical order for ease of reference (Part 2). 12

3.1 Tables of parameters used in our experiments. All experiments use these param-

eters unless otherwise stated. In the left table, “transfer learning data” refers to

the amount of data used in fine-tuned transfer learning. This data is sampled

uniformly at random and is then used as part of the core-set before performing

DAC. In the right table, “final labels” refers to the size of the labeled dataset

as a percent of the total dataset size at the end of the active learning process.

Also, “TL architecture” refers to the pretrained PyTorch neural network used for

transfer learning on each dataset. 59

xix

3.2 Time consumption and accuracy comparison among different active learning meth-

ods. This experiment uses a CNNVAE embedding for MSTAR and zero-shot

transfer learning for OpenSARShip and FUSAR-Ship. Additionally, the param-

eters for all the methods are listed in Table 3.1. LocalMax is the batch sampling

method introduced in Section 3.2.2. Random is a batch active learning method

that randomly chooses a new batch with the desired size. TopMax is a batch ac-

tive learning method that chooses the n points with the highest acquisition values.

The acq sample method assigns each point with a probability to be picked pro-

portional to the acquisition value and randomly samples n points as a batch.

All batch active learning methods have comparable efficiency and are 9 to 15

times faster than the sequential case. The local max method always achieved

higher accuracy than other batch active learning methods and is comparable to

the accuracy of sequential active learning. 60

3.3 Sample statistics of accuracy after 20 experiments of the batch active learning

pipeline with zero-shot transfer learning, fine-tuned transfer learning, and fine-

tuned transfer learning with data augmentation (last column). The number in

each cell represents the mean ± one standard deviation across the 20 experi-

ments. The zero-shot and fine-tuned embeddings are the same as mentioned in

Section 3.3.1. The parameters in these experiments are the same as those specified

in Table 3.1. 63

3.4 Accuracy values of one run of LocalMax for different choices of neural networks.

Each experiment uses zero-shot transfer learning (no fine-tuning) and the param-

eter values specified in Table 3.1. The highest accuracy value in each column is

bolded. As shown in the table, the range of model performance across architec-

tures is 8.10% and 4.82% for OpenSARShip and FUSAR-Ship, respectively. . . . 63

xx

3.5 This table shows the efficiency and accuracy performance of active learning sam-

pling methods with different acquisition functions. The ’Acq’ column refers to

the acquisition function. The ’Sampling’ column refers to the choice of active

learning sampling methods, including Sequential, Random, Top-Max, and Local-

Max, the last three of which are batch active learning. The ’B’ column is the

batch size. Timings and accuracies are shown for up to 0.1% and 0.15% labeled

pixels in the Urban dataset. The top two accuracy values are bolded for each

acquisition function. Descriptions of each sampling method are in Section 3.5.1. 70

3.6 The overall accuracy (averaged over 15 random samples) of our LocalMax batch

active learning method with different acquisition functions and sampling strate-

gies on the Landsat-7 multispectral image. Results are shown for various label

rates, with each process initiated using 10 labeled pixels per class (30 total). . . 73

3.7 The overall accuracy (averaged over 15 random samples) of our LocalMax batch

active learning method with different acquisition functions and sampling strate-

gies on the Urban dataset. Results are shown for various label rates, with each

process initiated using 1 labeled pixel per class (3 total). 73

3.8 The overall accuracy (averaged over 15 random samples, based on 5211 labeled

pixels) of our LocalMax batch active learning method with different acquisition

functions and sampling strategies on the KSC dataset. Results are shown for

various label rates, with each process initiated using 1 labeled pixel per class (13

total). The underlined value is copied from paper [MMK17]. 76

xxi

4.1 Information of training and test datasets of different methods implemented in the

experiments in this chapter. Methods implemented here are B-CGAP, A-CGAP,

GAP, SVM, RF, retained DWM (DWM-R), and original DWM (DWM-O). SVM

and RF’s suffix “-E” corresponds to using the neural network embedding features.

The training set of DWM-O is the original training set of DeepWaterMap, while

other methods use training sets sampled from RiverPIXELS. The test sets used

in different sections of this chapter vary, with Ĩ used in Section 4.3.1, Ĩex used

in Section 4.3.2, and no test set used in Sections 4.3.3 and 4.3.4. K, M, and B

denote thousands, millions, and billions, respectively. 99

4.2 The comparison among different methods trained as 3-class classifiers of the land,

water, and sediment. This table compares our B-CGAP, A-CGAP, GAP, SVM,

RF, and retrained DWM (DWM-R). SVM and RF include both the non-local

means feature vectors and the neural network embedding feature vectors (-E).

Accuracy metrics include the true positive rate (TPR), false positive rate (FPR)

of each class, the boundary accuracy of distances 3 and 10 (BA(3), BA(10)), and

the overall accuracy (OA). The first row “importance” indicates the important

ranking of three different types of accuracy metrics. The best one of each accuracy

metric (each column) is bolded. Our B-CGAP performs the best on boundary

accuracies and the overall accuracy. 100

xxii

4.3 The comparison among different methods trained as 2-class classifiers of the land

and water. To compare with the original DeepWaterMap (DWM-O), we changed

all ground-truth labels of sediment into land. This table compares our B-CGAP,

A-CGAP, GAP, SVM, RF, and original DWM (DWM-O). Accuracy metrics in-

clude the true positive rate (TPR) and false positive rate (FPR) of each class,

the boundary accuracy of distances 3 and 10 (BA(3), BA(10)), and the overall

accuracy (OA). The first row “importance” indicates the important ranking of

three different types of accuracy metrics. The best one of each accuracy metric

(each column) is bolded. Our B-CGAP performs the best on boundary accuracies

and overall accuracy. It is a coincidence that the B-CGAP and GAP have the

same land TPR and Water FPR. 101

4.4 This table shows the comparison of our GAP and B-CGAP to SVM, RF, DWM-

R, and DWM-O. Accuracy values in this table are based on the extra test set

Ĩex consisting of 54 images of the Ucayali river, while methods in this table are

trained on the training set I of the Arctic and New Zealand. More details of the

training set refer to Table 4.1. Metrics are the boundary accuracy of distances 3

and 10 (BA(3), BA(10)), and the overall accuracy. The best one of each accuracy

metric (each column) is bolded. To compare with the retrained DWM (DWM-

R) and the original DWM (DWM-O), we provide results on 3 classes (columns

”Retrain DWM”) and 2 classes (columns Sed→Land). Our B-CGAP performs

the best on boundary accuracies and overall accuracy. 106

4.5 This table shows the time consumption for our GAP, B-CGAP, and A-CGAP.

The neural network (NN) training and deploying stages use the GPU, and all

other processes are on the CPU. Although the neural network training takes a

relatively long time, it reduces both the active learning time and model deploying

time significantly. 108

xxiii

5.1 Parameter choices and training data information for our GLU and GRSU models.

Parameters α, λ, γ, ρ are all associated with GRSU, while GLU only involves one

parameter α (same as the one used in GRSU). “Acu Fun” means the acquisition

function applied in the active learning process. “Training Pixels” means the

number of labeled pixels used for the training process. “Training Percentage”

means the percentage of labeled pixels to all pixels. “Num Each Class” means

the number of labeled pixels of each endmember. 131

5.2 This table presents the computation times of various methods applied to each

dataset. Specifically, the GLNMF, QMV, and GTVMBO methods are executed

in MATLAB, with their times indicated by an asterisk (∗), while the other meth-

ods are implemented in Python. The computation time is measured in seconds.

The best computation times from the unsupervised and semi-supervised methods

are highlighted in bold in each row. Rhe proposed methods (GLU and GRSU)

run much faster than the neural network methods approaches (MSC and EGU),

and are comparable to traditional unsupervised methods (GLNMF, QMV, and

GTVMBO). 131

5.3 Comparison results in terms of RMSE(A,Agt) for the abundance maps: four of our

semi-supervised methods (with around 0.4% of labeled pixels) are compared with

five (unsupervised) blind unmixing methods on four publicly available datasets.

For each row, the best results of unsupervised methods and our semi-supervised

methods are bolded, respectively. The best of our methods achieves nearly 50%

improvements over the unsupervised ones in most cases. 132

5.4 Comparison results in terms of SAD(S, Sgt) for the endmember spectrum matrices

S: four of our semi-supervised methods (with around 0.4% of labeled pixels)

are compared with five (unsupervised) blind unmixing methods on four publicly

available datasets. For each row, the best results of unsupervised methods and

our semi-supervised methods are bolded, respectively. 133

xxiv

6.1 Prompt Construction for Different Tasks Using LLM 154

xxv

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my advisor, Andrea

Bertozzi. Her guidance, support, and wisdom have been instrumental not only in my aca-

demic journey but also in my personal growth. Professor Bertozzi has been an extraor-

dinary mentor, always encouraging me to push the boundaries of my research and think

critically. Her passion for science and her dedication to her students have been truly inspir-

ing. Throughout my doctoral studies, Professor Bertozzi has provided me with countless

opportunities to collaborate with brilliant researchers, attend conferences, and engage in

interdisciplinary projects. Her trust in my abilities and her unwavering support have given

me the confidence to tackle challenging problems and explore new ideas. Beyond the realm

of research, Professor Bertozzi has also taught me valuable life lessons, such as the impor-

tance of perseverance, the power of effective communication, and the value of building strong

professional relationships.

I would also like to extend my sincere appreciation to my collaborators, namely, Joce-

lyn Chanussot, Yifei Lou, Jeff Calder, Jon Schwenk, Kevin Miller, James Chapman, Jason

Brown, Harris Hardiman-Mostow, Adrien Weihs, Kaiyan Peng, Tan Zheng, George Mohler,

Frederic Schoenberg, Pujan Shrestha, Tara Lyn Slough, and Johannes Urpelainen. Their

expertise, insights, and dedication have been instrumental in shaping the research presented

in this thesis. I am deeply grateful for the opportunity to work alongside such talented indi-

viduals, and I am thankful for the knowledge and skills they have shared with me throughout

our collaborations.

I gratefully acknowledge the financial support provided by the UC-National Lab In-

Residence Graduate Fellowship Grant L21GF3606 and NSF grant DMS-2027277. These

grants support me in conducting the research presented in this thesis, and I deeply appreciate

the opportunities and interesting research topics they afforded me.

The UC-National Lab fellowship provided me with the invaluable opportunity to con-

xxvi

duct research at Los Alamos National Laboratory (LANL), where I was able to broaden my

horizons significantly. The experience at LANL allowed me to collaborate with exceptional

scientists, access cutting-edge resources, and engage in interdisciplinary research projects.

This exposure to a diverse range of scientific perspectives and techniques has greatly enriched

my doctoral journey and has had a profound impact on my growth in academia. Further-

more, I would like to thank Dr. Jon Schwenk and his wife at LANL for their support and

hospitality during my stay in Los Alamos. Dr. Schwenk kindly offered me the opportunity

to rent a room in his home, providing a comfortable and welcoming living environment that

greatly enhanced my experience in Los Alamos. The warm and friendly atmosphere, both

at Dr. Schwenk’s home and throughout the LANL community, created an ideal setting for

intellectual growth and personal development.

Chapter 1 provides a high-level overview of the graph-based machine-learning approaches

and the structure of this thesis.

Chapter 2 reviews the mathematical background information for this thesis, including

graph-related concepts, graph learning, and active learning. It is important to note that this

chapter does not contain any novel contributions; rather, it serves as a review of prior work

in these areas. The content covered in this chapter forms the mathematical foundation upon

which the innovative methods presented throughout the remainder of the thesis are built.

By providing a comprehensive overview of the relevant background material, this chapter

aims to ensure that readers have the necessary context and understanding to fully appreciate

the novel contributions made in the subsequent chapters.

Chapter 3 is related to my papers [CCT23, CMB23a, BCH23]. The paper [CCT23]

is approved for public release, NGA-U-2023-00750. The paper [CMB23a] is approved for

public release, NGA-U-2023-00757. In papers [CCT23, BCH23], I am the co-first author,

and in [CMB23a], I am the sole first author. My main contribution for [CCT23] is proposing

the core method, LocalMax batch active learning. In [BCH23], I primarily contribute by

proposing the use of graph learning for hyperspectral image segmentation and conducting the

xxvii

corresponding experiments. For [CMB23a], I apply graph learning and batch active learning

for image segmentation and independently complete the main experiments. I acknowledge

the contributions to these papers made by the other authors, Andrea Bertozzi, Jocelyn

Chanussot, Jeff Calder, Jon Schwenk, Kevin Miller, James Chapman, Jason Brown, Harris

Hardiman-Mostow, Adrien Weihs, and Tan Zheng.

Chapter 4 is related to my papers [CMB23b, CMB24]. The paper [CMB23b] was ap-

proved for public release, NGA-U-2023-01028. The paper [CMB24] is submitted to the IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sensing (JSTARS). I

am the sole first author of these two papers. My contribution to paper [CMB23b] is proposing

a graph-based active learning pipeline (GAP) to detect surface water and sediment pixels in

multispectral satellite images and conducting extensive experiments. Our GAP requires sig-

nificantly less data while achieving better results than some neural network-based methods.

In [CMB24], my main contribution is improving the GAP by combining it with a feature

embedding neural network trained using contrastive learning, which not only further im-

proves accuracy but also greatly enhances efficiency. Additionally, I independently develop

a Python-based tool that allows users to easily obtain results from Landsat images for any

location on Earth. I acknowledge the contributions to these papers by the other authors,

Andrea Bertozzi, Jon Schwenk, and Kevin Miller.

Chapter 5 is related to my paper [CLB23]. I’m the sole first author of this paper. The

paper [CMB23b] is approved for public release on May 12, 2023, NGA-U-2023-01028. My

main contribution to this paper is proposing a novel hyperspectral unmixing method. I

combine the traditional linear mixing model with a graph-based regularization term, al-

lowing the originally unsupervised method to accept ground-truth information for certain

pixels. Through detailed experiments, I demonstrate that our new approach achieves an ap-

proximately 50% performance improvement over unsupervised methods while only requiring

information from about 0.3% of the pixels. I acknowledge the contributions to these papers

by the other authors, Andrea Bertozzi, Jocelyn Chanussot, and Yifei Lou.

xxviii

Chapter 6 is related to my paper [CB23]. I’m the sole first author of this paper. My

contribution to this paper is the development of the core method, AutoKG, which enables

automatic knowledge graph generation based on language models, as well as a hybrid search

method that utilizes these knowledge graphs. Additionally, I created a Python demo that

provides a simple test of the methods presented in this paper. I acknowledge the contribution

of the only co-author, Andrea Bertozzi, and the assistance of ChatGPT-4 in the first draft

of the exposition of the manuscript of this paper.

The author gratefully acknowledges the permissions granted by publishers Springer,

IEEE, and SPIE for the reuse of content in this thesis that has been previously published

by the author.

xxix

VITA

2018 B.S. (Mathematics), Department of Scientific and Engineering Computing,

School of Mathematical Science, Peking University; Bachelor of Economics,

National School of Development, Peking University.

2018-2021 Graduate Research Assistant, Department of Mathematics, UCLA.

2021-2024 Visiting Researcher, Los Alamos National Laboratory, supported by UC-

National Lab In-Residence Graduate Fellowship

PUBLICATIONS

Bohan Chen, and Andrea L. Bertozzi. “AutoKG: Efficient Automated Knowledge Graph

Generation for Language Models.” In 2023 IEEE International Conference on Big Data

(BigData), pp. 3117-3126. IEEE, 2023.

Jason Brown, Bohan Chen, Harris Hardiman-Mostow, Adrien Weihs, Andrea L. Bertozzi,

and Jocelyn Chanussot. “Material Identification in Complex Environments: Neural Network

Approaches to Hyperspectral Image Analysis.” In 2023 13th Workshop on Hyperspectral

Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp. 1-5. IEEE,

2023.

Bohan Chen, Yifei Lou, Andrea L. Bertozzi, and Jocelyn Chanussot. “Graph-Based Active

Learning for Nearly Blind Hyperspectral Unmixing” in IEEE Transactions on Geoscience

and Remote Sensing, vol. 61, pp. 1-16, 2023, Art no. 5523716.

xxx

Bohan Chen, Kevin Miller, Andrea L. Bertozzi, and Jon Schwenk. “Graph-based Active

Learning for Surface Water and Sediment Detection in Multispectral Images”, IGARSS 2023

- 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA,

2023, pp. 5431-5434.

Bohan Chen, Kevin Miller, Andrea L. Bertozzi, and Jon Schwenk. “Batch active learning

for multispectral and hyperspectral image segmentation using similarity graphs.” Commu-

nications on Applied Mathematics and Computation (2023): 1-21.

James Chapman, Bohan Chen, Zheng Tan, Jeff Calder, Kevin Miller, and Andrea L.

Bertozzi. “Novel batch active learning approach and its application on the synthetic aperture

radar datasets.” In Algorithms for Synthetic Aperture Radar Imagery XXX, vol. 12520, pp.

96-111. SPIE, 2023.

Bohan Chen, Pujan Shrestha, Andrea L. Bertozzi, George Mohler, and Frederic Schoen-

berg. “A Novel Point Process Model for COVID-19: Multivariate Recursive Hawkes Pro-

cess.” In Predicting Pandemics in a Globally Connected World, Volume 1: Toward a Multi-

scale, Multidisciplinary Framework through Modeling and Simulation, pp. 141-182. Cham:

Springer International Publishing, 2022.

Bohan Chen, Kaiyan Peng, Christian Parkinson, Andrea L. Bertozzi, Tara Lyn Slough, and

Johannes Urpelainen. “Modeling illegal logging in Brazil.” Research in the Mathematical

Sciences 8, no. 2 (2021): 29.

xxxi

CHAPTER 1

Introduction

In recent years, graph-based approaches have emerged as a powerful tool for analyzing and

understanding complex data structures [Str01, New03], particularly in the domains of image

and document analysis [Zhu05, MKB13, JPC21, PLW23]. Graphs provide a natural and

intuitive representation of the relationships and dependencies among entities or data points,

allowing for the development of sophisticated algorithms that can uncover hidden patterns

and extract meaningful insights. This thesis explores the frontier of graph-based approaches,

pushing the boundaries of what is possible in image and document analysis by introducing

novel techniques and methodologies.

The field of image and document analysis has witnessed significant advancements thanks

to the proliferation of deep learning and computer vision techniques [LBD89, HZR16, VSP17].

However, these approaches often rely on large amounts of labeled data, which can be expen-

sive and time-consuming to acquire. Moreover, they may struggle to capture the intricate

relationships between objects and regions within an image or document. Graph-based ap-

proaches offer a complementary perspective, focusing on the structural and relational aspects

of the data. By exploiting the inherent connections and dependencies within the data, graph-

based methods can reduce the reliance on extensive labeled datasets while still providing

interpretable and robust solutions [Zhu05, WPC20]. This makes graph-based approaches

particularly attractive for scenarios where labeled data is scarce or where the underlying

structure of the data plays a crucial role in the analysis.

This thesis aims to bridge the gap between graph structure and image or document anal-

1

ysis, demonstrating the potential of graph-based approaches to tackle challenging problems

in these domains. By leveraging the expressive power of graphs, we develop innovative al-

gorithms and frameworks that can efficiently process and analyze complex datasets with

limited labeled data. Our contributions advance the state-of-the-art in graph-based meth-

ods and provide new insights into the effectiveness of these approaches in various application

scenarios.

The remainder of this chapter is organized as follows. Section 1.1 provides a comprehen-

sive review of existing graph-based approaches for image and document analysis, highlighting

their strengths and limitations. Section 1.2 presents an overview of the main contributions of

this thesis, outlining the key ideas and remarkable experimental results. Finally, Section 1.3

introduces the necessary preliminaries and notations used throughout the thesis.

1.1 A Review of Graph-Related Learning Approaches

Graph learning refers to machine learning with graph structures, in contrast to other ap-

proaches such as support vector machines (SVMs) [CV95], random forests (RFs) [Ho95], or

multilayer perceptrons (MLPs) [Hay98]. The graph structure encapsulates the macroscopic

geometric configurations and the associations between pairs of data within the dataset, of-

fering a unique lens through which to view and analyze data interconnections and dependen-

cies. By leveraging the graph structure, graph learning can effectively capture the complex

relationships and dependencies among data points, which is crucial for many real-world ap-

plications, especially for the case of limited labeled data. The types of data we commonly

encounter in our daily lives, such as sound, text, and images, all have direct mathemati-

cal representations. Sound and text can be regarded as time series, while images can be

considered as three-dimensional matrices. Graph structures, essentially, are abstract repre-

sentations of a set of objects and the relationships between them [Wes01]. This structure

can express not only the aforementioned types of data, such as sound, text, and images but

2

also complex structures like social networks and disease transmission.

In the process of machine learning, fully supervised learning utilizes labeled data, while

unsupervised learning employs only unlabeled data. Semi-supervised learning, on the other

hand, leverages information from both labeled and unlabeled data to make predictions about

the unlabeled data [Zhu05]. Here, we focus on graph-based semi-supervised learning, al-

though graph learning also finds applications in unsupervised learning (e.g., Spectral clus-

tering [NJW01, Von07]) and fully supervised learning (e.g., graph neural networks [ZCH20]).

In the semi-supervised setting, we consider a graph on the whole available dataset. Graph

learning leverages the graph structure to propagate labels from a small set of labeled nodes

to a larger set of unlabeled nodes.

There are two common methods for graph-based semi-supervised learning. The first

method is Graph Neural Networks (GNNs) [ZCH20], which predict node labels, edge at-

tributes, or entire graph characteristics by learning the complex relationships and patterns

between nodes. For instance, Graph Convolutional Networks (GCNs) [KW17, WSZ19,

TNX21] leverage convolutional operations on the graph, enabling the model to learn node

representations by aggregating features from their neighbors, thus effectively harnessing both

graph topology and node features for learning. The second typical graph learning method is

the focus of this thesis, which classifies unlabeled nodes in the graph by solving optimization

problems related to graph energy. Such optimization problems aim to minimize the graph

Dirichlet energy [Eva22] and its variant forms [ZGL03, BLR04], or the Ginzburg–Landau

functional [BF12, BM19] under a regularization term based on labeled node information.

These methods have a solid mathematical foundation; for instance, Graph Laplace Learning

[ZGL03] can be related to Laplace’s equation and harmonic functions on graphs. For node

classification tasks, the label propagation results derived from these methods offer good inter-

pretability and allow for further analysis, such as uncertainty quantification [BLS18, QSW19].

In the domain of image analysis, graph learning and its related methodologies have

seen numerous successful applications. These include noisy image recovery [MKB13, TM13,

3

VFM20], image or video segmentation [GO09, HLP13, MSB14, GMB14, CBC14, HSB15,

BBT18, BPB20], studies using remotely-sensed images to combine LIDAR and optical images

[ICB21], image super-resolution [RF17, YRH21], and blind hyperspectral unmixing [QLC19,

QLC21].

In the domain of document analysis, graph-related methods are often closely tied to

knowledge graphs (KGs) [JPC21, PLW23]. Knowledge graphs have been shown to enhance

the reasoning capabilities of language models [XYC19] and reduce hallucinations [JLF23],

which are false or nonsensical outputs generated by the models. By integrating structured

knowledge from KGs, language models can ground their predictions in real-world facts and

relationships, leading to more accurate and coherent results [ZCZ21]. The applications of

knowledge graphs in document analysis are extensive, ranging from information extraction

[PLW23, ZWL23] and document classification [RRT21] to question answering, text summa-

rization [HWW20], and entity linking [MSP20]. In each of these tasks, KGs can provide

valuable semantic information and prior knowledge to guide the systems and improve their

performance and interpretability [PRL19, SCM22].

Building upon the concepts of semi-supervised learning with limited labeled data, graph-

based active learning takes a step further by actively selecting the most informative data

points to be labeled, guided by the graph structure [Set09, Das11]. While semi-supervised

learning already reduces the need for labeled data by leveraging unlabeled instances, graph-

based active learning can further minimize the labeling requirements or improve the model’s

performance with the same amount of labeled data [ZLG03, JH12, CZC17, MLB20, MC23].

The goal of active learning is to select the most informative instances for labeling, thereby

reducing the labeling effort while maximizing the model’s performance [CK13, WIB15]. This

is typically achieved through the use of acquisition functions [Set09, JH12, MMS22, MB24],

which evaluate the informativeness of unlabeled instances. By leveraging the graph struc-

ture, active learning algorithms can identify vertices that are most uncertain [BLS18, BM19,

QSW19, MC23], meaning they are difficult to classify confidently, or those that would lead

4

to the most significant change in the model’s predictions if labeled [MMS22, MB24]. By

iteratively querying these informative instances and updating the model, active learning can

efficiently learn from a small number of labeled examples [WY13]. This selective query-

ing process is particularly valuable in scenarios where labeling data is expensive or time-

consuming, as it allows for the efficient allocation of labeling resources.

Moreover, the propagation mechanism in graph-based active learning can propagate label

information through the graph, effectively amplifying the impact of each labeled instance and

reducing the overall labeling requirements [ZLG03, ZGL03, Zhu05]. In some cases, graph-

based active learning has been shown to achieve comparable performance to fully supervised

learning with only a fraction of the labeled data [CMB23b, CMB24]. This highlights the

potential of graph-based active learning to significantly reduce the burden of data labeling

while maintaining high model performance.

This section is not the only review part in this thesis. In each subsequent chapter, namely

Chapter 2, Chapter 3, Chapter 4, Chapter 5, and Chapter 6, we will offer more specific

reviews relevant to the respective chapter’s focus. In Chapter 2, we provide more details

about graph learning (Sections 2.1 and 2.2) and active learning (Section 2.3) approaches. In

Chapter 3, we will review sequential and batch active learning methods, as well as delve into

the topic of Synthetic Aperture Radar (SAR) imagery. Chapter 4 will provide an overview

of remote sensing and related image segmentation techniques. In Chapter 5, we will explore

hyperspectral imagery and hyperspectral unmixing methods. Finally, Chapter 6 will review

knowledge graph approaches in the context of language models.

1.2 Overview and Contributions

In this thesis, our key contributions lie in the development of efficient graph-based batch ac-

tive learning techniques, the integration of graph learning with advanced feature embedding

methods for improved semi-supervised learning performance, the incorporation of graph-

5

based regularization in hyperspectral unmixing for effective utilization of limited labeled

data, and the extension of graph Laplacian-based methods to automatically construct knowl-

edge graphs for enhancing the information retrieval and response generation capabilities of

large language models. These contributions collectively advance the frontier of graph-based

approaches for image and document analysis, enabling more effective and efficient learning

from limited labeled data and unlocking new possibilities for integrating graph learning with

other cutting-edge techniques. Our work spans across several domains, as enumerated below:

1. In Chapter 2, we provide a comprehensive review of the mathematical foundations

underpinning the novel contributions presented in the following chapters of this the-

sis. This chapter covers essential graph-related concepts, graph learning, and active

learning, which form the basis for the innovative methods introduced in the subsequent

chapters. By offering a thorough background, this chapter aims to equip readers with

the necessary knowledge to fully appreciate the original work presented in this thesis.

2. In Chapter 3, we focus on batch active learning and propose novel methods to improve

the accuracy and efficiency of the learning process. We introduce Dijkstra’s Annu-

lus Core-Set (DAC) for core-set generation and LocalMax for batch sampling. Fur-

thermore, we construct comprehensive pipelines that integrate transfer learning-based

feature embedding, graph learning, and batch active learning techniques to achieve

high-quality and efficient classification of SAR images and segmentation of hyperspec-

tral images with limited labeled data.

3. Chapter 4 presents our work on graph-based active learning for surface water and

sediment detection in multispectral images. We propose pipelines that significantly

reduce manual labeling costs and improve the accuracy of water and sediment detec-

tion. Moreover, we introduce contrastive learning strategies to enhance graph learning

efficiency and robustness. Furthermore, we develop an easy-to-use software package to

promote the application of our pipelines in global environmental monitoring.

6

4. In Chapter 5, we address the problem of nearly blind hyperspectral unmixing using

graph-based active learning. We propose an effective pipeline to select labeled pixels

and apply graph Laplace learning to the hyperspectral unmixing problem, developing

the graph learning unmixing (GLU) model. Furthermore, we introduce a novel semi-

supervised hyperspectral unmixing model, graph-regularized semi-supervised unmix-

ing (GRSU), which combines graph-based regularization terms with the linear mixing

model and a small number of labeled pixels. Our methods, GLU and GRSU, sig-

nificantly improve HSU performance using only a small number of easily obtainable

pseudo labels, bearing practical implications.

5. In Chapter 6, we introduce AutoKG, an innovative method for automated knowledge

graph (KG) generation based on a knowledge base comprised of text blocks. AutoKG

circumvents the need for training or fine-tuning neural networks, employs pretrained

large language models (LLMs) for extracting keywords as nodes, and applies graph

Laplace learning to evaluate the edge weights between these keywords. The output

is a simplified KG, where edges lack attributes and directionality, possessing only a

weight that signifies the relevance between nodes. We also present a hybrid search

strategy with prompt engineering, which empowers LLMs to utilize information from

the generated KGs effectively.

In summary, this thesis advances the state-of-the-art in graph-based learning and its

applications, offering novel methods and pipelines that improve performance, reduce manual

labeling costs, and expand the applicability of these techniques across various domains,

including image analysis and natural language processing.

1.3 Preliminaries and Notation

Before delving into the main content of this thesis, it is essential to establish some preliminary

information and clarify the notation used throughout the document.

7

Firstly, it is important to note that theorems, lemmas, corollaries, propositions, remarks,

definitions, problems, and conjectures share a common counter, ensuring a sequential num-

bering throughout the thesis. This maintains consistency and helps readers easily navigate

and reference these important elements.

Table 1.1 and Table 1.2 provide a comprehensive list of abbreviations utilized throughout

this thesis, arranged in alphabetical order for ease of reference. Readers are encouraged to

familiarize themselves with these abbreviations to ensure a smooth reading experience and

better understanding of the content.

Similarly, Table 1.3 and Table 1.4 offer a comprehensive list of notation used in this

thesis, arranged in alphabetical order.

Chapter 2, titled ”Background of Graph Learning and Active Learning,” serves as the

theoretical foundation for the entire thesis. The innovative methods presented in the subse-

quent chapters heavily rely on the concepts and techniques introduced in this background

chapter.

The following chapters, 3, 4, 5, and 6, contain relatively independent content. However,

each of these chapters includes its own introduction or background section, as well as a

relevant literature review, to provide context and support for the specific topics addressed

within them.

8

Abbreviation Description

ATR Automatic Target Recognition (Chapter 3)

BA Boundary Accuracy (Chapter 4)

CGAP Contrastive Graph Active Learning Pipeline (Chapter 4)

CNN Convolutional Neural Network [LBD89]

CNNVAE Convolutional Variational Auto-Encoders [KW13, PGH16]

DAC Dijkstras Annulus Core-Set (Chapter 3)

DWM Deep Water Map [IBP19]

EGU Endmember-Guided Unmixing network [HGY21]

EXT Exact abundance value (Chapter 5)

FPR False Positive Rate

GAP Graph Active Learning Pipeline (Chapter 4)

GCN Graph Convolutional Network [KW17]

GLNMF Graph-regularized ℓ1/2 Nonnegative Matrix Factorization

GLU Graph Learning Unmixing (Chapter 5)

GNN Graph Neural Network [ZCH20]

GRSU Graph-Regularized Semi-supervised Unmixing (Chapter 5)

GT Ground-truth

GTVMBO Graph Total Variation Merriman–Bence–Osher scheme [QLC21]

HSI Hultispectral Image/Imagery/Imaging

HSU Hyperspectral Unmixing (Chapter 5)

iff if and only if

KG Knowledge Graph (Chapter 6)

KNN K-nearest neighbors [AMN98]

KSC Kennedy Space Cente dataset

LLM Large Language Model (Chapter 6)

LocalMax LocalMax batch active learning approach (Chapter 3)

MC The model-change acquisition function [MB24] (Eq. (2.57))

Table 1.1: A comprehensive list of abbreviations utilized throughout this thesis, arranged in

alphabetical order for ease of reference (Part 1).

9

Abbreviation Description

MCVOpt The combined MC and VOpt acquisition function [MMS22] (Eq. (2.58))

MGR Multiclass Gaussian Regression graph learning model [MHS15, BHL21]

MLP Multilayer Perceptron [Hay98]

MSC Minimum Simplex Convolutional Network [RKS22]

MSI Multispectral image/imagery/imaging

MSTAR Moving and Stationary Target Acquisition and Recognition dataset [AD]

NMF Nonnegative Matrix Factorization [LS99, FLW22]

OA Overall Accuracy

OH One-hot pseudo label (Chapter 5)

PDE Partial Differential Equation

QMV Quadratic Minimum Volume [LWY12]

RF Random Forest [Ho95]

RMSE Root Mean Square Error (Chapter 5)

SAD Spectral Angle Distance (Chapter 5)

SAR Synthetic Aperture Radar (Chapter 3)

SimCLR The self-supervised contrastive learning approach: a Simple framework

for Contrastive Learning of visual Representations [CKN20]

SNR Signal-to-Noise Ratio [Gon09]

SOTA State-of-the-art

SSL Semi-supervised Learning

SupCon Supervised Contrastive learning [KTW20]

SVM Support Vector Machine [CV95]

TL Transfer Learning [PY09]

TPR True Positive Rate

UC The uncertainty acquisition function [Set09]. If not specified, it refers to

the smallest-margin function (Eq. (2.40))

VOpt The variance optimization acquisition function [JH12] (Eq. (2.51))

Table 1.2: A comprehensive list of abbreviations utilized throughout this thesis, arranged in

alphabetical order for ease of reference (Part 2).

10

Notations Description

A. ∗B, A./B Component-wise product and division between matrices A and B.

1n The all-one vector of dimension n.

A The matrix of abundance maps (Chapter 5)

A The acquisition function in the active learning process.

B The batch size in batch active learning.

d The dimension of each feature vector x ∈ X.

D The degree diagonal matrix of graph G.

ei The N -dimensional column vector with all zeros except a 1 at the

ith entry.

G = (X,W) The graph G with vertices X and the weight matrix W .

k The margin size of the patch neighborhood in pixel-wise feature ex-

traction (a (2k + 1)× (2k + 1) patch centering at the pixel).

K The number of neighbors in KNN graph construction.

L,Lsym, Lrw The unnormalized, normalized symmetric, and random walk graph

Laplacian matrices.

M The budget of the active learning i.e., maximum size of the labeled set.

nc The number of difference classes.

N The number of elements in the dataset or the number of graph vertices.

Table 1.3: A comprehensive list of notations utilized throughout this thesis, arranged in

alphabetical order for ease of reference (Part 1).

11

Notations Description

N (µ, σ2) A normal distribution with the mean µ and variance σ2.

O The asymptotic upper bound or the growth rate of a function.

P The matrix projection operator (Equation 5.6)

Q The query set in the active learning process.

r The rank of the Nystörm low-rank approximated matrix.

S The endmember spectrum matrix (Chapter 5).

Tr(·) The trace of a matrix.

u,u∗,u† Graph vertex functions defined on graph vertices. u,u∗ : X → Rnc

are the general and the optimal (for graph Laplace learning) vertex

functions respectively. u† : Xl → Rnc maps xi of the labeled subset to

its one-hot ground-truth label vector.

U,U∗, U †, Û † U,U∗ ∈ RN×nc , U † ∈ R|Xl|×nc are the matrix forms of u,u∗,u† respec-

tively. Û † ∈ RN×nc is a matrix with the ground-truth one-hot rows U †

corresponding to Xl and zero rows corresponding to Xu.

W The weight matrix of graph G.

X,Xl, Xu X = {x1,x2, . . . ,xN} is the whole dataset of N feature vectors in a

Euclidean space. Xl is the labeled subset. Xu = X\Xl is the unlabeled

subset

Xmat The matrix form of dataset X. (Chapter 5)

yi, y
†
i The predicted and the ground-truth label index of xi ∈ X respectively.

δ(·, ·) δ-function: δ(x, y) = 1 iff x = y, otherwise 0.

Table 1.4: A comprehensive list of notations utilized throughout this thesis, arranged in

alphabetical order for ease of reference (Part 2).

12

CHAPTER 2

Background of the Graph Learning and Active

Learning

This chapter reuses materials from the author’s publications [CCT23, CMB23a, CLB23].

Content from [CCT23] is reproduced with permission from SPIE, while content from [CMB23a,

CLB23] is used under the Creative Commons CC BY license.

This chapter conducts a comprehensive review of several established methodologies re-

lated to graph learning that form the fundamental for our innovative approaches introduced

in the following chapters. Initially, we delve into the concept of the graph as defined within

the realm of discrete mathematics. Following this, we review various graph learning tech-

niques, which classify unlabeled nodes through the minimization of graph-based energy.

Lastly, we discuss graph-based active learning strategies, highlighting their significance in

iteratively refining model accuracy by selectively querying labels for informative nodes.

2.1 Graph and Related Concepts

In discrete mathematics, a graph is a structure on a set of objects among which certain pairs

are interconnected in a specified manner. Specifically, these objects are called “vertices” and

there is an “edge” between each related pair of objects. Edges in the graph can be undirected

or directed, where one of the two vertices it connects is the starting point and the other is the

endpoint. Additionally, vertices and edges can have different attributes, which can be values

or vectors, or even more generalized properties defined by natural language (for example,

13

in knowledge graphs [WMW17]). In more complex scenarios, the graph can evolve into a

structure known as a Multigraph. Multigraph allows for multiple edges between a pair of

vertices, and edges that connect a vertex to itself.

The thesis uses simple weighted graphs. Simple graphs are characterized by the

absence of multiple edges between any two vertices and loops (edges connecting a vertex to

itself). In the graph, vertices are d-dimensional vectors and all edges are undirected and

each of them has a single positive weight, without any additional attributes.

In the conventional notation, we write G = (V,E), where V = {v1, v2, . . . , vN} ∈ Rd is the

set of vertices (each of them corresponds to a d-dimensional vector), and E = {e1, e2, . . . , eNe}

is the set of edges. Each element ei ∈ E is an unordered pair ei = (vi1 , vi2) corresponding to

an edge between vertices vi1 , vi2 . We introduce the concept of an adjacency matrix, denoted

by A, of the graph G = (V,E). A is an N × N matrix where each element Aij represents

the presence or absence of an edge between vertices vi and vj:

Aij =

1 if (vi, vj) ∈ E,

0 otherwise.

(2.1)

In the case of a weighted graph, we can use the weight matrix W as an extension of the

adjacency matrix A. Let wij be the positive weight on the edge between vertices vi and vj.

Then W is an N ×N matrix given by:

Wij =

wij if (vi, vj) ∈ E,

0 otherwise.

(2.2)

Note that this weight matrix setting is based on the assumption that all weights wij are

positive.

In the following content, for convenience, we use the graph representation G = (V,W)

rather than the standard one G = (V,E). Since the graph G is a simple weighted graph, all

the information from the edge set E is fully incorporated into the weight matrix W . This

representation G = (V,W) retains all necessary information without loss.

14

We introduce the graph Laplacian matrix [Mer94]

L = D −W, (2.3)

where D is a diagonal matrix of diagonal entries d1, d2, . . . , dN with

di =
N∑
j=1

wij. (2.4)

It encodes important geometric information of the graph G = (V,W). There are two widely-

used normalized graph Laplacian matrix, the symmetric graph Laplacian Lsym, and the

random walk graph Laplacian Lrw:

Lsym = D−1/2LD−1/2 = I −D−1/2WD−1/2, (2.5)

Lrw = D−1L = I −D−1W. (2.6)

Theorem 1. [Von07] There are some important properties of the graph Laplacian matrices:

1. L and Lsym are symmetric and positive semi-definite, and have the quadratic form, i.e.

for any x = (x1, x2, . . . , xN) ∈ RN :

x⊤Lx =
1

2

N∑
i,j=1

wij(xi − xj)
2, (2.7)

x⊤Lsymx =
1

2

N∑
i,j=1

wij

(
xi√
di
− xj√

dj

)2

. (2.8)

2. L,Lsym, Lrw have the eigenvalue 0. The all-one vector 1 ∈ RN is an eigenvector of

eigenvalue 0 for L,Lrw. D
1/21 is an eigenvector of 0 for Lsym.

3. All eigenvalues of L,Lsym, Lrw are non-negative and real-valued.

4. Let G = (V,W) be an undirected simple graph with non-negative weights. Then the

multiplicity k of the eigenvalue 0 of bothL,Lsym, Lrw equals the number of connected

components in the graph. Denote the index set of those k connected components are

15

Z1, Z2, . . . , Zk ⊂ {1, 2, . . . , N}. Then the eigenspace of L and Lrw is spanned by 1Zi
, i =

1, 2, . . . , k, where 1Z is a vector with element 1 on indices in Z and 0 elsewhere. The

eigenspace of Lsym is spanned by D1/21Zi
, i = 1, 2, . . . , k.

Figure 2.1 illustrates the process of deriving the weight matrix W and the Graph Lapla-

cian L = D − W from the structure of a simple undirected weighted graph. This graph

includes 5 nodes and 6 edges. The corresponding weight matrix W ∈ R5×5 has 12 non-zero

elements.

1

5

2

4

3

2

2

1 1

1.5

1.5

Undirected Weighted Graph Weight Matrix W Graph Laplacian L = D - W

Figure 2.1: An example of the graph Laplacian L = D −W .

2.2 Graph Learning

This section introduces in detail how to employ graph learning techniques on a general

classification task. Given a dataset X = {x1,x2, . . . ,xN} ∈ Rd and a labeled subset Xl ⊂ X,

we aim to classify the unlabeled set Xu = X \ Xl by graph learning. The general pipeline

includes two steps: 1. graph construction; 2. solving a graph-based optimization problem.

Specifically, we construct a weighted graph G = (X,W), where the dataset X serves as the

set of vertices, and the weights on the edges represent the similarity between the two vertices

they connect. The second step is to solve for an optimized node function that minimizes a

certain graph energy with a regularization term about the labeled set Xl.

16

2.2.1 Graph Construction

Based on the dataset X = {x1,x2, . . . ,xN} ⊂ Rd, we define the graph G = (X,W) with

the vertex set X and an edge weight matrix W ∈ RN×N . Define w(xi,xj) as the similarity

weight between distinct vertices xi and xj:

w(xi,xj; τi, τj) = exp

(
−∠(xi,xj)

2

√
τiτj

)
, (2.9)

where ∠(xi,xj) = arccos
(

x⊤
i xj

∥xi∥∥xj∥

)
computes the angle between feature vectors xi and xj,

and τi, τj are constant parameters related to xi and xj.

If we compute the similarity weight between each pair of the vertices, both the time

complexity and space complexity are O(N2), which is not acceptable when the number of

vertices is large. In practical scenarios, our graphs typically consist of tens of thousands

of vertices, necessitating more efficient computational strategies to ensure feasibility and

scalability. We introduce two methods to improve computational efficiency, the K-nearest

neighbor (KNN) sparse weight matrix, and the Nyström low-rank approximation to the

weight matrix.

2.2.1.1 KNN sparse weight matrix

To enhance computational efficiency, we require the N×N weight matrix W to be sparse. For

each vertex xi, we only consider edges between xi and its K-nearest neighbors (KNN), based

on the angle distance ∠(xi,xj). This selection process can be efficiently implemented using

an approximate nearest neighbor search algorithm [AMN98]. Let xik , for k = 1, 2, . . . , K,

denote the K-nearest neighbors of xi (excluding xi itself). In addition, the paramter τi in the

similarity weight function w(xi,xj; τi, τj) is determined based on the similarity of xi to its

Kth nearest neighbor, specifically, τi = ∠(xi,xiK), with xiK being the Kth nearest neighbor

of xi.

17

A sparse weight matrix is then defined by

W̄ij =

W (xi,xj), for j = i1, i2, . . . , iK ,

0, otherwise.

(2.10)

The matrix W̄ = {W̄ij}Ni,j=1 may not be symmetric, since in KNN search, xi can be in the

KNN of xj while xj is not in the KNN of xi. The sparse weight matrix W̄ is symmetrized

to derive the final weight matrix W , redefining Wij := (W̄ij + W̄ji)/2. The sparseness of W

guarantees the sparseness of the graph Laplacian matrices L,Lsym, Lrw.

The parameter K for the KNN search is selected to ensure that the constructed graph G

remains connected. We can use the Theorem 1 to check the number of connected components

in graph G, i.e. check the multiplicity of eigenvalue 0 in any of the graph Laplacian matrices

L,Lsym, Lrw. The graph is connected iff the multiplicity of eigenvalue 0 is 1.

We begin by setting K = K0 to identify the appropriate K. If the current graph is

disconnected, we update K by doubling its value, i.e., K ← 2K. This procedure is repeated

until a connected graph is achieved. Practically, selecting K = 30 often ensures graph

connectivity in most cases.

Remark 2. Let W be the KNN sparse weight matrix of the dataset X (|X| = N). The KNN

parameter is K.

1. The time complexity for the KNN search is O(N logN) [AMN98]. Therefore, the time

complexity for the KNN graph construction (i.e. calculating W) is O(N logN).

2. Both the time and space complexities to calculate Wx for any column vector x are

O(KN).

2.2.1.2 Nyström Low-rank Approximation

Another approach to improve the computational efficiency is to use the Nyström extension

[FBC04] to have a low-rank approximation of the weight matrix W . Given the rank r, by

18

randomly selecting a small subset X1 ⊂ X with the size |X1| = r, we can partition X into X1

and X2 = X \X1. Practically, we choose r = 100. We need to fix τi = τ for i = 1, 2, . . . , N .

The dense weight matrix Wdense = {w(xi,xj; τ, τ)}Ni,j=1 can be written as

Wdense =

W11 W12

W21 W22

 ,

where W11 denotes the weights of nodes in set X1, W12 denotes the weights between set X1

and set X2, W21 = W T
12 and W22 denotes the weights of nodes in set X2.

The Nyström extension gives an approximation of the dense weight matrix Wdense by

Wdense ≈ W =

W11

W21

W−1
11

[
W11 W12

]
=

W11 W12

W21 W21W
−1
11 W12

 (2.11)

Let 1n be the n-dimensional all-one vector, and two column vectors d1 and d2 be defined

by

d1 = W111r + W121N−r,

d2 = W211r + (W21W
−1
11 W12)1N−r.

(2.12)

With equations (2.11) and (2.12), for any vector x ∈ N, we can efficiently calculate the

product Lx by

Lx =

d1. ∗ x1

d2. ∗ x2

−
W11

W21

W−1
11

[
W11,W12

]x1

x2

=

 d1. ∗ x1−W11x1 −W12x2

d2. ∗ x2 −W21x1 −W21W
−1
11 W12x2

 ,

(2.13)

where .∗ denotes the component-wise product between two matrices or vectors with the same

size.

19

Similarly, for the normalized symmetric Laplacian matrix Lsym = D−1/2LD−1/2, we have:

Lsymx =

I −D−1/2

W11

W21

W−1
11

[
W11,W12

]
D−1/2

x1

x2

=

 x1−D
−1/2
1 W11D

−1/2
1 x1 −D

−1/2
1 W12D

−1/2
2 x2

x2 −D
−1/2
2 W21D

−1/2
1 x1 −D

−1/2
2 W21W

−1
11 W12D

−1/2
2 x2

 .

(2.14)

Remark 3. Based on the dataset X (|X| = N), we choose a subset X1 (|X1| = r), and let

X2 = X \X1. Let W be the low-rank approximation matrix of the dense weight matrix Wdense

by the Nyström extension. Let L and Lsym be the corresponding graph Laplacian matrices.

1. The Nyström extension requires to calculate the pairwise distance within X1 and be-

tween X1 and X2, which has the time complexity O(rN). In addition, it requires to

calculate the inverse W−1
11 , which requires O(r3). The time complexity to construct a

graph based on the Nyström extension is O(rN + r3).

2. To calculate the matrix products Lx and Lsymx, it only needs to save matrices W11,W21

and W−1
11 , which takes O(r2 +rN) space complexity. According to equations (2.13) and

(2.14), the time complexity to calculate the products Lx and Lsymx is also O(r2 + rN).

Remark 4. In this thesis, we do not employ the Nyström extension method for obtaining the

eigenvalues and eigenvectors of the kernel matrix W . Instead, we utilize it to procure a low-

rank approximation of W and to accelerate the computation of the product of corresponding

graph Laplacian matrices, i.e., Lx and Lsymx. For the extraction of eigenvalues and their

corresponding orthogonal eigenvectors, a more refined approach is required, as discussed in

[BF12, MMK17].

2.2.2 Graph Laplace Learning

Based on the dataset X ⊂ Rd, we construct a graph G = (X,W) as described in the previous

Section 2.2.1. we present previous work on the graph-based approach for semi-supervised

learning in this part.

20

Assume we have the ground truth label information on the dataset Xl ⊂ X. We aim to

classify the unlabeled set Xu = X \Xl into nc classes indexed by 1, 2, . . . , nc. Let u† : Xl →

{e1, e2, . . . , enc} be the ground-truth labeling function that maps each feature vector xi ∈ Xl

to a one-hot class label vector y†
i = u†(xi), where ei is the ith standard basis vector with

all zeros except a 1 at the ith entry. Let y†i be the ground-truth label index of the one-hot

vector y†
i , i.e. y†i = arg maxy†

i .

The inferred classification of unlabeled vertices Xu comes from thresholding a continuous-

valued node function u : X → Rnc . In particular, the predicted label of xi ∈ X is yi =

arg max{u1(xi), u2(xi), . . . , unc(xi)}, where uk(xi) is the kth entry of u(i). Consider a N×nc

matrix U , whose ith row is u(i); that is, each node function u can be identified by a matrix

U whose ith row represents the output of u at xi. The graph-based semi-supervised learning

(SSL) model that we consider obtains an optimal U∗ (i.e. optimal node function u∗) by

solving an optimization problem of the form:

U∗ = arg min
U∈RN×nc

1

2
⟨U,LU⟩F +

∑
xi∈Xl

ℓ(u(xi),u
†(xi))

= arg min
u:X→Rnc

J (u,u†) = arg min
U∈RN×nc

J (U,U †),

(2.15)

where ⟨·, ·⟩F is the Frobenius inner product for matrices, and U † ∈ R|Xl|×nc is the matrix of

the ground-truth one-hot labels.

The first term in (2.15) is called the graph Dirichlet energy [Eva22]. According to Theo-

rem 1, we have:
1

2
⟨U,LU⟩F =

1

4

∑
xi,xj∈X

Wij∥u(xi)− u(xj)∥2. (2.16)

Note that Wij measures the similarity between xi and xj. In the minimizing process, the

term Wij∥u(xi)−u(xj)∥2 ensures that u(xi) and u(xj) are relatively close for similar xi and

xj.

The second term of (2.15),
∑

xi∈Xl
ℓ(u(xi),u

†(xi)), is a regularization term that ensures

that the output of u at the labeled data xi ∈ Xl stays close to the ground-truth u†(xi).

21

The function ℓ : Rnc × Rnc → R measures the difference between the prediction u(xi) and

the ground-truth u†(xi). The SSL scheme introduced in [ZGL03], referred to as Laplace

learning, uses the hard-constraint regularization:

ℓh(x, y) =

+∞, if x ̸= y,

0, if x = y.

(2.17)

This hard-constraint regularization function ℓh forces the minimizer u∗ to be the same as

the ground truth u† on the labeled set Xl.

We take the following steps to solve the optimization problem (2.15) with the hard

constraint (2.17). We can reorder the vertices to be able to write U =

Ul

Uu

, where Ul

corresponds to the submatrix of U whose rows correspond to the labeled set Xl and Uu

similarly corresponds to the unlabeled set Xu. Likewise, we can split the weight matrix W ,

degree matrix D, and Laplacian matrix into labeled and unlabeled submatrices as

W =

Wll Wlu

Wul Wuu

 , D =

Dll Dlu

Dul Duu

 , L =

Lll Llu

Lul Luu

 . (2.18)

As a result of the hard-constraint labeling of Laplace learning, U∗
l is fixed as the one-hot

encodings of the ground-truth labels on the labeled set Xl; that is

U∗
l =

u†(xi1)

u†(xi2)
...

u†(xi|Xl|
)

 , Xl = {xi1 ,xi2 , . . . ,xi|Xl|
}.

According to [ZGL03], the optimizer U∗
u of Laplace learning can be calculated explicitly as

U∗
u = (Duu −Wuu)−1WulU

∗
l = −L−1

uuLulU
∗
l . (2.19)

This solution (2.19) is derived from the harmonic property of the optimal function u∗. We

define the graph Laplacian operator L.

22

Definition 5. On graph G = (X,W), let F = {u : X → Rd} be the space of the graph node

functions. The graph Laplacian operator L : F → F is a mapping within F defined by:

[Lu](xj) =
∑
xi∈X

Wij(u(xj)− u(xi)). (2.20)

To derive the formula (2.19), we take the partial derivative of J (U,U †) about u(xj)) for

a single unlabeled vertex xj ∈ Xu and set the derivative to be 0:

∂J
∂u(xj))

= [Lu](xj) =
∑
xi∈X

Wij(u(xj)− u(xi)) = 0

=⇒u(xj) =
1

dj

∑
xi∈X

Wiju(xi).

(2.21)

Equation (2.21) reveals the harmonic property of the optimal graph function u∗. Considering

all xj ∈ Xu gives the matrix form solution (2.19).

Remark 6. Practically, when we apply the formula (2.19) to solve for the optimal matrix

U∗
u , we do not calculate the inverse matrix L−1

uu . We use the preconditioned conjugate gradient

method to solve the equation:

LuuU
∗
u = −LulU

∗
l , (2.22)

with the preconditioning matrix

PCG = diag

(
1

l1
,

1

l2
, . . . ,

1

l|Xu|

)
, (2.23)

where l1, l2, . . . , l|Xu| are diagonal entries of the matrix Luu.

According to Remarks 2 and 3, the product Luux can be efficiently calculated by either the

KNN sparse or the Nyström approximation. The time and space complexities of calculating

such a product are O(N) when the KNN parameter K ≪ N or the Nyström rank parameter

r ≪ N . This is much more efficient than calculating the inverse matrix with a O(N3)

complexity, in the case that the unlabeled set Xu constitutes the vast majority of the dataset

X.

23

If the graph Laplacian in the problem (2.15) is the normalized Lsym, formula (2.19) also

works by replacing Luu and Lul with the corresponding block sub-matrices of the Lsym.

There are some extended graph SSL schemes based on the optimization problem (2.15).

The main difference between them and the Laplace learning scheme is the choice of regulariza-

tion function ℓ. The multiclass Gaussian regression (MGR) model [MHS15, BHL21] applies

a L2-norm regularization function ℓγ(x, y) = 1
2γ2∥x− y∥22. The cross-entropy model [JZL19,

KW17, MB24] applies a cross-entropy regularization function ℓce(x, y) = −
∑nc

m=1 xm ln(ym),

where x = (x1, x2, . . . , xnc) and y = (y1, y2, . . . , ync) are properly normalized to lie on the

(nc − 1)-simplex.

2.2.3 Extended Schemes for Low Label Rates

The primary graph learning methodology applied in this thesis is the graph Laplacian learn-

ing mentioned in the previous section (Section 2.2.2). This part introduces several extended

graph learning methods, to provide readers with a more comprehensive understanding of the

field.

In SSL, when the label rate, |Xl|/|X|, is low, the graph Laplace learning method is not

well-posed and can make poor predictions on the unlabeled set Xu [NSZ09, ECR16]. The

p-Laplace learning [ZS05, ECR16] has been developed to address the ill-posedness. For a

positive integer p ≥ 2, the Laplace learning optimization problem (2.15) is modified into:

u∗
p = arg min

u:X→Rnc

 ∑
xi,xj∈X

W p
ij∥u(xi)− u(xj)∥p

 1
p

:= (Jp(u))
1
p ,

s.t. u(xi) = u†(xi), ∀xi ∈ Xl.

(2.24)

It is shown that the p-Laplace learning performs better than the original Laplace learning

when p > 2 and the label rate is very low [Cal18, FCL22]. The Lipschitz learning [KRS15,

Cal19] employs the case p = +∞ for the problem (2.24). The Lipschitz learning solves the

24

problem:

u∗
∞ = arg min

u:X→Rnc

(
max

xi,xj∈X
Wij∥u(xi)− u(xj)∥1

)
, s.t. u(xi) = u†(xi), ∀xi ∈ Xl. (2.25)

The optimizer u∗
∞ is the limit of the (unique) minimizers of u∗

p as p grows to infinity [EH90].

Another extension of the Laplace learning designed for low label rates is the Poisson

learning [CCT20]. Recall that the graph Laplace learning can be written in the form:

[Lu](xj) = 0, xj ∈ Xu, (2.26)

u(xi) = u†(xi), xi ∈ Xl. (2.27)

where L is the graph Laplacian operator in Definition 5. Define the average ground-truth

label by:

ū† =

∑
xi∈Xl

u†(xi)

|Xl|
. (2.28)

Poisson learning keeps the harmonic property (2.26) on the unlabeled set Xu and modifies

the hard constraint (2.27) in Laplace learning:

[Lu](xj) = 0, xj ∈ Xu, (2.29)

[Lu](xi) = u†(xi)− ū†, xi ∈ Xl, (2.30)

N∑
j=1

dju(xj) = 0, (2.31)

where equation (2.31) is a regularization for the Poisson learning to have a unique solution

and di is the degree (2.4) of the vertex xi.

Another direction to avoid the degeneration of the Laplace learning solution with a low

label rate is to adjust the weight matrix, referred as to re-weighting [CS20, MC23]. One

approach is to modify the weight Wij based on the distance between xi and the labeled set

Xl [CS20]:

W̃ij = γ(xi)Wij, where γ(xi) = dist(xi, Xl)
−α, α > d− 2. (2.32)

25

This re-weighting approach is extended by solving the graph Poisson equation [MC23]:

W̃ij = γ(xi)γ(xj)Wij,∑
xk∈X

Wjk(γ(xj)− γ(xk)) =
∑
xi∈Xl

(
δij −

1

N

)
, ∀xj ∈ X.

(2.33)

This re-weighted matrix W̃ = {W̃ij}Ni,j=1 is used to replace the weight matrix W in the graph

Laplace learning optimization problem (2.15).

2.3 Graph-based Active Learning

Graph-based active learning is a technique used in semi-supervised learning scenarios where

the goal is to select the most informative instances from a pool of unlabeled data to be labeled

by an oracle (e.g., a human expert) [Set09, Das11]. This approach leverages the underlying

structure of the data, which is represented as a graph, to identify the instances that are most

useful for improving the performance of the learning model [MMS22, MB24]. By intelligently

selecting the most informative instances for labeling, graph-based active learning maximizes

the performance of the machine learning model while minimizing the labeling effort.

Active learning is an iterative process that selects a query set Q to augment the current

labeled set Xl ← Xl ∪ Q. The general pipeline for graph-based active learning can is

illustrated in Figure 2.2, and described as Algorithm 1. The core of active learning is the

Acquisition Function A : Xu → R which evaluates the informativeness of each unlabeled

instance x ∈ Xu. The acquisition function assigns a score to each unlabeled instance,

indicating its potential usefulness for improving the model’s performance.

26

Algorithm 1 Graph-based Active Learning: A General Pipeline

Require: The whole dataset X, initial labeled subset Xl, labeling budget M

Ensure: Updated labeled set Xl

1: Graph Construction: Construct a similarity graph G = (X,W) with nodes X accord-

ing to Section 2.2.1

2: while |Xl| < M do

3: Prediction: Based on the current labeled set Xl, predict labels on the unlabeled set

Xu = X \Xl

4: Acquisition Function Values: Calculate the acquisition function values A(xj) of

each xj ∈ Xu

5: Query Set Selection: Select a query set Q ⊂ Xu based on the graph structure G

and the current acquisition function values {A(xj)|xj ∈ Xu}

6: Update the labeled set Xl ← Xl ∪Q

7: Update the unlabeled set Xu ← Xu \ Q

8: end while

In Algorithm 1, the graph construction is detailed in Section 2.2.1 and the prediction is

based on the graph Laplace learning method (Section 2.2.2). We will further discuss different

choices of the acquisition functions and the query set selection approaches in this section.

2.3.1 Bayesian Interpretation and Low-Rank Covariance Matrix

Before discussing different acquisition functions, we provide another perspective on the

graph-based SSL models introduced in Section 2.2.2. This part serves as a preparation

to help us better understand the mathematics behind those acquisition functions.

A Bayesian interpretation of graph-based SSL models of the form J (U,U †) as in (2.15)

provides further insight into the confidence of inferred classification on the unlabeled nodes

[BLS18, QSW19, MLB20]. The minimizer in (2.15) is equivalent to the maximum a posteriori

27

Apply Laplace
learning on the
graph with the
current labeled set.

Build a graph on
the feature vector
set and randomly
choose an initial
labeled set.

Calculate the
acquisition function
value for each
unlabeled node.

Select a query set
according to the
acquisition
function value and
update the current
labeled set.

Human-in-the-loop labeling process

Figure 2.2: Flowchart of the active learning process. The active learning loop is based on a

fixed graph. In each step, we apply Laplace learning on the graph and update the labeled

set with a query set selected based on the current acquisition function values. It should be

noticed that it might need the human-in-the-loop process to obtain the label of the selected

query set in each step of the active learning process.

(MAP) estimate of a posterior probability distribution with probability density function:

P(U |u†) ∝ exp
(
−J (U,U †)

)
= exp

(
−1

2
⟨U,LU⟩F

)
exp

(
−
∑
xi∈Xl

ℓ(u(xi),u
†(xi))

)

∝ µ(U) exp
(
−Φℓ(U,U

†)
)
, (2.34)

where µ(U) can be interpreted as a Gaussian prior on U with a covariance matrix related

to the graph Laplacian L and the likelihood q(U,U †) ∝ exp
(
−Φℓ(U,U

†)
)

related to the

functional Φℓ(U,U
†) =

∑
xi∈Xl

ℓ(u(xi),u
†(xi)). The resulting form of the posterior P(U |U †)

depends on the choice of loss function ℓ.

28

For the graph Laplace learning, since the hard constraint 2.17 is applied, we need to

consider the distribution Uu|U † rather than U |U †. Solving for the optimal U∗
u associates to

the Gaussian Random Field (GRF) on the graph G [ZLG03], which gives the conditional

Gaussian distribution:

Uu|U † ∼ N (U∗
u , L

−1
uu), (2.35)

where U∗
u is the solution to the graph Laplace learning problem given by the equation (2.19)

and Luu is the block submatrix of the graph Laplacian matrix L corresponding to the unla-

beled set Xu. Note that the distribution (2.35) is about a matrix in R|Xu|×nc , which should

have a 4-dimensional tensor as the covariance matrix. Writing it as L−1
uu means that each

column of Uu shares the same covariance matrix L−1
uu .

When the MGR regularization function is applied, i.e. ℓ(x, y) = ℓγ(x, y) = 1
2γ2∥x − y∥22,

P(U |U †) is a Gaussian distribution. The optimal solution to the MGR can be derived by

taking the derivative of the matrix U :

U∗
MGR =

1

γ2

(
L +

1

γ2
P⊤P

)−1

Û † =:
1

γ2
CMGRÛ

†, (2.36)

where P ∈ R|Xl|×N is the projection matrix from the full indices {1, 2, . . . , N} onto the indices

of the labeled subset Xl, and Û † ∈ RN×nc is a matrix with the ground-truth one-hot rows

corresponding to Xl and zero rows corresponding to Xu. The corresponding conditioned

Gaussian distribution is:

U |U † ∼ N (U∗
MGR, CMGR), (2.37)

where each column of U shares the same covariance matrix CMGR.

To efficiently calculate the matrix CMGR since it requires to calculate the inverse matrix,

we consider the low-rank approximation of the graph Laplacian L. Since the graph G is

connected, the corresponding Laplacian matrix L has exactly one zero eigenvalue. We may

order the eigenvalues of L as 0 = λ1 < λ2 ≤ . . . ≤ λN , and then consider the smallest

n ≪ N eigenvalues. Λ ∈ Rn×n is a diagonal matrix with diagonal entries λ1, λ2, . . . , λn

29

and V = [v1,v2, . . . ,vm] ∈ RN×n is the matrix of corresponding eigenvectors. vi is the

eigenvector of eigenvalue λi.

With the matrices V,Λ, we can approximate the covariance matrix CMGR by:

CMGR ≈ V

(
Λ +

1

γ2
V ⊤P⊤PV

)−1

V ⊤ := V ΣMGRV
⊤. (2.38)

Since both matrices Λ and V ⊤P⊤PV are semi-positive definite, it needs to be proved that

the matrix C0 := Λ + 1
γ2V

⊤P⊤PV is invertible.

Theorem 7. For any n ≤ N , Λ = diag(λ1, λ2, . . . , λn), V = [v1, v2, . . . , vn], the matrix

C0 := Λ + V ⊤
(

1

γ2
P⊤P

)
V (2.39)

is invertible if the graph G is connected.

Proof. As referred in Theorem 1, when the graph G is connected, its graph Laplacian matrix

L has exactly one zero eigenvalue λ1 = 0 with corresponding eigenvector v1 = (1, 1, . . . , 1)⊤ ∈

RN .

Since V ⊤P⊤PV and Λ are semi-positive definite matrices, we have x⊤C0x ≥ 0 for any

column vector x ∈ Rn. Consider x = (x1, x2, . . . , xn)⊤ ∈ Rn such that x⊤C0x = 0, which

implies x⊤(V ⊤P⊤PV)x = x⊤Λx = 0. Because λ2, . . . , λn > 0, we have x2 = x3 = . . . =

xM = 0.

Let vj = (vj1, v
j
2, . . . , v

j
N)⊤, j = 1, 2, . . . ,M . Since P is a projection matrix, assume the

first row of P is el, the lth standard basis vector in RN . Recall that v11 = v12 = . . . = v1N = 1,

we have

0 = x⊤(V ⊤P⊤PV)x = x2
1

M∑
j=1

(vjl)
2 ≥ x2

1v
1
l = x2

1.

Hence x1 = 0, x is a zero vector. This implies that C0 is a positive definite matrix, and of

course, invertible.

30

2.3.2 Acquisition Functions

As mentioned before, the acquisition function quantifies the benefit of acquiring the ground-

truth label of each unlabeled data to the model’s performance. Since the focus in this thesis is

the graph-based learning approaches, the acquisition functions we introduce here are designed

for the graph learning classifier, including the Uncertainty (UC) [BLS18, MLB20, QSW19],

Model-Change (MC) [MLB20, MB24], Variance Optimization (VOpt) [JH12], and Model-

Change Variance Optimal (MCVOpt) acquisition functions [MMS22].

2.3.2.1 Uncertainty (UC) Acquisition Functions

The UC acquisition function AUC quantifies the uncertainty of the classifier u on each un-

labeled vertex xj ∈ Xu according to the classifier’s output. Uncertainty sampling thus

prioritizes querying points that are close to the current classifier’s decision boundaries.

Various methods can be applied to quantify the uncertainty based on the output function

of graph learning u∗. Let u∗(xj) = (u∗
1(xj), u

∗
2(xj), . . . , u

∗
nc

(xj)) be the output vector of graph

learning on xj ∈ X. Define the

1. Smallest Margin [Set09]: This acquisition function evaluates the uncertainty by the

difference of the top-1 and top-2 output values:

ASM(xj) = 1−
(
u∗
k0

(xj)− max
k=1,2,...,nc;k ̸=k0

u∗
k(xj)

)
, (2.40)

where xj ∈ Xu, k0 = arg maxj=1,2,...,nc
u∗
k(xj) is the index of the top-1 predicted class.

2. Entropy [Sha48]: This acquisition function measures the uncertainty based on the

entropy of the predicted class probabilities:

AEntropy(xj) = −
nc∑
k=1

u∗
k(xj) log u∗

k(xj). (2.41)

31

3. Least Confidence [Set09]: This acquisition function evalates the uncertainty by the

difference between 1 and the highest predicted value for a single class:

ALC(xj) = 1− max
k=1,2,...,nc

u∗
k(xj). (2.42)

4. Norm Difference [Set09]: This acquisition function measures the difference between

the predicted soft labels and their one-hot thresholded pseudo labels by calculating the

ℓ2-norm difference:

AND(xj) = ∥ûj − u∗(xj)∥2 , (2.43)

where ûj is the one-hot thresholded vector obtained from u∗(xj).

5. ℓ2-Norm [MC23]: This acquisition function evalates the uncertainty by the ℓ2-norm

of the graph learning output u∗:

AL2(xj) = ∥u∗(xj)∥2 =

√√√√ nc∑
k=1

[u∗
k(xj)]2. (2.44)

This acquisition has the theoretical guarantee of exploring unexplored clusters in the

whole graph structure [MC23].

In this thesis, if not specified, the uncertainty acquisition we applied is the Smallest

Margin uncertainty function, i.e.,

AUC(xj) := ASM(xj), ∀Xj ∈ Xu. (2.45)

32

2.3.2.2 Variance Optimization (VOpt) Acquisition Function

According to the Bayesian Interpretation of the graph Laplace learning (2.35), the expected

prediction error on the unlabeled set Xu can be computed as follows [JH12, MMS22]:

E

 ∑
xj∈Xu

(u(xj)− u∗(xj))

 = Tr
(
L−1
uu

)
. (2.46)

This implies that if we want to select an unlabeled vertex xj ∈ Xu and acquire the label for

it, we need to minimize

Tr
(
L−1
ûû

)
, (2.47)

where Lûû is the sub-matrix of L on the rows and columns Xu \ {xj}.

Practically, we consider this optimization problem under the MGR model with the pa-

rameter γ (Section 2.2.2 rather than the graph Laplace learning. By adding an unlabeled

data xj ∈ Xu to the labeled set, the covariance matrix CMGR (2.36) becomes:

C
+xj

MGR =

(
L +

1

γ2
P⊤P +

1

γ2
eje

⊤
j

)−1

≈ V

(
Λ +

1

γ2
V ⊤P⊤PV +

1

γ2
V ⊤eje

⊤
j V

)−1

V ⊤

= V

(
Σ−1

MGR +
1

γ2
V ⊤eje

⊤
j V

)−1

V ⊤,

(2.48)

where V,Λ are the eigenvectors and eigenvalues (diagonal matrix) of the smallest n eigen-

values of L defined in Section 2.3.1, and Σ is defined by (2.38).

The corresponding variance minimization problem becomes:

min
xj∈Xu

Tr

[
V

(
Σ−1

MGR +
1

γ2
V ⊤eje

⊤
j V

)−1

V ⊤

]
. (2.49)

According to properties of the trace of a matrix, the orthonormality of the eigenvectors of

33

L, and the Woodbury matrix identity [Woo50], we have:

Tr

[
V

(
Σ−1

MGR +
1

γ2
V ⊤eje

⊤
j V

)−1

V ⊤

]
= Tr

[(
Σ−1

MGR +
1

γ2
V ⊤eje

⊤
j V

)−1
]

= Tr(ΣMGR)− 1

γ2 + e⊤j V ΣMGRV ⊤ej
∥ΣMGRV

⊤ej∥22.

(2.50)

Since the Tr(ΣMGR) is irrelevant to xj, we can write the VOpt acuqisition function as:

AVOpt(xj) =
1

γ2 + e⊤j V ΣMGRV ⊤ej
∥ΣMGRV

⊤ej∥22, ∀xj ∈ Xu, (2.51)

which only requires to store the n × n matrix ΣMGR and the truncated eigenvector matrix

V . The computation of AVOpt for a single xj ∈ Xu has the time complexity O(nN).

2.3.2.3 Model-change (MC) Acquisition Function

Model-Change (MC) [MLB20, MB24] is a recently proposed approach that evaluates the

potential impact of adding an unlabeled vertex xj ∈ Xu in the graph to the labeled set Xl.

The MC acquisition function measures the extent to which the graph-based model, such as

would be modified if the point were incorporated with its predicted label. This allows the

active learning algorithm to prioritize instances that are likely to have the greatest effect on

refining the model’s understanding of the underlying data distribution.

To motivate the MC acquisition function, we first modify the standard graph learning

model (2.15) into a look-ahead model objective:

J xj ,ûj(U,U †; ûj) =
1

2
⟨U,LU⟩F +

∑
xi∈Xl

ℓ(u(xi),u
†(xi)) + ℓ(u(xk), ûj), (2.52)

where xj ∈ Xu is an unlabeled vertex in the graph, ûj is the pseudo label of xj, and ℓ = ℓγ is

the MGR regularization function. Let u∗ be the output of the graph Laplace learning model,

then ûj is the one-hot thresholding of the vector u∗(xj). The one-hot thresholding process

selects the index of the maximum element in the vector u∗(xj) and sets the corresponding

element in the resulting one-hot vector ûj to 1, while all other elements are set to 0.

34

Consider the truncated eigenvalue and eigenvector matrices Λ ∈ Rn×n and V ∈ RN×n

defined in Section 2.3.1. Define A = V ⊤U ∈ Rn×nc to be the projection of the matrix U onto

the eigenvectors of the graph Laplacian. The look-ahead model can be approximated by:

J xj ,ûj(u,u†; ûj) ≈ J
xj ,ûj

A (A,u†; ûj)

=
1

2
⟨A,ΛA⟩F +

1

2γ2

(∑
xi∈Xl

∥e⊤i V A− u†(xi)∥22 + ∥e⊤j V A− ûj∥22

)
.

(2.53)

Define A∗ = V TU∗, and Âxj ,ûj as the optimal matrix by solving the problem:

Âxj ,ûj = arg min
A∈RN×Nc

J xk,ûj

A (A,u†; ûj). (2.54)

The optimal matrix Âxj ,ûj can be estimated using a one-step Newton’s iteration on the

look-ahead objective function (2.53):

Âxj ,ûj ≈ A∗ − 1

γ2 + e⊤j V ΣMGRV ⊤ej
ΣMGRV

⊤ej
(
e⊤j V A∗ − ûj

)
. (2.55)

Using the approximation (2.55), the MC acquisition function is given by:

AMC(xj) =
∥∥Uxj ,ûj − U∗∥∥

F
=
∥∥∥Âxj ,ûj − A∗

∥∥∥
F

=

∥∥∥∥∥ 1

γ2 + e⊤j V ΣMGRV ⊤ej
ΣMGRV

⊤ej
(
e⊤j V A∗ − ûj

)∥∥∥∥∥
F

=

∥∥e⊤j V A∗ − ûj

∥∥
2

γ2 + e⊤j V ΣMGRV ⊤ej

∥∥ΣMGRV
⊤ej
∥∥
2
.

(2.56)

Recall that for the full-rank case, we have V A∗ = U∗, therefore we can write the MC

acquisition function in the form:

AMC(xj) =
∥u∗(xj)− ûj∥2

γ2 + e⊤j V ΣMGRV ⊤ej

∥∥ΣMGRV
⊤ej
∥∥
2
. (2.57)

where the matrix A∗ is eliminated, and we only need to record ΣMGR, V and the optimal

solution of the graph Laplace learning U∗. By comparing with the norm difference UC

acquisition function (2.43), and the VOpt acquisition function (2.51), the MC acquisition

35

function (2.57) can be viewed as a modified version of the VOpt acquisition by replacing∥∥ΣMGRV
⊤ej
∥∥
2

with the UC acquisition function AND.

The MCVOpt acquisition function [MMS22] combines the MC (2.57) and VOpt (2.51)

acquisition functions according to their similarity:

AMCVOpt(xj) =
∥u∗(xj)− ûj∥2

γ2 + e⊤j V ΣMGRV ⊤ej

∥∥ΣMGRV
⊤ej
∥∥2
2
. (2.58)

2.3.3 Query Set Selection

The selection of query set Q is tricky. In sequential active learning, the query set in each

iteration is selected as the single most informative instance with the highest acquisition

function value, i.e.:

Q = {xk}, xk = arg max
x∈Xu

A(x). (2.59)

However, sequential active learning can be inefficient, especially when dealing with large

datasets, as it requires updating the model and recomputing the acquisition function after

each instance is labeled. Moreover, it does not support parallel labeling by multiple human

experts, which could significantly speed up the annotation process.

To address these limitations, batch active learning has been proposed. In batch active

learning, a query set of batch size B > 1 is selected at each iteration, allowing for the parallel

labeling of multiple instances and reducing the number of iterations. The goal is to select a

batch of informative instances that collectively maximize the expected improvement in the

model’s performance.

The main challenge in transitioning from sequential active learning to batch active learn-

ing is that sequential methods do not account for the inherent redundancy and similarity

between unlabeled data points. Applying batch active learning naively often results in the

selection of homogeneous batches, where the chosen instances are closely clustered in the

embedding space. For instance, selecting the top k instances with the highest acquisition

function values may lead to a batch of near-duplicate instances, providing little additional

36

information to the model. Consequently, the model’s learning rate may not significantly im-

prove compared to the sequential case, despite the increased labeling effort at each iteration.

To address this issue, batch active learning methods must explicitly encourage diversity in

the selected batch while maintaining high acquisition function values.

Another critical aspect of batch active learning is the computational complexity of opti-

mizing the query set Q with size |Q| = B. Finding the optimal subset of unlabeled instances

is a combinatorial problem with a complexity of O(NB), where N is the total number of

unlabeled instances. This high computational cost severely limits the feasible batch sizes,

making it impractical for real-world applications. To mitigate this problem, heuristic ap-

proaches should be employed to efficiently approximate the optimal query set, striking a

balance between the acquisition function value and the diversity of the selected instances.

One typical batch active learning approach utilizes greedy algorithms, especially the lazy

greedy algorithm, in combination with submodular optimization techniques to efficiently

select informative and diverse batches [GB10, JH12, CK13, WIB15, SS18]. These greedy

methods iteratively select a query set Q by mimicking sequential active learning but without

the need to obtain ground-truth labels from an oracle at each step.

Define the initial acquisition function by A1 = A and the initial query set Q0 = ∅. At

step K ≤ B of the greedy algorithm, it updates the query set Qk:

Qk = Qk−1 ∪ {x∗}, x∗ = arg max
x∈Xu\Qk=1

A(x). (2.60)

Then it augments the labeled set Xl with the current query set Qk with its corresponding

pseudo label, obtained by the graph learning classifier. Using the augmented labeled set

Xk
l = Xl ∪ Qk, we update the predictions on the unlabeled set Xu \ Qk and calculate the

acquisition function Ak on Xu \ Qk. This process is repeated until step B when the final

query set Q = QB has the size B. Such a greedy algorithm is guaranteed to be near-optimal

to the submodular set function, which can be considered as a set-version acquisition function

[NWF78].

37

Another type of the batch active learning method addresses the computational complexity

and potential redundancy issues by restricting the evaluation of the acquisition function A

to a smaller candidate set X̂U ⊂ Xu, where X̂U is chosen uniformly at random from the

unlabeled pool Xu [WY13, GIG17, AZK20]. Instead of considering all unlabeled instances,

these methods select the batch Q ⊂ Xu as the top maximizers of the acquisition function

within this reduced set. This approach offers two significant advantages. First, by limiting

the evaluation of A to a subset X̂U , where |X̂U | ≪ |Xu|, the computational cost is greatly

reduced, making the batch selection process more efficient. Second, the random selection of

X̂U helps to mitigate the issue of ”redundant” calculations, as the maximizers of A over X̂U

are less likely to be clustered together, promoting diversity within the selected batch.

As one of the main contributions of this thesis, we propose novel graph-based core-

set and batch active learning methods, which will be introduced in detail in Chapter 3.

Our method is highly efficient and achieves performance comparable to sequential active

learning. Before our work, several graph-based batch active learning methods have been

proposed. These methods typically leverage the graph structure to capture the similarity and

diversity among instances, guiding the selection of informative and representative batches

[ZLG03, JH12, CZC17].

38

CHAPTER 3

Novel Batch Active Learning Approaches with

Application to SAR and Hyperspectral Imagery

This chapter reuses materials from the author’s publications [CCT23, CMB23a, BCH23].

Content from [CCT23] is reproduced with permission from SPIE, while content from [CMB23a]

is used under the Creative Commons CC BY license. IEEE copyrighted material from

[BCH23] is reused in this chapter, with the approval of the senior author Andrea L. Bertozzi

and following the requirements outlined by IEEE for thesis/dissertation reuse. 1

Active learning is a powerful technique that improves the performance of machine learning

methods by judiciously selecting a limited number of unlabeled data points to query for

labels, to maximally improve the underlying classifier’s performance [Set09, Das11, MMS22,

MB24]. As mentioned in Section 2.3.3, sequential active learning methods, which select a

single data point to query in each iteration, can be inefficient and computationally expensive,

especially for large datasets. Batch active learning methods, on the other hand, select

multiple data points to query in each iteration, potentially improving efficiency. However,

batch query selection poses several challenges, such as ensuring diversity among the selected

data points, avoiding redundancy, and maintaining the informativeness of the queried labels.

Addressing these challenges is crucial for the effectiveness of batch active learning methods.

Our work in this chapter makes the following innovations and contributions:

1. We propose novel methods for batch active learning, including Dijkstra’s Annulus

1©2023 IEEE. Reprinted, with permission, from [BCH23]

39

Core-Set (DAC) for core-set generation and LocalMax for batch sampling, which effec-

tively overcome challenges in existing approaches and improve both the accuracy and

efficiency of the learning process;

2. We construct comprehensive pipelines that integrate transfer learning-based feature

embedding, graph learning, and batch active learning techniques to achieve high-quality

and efficient classification of SAR images and segmentation of hyperspectral images

with limited labeled data;

3. We demonstrate the versatility and effectiveness of our approach across different do-

mains, with remarkable results achieved using limited labeled data in both SAR image

classification and hyperspectral image segmentation tasks.

We apply our proposed DAC and LocalMax methods to two distinct domains: synthetic

aperture radar (SAR) image classification and multi- or hyperspectral image segmentation.

In the context of SAR data classification, we develop a pipeline based on transfer learning

feature embedding, graph learning, DAC, and LocalMax to classify the FUSAR-Ship and

OpenSARShip datasets. Our approach outperforms state-of-the-art CNN-based methods

while achieving nearly identical accuracy as sequential active learning, but with improved

efficiency proportional to the batch size [CCT23].

For pixel/patch neighborhood multi- or hyperspectral image segmentation, we provide a

graph-based batch active learning pipeline that incorporates our DAC and LocalMax meth-

ods. The pipeline selects a collection of unlabeled pixels that satisfy a graph local maximum

constraint for the active learning acquisition function, which determines the relative impor-

tance of each pixel to the classification. Graph learning, when used as a semi-supervised

learning (SSL) method, performs well for classification tasks with a low label rate. Our

approach not only improves accuracy but also greatly reduces the number of labeled pixels

needed to achieve the same level of accuracy compared to randomly selected labeled pixels

[CMB23a].

40

The successful application of our proposed DAC and LocalMax methods to both SAR

image classification and multi- or hyperspectral image segmentation demonstrates their ver-

satility and effectiveness in different domains. By leveraging these novel batch active learning

techniques, along with patch-neighborhood analysis and graph-based learning, we signifi-

cantly accelerate the active learning process while maintaining high accuracy. Our methods

reduce the number of iterations required to achieve a desired performance level, leading to

a substantial decrease in the overall labeling effort and computational cost. This improved

efficiency is particularly valuable when dealing with large-scale datasets or time-sensitive ap-

plications. Moreover, our approach not only speeds up the learning process but also surpasses

the performance of traditional methods, showcasing the effectiveness of our contributions in

advancing the field of active learning for image analysis.

The codes about methods proposed in this chapter are available on GitHub 2.

3.1 Background

In the previous Chapter 2, we reviewed the graph learning and active learning approaches.

In this section, we introduce the background of the SAR image and hyperspectral image with

the related application of graph learning and active learning on these two kinds of datasets.

3.1.1 Classification on Synthetic Aperture Radar (SAR) Imagery

Synthetic Aperture Radar (SAR) is a powerful remote sensing technology that plays a vital

role in Automatic Target Recognition (ATR) [AMZ18, LSS19, IID21, MMS22]. SAR systems

utilize a moving platform, such as an aircraft or satellite, to transmit and receive radio signals

repeatedly, effectively simulating a large radar dish. This process enables the creation of high-

resolution images, making SAR a valuable tool for various applications. The SAR community

2Source Code: https://github.com/chapman20j/SAR_BAL

41

https://github.com/chapman20j/SAR_BAL

has established several benchmark datasets to facilitate research and development in this

field. For instance, the MSTAR dataset contains SAR images of land-based vehicles [AD],

while the OpenSARShip and FUSAR-Ship datasets focus on SAR images of different types

of ships at sea [HLL17, HAS20]. Three samples from these three datasets are shown in

Figure 3.1. These datasets serve as standard references for evaluating and comparing the

performance of object recognition algorithms.

Semi-supervised learning (SSL) has emerged as a promising approach for SAR classifica-

tion due to its recent success and high data efficiency [ZGL03, BLR04, BF12, BM19, MMS22].

Unlike traditional supervised learning methods that rely solely on labeled data, SSL algo-

rithms leverage the geometric structure of the entire dataset, including both labeled and

unlabeled samples. This capability makes SSL particularly valuable in scenarios where la-

beled data is scarce, as is often the case in SAR image classification. In this section, we

employ graph-based Laplace learning as the underlying classifier, which exploits the inher-

ent geometry of the SAR data to improve classification performance.

To effectively harness the geometric structure of SAR images, it is crucial to extract

meaningful features that capture the essential characteristics of the data. Convolutional

Neural Networks (CNNs) [LBD89] have demonstrated remarkable success in image clas-

sification tasks, owing to their ability to learn rich, hierarchical representations of visual

information. Moreover, CNNs are well-suited to handle the significant noise present in SAR

images, making them an attractive choice for feature extraction in this domain. Previous

research [MMS22] has successfully utilized Convolutional Variational Auto-Encoders (CN-

NVAEs) [KW13, PGH16] to embed SAR data into a lower-dimensional space, facilitating

more efficient and effective classification.

In addition to CNNVAEs, transfer learning has emerged as another promising approach

for obtaining useful image features in SAR classification [AMZ18, BKS21, IID21]. Transfer

learning involves training a neural network on a similar dataset for which abundant labeled

data is available and then adapting the learned features to the target task. By leveraging

42

Figure 3.1: Three samples of SAR images. From left to right, the images show vehicles or

ships from MSTAR [AD], OpenSARShip [HLL17], and FUSAR-Ship [HAS20].

the knowledge gained from the source domain, transfer learning can significantly reduce

the amount of labeled data required for training on the target SAR dataset. The later

convolutional layers of the pre-trained network contain valuable image features that can be

directly utilized for SAR classification. Alternatively, these features can be fine-tuned by

replacing the fully connected layers with linear layers and further training on the current

dataset to obtain more task-specific representations. In this paper, we explore three feature

extraction techniques: CNNVAE, transfer learning without fine-tuning, and transfer learning

with fine-tuning, to enhance the performance of our SSL-based SAR classification framework.

Recent advances in ATR can be broadly categorized into two main approaches: supervised

learning and SSL. Deep learning has been at the forefront of these advancements, enabling

the extraction of valuable image features. Zhang et al. developed a supervised deep learning

model called Hog-ShipCLSNet for classifying the OpenSAR Ship and FUSAR-Ship datasets

[ZZK21]. Other notable supervised learning methods employ transfer learning [PY09] from

simulated SAR datasets [AMZ18, IID21]. While simulating SAR data can alleviate the la-

beling burden on experts, it poses significant challenges due to the distribution shift between

the simulated and real-world datasets [LSS19]. In the realm of SSL, Miller et al. made a

significant contribution by applying a CNNVAE and graph-based sequential active learning

to classify images in the MSTAR dataset [MMS22], achieving state-of-the-art performance.

43

3.1.2 Segmentation on Multi- or Hyperspectral Imagery

Image segmentation is a fundamental problem in the field of machine learning and com-

puter vision, with applications spanning across various domains, including remote sensing

[KSH12, LBH15]. In remote sensing, image segmentation plays a crucial role in extracting

meaningful information from satellite and aerial imagery [CH16, ZZD16], enabling a wide

range of applications such as land cover classification [KLS17], change detection [Zhu17],

and environmental monitoring [PWS16].

Multispectral imaging (HSI) and hyperspectral imaging (HSI) technologies have revolu-

tionized the field of remote sensing by providing rich spectral information across hundreds or

even thousands of narrow spectral bands [BPC13]. This high-dimensional data allows for the

discrimination of different materials and objects based on their unique spectral signatures,

which is not possible with traditional RGB imagery [CTB13]. Image segmentation tech-

niques are particularly valuable in the context of multi- and hyperspectral remote sensing,

as they allow for the automatic delineation of distinct regions or objects within the image

based on their spectral characteristics [LSF19]. Accurate segmentation of MSI and HSI is

essential for a wide range of applications, including precision agriculture [Mul13], mineral

exploration [MWV12], and environmental monitoring [XSY08].

Several approaches have been proposed for image segmentation in remote sensing, rang-

ing from traditional methods to more recent deep learning-based techniques. One older

approach involves partial differential equation (PDE)-based methods, which segment an

image by solving a PDE on the image numerically, based on minimization of an energy

functional [MS89, KWT88, CV01, BEV07]. More recently, graph-based methods have also

been developed for both semi-supervised and unsupervised learning on image processing

[GO09, MSB14, MKB13, BPB20, BBT18, HSB15, HLP13, BF12, GMB14, MMK17, CBC14].

Another common choice is the neural network methods, including CNN [LBD89] and GCN

[WSZ19, TNX21], with trainable convolutional filters optimized by minimizing the difference

44

between predicted and ground-truth labels.

3.2 Core-Set Selection and Batch Active Learning

As introduced in Section 2.3, active learning is an iterative process that selects a query set

Q to obtain labels in each iteration. As discussed in the query set selection (Section 2.3.3),

sequential active learning chooses a single unlabeled vertex in the graph for each query (the

case |Q| = 1), while batch active learning selects multiple unlabeled vertices as the query set

(the case |Q| > 1). In most cases, the human labeling time represents the most significant

bottleneck in the process. Sequential active learning limits the human labeling process by

allowing only one point to be labeled at a time. It is beneficial for the active learning

procedure to return a batch of points, enabling multiple humans/teams to work in parallel

to label the data. For instance, consider the task of labeling 200 points with a team of 10

people. In the sequential case |Q| = 1, labeling necessitates 200 human queries. However,

in the batch case with |Q| = 10, only 20 human queries are needed, and human experts

can label the data simultaneously. This parallel labeling approach reduces the total labeling

time by an order of magnitude compared to the sequential case.

Many methods rely on using the current predictions of the model to evaluate the un-

certainty, variance, or other criteria to quantify the information gained by labeling a new

data point. These methods are based on a critical assumption: the model possesses suffi-

cient information to determine which data would be most beneficial for its learning process.

This leads to two important requirements: constructing a good set of initial labels, called

a core-set, for the early stages of active learning, and quantifying information shared by

unlabeled points in a batch. It is crucial to construct a good core-set to enable the model to

make accurate estimates of the acquisition function early in training when model accuracy

is relatively low [MKS13, SS18]. The core-set construction can have a long-lasting impact

on the performance of the active learning procedure, and it is essential that the method

45

adequately explores the data before exploiting knowledge with active learning. Fortunately,

graph-based active learning methods perform well with relatively small amounts of labeled

data [MMS22].

The main challenge in transitioning from sequential to batch active learning is that

naive batch selection often results in redundant points, leading to inefficient learning. As

discussed in Section 2.3.3, heuristics should be employed to efficiently select diverse, infor-

mative batches while considering the computational complexity of optimizing the query set

Q.

3.2.1 Dijkstras Annulus Core-Set (DAC) Selection

The primary objective of core-set selection is to extensively explore the data, enabling the

active learning process to achieve optimal performance. We introduce Algorithm 2 for core-

set selection, as it produces a core-set that is approximately evenly distributed throughout

the dataset. Given a set of feature vectors X, we construct a graph G = (X,W) in accordance

with Section 2.2.1. The algorithm iteratively chooses nodes in X to form a core-set, ensuring

that all points are separated by a distance of at least r but no more than R from any other

point. At each iteration of the core-set selection process, assuming Xl is the currently chosen

vertex set (i.e., the current labeled set), the algorithm generates an annular set XC ⊂ X

and a seen set XS ⊂ X:

XC =

[⋃
x∈Xl

BR(x)

]
\

[⋃
x∈Xl

Br(x)

]
, XS =

⋃
x∈Xl

Br(x), (3.1)

where

Br(x) = {y ∈ X : dG(x,y) < r} (3.2)

and dG(x,y) represents the distance between x and y, calculated using Dijkstra’s algorithm

[Dij59]. The annular set contains the points from which the algorithm may choose at each

stage, while the seen set consists of points that the algorithm can no longer select.

46

Algorithm 2 Dijkstras Annulus Core-Set (DAC)

Require: Graph G = (X,W), initial labeled set Xl, inner radius r and outer radius R

1: Compute annular set from current labeled set

2: Initialize: Annular set XC = ∅ and seen set XS = ∅.

Ensure: The core-set Xl.

3: for x ∈ Xl do

4: Compute Br(x), BR(x)

5: XS ← XS ∪Br(x)

6: XC ← (XC ∪BR(x)) \Br(x)

7: end for

8: Iterative process updating the core-set Xl

9: while XS ̸= X do

10: if XC = ∅ then

11: pick x ∈ X \XS uniformly at random

12: else if XC ̸= ∅ then

13: pick x ∈ XC uniformly at random

14: end if

15: Compute Br(x), BR(x)

16: Xl ← Xl ∪ {x}

17: XS ← XS ∪Br(x)

18: XC ← (XC ∪BR(x)) \Br(x)

19: end while

Algorithm 2 proceeds by randomly selecting x ∈ Xl and updating Xl, XS, XC . Iterating

this process yields a relatively uniform coverage of the data. It is important to note that it

may not always be feasible to select x ∈ XC before XS = X. In such cases, the algorithm

randomly jumps to another data point outside the seen set. This situation can arise if R

is too small or if the data contains well-separated clusters. The output of Algorithm 2 is

47

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

· · ·
(e) Iteration 14

Figure 3.2: An example of the sampling process of the DAC algorithm with an outer density

radius of 0.3. The dataset is generated by sampling uniformly at random in the unit square.

The blue, black and gold points denote the unseen points, the seen points and the points in

the annular set, respectively. In iteration 0, the annular set is empty and the unseen set isn’t

empty. This means the algorithm picks a point at random from the unseen points to add

to the core-set. In subsequent iterations, the algorithm picks a point at random from the

annular set. It then updates the annular region as described in Algorithm 2. This process

terminates at iteration 14 when the entire dataset is the seen set. The set of red points in

panel (e) is the output DAC core-set, which is nearly uniformly distributed in the whole

dataset.

the core-set Xl, which is utilized as the initial labeled set in the active learning process.

Figure 3.2 illustrates an example of the algorithm applied to a simple dataset.

Theorem 8. Let Xl be the core-set output from our DAC Algorithm 2 with the radius

parameters r, R. Then we have:

1. For any x ∈ X, there exists x0 ∈ Xl such that dG(x,x0) < r.

2. If the initial core-set X0
l satisfies that for any x1 ̸= x2 ∈ X0

l , dG(x1,x2) ≥ r. Then for

any x1 ̸= x2 ∈ Xl, dG(x1,x2) ≥ r

Proof. 1. When the DAC Algorithm 2 terminates, we have XS = X, i.e.,⋃
x∈Xl

Br(x) = X. (3.3)

48

For any x ∈ X, there exists x0 ∈ Xl such that x ∈ Br(x0), which is equivalent to

dG(x,x0) < r.

2. For each step of the DAC Algorithm 2, we choose a new

x ∈ XC = [∪x∈Xl
BR(x)] \ [∪x∈Xl

Br(x)] , (3.4)

to update the current core-set Xl. This implies that if we write the output Xl =

{xi1 ,xi2 , . . . ,xi|Xl|}, we have

dG(xij ,xik) ≥ r, ∀j = 1, 2, . . . , k − 1, k = 1, 2, . . . , |Xl|. (3.5)

This is equivalent to

dG(x1,x2) ≥ r, ∀x1,x2 ∈ Xl, x1 ̸= x2. (3.6)

Remark 9. Here are some improvements to the radius parameter selection for the Algo-

rithm 2:

1. To further streamline the parameter selection process, practically, we set r = R/2,

effectively reducing the number of parameters to be tuned.

2. It is worth noting that this algorithm can also be employed with adaptively determined

values of r based on the density of the data surrounding a point, called the density

radius. For instance, in each step of the annulus core-set algorithm 2, we update the

radius r such that around 5% of the data points fall within Br(xlast), where xlast is the

latest vertex selected.

Utilizing the density radius leads to increased exploration in high-density regions and

reduced exploration in low-density areas. This approach enables the core-set to prioritize the

regions where the majority of the data is concentrated, effectively capturing the underlying

49

data distribution. By focusing on high-density areas, the algorithm ensures that the core-

set is representative of the most informative and relevant portions of the dataset. This is

particularly beneficial when dealing with imbalanced or non-uniformly distributed data, as

it prevents the core-set from being dominated by outliers or sparse regions. Moreover, the

density-based covering is independent of the average distances between data points, which

minimizes the need for extensive parameter tuning. This adaptability makes the algorithm

more robust and applicable to a wide range of datasets without requiring manual adjustments

to the radius parameters.

3.2.2 LocalMax Batch Active Learning

We propose a novel batch active learning approach, named LocalMax. Based on a feature

vector set X and the corresponding similarity graph G = (X,W), LocalMax selects a query

set of multiple nodes that satisfy the local maximum condition (Definition 10) on the graph

G from the candidate set. Informally, a node is a local maximum of a function on the nodes

if and only if its function value is at least that of its neighbors.

Definition 10 (Local Max of a Graph Node Function). Consider a KNN similarity

graph G = (X,W), where X is the set of nodes and W is the edge weight matrix. For a

graph node function u : X → R, xi ∈ X is a local maximum node if and only if for any

xj adjacent to xi, A(xi) ≥ u(xj). Equivalently, xi ∈ X is a local maximum if and only if:

u(xi) ≥ u(xj), ∀j s.t. Wij > 0. (3.7)

Assuming a batch size B, at iteration k of the active learning process (Algorithm 1),

LocalMax selects the query set Qk as the top-B local maximums in the candidate set (un-

labeled set) Xu (as detailed in Algorithm 3). Note that we need to extend the acquisition

50

(a) Ground Truth (b) Classifier (c) Acquisition Values

Figure 3.3: An example of DAC and LocalMax on the checkerboard dataset. In all pan-

els, red points denote the labeled core-set generated by DAC. Panel (a) shows the ground

truth classification. Panel (b) shows the classification results of Laplace learning based on

the labeled core-set. Panel (c) shows the heatmap of the uncertainty acquisition function

evaluated on the dataset. For the uncertainty acquisition function, high acquisition values

concentrate near the decision boundary. In panel (c), the purple stars denote points in the

query set returned by LocalMax with a batch size of 10.

function Ak defined on Xu to a graph node function Âk by:

Âk =

Ak(x), x ∈ Xu,

0, x ∈ Xl.

(3.8)

LocalMax benefits from many useful properties including simplicity, efficiency, and its

grounding in well-studied sequential acquisition functions. Building this acquisition function

on sequential active learning allows us to borrow properties from the sequential acquisition

functions. Controlling for local maxes enforces a minimum pairwise distance between points

in the query set, which counteracts the redundancy seen in naively optimizing sequential

acquisition functions.

LocalMax also maintains good computational complexity. The computational complexity

of Algorithm 3 is O(KN) where N is the number of nodes in the graph and K is the KNN

51

Algorithm 3 LocalMax Batch Active Learning

This is the query set selection in one iteration of the active learning process (Algorithm 1).

Require: A KNN graph G = (X,W). The current labeled set Xl and candidate set (un-

labeled set) Xu = X \ Xl. The current acquisition function A : Xu → R+. Batch size

B.

Ensure: The query set Q.

1: Initialize: Extend the domain of A from Xu to X by defining A(xj) = 0, ∀j ∈ Xl.

Q = ∅. S = Xu

2: while S ̸= ∅ and |Q| < B do

3: xk ← arg maxx∈S A(x)

4: N(xk) = {xj ∈ X : Wjk > 0}

5: if A(xk) ≥ A(xj),∀j ∈ N(xk) then

6: Q← Q ∪ {xk}

7: end if

8: S ← S \N(xk)

9: end while

parameter used when constructing the graph (Section 2.2.1). In practice, K is much smaller

than N , so the computational complexity is O(N). Let G(N) denote the model fitting time

for Laplace learning on a graph G with N nodes and letH denote the human labeling time for

each node. In the case that the weight matrix W is sparse and the graph Laplacian matrix L

is well-conditioned, we have G(N) = O(N). The human labeling time, H, is typically much

greater than O(N) since labeling SAR data can take significantly more time than is required

by the rest of the active learning pipeline. Since human labeling can be processed in parallel,

fewer batches are required to label the same amount of data. Consider the active learning

process that samples in total M nodes to obtain ground-truth labels. With G(N) = O(N)

and H ≫ O(N), the time complexities of sequential active learning and LocalMax batch

52

active learning with batch size B are:

Sequential Active Learning: M ×O(G(N) +H) = MH, (3.9)

LocalMax Batch Active Learning: M/B ×O(G(N) +O(N) +H) =
M

B
H. (3.10)

LocalMax provides a B times speed up based on sequential active learning which is ob-

served both theoretically and in practice as shown in the following experiment section in this

chapter.

3.3 Feature Extraction and Preprocessing

In this section, we introduce two different approaches for extracting features from Syn-

thetic Aperture Radar (SAR) images, Multispectral Images (MSI), and Hyperspectral Im-

ages (HSI). These methods are tailored to the specific characteristics and tasks associated

with each image type.

For SAR images, which are typically used for classification tasks, the raw features are

individual images. To process these images into lower-dimensional features, we consider

utilizing Convolutional Neural Network Variational Autoencoders (CNNVAE) or transfer

learning techniques. These methods allow us to effectively capture the essential information

from the SAR images while reducing the dimensionality of the feature space.

On the other hand, MSI and HSI are commonly used for image segmentation tasks,

where the feature vectors are associated with individual pixels. In this context, we employ

the concept of non-local means neighborhood patches as feature vectors. By considering the

local neighborhood around each pixel, we can capture the spatial and spectral information

present in the MSI and HSI data. This approach enables us to represent each pixel with a

feature vector that encodes its local context and facilitates accurate segmentation.

53

3.3.1 Neural Network Feature Embedding for SAR Imagery

The effectiveness of our semi-supervised learning methods relies on a meaningful representa-

tion of data, where distances between data points reflect their similarity. CNN architectures

have proven to be highly effective in processing image data. In this work, we leverage

CNNVAEs from previous research [MMS22] and employ transfer learning techniques using

pre-trained PyTorch CNN models to process the SAR datasets. We designate a convolutional

layer near the end of the neural network as the feature layer, as it captures intricate features

of the dataset. The outputs of the feature layer are referred to as feature vectors, which

are subsequently utilized in our graph construction process, enabling graph-based learning.

Figure 3.4 illustrates the transfer learning approach, with the orange layers representing the

feature layers.

Transfer learning involves repurposing a neural network that has been trained on a simi-

lar dataset and task for a new task. One approach is to directly utilize the parameters from

a pre-trained neural network without further modification. Alternatively, fine-tuning the pa-

rameters of the original neural network with respect to the new dataset can be employed. We

refer to these methods as zero-shot transfer learning and fine-tuned transfer learning, respec-

tively. Figure 3.4 provides a detailed illustration of the fine-tuned transfer learning process.

In contrast, CNNVAEs operate by first encoding the dataset and then decoding it. The

neural network architecture is designed to compress the data into a lower-dimensional space

during the encoding phase. This compression forces the neural network to learn meaningful

image features that enable accurate reconstruction of the original image. In the CNNVAE

approach, the feature layer is selected as the final CNN layer in the encoder portion of the

network.

54

Figure 3.4: Flowchart for fine-tuned transfer learning. The parameters in the convolutional

layers (contained in dotted boxes) of the pretrained CNN are transferred to the new CNN.

In fine-tuned transfer learning, all the transferred parameters are trained for a few iterations

on the new dataset. The training occurs by first adding new fully connected layers at the

end of the neural network and performing supervised learning with the new dataset. When

training is complete, only the layers in the dotted boxes are kept for the embedding process.

The orange layer denotes the feature layer, and the outputs of this layer provide the feature

vectors used later in the pipeline.

3.3.2 Non-local Means Feature Extraction for MSI and HSI

For the image segmentation task, the first step is to associate each pixel with a feature

vector that captures its local neighborhood information. While using the pixel values of all

channels as the feature vector is straightforward, incorporating neighborhood information

can enhance the feature representation.

For a pixel indexed by i, we consider a (2k + 1) × (2k + 1) neighborhood patch Pi

centered at the pixel. If the pixel is near the image boundary, reflection padding is applied

to expand the image before extracting the neighborhood patch. Inspired by the non-local

55

Figure 3.5: The feature extraction process for a single pixel. The feature vector is a Gaus-

sian-weighted patch centered on the pixel.

means method [BCM05], we apply a (2k + 1) × (2k + 1) discrete Gaussian kernel KG with

σ = k/2 to the neighborhood patch. The Gaussian kernel is defined as:

KG(i, j) =
α

2πσ2
exp

(
−(i− k − 1)2 + (j − k − 1)2

2σ2

)
, (3.11)

where α is a constant such that
∑2k+1

i,j=1KG(i, j) = 1. The weighted patch is then computed

as:

Pw
i (i, j, l) = Pi(i, j, l)KG(i, j),

for each pair of pixels i, j = 1, 2, . . . , 2k + 1, and l = 1, 2, . . . , C. This feature extraction

process is illustrated in Figure 3.5. The non-local means weighting process is applied to each

of the C channels in the image. The weighted patches are flattened and concatenated to

form the non-local means feature vector for pixel i. The dimension of the resulting feature

vector is d = C(2k + 1)2.

By extracting the non-local means feature vector for each pixel, we obtain the feature

vector set X (|X| = N), where N is the total number of pixels in the image. This feature

vector set is then used to construct a similarity graph G = (X,W) based on the KNN

method, as described in Section 2.2.1. The sparse similarity weight matrix W captures the

connectivity between pixels based on their feature vectors.

On the graph G, we randomly initialize a labeled set and apply the LocalMax batch active

learning to select a labeled set Xl according to Section 2.3 and 3.2.2. Finally, we predict the

56

An image to be segmented

Graph Construction:
Construct a similarity graph based

on extracted feature vector set.

Active Learning Loop:
Select a labeled set of nodes via the

LocalMax batch active learning.

Non-Local Means Feature
Extraction:

Extract a feature vector for each
pixel in the image.

Graph Learning Classification:
Apply Laplace learning on this

graph with the selected labeled set
to classify other unlabeled nodes.

Our Pipeline

The classification of graph

nodes gives a segmentation

of the image

Figure 3.6: Our graph-based active learning pipeline for the image segmentation task. Red

box: feature extraction; Blue box: Graph Construction (Section 2.2.1); Yellow box: Batch

Active Learning (Section 2.3 and 3.2.2); Green box: Graph Learning (Section 2.2.2).

labels of unlabeled nodes Xu = X \Xl in graph G with the graph Laplace learning classifier

based on the selected labeled node set Xl. This node classification on G gives a segmentation

on the given image. The flowchart of our pipeline is Figure 3.6.

3.4 Experiments and Results: SAR Image Classification

We now present the results of our active learning experiments on the MSTAR [AD], Open-

SARShip [HLL17], and FUSAR-Ship [HAS20] datasets. We first test the accuracy and

efficiency of our methods as compared to other batch active learning methods and sequen-

tial active learning. We then test the accuracy of our methods with different embedding

techniques on each dataset. Lastly, we look at the impact of data augmentation and the

57

choice of neural network architecture in transfer learning. It is important to note that our

methods use less data than state-of-the-art methods. LocalMax surpasses state-of-the-art

accuracy on OpenSARShip, and FUSAR-Ship with 35% and 68% of the data labeled, re-

spectively. The previous state of the art utilized 44% and 70% of the data for OpenSARShip

and FUSAR-Ship, respectively [ZZK21].

In our transfer learning experiments, we use PyTorch CNNs pre-trained on the ImageNet

dataset to perform image classification on SAR datasets. Unless otherwise stated, we use

AlexNet for OpenSARShip and ShuffleNet for FUSAR-Ship since preliminary experiments

suggested that they would achieve the best performance among the neural networks tested.

The transfer learning results for MSTAR were generally poor and we only present the results

with transfer learning from ResNet. These choices are later examined in our comparison

between different neural network architectures. Our experiments use both zero-shot and fine-

tuned transfer learning. In all the embeddings mentioned, the data is first transformed using

the following PyTorch data transformations in order: Resize, CenterCrop, RandomRotation,

GaussianBlur, and ColorJitter. Also, LocalMax may not always find batches of the specified

size B = 15, so it selects up to 15 points in a batch. As evidenced by the later efficiency

improvements, we see that this occurs infrequently.

Table 3.1 contains all the parameters used in our experiments. The experiment time

measures the time taken to complete the entire active learning process after the core-set

selection, including batch selection and model fitting. The time calculation neglects the

human labeling time, so the performance enhancements seen in practice will be much larger.

Accuracy is measured as the percent of correct predictions by the model in the unlabeled

dataset. The source code to reproduce all the results is available [Cal22, CCT20, PVG11].

All experiments were performed in Google Colab with high RAM.

58

Parameter Value

Batch size 15

Transfer learning data 5%

Sequential Acquisition Function Uncertainty

Dataset Final Labels (%) TL Architecture

MSTAR 15% ResNet

OpenSARShip 35% AlexNet

FUSAR-Ship 68% ShuffleNet

Table 3.1: Tables of parameters used in our experiments. All experiments use these param-

eters unless otherwise stated. In the left table, “transfer learning data” refers to the amount

of data used in fine-tuned transfer learning. This data is sampled uniformly at random and

is then used as part of the core-set before performing DAC. In the right table, “final labels”

refers to the size of the labeled dataset as a percent of the total dataset size at the end of

the active learning process. Also, “TL architecture” refers to the pretrained PyTorch neural

network used for transfer learning on each dataset.

3.4.1 Accuracy And Efficiency

As seen in Table 3.2, LocalMax generally outperforms the other batch active learning meth-

ods. Among the batch active learning methods tested, LocalMax attained the highest accu-

racy with comparable efficiency to the other methods. The time efficiency of LocalMax is

slightly worse than random sampling, but this is because random sampling is a very naive

approach that achieves much lower accuracy than LocalMax in each dataset. The TopMax

method has comparable time and accuracy to LocalMax, but in each test, the accuracy is

lower. This is likely because TopMax does not enforce separation of the data in a batch and

may select points with lots of shared information. Acq Sample also performs worse than

LocalMax by a noticeable amount.

We can see from Table 3.2 that LocalMax has comparable accuracy to sequential active

learning, deviating by at most 0.64% on each dataset. Additionally, LocalMax uses an order

of magnitude less computational time than sequential active learning. The discrepancy

between theoretical efficiency analysis and experimental time efficiency is because human

querying time is negligible in these experiments. The code immediately provides ground

59

LocalMax Random TopMax Acq sample Sequential

Time Consumption

MSTAR 26.70s 24.17s 25.96s 26.71s 338.11s

OpenSARShip 5.33s 4.68s 4.86s 4.86s 47.43s

FUSAR-Ship 26.80s 21.21s 26.08s 21.55s 322.99s

Accuracy

MSTAR 99.69% 92.66% 99.69% 96.27% 99.93%

OpenSARShip 81.25% 71.60% 80.64% 73.34% 81.65%

FUSAR-Ship 89.83% 68.73% 85.59% 72.72% 89.19%

Table 3.2: Time consumption and accuracy comparison among different active learning

methods. This experiment uses a CNNVAE embedding for MSTAR and zero-shot trans-

fer learning for OpenSARShip and FUSAR-Ship. Additionally, the parameters for all the

methods are listed in Table 3.1. LocalMax is the batch sampling method introduced in Sec-

tion 3.2.2. Random is a batch active learning method that randomly chooses a new batch

with the desired size. TopMax is a batch active learning method that chooses the n points

with the highest acquisition values. The acq sample method assigns each point with a prob-

ability to be picked proportional to the acquisition value and randomly samples n points as

a batch. All batch active learning methods have comparable efficiency and are 9 to 15 times

faster than the sequential case. The local max method always achieved higher accuracy than

other batch active learning methods and is comparable to the accuracy of sequential active

learning.

truth labels when queried, so most of the time in these experiments is observed in the model

fit time. In practice, these time differences will better match theoretical predictions where

the human query time is the bottleneck. These experiments attest to the efficiency and

accuracy of LocalMax relative to other active learning methods.

More detailed plots of the accuracy can be seen in Figure 3.7. These plots show accuracy

as a function of the size of the labeled set. In each case, we see a large jump in accuracy

with few labels, which is characteristic of the active learning process. After this point, the

60

accuracy appears to grow linearly with the amount of labeled data. Again, we notice that

LocalMax and sequential active learning tend to perform best on both datasets. We can

also see that random sampling fails to capture the importance of labeling certain data as its

accuracy is much lower throughout the active learning process. This shows that LocalMax

is improving the model more substantially than by just increasing the size of the labeled

dataset.

(a) OpenSARShip (b) FUSAR-Ship

Figure 3.7: Plots of accuracy v.s. the number of labeled points for five different active

learning methods. Details about these active learning methods are shown in the caption of

Table 3.2. Panel (a) and (b) contain the results for the OpenSARShip and FUSAR-Ship

datasets, respectively. In each panel, our LocalMax method (blue curve) and the sequential

active learning (purple curve) are almost identical and are the best-performing methods.

According to Table 3.2, LocalMax is much more efficient, proportional to the batch size.

Following the comparison between different batch and sequential active learning meth-

ods, we analyze the impact of the acquisition function on LocalMax. The results of these

experiments are shown in Figure 3.8, where we see that the uncertainty acquisition function

performs best in all experiments. This matches results from previous works on sequential

active learning [MMS22]. Figure 3.8 also shows that the uncertainty-based LocalMax beats

state-of-the-art in both transfer learning experiments on FUSAR-Ship and OpenSARShip.

61

(a) OpenSARShip CNNVAE (b) OpenSARShip Zero-shot TL (c) OpenSARShip Fine-tuned TL

(d) FUSAR-Ship CNNVAE (e) FUSAR-Ship Zero-shot TL (f) FUSAR-Ship Fine-tuned TL

(g) MSTAR CNNVAE (h) MSTAR Zero-shot TL (i) MSTAR Fine-tuned TL

Figure 3.8: Plots of accuracy v.s. Number of labeled points for each embedding and dataset.

In each panel, we show four curves generated by LocalMax with acquisition functions (Sec-

tion 2.3.2), together with the SOTA CNN-based method [ZZK21]. Three rows from top

to bottom correspond to the OpenSARShip, FUSAR-Ship, and MSTAR datasets. Three

columns from left to right correspond to CNNVAE embedding, zero-shot transfer learning

embedding and fine-tuned transfer learning embedding. The UC acquisition function per-

forms best among all the acquisition functions tested. The parameters for these experiments

are the same as those specified in Table 3.1.

62

3.4.2 Sensitivity Analysis

LocalMax Accuracy with Different Embeddings

State of the Art Zero-shot Fine-tuned Fine-tuned + Augmentation

OpenSARShip 78.15%± 0.57% 81.02%± 0.76% 79.66%± 0.90% 80.00%± 0.75%

FUSAR-Ship 86.69%± 0.47% 88.57%± 0.35% 91.54%± 3.07% 89.06%± 1.90%

Table 3.3: Sample statistics of accuracy after 20 experiments of the batch active learning

pipeline with zero-shot transfer learning, fine-tuned transfer learning, and fine-tuned transfer

learning with data augmentation (last column). The number in each cell represents the

mean ± one standard deviation across the 20 experiments. The zero-shot and fine-tuned

embeddings are the same as mentioned in Section 3.3.1. The parameters in these experiments

are the same as those specified in Table 3.1.

Zero-shot Embedding Active Learning Various CNN

OpenSARShip FUSAR-Ship

AlexNet 80.24% 85.14%

ResNet18 72.14% 87.39%

ShuffleNet 72.34% 88.22%

DenseNet 75.69% 89.96%

GoogLeNet 73.28% 86.74%

MobileNet V2 74.15% 86.68%

ResNeXt 76.29% 88.29%

Wide ResNet 73.14% 85.52%

Table 3.4: Accuracy values of one run of LocalMax for different choices of neural networks.

Each experiment uses zero-shot transfer learning (no fine-tuning) and the parameter values

specified in Table 3.1. The highest accuracy value in each column is bolded. As shown

in the table, the range of model performance across architectures is 8.10% and 4.82% for

OpenSARShip and FUSAR-Ship, respectively.

63

We now look at the sensitivity of our results based on choices in the pipeline. We first look

at the impacts of data augmentation and fine-tuning on the final results. Table 3.3 contains

summary statistics for an experiment regarding the benefits of using data augmentation and

fine-tuning in the transfer learning portion of the pipeline. The results of this experiment are

not conclusive between OpenSARShip and FUSAR-Ship. For OpenSARShip, we see that

variance is consistently low for the embeddings and zero-shot transfer learning performed

best. In contrast, the FUSAR-Ship results had notably higher accuracy and variance for fine-

tuned transfer learning without data augmentation. Adding data augmentation reduced

variance for fine-tuned transfer learning on both datasets. It is also important to note

that each of these experiments showed better accuracy than the previous state-of-the-art.

Additionally, zero-shot transfer learning may be the most practical method as it attains

comparable performance to the other embeddings, does not require labels in the new dataset,

and has no training time.

Lastly, we study the impact of neural network architecture on model performance. Ta-

ble 3.4 shows the results of one run of LocalMax for different choices of neural network

architectures. The range of model performance across architectures is 8.10% for OpenSAR-

Ship and 4.82% for FUSAR-Ship. Although this is a large variation, this is a common issue

encountered in deep supervised learning. It is important to note that the neural network

architectures tested are standard neural networks and weren’t designed for SAR data. It is

possible that transfer learning from architectures designed for SAR data will experience less

variance in the final accuracy [IID21, AMZ18].

3.5 Experiments and Results: MSI and HSI Segmentation

This section shows the experiments and results of our graph-based active learning pipeline

on the image segmentation tasks. We run two types of experiments. The first one compares

LocalMax, the sequential active learning process, and the other two straightforward batch

64

sampling approaches for active learning. The second one is the application of our pipeline

on image segmentation tasks and the comparison with a similar semi-supervised approach

proposed in [MMK17]. Finally, we provide some comments about our experiment results.

(a) raw Image (b) Ground Truth Labels

Figure 3.9: Urban Dataset. Panel(a) shows the raw hyperspectral image we used for exper-

iments. Panel(b) shows the ground-truth labels. Label information: asphalt (navy blue),

grass (light blue), trees (yellow), roof (red).

We consider three datasets, Landsat-7, Urban, and Kennedy Space Center (KSC) in the

following experiments. Here are brief introductions for these datasets:

1. The Urban dataset was recorded in October 1995 by the Hyperspectral Digital Imagery

Collection Experiment (HYDICE) over the urban area in Copperas Cove, TX, U.S. Zhu

et al. [ZWX14] provides the ground truth labels with four classes: asphalt, grass, tree,

and roof. This dataset contains a hyperspectral image with 307 × 307 pixels, each

corresponding to a 2 square meters area. The raw image includes 210 channels, but

we use the clean version with 162 channels after removing some channels due to dense

water vapor and atmospheric effects. Figure 3.9 shows the raw image and ground truth

labels of the Urban dataset.

2. The Landsat-7 dataset in this paper is a multispectral image of the Colville River

65

(Alaska, USA) from the RiverPIXELS dataset [SR22], which provides paired Landsat

and water-and-sediment labeled patches of size 256×256×6, where the 6 multispectral

channels correspond to Blue, Green, Red, Near IR, Shortwave IR 1, and Shortwave

IR 2. Each pixel in the image covers roughly 900 m2. The RiverPIXELS provides

ground-truth labels of this image with three classes, land, water, and bare sediment.

3. The Kennedy Space Center Dataset is a hyperspectral image at the Kennedy Space

Center (KSC) in Florida, acquired by the NASA AVIRIS (Airborne Visible/Infrared

Imaging Spectrometer) instrument. This hyperspectral image has size 512× 614. The

raw image includes 224 channels, while we are using the clean version with 176 channels

after removing water absorption and low SNR channels. There are 314368 pixels in

this dataset, while only 5211 (around 1.66%) of them have ground-truth labels. The

ground-truth labels include 13 classes of different land coverings in this region.

We consider the overall accuracy (OA) to evaluate the performance of different methods

in this Section. For a multi- or hyperspectral image I ∈ RN1×N2×c, let yi,j and y†i,j are the

predicted label and the ground-truth label of the pixel indexed by (i, j), i = 1, 2, . . . , N1,

j = 1, 2, . . . , N2. The definition of overall accuracy is:

OA =
Number of Correctly Classified Pixels

Total Number of Pixels
=

∑N1

i=1

∑N2

j=1 δ(yi,j, y
†
i,j)

N1N2

, (3.12)

where the δ-function is defined by:

δ(x, y) =

1, x = y

0, x ̸= y

(3.13)

3.5.1 Comparison between LocalMax and Sequential Active Learning: Accu-

racy and Efficiency

In this section, we conduct our experiments solely on the Urban dataset. We utilize the

hyperspectral pixel values as the feature vector, meaning that the corresponding feature

66

vector consists of 162 channels for each pixel. We use four acquisition functions to sample

up to 134 pixels (0.15% of all pixels) with various active learning sampling methods. We

initialize the labeled set with 10 randomly selected pixels from each class (a total of 40

pixels) and sample an additional 94 pixels based on the active learning methods. For a given

acquisition function A, we consider four sampling methods: Sequential, Random, Top-Max,

and LocalMax, with the last three being batch active learning methods with a batch size of

B.

• Sequential sampling selects the global maximum node of A to update the current

labeled set. The query set Q = {x∗} and x∗ = arg maxx∈Xu
A(x).

• Random sampling selects a batch of B unlabeled nodes according to a uniform

distribution over the unlabeled node set Xu.

• Top-Max sampling selects a batch of B unlabeled nodes as the top-B maximum of

A, i.e., the query set Q = {xi1 ,xi2 , . . . ,xiB} ⊂ Xu where xi1 = arg maxx∈Xu
A(x) and

xib = arg maxx∈Xu\{xi1
,...,xib−1

}A(x) for b = 2, 3, . . . , B.

• LocalMax sampling is the method we proposed in Section 3.2.2.

Figure 3.10 illustrates the relationship between accuracy and the number of labeled pix-

els for the four acquisition functions, while Table 3.5 presents the time consumption and

accuracy values for label rates of 0.1% and 0.15%. From these experiments, we draw the

following conclusions:

1. Accuracy Performance: Sequential active learning demonstrates the highest accu-

racy performance, as shown in Figure 3.10, which depicts its superior accuracy for

nearly all numbers of labeled pixels. Our batch active learning method, LocalMax,

achieves the second-best accuracy values and performs almost identically to the sequen-

tial method, particularly for larger numbers of labeled pixels (i.e., when the number of

67

labeled pixels are greater than 80). This is further supported by Table 3.5, highlighting

the top-2 accuracy values in bold. LocalMax consistently exhibits accuracies in the

top 2 and occasionally outperforms Sequential.

2. Efficiency Performance: According to the timings in Table 3.5, LocalMax requires

approximately the same amount of time as the Random and Top-Max sampling meth-

ods. At the same time, Sequential active learning takes around eight times longer.

This time multiplier of 8 is close to the theoretical multiplier of 10 (equal to the batch

size B), as discussed in Section 3.2.2.

In summary, LocalMax batch active learning is significantly more efficient than Sequential

active learning without substantially compromising accuracy.

3.5.2 Semi-Supervised Image Segmentation with Low Label Rates

We perform segmentation experiments on three datasets: Landsat-7, Urban, and KSC. The

performance is evaluated based on the overall accuracy as a function of the amount of

labeled data used in training. Our method is compared with the graph-based semi-supervised

method, abbreviated as GL-SSL, proposed by Meng et al. [MMK17]. There are several

differences between our graph learning method and GL-SSL. Firstly, our method uses the

KNN approach to build a sparse similarity graph, while GL-SSL is based on a fully connected

graph and uses the Nyström extension method to approximate the graph Laplacian matrix

(Section 2.2.1). Secondly, our approach solves the optimal node function by minimizing the

energy function of graph Laplace learning, while GL-SSL minimizes a regularized Ginzburg-

Landau functional [GMB14, MGB14, MKB13]. We have re-implemented the GL-SSL code3

in Python, and the corresponding results are based on our implementation. The parameters

selected for GL-SSL are based on their recommendations with some fine-tuning. To avoid

bloated content, we only provide results of GL-SSL with the randomly selected training

3http://www.ipol.im/pub/art/2017/204/

68

(a) Uncertainty Acquisition Function (b) MC Acquisition Function

(c) MCVOpt Acquisition Function (d) VOpt Acquisition Function

Figure 3.10: Comparison between batch and sequential active learning methods for four ac-

quisition functions. Each panel includes four curves, of which the X-axis is the number of

labeled pixels and the Y-axis is the accuracy. The blue, yellow, green, and red curves cor-

respond to the Random, Top-Max, LocalMax, and Sequential sampling method respectively

for the active learning process. More details on accuracy values and time consumption are

shown in Table 3.5. Descriptions of each sampling method are in Section 3.5.1.

dataset. We also test the performance of GL-SSL with the training set selected by our active

learning approach. Since the active learning process introduced in this paper is designed for

graph Laplace learning, the overall accuracy performance of GL-SSL with an active learning

training set is almost the same as that of a random training set. Our method’s overall

accuracy (OA) result or GL-SSL with the randomly sampled training dataset is the average

69

Comparison between different Active Learning Sampling Methods

Label Percentage 0.1% 0.15%

Acq Sampling Batch Size Time (s) Acc (%) Time (s) Acc (%)

UC

Sequential 1 1290.13 94.90 2576.86 95.93

Random 10 180.42 92.86 358.84 93.69

Top-Max 10 169.59 94.03 343.24 95.22

LocalMax 10 165.30 93.81 326.56 95.78

MC

Sequential 1 1250.22 92.70 2505.60 94.40

Random 10 166.59 88.41 327.95 93.22

Top-Max 10 165.07 92.68 327.35 92.71

LocalMax 10 165.28 93.59 334.10 93.88

MCVOpt

Sequential 1 1131.92 93.70 2257.06 94.99

Random 10 161.83 91.34 322.44 92.02

Top-Max 10 160.61 88.49 323.99 87.02

LocalMax 10 164.79 93.55 321.92 95.27

VOpt

Sequential 1 1289.92 92.60 2576.86 94.54

Random 10 175.99 86.80 346.61 91.91

Top-Max 10 169.91 88.75 339.96 85.62

LocalMax 10 175.61 90.24 357.60 93.91

Table 3.5: This table shows the efficiency and accuracy performance of active learning sam-

pling methods with different acquisition functions. The ’Acq’ column refers to the acquisition

function. The ’Sampling’ column refers to the choice of active learning sampling methods,

including Sequential, Random, Top-Max, and LocalMax, the last three of which are batch

active learning. The ’B’ column is the batch size. Timings and accuracies are shown for up to

0.1% and 0.15% labeled pixels in the Urban dataset. The top two accuracy values are bolded

for each acquisition function. Descriptions of each sampling method are in Section 3.5.1.

70

OA value of 15 random samples. Each time, the random sampling process starts with 1

random pixel in each class and then randomly chooses the rest of the labeled pixels with

equal probability.

The results for the Landsat-7 dataset are presented in Table 3.6 and Figure 3.11. We

construct the similarity graph by using each pixel’s non-local means feature vector. The

neighborhood patch size is set to 7×7, resulting in a 294-dimensional feature vector for each

pixel. We sample up to 200 pixels (0.3% of all pixels) based on the random initialization of

one pixel in each class (three pixels in total for the initialization) using the LocalMax batch

active learning approach with a batch size of 20. Additionally, we sample up to 3300 labeled

pixels (approximately 5% of all pixels) based on the random initialization of 10 labeled pixels

in each class (30 in total) and a batch size of 100. According to the overall accuracy values

shown in Table 3.6, the UC and MCVOpt acquisition functions achieve better accuracy with

only 0.3% labeled pixels than randomly selecting 5% labeled pixels. Figure 3.11 illustrates

the segmentation result of our graph-based batch active learning method with UC acquisition

functions.

The results for the Urban dataset are presented in Table 3.7 and Figure 3.12. In these

experiments, we use the hyperspectral pixel values as the feature vector for each pixel. We

sample up to 286 pixels (0.3% of all pixels) based on the random initialization of one pixel in

each class (four pixels in total for the initialization) using LocalMax with a batch size of 10.

Additionally, we sample 4700 pixels (approximately 5% of all pixels) using LocalMax with a

batch size of 100, based on the random initialization of 10 pixels in each class (40 in total).

It is evident from the results that LocalMax batch active learning with the uncertainty (UC)

acquisition function achieves an accuracy of 97.30% with only 0.3% labeled pixels, which is

comparable to the accuracy of 97.76% obtained with 10% randomly selected labeled pixels.

For the KSC dataset, we only consider and calculate our results on the 5211 labeled

pixels (approximately 1.66%) out of the total 314368 pixels, as visualized in Figure 3.13.

According to the ground-truth labels, we segment this hyperspectral image into 13 classes.

71

We sample up to 325 pixels (6% of all pixels with ground-truth labels) based on the random

initialization of 1 pixel in each class (13 pixels in total for the initialization). Table 3.8

presents the overall accuracy of the KSC dataset, demonstrating that our LocalMax batch

active learning with the uncertainty (UC) acquisition function performs best. Figure 3.13

illustrates the segmentation result of our graph-based batch active learning method with the

UC acquisition function.

In summary, with a very low label rate (less than 0.5%), our method has a relatively good

performance on the overall accuracy, while GL-SSL doesn’t perform well. Our graph-based

active learning approach can significantly reduce the number of labeled pixels required for

the semi-supervised image segmentation task. According to Tables 3.6 and 3.7, the graph

Laplace learning with 0.3% labeled pixels selected by active learning has a similar accuracy

performance to that with 5% to 10% randomly selected labeled pixels.

3.5.3 Comments on Our Experiments

Our experiments in Sections 3.5.1 and 3.5.2 provide valuable insights into the performance of

different acquisition functions and the LocalMax sampling method. When the percentage of

training data is relatively small, the MCVOpt acquisition function exhibits similar or even

better performance compared to the UC acquisition function. This observation is partic-

ularly evident in Table 3.6, where the UC achieves only 25% accuracy with 0.1% labeled

data, while other acquisition functions surpass 90% accuracy. However, as the percentage

of training data increases, the UC acquisition function consistently outperforms the others

regarding overall accuracy. This phenomenon can be attributed to the different tendencies of

the acquisition functions towards exploration or exploitation in the active learning process.

The UC acquisition function primarily focuses on exploiting the classifier’s current decision

boundaries based on the current labeled set by querying data points along the boundaries be-

tween different classes. In contrast, the other three acquisition functions, namely MC, VOpt,

and MCVOpt, prioritize exploration over exploitation, as they are designed to explore the

72

Overall Accuracy of a Landsat-7 Multispectral Image (65536 pixels)

Method Sampling
Label Rate (Batch Size)

0.1%(20) 0.2%(20) 0.3%(20) 5%(100)

Ours LM UC 25.17% 95.92% 96.23% 98.65%

Ours LM MC 91.75% 95.04% 95.80% 97.50%

Ours LM MCVOpt 94.81% 95.23% 96.25% 97.74%

Ours LM VOpt 93.61% 94.4% 94.78% 96.44%

Ours Random 88.43% 91.38% 92.55% 96.12%

GL-SSL [MMK17] Random 20.77% 41.44% 48.56% 94.94%

Table 3.6: The overall accuracy (averaged over 15 random samples) of our LocalMax batch

active learning method with different acquisition functions and sampling strategies on the

Landsat-7 multispectral image. Results are shown for various label rates, with each process

initiated using 10 labeled pixels per class (30 total).

Overall Accuracy of Urban Dataset (94249 pixels)

Method Sampling
Label Rate (Batch Size)

0.1%(10) 0.2%(10) 0.3%(10) 5%(100) 10%

Ours LM UC 94.96% 95.56% 97.30% 99.71% N/A

Ours LM MC 90.71% 93.31% 94.84% 98.60% N/A

Ours LM MCVOpt 94.13% 95.33% 95.35% 98.94% N/A

Ours LM VOpt 91.32% 94.27% 94.52% 97.44% N/A

Ours Random 87.20% 91.93% 93.30% 97.20% 97.76%

GL-SSL [MMK17] Random 53.06% 55.08% 58.79% 90.71% 93.48%

Table 3.7: The overall accuracy (averaged over 15 random samples) of our LocalMax batch

active learning method with different acquisition functions and sampling strategies on the

Urban dataset. Results are shown for various label rates, with each process initiated using

1 labeled pixel per class (3 total).

73

(a) Ground-truth Labels (b) OA: 96.23%

Figure 3.11: The ground-truth labels and segmentation results of a Landsat-7 multispectral

image from the RiverPIXELS dataset. The segmentation was performed using 0.3% labeled

pixels sampled with the LocalMax batch active learning method, a batch size of 20, and the

UC acquisition function, with feature vectors of 7×7 neighborhood patches.

74

(a) OA: 97.30% (b) OA: 95.35%

Figure 3.12: The segmentation result of the Urban dataset with 0.3% labeled pixels sampled

according to LocalMax batch active learning with batch size 10 with different acquisition

functions, (a): UC; (b): MCVOpt. Label information: asphalt (navy blue), grass (light

blue), trees (yellow), roof (red). The ground-truth labels are in Figure 3.9.

(a) Ground-truth labels (b) OA: 89.83%

Figure 3.13: The ground-truth (a) of 5211 pixels and segmentation result (b) of the KSC

dataset. The segmentation result is with 6% labeled pixels sampled according to LocalMax

batch active learning with batch size 10 and the UC acquisition function.

75

Overall Accuracy of KSC Dataset (5122 pixels with ground-truth labels)

Method Sampling
Label Rate (Batch Size)

2.5%(5) 4%(5) 6%(5)

Ours LocalMax UC 85.47% 88.66% 89.83%

Ours LocalMax MC 82.04% 85.86% 87.85%

Ours LocalMax MCVOpt 85.12% 85.86% 87.13%

Ours LocalMax VOpt 83.22% 84.68% 86.66%

Ours Random 82.22% 85.22% 85.83%

GL-SSL [MMK17] Random 80.37% 81.67% 83.55%

Table 3.8: The overall accuracy (averaged over 15 random samples, based on 5211 labeled

pixels) of our LocalMax batch active learning method with different acquisition functions

and sampling strategies on the KSC dataset. Results are shown for various label rates, with

each process initiated using 1 labeled pixel per class (13 total). The underlined value is

copied from paper [MMK17].

76

geometric structure of the entire dataset. At the initial stages of the active learning process,

exploring the dataset’s inherent geometric or clustering structure is crucial. However, when

the labeled percentage or the current accuracy is relatively high, exploiting the decision

boundary becomes more beneficial for further improving the overall classification accuracy.

Based on our empirical findings, we recommend using the UC acquisition function, but we

also caution that it may not always be the optimal choice due to its tendency to prioritize

exploitation during the active learning process.

Furthermore, Figure 3.10 reveals a performance gap between LocalMax and sequential

active learning when the number of labeled nodes is small. The primary reason for this

initial gap is that a newly labeled node can significantly influence the acquisition function’s

value when the amount of labeled data is limited. In such circumstances, LocalMax may

not perform optimally since the next global maximum of the acquisition function might not

be close to any local maximum of the current acquisition function. However, it is important

to note that this gap does not necessarily persist throughout the entire active learning

process. As the number of labeled data increases, the LocalMax batch sampling method

can better approximate sequential sampling, leading to improved performance. Overall, our

experiments demonstrate the effectiveness of the proposed LocalMax sampling method and

provide guidance on the selection of acquisition functions for active learning in hyperspectral

image segmentation tasks.

3.6 Conclusion

In this chapter, we present two novel batch active learning methods, DAC for core-set selec-

tion and LocalMax for batch sampling, and their applications in SAR image classification

and multi- and hyperspectral image segmentation. Our proposed methods demonstrate ex-

cellent performance in both domains, achieving high accuracy with a limited amount of

labeled data while significantly improving efficiency compared to sequential active learning

77

methods.

In the domain of SAR image classification, we apply neural network embedding techniques

(CNNVAE and transfer learning) before the graph learning and active learning process. Our

approach outperforms state-of-the-art SAR classification methods on the OpenSARShip and

FUSAR-Ship datasets. Moreover, our methods significantly improve efficiency compared to

sequential methods while maintaining comparable accuracy, and attain higher accuracy than

other common batch active learning methods on the tested datasets.

We also apply the LocalMax batch active learning method to multi- and hyperspectral

image segmentation. Our graph-based batch active learning pipeline performs better than

a similar graph-based method proposed in [MMK17]. Our approach requires fewer labeled

pixels to achieve better overall accuracy, highlighting the benefits of carefully selecting points

to label through active learning in graph-based semi-supervised classification. Experiments

demonstrate that LocalMax not only accelerates the sampling process but also maintains

accuracies similar to sequential active learning using the same acquisition function.

The success of our DAC and LocalMax methods in both SAR image classification and

multi- and hyperspectral image segmentation demonstrates the versatility and effectiveness

of our batch active learning approach. By leveraging the strengths of active learning, graph-

based methods, and efficient batch selection, we develop a powerful framework for semi-

supervised learning in various image analysis tasks. These advancements contribute to reduc-

ing the reliance on large amounts of labeled data, which is often costly and time-consuming

to acquire, while still achieving high-quality results.

78

CHAPTER 4

Graph-based Active Learning for Surface Water and

Sediment Detection in Multispectral Images

This chapter reuses materials from the author’s publications [CMB23b, CMB24]. IEEE

copyrighted material from [CMB23b] is reused in this chapter, with the approval of the se-

nior author Andrea L. Bertozzi and following the requirements outlined by IEEE for the-

sis/dissertation reuse.1 The work [CMB24] is submitted to IEEE Journal of Selected Topics

in Applied Earth Observations and Remote Sensing.

With the continuous advancements in remote sensing technology, high-resolution multi-

spectral satellite imagery has become increasingly abundant, providing a crucial data source

for monitoring surface water bodies and river sediments. Traditional methods for water

and sediment extraction, such as thresholding and decision trees [Gao96, McF96], struggle

to fully utilize the rich information contained in multispectral imagery and often require a

large amount of manually labeled data for training, leading to low efficiency. In recent years,

deep learning methods like Convolutional Neural Networks (CNNs) [LBD89] have achieved

remarkable results in remote sensing image analysis [ZTM17, MLZ19]. However, they still

face challenges such as insufficient labeled data and limited model generalization ability.

To overcome these difficulties, we propose a Graph Active Learning Pipeline (GAP) for

extracting surface water and sediment from multispectral remote sensing images [CMB23b].

This method employs an active learning strategy to optimize the selection of a small number

1©2023 IEEE. Reprinted, with permission, from [CMB23b]

79

of representative pixels for manual labeling during the training process, thereby constructing

an efficient training set. Experimental results demonstrate that our method, using only 3,270

training samples, achieves higher accuracy than CNN-based methods trained on 2.1 million

samples [IBP19]. This clearly proves the superiority of the GAP method in reducing labeling

costs and improving classification accuracy.

Building upon the GAP method, we further propose an enhanced Contrastive Graph-

based Active Learning Pipeline (CGAP) [CMB24]. CGAP introduces a feature-embedding

neural network based on contrastive learning [CKN20, CKS20, KTW20] into the GAP frame-

work, mapping high-dimensional raw features to a lower-dimensional space to facilitate more

efficient graph learning. Additionally, we design specialized data augmentation strategies to

improve the robustness of the embedded features against geometric transformations, res-

olution variations, and light cloud cover. Moreover, we develop a Python package that

seamlessly integrates Google Earth Engine with CGAP, providing a user-friendly solution

for rapid and accurate environmental predictions on a global scale.

Our work in this chapter makes the following innovations and contributions:

1. We propose pipelines based on graph-based active learning that significantly reduces

manual labeling costs and improves the accuracy of water and sediment detection;

2. We introduce contrastive learning strategies to enhance graph learning efficiency and

robustness, expanding the applicability of the method;

3. We develop an easy-to-use software package that promotes the application of our

pipelines in global environmental monitoring.

4.1 Introduction

Mapping surface water dynamics is crucial for a host of environmental, engineering, and

management problems, including climate studies, flood monitoring and mitigation, freshwa-

80

ter resource management, water quality analyses, and earth science research [BNA13, CRS21,

CSK21, KPR21]. 80% of the Earth’s population is under high levels of threat to water se-

curity [VMG10]. In tandem with addressing these needs, opportunities for understanding

surface water dynamics are becoming more abundant with the rise of global, remotely sensed

surface water observations [SPR20], but new technologies are needed to fully exploit these

data archives.

Rivers are at the center of water security, providing freshwater and ecologic resources that

support agriculture and human development worldwide. Many rivers are highly dynamic to

environmental conditions [DCS17, RNC14], and studying these dynamics from remotely-

sensed images is an active area of research in Earth Sciences [SKF17]. The importance of

automated surface water detection from remotely-sensed images is highlighted by significant

efforts that have published global datasets or pre-trained models of surface water.

Global surface water datasets and models are effective at capturing the majority of surface

water, yet often lack the local precision required for specific applications such as measuring

river widths [ASP13, LPA20] or estimating river migration rates [RSP16, SKF17], where

the targeted detail may be as narrow as 1-2 pixels along the river boundary. To address

this, researchers typically develop local models, which necessitates the labor-intensive task

of manual training data labeling, potentially compromising model accuracy. For some river

studies, an additional class representing in-channel sediment or highly-turbid water may be

desired [SKF17, LWW11]. In our case, we aim to identify rivers at their so-called ”bankfull”

state [Bje07], which we define as the union of water and active (unvegetated) in-channel

sediment bars [SKF17]. Schwenk et al. created a high-quality hand-labeled dataset, River-

PIXELS, [SR22] consisting of labeled water and in-river, unvegetated sediment from Landsat

multispectral images. We want to build machine learning models on RiverPIXELS to detect

surface water and sediment pixels globally in multispectral satellite images.

There are some published datasets or models that are directly applicable to the surface

water detection task. The Global Surface Water dataset [PCG16], which aimed to find all

81

Training Images

Test Images

For each unlabeled
image, build a graph
on the union set of
the RepSet and its
feature vector set.

Apply Laplace
learning on this

graph with labels
of the RepSet to
classify unlabeled

feature vectors, i.e.
classify pixels for

this unlabeled
image.

Active Learning:
Select a

representative
set (RepSet) the
training feature

vector set.

Raw Features:
Neighborhood

Patch

Embedding Network:
Contrastive learning

Raw Features:
Neighborhood

Patch

Low-dim
Training
Feature
Vectors

Low-dim
Test

Feature
Vectors

Train

Deploy

Figure 4.1: The flowchart of our basic contrastive graph-based active learning pipeline

(CGAP): 1. (Red Boxes) Use a neural network trained by contrastive learning to preprocess

images into feature vectors. 2. (Yellow Box) Condense the labeled feature vector set into a

smaller representative set (RepSet) using active learning approaches. 3. (Cyan Box) Build

a graph based on the union of the RepSet and the unlabeled feature set. Then, apply graph

learning approaches to predict labels for unlabeled features.

water pixels in the Landsat archive, trained an SVM model followed by post-processing to

account for confounding features such as ice, snow, volcanic ash, etc. The USGS continues to

improve on their Dynamic Surface Water Extent product [Jon19], which provides a surface

water map for most Landsat images based on spectral mixing methods. In addition to

published datasets, pre-trained models have also been published. Of note is Deepwatermap

[IBP19], a convolutional neural network (CNN) U-net model trained using a large collection

of publicly available datasets.

The identification of surface water from satellite images can be treated as an image

segmentation problem, wherein labels are given to each pixel in an image such that pixels with

the same label share certain characteristics. Image segmentation has been approached from

82

many angles. There are partial differential equation (PDE)-based methods [MS89, KWT88,

CV01] for unsupervised segmentation, and deep learning methods like U-Net [RFB15] for

supervised segmentation on extensive annotated training datasets.

The RiverPIXELS dataset comprises only 104 images, which motivates us to explore semi-

supervised methods like graph learning. As a related example, graph convolutional networks

(GCN) have been utilized for wetland classification, outperforming CNN models [JMG22].

Graph-based learning approaches for image segmentation typically involve constructing a

similarity graph based on pixel features, where each pixel’s feature vector serves as a node,

and the edge weights represent the similarity between nodes. However, constructing a graph

on millions of pixels, such as those in the 104 images of the RiverPIXELS dataset, can be

computationally inefficient. To address this challenge, we propose GAP [CMB23b], which

employs an active learning approach [Set09, MMS22] to select representative samples from

the training set, avoiding the need to construct a graph on the entire dataset.

In addition to GAP, we present CGAP as the focus of this chapter, which is a significant

enhancement to GAP that further improves its stability and efficiency. In fact, the graph

learning and active learning parts in both GAP and CGAP are the same. The only difference

between these two pipelines is the feature processing. Instead of using raw neighborhood

patches as feature vectors for graph construction, CGAP preprocesses them through a shallow

feature-embedding neural network. This network is trained using the contrastive learning

approach [CKN20, KTW20], which has shown impressive results in SAR image classification

when combined with graph learning [BOC23]. CGAP has two versions: a basic version

(B-CGAP) and an adaptive version. The flowchart of B-CGAP is illustrated in Figure 4.1.

The details and experimental results presented in this chapter can be fully replicated

using the code available in our GitHub repositories of GAP2, and CGAP3. For a quick start

2https://github.com/wispcarey/SurfWater-Graph-Active-Learning-GAP-

3https://github.com/wispcarey/CGAP-SurfaceWaterDetection

83

https://github.com/wispcarey/SurfWater-Graph-Active-Learning-GAP-
https://github.com/wispcarey/CGAP-SurfaceWaterDetection

with our tool, you can directly visit the GitHub repository of GraphRiverClassifier (GRC)4.

4.2 Graph-based Active Learning Pipeline

This section introduces our proposed graph-based active learning pipelines for detecting

surface water and sediment pixels in multispectral images, including the original GAP

[CMB23b], and CGAP with the contrastive embedding feature vectors. We provide the

basic CGAP (B-CGAP) for the training process based on the RiverPIXELS dataset [SR22],

which is considered fully labeled. In addition, we developed the adaptive CGAP (A-CGAP)

for potential extra unlabeled data, which should be labeled in a human-in-the-loop process

under the guidance of active learning.

Consider the training image set I = {Ii}nl
i=1 and the test image set Ĩ = {Ĩj}nu

j=1. In

training via the B-CGAP on I, it is assumed that all ground-truth labels of pixels in I are

available. In contrast, in training via the A-CGAP, one does not have to a priori know any

labels in I.

In both pipelines, we first preprocess the images into feature vectors, each of which cor-

responds to a pixel, by training a feature-embedding neural network by contrastive learning.

Then we sample a training feature vector set, termed the representative set (RepSet) R, as a

subset of the whole preprocessed feature set X = {x1, x2, . . . , xN}. Each feature vector in R

has its ground-truth label available (for A-CGAP, it should be obtained by human experts).

The core idea of our pipeline is to then use this RepSet for classifying the pixels in each

of the test set images in Ĩ. For each test set image Ĩj ∈ Ĩ with N0 pixels and corresponding

unlabeled feature vector set X̃j = {x̃j
1, x̃

j
2, . . . , x̃

j
N0
}, we generate a weighted graph G =

(R ∪ X̃,W) according to Section 2.2.1 and then apply Laplace learning (Section 2.2.2) to

classify those unlabeled feature vectors in X̃j.

4https://github.com/wispcarey/GraphRiverClassifier

84

https://github.com/wispcarey/GraphRiverClassifier

4.2.1 Contrastive Learning

Contrastive Learning has emerged as a powerful technique in the field of deep learning,

particularly for learning visual representations without extensive labeled datasets. It is a

training strategy that can be applied to various types of neural networks. At its core, con-

trastive learning aims to learn embeddings by maximizing the similarity between augmented

views of the same data point while minimizing the similarity between embeddings of different

data points.

Chen et al. introduced the SimCLR framework, which simplifies the contrastive learning

paradigm by eliminating the need for specialized architectures or a memory bank [CKN20].

This framework was further expanded in their subsequent work, demonstrating the effec-

tiveness of large-scale self-supervised learning for improving semi-supervised learning perfor-

mance [CKS20]. For a neural network f , in a minibatch of m data {x1,x2, . . . ,xm}, each xk

is augmented into x̃2k−1, x̃2k and process through the neural network z2k−1 = f(x̃2k−1), z2k =

f(x̃2k). The SimCLR loss is defined by

L =
1

2m

m∑
k=1

[ℓ(2k, 2k − 1) + ℓ(2k − 1, 2k)],

ℓ(i, j) = − log
exp(g(zi, zj)/τ)∑2m

k=1,k ̸=i exp(g(zi, zk)/τ)
,

(4.1)

where τ is a constant parameter, and g(zi, zj) = z⊤i zj/(∥zi∥∥zj∥) is the angular (cosine)

similarity.

Khosla et al. [KTW20] extend SimCLR from self-supervised learning into a supervised

version (SupCon) by leveraging label information. SupCon enhances the discriminative

power of the embeddings by encouraging embeddings from the same class to cluster together,

significantly outperforming traditional cross-entropy loss for supervised learning in many

cases. In the supervised setting, we have the ground-truth labels {y1, y2, . . . , y2m}, y2k−1 =

85

y2k for {z1, z2, . . . , z2m}. Based on (4.1), the supervised contrastive loss is defined by

Lsup =
2m∑
i=1

−1

|P (i)|
∑

j∈P (i)

log
exp(g(zi, zj)/τ)∑2m

k=1,k ̸=i exp(g(zi, zk)/τ)

=
2m∑
i=1

1

|P (i)|
∑

j∈P (i)

ℓ(i, j),

(4.2)

where P (i) = {k ̸= i : yk = yi} is the set of indices with the same label of zi. The SimCLR

loss (4.1) only considers augmented pairs z2k−1, z2k while the SupCon loss (4.2) considers

all pairs with the same label in the minibatch. In this paper, we set τ = 0.5 for both the

SimCLR loss (4.1) and the SupCon loss (4.2).

We utilize the angular distance as a similarity measure in both the contrastive learning

approach and the graph construction methodology presented in Section 2.2.1. This deliberate

choice facilitates the natural application of graph-based Laplace learning as a classifier for

handling the embedding features produced by contrastive learning.

4.2.2 Feature Preprocessing

For every image I within the set I ∪ Ĩ, we extract a neighborhood patch centered around

each pixel to form raw feature vectors, considering all N0 pixels in the image. The raw

feature cube for each pixel is of the size (2k + 1)× (2k + 1)×C. The number of channels for

multispectral images in the RiverPIXELS dataset is C = 6. Denote the set of raw feature

cubes of I by {xraw
1 (I),xraw

2 (I), . . . ,xraw
N0

(I)}.

For our GAP method, we apply the non-local means feature vector [BCM05], referring

to Section 3.3.2 for more details. The extracted feature vector of each pixel has the size

6(2k + 1)2, where k is the neighborhood patch marginal parameter. Practically, in GAP, we

choose k = 3, and the output feature has the size 294.

For our CGAP method, we apply contrastive learning to train a feature embedding

neural network to process the raw feature patches {xraw
i }

N0
i=1, each of which is with the size

9 × 9 × 6 corresponding to the neighborhood patch marginal parameter k = 4. Before

86

training the feature embedding neural network, we design some transformations for those

neighborhood patches:

1. Horizontal Flip: Horizontaly flip the patch.

2. Vertical Flip: Verticaly flip the patch.

3. Rotation: Select a random angle and rotate the patch clockwise. Then crop the

output into 9× 9. This might introduce some zero values in the output patch.

4. RandomPixelAugmentation: Randomly select some pixels and set their values to

1 for all six channels.

5. CenterCropResize: Crop the image from the center based on a random scale and

then resize the image to 9× 9.

6. Gaussian Reweight: Reweight the patch by a 9× 9 Gaussian kernel matrix.

Each one of these six transformations is applied simultaneously to each channel of the patch.

The final random augmentation design for contrastive learning consists of a sequential com-

bination of these six transformations, where the first five are applied with a 50% probability

of being executed, while the last transformation, Gaussian Reweight, is guaranteed to be

applied.

The first three transformations, Horizontal Flip, Vertical Flip, and Rotation, are

designed for the robustness of geometry transformations. The fourth one, RandomPix-

elAugmentation, is designed for the possible light coverage of the cloud. The fifth one,

CenterCropResize, is designed for the robustness of different (higher) resolutions. The

last one, Gaussian Reweight, is to emphasize pixels near the center, which is inspired by

the Non-local Means [BCM05] in image processing.

We use a shallow convolutional neural network for feature embedding. The network

architecture is shown in Figure 4.2. This network embeds 9× 9× 6 neighborhood cubes into

87

Input Patch

Conv Layer 1

Conv Layer 2

Structure

FC Layer 1

FC Layer 2

Max Pooling

Normalize

Feature Size

9 * 9 * 6

9 * 9 * 12

4 * 4 * 12

4 * 4 * 24

128

32

32

Figure 4.2: The architecture of our feature embedding neural network.

32-dimensional feature vectors. It only includes 57836 trainable parameters. Conv Layer

denotes the convolutional layer and FC layer denotes the fully connected layer. There is a

ReLU layer after each of Conv Layer 1, Conv Layer 2, and FC Layer 1. Conv Layer 1

has the kernel size 5 and padding 2 while Conv Layer 2 has the kernel size 3 and padding

1. The final layer normalizes the L2 norm of the output feature vector to one, which makes

it easier for the angular similarity in the loss function (4.1), (4.2) of contrastive learning.

The loss function L(θ) is the SupCon loss(4.2) for B-CGAP and is the SimCLR loss(4.1)

for A-CGAP, since we don’t have the ground-truth label information in the feature prepro-

cessing stage of the A-CGAP. The training process is described in Section 4.2.1. Denote the

trained parameters by θ̂. Finally, let the set of preprocessed feature vectors corresponding

to image I in CGAP be written as {xi(I) = f(xraw
i (I), θ̂) | i = 1, 2, . . . , N0}.

88

Initialization: Choose a
subset with corresponding
labels as the initial RepSet

Apply Laplace learning on
the graph with labels of
the current RepSet to
classify the remaining

feature vectors.

Output: The RepSet of
input set

Input: A set of labeled
feature vectors

Active learning loop

Calculate the Uncertainty
acquisition function value

for each feature vector not
in the current RepSet.

Build a graph on the input
feature vector set.

Terminate?

No

Update the current
RepSet according to the

LocalMax batch sampling
approach.

Yes

Figure 4.3: The creation of the RepSet with active learning. This process uses the graph

Laplace learning [ZGL03], the Uncertainty acquisition function [BLS18, MLB20, QSW19],

and the LocalMax batch active learning [CCT23] approaches.

89

4.2.3 Create the Representative Set

It is inefficient to include the massive set of all training feature vectors in graph learning.

For example, considering label images of Kolyma, Yana, Waitaki, and Colville Rivers in the

RiverPIXELS dataset, there are 42 multispectral images of the size 256× 256× 6, consisting

of over 2.7 million pixels. It would be prohibitively costly to generate a graph based on this

extremely large number of feature vectors.

Denote Xi as the preprocessed feature vector set of the training image Ii ∈ I. In this part,

we condense the feature set X = ∪nl
i=1Xi into a much smaller representative set (RepSet)

R ⊂ X as a labeled training set that will be used to classify the pixels in each of the unlabeled

images. Such a condensation process is expected to remove redundant feature vectors while

keeping significant feature vectors.

We find a RepSet Ri for each image Ii ∈ I and subsequently union them together to

obtain R = ∪nl
i=1Ri. In the case that ground-truth labels are not available when generating

the RepSet R (i.e. the A-CGAP case), pixels need to be labeled by human experts in a

human-in-the-loop process. To determine the RepSet for a certain image Ii ∈ I, we

follow 3 steps: Initialization, Active learning loop, and Termination. Such a process

is illustrated in Figure 4.3.

We now present the details of these three steps:

1. Initialization: Initialize the RepSet R0
i . There are two methods for initialization,

random initialization and core-set initialization.

In the random initialization, feature vectors in the initial RepSet R0
i are randomly

chosen from the set Xi. If all ground-truth labels of feature vectors in Xi are available, we

can randomly sample the same number of feature vectors within each class to achieve a class-

balanced initialization. If all ground-truth labels for the current image are not available, then

the randomly sampled initial set will be highly imbalanced across labels. In many images in

our dataset, land pixels account for over 80% of the image while sediment pixels account for

90

less than 5%. Random initialization likely yields little to no sediment pixels, exacerbating

class imbalances in the subsequent active learning loop.

The coreset initialization select a core-set that follows the geometric distribution of

the feature vector set X0. Here we use the Dijkstra Annulus Core-Set (DAC), introduced

in Section 3.2.1, which provides a good initialization for the graph-based active learning

process. Compared with the random initialization, it is not efficient since it needs to

construct a graph structure on Xi and down-sample according to this graph.

2. Active learning loop: Following the guidance of active learning approaches (Sec-

tion 2.3), add feature vectors from Xi and corresponding labels one by one to the RepSet.

The Active learning loop is illustrated in Figure 4.3: Construct a graph Gi on Xi and

initialize the RepSet to be R0
i . Apply Laplace learning on Gi with the initially labeled set

R0 to make predictions for feature vectors in Xi \ R0. Then based on the predicted labels,

calculate the acquisition function A(x) for x ∈ Xi \ R0 according to the UC acquisition

function (2.40). Then select a query set Q with the given batch size |Q| = B according to the

LocalMax batch sampling approach introduced in 3.2.2. Update the RepSet as R1
i = R0

i ∪Q.

Repeat this process for each iteration t until reaching the terminal condition, to be explained

in the next bullet entitled Termination. The final Rt
i is the RepSet of image Ii, denoted as

Ri.

3. Termination: Stop the active learning loop when a certain terminal condition is satisfied.

When ground-truth labels of all feature vectors are available, the accuracy-based terminal

condition can be applied. Otherwise, the label-change terminal condition is applied.

In iteration t of the active learning loop step for image Ii, let Xi be the preprocessed

feature set of pixels in Ii and Rt
i be the RepSet in the current iteration. We apply Laplace

learning on the graph built with nodes Xi with labels on Rt
i to make predictions on Xi \Rt.

Let Q be the query set to obtain labels by active learning and Rt+1
i = Rt

i∪Q. The labels are

either (1) already available if the training set images are fully labeled or (2) hand-labeled by

91

a human in the loop. Denote the Laplace learning prediction label on x ∈ Xi at iteration t

by yt(x).

With a hyperparameter Kmax, ϵ, these terminal conditions are based on the predicted

labels on X \Rt
i, X \Rt+1

i at iterations t, t + 1.

With the δ-function 3.13, we present two kinds of terminal conditions to check if we need

to terminate the process at iteration t + 1:

1. Accuracy-based terminal condition: If the ground-truth label y(x) is available

for feature vector x ∈ Xi, we can terminate the active learning loop according to the

change in prediction accuracy. The accuracy at iteration t is calculated by:

at =

∑
x∈Xi\Rt

i
δ(yt(x), y(x))

|Xi \Rt
i|

. (4.3)

Terminate the active learning loop if:

|at − at+1| < ϵ or t > Kmax. (4.4)

Practically, we further penalize low accuracy by applying a lower ϵ when at+1 is rela-

tively small. Given a fixed parameter γ, we use the terminal condition:

|at − at+1| < ϵ exp

(
−100(1− at+1)

γ

)
or t > Kmax. (4.5)

2. Label-change terminal condition: If the ground-truth labels for feature vectors

are not available, we can terminate the active learning loop according to the change of

predicted labels. At iteration t, define the label-change value:

ct =

∑
x∈Xi\Rt

i
δ(yt(x), yt−1(x))

|Xi \Rt
i|

. (4.6)

Terminate the active learning loop if:

ct+1 < ϵ or t > Kmax. (4.7)

92

The accuracy-based terminal condition provides a clearer measure of how well a RepSet Rt
i

is for the task of classifying the pixels in image Ii but requires the ground-truth labels for

all pixels.

On the other hand, the label-change terminal condition does not require ground-truth

labels so that one can create the RepSet from scratch. This terminal condition is met when

the addition of labeled points to the current image’s RepSet Rt
i changes the predicted labels

of the unlabeled points X \ Rt
i from Laplace learning at a very slow rate. In a sense, this

measures when there is no significant marginal gain from adding more labeled points to the

RepSet.

Such a process requires manually labeling only a few feature vectors to construct a RepSet.

Such a process requires manually labeling only a few feature vectors to construct a RepSet.

Remarkably, our experiments in the next section suggest that the size of the resulting RepSet

is usually less than 1% of the original set of pixels in the training image set. Moreover, our

pipeline consistently outperforms a range of fully-supervised methods in multiple experi-

ments, even when operating with such a small labeled dataset.

4.2.4 Pipeline Structure

All our three pipelines, the GAP, B-CGAP, and A-CGAP, are trained on the training image

set I and are used to classify pixels in the test image set Ĩ. At the beginning of each

pipeline, we preprocess each image in I and Ĩ according to section 4.2.2 into feature vectors.

Xi = {xi
1, x

i
2, . . . , x

i
N0
} and X̃j = {x̃j

1, x̃
j
2, . . . , x̃

j
N0
} denote the extracted feature set of image

Ii ∈ I and Ĩj ∈ Ĩ. Here N0 = 2562 = 65536 is the number of pixels in an image, which

is common to each image in both training and test image sets. For the GAP, we use the

non-local means feature vectors in R294 while we use the neural network embedding feature

vectors in R32 for B-CGAP and A-CGAP.

The GAP and B-CGAP require all ground-truth labels in I in the training process. Fig-

93

ure 4.1 presents the flowchart of the B-CGAP. For B-CGAP, we train the feature embedding

neural network with the supervised contrastive loss (4.2). The following steps are

the same for GAP and B-CGAP; the only difference between them is the feature

preprocessing. For each Ii ∈ I, since all ground-truth labels of feature vectors in its feature

set Xi are given, the RepSet Ri can be condensed from Xi with the class-balanced random

initialization and the accuracy-based terminal condition according to Section 4.2.3.

The RepSet of I is R = ∪nl
i=1Ri. For each test image Ĩj ∈ Ĩ with feature set X̃j, construct a

graph Gj = (R∪ X̃j,Wj), where R∪ X̃j is the vertex set of size Nj = |R∪ X̃j| and Wj is the

weight matrix generated from feature vectors in R∪ X̃j according to Section (2.2.1). Apply

Laplace learning on Gj to get the classifier matrix Uj ∈ RNj×nc according to Section 2.2.2.

The predicted label ỹjk of each unlabeled feature vector x̃j
k ∈ X̃j is given by

ỹjk = arg maxuj(x̃
j
k), k = 1, 2, . . . , N0, (4.8)

where the arg max of a vector u is the (first) index of u’s largest element.

In addition, we include an extension of the B-CGAP, called the adaptive GAP (A-CGAP).

The training process of the A-CGAP does not require a priori access to the ground-truth

labels for all pixels in each training image Ii ∈ I. We apply the SimCLR contrastive loss

(4.1) to train the feature embedding network. The creation of RepSet requires the coreset

initialization and the label-change terminal condition according to Section 4.2.3 to

sample RepSets Ri for Ii ∈ I. With the aid of a human in the loop during this process,

feature vectors in Ri are manually labeled in the active learning process. Let R = ∪nl
i=1Ri.

The rest steps of the A-GAP are the same as the B-GAP. We construct a graph on R∪ X̃j

and use graph Laplace learning to classify feature vectors in X̃j.

It should be noticed that the A-CGAP provides flexibility for applications wherein there

is no predefined training image set I, but rather just a test image set Ĩ. In such a case,

the A-CGAP extracts a RepSet R̃ of Ĩ from scratch and applies Laplace learning with the

human-in-the-loop labels for R̃ to classify the other pixels in Ĩ. Furthermore, A-CGAP could

be applied to reinforce the B-CGAP. Suppose one has access to all ground-truth labels for

94

pixels in I. In that case, we can apply the B-CGAP, and the A-CGAP to respectively extract

the RepSets R and R̃ of I and Ĩ. Let Rnew = R ∪ R̃ be the new RepSet. For an image

Ĩj ∈ Ĩ, applying Laplace learning on the graph with vertices Rnew∪ X̃ with labeled set Rnew

to classify feature vectors in X̃ \Rnew. Such a process allows us to expend limited human-in-

the-loop effort to expand our labeled feature set (RepSet) by including some feature vectors

from the test image set.

4.3 Experiments and Results

This section includes experiments of our pipelines on the RiverPIXELS dataset. We choose

five rivers from the dataset: the Kolyma, Yana, Waitaki, Colville, and Ucayali Rivers. Our

pipelines are trained on images chosen from the first four rivers while the performance of

different methods is tested on all these five rivers. There are 42 images belonging to the first

four river regions, and the Ucayali River includes 54 images. For each region, we randomly

sample 75% of the labeled data as the training set and use the remaining 25% as the test

set. The training set I has 32 labeled images, while the test set Ĩ has 10 labeled images,

which are considered unlabeled in our experiments. In Section 4.3.2, the test set image set

Ĩex is formed by 54 images of the Ucayali river.

Various metrics are provided to evaluate the performance of different methods and

schemes. Each unlabeled image Ĩj ∈ Ĩ has M2 pixels {pjk,l}Mk,l=1 with ground-truth labels

{yjk,l}Mk,l=1 and predicted labels {ȳjk,l}Mk,l=1, where M = 256. We define db to be the distance

to the boundary for each pixel pjk,l of coordinate k, l of image Ĩj by

db(p
j
k,l) = min

{(k̂,l̂):yjk,l ̸=yj
k̂,l̂

}

√
(k − k̂)2 + (l − l̂)2, (4.9)

which is the Euclidean distance to the nearest pixel with a different ground-truth label.

For the test set Ĩ (or Ĩex) with the size |Ĩ| = nu, we define following metrics:

95

1. Overall Accuracy: The overall accuracy is the average accuracy of all pixels.

Overall =

∑nu

j=1

∑M
k,l=1 δ(yjk,l, ȳ

j
k,l)

nuM2
(4.10)

2. Class Accuracies: We consider the true positive rate (TPR), false positive rate

(FPR), and the normalized false positive rate (NFPR) of each class. For class index c:

TPR(c) =

∑nu

j=1

∑M
k,l=1 δ(yjk,l, c)δ(ȳjk,l, c)∑nt

j=1

∑M
k,l=1 δ(yjk,l, c)

(4.11)

FPR(c) =

∑nu

j=1

∑M
k,l=1 δ(ȳjk,l, c)(1− δ(yjk,l, c))∑nu

j=1

∑M
k,l=1(1− δ(yjk,l, c))

. (4.12)

3. Boundary Accuracy The boundary accuracy of distance d is the average accuracy

of pixels whose distance to the boundary is less or equal to d.

BA(d) =

∑nu

j=1

∑
{(k,l):db(pk,l)≤d} δ(yjk,l, ȳ

j
k,l)∑nu

j=1 |{(k, l) : db(pk,l) ≤ d}|
(4.13)

Remark 11. While we do report Overall Accuracy and Class Accuracies, the Bound-

ary Accuracy metrics may provide more meaningful insight into the models’ performance.

The land, water, and sediment classes in both our selected images and in general are im-

balanced, with land pixels accounting for 70% to 90% of each image. Therefore, a naive

classifier that tends to simply classify pixels primarily as land may still report an excellent

Overall Accuracy. Furthermore, as a method, we will rarely have both the best TPR and

FPR for every single class – i.e., the best performance in each of the Class Accuracies

metrics. We suggest that the Boundary Accuracy metric is the most indicative of model

performance.

In this section, we compare our proposed GAP, B-CGAP and A-CGAP to various other

methods, such as DeepWaterMap (DWM) [IBP19], support vector machine (SVM) [CV95]

and random forest (RF) [Ho95]. After feature preprocessing (Section 4.2.2), the original ex-

tracted feature vector set X has over 2 million feature vectors from the training set consisting

96

of 32 labeled images. Each method has a different amount of training data–the training data

is chosen to represent the best performance of each method. The training and test datasets

information for each method are listed in Table 4.1. This table applies to all experiments

throughout Section 4.3 if not specifically mentioned. We now present the training set

details for each of the considered methods:

For SVM and RF, the training performances are almost the same when the number of

training feature vectors is relatively large. To balance the training performance and the

computational cost of model fitting, we randomly select a subset of all labeled pixels to train

SVM and RF. For each labeled image in the training set I, we randomly sample Ns pixels

from each class (if a class has less than 500 pixels, sample all) to form a pixel set P . The

pixel set P includes 42634 pixels consisting of 16000, 14558, and 12076 pixels for land, water,

and sediment respectively.

For our GAP, B-CGAP, or A-CGAP methods, the training set for the graph Laplace

learning is the representative set (RepSet) R extracted from X through the LocalMax batch

active learning process with the batch size B = 15. For B-CGAP and GAP, the accu-

racy terminal condition(4.3)(4.5) is applied with the ϵ = 10−4, Kmax = 3000 (for each

training image), and γ = 5 (for B-CGAP only). For A-CGAP, the label-change terminal

condition(4.6)(4.7) is applied with ϵ = 5× 10−4, Kmax = 3000 (for each training image).

DeepWaterMap [IBP19] only provides the classification of water and land pixels, while

RiverPIXELS patches include water, bare sediment, and land. Here the “land” does not fol-

low a strict definition, which can include complicated ground textures like buildings, moun-

tains, and forests. In binary classification results, such as DWM, “land” refers to non-water

pixels. In 3-class classification results including the sediment, such as our pipeline, “land”

refers to non-water and non-sediment pixels. As a result, we cannot directly compare our

three-class model with DWM. Here, we provide two approaches to compare the performance

of the other methods and DWM.

The first approach is to retrain DeepWaterMap (DWM-R). We train a new neural network

97

with the same structure of DWM on our training set with 32 labeled images and labels

of water, sediment, and land. The resulting CNN thus provides a classification of water,

sediment, and land pixels. The second approach is to modify labels. Inspection of the original

DeepWaterMap (DWM-O) training set shows that nearly all sediment pixels are labeled as

land. We modify the labels of our training set and the ground-truth labels of our test set by

changing sediment labels to land labels. Based on this modification, we train all methods as

classifiers for water and land and compare them with the original DeepWaterMap.

In light of these details regarding DWM, we consider two types of training sets for DWM

comparisons. DWM-R is trained on the training image set I that all of our other compar-

ison methods are trained on. DWM-O is trained on the vast training set of the original

DeepWaterMap 5.

It should be noted further that the pixel-wise feature vectors for different methods might

differ. B-CGAP uses the supervised contrastive learning (SupCon (4.2)) neural network

embedding feature vectors while A-CGAP uses the unsupervised (SimCLR (4.1)), according

to Section 4.2.1, 4.2.2. We also provide experiments with SVM and RF results, marked

by the suffix “-E”, on the SupCon feature vectors. The GAP, SVM, and RF are based on

the 294-dimensional Non-local means feature vectors [BCM05, CMB23b] generated by 7× 7

neighborhood patches centering at each pixel. For DWM, the inputs are images rather than

feature vectors since DWM is a CNN-based method that takes the whole image as input.

4.3.1 Comparison between different methods

We compare the classification performance of our GAP, B-CGAP, and A-CGAP to DWM

[IBP19], SVM [CV95], and RF [Ho95] models. Information regarding training and test sets

is shown in Table 4.1. For this subsection (Subsection 4.3.1), the test set is denoted as Ĩ

and contains 10 images. It is worth noting that our methods, B-CGAP, A-CGAP, and GAP,

5https://github.com/isikdogan/deepwatermap

98

https://github.com/isikdogan/deepwatermap

Information on Training and Test Datasets

Method
Original Set Network Sampled Training Set Test Set

Dataset Num Images Embedding Dataset Num Pixels Dataset Num Images

B-CGAP (Ours)

I 32

SupCon RepSet 3.71K Ĩ for

Section 4.3.1

——————

Ĩex for

Section 4.3.2

——————

No test set for

Sections 4.3.3,

4.3.4

Ĩ = 10

————

–

Ĩex = 54

A-CGAP (Ours) SimCLR RepSet 2.99K

GAP (Ours) No RepSet 3.27K

SVM [CV95] No P 42.6K

SVM-E [CV95] SupCon P 42.6K

RF [Ho95] No P 42.6K

RF-E [Ho95] SupCon P 42.6K

DWM-R [IBP19] No I 2.1M

DWM-O [IBP19] IDWM 100K No IDWM 6.55B

Table 4.1: Information of training and test datasets of different methods implemented in the

experiments in this chapter. Methods implemented here are B-CGAP, A-CGAP, GAP, SVM,

RF, retained DWM (DWM-R), and original DWM (DWM-O). SVM and RF’s suffix “-E”

corresponds to using the neural network embedding features. The training set of DWM-O is

the original training set of DeepWaterMap, while other methods use training sets sampled

from RiverPIXELS. The test sets used in different sections of this chapter vary, with Ĩ used

in Section 4.3.1, Ĩex used in Section 4.3.2, and no test set used in Sections 4.3.3 and 4.3.4.

K, M, and B denote thousands, millions, and billions, respectively.

99

Comparison Approach: Retrain DeepWaterMap

All values in Percentage (%)

Importance 3rd 1st 2nd

Method
Land Water Sediment Boundary Overall

TPR FPR TPR FPR TPR FPR BA(3) BA(10) OA

B-CGAP (ours) 98.57 5.63 92.29 1.59 78.49 0.75 88.85 92.29 96.61

A-CGAP (ours) 99.02 11.25 86.93 1.36 64.28 0.77 84.51 90.35 95.35

GAP (ours) 98.27 8.43 89.89 1.98 65.72 0.86 81.90 90.41 95.50

SVM [CV95] 95.09 6.20 89.74 4.10 82.89 1.75 79.28 88.05 93.55

SVM-E [CV95] 91.78 0.63 93.84 6.61 96.70 2.42 78.52 85.26 92.38

RF [Ho95] 93.72 2.65 92.26 5.10 90.73 2.14 77.40 86.84 93.31

RF-E [Ho95] 91.81 0.95 94.27 6.94 92.49 2.06 80.23 86.32 92.38

DWM-R [IBP19] 97.38 14.53 83.99 3.12 41.70 1.08 72.56 84.56 92.86

Table 4.2: The comparison among different methods trained as 3-class classifiers of the land,

water, and sediment. This table compares our B-CGAP, A-CGAP, GAP, SVM, RF, and

retrained DWM (DWM-R). SVM and RF include both the non-local means feature vectors

and the neural network embedding feature vectors (-E). Accuracy metrics include the true

positive rate (TPR), false positive rate (FPR) of each class, the boundary accuracy of dis-

tances 3 and 10 (BA(3), BA(10)), and the overall accuracy (OA). The first row “importance”

indicates the important ranking of three different types of accuracy metrics. The best one of

each accuracy metric (each column) is bolded. Our B-CGAP performs the best on boundary

accuracies and the overall accuracy.

100

Comparison Approach: Modify Labels (Sed → Land)

All Values in Percentage (%)

Importance 3rd 1st 2nd

Method
Land Water Sediment Boundary Overall

TPR FPR TPR FPR TPR FPR BA(3) BA(10) OA

B-CGAP(ours) 98.58 8.27 91.73 1.42 N/A N/A 89.73 93.66 97.03

A-CGAP(ours) 99.04 14.80 85.20 0.96 N/A N/A 85.46 91.17 95.90

GAP (ours) 98.58 11.47 88.53 1.42 N/A N/A 83.75 91.66 96.30

SVM [CV95] 97.73 12.49 87.51 2.27 N/A N/A 82.77 91.08 95.41

SVM-E [CV95] 94.09 6.10 93.90 5.91 N/A N/A 81.67 87.80 94.04

RF [Ho95] 96.37 9.37 90.63 3.63 N/A N/A 81.50 89.63 95.07

RF-E [Ho95] 93.44 5.93 94.07 6.56 N/A N/A 82.67 88.18 93.58

DWM-O [IBP19] 97.85 14.26 85.74 2.15 N/A N/A 78.02 88.81 95.11

Table 4.3: The comparison among different methods trained as 2-class classifiers of the

land and water. To compare with the original DeepWaterMap (DWM-O), we changed all

ground-truth labels of sediment into land. This table compares our B-CGAP, A-CGAP,

GAP, SVM, RF, and original DWM (DWM-O). Accuracy metrics include the true positive

rate (TPR) and false positive rate (FPR) of each class, the boundary accuracy of distances

3 and 10 (BA(3), BA(10)), and the overall accuracy (OA). The first row “importance”

indicates the important ranking of three different types of accuracy metrics. The best one of

each accuracy metric (each column) is bolded. Our B-CGAP performs the best on boundary

accuracies and overall accuracy. It is a coincidence that the B-CGAP and GAP have the

same land TPR and Water FPR.

101

use significantly less training data than the other methods considered. The results are

presented in two tables: Table 4.2 shows the comparison to the retrained DWM (DWM-R)

as a 3-class classifier, while Table 4.3 compares to the original DWM (DWM-O) when the

sediment class in the RiverPIXELS dataset is modified to be classified as land.

Figures 4.4, 4.5, and 4.6 are sampled images and experiment results of the Waitaki,

Colville, and Yana Rivers, respectively.

In summary, according to Tables 4.2, 4.3, our approach B-CGAP has the best perfor-

mance measured by BA(3), BA(10), and OA. Our GAP and A-CGAP perform similarly and

have the second good result. According to Table 4.1, compared with other methods, all three

methods, B-CGAP, A-CGAP, and GAP, are trained on a much smaller training set, which

only takes around 0.15% pixels of the training set I. Although A-CGAP performs similarly

to our previous pipeline, GAP, A-CGAP does not require any ground-truth information at

the beginning of the training process.

Here we provide an analysis of the overall strengths of the methods.

Discussion 1 – Compare with DWM

In Table 4.2, the retrained DWM (DWM-R) has the worst performance in both BA(3)

and BA(10). This implies that our training set I with 32 images is not sufficient to train a

good CNN-UNet. In Table 4.3, the original DWM (DWM-O) has a similar performance to

the SVM and RF. However, it can not provide the prediction of the sediment class.

Discussion 2 – the neural network embedding

The main difference between our B-CGAP and the previous GAP is the network em-

bedding. According to Tables 4.2, 4.3, there is a big improvement from GAP to B-CGAP.

However, the SVM-E and RF-E perform worse than SVM and RF, respectively, based on

the same SupCon embedding used by B-CGAP. There are significant increases in the water

and sediment TPR and FPR when using the SupCon network embedding feature vectors. A

possible reason for this observation is that the graph learning classifier based on the angular

102

similarity aligns better with the similarity metric in the contrastive loss functions (4.1), (4.2).

Discussion 3 – B-CGAP v.s. A-CGAP Our A-CGAP does not require any ground-truth

information at the beginning of the training process (Section 4.2.4). One major difference

is the training process of the feature embedding neural network – A-CGAP uses the self-

supervised loss SimCLR (4.1) while B-CGAP uses the supervised loss SupCon(4.2). In A-

CGAP, only the 2.99K training feature vectors in the RepSet require ground-truth labeling,

which can be processed by a human-in-the-loop process.

4.3.2 Performance on other regions

In the previous Section 4.3.1, all methods are trained on subsets of I, and the performances

are evaluated on the test set Ĩ. We note that I and Ĩ are segmented from the same

set, the Kolyma, Yana, Waitaki, and Colville rivers. For a certain image Ĩj ∈ Ĩ, there is

another image in Ii ∈ I that belongs to the same region as Ĩj, where the region refers to

either the Arctic or New Zealand. Since DeepWaterMap works globally, we want to test

if our models also retain accuracy in other regions that may have different landscapes or

geographic features.

We consider images of the Ucayali River in our RiverPIXELS dataset. The Ucayali River

is a tributary to the Amazon River and is mostly single-threaded with large in-channel bare

sediment bars. We apply the same comparison strategies as in section 4.3.1. The training

information of each method is the same as that in Section 4.3.1, Table 4.1, while the test set

now is the set of images of the Ucayali river, which includes 54 images. Table 4.4 compares

our B-CGAP to GAP, SVM, RF, the retrained DWM (DWM-R) and original DWM (DWM-

O) on the test set Ĩex. Similarly to Section 4.3.1, we provided results on 3 classes of land,

water, and sediment, and 2 classes of water and non-water by modifying the sediment labels

into the land to compare with both the DWM-R and DWM-O. According to Table 4.4,

our B-CGAP has the best performance as we have the highest BA(3), BA(10), and overall

accuracy in both comparisons.

103

(a) RGB (b) GT (c) B-CGAP (d) A-CGAP (e) GAP (f) SVM

(g) SVM-E (h) RF (i) RF-E (j) DWM-R (k) DWM-O

Figure 4.4: Results for a Patch of Waitaki River. Original Patch name: “Waitaki River 1

2019-03-02 074 091 L8 413 landsat”. This Patch contains an estuary and a coastline. Panel

(k) is the original DWM prediction for water and non-water pixels while other panels (b)-(j)

are 3-class results of land, water, and sediment.

(a) RGB (b) GT (c) B-CGAP (d) A-CGAP (e) GAP (f) SVM

(g) SVM-E (h) RF (i) RF-E (j) DWM-R (k) DWM-O

Figure 4.5: Results for a Patch of the Colville River. Original Patch name: “Colville River 2

2015-07-11 076 011 L8 125 landsat”. This Patch contains a complex network of water,

including a mainstream, some lakes and small tributaries. Panel (k) is the original DWM

prediction for water and non-water pixels while other panels (b)-(j) are 3-class results of

land, water, and sediment.

104

(a) RGB (b) GT (c) B-CGAP (d) A-CGAP (e) GAP (f) SVM

(g) SVM-E (h) RF (i) RF-E (j) DWM-R (k) DWM-O

Figure 4.6: Experiment on images of Yana river. Original “Yana River 1 1991-08-13 122 012

L5 511 landsat”. This Patch contains a complex network of water, including a mainstream,

some lakes and small tributaries. Panel (k) is the original DWM prediction for water and

non-water pixels while other panels (b)-(j) are 3-class results of land, water, and sediment.

(a) RGB (b) GT (c) B-CGAP (d) GAP (e) SVM (f) RF

Figure 4.7: Results for the Ucayali River. Original Patch name: “Ucayali River 1 2018-09-11

006 066 L8 549 landsat”. This Patch includes two mainstreams and some small tributaries.

Purple, cyan, and yellow represent land, water, and sediment respectively.

105

Experiments on Images of the Ucayali river

Method
Retrain DWM (%) Sed→Land(%)

BA(3) BA(10) OA BA(3) BA(10) OA

B-CGAP (ours) 90.63 95.29 98.31 91.57 95.40 98.60

GAP (ours) 83.07 92.93 97.48 85.08 94.17 98.21

SVM [CV95] 79.08 90.29 96.26 77.49 90.96 97.23

RF [Ho95] 26.41 26.79 12.52 76.01 89.09 96.21

DWM-R [IBP19] 69.28 83.43 94.39 N/A N/A N/A

DWM-O [IBP19] N/A N/A N/A 79.42 91.14 97.29

Table 4.4: This table shows the comparison of our GAP and B-CGAP to SVM, RF, DWM-R,

and DWM-O. Accuracy values in this table are based on the extra test set Ĩex consisting of

54 images of the Ucayali river, while methods in this table are trained on the training set I of

the Arctic and New Zealand. More details of the training set refer to Table 4.1. Metrics are

the boundary accuracy of distances 3 and 10 (BA(3), BA(10)), and the overall accuracy. The

best one of each accuracy metric (each column) is bolded. To compare with the retrained

DWM (DWM-R) and the original DWM (DWM-O), we provide results on 3 classes (columns

”Retrain DWM”) and 2 classes (columns Sed→Land). Our B-CGAP performs the best on

boundary accuracies and overall accuracy.

We sample two images of the Ucayali river and show those results in figures 4.7 and

4.8. According to these figures and tables, the random forest method (RF) completely

fails, implying that it may be unstable when applied to a region different from its training

set. In Figure 4.7, our B-CGAP detects the small tributaries better than other methods.

In Figure 4.8 with light cloud haze, both our B-CGAP and GAP method (panel (c), (d))

well-match the ground-truth labels (panel (b)).

106

4.3.3 Efficiency Analysis

From previous comparisons among different methods, we conclude that our B-CGAP has

the best performance, and A-CGAP and GAP perform the second. In this part, we provide

information on the time consumption of three methods, B-CGAP, A-CGAP, and GAP, in

both training and deploying. We choose only these three methods because they have a

similar pipeline of graph-based active learning and they perform better than other methods.

Table 4.5 shows the time consumption information. It can be seen that with the low-

dimensional feature vectors preprocessed by the neural network (our B-CGAP and A-CGAP),

the active learning and model deploying processes are significantly accelerated. The model

deploying becomes more than 10 times faster compared with our GAP method.

Here, we train both the B-CGAP and A-CGAP preprocessing networks on the whole

RiverPIXELS dataset of 104 images to make a fair comparison. In previous Sections 4.3.1

and 4.3.2, the B-CGAP is trained only on the training set I of 32 images since it is supervised.

Since the whole dataset includes 6.8M pixels and the dataset I includes 2.1M pixels, we use

part of them for the network training. Practically, we use all the sediment pixels, randomly

sampled 20% water pixels, and randomly sampled 3% land pixels to train the neural network,

which is a subset of 0.48M pixels.

As for the hyperparameters, we choose the constant parameter τ = 0.5 in the loss func-

tions (4.1),(4.2), learning rate 0.02, and batch size 2048 to train both networks for 200

epochs.

4.3.4 Low-dimensional Visualization of Feature Vectors

Here we would like to provide more details on how the feature embedding neural network

changes the feature vectors. Figure 4.9 shows the low-dimensional visualization of different

feature vectors using UMAP [MHS18] and t-SNE [MH08] methods.

In Figure 4.9, panels (a) and (d) are visualizations of raw neighborhood patches of pixels.

107

Time Consumption

Method

Info Training Deploying

CPU GPU
Feature NN Active Learning

Image Size NN
Graph

Epochs Time Batch Time Learning

B-CGAP i7-

11800

H

RTX

3070

200 14.34h

15

2023.21s

256× 256

0.448s 10.76s

A-CGAP) 200 13.87h 1710.55s 0.448s 11.15s

GAP N/A N/A 6881.73s N/A 135.31s

Table 4.5: This table shows the time consumption for our GAP, B-CGAP, and A-CGAP.

The neural network (NN) training and deploying stages use the GPU, and all other processes

are on the CPU. Although the neural network training takes a relatively long time, it reduces

both the active learning time and model deploying time significantly.

We can discern approximately three cluster structures in (a) and (d), but there is a clear

mix and overlap at the center and between the boundaries of each pair of classes. For the

embeddings produced by SimCLR (panels (b), (e)), the cluster structures are more defined,

with clearer distinctions between boundaries. However, the clusters are a bit dispersed, for

instance, the water class (cyan) is divided into three smaller clusters in both visualizations.

The low-dimensional visualization by the SupCon method is the best, with the clearest

boundaries between classes and each class generally forming a cohesive cluster.

4.4 GraphRiverClassifier: A Global Classifier for Water and Sed-

iment Pixels in Satellite Images

We provide a Python-based demo, called GraphRiverClassifier (GRC), to classify any Landsat-

5 image (GitHub repository6). Details of how to use the demo refer to the readme.md file in

the repository. In this section, we describe some significant features of this tool.

6https://github.com/wispcarey/GraphRiverClassifier

108

https://github.com/wispcarey/GraphRiverClassifier

4.4.1 Google Platforms

The tool described is implemented in Python and utilizes Google Earth Engine (GEE)7 for

identifying and downloading the requested Landsat scenes. Users can perform the image

extraction by simply providing the coordinates of the center point along with the desired

latitude and longitude range of the bounding box. The selection method for Landsat scenes

(e.g. surface reflectance versus top of atmosphere) is fully consistent with the RiverPIXELS

dataset [SR22], to which their readme can be referred for further information.

Once Landsat scenes are identified, the tool automatically employs a pre-trained feature

embedding neural network to preprocess feature vectors. Subsequently, our B-CGAP method

is deployed to classify the pixels within the image into land, water, and sediment. The neural

network training and the selection of RepSet through graph-based active learning are based

on the RiverPIXELS dataset.

It is recommended that the tool be run on Google Colab as it allows for a seamless

connection with GEE and ensures the automation of the entire process. Running the tool

via a Google Colab notebook also avoids large image downloads by reading directly from a

GEE-connected Google Drive account. Users may run the tool locally, but Landsat scene

identification and downloading must be done manually. The tool also offers an integration

with ChatGPT that allows users to enter the name of a place or river to return a bounding

box. However, this feature requires access to ChatGPT’s API and may incur costs.

4.4.2 Global Classifier of Water and Sediment

The GRC tool offers advanced classification solutions for water and sediment across the

globe, leveraging the power of remote sensing and machine learning. This tool stands out

for its exceptional flexibility, ease of use, and global scope, allowing users not only to define

custom geographic areas but also to choose from a variety of Landsat datasets and temporal

7https://earthengine.google.com/

109

https://earthengine.google.com/

ranges. Such versatility ensures that users can conduct detailed and specific analyses tailored

to their research or management needs. We note that the workflow of the tool also enables

rapid development and testing of new classification algorithms.

In terms of processing speed, our GRC demonstrates impressive efficiency. For an image

with one million pixels, the full process typically takes between 3 to 5 minutes. This includes

data identification and download from GEE and storage to your Google Drive, which takes

approximately 60 to 90 seconds, followed by feature embedding with a neural network and

classification via graph learning, taking around 180 seconds in total. Figures 4.10, 4.11 show

the visualization of two regions about the Ucayali and Murray Rivers that do not belong to

the RiverPIXELS dataset.

4.4.3 Robustness to Different Resolutions

According to Section 4.2.2, the augmentations we designed for contrastive learning allow the

embedding feature vectors to be robust with different resolutions. The parameter ”scale”

allows us to extract images of different resolutions on the same region. In Figures 4.10, 4.11,

we present results of three resolutions, 15-meter, 30-meter, and 60-meter. The classification

results are almost the same in panels (b)-(d), which verifies the robustness of our feature

preprocessing approach.

4.5 Conclusion and Future Directions

We develop graph-based active learning pipelines to detect surface water and sediment pixels

in multispectral images. The GAP method applies the non-local mean approach to extract

pixel-wise feature vectors. We extend GAP to CGAP by employing a contrastive learning

approach to train a shallow feature embedding neural network to preprocess raw neigh-

borhood patches of each feature. The contrastive learning method is compatible with both

supervised and unsupervised scenarios using SupCon or SimCLR loss functions. It offers two

110

significant advantages: first, based on our custom augmentations, the processed embedding

feature vectors become more robust to different resolutions, cloud coverage, and geometric

transformations; second, such a neural network significantly reduces the dimensionality of

the feature vectors, greatly improving the efficiency of subsequent steps.

Our methods’ most significant feature is their minimal data requirement, using only 3,000

training vectors to surpass the performance of CNN neural networks trained with 2.1 million

pixels and outperforming SVM and RF models trained with larger datasets. Through our

experiments, the CGAP method has significantly improved efficiency and accuracy compared

to GAP. Furthermore, we introduced two versions, B-CGAP and A-CGAP, where the former

is suitable for situations with complete ground-truth information, while the latter is useful

for training from scratch with no ground-truth information. A-CGAP identifies the pixels

most crucial to the graph-learning model and asks a human-in-the-loop to provide these

labels. Experiments show that A-CGAP’s performance is similar to our previously proposed

GAP method, slightly inferior to B-CGAP.

We provide a Python-based tool, GraphRiverClassifier (GRC), to detect surface water

and sediment globally. This tool utilizes Google Earth Engine to obtain Landsat imagery

data for a specific area and then applies our B-CGAP method for pixel classification. The

tool is very easy and efficient to use, allowing for flexible control over the selected area and

time.

In terms of future directions, we suggest two main areas for improvement. The first area

focuses on augmenting the datasets used for training. Currently, the scarcity of annotations

for urban areas, such as cities and buildings, leads to misclassification of these regions as

sediment rather than land. Expanding datasets like RiverPIXELS to include more com-

prehensive information about urban areas or employing automatic annotation methods to

generate pseudo-labels could help strengthen model performance in these challenging scenar-

ios. Furthermore, it is imperative to expand the applicability of the models to encompass a

broader range of data modalities beyond the current reliance on Landsat data. Researchers

111

need to develop techniques to align data from a diverse range of sensors, scales, and channel

characteristics to ensure the effective application of the proposed methods.

The second area for future work concerns the development of improved algorithms for

the feature learning and active learning components of the proposed pipeline. Firstly, one

could consider incorporating transfer learning by leveraging newly acquired unlabeled im-

ages to refine our feature-embedding neural network using the SimCLR loss. Secondly, one

could explore novel graph-based semi-supervised learning methods to improve the classifier

performance within our pipeline. Methods such as p-Laplace learning [Cal18, FCL22] or

reweighting the graph before processing the Laplace learning [CS20, MC23] could provide

further improvement.

112

(a) RGB (b) GT (c) B-CGAP (d) GAP (e) SVM (f) RF

Figure 4.8: Results from a Patch of the Ucayali River. Original Patch name: “Ucay-

ali River 1 2018-09-11 006 066 L8 316 landsat”. This patch includes some light clouds.

Purple, cyan, and yellow represent land, water, and sediment respectively.

(a) UMAP Raw (b) UMAP SimCLR (c) UMAP SupCon

(d) t-SNE Raw (e) t-SNE SimCLR (f) t-SNE SupCon

Figure 4.9: This figure shows low-dimensional visualizations of feature vectors with UMAP

(panels (a)-(c)) and t-SNE (panels (d)-(f)). Three columns are about raw, SimCLR, and

SupCon feature vectors of pixels in the whole RiverPIXELS dataset. Purple, cyan, and

yellow represent land, water, and sediment respectively.

113

(a) RGB image.

Resolution 30m.

Size 558× 743.

(b) Our prediction.

Resolution 30m.

Size 1114× 1485.

(c) Our prediction.

Resolution 30m.

Size 558× 743.

(d) Our prediction.

Resolution 30m.

Size 279× 372.

Figure 4.10: Results from an image of the Ucayali River which is not included in the

RiverPIXELS dataset. Region information: a rectangle centering at -73.4487, -4.45291 with

a longitude range of 0.2 and a latitude range of 0.15. Panel (a) is the RGB visualization of the

30-meter resolution. Panels (b) - (d) are three predictions of the same region with different

resolutions. Purple, cyan, and yellow represent land, water, and sediment respectively. Our

predictions are robust among various resolutions.

(a) RGB image.

Resolution 30m.

Size 557× 1114.

(b) Our prediction.

Resolution 30m.

Size 1115× 2228.

(c) Our prediction.

Resolution 30m.

Size 557× 1114.

(d) Our prediction.

Resolution 30m.

Size 278× 557.

Figure 4.11: Results from an image of the Murray River which is not included in the

RiverPIXELS dataset. Region information: a rectangle centering at 138.88, -35.559 with a

longitude range of 0.3 and a latitude range of 0.15. Panel (a) is the RGB visualization of the

30-meter resolution. Panels (b) - (d) are three predictions of the same region with different

resolutions. Purple, cyan, and yellow represent land, water, and sediment respectively. Our

predictions are robust among various resolutions.

114

CHAPTER 5

Graph-based Active Learning for Nearly Blind

Hyperspectral Unmixing

This chapter reuses materials from the author’s publications [CLB23] under the Creative

Commons CC BY license.

Hyperspectral unmixing serves as a powerful tool for determining the material compo-

sition of each pixel in a hyperspectral image, which typically contains hundreds of spectral

channels. In this chapter, we introduce two novel graph-based semi-supervised unmixing

methods. The first method directly applies graph learning to the unmixing problem, while

the second method solves an optimization problem that integrates the linear unmixing model

with a graph-based regularization term. Adhering to a semi-supervised framework, our

methods necessitate only a minimal number of training pixels, which can be selected using

a graph-based active learning approach. We assume that the ground truth information at

these selected pixels can be obtained, either in the form of the exact abundance value or the

one-hot pseudo label. In practical applications, the latter is considerably easier to acquire

and can be achieved by minimally involving a human in the loop. In comparison to other

widely used blind unmixing methods, our methods substantially enhance performance with

minimal supervision. Specifically, the experimental results demonstrate that the proposed

methods outperform state-of-the-art blind unmixing approaches by 50% or more, utilizing

only 0.4% of training pixels.

115

5.1 Introduction

Data obtained by hyperspectral sensors provide both spatial and spectral representations

of a scene. Compared to regular color images, which only have three color channels (Red,

Green, and Blue), hyperspectral images often contain hundreds to thousands of spectral

channels. However, hyperspectral imaging is limited by its low spatial resolution, and hence

hyperspectral unmixing (HSU) is an effective tool to identify the pure materials and estimate

the proportions of constituent endmembers at each pixel, also known as the abundance map.

The spectral signature of a pure material is called endmember, which can often be measured

under a laboratory setting. Unfortunately, the ground-truth endmember is often unavailable

due to its large variability in any real scenario. The blind unmixing process involves the

estimation of all the endmembers and the abundance map simultaneously.

5.1.1 Literature Review of HSU

In our study, we employ a linear mixing model for unmixing, wherein each pixel’s spec-

tral measurement is represented as a linear combination of constituent endmembers. Given

the physical interpretation of hyperspectral mixing, we impose nonnegativity constraints

on both endmembers and the abundance map. Additionally, we apply a sum-to-one con-

straint, a common practice in HSU, signifying that each pixel’s abundance vector resides

within the probability simplex. There are some extended linear mixing models that con-

sider endmember-wise scaling factors [DVH16] and the spectral variability [HYC19b]. Note

that these nonlinear mixing models [HPG14, BPD12] rely on more complicated assump-

tions about how light rays interact with endmembers. It is also plausible to remove the

sum-to-one constraint when illumination conditions or the topography of the scene change

locally [DVH16].

Specifically for blind HSU, it is natural to apply the nonnegative matrix factorization

(NMF) [LS99, FLW22] that decomposes the data matrix into a product of two matrices with

116

nonnegative entries (one encodes the endmember matrix and the other is the abundance map)

[SDB03, PPP06, CZP09]. However, even with the nonnegativity and sum-to-one constraints,

blind HSU is a highly ill-posed inverse problem, and hence a variety of regularizations have

been proposed to refine the solution space. One classic method is the ℓ2-norm in fully

constrained least squares unmixing (FCLSU) [Hei01]. Furthermore, spatial sparsity of abun-

dances is a reasonable assumption due to the fact that only a few endmembers could appear

in a single pixel. Some popular sparsity-promoting regularizations used in HSU include the

ℓ0-norm [IBP11], the ℓ1-norm [HZZ16], the ℓ1/2-norm [QJZ11], and the mixed ℓp,q-norm for

group sparsity [DMC19]. By treating the abundance map for each material as an image,

total variation (TV) regularization [ROF92] has been applied to HSU for spatial continuity

and edge preservation. TV-related approaches include sparse unmixing via variable splitting

augmented Lagrangian and total variation (SUnSAL-TV) [IBP12], TV with sparse NMF

[HZZ17], TV with nonnegative tensor factorization [XQZ18], and an improved collaborative

NMF with TV (ICoNMF-TV) [YZW20]. Recently, TV is reformulated as a quadratic regu-

larization that promotes the minimum volume in the NMF framework, referred to as QMV

[ZLF19].

Graph-based approaches [BM19] also play an important role in HSU. TV has been ex-

tended from vectors in Euclidean space to signals defined on a graph. For example, the

graph TV (gTV) [BKB16] is a special case of the p-Dirichlet form [SNF13, SM14] in graph

signal processing. Some graph regularization techniques for hyperspectral imaging include

structured sparse regularized NMF (SS-NMF) [ZWX14] and graph-regularized ℓ1/2-NMF

(GLNMF) [LWY12]. Graph-based approaches, while powerful, can suffer from intensive

computation, particularly when computing pairwise similarity between pixels. Strategies in

speeding up the weight computation include the use of superpixels [LZG19] rather than us-

ing the entire hyperspectral image and the Nyström method [FBC04] to generate low-rank

approximations of the graph Laplacian [QLC19, QLC21]. Another efficient alternative is

the use of sparse weight matrices, such as the K-Nearest Neighbors (KNN) weight matrix

117

[AMN98].

In recent years, neural networks have been applied to the blind unmixing problem, such as

two-staged self-supervised networks [OKA18, DB21], a minimal simplex convolutional neural

network [RKS22], a two-stream Siamese deep network [HGY21], and attention networks

[HHG22]. Furthermore, some semi-supervised advanced deep learning methods [HYG19,

HYC19a] have integrated the use of the graph Laplacian and exhibited remarkable potential

in HSU. None of these methods address the issues discussed in the next paragraph.

5.1.2 Motivation and Our Contributions

There are limitations of existing blind HSU methods in many real-world scenarios. For ex-

ample, unmixing often requires estimation of the number of endmembers [VBC20], while

the abundance maps require human experts to convey meaning to each endmember. Mean-

while, acquiring the ground-truth abundance maps or endmember spectra is a great chal-

lenge [BJ20, ZWZ22], making it extremely difficult to train fully supervised models. Such a

drawback motivates us to consider a semi-supervised model with pseudo labels. These are

representative pixels for each endmember, which can be easily obtained by expert’s visual

inspection of the data. Prior knowledge of the number of endmembers is naturally included

in the pseudo labels. We further adopt an active learning [MLB20, MMS22, MB24] approach

to reinforce semi-supervised machine learning methods by carefully automating the selection

its training set. Active learning has been successfully applied to hyperspectral image classifi-

cation and segmentation tasks [RGC08, LBP10, MM19, CYX20]. The core of active learning

is to sample data points according to an acquisition function [JH12, QSW19, MMS22] that

automates the introduction of new training data during the algorithm. We believe active

learning and pseudo labels would be an ideal combination to improve the performance of

HSU.

The key problem we solve in this chapter is to maximize the improvement of our estimated

abundance maps and endmember spectra using minimal supervision. With the training pixels

118

GRSU
Graph-regularized

Semi-supervised Unmixing
A Hyperspectral

Image

Select Training Data

by Active Learning

A Pixel-based Graph

with Labeled Nodes

KNN Graph

Construction

Endmembers

Abundance Maps

GLU
Apply Graph Laplace

Learning for Unmixing

Linear Mixing Model

Graph Regularization Terms

Initialize

Figure 5.1: The flowchart of our semi-supervised hyperspectral unmixing models. The gray

box indicates an input hyperspectral image. The orange boxes are the graph construction

and graph-based active learning to select labeled nodes (pixels) for the training process

(Section 2.2.1, 2.3, and 5.2.1). Two red boxes are our proposed models, Graph Learning

Unmixing, GLU, (Section 5.2.2) and Graph-regularized Semi-Supervised Unmixing, GRSU,

(Section 5.2.3). GLU applies graph Laplace learning directly to the unmixing task while

GRSU combines the graph-based regularization term with the linear unmixing model from

hyperspectral imaging into a joint optimization to be solved. GLU also serves to initialize

the GRSU optimization process. The blue boxes are the outputs of GLU and GRSU, i.e.,

estimated endmembers and abundance map.

selected by active learning, we propose two semi-supervised hyperspectral unmixing models.

We refer to these methods as nearly blind hyperspectral unmixing, since both of them require a

very small number of training labels, and accept either pseudo one-hot labels or ground-truth

abundance maps. Our first model, called graph learning unmixing (GLU), takes the output

of a graph learning method [BM19] directly as the abundance maps for the hyperspectral

unmixing, followed by the estimation of the endmember matrix. Our second model, called

graph-regularized semi-supervised unmixing (GRSU), combines the linear unmixing model,

119

a graph-based regularization term, and a loss function applied to the label set (obtained

by active learning) by solving a joint optimization problem. The flowchart of our proposed

models (GLU and GRSU) is illustrated in Figure 5.1. We summarize the novelties of as

follows,

1. We present an effective pipeline (Section 5.2.1) to select labeled pixels by graph-based

active learning for the hyperspectral unmixing problem.

2. We apply the idea of graph Laplace learning to the hyperspectral unmixing problem

by taking its output (class probability) as the estimated abundance map. Based on

this idea, we develop the GLU model (Section 5.2.2).

3. We develop a novel semi-supervised hyperspectral unmixing model, GRSU (Section

5.2.3), by combining graph-based regularization terms with the linear mixing model

and a small number of labeled pixels.

4. Our proposed methods, GLU and GRSU, bear significant practical implications. By

utilizing only a small number of easily obtainable pseudo labels, our methods markedly

improve the HSU performance.

All codes of our proposed methods and following experiments are available on our Github

repository1.

5.2 Semi-supervised Hyperspectral Unmixing

This section details our semi-supervised hyperspectral unmixing methods based on the linear

mixing model. Specifically given a hyperspectral data cube I of the dimension m × n × p

with p spectral channels, we reshape I into a matrix Xmat = [x1,x2, . . . ,xN] ∈ Rp×N , where

N = m×n is the number of pixels. Denote a nonnegative constraint set Ωp×q = {S ∈ Rp×q :

1https://github.com/wispcarey/Nearly-Blind-Hyperspectral-Unmixing

120

https://github.com/wispcarey/Nearly-Blind-Hyperspectral-Unmixing

Sij ≥ 0} and a probability simplex constraint set Πq×N = {A ∈ Ωq×N : 1⊤
q A = 1⊤

N}. We

assume a linear mixing model that generates the data, i.e.,

Xmat = SA + E, (5.1)

where S ∈ Ωp×q is the endmember spectrum matrix, A = [a1, a2, . . . , aN] ∈ Πq×N is the

matrix of abundance maps of q materials, and the matrix E ∈ Rp×N denotes a noise term.

In Section 5.2.1, we describe the training data selection process by adapting the graph-

based active (Section 2.3) to the hyperspectral setting. Then, in Section 5.2.2, we intro-

duce the graph learning unmixing (GLU) model, which applies graph Laplace learning (Sec-

tion 2.2.2) directly to the HSU problem. Lastly, in Section 5.2.3, we propose our graph-

regularized semi-supervised unmixing (GRSU) model that combines graph-based regulariza-

tion terms with the linear mixing model (5.1).

5.2.1 Training Data Selection

For the reshaped hyperspectral matrix Xmat = [x1,x2, . . . ,xN] ∈ Rp×N , let X denote the

corresponding feature vector set X = {x1,x2, . . . ,xN} ∈ Rp. Given X, we can construct a

graph G = (X,W) according to Section 2.2.1. Then we apply the graph-based active learning

process (Section 2.3) to select a set of pixels to acquire labels for both of the proposed models,

GLU (Section 5.2.2) and GRSU (Section 5.2.3).

Given two positive integers m < M , we begin the active learning process with an initial

label set of m random pixels. In each iteration, we apply graph Laplace learning (Sec-

tion 2.2.2) with the current label set and calculate the acquisition function on the remaining

pixels. Based on the values obtained by the acquisition function, we select a query set to

be augmented to the label set and terminate this iterative process when the size of the

current label set reaches M . Algorithm 4 summarizes the active learning process and its

outputs, the label dataset Xl = {xl1 ,xl2 , . . . ,xlM} ⊂ X and the set of corresponding la-

bels Y †
l = {y†

i1
,y†

i2
, . . . ,y†

iM
}, serve as the training data for our semi-supervised unmixing

121

Algorithm 4 Sample Labeled Pixels through Active Learning

Require: Dataset X; corresponding graph G = (X,W); initial sample number m; total

sample number M .

Ensure: The label dataset Xl ⊂ X and the set of corresponding labels Y †
l .

1: Initialize: Randomly sample m pixels as the initial label set Xl; acquire the labels for

Xl as Y †
l .

2: while |Xl| < M (| · | means set cardinality) do

3: Apply the graph Laplace learning on G based on labels of Xl to predict labels on

Xu = X \Xl.

4: Calculate the acquisition function A on Xu based on the Laplace learning outputs.

5: Select a query setQ based on the acquisition function values according to the sequential

active learning or LocalMax.

6: Update the current label set: Xl → Xl ∪ Q; Acquire the labels of Q and update the

label set Y †
l accordingly.

7: end while

framework.

We want to clarify three aspects of the outputs of active learning (Algorithm 4). First,

we should acquire labels in Algorithm 4 through an oracle or a human-in-the-loop process.

Second, the ground-truth “label” y†
i ∈ Rq×1 for the “labeled” pixel xi ∈ Rp×1 can be either

the ground-truth abundance vector or its one-hot pseudo label, the latter of which can be

determined by the experts for identifying the most significant endmember. According to the

experimental results in Section 5.3, requiring the ground-truth abundance for active learning

is unnecessary. Third, we adopt the matrix forms of Xmat
l = [xl1 ,xl2 , . . . ,xlM] ∈ Rp×M ,

AL = [y†
1,y

†
2, . . . ,y

†
M] ∈ Rq×M of the output sets Xl and Y †

l , respectively.

Given the training matrix Xmat
l , we estimate the abundance map A for the entire data

matrix Xmat. There is indeed an overlap between Xmat
l and Xmat, but we cannot wholly trust

the training labels, especially those obtained by using the one-hot pseudo labels, because

122

they are not the abundance values we aim to estimate. As a result, we update the abundance

map for all the pixels even though a subset of them is selected to acquire some sort of ground-

truth information. Another rationale for having two separate matrices Xmat and Xmat
l is the

option to select the training pixels from one image and perform semi-supervised unmixing

on the other image, which falls out of the scope of the application discussed in this chapter.

5.2.2 Graph Learning Unmixing (GLU)

Following the training data selection process, we obtain a training data matrix Xmat
l ∈ Rp×M

consisting of M labeled pixels. We concatenate Xmat
l with the original data matrix Xmat,

and construct a graph G̃ based on the combined data matrix X̃ = [Xmat
l , Xmat] with the

corresponding graph Laplacian L̃ according to Section 2.2.1. The graph Laplace learning

produces the class probability, which can be regarded as the abundance map. Specifically,

we estimate the abundance map by projecting the graph Laplace learning solution AGL onto

Πq×N , i.e.,

AGL = arg min
A∈Rq×N

1

2

〈
[AL, A]⊤, L̃[AL, A]⊤

〉
F
, (5.2)

AGLU = PΠq×N
(AGL). (5.3)

Problem (5.2) is the standard graph Laplace learning. Consider the block representation

of L̃ as

L̃ =

Lll Llu

Lul Luu

 ∈ R(M+N)×(M+N), (5.4)

where Lll ∈ RM×M and Luu ∈ RN×N are the parts corresponding to the labeled pixel set

Xl and the unlabeled pixel set (indeed the whole set) X, respectively, and Lul = L⊤
lu ∈

RN×M represents the cross interaction of graph Laplacian between Xl and X. Then the

minimization problem (5.2) has a closed-form solution

AGL = −ALLluL
−1
uu , (5.5)

123

which can be solved by the preconditioned conjugate gradient method thanks to the sym-

metric and semi-positive definite properties of the part Luu. Equation (5.3) is to project

the output AGL ∈ Rq×N of the graph Laplace learning onto the set Πq×N by a projection

operator PΠq×N
, defined by,

PΠq×N
(A) = arg min

V ∈Πq×N

∥V − A∥F . (5.6)

This projection operator can be implemented by a fast algorithm [WC13].

Given AGLU, we can then find the optimal endmember matrix SGLU that minimizes the

combination of the least-squares errors of the linear mixing model (5.1) and the misfit of the

training data, i.e.,

SGLU = arg min
S∈Ωp×q

1

2
∥Xmat − SAGLU∥2F +

α2

2
∥Xmat

l − SAL∥2F , (5.7)

with a weighting parameter α > 0. Equation (5.7) has a closed-form solution

S0
GLU =

(
XmatA⊤ + α2Xmat

l A⊤
L

) (
AA⊤ + α2ALA

⊤
L

)−1
, (5.8)

SGLU = max
(
0, S0

GLU

)
. (5.9)

Equation (5.9) means to take the entry-wise maximum of S0
GLU and 0, i.e., replace each

negative entry in S0
GLU by 0. Algorithm 5 presents the pseudo-code of our GLU method,

which only involves three steps to find AGLU and SGLU (no iteration is needed).

5.2.3 Graph-regularized Semi-supervised Unmixing (GRSU)

By assuming the linear mixing model (5.1), it is standard to solve the blind unmixing problem

in a regularized least square form,

arg min
S∈Ωp×q ,
A∈Πq×N

1

2
∥Xmat − SA∥2F + λJ (A), (5.10)

with a positive weighting parameter λ. The term 1
2
∥Xmat − SA∥2F is a least-squares misfit

between the matrix product SA and the data measurement Xmat, while J (A) is a regular-

124

Algorithm 5 Graph Learning Unmixing (GLU)

Require: Data matrix Xmat, training data (Xmat
L , AL), and α > 0.

Ensure: Matrices SGLU and AGLU.

1: Initialize: Build a graph on X̃ = [Xmat
L , Xmat] with corresponding Laplacian matrix L̃.

Segment L̃ into the block form (5.4).

2: Graph Learning Step:

3: AGL = −ALLluL
−1
uu .

4: Projection:

5: AGLU = PΠq×N
(AGL).

6: Estimate the endmember spectrum matrix:

7: S0
GLU = (XmatA⊤ + α2Xmat

L A⊤
L)(AA⊤ + α2ALA

⊤
L)−1,

8: SGLU = max(0, S0
GLU).

ization term of the abundance matrix A. We impose the nonnegative constraints of S and

A as well as a sum-to-one constraint of A.

Following the graph Dirichlet energy [OWO14, Eva22], we consider a graph Laplacian

regularization, formulated by

J1(A) =
1

4

N∑
i,j=1

∥ai − aj∥22w(xi,xj), (5.11)

where the weight function w : Rp × Rp → R is defined by

w(xi,xj) = exp

(
−∠(xi,xj)

2

√
τiτj

)
,

with the angular distance ∠(xi,xj) between node xi and xj and τi, τj are defined in Sec-

tion 2.2.1.

In addition, we further develop a semi-supervised graph regularization term J2(A;AL, X
mat
l)

that includes the label information Xmat
l , AL, that is,

J2(A;AL, X
mat
l) =

1

4

N∑
i=1

M∑
j=1

∥ai − y†
j∥22w(xi,xlj). (5.12)

125

We consider the sum of both terms J1(A) and J2(A;AL, X
mat
l) as the regularization J (A).

As J1 and J2 have the same form that leads to the same scale, we assign the equal weight

of them when formulating J , i.e., J (A) = J1(A) + J2(A;AL, X
mat
l).

Putting (5.10)–(5.12) together with the label information (Xmat
l , AL) obtained by the

active learning approach, we propose a graph-regularized semi-supervised unmixing (GRSU)

model to simultaneously estimate the abundance map AGRSU and the endmember matrix

SGRSU, that is,

SGRSU, AGRSU = arg min
S∈Ωp×q ,
A∈Πq×N

1

2
∥Xmat − SA∥2F +

α2

2
∥Xmat

l − SAL∥2F

+ λJ1(A) + λJ2(A;AL, X
mat
l), (5.13)

with two positive parameters α and λ. We define the indicator function

χ∆(Z) =

 0, Z ∈ ∆,

∞, otherwise,
(5.14)

to rewrite the minimization problem (5.13) into an unconstrained formulation as follows,

min
A,S

1

2
∥Xmat − SA∥2F +

α2

2
∥Xmat

l − SAL∥2F + λJ1(A)

+ λJ2(A;AL, X
mat
l) + χΩp×q(S) + χΠq×N

(A). (5.15)

We apply the alternating direction method of multipliers (ADMM) [EB92] to solve the

unconstrained problem (5.15). In particular, we introduce two auxiliary variables T ∈ Rp×q

and B ∈ Rq×N to express the problem (5.15) equivalently as

min
A,B,S,T

1

2
∥Xmat − TA∥2F +

α2

2
∥Xmat

l − TAL∥2F + λJ1(B)

+ λJ2(B;AL, X
mat
l) + χΩp×q(S) + χΠq×N

(A)

s.t. A = B, S = T.

(5.16)

126

The augmented Lagrangian of (5.16) is written as

L =
1

2
∥Xmat − TA∥2F +

α2

2
∥Xmat

l − TAL∥2F + λJ1(B)

+ λJ2(B;AL, X
mat
l) + χΩp×q(S) + χΠq×N

(A)

+
ρ

2
∥A−B + B̄∥2F +

γ

2
∥S − T + T̄∥2F ,

with dual variables B̄, T̄ and two positive constants ρ, γ. One benefit of ADMM is that

it turns the joint minimization problem (5.16) into four subproblems that are associated

A, B, S, T separately. In each iteration, we iterate as follows,

T ← arg min
T∈Rp×q

1

2
∥[Xmat, αXmat

l]− T [A,αAL]∥2F +
γ

2
∥S − T + T̄∥2F ,

S ← arg min
S∈Ωp×q

γ

2
∥S − T + T̄∥2F ,

A← arg min
A∈Πq×N

1

2
∥Xmat − TA∥2F +

ρ

2
∥A−B + B̄∥2F ,

B ← arg min
B∈Rq×N

λJ1(B) + λJ2(B,AL, X
mat
l) +

ρ

2
∥A−B + B̄∥2F ,

B̄ ← B̄ − A + B,

T̄ ← T̄ − S + T.

(5.17)

The A, S, and T - subproblems are the same as in the blind unmixing paper [QLC19], thus

the details are omitted.

As for the B-subproblem, we write it explicitly by using B = [b1,b2, . . . ,bN],

B = arg min
B∈Rq×N

J1(B) + J2(B,AL, X
mat
l) +

ρ

2λ
∥A−B + B̄∥2F

= arg min
B∈Rq×N

1

4

N∑
i,j=1

∥bi − bj∥22w(xi,xj)

+
1

4

N∑
i=1

M∑
j=1

∥bi − y†
j∥22w(xi,xlj)

+
1

4

M∑
i,j=1

∥y†
i − y†

j∥22w(xli ,xlj) +
ρ

2λ
∥A−B + B̄∥2F .

(5.18)

127

Algorithm 6 Graph-regularized Semi-supervised Unmixing (GRSU)

Require: Data matrix Xmat, label information (Xmat
L , AL), parameters α, λ, γ, ρ, maximum

iteration Imax, and error tolerance ϵ.

1: Construct: A graph G̃ on X̃ = [Xmat
L , Xmat] (by Section 2.2.1) with the graph Laplacian

L̃ and its block form of (5.4)

2: Initialize: S0 = SGLU and A0 = AGLU (by GLU Algorithm 5); B0 = A0, B̄0 = 0,

T̄ = 0, Err = 1, and i = 0.

3: while i < Imax and Err > ϵ do

4: T i+1 = (Xmat(Ai)⊤ + α2Xmat
L (AL)⊤ + γ(Si + T̄ i))(Ai(Ai)⊤ + α2AL(AL)⊤ + γIq)

−1.

5: Si+1 = max(T i+1 − T̄ i, 0).

6: Ai+1 = PΠq×N

(
((Si+1)⊤Si+1 + ρIq)

−1((Si+1)⊤Xmat + ρ(Bi − B̄i)
)
.

7: Bi+1 = (−ALLul + ρ
λ
(Ai+1 + B̄i))(Luu + ρ

λ
IN)−1

8: B̄i+1 = B̄i + (Ai+1 −Bi+1).

9: T̄ i+1 = T̄ i + (Si+1 − T i+1).

10: i← i + 1 and Err = max((∥Si+1 − Si∥F)/(∥Si∥F), (∥Ai+1 − Ai∥F)/(∥Ai∥F))

11: end while

Ensure: SGRSU = Si, AGRSU = Ai

Note that we add the term 1
4

∑M
i,j=1 ∥y

†
i − y†

j∥22w(xli ,xlj) in (5.18) that does not affect the

minimization over B, but rather turns the B-subproblem (5.18) into a regularized graph

Laplacian learning problem (see Section 2.2.2). Specifically, we consider the graph G̃ built

on the combined data matrix X̃ = [Xmat
l , Xmat] with the graph Laplacian matrix L̃. Then

(5.18) is equivalent to

B = arg min
B∈Rq×N

1

2

〈
[AL, B]⊤, L̃[AL, B]⊤

〉
F

+
ρ

2λ
∥A−B + B̃∥2F . (5.19)

Using the block representation of L̃ in (5.4), we have a closed-form solution to (5.19) as

B =
(
−ALLlu +

ρ

λ
(A + B̃)

)(
Luu +

ρ

λ
IN

)−1

, (5.20)

where IN is an N ×N identity matrix.

128

The semi-supervised unmixing (GRSU) method is summarized in Algorithm 6. Its initial

values of A0 and S0 are obtained by GLU (Section 5.2.2) that outputs AGLU, SGLU.

5.3 Experiments and Results

In this section, we conduct extensive experiments to demonstrate the performance of the

proposed unmixing models. Specifically, in Section 5.3.1, we compare our semi-supervised

methods (GLU and GRSU) with the state-of-the-art (unsupervised) blind unmixing methods,

followed by a discussion of our semi-supervised unmixing methods with respect to different

numbers of training pixels in Section 5.3.2. In Section 5.3.3, we test the robustness of various

methods by adding different amounts of Gaussian white noise to the HSI. We test on four

standard hyperspectral image datasets, described as follows,

1. Jasper Ridge: The Jasper Ridge dataset [Has] is a hyperspectral image of the size

100 × 100 with 198 channels. Originally it had 224 hyperspectral channels spanning

from 380 to 2500 nm, and 26 channels are removed as a preprocessing step due to dense

water vapor and atmospheric effects. Four endmembers are latent: Tree, Water, Dirt,

and Road.

2. Samson: The Samson dataset [Has] is of the size 95× 95 with 156 channels that span

from 401 to 889 nm. Three endmembers are latent: Soil, Tree, and Water. Note that a

different ground truth is considered in [RKS22], while we use the original ground-truth

information.

3. Urban4: The Urban dataset [Has] is of the size 307 × 307 with 162 channels. Each

pixel of this image corresponds to a 2×2m2 area. The original 221 channels span from

400 nm to 2500 nm. There are three versions of the ground truth, which contain 4, 5,

and 6 endmembers. Here we use the version of four endmembers, labeled as Asphalt,

Grass, Tree, and Roof.

129

4. Apex: The Apex dataset2 [SJH15] is a hyperspectral image of the size 111× 122 with

285 bands spanning from 413 to 2420nm. Four endmembers are latent in this data:

Road, Tree, Roof, and Water.

We apply two metrics, root mean square error (RMSE) and spectral angle distance (SAD),

to evaluate the quality of the abundance matrix A and the endmember spectrum matrix S,

respectively. RMSE and SAD are defined as follows,

RMSE(A,Agt) = 100×
√

1

pN
∥A− Agt∥2F (5.21)

SAD(S, Sgt) =
180

π
× 1

p

p∑
i=1

arccos

(
⟨si, sgti ⟩
∥si∥2∥sgti ∥2

)
, (5.22)

where A, S are the fitted matrices, Agt, Sgt are the ground-truth, and si denotes the ith

column of the matrix S.

5.3.1 Method Comparison

We compare our semi-supervised methods with five state-of-the-art unsupervised unmixing

methods, namely, QMV [ZLF19], GTVMBO [QLC21], MSC [RKS22] and EGU [HGY21].

The first three methods (GLNMF, QMV, GTVMBO) initialize with the output of FCLSU

[Hei01]. MSC and EGU are neural network methods. Note that the EGU method supports

the use of either the ground truth endmember spectrum matrix S or the estimated matrix S

using vertex component analysis (VCA) [ND05]. We use VCA to estimate S, which serves an

input for the pixel-wise EGU-net method. In the following experiments, GLNMF [LWY12],

QMV [ZLF19], and GTVMBO [QLC21] are executed in MATLAB and conducted on an

Intel i9-9900K CPU, while MSC [RKS22] and EGU [HGY21] are implemented in Python

and conducted on an Nvidia 2080 Ti GPU.

For labels used in our semi-supervised framework, we consider the exact abundance map

(EXT) and the one-hot pseudo label (OH). The latter (OH) can be obtained by thresholding

2https://github.com/BehnoodRasti/MiSiCNet

130

https://github.com/BehnoodRasti/MiSiCNet

Training Information for Each Dataset

Parameters Training Data Info

Dataset α λ γ ρ Acq Fun Training pixels Training Percentage Num Each Class

Jasper 10 1 1 1 MCVOPT 44 0.44% 13, 7, 16, 8

Samson 20 50 0.1 0.1 VOPT 36 0.40% 13, 14, 9

Urban4 50 500 0.1 0.1 VOPT 364 0.38% 138, 105, 72, 49

Apex 10 50 1 1 VOPT 54 0.40% 7, 24, 13, 10

Table 5.1: Parameter choices and training data information for our GLU and GRSU models.

Parameters α, λ, γ, ρ are all associated with GRSU, while GLU only involves one parameter

α (same as the one used in GRSU). “Acu Fun” means the acquisition function applied in the

active learning process. “Training Pixels” means the number of labeled pixels used for the

training process. “Training Percentage” means the percentage of labeled pixels to all pixels.

“Num Each Class” means the number of labeled pixels of each endmember.

Computation Times for different methods

Unsupervised Methods Our Semi-supervised Methods

Method
GLNMF QMV GTVMBO MSC EGU GLU GLU GRSU GRSU

[LWY12] [ZLF19] [QLC21] [RKS22] [HGY21] -OH -EXT -OH -EXT

Jasper 8.81s∗ 2.51s∗ 2.77s∗ 112.09s 51.36s 2.38s 2.45s 3.07s 2.92s

Samson 3.89s∗ 1.40s∗ 0.51s∗ 95.32s 43.58s 1.52s 1.47s 10.42s 12.92s

Urban4 67.31s∗ 23.57s∗ 14.60s∗ 974.05s 583.16s 22.29s 22.37s 201.89s 294.71s

Apex 26.47s∗ 2.12s∗ 0.59s∗ 166.03s 87.84s 3.81s 3.97s 20.46s 24.04s

Table 5.2: This table presents the computation times of various methods applied to each

dataset. Specifically, the GLNMF, QMV, and GTVMBO methods are executed in MATLAB,

with their times indicated by an asterisk (∗), while the other methods are implemented in

Python. The computation time is measured in seconds. The best computation times from the

unsupervised and semi-supervised methods are highlighted in bold in each row. Rhe proposed

methods (GLU and GRSU) run much faster than the neural network methods approaches

(MSC and EGU), and are comparable to traditional unsupervised methods (GLNMF, QMV,

and GTVMBO).

131

RMSE between the estimated abundance matrix and the ground truth.

Unsupervised Methods Ours (0.4% training)

Dataset Class
GLNMF QMV GTVMBO MSC EGU GLU GLU GRSU GRSU

[LWY12] [ZLF19] [QLC21] [RKS22] [HGY21] -OH -EXT -OH -EXT

Jasper

Tree 10.04 10.59 18.70 12.34 11.25 7.09 10.91 4.04 6.48

Water 14.06 4.18 7.38 7.30 6.22 7.33 11.40 4.39 4.27

Dirt 14.32 10.93 17.10 15.35 14.59 8.64 13.04 6.48 6.85

Road 51.82 14.74 15.64 52.09 32.84 14.78 15.75 6.99 6.34

Overall 18.79 9.51 15.16 18.24 13.78 8.37 12.03 5.10 5.93

Samson

Soil 22.51 20.28 8.01 20.05 30.73 4.37 5.73 5.18 4.10

Tree 31.29 24.92 16.10 28.90 29.56 7.51 6.02 6.35 4.38

Water 16.26 16.63 9.19 16.45 15.58 11.06 4.70 11.32 4.89

Overall 25.21 21.48 12.19 23.32 27.08 7.81 5.61 7.66 4.43

Urban4

Asphalt 33.89 21.58 19.19 18.19 21.4 14.48 7.99 14.55 8.32

Grass 10.15 29.07 10.44 31.61 45.83 7.61 6.86 7.47 6.93

Tree 15.82 25.65 13.87 31.37 14.32 7.78 9.51 7.88 9.67

Roof 17.53 31.18 23.49 38.00 18.86 9.93 10.65 9.78 10.59

Overall 22.13 26.17 15.71 28.58 30.77 10.48 8.30 10.49 8.46

Apex

Road 23.13 25.34 57.78 22.77 43.61 11.35 17.40 10.16 13.68

Tree 13.51 19.99 32.29 14.08 25.27 11.33 12.22 11.07 9.44

Roof 29.15 25.65 46.64 19.91 33.67 16.67 12.69 17.31 13.71

Water 16.81 8.70 21.63 5.50 11.56 14.85 14.43 15.08 14.85

Overall 19.28 20.09 37.10 15.27 27.49 13.34 13.44 13.35 12.15

Table 5.3: Comparison results in terms of RMSE(A,Agt) for the abundance maps: four of our

semi-supervised methods (with around 0.4% of labeled pixels) are compared with five (unsu-

pervised) blind unmixing methods on four publicly available datasets. For each row, the best

results of unsupervised methods and our semi-supervised methods are bolded, respectively.

The best of our methods achieves nearly 50% improvements over the unsupervised ones in

most cases.

132

SAD between the estimated spectrum matrix and the ground truth.

Unsupervised Methods Ours (0.4% training)

Dataset Class
GLNMF QMV GTVMBO MSC EGU GLU GLU GRSU GRSU

[LWY12] [ZLF19] [QLC21] [RKS22] [HGY21] -OH -EXT -OH -EXT

Jasper

Tree 5.63 2.66 13.95 2.48 8.49 7.49 2.50 2.00 4.70

Water 3.60 5.02 22.43 16.60 14.64 22.21 22.66 5.04 22.27

Dirt 6.53 2.50 8.37 3.80 6.68 3.99 1.80 1.89 2.54

Road 43.94 3.96 6.61 18.88 5.16 2.41 2.05 1.28 2.20

Overall 14.92 3.55 12.83 10.44 8.74 9.03 7.25 2.55 7.92

Samson

Soil 1.37 2.48 2.59 23.13 1.35 2.07 1.87 1.44 2.32

Tree 1.62 3.04 5.53 2.03 2.29 4.12 2.54 3.20 2.56

Water 10.48 32.94 21.40 45.95 8.62 9.50 30.96 2.41 31.45

Overall 4.50 12.82 9.83 23.71 4.09 5.24 11.79 2.36 12.11

Urban4

Asphalt 7.36 150.64 6.98 43.06 7.62 6.35 3.02 6.25 3.08

Grass 10.85 23.49 6.66 22.39 37.45 3.49 3.82 3.35 3.74

Tree 9.11 7.52 1.58 5.67 4.86 7.02 3.80 6.35 4.39

Roof 44.15 3.85 44.23 2.59 45.89 3.26 3.89 3.22 4.16

Overall 17.87 46.37 14.87 18.43 23.96 5.04 3.64 4.79 3.83

Apex

Road 29.38 8.39 40.88 14.90 5.61 7.68 14.95 4.25 17.61

Tree 6.55 11.86 24.21 7.88 7.41 10.15 5.08 8.03 6.62

Roof 6.23 6.26 5.65 10.10 4.86 9.59 6.47 6.82 4.30

Water 9.70 106.13 51.46 43.85 12.73 30.73 11.33 12.62 17.11

Overall 12.96 33.16 30.55 19.19 7.65 14.54 9.46 7.94 11.41

Table 5.4: Comparison results in terms of SAD(S, Sgt) for the endmember spectrum matrices

S: four of our semi-supervised methods (with around 0.4% of labeled pixels) are compared

with five (unsupervised) blind unmixing methods on four publicly available datasets. For

each row, the best results of unsupervised methods and our semi-supervised methods are

bolded, respectively.

133

the exact abundance map or an expert identifying the most significant endmember, which

is more practical than the former (EXT) in real circumstances.

For each experiment, the active learning process starts with only one random pixel per

material as an initial label set and terminates until around 0.4% of the total pixels are

sampled according to the active learning algorithm (Algorithm 4). We fix ϵ = 10−3, Imax =

1000 and K = 50 in the KNN graph construction (Section 2.2.1). Note that K is chosen to be

relatively small for computational benefits while ensuring the connectivity of the constructed

graph G, which is required in the calculation of the VOpt and MCVOpt acquisition functions

(2.51), (2.58). We select the optimal combination of the parameters α, λ, γ, ρ in the range

of α ∈ {10, 20, 50, 100}, λ ∈ {10i, 5 × 10i|i = 0, 1, 2, 3}, γ = ρ ∈ {10i|i = −2,−1, 0, 1, 2}

that yields the smallest sum of RMSE and SAD using 10% of randomly selected pixels

as a validation set. We list the parameter choices, the amount of training data, and the

acquisition function (Acq Fun) in the active learning approach for each dataset in Table 5.1.

Table 5.2 shows the computation times of various methods applied to each dataset. Our

semi-supervised method GLU is much faster than the neural network methods approaches

(MSC and EGU) and is comparable to traditional unsupervised methods (GLNMF, QMV,

and GTVMBO) in terms of computation time. As the GRSU method requires solving the

graph Laplace learning problem in each iteration, it does require more computation times

compared to the regularization-based methods, while it is still faster than neural network

methods.

Table 5.3 and Table 5.4 report the results of RMSE(A,Agt) values and SAD(S, Sgt)

values, respectively. For our methods, the “-OH” suffix refers to training on the one-hot

pseudo labels, while the “-EXT” suffix refers to training on the exact abundance maps. In

both tables, we highlight the best results in our four semi-supervised methods and the other

five unsupervised methods, separately. By comparing the bold results in each row, the best of

our methods achieves nearly 50% improvements over the competing unsupervised methods

in most cases. There are only a few exceptions. For example, EGU has an outstanding

134

performance of the SAD on the Apex dataset, which is slightly better than ours.

In addition, we observe that the winner of the five supervised methods scatters over

Table 5.3 and Table 5.4. For example, QMV and GTVMBO perform the best on Jasper Ridge

and Urban4, respectively, for both abundance and endmember estimations. For the Samson

dataset, GTVMBO attains the best RMSE, while EGU has the best SAD. For Apex, MSC

has the best RMSE, while EGU achieves the best SAD. Our methods, on the other hand,

yield consistent performance in that GRSU is generally better than GLU. One exception is

the Urban4 dataset, in which GRSU-EXT is slightly worse than GLU-EXT. Since GLU is

the initialization of GRSU, we can see improvements of GRSU after the ADMM iterations,

which are particularly significant on the SAD values of the Jasper Ridge, Samson, and Apex

datasets. Furthermore, training on one-hot pseudo labels (-OH) sometimes has a better

performance than training on the exact abundance map (-EXT), which implies that it is not

necessary to require the exact abundance maps for the training process of our approaches.

We arrange the estimated abundance maps and endmembers in pairs for Jasper Ridge,

Samson, Urban4, and Apex datasets, sequentially, showing in Figures 5.2–5.5. Note that we

normalize each endmember (column) in the spectrum matrix S to have the unit norm, i.e.,

∥si∥2 = ∥sgti ∥2 = 1. The labeled pixels that are selected by active learning are indicated in

red dots on the ground truth abundance map.

The active learning approach can identify the distribution of each endmember by se-

lecting a few representatives. Take the Road in the Jasper Ridge dataset for an example.

As illustrated in the last row of Panel(a) in Figure 5.2, the abundance map for the Road

contains fine structures that are easily smeared out by other methods, while active learning

can successfully identify pixels with high abundance values of this endmember to acquire

labels. With those sampled labeled pixels, the estimated abundance maps’ quality increases

significantly compared to unsupervised methods. Another evident example is the endmem-

ber Roof in the Urban dataset (the last row of Panel (a) in Figure 5.4). Both GLU-OH and

GRSU-OH well preserve the contrast of the rectangular rooftop in the Roof abundance.

135

In conclusion, our methods demonstrate a significant improvement of approximately 50%

in unmixing performance as measured by the RMSE of the abundance maps and the SAD

of the mixing matrices, requiring only a minimum amount of supervision (e.g., 0.4% la-

beled pixels). It is important to note that exact abundance maps are not needed during

the training process; instead, we leverage the practical and readily obtainable OH labels.

Furthermore, while our GRSU methods may exhibit slower computation times due to the

iterative nature of our optimization approach, they still maintain a speed advantage over

neural network methods, such as MSC and EGU. This not only underlines the efficiency of

our methods but also represents a competitive balance between computational speed and

unmixing performance.

5.3.2 Discussion on the Number of Training Pixels

We discuss the influence of the number of labels sampled by active learning on our semi-

supervised methods, GLU-OH, GLU-EXT, GRSU-OH, and GRSU-EXT. The active learning

process starts with one random pixel per material as an initial label set, followed by Algo-

rithm 4 (the active learning algorithm) until 5% of the total pixels are reached. We conduct

experiments only on the Jasper Ridge and the Apex datasets for demonstration purposes.

The corresponding parameters λ, γ, ρ are provided in Table 5.1. The parameter α is designed

to balance the numbers of the training pixels and total pixels. Since we have various num-

bers of training pixels in this experimental setting, we choose α0 = 10 and α = Cαα0/Ntrain,

where Cα is a constant depending on the dataset and Ntrain is the number of training pixels.

In practice, Cα = 50 for the Jasper Ridge dataset and Cα = 10 for the Apex dataset.

Figure 5.6 shows the changes in the RMSE on abundance and SAD on the endmembers

with respect to the number of labeled pixels obtained by active learning. Two abundance

RMSE curves in Figure 5.6 (a) and (c) illustrate that our methods trained on one-hot pseudo

labels (GLU-OH, GRSU-OH) improve in the very beginning and deteriorate with more

labeled pixels (after 1%), which is attributed to the inaccurate information of the OH labels.

136

Tr
ee

GLNMF QMV GTVMBO MSC EGU GLU-OH GLU-EXT GRSU-OH GRSU-EXT GT Labels

W
at

er
Di

rt
Ro

ad

0.0

0.2

0.4

0.6

0.8

1.0

(a) Abundance maps: the Jasper Ridge dataset

0.0

0.1

Tre
e

GLNMF QMV GTVMBO MSC EGU GLU-OH GLU-EXT GRSU-OH GRSU-EXT

0.0

0.2

W
at
er

0.0

0.1

Di
rt

0 200
0.0

0.2

Ro
ad

0 200 0 200 0 200 0 200 0 200 0 200 0 200 0 200

(b) Endmember matrix: the Jasper Ridge dataset

Figure 5.2: Results estimated by different methods on the Jasper Ridge dataset. The first

five columns are (unsupervised) blind unmixing methods and the following four columns

are our semi-supervised methods. Each row corresponds to an endmember, including Tree,

Water, Dirt, and Road.

Panel (a) Abundance maps. The last two columns are the ground truth and the label

pixels selected by active learning (red dots) for our GLU and GRSU methods. Each red

dot corresponds to a labeled pixel, which is enlarged for visual illustration. Note that active

learning successfully identifies pixels with high abundance values for Road to acquire labels.

Panel (b) Endmember matrices estimated by different methods (in orange) with the ground

truth (in blue). All the endmember vectors are normalized to have the unit norm.

137

So
il

GLNMF QMV GTVMBO MSC EGU GLU-OH GLU-EXT GRSU-OH GRSU-EXT GT Labels

Tre
e

W
at

er

0.0

0.2

0.4

0.6

0.8

1.0

(a) Abundance maps: the Samson dataset

0.05

0.10

So
il

GLNMF QMV GTVMBO MSC EGU GLU-OH GLU-EXT GRSU-OH GRSU-EXT

0.0

0.1

Tre
e

0 100
0.0

0.1

W
at
er

0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100

(b) Endmember matrix: the Samson dataset

Figure 5.3: Results estimated by different methods on the Samson dataset. The first five

columns are (unsupervised) blind unmixing methods and the following four columns are our

semi-supervised methods. Each row of the plot matrix corresponds to an endmember of the

dataset, including Soil, Tree, and Water.

Panel (a) Abundance maps. The last two columns are the ground truth and the label

pixels selected by active learning (red dots) for our GLU and GRSU methods. Each red dot

corresponds to a labeled pixel, which is enlarged for visual illustration.

Panel (b) Endmember matrices estimated by different methods (in orange) with the ground

truth (in blue). All the endmember vectors are normalized to have the unit norm.

138

As
ph

al
t

GLNMF QMV GTVMBO MSC EGU GLU-OH GLU-EXT GRSU-OH GRSU-EXT GT Labels
Gr
as
s

Tr
ee

Ro
of

0.0

0.2

0.4

0.6

0.8

1.0

(a) Abundance maps: the Urban4 dataset

−0.1
0.0
0.1

As
ph

al
t GLNMF QMV GTVMBO MSC EGU GLU-OH GLU-EXT GRSU-OH GRSU-EXT

0.0

0.1

Gr
as

s

0.0

0.1

Tre
e

0 100

0.0

0.1

Ro
of

0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100

(b) Endmember matrix: the Urban4 dataset

Figure 5.4: Results estimated by different methods on the Urban4 dataset. The first five

columns are (unsupervised) blind unmixing methods and the following four columns are our

semi-supervised methods. Each row of the plot matrix corresponds to an endmember of the

dataset, including Asphalt, Grass, Tree, and Roof.

Panel (a) Abundance maps. The last two columns are the ground truth and the label

pixels selected by active learning (red dots) for our GLU and GRSU methods. Each red

dot corresponds to a labeled pixel, which is enlarged for visual illustration. Note that both

GLU-OH and GRSU-OH well preserve the contrast of the rectangular rooftop in the Roof

abundance.

Panel (b) Endmember matrices estimated by different methods (in orange) with the ground

truth (in blue). All the endmember vectors are normalized to have the unit norm.

139

Ro
ad

GLNMF QMV GTVMBO MSC EGU GLU-OH GLU-EXT GRSU-OH GRSU-EXT GT Labels

Tr
ee

Ro
of

W
at
er

0.0

0.2

0.4

0.6

0.8

1.0

(a) Abundance maps: the Apex dataset

0.0

0.1

Ro
ad

GLNMF QMV GTVMBO MSC EGU GLU-OH GLU-EXT GRSU-OH GRSU-EXT

0.0

0.1

Tre
e

0.00

0.05

Ro
of

0 200

0.0

0.2

W
at
er

0 200 0 200 0 200 0 200 0 200 0 200 0 200 0 200

(b) Endmember matrix: the Apex dataset

Figure 5.5: Results estimated by different methods on the Apex dataset. The first five

columns are (unsupervised) blind unmixing methods and the following four columns are our

semi-supervised methods. Each row of the plot matrix corresponds to an endmember of the

dataset, including Road, Tree, Roof, and Water.

Panel (a) Abundance maps. The last two columns are the ground truth and the label

pixels selected by active learning (red dots) for our GLU and GRSU methods. Each red dot

corresponds to a labeled pixel, which is enlarged for visual illustration.

Panel (b) Endmember matrices estimated by different methods (in orange) with the ground

truth (in blue). All the endmember vectors are normalized to have the unit norm.

140

0 100 200 300 400 500

Number of labeled pixels

5

10

15

20

RM
SE
(A
,A

gt
)

GLU-OH
GLU-EXT
GRSU-OH
GRSU-EXT

0% 1% 2% 3% 4% 5%
Percentage of labeled pixels

(a) Jasper RMSE

0 100 200 300 400 500
Number of labeled pixels

2

4

6

8

SA
D(
S,
S g

t)

GLU-OH
GLU-EXT
GRSU-OH
GRSU-EXT

0% 1% 2% 3% 4% 5%
Percentage of labeled pixels

(b) Jasper SAD

0 200 400 600
Number of labeled pixels

10

12

14

16

18

20

22

RM
SE

(A
,A

gt
)

GLU-OH
GLU-EXT
GRSU-OH
GRSU-EXT

0% 1% 2% 3% 4% 5%
Percentage of labeled pixels

(c) Apex RMSE

0 200 400 600
Number of labeled pixels

4

6

8

10

12

14

SA
D(
S,
S g

t)

GLU-OH
GLU-EXT
GRSU-OH
GRSU-EXT

0% 1% 2% 3% 4% 5%
Percentage of labeled pixels

(d) Apex SAD

Figure 5.6: RMSE and SAD curves with respect to the number of labeled pixels for the Jasper

Ridge and the Apex datasets. For each plot, the x-axis on the top shows the percentage of

labeled pixels, while the bottom one is the number of labeled pixels. In the active learning

process, we apply the MCVOpt and VOpt acquisition functions for the Jasper Ridge and

Apex datasets, respectively. Each curve starts with only one random pixel per endmember

and samples up to 5% of labeled pixels.

141

At the beginning of active learning, the most representative pixels are selected, whose ground-

truth abundance vectors might be close to a one-hot vector. When we incorporate more OH

labels for unmixing, the OH labels are misleading as opposed to the exact abundance map.

On the other hand, GLU-EXT and GRSU-EXT always benefit from increasing the number

of labeled pixels increases, but with a diminishing gain after around 3% of the label rate. In

practice, we would like to use the one-hot pseudo labels for training, since it is much easier

to obtain, but not exceeding 1% for the active learning process.

Compared to the RMSE curves, the endmember SAD curves are relatively more stable

with respect to the increase in the number of training pixels. Practically, after 2% of the

label rate, the SAD values do not change much for all our methods, which implies that only

a small number of training pixels are needed to estimate the endmembers.

Overall for both GLU and GRSU, the increase in the training pixels does not always

deem improvements in the performances. In fact, including more OH pseudo labels is not

beneficial for unmixing. A label rate around 1% would be a good choice experimentally.

5.3.3 Robustness Study

To provide a quantitative validation of the robustness exhibited by our approach, we have

conducted an extensive investigation into the performances of various methods applied to

the Jasper Ridge dataset, evaluating them using RMSE (5.21) and SAD (5.22). We add

different amounts of Gaussian white noise to the data matrix, resulting in a signal-to-noise

ratio (SNR) ranging from 5dB to 40dB with a 5dB increment. It is important to note that

a higher SNR value indicates less noisy data.

Figure 5.7 clearly demonstrates that the proposed GRSU method achieves the highest

accuracy in estimating the abundance map A, regardless of whether OH or EXT is consid-

ered, across all noise levels. When it comes to estimating the spectrum matrix S, GRSU

performs best in the low SNR regime and is comparable to QMV when the data is less noisy

142

5 10 15 20 25 30 35 40
SNR(dB)

5

10

15

20

25

30

35

40

RM
SE

(A
,A

gt
)

GLNMF
QMV
GTVMBO
MSC
EGU

GLU-OH
GLU-EXT
GRSU-OH
GRSU_EXT

(a) RMSE vs SNR

5 10 15 20 25 30 35 40
SNR(dB)

5

10

15

20

SA
D(
S,
S g

t)

GLNMF
QMV
GTVMBO
MSC
EGU

GLU-OH
GLU-EXT
GRSU-OH
GRSU_EXT

(b) SAD vs SNR

Figure 5.7: RMSE (for A) and SAD (for S) curves concerning the SNR values of noisy

input of the Jasper Ridge dataset corrupted by Gaussian white noise. In both panels,

the performance of other blind methods is illustrated by dashed lines, whereas solid lines

represent our proposed semi-supervised methods.

143

(SNR>15dB). This result is reasonable, as we only impose two simple constraints on S:

nonnegativity and sum-to-one.

In contrast, the GLU method appears to be more sensitive to noise. When the SNR is

relatively low, the RMSE and SAD values produced by GLU tend to be large, indicating a

higher degree of estimation error. However, it is worth noting that as the SNR gradually

increases, there is a sharp decline in both RMSE and SAD values for the GLU method.

This suggests that while GLU may struggle in highly noisy environments, its performance

improves significantly as the data becomes cleaner.

5.4 Conclusion

In this chapter, we propose two semi-supervised hyperspectral models, graph learning unmix-

ing (GLU) and graph-regularized semi-supervised unmixing (GRSU). GLU applies the graph

Laplace learning directly to solve the HSU problem by regarding the class probability as the

abundance map. Initialized by GLU, GRSU estimates the abundance map A and endmem-

ber spectrum matrix S by solving an energy-minimizing problem via an iterative ADMM

scheme. We extended the graph Laplace learning to a regularized version and explored the

close-form solutions for efficient computation. This regularized graph Laplace learning is a

subproblem in the ADMM iteration process. We conducted extensive experiments using four

standard hyperspectral datasets to compare our semi-supervised methods with five state-of-

the-art methods in hyperspectral blind unmixing. All the results demonstrated the proposed

GLU and GRSU methods have a significant improvement with a minimum amount of super-

vision. Furthermore, both methods can take either the ground-truth abundance maps or the

one-hot pseudo labels as the training information, the latter of which is much easier to obtain

since it only requires determining the major endmember of each training pixel. According

to our experiments, it is unnecessary to require the ground-truth abundance maps to feed

in the semi-supervised framework. Sometimes, models trained on pseudo labels yield better

144

performance than the exact values. We also discussed the influence of the number of training

pixels on the model performance, revealing that a label rate of 1% is experimentally sufficient

for satisfactory results. In addition, our GRSU method is more robust than Gaussian white

noise. Our new methods have great potential for real-world problems since they do not need

a ground truth abundance map and can work with pseudo-labels instead.

There are several promising directions following this work. First, scaling factor [DVH16]

and spectral variability [HYC19b] terms can be incorporated into our model to further

enhance the unmixing performance. Second, Figure 5.7 (b) suggests a need for regularizations

of the spectral matrix, in addition to nonnegativity and sum-to-one constraints, to improve

the robustness of the proposed methods. Lastly, the current graph Laplacian learning solver

can be replaced with neural networks or graph neural network techniques.

145

CHAPTER 6

AutoKG: Efficient Automated Knowledge Graph

Generation for Language Models

This chapter reuses IEEE copyrighted material from the author’s publications [CB23] with

the approval of the senior author Andrea L. Bertozzi and following the requirements outlined

by IEEE for thesis/dissertation reuse.1

As introduced in previous chapters, graph-based methods have found extensive applica-

tions in image analysis. These methods leverage graphs as a mathematical tool to model

the spatial relationships among pixels, regions, and objects in images, enabling a deeper

understanding and analysis of image content. Although this thesis focuses on graph-based

approaches in image analysis, we note that integrating knowledge bases with large language

models (LLMs) has become a research hotspot in natural language processing. Traditional

methods for combining the two rely on semantic similarity search, where the query and text

blocks in the knowledge base are vectorized, and relevant knowledge is retrieved based on

the similarity in the vector space. However, these methods struggle to capture the com-

plex associations between pieces of knowledge. We propose AutoKG, a lightweight and

efficient approach for automated knowledge graph (KG) construction to address this lim-

itation. AutoKG first extracts keywords from the text using a language model and then

computes the association weights between keywords using graph Laplacian learning, auto-

matically constructing a knowledge graph. We employ a hybrid search scheme that combines

vector similarity and graph-based associations during knowledge retrieval. Preliminary ex-

1©2023 IEEE. Reprinted, with permission, from [CB23]

146

periments demonstrate that AutoKG can capture the connections between knowledge more

comprehensively than pure semantic similarity search, generating richer and more coherent

language model outputs.

This chapter demonstrates that traditional graph Laplacian-based methods can be ap-

plied not only to image analysis but also to current research hotspots such as large language

models. It inspires us to explore the application of graph-based methods in various domains

and tasks of machine learning and artificial intelligence.

6.1 Introduction

Large Language Models (LLMs) such as BERT [DCL18], RoBERTA [LOG19], T5 [RSR20],

and PaLM [CND23], are intricately designed architectures equipped with an extensive num-

ber of parameters. These models have been rigorously pre-trained on vast and diverse

corpora, thereby enabling them to excel in a wide array of Natural Language Processing

(NLP) tasks, from language understanding to both conditional and unconditional text gen-

eration [TMZ22, ZYL22]. These advancements have been heralded as a step toward higher-

bandwidth human-computer interactions. However, their deployment faces significant chal-

lenges. On one hand, LLMs exhibit a tendency for “hallucinations” [WKR20, JLF23], pro-

viding plausible yet nonfactual predictions. On the other hand, the black-box nature of

LLMs compromises both interpretability and factual accuracy, often resulting in erroneous

statements despite memorizing facts during training [PRL19, SCM22].

Knowledge in natural language can be externally sourced from a retrievable database,

reducing hallucinations and enhancing the interpretability of LLMs [MDL23]. Utilizing

dense neural retrievers, which employ dense query and document vectors generated by a

neural network [AYK21], the system can evaluate the semantic similarity to an information-

seeking query by calculating the embedding vector similarity across related concepts [LPP20,

LET21].

147

To go beyond mere semantic similarity in information retrieval and augment the rea-

soning capabilities of LLMs, two advanced methodologies are particularly transformative:

prompt engineering like the Chain-of-thought prompting, and the incorporation of Knowl-

edge Graphs (KGs) [PLW23]. The former, chain-of-thought prompting, provides a framework

for advanced reasoning by generating paths of explanations and predictions that are cross-

verified through knowledge retrieval [HZR22, TBK22]. While this method offers significant

benefits, it is not the primary focus of the study in this chapter. As for the latter, KGs offer

LLMs a structured and efficient way to address their limitations in factual accuracy and

reasoning [XYC19, PLW23]. KGs not only provide accurate and explicit knowledge crucial

for various applications [JPC21] but are also known for their symbolic reasoning capabilities

to produce interpretable results [ZCZ21]. These graphs are dynamic, continuously evolving

with the addition of new knowledge [MCH18], and can be specialized for domain-specific

requirements [Abu21].

In this chapter, our emphasis is on techniques of automated KG generation and in-

corporation with LLMs. Most of the works related to these two tasks rely intensively

on the ongoing training of neural networks [PLW23, ZWL23], which is both difficult to

employ and less flexible for on-the-fly updates. Traditional KG construction approach

uses NLP techniques for entity recognition [NS07, GS96], or keyword identification based

on term frequency [SB88, Ram03], followed by determining relationship strength through

word proximity [MBS09]. Current automated techniques necessitate neural network training

[LLH23, WPG21, WLR23]. As for the interaction between KGs and LLMs, neural networks

are trained to let LLMs understand the information retrieved from KGs [TSW23, YBR22].

The recent advancements in LLMs make us think much more simply about the auto-

matic generation of KGs and the integration of LLMs with KGs. State-of-the-art LLMs

such as ChatGPT2, BARD3, and LLAMA [TMS23] have demonstrated impressive reasoning

2https://openai.com/blog/chatgpt

3https://blog.google/technology/ai/bard-google-ai-search-updates/

148

https://openai.com/blog/chatgpt
https://blog.google/technology/ai/bard-google-ai-search-updates/

capabilities [BCL23, ASG23]. Given sufficient information, they can independently execute

effective inference. This observation suggests an opportunity to simplify the KG structure:

perhaps the intricate relational patterns found in traditional KGs could be simplified into

basic strength indicators of association. Consequently, specific relationships are implicitly

conveyed to the model through corpus blocks associated with the KG. In addition, we can

provide retrieved keywords and the related corpus directly in the prompt rather than training

a network to let LLMs understand the retrieved subgraph structure.

Motivated by these ideas, we make the following contributions in this chapter:

1. We introduce AutoKG, an innovative method for automated KG generation, based on

a knowledge base comprised of text blocks. AutoKG circumvents the need for training

or fine-tuning neural networks, employs pretrained LLMs for extracting keywords as

nodes, and applies graph Laplace learning to evaluate the edge weights between these

keywords. The output is a simplified KG, where edges lack attributes and directionality,

possessing only a weight that signifies the relevance between nodes.

2. We present a hybrid search strategy in tandem with prompt engineering, which em-

powers large LLMs to effectively utilize information from the generated KGs. This

approach simultaneously searches for semantically relevant corpora based on embed-

ding vectors and the most pertinent adjacent information within the knowledge graphs.

The KG constructed here is a simplified version compared to traditional KGs, which are

typically composed of relations in the form of triplets. Firstly, nodes in AutoKG are not

entities in the usual sense; they are more abstract keywords. These keywords can represent

entities, concepts, or any content that serves as a foundation for search. Additionally, instead

of directed edges with specific semantic meanings found in traditional KGs, AutoKG utilizes

undirected edges with a single weight value. The node keywords are extracted from the

knowledge base with the aid of LLMs, while the graph structure is algorithmically derived.

Such a KG can be efficiently stored with just a keyword list and a sparse adjacency matrix.

149

Section 6.2 explains the detailed process of automated KG generation, while Section 6.3

describes the hybrid search method. An essential highlight is that our proposed techniques

require no neural network training or fine-tuning.

6.2 Automated KG Generation

In this section, we introduce our proposed approach, AutoKG, for automated KG generation.

The training aspects of the LLM are not the focus of this article. We operate under the

assumption that the LLM is already pre-trained and is accompanied by a corresponding

vector embedding model. Specifically, we have employed OpenAI’s gpt-4 or gpt-3.5-turbo-

16k as the LLM and the text-embedding-ada-002 as the embedding model.

Consider a scenario involving an external knowledge base, comprised of discrete text

blocks. AutoKG constructs a KG where the nodes represent keywords extracted from the

external knowledge base. The edges between these nodes carry a single non-negative integer

weight, signifying the strength of the association between the connected keywords. AutoKG

encompasses two primary steps: the extraction of keywords, which correspond to the nodes

in the graph, and the establishment of relationships between these keywords, represented by

the edges in the graph. It is worth noting that the pretrained LLM is employed only in the

keyword extraction step of the process. Figure 6.1 is the flowchart of the KG construction.

6.2.1 Keywords Extraction

Let the external knowledge base be denoted by X = {x1,x2, . . . ,xN}, where each xi is a block

of text with the maximum length of T tokens, represented as a string. The corresponding

embedding vectors for these text blocks are encapsulated in V = {v(x1),v(x2), . . . ,v(xN)} ⊂

Rd, where v is the embedding projection from string to Rd. We extract keywords from the

knowledge base X with unsupervised clustering algorithms and the assistance of LLMs.

Algorithm 7 outlines the keyword extraction process. The algorithm takes as input all

150

Figure 6.1: Flowchart of the KG Construction Process. This figure illustrates the different

steps involved in the construction of the KG. The blue blocks represent the core components

of the KG, the yellow blocks indicate the embedding process, the green blocks focus on

keyword extraction, and the red blocks correspond to the establishment of relationships

between keywords and the corpus as well as among the keywords themselves.

text blocks and their corresponding embedding vectors X and V , along with pre-defined

parameters: n for the number of clusters, c for the number of text blocks to select, and l1, l2

as keyword extraction parameters. Additionally, the algorithm also utilizes a parameter m to

specify the number of sampled previous keywords. Two unsupervised clustering algorithms,

K-means clustering [Mac67, Llo82] and spectral clustering [Von07], are applied to cluster the

knowledge base. For each cluster identified, we sample 2c text blocks, with c closest to the

cluster center and c randomly selected, to capture both the global and centered information.

The LLM is used twice in this algorithm. First, it extracts keywords from a selection of

2c text blocks, guided by the parameters l1 and l2, while avoiding the sampled m previous

keywords. Second, the same LLM is employed to filter and refine the extracted keywords.

151

The construction of the prompts for these applications strictly follows the format out-

lined in Table 6.1. A specific prompt example for the keyword extraction is given in the

Appendix. Specifically, each prompt is formed by concatenating the Task Information, In-

put Information, Additional Requirements, and Outputs. It is essential to note that within

each task, the length of the prompt sections corresponding to Task Information and Addi-

tional Requirements is fixed.

For Task 1, which deals with keyword extraction, the maximum input length is set to

2cT + m(l2 + 1), where T represents the token length of a single text block. Note that each

keyword can have a length of up to l2 + 1 tokens when accounting for potential separators

such as commas. Similarly, the maximum output length is l1(l2+1), where l1 is the maximum

number of keywords and l2 is the maximum token length of each keyword. Since Task 1 is

applied once for each of the n clusters generated by the two clustering methods, the total

maximum token usage for Task 1 would be 2n(2cT + (m + l1)(l2 + 1)). This process yields

a maximum of 2nl1 extracted keywords. For Task 2, which involves filtering and refining

the keywords, the maximum lengths for both the input and output are governed by the

formula 2nl1(l2 + 1). In summary, the maximum usage of tokens Mtokens KG for the keyword

extraction process is

Mtokens KG = 2n(2cT + (m + 2l1)(l2 + 1)) + LF , (6.1)

where LF is the fixed total length of tokens of the task information and additional require-

ment parts.

6.2.2 Graph Structure Construction

In this section, we detail how to construct a KG based on the keywords extracted in Section

6.2.1. Specifically, we establish whether there are edges between keywords and how to weight

these edges. We propose a method based on label propagation on the graph, a step that

does not require the involvement of any LLM.

152

Algorithm 7 Algorithm for Keyword Extraction in AutoKG

Require: All text blocks and their corresponding embedding vectors X and V , pre-defined

parameters n (number of clusters), c (number of text blocks to select), l1, l2 (keyword

extraction parameters), m (number of sampled previous keywords)

Ensure: A set of extracted keywords K = {k1,k2, . . . ,kM}

1: K = ∅

2: for each clustering algorithm P in {k-means, spectral clustering} do

3: Cluster V into n clusters VP
i , i = 1, 2, . . . , n using algorithm P

4: for i = 1,2,. . . ,n do

5: Randomly select c text blocks and c nearest to the cluster center from cluster VP
i

6: if |K| > m then

7: Select a subset Ks ⊂ K such that |Ks| = m

8: else

9: Ks = K

10: end if

11: Include these 2c text blocks and previous keywords Ks in a prompt for keyword

extraction

12: Use LLM, extract up to l1 keywords of maximum token length l2, collected as KP
i

13: Update K = K ∪ KP
i

14: end for

15: end for

16: Filter and refine K using a LLM to obtain the final keyword list

17: return K

153

ID Task Input Information Additional Requirements Outputs

1
Keywords

Extraction

1.Sampled text blocks

2.Previous keywords

1. Avoid previous keywords
Extracted

Keywords
2. Output up to l1 keywords

3. Each keyword is at most l2 tokens

2
Refining

Keywords

Original

Keywords

Concentration, deduplication

splitting, deletion

Refined

Keywords

3
Response to

the query

1. Original query Indicate the hybrid search approach:

Direct, via keywords,

or KG adjacency search

Final

Response
2. Related text blocks

3. Related keywords

Table 6.1: Prompt Construction for Different Tasks Using LLM

We firstly construct a similarity graph Gtext = (X,W text) where X is the set of text blocks

serving as the nodes, and W text is the weight matrix for the edges, according to Secion 2.2.1.

We use the embedding vectors v(xi),v(xj) to calculate the similarity weight between xi and

xj.

Then, we utilize the graph Gtext = (X,W text), constructed on text blocks, to establish a

keyword-based KG Gkeyword = (K,W keyword). Here, K is the set of keywords, and W keyword is

the weight matrix for the edges. In this matrix, W keyword
ij quantifies the strength of association

between keywords ki and kj. Importantly, this association is not semantic but is reflected

across the entire corpus in the knowledge base. Specifically, W keyword
ij corresponds to the

count of text blocks that are simultaneously associated with both keywords ki and kj.

Algorithm 8 establishes the relationship between a keyword and text blocks. The core

idea is to select a subset of text blocks that are closest to the keyword as positive data, and

another subset that is farthest as negative data. We then employ graph Laplace learning

[ZGL03] based on the graph structure Gtext = (X,W text) that we have previously constructed

for text blocks. The graph Laplace learning is a semi-supervised learning method on graphs,

154

Algorithm 8 Identifying Keyword to Text Block Association

Require: Keyword k, Set of text blocks X, Forward relation parameter n1, Backward rela-

tion parameter n2

Ensure: Xk ⊂ X, the subset of X associated with k

1: Obtain the embedding vector v(k).

2: Find the n1 nearest vectors in X to v(k) (label them as 1) and n2 farthest vectors (label

them as 0).

3: In the text-block graph Gtext = (X,W text), use the graph Laplace learning algorithm

[ZGL03] to label the remaining nodes based on these n1 + n2 labeled nodes. Obtain a

real-valued function u : X → [0, 1] on the graph nodes.

4: Define Xk = {xi ∈ X : u(xi) ≥ 0.5}

5: return Xk

utilizing the harmonic property of the solution function u : X → [0, 1] to diffuse the label

values from a subset of labeled nodes to other unlabeled nodes in the graph. The text

blocks that are classified towards the positive side (with a node function value u ≥ 0.5) are

considered to be associated with the keyword.

The association weight W keyword
ij between ki and kj is defined as follows:

W keyword
ij = W keyword

ji = |Xki ∩Xkj |, (6.2)

where Xk = {xi ∈ X : u(xi) ≥ 0.5}. With this, we complete the construction of the

keyword-based KG Gkeyword, which is built upon the text block graph Gtext.

6.2.3 Time Complexity Analyzation

This section analyzes the efficiency of the AutoKG method. The token consumption required

for KG construction in the AutoKG method has the upper bound according to Eq. 6.1. The

efficiency of the algorithm is mainly influenced by three aspects:

1. Constructing the similarity graph based on text blocks Gtext = (X,W text): An

155

approximate nearest neighbor search [AMN98] is employed for KNN search, leading to

a complexity of ON logN).

2. Clustering algorithm: Since both K-means clustering [Mac67, Llo82] and spectral

clustering [Von07] are NP-hard, we bound the complexity by Imax, the preset maximum

number of iterations. Spectral clustering is essentially the Kmeans method augmented

with an eigen-decomposition of the graph Laplacian. The time complexity here is

mainly dominated by the Kmeans method and is ONndImax), where n is the number

of clusters, and d is the vector dimension (1536 for OpenAI’s embedding model).

3. Graph Laplace learning: Given that our graph Laplacian matrix is sparse, employ-

ing the conjugate gradient method to solve the graph Laplace learning problem results

in a time complexity of ON̂
√
κ), where N̂ represents the count of non-zero elements

in the graph Laplacian matrix, and
√
κ denotes the condition number. We have the

upper bound for N̂ as 2KN , where K is the number of nearest neighbors.

Considering these factors, for large N and if preconditioning techniques can keep the

condition number of the graph Laplacian matrix small, our automated KG construction

algorithm should operate with a time complexity of

ON logN + NndImax + 2KN
√
κ) = ON logN + Nn),

where the number of clusters practically depends on N .

6.2.4 Remarks

In the process of generating the entire KG, there are several points to be considered:

• Although the keywords are extracted from clusters of text blocks, we do not take

into account the previous clustering results when establishing the relationship between

keywords and text blocks. This is because the same keyword may be included in

multiple clusters.

156

• When constructing the relationship between keywords, we did not incorporate the

embedding vectors of the keywords into the graph for the graph Laplace learning

process. There are two reasons for this decision: first, we do not need to update

the graph structure when selecting different keywords; second, empirically speaking,

the embedding vectors of the keywords tend to be quite distant from the embedding

vectors of the text blocks. Therefore, including them in the initial label data for Laplace

learning might be meaningless.

Our approach considerably outperforms these conventional methods in both keyword

extraction and relationship construction. The primary shortcoming of traditional techniques

is their reliance on a fixed set of words, leading to a significant loss of related information

and often producing overly localized insights. In terms of keyword extraction, our method

leverages the capabilities of LLMs, allowing for the refining of keywords that are more central

to the topic at hand, rather than merely being high-frequency terms. When it comes to

relationship construction, our strategy is grounded in a macroscopic algorithm on graphs

of all text blocks. This approach encompasses the information from the entire knowledge

base of text blocks, providing a more comprehensive perspective compared to relationships

derived from local distances.

6.3 hybrid search: Incorporating KG and LLM

In this section, we propose a hybrid search approach, based on the KG generated according to

Section 6.2. For a given query, the search results using this hybrid search strategy include not

only the text blocks that are semantically related to the query but also additional associative

information sourced from the KG. This supplementary data serves to provide more detailed

and in-depth reasoning for further analysis by the model. The incorporation of a KG allows us

to capture complex relationships between different entities, thereby enriching the contextual

understanding of the query.

157

Algorithm 9 hybrid search Algorithm

Require: Query q, embedding vector v(q), Parameters (st0, s
k
1, s

t
1, s

k
2, s

t
2)

Ensure: Set Xfinal containing text blocks related to q, and Set Kfinal containing keywords

related to q

1: Step 1: Vector Similarity Search

2: Find the closest st0 text blocks in X to v(q)

3: X0 ← set of closest st0 text blocks

4: Step 2: Similar Keyword Search

5: Find the closest sk1 keywords in K to v(q)

6: K1 ← set of closest sk1 keywords

7: For each k in K1, find the closest st1 text blocks in X

8: X1 ← merged set of closest st1 text blocks for each k in K1

9: Step 3: Keyword Adjacency Search

10: For each k in K1, find sk2 strongest connected keywords according to W keyword

11: K2 ← merged set of sk2 strongest connected keywords for each k in K1

12: For each k in K2, find the closest st2 text blocks in X

13: X2 ← merged set of closest st2 text blocks for each k in K2

14: Xfinal ← X0 ∪X1 ∪X2

15: Kfinal ← K1 ∪ K2

16: return Xfinal,Kfinal

In our proposed hybrid search approach, we have devised a multi-stage search process

that incorporates both direct text block search and keyword-based searching guided by the

KG. This process is detailed in Algorithm 9. Initially, we perform the initial search by

computing the text blocks that are closest to the given query embedding vector. Then, we

turn to the KG and identify the keywords that are closest to the query, along with text

blocks associated with these keywords. Lastly, we identify additional keywords that have

the strongest association with the previously identified ones, based on the weight matrix in

158

the KG, and accordingly search for related text blocks. The algorithm returns not just a

set of text blocks that are highly relevant to the query but also a set of keywords that are

closely connected to the query.

To estimate the maximum number of tokens returned by the hybrid search, we consider

the maximum number of tokens T for a single text block and l2 for a single keyword. The

total number of keywords retrieved will be sk1 + sk1 · sk2, and the total number of text blocks

will be st0 + sk1 · st1 + sk1 · sk2 · st2. Therefore, the maximum number of tokens Mtokens QA can be

calculated as:

Mtokens QA = sk1 · l2 · (1 + sk2) + T · (st0 + sk1 · st1 + sk1 · sk2 · st2). (6.3)

In practical applications, the actual number of tokens obtained through the search often

falls below the theoretical maximum. This is because there is substantial overlap between

the text blocks and keywords discovered via different search methods. Subsequently, the

retrieved information is incorporated into the prompt to enhance the LLM’s response to the

original query. For details on prompt construction, one may refer to Task 3 in Table 6.1. A

specific prompt example is provided in the Appendix. Importantly, an adaptive approach

can be employed during the prompt construction to ensure that the maximum token limit

for the LLM is not exceeded. Text blocks can be added sequentially until the token limit is

reached.

6.4 Experiments and Results

In this section, our primary goal is to demonstrate through experiments that our proposed

AutoKG approach provides significantly better responses while maintaining a comparable

efficiency, compared with the retrieval-augmented generation (RAG) method based on se-

mantic vector similarity [LPP20, LET21]. Our approach that combines AutoKG and hybrid

search extracts more valuable information for the model than RAG which relies on semantic

vector similarity search.

159

Unfortunately, we encountered challenges in identifying a suitable dataset to conduct

these experiments. We attempted to utilize the WikiWhy dataset [HSC23], which is designed

to evaluate the reasoning capability of models. The dataset comprises approximately 9,000

entries. Each entry contains a paragraph of content, spanning between 100 to 200 words.

Based on this content, every entry provides a ”why” question along with its corresponding

cause-effect relationship and explanation. When we employ the hybrid search based on

AutoKG or the semantic vector similarity search of RAG, we can easily retrieve the content

corresponding to the given question and instruct the model to answer based on that content.

In both methods, the model’s responses are almost identical. Since the 9,000 entries are

relatively independent of each other, cross-entry data retrieval provided by our method

doesn’t significantly contribute to answering the questions.

As a consequence, we adopt qualitative approaches rather than employing numerical

metrics to evaluate the experimental performance of our method. First, we provide a simple

example to explain why our AutoKG with hybrid search approach has benefits compared to

methods based on semantic vector similarity search. Next, we present a detailed example

based on all 40 references of this article and the associated subgraph from the KG used

during the query. Finally, we compare the efficiency of hybrid search and semantic vector

similarity search from both theoretical and experimental perspectives.

6.4.1 A Simple Example: Why We Need KG?

Consider a simple knowledge base that contains text blocks detailing a day in the life of

an individual named Alex, along with related information. The core narrative is that after

leaving his home in the morning, Alex goes to Cafe A to buy a coffee and then takes a bus

to Company B for work. Interspersed within the knowledge base are numerous pieces of

granular information such as conversations Alex had with the barista at the cafe, the coffee

order details, dialogues on the bus, as well as conversations at his workplace, and so forth.

The point of interest here is how a model would answer the question: “Was it raining this

160

morning when Alex left his home?” under the assumption that there is no direct answer to

this question and no content about the weather in the knowledge base. We aim to compare

the responses given the support information retrieved using our method versus that retrieved

through semantic similarity search. Within the knowledge base, there are two indirect pieces

of information hinting at the weather conditions:

1. Related to Cafe A: “Many people were chatting and drinking coffee in the square

outside Cafe A.”

2. Related to Company B: “The car wash located downstairs of Company B was bustling

with business today.”

Both these snippets subtly suggest that it was not raining.

Given that the question is primarily about Alex and the weather, the information re-

trieved from the knowledge base through semantic similarity vector search would only be

about Alex (as there is no direct information about the weather). The search results would

primarily outline his movements throughout the day. Even with an increase in search entries,

it would mostly retrieve additional miscellaneous details, like his coffee order and dialogues.

Unfortunately, these details do not contain any hints to infer the day’s weather.

On the other hand, employing AutoKG with a hybrid search approach yields different

results. During the KG generation process, we extract keywords such as Alex, Cafe A, and

Company B. With the hybrid search, the initial step uses the input question to retrieve the

keyword Alex. Then, the adjacency search identifies Cafe A and Company B as related

keywords. Subsequently, text blocks are sought based on these keywords, resulting in the

identification of implicit weather-related information. This example illustrates the utility

of the hybrid search. Semantic similarity alone can lack cross-topic connections. It tends

to retrieve many minor details within the scope of a given question. When searching with

the KG constructed using the AutoKG method, the breadth and diversity of the retrieved

161

information is enhanced. Moreover, prior work has easily substantiated GPT-4’s capability

to reason effectively with provided clues [BCL23, ASG23].

From the dialogue record with GPT-4 in the Appendix, it is evident that GPT-4 can

accurately infer that it did not rain today when given clues about today’s weather. However,

when only provided with information about Alex from the semantic similarity vector search,

it cannot make any predictions about today’s weather.

6.4.2 An Example with Article References

We present a concrete example utilizing content from the 42 references cited in this chapter.

The resulting KG is interactively queried using the hybrid search method outlined above.

Both the KG generation and subsequent querying processes were performed using the gpt-

3.5-turbo-16k model, chosen to minimize cost. The 40 references, once segmented, comprise

5,261 text blocks, each less than 201 tokens in length. For the keyword extraction process,

as per Algorithm 7, the parameters are: n = 15, c = 15, l1 = 10, l2 = 3,m = 300. For

Algorithm 8, we use the parameters n1 = 5 and n2 = 35. The entire KG construction

consumes 137,516 tokens, which is less than the theoretical maximum of 181,280 tokens

given by Eq. 6.1. This calculation of the theoretical maximum does not account for the fixed

total length of tokens pertaining to task information and additional requirement parts.

The constructed KG comprises 461 nodes (extracted keywords) with its adjacency matrix

containing 40,458 non-zero elements. The node with the highest degree in the graph is

connected to 289 neighbors. There are 353 nodes whose degree is less than 92, which is

20% of the maximum possible degree of 460. The entire process of KG construction took

approximately ten minutes. All computations, excluding calls to the OpenAI API, are carried

out on a CPU with an Intel i9-9900. Both keyword extraction and KG construction take

approximately five minutes each. For the subsequent hybrid search described in Algorithm 9,

we use the parameters (st0 = 15, sk1 = 5, st1 = 3, sk2 = 3, st2 = 2) and ensure, through an

adaptive approach, that the input prompt remains under 10,000 tokens in length. The

162

Figure 6.2: Subgraph Visualization:

Keyword Nodes

Figure 6.3: Subgraph Visualization:

Keyword and Text Block Nodes

maximum length of response is set as 1024. As an illustrative example, when querying:

“Please introduce PaLM in detail, and tell me about related applications.”, the temporary

KG structure during the hybrid search is shown in the Figures 6.2 and 6.3. Both images

represent subgraphs of the same KG, with the input query depicted in blue nodes. The image

on the left (Figure 6.2) showcases only the keyword nodes (in green), while the image on the

right (Figure 6.3) includes the additionally retrieved text blocks (in pink nodes). The edges

displayed are those connecting similar keywords directly retrieved from the query (shown

as inner circle nodes in the left figure) as well as edges connecting these similar keywords

to the keywords obtained via adjacency search (connecting the inner and outer circles in

the left figure). While there may be existing edges between the outer circle keywords, they

are omitted from the visualization for clarity. The model has a lengthy response which is

shown in the Appendix. Please check our GitHub repository 4 for those interested in further

exploration.

4https://github.com/wispcarey/AutoKG

163

https://github.com/wispcarey/AutoKG

6.4.3 Efficiency Analyzation

Given the flexibility in regulating the volume of retrieved information, both the proposed

method and the RAG approach can, in theory, support knowledge bases of any size. This

means they can encompass any number of text blocks, each subject to the maximum token

limit. As outlined in Section 6.2.3, the efficiency of the AutoKG method for automated

knowledge graph construction is ON logN) when the number of text blocks N is large.

The constructed keyword KG contains M keywords where M < N (empirically, M ≈

0.1N). During the hybrid search process, with parameters (st0, s
k
1, s

t
1, s

k
2, s

t
2), the overall time

complexity for the search is:

O(st0 + sk1 · st1 + sk1 · sk2 · st2)N) +O(sk1 + sk1 · sk2)M). (6.4)

For the semantic vector similarity search method to retrieve the same volume of text blocks,

the time complexity is:

O(st0 + sk1 · st1 + sk1 · sk2 · st2)N). (6.5)

From the above, it’s evident that the time complexity of our hybrid search approach is

the same as that of the semantic vector similarity search. For sufficiently large N , both

complexities tend towards ON).

Based on the KG generated from the 40 references of this article, as described in Sec-

tion 6.4.2, we perform a hybrid search using parameters (st0 = 15, sk1 = 5, st1 = 3, sk2 =

3, st2 = 2). The theoretical maximum number of text blocks that can be searched using this

configuration is 60. For comparison, we conduct a semantic vector similarity search for 30

text blocks. Using a query composed of 50 random characters, we carry out both the hybrid

search and semantic vector similarity search methods and record the time taken for each

(this includes the embedding computation time). After repeating the experiment 100 times,

we calculate the average time taken. The hybrid search method had an average duration of

0.0310 seconds, while the semantic vector similarity search took slightly less, with an average

164

time of 0.0305 seconds. This experiment aligns well with our theoretical analysis of the time

complexity.

6.5 Conclusion

This chapter addressed the inherent challenges faced by semantic similarity search methods

when linking LLMs to knowledge bases. Our method, AutoKG, presents a refined and

efficient strategy for automated KG construction. In comparison to traditional KGs, the

innovative architecture of AutoKG offers a lightweight and simplified version of KG, shifting

the focus from specific entities to more abstract keywords and utilizing weighted undirected

edges to represent the associations between keywords. Based on the generated KG, our

approach harnesses these capabilities by presenting the LLMs with a more interconnected

and comprehensive knowledge retrieval mechanism through the hybrid search strategy. By

doing so, we ensure that the model’s responses are not only richer in quality but also derive

insights from a more diverse set of information nodes.

We tested AutoKG with a hybrid search in experimental evaluations. Because of dataset

limitations, our tests were mostly qualitative. The outcome highlights the benefits of our

method compared to typical RAG methods with semantic similarity search. In summary,

AutoKG provides a valuable step to combine knowledge bases with LLMs. It is computa-

tionally lightweight and paves the way for more detailed interactions in LLM applications.

Moreover, our hybrid search and the semantic vector similarity search have the same order

of time complexity.

Further analysis of the AutoKG approach requires the identification or creation of an

appropriate dataset to evaluate its integration with LLMs. Wang et al. [WLR23] developed

their own dataset to evaluate a similar idea to ours. While the evaluation criteria should

resemble that of RAG, a more structurally intricate and complex dataset is desired. An-

other avenue for improvement revolves around keyword extraction. Currently, the method

165

leverages prompt engineering; however, future work could explore fine-tuning larger models

or even training specialized models to achieve enhanced results.

166

CHAPTER 7

Conclusion

This thesis has delved into various facets of graph-based learning and its applications, fo-

cusing on image analysis and extending to natural language processing. We have developed

innovative methods and pipelines that enhance performance, minimize manual labeling costs,

and broaden the applicability of these techniques across different domains.

In Chapter 3, we introduced two novel batch active learning methods, DAC for core-set

selection and LocalMax for batch sampling, and their applications in SAR image classifi-

cation and multi- and hyperspectral image segmentation. Our proposed methods exhibited

exceptional performance in both domains, achieving high accuracy with a limited amount

of labeled data while significantly improving efficiency compared to sequential active learn-

ing methods. Experimental results demonstrated that our methods outperformed state-of-

the-art SAR classification methods on the OpenSARShip and FUSAR-Ship datasets, and

achieved better overall accuracy with fewer labeled pixels in multi- and hyperspectral image

segmentation tasks. The success of our DAC and LocalMax methods in these diverse appli-

cations highlighted the versatility and effectiveness of our batch active learning approach.

Future research directions include extending these methods to other image analysis tasks

and exploring the integration of more advanced feature embedding techniques.

Chapter 4 focused on graph-based active learning for surface water and sediment detec-

tion in multispectral images. We developed GAP and CGAP pipelines that significantly

reduced manual labeling costs and improved the accuracy of water and sediment detection.

The contrastive learning approach employed in CGAP offered robustness to different reso-

167

lutions, cloud coverage, and geometric transformations while also improving the efficiency

of subsequent steps. Experiments showed that our methods surpassed the performance of

CNN neural networks trained with 2.1 million pixels and outperformed SVM and RF models

trained with larger datasets, using only around 3000 training vectors. We also provided a

Python-based tool, GlobalRiverPIXELS, to detect surface water and sediment globally using

our B-CGAP method. Future work could focus on enhancing the capability of models in

classifying urban information and extending the models to more datasets.

In Chapter 5, we proposed two semi-supervised hyperspectral models, graph learning

unmixing (GLU) and graph-regularized semi-supervised unmixing (GRSU), for nearly blind

hyperspectral unmixing. Our methods demonstrated significant improvement with minimal

supervision and the ability to work with either ground-truth abundance maps or one-hot

pseudo labels. Extensive experiments using four standard hyperspectral datasets showed that

our methods outperformed five state-of-the-art methods in blind hyperspectral unmixing.

The proposed methods showed great potential for real-world problems, as they do not require

a ground truth abundance map and can work with pseudo-labels instead. Future research

could explore incorporating scaling factor and spectral variability terms into the models and

replacing the current graph Laplacian learning solver with neural networks or graph neural

network techniques.

Finally, Chapter 6 introduced AutoKG, an efficient method for automated knowledge

graph (KG) generation for large language models (LLMs). This is not an application of

image analysis but serves as an extended approach to graph learning. AutoKG provided

a lightweight and simplified version of KG, focusing on abstract keywords and utilizing

weighted undirected edges to represent associations between keywords. We also presented a

hybrid search strategy that ensured the model’s responses were richer in quality and derived

insights from a more diverse set of information nodes. Experimental evaluations highlighted

the benefits of our method compared to typical retrieval-augmented generation (RAG) meth-

ods with semantic similarity search. Future work could focus on identifying or creating an

168

appropriate dataset to evaluate the integration of AutoKG with LLMs and exploring fine-

tuning or training specialized models for keyword extraction.

In conclusion, this thesis has made significant contributions to graph-based learning and

its applications. The novel methods and pipelines developed throughout the chapters have

demonstrated their potential to improve performance, reduce manual labeling costs, and

expand the applicability of these techniques across various domains. As graph-based learning

continues to evolve and find new applications, the work presented in this thesis provides a

solid foundation for further advancements in the field. By leveraging the strengths of graph-

based methods, active learning, and efficient batch selection, we have developed powerful

frameworks for semi-supervised learning in image analysis and natural language processing

tasks. These advancements contribute to reducing the reliance on large amounts of labeled

data while still achieving high-quality results, paving the way for more efficient and effective

learning in various real-world applications.

169

REFERENCES

[Abu21] Bilal Abu-Salih. “Domain-specific knowledge graphs: A survey.” Journal of
Network and Computer Applications, 185:103076, 2021.

[AD] AFRL and DARPA. “Moving and Stationary Target Acquisition and
Recognition (MSTAR) dataset.” https://www.sdms.afrl.af.mil/index.php?

collection=mstar.

[AMN98] Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and An-
gela Y Wu. “An optimal algorithm for approximate nearest neighbor searching
fixed dimensions.” Journal of the ACM, 45(6):891–923, 1998.

[AMZ18] Julia M Arnold, Linda J Moore, and Edmund G Zelnio. “Blending synthetic
and measured data using transfer learning for synthetic aperture radar (SAR)
target classification.” In Algorithms for Synthetic Aperture Radar Imagery XXV,
volume 10647, pp. 48–57. SPIE, 2018.

[ASG23] Mayank Agarwal, Priyanka Sharma, and Ayan Goswami. “Analysing the appli-
cability of ChatGPT, Bard, and Bing to generate reasoning-based multiple-choice
questions in medical physiology.” Cureus, 15(6), 2023.

[ASP13] Konstantinos M Andreadis, Guy J-P Schumann, and Tamlin Pavelsky. “A simple
global river bankfull width and depth database.” Water Resources Research,
49(10):7164–7168, 2013.

[AYK21] Akari Asai, Xinyan Yu, Jungo Kasai, and Hanna Hajishirzi. “One question
answering model for many languages with cross-lingual dense passage retrieval.”
Advances in Neural Information Processing Systems, 34:7547–7560, 2021.

[AZK20] Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and
Alekh Agarwal. “Deep batch active learning by diverse, uncertain gradient lower
bounds.” In International Conference on Learning Representations, 2020.

[BBT18] Zachary M. Boyd, Egil Bae, Xue-Cheng Tai, and Andrea L. Bertozzi. “Simplified
energy landscape for modularity using total variation.” SIAM Journal on Applied
Mathematics, 78(5):2439–2464, 2018.

[BCH23] Jason Brown, Bohan Chen, Harris Hardiman-Mostow, Adrien Weihs, Andrea L
Bertozzi, and Jocelyn Chanussot. “Material identification in complex environ-
ments: Neural network approaches to hyperspectral image analysis.” In 2023
13th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in
Remote Sensing (WHISPERS), pp. 1–5. IEEE, 2023.

170

https://www.sdms.afrl.af.mil/index.php?collection=mstar
https://www.sdms.afrl.af.mil/index.php?collection=mstar

[BCL23] Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan
Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan
Xu, and Pascale Fung. “A multitask, multilingual, multimodal evaluation of
ChatGPT on reasoning, hallucination, and interactivity.” In Proceedings of the
13th International Joint Conference on Natural Language Processing and the 3rd
Conference of the Asia-Pacific Chapter of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 675–718, Nusa Dua, Bali, November
2023. Association for Computational Linguistics.

[BCM05] Antoni Buades, Bartomeu Coll, and J-M Morel. “A non-local algorithm for
image denoising.” In 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), volume 2, pp. 60–65. IEEE, 2005.

[BEV07] Xavier Bresson, Selim Esedoḡlu, Pierre Vandergheynst, Jean-Philippe Thiran,
and Stanley Osher. “Fast global minimization of the active contour/snake
model.” Journal of Mathematical Imaging and Vision, 28(2):151–167, 2007.

[BF12] Andrea L Bertozzi and Arjuna Flenner. “Diffuse interface models on graphs
for classification of high dimensional data.” Multiscale Modeling & Simulation,
10(3):1090–1118, 2012.

[BHL21] Andrea L Bertozzi, Bamdad Hosseini, Hao Li, Kevin Miller, and Andrew M
Stuart. “Posterior consistency of semi-supervised regression on graphs.” Inverse
Problems, 37(10):105011, 2021.

[BJ20] Jignesh S Bhatt and Manjunath V Joshi. “Deep learning in hyperspectral un-
mixing: A review.” In IEEE International Geoscience and Remote Sensing Sym-
posium, pp. 2189–2192. IEEE, 2020.

[Bje07] David M Bjerklie. “Estimating the bankfull velocity and discharge for rivers
using remotely sensed river morphology information.” Journal of Hydrology,
341(3-4):144–155, 2007.

[BKB16] K. Benzi, V. Kalofolias, X. Bresson, and P. Vandergheynst. “Song recommen-
dation with non-negative matrix factorization and graph total variation.” In
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 2439–2443, 2016.

[BKS21] Monika Bansal, Munish Kumar, Monika Sachdeva, and Ajay Mittal. “Transfer
learning for image classification using VGG19: Caltech-101 image data set.”
Journal of Ambient Intelligence and Humanized Computing, pp. 1–12, 2021.

[BLR04] Avrim Blum, John Lafferty, Mugizi Robert Rwebangira, and Rajashekar Reddy.
“Semi-supervised learning using randomized mincuts.” In Proceedings of the
Twenty-First International Conference on Machine Learning, p. 13, 2004.

171

[BLS18] Andrea L Bertozzi, Xiyang Luo, Andrew M Stuart, and Konstantinos C Zy-
galakis. “Uncertainty quantification in the classification of high dimensional
data.” SIAM/ASA Journal Uncertainty Quantification, 6(2):568–595, 2018.

[BM19] Andrea L Bertozzi and Ekaterina Merkurjev. “Graph-based optimization ap-
proaches for machine learning, uncertainty quantification and networks.” In
Handbook of Numerical Analysis, volume 20, pp. 503–531. Elsevier, 2019.

[BNA13] Paul D Bates, Jefferey C Neal, Douglas Alsdorf, and Guy J-P Schumann. “Ob-
serving global surface water flood dynamics.” The Earth’S Hydrological Cycle,
pp. 839–852, 2013.

[BOC23] Jason Brown, Riley O’Neill, Jeff Calder, and Andrea L Bertozzi. “Utilizing
contrastive learning for graph-based active learning of SAR data.” In Algorithms
for Synthetic Aperture Radar Imagery XXX, volume 12520, pp. 181–195. SPIE,
2023.

[BPB20] Zachary M. Boyd, Mason A. Porter, and Andrea L. Bertozzi. “Stochastic block
models are a discrete surface tension.” Journal of Nonlinear Science, 30(5):2429–
2462, 2020.

[BPC13] José M Bioucas-Dias, Antonio Plaza, Gustavo Camps-Valls, Paul Scheunders,
Nasser Nasrabadi, and Jocelyn Chanussot. “Hyperspectral remote sensing data
analysis and future challenges.” IEEE Geoscience and Remote Sensing Magazine,
1(2):6–36, 2013.

[BPD12] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and
J. Chanussot. “Hyperspectral unmixing overview: Geometrical, statistical, and
sparse regression-based approaches.” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 5(2):354–379, 2012.

[Cal18] Jeff Calder. “The game theoretic p-Laplacian and semi-supervised learning with
few labels.” Nonlinearity, 32(1):301, 2018.

[Cal19] Jeff Calder. “Consistency of Lipschitz learning with infinite unlabeled data and
finite labeled data.” SIAM Journal on Mathematics of Data Science, 1(4):780–
812, 2019.

[Cal22] Jeff Calder. “GraphLearning Python Package.”, January 2022.

[CB23] Bohan Chen and Andrea L Bertozzi. “AutoKG: Efficient automated knowledge
graph generation for language models.” In 2023 IEEE International Conference
on Big Data (BigData), pp. 3117–3126. IEEE, 2023.

172

[CBC14] A Ciurte, X Bresson, O Cuisenaire, N Houhou, S Nedevschi, J-P Thiran, and
Meritxell Bach Cuadra. “Semi-Supervised segmentation of ultrasound images
based on patch representation and continuous min cut.” PLoS ONE, 9(7), 2014.

[CCT20] Jeff Calder, Brendan Cook, Matthew Thorpe, and Dejan Slepcev. “Poisson learn-
ing: Graph based semi-supervised learning at very low label rates.” In Interna-
tional Conference on Machine Learning, pp. 1306–1316. PMLR, 2020.

[CCT23] James Chapman, Bohan Chen, Zheng Tan, Jeff Calder, Kevin Miller, and An-
drea L Bertozzi. “Novel batch active learning approach and its application on the
synthetic aperture radar datasets.” In Algorithms for Synthetic Aperture Radar
Imagery XXX, volume 12520, pp. 96–111. SPIE, 2023.

[CH16] Gong Cheng and Junwei Han. “A survey on object detection in optical re-
mote sensing images.” ISPRS Journal of Photogrammetry and Remote Sensing,
117:11–28, 2016.

[CK13] Yuxin Chen and Andreas Krause. “Near-optimal Batch Mode Active Learn-
ing and Adaptive Submodular Optimization.” In Sanjoy Dasgupta and David
McAllester, editors, Proceedings of the 30th International Conference on Ma-
chine Learning, Proceedings of Machine Learning Research, pp. 160–168, Atlanta,
Georgia, USA, 17–19 Jun 2013. PMLR.

[CKN20] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. “A
simple framework for contrastive learning of visual representations.” In Interna-
tional conference on machine learning, pp. 1597–1607. PMLR, 2020.

[CKS20] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geof-
frey E Hinton. “Big self-supervised models are strong semi-supervised learners.”
Advances in neural information processing systems, 33:22243–22255, 2020.

[CLB23] Bohan Chen, Yifei Lou, Andrea L. Bertozzi, and Jocelyn Chanussot. “Graph-
based active learning for nearly blind hyperspectral unmixing.” IEEE Transac-
tions on Geoscience and Remote Sensing, 61:1–16, 2023.

[CMB23a] Bohan Chen, Kevin Miller, Andrea L Bertozzi, and Jon Schwenk. “Batch active
learning for multispectral and hyperspectral image segmentation using similarity
graphs.” Communications on Applied Mathematics and Computation, pp. 1–21,
2023.

[CMB23b] Bohan Chen, Kevin Miller, Andrea L. Bertozzi, and Jon Schwenk. “Graph-
based active learning for surface water and sediment detection in multispectral
images.” In IGARSS 2023 - 2023 IEEE International Geoscience and Remote
Sensing Symposium, pp. 5431–5434, 2023.

173

[CMB24] Bohan Chen, Kevin Miller, Andrea L. Bertozzi, and Jon Schwenk. “CGAP: A
hybrid contrastive and graph-based active learning pipeline to detect water and
sediment in multispectral images.” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 2024. Submitted.

[CND23] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. “Palm: Scaling language modeling with pathways.”
Journal of Machine Learning Research, 24(240):1–113, 2023.

[CRS21] Sarah W Cooley, Jonathan C Ryan, and Laurence C Smith. “Human alteration
of global surface water storage variability.” Nature, 591(7848):78–81, 2021.

[CS20] Jeff Calder and Dejan Slepčev. “Properly-weighted graph Laplacian for semi-
supervised learning.” Applied Mathematics & Optimization, 82:1111–1159, 2020.

[CSK21] Tan Chen, Chunqiao Song, Linghong Ke, Jida Wang, Kai Liu, and Qianhan Wu.
“Estimating seasonal water budgets in global lakes by using multi-source remote
sensing measurements.” Journal of Hydrology, 593:125781, 2021.

[CTB13] Gustavo Camps-Valls, Devis Tuia, Lorenzo Bruzzone, and Jon Atli Benedikts-
son. “Advances in hyperspectral image classification: Earth monitoring with
statistical learning methods.” IEEE Signal Processing Magazine, 31(1):45–54,
2013.

[CV95] Corinna Cortes and Vladimir Vapnik. “Support-vector networks.” Machine
Learning, 20(3):273–297, 1995.

[CV01] Tony F Chan and Luminita A Vese. “Active contours without edges.” IEEE
Transactions on Image Processing, 10(2):266–277, 2001.

[CYX20] Xiangyong Cao, Jing Yao, Zongben Xu, and Deyu Meng. “Hyperspectral im-
age classification with convolutional neural network and active learning.” IEEE
Transactions on Geoscience and Remote Sensing, 58(7):4604–4616, 2020.

[CZC17] HongYun Cai, Vincent Wenchen Zheng, and Kevin Chen-Chuan Chang. “Ac-
tive Learning for Graph Embedding.” Computing Research Repository (CoRR),
abs/1705.05085, 2017.

[CZP09] A. Cichocki, R. Zdunek, A. H. Phan, and S. I. Amari. Nonnegative matrix and
tensor factorizations: Applications to exploratory multi-way data analysis and
blind source separation. John Wiley & Sons, 2009.

[Das11] Sanjoy Dasgupta. “Two faces of active learning.” Theoretical Computer Science,
412(19):1767–1781, 2011.

174

[DB21] Vijay S Deshpande, Jignesh S Bhatt, et al. “A practical approach for hyper-
spectral unmixing using deep learning.” IEEE Geoscience and Remote Sensing
Letters, 19:1–5, 2021.

[DCL18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “Bert:
Pre-training of deep bidirectional transformers for language understanding.”
ArXiv Preprint ArXiv, 2018.

[DCS17] Ashraf Dewan, Robert Corner, Ashty Saleem, Md Masudur Rahman, Md Rafiqul
Haider, Md Mostafizur Rahman, and Maminul H Sarker. “Assessing channel
changes of the Ganges-Padma River system in Bangladesh using Landsat and
hydrological data.” Geomorphology, 276:257–279, 2017.

[Dij59] E. W. Dijkstra. “A note on two problems in connexion with graphs.” Numerische
Mathematik, 1(1):269–271, dec 1959.

[DMC19] Lucas Drumetz, Travis R Meyer, Jocelyn Chanussot, Andrea L Bertozzi, and
Christian Jutten. “Hyperspectral image unmixing with endmember bundles and
group sparsity inducing mixed norms.” IEEE Trans Image Process, 28(7):3435–
3450, 2019.

[DVH16] Lucas Drumetz, Miguel-Angel Veganzones, Simon Henrot, Ronald Phlypo, Joce-
lyn Chanussot, and Christian Jutten. “Blind hyperspectral unmixing using an
extended linear mixing model to address spectral variability.” IEEE Transactions
on Image Processing, 25(8):3890–3905, 2016.

[EB92] Jonathan Eckstein and Dimitri P Bertsekas. “On the Douglas—Rachford split-
ting method and the proximal point algorithm for maximal monotone operators.”
Mathematical Programming, 55:293–318, 1992.

[ECR16] Ahmed El Alaoui, Xiang Cheng, Aaditya Ramdas, Martin J Wainwright, and
Michael I Jordan. “Asymptotic behavior of ℓp-based Laplacian regularization
in semi-supervised learning.” In Conference on Learning Theory, pp. 879–906.
PMLR, 2016.

[EH90] Alan Egger and Robert Huotari. “Rate of convergence of the discrete Pólya
algorithm.” Journal of Approximation Theory, 60(1):24–30, 1990.

[Eva22] Lawrence C Evans. Partial differential equations, volume 19. American Mathe-
matical Society, 2022.

[FBC04] Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik. “Spectral
grouping using the Nystrom method.” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(2):214–225, 2004.

175

[FCL22] Mauricio Flores, Jeff Calder, and Gilad Lerman. “Analysis and algorithms for
ℓp-based semi-supervised learning on graphs.” Applied and Computational Har-
monic Analysis, 60:77–122, 2022.

[FLW22] Xin-Ru Feng, Heng-Chao Li, Rui Wang, Qian Du, Xiuping Jia, and Antonio
Plaza. “Hyperspectral unmixing based on nonnegative matrix factorization: A
comprehensive review.” IEEE Journal of Selected Topics in Applied Earth Ob-
servations and Remote Sensing, 15:4414–4436, 2022.

[Gao96] Bo-Cai Gao. “NDWI—A normalized difference water index for remote sensing of
vegetation liquid water from space.” Remote Sensing of Environment, 58(3):257–
266, 1996.

[GB10] Andrew Guillory and Jeff Bilmes. “Interactive submodular set cover.” In Pro-
ceedings of the 27th International Conference on International Conference on
Machine Learning, ICML’10, p. 415–422, Madison, WI, USA, 2010. Omnipress.

[GIG17] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. “Deep Bayesian active learn-
ing with image data.” In Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, p. 1183–1192. JMLR.org, 2017.

[GMB14] Cristina Garcia-Cardona, Ekaterina Merkurjev, Andrea L. Bertozzi, Arjuna Flen-
ner, and Allon G. Percus. “Multiclass data segmentation using diffuse interface
methods on graphs.” IEEE Transactions on Pattern Analysis and Machine In-
telligence, 36(8):1600–1613, 2014.

[GO09] Guy Gilboa and Stanley Osher. “Nonlocal operators with applications to image
processing.” Multiscale Modeling & Simulation, 7(3):1005–1028, 2009.

[Gon09] Rafael C Gonzalez. Digital image processing. Pearson education india, 2009.

[GS96] Ralph Grishman and Beth M Sundheim. “Message understanding conference-6:
A brief history.” In COLING 1996 Volume 1: The 16th International Conference
on Computational Linguistics, 1996.

[Has] Mahdi Hasanlou. “Remote Sensing Datasets.” https://rslab.ut.ac.ir/data.
Accessed: 2023-3-10.

[HAS20] Xiyue Hou, Wei Ao, Qian Song, Jian Lai, Haipeng Wang, and Feng Xu.
“FUSAR-Ship: Building a high-resolution SAR-AIS matchup dataset of Gaofen-
3 for ship detection and recognition.” Science China Information Sciences,
63(4):1–19, 2020.

[Hay98] Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall
PTR, 1998.

176

https://rslab.ut.ac.ir/data

[Hei01] Daniel C Heinz et al. “Fully constrained least squares linear spectral mixture
analysis method for material quantification in hyperspectral imagery.” IEEE
Transactions on Geoscience and Remote Sensing, 39(3):529–545, 2001.

[HGY21] Danfeng Hong, Lianru Gao, Jing Yao, Naoto Yokoya, Jocelyn Chanussot, Uta
Heiden, and Bing Zhang. “Endmember-guided unmixing network (EGU-Net):
A general deep learning framework for self-supervised hyperspectral unmixing.”
IEEE Transactions on Neural Networks and Learning Systems, 33(11):6518–
6531, 2021.

[HHG22] Zhu Han, Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, and Jocelyn
Chanussot. “Multimodal hyperspectral unmixing: Insights from attention net-
works.” IEEE Transactions on Geoscience and Remote Sensing, 60:1–13, 2022.

[HLL17] Lanqing Huang, Bin Liu, Boying Li, Weiwei Guo, Wenhao Yu, Zenghui Zhang,
and Wenxian Yu. “OpenSARShip: A dataset dedicated to Sentinel-1 ship inter-
pretation.” IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 11(1):195–208, 2017.

[HLP13] Huiyi Hu, Thomas Laurent, Mason A. Porter, and Andrea L. Bertozzi. “A
Method based on total variation for network modularity optimization using the
MBO scheme.” SIAM Journal on Applied Mathematics, 73(6):2224–2246, 2013.

[Ho95] Tin Kam Ho. “Random decision forests.” In Proceedings of 3rd International
Conference on Document Analysis and Recognition, volume 1, pp. 278–282. IEEE,
1995.

[HPG14] R. Heylen, M. Parente, and P. Gader. “A review of nonlinear hyperspectral
unmixing methods.” Remote Sensing, 7(6):1844–1868, 2014.

[HSB15] Huiyi Hu, Justin Sunu, and Andrea L Bertozzi. “Multi-class graph Mumford-
Shah model for plume detection using the MBO scheme.” In International Work-
shop on Energy Minimization Methods in Computer Vision and Pattern Recog-
nition, pp. 209–222. Springer, 2015.

[HSC23] Matthew Ho, Aditya Sharma, Justin Chang, Michael Saxon, Sharon Levy, Yujie
Lu, and William Yang Wang. “WikiWhy: Answering and explaining cause-
and-effect questions.” In The Eleventh International Conference on Learning
Representations, 2023.

[HWW20] Luyang Huang, Lingfei Wu, and Lu Wang. “Knowledge graph-augmented ab-
stractive summarization with semantic-driven cloze reward.” In Dan Jurafsky,
Joyce Chai, Natalie Schluter, and Joel Tetreault, editors, Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 5094–5107,
Online, July 2020. Association for Computational Linguistics.

177

[HYC19a] Danfeng Hong, Naoto Yokoya, Jocelyn Chanussot, Jian Xu, and Xiao Xiang
Zhu. “Learning to propagate labels on graphs: An iterative multitask regression
framework for semi-supervised hyperspectral dimensionality reduction.” ISPRS
Journal of Photogrammetry and Remote Sensing, 158:35–49, 2019.

[HYC19b] Danfeng Hong, Naoto Yokoya, Jocelyn Chanussot, and Xiao Xiang Zhu. “An
augmented linear mixing model to address spectral variability for hyperspectral
unmixing.” IEEE Transactions on Image Processing, 28(4):1923–1938, 2019.

[HYG19] Danfeng Hong, Naoto Yokoya, Nan Ge, Jocelyn Chanussot, and Xiao Xiang
Zhu. “Learnable manifold alignment (LeMA): A semi-supervised cross-modality
learning framework for land cover and land use classification.” ISPRS Journal
of Photogrammetry and Remote Sensing, 147:193–205, 2019.

[HZR16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learn-
ing for image recognition.” In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 770–778, 2016.

[HZR22] Hangfeng He, Hongming Zhang, and Dan Roth. “Rethinking with retrieval:
Faithful large language model inference.” ArXiv Preprint ArXiv, 2022.

[HZZ16] W. He, H. Zhang, and L. Zhang. “Sparsity-regularized robust non-negative ma-
trix factorization for hyperspectral unmixing.” IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, 9(9):4267–4279, 2016.

[HZZ17] W. He, H. Zhang, and L. Zhang. “Total variation regularized reweighted sparse
nonnegative matrix factorization for hyperspectral unmixing.” IEEE Transac-
tions on Geoscience and Remote Sensing, 55(7):3909–3921, 2017.

[IBP11] M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza. “Sparse unmixing of hy-
perspectral data.” IEEE Transactions on Geoscience and Remote Sensing,
49(6):2014–2039, 2011.

[IBP12] M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza. “Total variation spatial regu-
larization for sparse hyperspectral unmixing.” IEEE Transactions on Geoscience
and Remote Sensing, 50(11):4484–4502, 2012.

[IBP19] Leo F Isikdogan, Alan Bovik, and Paola Passalacqua. “Seeing through the
clouds with deepwatermap.” IEEE Geoscience and Remote Sensing Letters,
17(10):1662–1666, 2019.

[ICB21] Geoffrey Iyer, Jocelyn Chanussot, and Andrea L. Bertozzi. “A Graph-Based
approach for data fusion and segmentation of multimodal images.” IEEE Trans-
actions on Geoscience and Remote Sensing, 59(5):4419–4429, May 2021.

178

[IID21] Nathan Inkawhich, Matthew J Inkawhich, Eric K Davis, Uttam K Majumder,
Erin Tripp, Chris Capraro, and Yiran Chen. “Bridging a gap in SAR-ATR:
Training on fully synthetic and testing on measured data.” IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing, 14:2942–
2955, 2021.

[JH12] Ming Ji and Jiawei Han. “A variance minimization criterion to active learning
on graphs.” In Artificial Intelligence and Statistics, pp. 556–564. PMLR, 2012.

[JLF23] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii,
Ye Jin Bang, Andrea Madotto, and Pascale Fung. “Survey of hallucination in
natural language generation.” ACM Computing Surveys, 55(12):1–38, 2023.

[JMG22] Hamid Jafarzadeh, Masoud Mahdianpari, and Eric Gill. “Wet-GC: A novel
multi-model graph convolutional approach for wetland classification using
Sentinel-1 and 2 imagery with limited training samples.” IEEE Journal of Se-
lected Topics in Applied Earth Observations and Remote Sensing, 2022.

[Jon19] John W Jones. “Improved automated detection of subpixel-scale inunda-
tion—Revised dynamic surface water extent (DSWE) partial surface water tests.”
Remote Sensing, 11(4):374, 2019.

[JPC21] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip.
“A survey on knowledge graphs: Representation, acquisition, and applications.”
IEEE Transactions on Neural Networks and Learning Systems, 33(2):494–514,
2021.

[JZL19] Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo. “Semi-supervised
learning with graph learning-convolutional networks.” In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11313–
11320, 2019.

[KLS17] Nataliia Kussul, Mykola Lavreniuk, Sergii Skakun, and Andrii Shelestov. “Deep
learning classification of land cover and crop types using remote sensing data.”
IEEE Geoscience and Remote Sensing Letters, 14(5):778–782, 2017.

[KPR21] Vidya Kandekar, Chaitanya Pande, Jayaraman Rajesh, AA Atre, SD Goranti-
war, SA Kadam, Bhau Gavit, et al. “Surface water dynamics analysis based on
sentinel imagery and Google Earth Engine Platform: a case study of Jayakwadi
dam.” Sustainable Water Resources Management, 7(3):1–11, 2021.

[KRS15] Rasmus Kyng, Anup Rao, Sushant Sachdeva, and Daniel A Spielman. “Algo-
rithms for Lipschitz learning on graphs.” In Conference on Learning Theory, pp.
1190–1223. PMLR, 2015.

179

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifica-
tion with deep convolutional neural networks.” Advances in Neural Information
Processing Systems, 25, 2012.

[KTW20] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian,
Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. “Supervised con-
trastive learning.” Advances in neural information processing systems, 33:18661–
18673, 2020.

[KW13] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes.” ArXiv
Preprint ArXiv, 2013.

[KW17] Thomas N. Kipf and Max Welling. “Semi-supervised classification with graph
convolutional networks.” In International Conference on Learning Representa-
tions, 2017.

[KWT88] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. “Snakes: Active con-
tour models.” International Journal of Computer Vision, 1(4):321–331, 1988.

[LBD89] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. “Backpropagation applied to
handwritten zip code recognition.” Neural Computation, 1(4):541–551, 1989.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning.” Nature,
521(7553):436–444, 2015.

[LBP10] Jun Li, José M. Bioucas-Dias, and Antonio Plaza. “Semisupervised hyperspectral
image segmentation using multinomial logistic regression with active learning.”
IEEE Transactions on Geoscience and Remote Sensing, 48(11):4085–4098, 2010.

[LET21] Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins. “Sparse,
dense, and attentional representations for text retrieval.” Transactions of the
Association for Computational Linguistics, 9:329–345, 2021.

[LLH23] Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. “Normalizing
flow-based neural process for few-shot knowledge graph completion.” In Proceed-
ings of the 46th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR ’23, p. 900–910, New York, NY, USA,
2023. Association for Computing Machinery.

[Llo82] Stuart Lloyd. “Least squares quantization in PCM.” IEEE Transactions on
Information Theory, 28(2):129–137, 1982.

[LOG19] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. “Roberta: A
robustly optimized Bert pretraining approach.” ArXiv Preprint ArXiv, 2019.

180

[LPA20] Peirong Lin, Ming Pan, George H Allen, Renato Prata de Frasson, Zhenzhong
Zeng, Dai Yamazaki, and Eric F Wood. “Global estimates of reach-level bank-
full river width leveraging big data geospatial analysis.” Geophysical Research
Letters, 47(7):e2019GL086405, 2020.

[LPP20] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim
Rocktäschel, et al. “Retrieval-augmented generation for knowledge-intensive nlp
tasks.” Advances in Neural Information Processing Systems, 33:9459–9474, 2020.

[LS99] D. D. Lee and H. S. Seung. “Learning the parts of objects by non-negative matrix
factorization.” Nature, 401(6755):788, 1999.

[LSF19] Shutao Li, Weiwei Song, Leyuan Fang, Yushi Chen, Pedram Ghamisi, and
Jon Atli Benediktsson. “Deep learning for hyperspectral image classification: An
overview.” IEEE Transactions on Geoscience and Remote Sensing, 57(9):6690–
6709, 2019.

[LSS19] Benjamin Lewis, Theresa Scarnati, Elizabeth Sudkamp, John Nehrbass, Stephen
Rosencrantz, and Edmund Zelnio. “A SAR dataset for ATR development: the
Synthetic and Measured Paired Labeled Experiment (SAMPLE).” In Algorithms
for Synthetic Aperture Radar Imagery XXVI, volume 10987, pp. 39–54. SPIE,
2019.

[LWW11] Yunmei Li, Qiao Wang, Chuanqing Wu, Shaohua Zhao, Xing Xu, Yanfei
Wang, and Changchun Huang. “Estimation of chlorophyll a concentration using
NIR/red bands of MERIS and classification procedure in inland turbid water.”
IEEE Transactions on Geoscience and Remote Sensing, 50(3):988–997, 2011.

[LWY12] Xiaoqiang Lu, Hao Wu, Yuan Yuan, Pingkun Yan, and Xuelong Li. “Manifold
regularized sparse NMF for hyperspectral unmixing.” IEEE Transactions on
Geoscience and Remote Sensing, 51(5):2815–2826, 2012.

[LZG19] M. Li, F. Zhu, A. J. X. Guo, and J. Chen. “A graph regularized multilinear mix-
ing model for nonlinear hyperspectral unmixing.” Remote Sensing, 11(19):2188,
2019.

[Mac67] James MacQueen et al. “Some methods for classification and analysis of multi-
variate observations.” In Proceedings of the Fifth Berkeley Symposium on Math-
ematical Statistics and Probability, volume 1, pp. 281–297. Oakland, CA, USA,
1967.

[MB24] Kevin S Miller and Andrea L Bertozzi. “Model change active learning in graph-
based semi-supervised learning.” Communications on Applied Mathematics and
Computation, pp. 1–29, 2024.

181

[MBS09] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. “Distant supervision
for relation extraction without labeled data.” In Proceedings of the Joint Con-
ference of the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP, pp. 1003–1011, 2009.

[MC23] Kevin Miller and Jeff Calder. “Poisson reweighted Laplacian uncertainty sam-
pling for graph-based active learning.” SIAM Journal on Mathematics of Data
Science, 5(4):1160–1190, 2023.

[McF96] Stuart K McFeeters. “The use of the Normalized Difference Water Index (NDWI)
in the delineation of open water features.” International Journal of Remote
Sensing, 17(7):1425–1432, 1996.

[MCH18] Tom Mitchell, William Cohen, Estevam Hruschka, Partha Talukdar, Bishan
Yang, Justin Betteridge, Andrew Carlson, Bhavana Dalvi, Matt Gardner, Bryan
Kisiel, et al. “Never-ending learning.” Communications of the ACM, 61(5):103–
115, 2018.

[MDL23] Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christoforos Nalmpantis, Ra-
makanth Pasunuru, Roberta Raileanu, Baptiste Roziere, Timo Schick, Jane
Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave, Yann LeCun, and Thomas
Scialom. “Augmented Language Models: A Survey.” Transactions on Machine
Learning Research, 2023. Survey Certification.

[Mer94] Russell Merris. “Laplacian matrices of graphs: A survey.” Linear Algebra and
its Applications, 197:143–176, 1994.

[MGB14] Ekaterina Merkurjev, Cristina Garcia-Cardona, Andrea L Bertozzi, Arjuna Flen-
ner, and Allon G Percus. “Diffuse interface methods for multiclass segmentation
of high-dimensional data.” Applied Mathematics Letters, 33:29–34, 2014.

[MH08] Laurens Van der Maaten and Geoffrey Hinton. “Visualizing data using t-SNE.”
Journal of Machine Learning Research, 9(11), 2008.

[MHS15] Yifei Ma, Tzu-Kuo Huang, and Jeff G Schneider. “Active Search and Bandits
on Graphs using Sigma-Optimality.” In Proceedings of 31st Conference on Un-
certainty in Artificial Intelligence (UAI ’15), volume 542, p. 551, 2015.

[MHS18] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. “UMAP:
Uniform Manifold Approximation and Projection.” Journal of Open Source Soft-
ware, 3(29):861, 2018.

[MKB13] Ekaterina Merkurjev, Tijana Kostic, and Andrea L Bertozzi. “An MBO scheme
on graphs for classification and image processing.” SIAM Journal on Imaging
Sciences, 6(4):1903–1930, 2013.

182

[MKS13] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. “Dis-
tributed submodular maximization: Identifying representative elements in mas-
sive data.” Advances in Neural Information Processing Systems, 26, 2013.

[MLB20] Kevin Miller, Hao Li, and Andrea L. Bertozzi. “Efficient graph-based active
learning with probit likelihood via Gaussian approximations.” Computing Re-
search Repository (CoRR), abs/2007.11126, 2020.

[MLZ19] Lei Ma, Yu Liu, Xueliang Zhang, Yuanxin Ye, Gaofei Yin, and Brian Alan John-
son. “Deep learning in remote sensing applications: A meta-analysis and review.”
ISPRS Journal of Photogrammetry and Remote Sensing, 152:166–177, 2019.

[MM19] James M. Murphy and Mauro Maggioni. “Unsupervised clustering and active
learning of hyperspectral images with nonlinear diffusion.” IEEE Transactions
on Geoscience and Remote Sensing, 57(3):1829–1845, 2019.

[MMK17] Zhaoyi Meng, Ekaterina Merkurjev, Alice Koniges, and Andrea L Bertozzi. “Hy-
perspectral image classification using graph clustering methods.” Image Process-
ing On Line, 7:218–245, 2017.

[MMS22] Kevin Miller, Jack Mauro, Jason Setiadi, Xoaquin Baca, Zhan Shi, Jeff Calder,
and Andrea L Bertozzi. “Graph-based active learning for semi-supervised clas-
sification of SAR data.” In Algorithms for Synthetic Aperture Radar Imagery
XXIX, volume 12095, pp. 126–139. SPIE, 2022.

[MS89] David Bryant Mumford and Jayant Shah. “Optimal approximations by piece-
wise smooth functions and associated variational problems.” Communications
on Pure and Applied Mathematics, 1989.

[MSB14] Ekaterina Merkurjev, Justin Sunu, and Andrea L Bertozzi. “Graph MBO method
for multiclass segmentation of hyperspectral stand-off detection video.” In 2014
IEEE International Conference on Image Processing (ICIP), pp. 689–693. IEEE,
2014.

[MSP20] Isaiah Onando Mulang’, Kuldeep Singh, Chaitali Prabhu, Abhishek Nadgeri,
Johannes Hoffart, and Jens Lehmann. “Evaluating the impact of knowledge
graph context on entity disambiguation models.” In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, CIKM ’20,
p. 2157–2160, New York, NY, USA, 2020. Association for Computing Machinery.

[Mul13] David J Mulla. “Twenty five years of remote sensing in precision agriculture: Key
advances and remaining knowledge gaps.” Biosystems Engineering, 114(4):358–
371, 2013.

183

[MWV12] Freek D Van der Meer, Harald MA Van der Werff, Frank JA Van Ruitenbeek,
Chris A Hecker, Wim H Bakker, Marleen F Noomen, Mark Van Der Meijde,
E John M Carranza, J Boudewijn De Smeth, and Tsehaie Woldai. “Multi-
and hyperspectral geologic remote sensing: A review.” International Journal of
Applied Earth Observation and Geoinformation, 14(1):112–128, 2012.

[ND05] José MP Nascimento and José MB Dias. “Vertex component analysis: A fast
algorithm to unmix hyperspectral data.” IEEE Transactions on Geoscience and
Remote Sensing, 43(4):898–910, 2005.

[New03] Mark EJ Newman. “The structure and function of complex networks.” SIAM
Review, 45(2):167–256, 2003.

[NJW01] Andrew Ng, Michael Jordan, and Yair Weiss. “On spectral clustering: Analysis
and an algorithm.” Advances in Neural Information Processing Systems, 14,
2001.

[NS07] David Nadeau and Satoshi Sekine. “A survey of named entity recognition and
classification.” Lingvisticae Investigationes, 30(1):3–26, 2007.

[NSZ09] Boaz Nadler, Nathan Srebro, and Xueyuan Zhou. “Semi-supervised learning
with the graph Laplacian: The limit of infinite unlabelled data.” Advances in
Neural Information Processing Systems, 22:1330–1338, 2009.

[NWF78] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. “An analysis
of approximations for maximizing submodular set functions—I.” Mathematical
Programming, 14:265–294, 1978.

[OKA18] Savas Ozkan, Berk Kaya, and Gozde Bozdagi Akar. “Endnet: Sparse autoen-
coder network for endmember extraction and hyperspectral unmixing.” IEEE
Transactions on Geoscience and Remote Sensing, 57(1):482–496, 2018.

[OWO14] Braxton Osting, Chris D White, and Édouard Oudet. “Minimal Dirichlet energy
partitions for graphs.” Journal of Scientific Computing, 36(4):A1635–A1651,
2014.

[PCG16] Jean-François Pekel, Andrew Cottam, Noel Gorelick, and Alan S Belward.
“High-resolution mapping of global surface water and its long-term changes.”
Nature, 540(7633):418–422, 2016.

[PGH16] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, Andrew Stevens,
and Lawrence Carin. “Variational autoencoder for deep learning of images, labels
and captions.” Advances in Neural Information Processing Systems, 29, 2016.

184

[PLW23] Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu.
“Unifying large language models and knowledge graphs: A roadmap.” ArXiv
Preprint ArXiv, 2023.

[PPP06] V. P. Pauca, J. Piper, and R. J. Plemmons. “Nonnegative matrix factorization
for spectral data analysis.” Linear Algebra and its Applications, 416(1):29–47,
2006.

[PRL19] Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu,
Alexander H Miller, and Sebastian Riedel. “Language models as knowledge
bases?” ArXiv Preprint ArXiv, 2019.

[PVG11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Ma-
chine Learning in Python.” Journal of Machine Learning Research, 12:2825–
2830, 2011.

[PWS16] Nathalie Pettorelli, Martin Wegmann, Andrew Skidmore, Sander Mücher, Ter-
ence P Dawson, Miguel Fernandez, Richard Lucas, Michael E Schaepman, Tiejun
Wang, Brian O’Connor, et al. “Framing the concept of satellite remote sensing
essential biodiversity variables: challenges and future directions.” Remote Sens-
ing in Ecology and Conservation, 2(3):122–131, 2016.

[PY09] Sinno Jialin Pan and Qiang Yang. “A survey on transfer learning.” IEEE Trans-
actions on Knowledge and Data Engineering, 22(10):1345–1359, 2009.

[QJZ11] Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly. “Hyperspectral unmixing via L1/2

sparsity-constrained nonnegative matrix factorization.” IEEE Transactions on
Geoscience and Remote Sensing, 49(11):4282–4297, 2011.

[QLC19] Jing Qin, Harlin Lee, Jocelyn T Chi, Yifei Lou, Jocelyn Chanussot, and Andrea L
Bertozzi. “Fast blind hyperspectral unmixing based on graph Laplacian.” In
Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote
Sensing (WHISPERS), pp. 1–5. IEEE, 2019.

[QLC21] Jing Qin, Harlin Lee, Jocelyn T. Chi, Lucas Drumetz, Jocelyn Chanussot, Yifei
Lou, and Andrea L. Bertozzi. “Blind hyperspectral unmixing based on graph
total variation Regularization.” IEEE Transactions on Geoscience and Remote
Sensing, 59(4):3338–3351, 2021.

[QSW19] Yiling Qiao, Chang Shi, Chenjian Wang, Hao Li, Matt Haberland, Xiyang Luo,
Andrew M Stuart, and Andrea L Bertozzi. “Uncertainty quantification for semi-
supervised multi-class classification in image processing and ego-motion analysis
of body-worn videos.” Electronic Imaging, 2019(11):264–1, 2019.

185

[Ram03] Juan Ramos et al. “Using tf-idf to determine word relevance in document
queries.” In Proceedings of the First Instructional Conference on Machine Learn-
ing, volume 242, pp. 29–48. Citeseer, 2003.

[RF17] Mattia Rossi and Pascal Frossard. “Graph-based light field super-resolution.”
In 2017 IEEE 19th International Workshop on Multimedia Signal Processing
(MMSP), pp. 1–6. IEEE, 2017.

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional
networks for biomedical image segmentation.” In Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234–241.
Springer, 2015.

[RGC08] Suju Rajan, Joydeep Ghosh, and Melba M. Crawford. “An active learning ap-
proach to hyperspectral data classification.” IEEE Transactions on Geoscience
and Remote Sensing, 46(4):1231–1242, 2008.

[RKS22] Behnood Rasti, Bikram Koirala, Paul Scheunders, and Jocelyn Chanussot. “Mis-
icnet: Minimum simplex convolutional network for deep hyperspectral unmix-
ing.” IEEE Transactions on Geoscience and Remote Sensing, 60:1–15, 2022.

[RNC14] Max G Rozo, Afonso CR Nogueira, and Carlomagno Soto Castro. “Remote
sensing-based analysis of the planform changes in the Upper Amazon River over
the period 1986–2006.” Journal of South American Earth Sciences, 51:28–44,
2014.

[ROF92] L. I. Rudin, S. J. Osher, and E. Fatemi. “Nonlinear total variation based noise
removal algorithms.” Physica D: Nonlinear Phenomena, 60(1-4):259–268, 1992.

[RRT21] Antonio M Rinaldi, Cristiano Russo, and Cristian Tommasino. “A semantic
approach for document classification using deep neural networks and multimedia
knowledge graph.” Expert Systems with Applications, 169:114320, 2021.

[RSP16] Joel C Rowland, Eitan Shelef, Paul A Pope, Jordan Muss, Chandana Gangodaga-
mage, Steven P Brumby, and Cathy J Wilson. “A morphology independent
methodology for quantifying planview river change and characteristics from re-
motely sensed imagery.” Remote Sensing of Environment, 184:212–228, 2016.

[RSR20] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. “Exploring the limits of
transfer learning with a unified text-to-text transformer.” Journal of Machine
Learning Research, 21(1):5485–5551, 2020.

186

[SB88] Gerard Salton and Christopher Buckley. “Term-weighting approaches in auto-
matic text retrieval.” Information Processing & Management, 24(5):513–523,
1988.

[SCM22] Thomas Scialom, Tuhin Chakrabarty, and Smaranda Muresan. “Fine-tuned lan-
guage models are continual learners.” In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, pp. 6107–6122, Abu Dhabi,
United Arab Emirates, December 2022. Association for Computational Linguis-
tics.

[SDB03] P. Sajda, S. Du, T. Brown, L. Parra, and R. Stoyanova. “Recovery of constituent
spectra in 3D chemical shift imaging using nonnegative matrix factorization.”
In 4th International Symposium on Independent Component Analysis and Blind
Signal Separation, pp. 71–76, 2003.

[Set09] Burr Settles. “Active learning literature survey.” 2009.

[Sha48] Claude Elwood Shannon. “A mathematical theory of communication.” The Bell
System Technical Journal, 27(3):379–423, 1948.

[SJH15] Michael E Schaepman, Michael Jehle, Andreas Hueni, Petra D’Odorico, Alexan-
der Damm, Jürg Weyermann, Fabian D Schneider, Valérie Laurent, Christoph
Popp, Felix C Seidel, et al. “Advanced radiometry measurements and Earth
science applications with the Airborne Prism Experiment (APEX).” Remote
Sensing of Environment, 158:207–219, 2015.

[SKF17] Jon Schwenk, Ankush Khandelwal, Mulu Fratkin, Vipin Kumar, and Efi
Foufoula-Georgiou. “High spatiotemporal resolution of river planform dynam-
ics from Landsat: The RivMAP toolbox and results from the Ucayali River.”
Earth and Space Science, 4(2):46–75, 2017.

[SM14] A. Sandryhaila and J. M. Moura. “Discrete signal processing on graphs: Fre-
quency analysis.” IEEE Transactions on Signal Processing, 62(12):3042–3054,
2014.

[SNF13] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst.
“The emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains.” IEEE Signal Processing
Magazine, 30(3):83–98, 2013.

[SPR20] Jon Schwenk, Anastasia Piliouras, and Joel C Rowland. “Determining flow di-
rections in river channel networks using planform morphology and topology.”
Earth Surface Dynamics, 8(1):87–102, 2020.

[SR22] Jon Schwenk and Joel Rowland. “RiverPIXELS: paired Landsat images and
expert-labeled sediment and water pixels for a selection of rivers v1.0.” 1 2022.

187

[SS18] Ozan Sener and Silvio Savarese. “Active learning for convolutional neural net-
works: A core-set approach.” In International Conference on Learning Repre-
sentations, 2018.

[Str01] Steven H Strogatz. “Exploring complex networks.” Nature, 410(6825):268–276,
2001.

[TBK22] Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal.
“Interleaving retrieval with chain-of-thought reasoning for knowledge-intensive
multi-step questions.” ArXiv Preprint ArXiv, 2022.

[TM13] Hossein Talebi and Peyman Milanfar. “Global image denoising.” IEEE Trans-
actions on Image Processing, 23(2):755–768, 2013.

[TMS23] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi,
Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. “Llama 2: Open foundation and fine-tuned chat models.” ArXiv
Preprint ArXiv, 2023.

[TMZ22] Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer, and Armen Aghajanyan.
“Memorization without overfitting: Analyzing the training dynamics of large lan-
guage models.” Advances in Neural Information Processing Systems, 35:38274–
38290, 2022.

[TNX21] Matthew Thorpe, Tan Minh Nguyen, Hedi Xia, Thomas Strohmer, Andrea
Bertozzi, Stanley Osher, and Bao Wang. “GRAND++: Graph neural diffusion
with a source term.” In International Conference on Learning Representations,
2021.

[TSW23] Yijun Tian, Huan Song, Zichen Wang, Haozhu Wang, Ziqing Hu, Fang Wang,
Nitesh V Chawla, and Panpan Xu. “Graph neural prompting with large language
models.” ArXiv Preprint ArXiv, 2023.

[VBC20] SS Vijayashekhar, Jignesh S Bhatt, and Bhargab Chattopadhyay. “Virtual di-
mensionality of hyperspectral data: Use of multiple hypothesis testing for con-
trolling type-I error.” IEEE Journal of Selected Topics in Applied Earth Obser-
vations and Remote Sensing, 13:2974–2985, 2020.

[VFM20] Diego Valsesia, Giulia Fracastoro, and Enrico Magli. “Deep graph-convolutional
image denoising.” IEEE Transactions on Image Processing, 29:8226–8237, 2020.

[VMG10] Charles J Vörösmarty, Peter B McIntyre, Mark O Gessner, David Dudgeon,
Alexander Prusevich, Pamela Green, Stanley Glidden, Stuart E Bunn, Caroline A
Sullivan, C Reidy Liermann, et al. “Global threats to human water security and
river biodiversity.” Nature, 467(7315):555–561, 2010.

188

[Von07] Ulrike Von Luxburg. “A tutorial on spectral clustering.” Statistics and Comput-
ing, 17(4):395–416, 2007.

[VSP17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention is all you
need.” Advances in Neural Information Processing Systems, 30, 2017.

[WC13] Weiran Wang and Miguel A Carreira-Perpinán. “Projection onto the probability
simplex: An efficient algorithm with a simple proof, and an application.” ArXiv
Preprint ArXiv, 2013.

[Wes01] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall
Upper Saddle River, 2001.

[WIB15] Kai Wei, Rishabh Iyer, and Jeff Bilmes. “Submodularity in data subset selection
and active learning.” In Francis Bach and David Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pp. 1954–1963, Lille, France, 07–09 Jul 2015.
PMLR.

[WKR20] Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and
Jason Weston. “Neural text generation with unlikelihood training.” In Interna-
tional Conference on Learning Representations, 2020.

[WLR23] Yu Wang, Nedim Lipka, Ryan A Rossi, Alexa Siu, Ruiyi Zhang, and Tyler Derr.
“Knowledge graph prompting for multi-document question answering.” ArXiv
Preprint ArXiv, 2023.

[WMW17] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. “Knowledge graph embed-
ding: A survey of approaches and applications.” IEEE Transactions on Knowl-
edge and Data Engineering, 29(12):2724–2743, 2017.

[Woo50] Max A Woodbury. Inverting modified matrices. Department of Statistics, Prince-
ton University, 1950.

[WPC20] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. “A comprehensive survey on graph neural networks.” IEEE Trans-
actions on Neural Networks and Learning Systems, 32(1):4–24, 2020.

[WPG21] Guojia Wan, Shirui Pan, Chen Gong, Chuan Zhou, and Gholamreza Haffari.
“Reasoning like human: Hierarchical reinforcement learning for knowledge graph
reasoning.” In International Joint Conference on Artificial Intelligence. Interna-
tional Joint Conference on Artificial Intelligence, 2021.

189

[WSZ19] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kil-
ian Weinberger. “Simplifying graph convolutional networks.” In International
Conference on Machine Learning, pp. 6861–6871. PMLR, 2019.

[WY13] Zheng Wang and Jieping Ye. “Querying discriminative and representative sam-
ples for batch mode active learning.” In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’13,
p. 158–166, New York, NY, USA, 2013. Association for Computing Machinery.

[XQZ18] F. Xiong, Y. Qian, J. Zhou, and Y. Y. Tang. “Hyperspectral unmixing via total
variation regularized nonnegative tensor factorization.” IEEE Transactions on
Geoscience and Remote Sensing, 57(4):2341–2357, 2018.

[XSY08] Yichun Xie, Zongyao Sha, and Mei Yu. “Remote sensing imagery in vegetation
mapping: a review.” Journal of Plant Ecology, 1(1):9–23, 2008.

[XYC19] Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo, and William Yang Wang.
“Improving Question Answering over Incomplete KBs with Knowledge-Aware
Reader.” In Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics, pp. 4258–4264, Florence, Italy, July 2019. Association for
Computational Linguistics.

[YBR22] Michihiro Yasunaga, Antoine Bosselut, Hongyu Ren, Xikun Zhang, Christo-
pher D Manning, Percy S Liang, and Jure Leskovec. “Deep bidirectional
language-knowledge graph pretraining.” Advances in Neural Information Pro-
cessing Systems, 35:37309–37323, 2022.

[YRH21] Yanyang Yan, Wenqi Ren, Xiaobin Hu, Kun Li, Haifeng Shen, and Xiaochun
Cao. “SRGAT: Single image super-resolution with graph attention network.”
IEEE Transactions on Image Processing, 30:4905–4918, 2021.

[YZW20] Yuan Yuan, Zihan Zhang, and Qi Wang. “Improved collaborative non-negative
matrix factorization and total variation for hyperspectral unmixing.” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
13:998–1010, 2020.

[ZCH20] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan
Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. “Graph neural networks:
A review of methods and applications.” AI Open, 1:57–81, 2020.

[ZCZ21] Jing Zhang, Bo Chen, Lingxi Zhang, Xirui Ke, and Haipeng Ding. “Neural,
symbolic and neural-symbolic reasoning on knowledge graphs.” AI Open, 2:14–
35, 2021.

190

[ZGL03] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. “Semi-supervised learn-
ing using Gaussian fields and harmonic functions.” In Proceedings of the 20th
International Conference on Machine Learning (ICML-03), pp. 912–919, 2003.

[Zhu05] Xiaojin Jerry Zhu. “Semi-supervised learning literature survey.” 2005.

[Zhu17] Zhe Zhu. “Change detection using Landsat time series: A review of frequencies,
preprocessing, algorithms, and applications.” ISPRS Journal of Photogrammetry
and Remote Sensing, 130:370–384, 2017.

[ZLF19] Lina Zhuang, Chia-Hsiang Lin, Mario AT Figueiredo, and Jose M Bioucas-Dias.
“Regularization parameter selection in minimum volume hyperspectral unmix-
ing.” IEEE Transactions on Geoscience and Remote Sensing, 57(12):9858–9877,
2019.

[ZLG03] Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. “Combining active learn-
ing and semi-supervised learning using gaussian fields and harmonic functions.”
In ICML 2003 Workshop on the Continuum from Labeled to Unlabeled Data in
Machine Learning and Data Mining, volume 3, 2003.

[ZS05] Dengyong Zhou and Bernhard Schölkopf. “Regularization on discrete spaces.”
In Joint Pattern Recognition Symposium, pp. 361–368. Springer, 2005.

[ZTM17] Xiao Xiang Zhu, Devis Tuia, Lichao Mou, Gui-Song Xia, Liangpei Zhang, Feng
Xu, and Friedrich Fraundorfer. “Deep learning in remote sensing: A compre-
hensive review and list of resources.” IEEE Geoscience and Remote Sensing
Magazine, 5(4):8–36, 2017.

[ZWL23] Lingfeng Zhong, Jia Wu, Qian Li, Hao Peng, and Xindong Wu. “A comprehensive
survey on automatic knowledge graph construction.” ACM Computing Surveys,
56(4), nov 2023.

[ZWX14] Feiyun Zhu, Ying Wang, Shiming Xiang, Bin Fan, and Chunhong Pan. “Struc-
tured sparse method for hyperspectral unmixing.” ISPRS Journal of Photogram-
metry and Remote Sensing, 88:101–118, 2014.

[ZWZ22] Bing Zhang, Yuanfeng Wu, Boya Zhao, Jocelyn Chanussot, Danfeng Hong, Jing
Yao, and Lianru Gao. “Progress and challenges in intelligent remote sensing
satellite systems.” IEEE Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing, 15:1814–1822, 2022.

[ZYL22] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. “Learning to
prompt for vision-language models.” International Journal of Computer Vision,
130(9):2337–2348, 2022.

191

[ZZD16] Liangpei Zhang, Lefei Zhang, and Bo Du. “Deep learning for remote sensing
data: A technical tutorial on the state of the art.” IEEE Geoscience and Remote
Sensing Magazine, 4(2):22–40, 2016.

[ZZK21] Tianwen Zhang, Xiaoling Zhang, Xiao Ke, Chang Liu, Xiaowo Xu, Xu Zhan,
Chen Wang, Israr Ahmad, Yue Zhou, Dece Pan, et al. “HOG-ShipCLSNet: A
novel deep learning network with hog feature fusion for SAR ship classification.”
IEEE Transactions on Geoscience and Remote Sensing, 60:1–22, 2021.

192

	Introduction
	A Review of Graph-Related Learning Approaches
	Overview and Contributions
	Preliminaries and Notation

	Background of the Graph Learning and Active Learning
	Graph and Related Concepts
	Graph Learning
	Graph Construction
	Graph Laplace Learning
	Extended Schemes for Low Label Rates

	Graph-based Active Learning
	Bayesian Interpretation and Low-Rank Covariance Matrix
	Acquisition Functions
	Query Set Selection

	Novel Batch Active Learning Approaches with Application to SAR and Hyperspectral Imagery
	Background
	Classification on Synthetic Aperture Radar (SAR) Imagery
	Segmentation on Multi- or Hyperspectral Imagery

	Core-Set Selection and Batch Active Learning
	Dijkstras Annulus Core-Set (DAC) Selection
	LocalMax Batch Active Learning

	Feature Extraction and Preprocessing
	Neural Network Feature Embedding for SAR Imagery
	Non-local Means Feature Extraction for MSI and HSI

	Experiments and Results: SAR Image Classification
	Accuracy And Efficiency
	Sensitivity Analysis

	Experiments and Results: MSI and HSI Segmentation
	Comparison between LocalMax and Sequential Active Learning: Accuracy and Efficiency
	Semi-Supervised Image Segmentation with Low Label Rates
	Comments on Our Experiments

	Conclusion

	Graph-based Active Learning for Surface Water and Sediment Detection in Multispectral Images
	Introduction
	Graph-based Active Learning Pipeline
	Contrastive Learning
	Feature Preprocessing
	Create the Representative Set
	Pipeline Structure

	Experiments and Results
	Comparison between different methods
	Performance on other regions
	Efficiency Analysis
	Low-dimensional Visualization of Feature Vectors

	GraphRiverClassifier: A Global Classifier for Water and Sediment Pixels in Satellite Images
	Google Platforms
	Global Classifier of Water and Sediment
	Robustness to Different Resolutions

	Conclusion and Future Directions

	Graph-based Active Learning for Nearly Blind Hyperspectral Unmixing
	Introduction
	Literature Review of HSU
	Motivation and Our Contributions

	Semi-supervised Hyperspectral Unmixing
	Training Data Selection
	Graph Learning Unmixing (GLU)
	Graph-regularized Semi-supervised Unmixing (GRSU)

	Experiments and Results
	Method Comparison
	Discussion on the Number of Training Pixels
	Robustness Study

	Conclusion

	AutoKG: Efficient Automated Knowledge Graph Generation for Language Models
	Introduction
	Automated KG Generation
	Keywords Extraction
	Graph Structure Construction
	Time Complexity Analyzation
	Remarks

	hybrid search: Incorporating KG and LLM
	Experiments and Results
	A Simple Example: Why We Need KG?
	An Example with Article References
	Efficiency Analyzation

	Conclusion

	Conclusion
	References

