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Losing the ability to speak—whether from stroke, traumatic brain injury, or other 

neurological disorders— significantly reduces a person’s quality of life. Research studies 

demonstrate proof-of-concept Speech-Synthesis Brain-Machine Interface (BMI) systems, but 

several limitations impede their clinical viability. A major rate limiting factor impeding 

progress in developing speech prosthesis is the lack of an established animal model to ask basic 

science questions regarding the neural encoding of vocal communication. This dissertation aims 

to address this gap by establishing songbirds as an animal model for a human speech prosthesis. 

Songbirds are a well-established model for vocal learning, and their motor nuclei are 



 

xvii 
 

homologous to the human motor cortex with respect to function and gene transcription. This 

work builds upon this basis to demonstrate songbirds’ suitability as a preclinical model to 

accelerate the development of speech-prosthesis technology. 

First, we answer basic science questions regarding nuclei important for the song system 

by characterizing neurophysiological similarities and differences with respect to human motor 

areas during vocalization. In analyses of data recorded with electrodes chronically implanted in 

the premotor region HVC of awake free-behaving zebra finches, we detail novel Local Field 

Potential (LFP) signatures correlated to vocal behavior. These LFP signatures are decomposed 

using signal processing methods to characterize their relation to vocal production.  This work 

found that HVC exhibits many remarkably similar spectral characteristics to LFP in human 

motor cortex during speech.  

Next, we developed	 proof-of-concept	 systems	 that	 demonstrate	 algorithms	

feasible	 for	 real	 time	 vocal	 BMIs.	 Utilizing	 simple	 algorithms,	 we	 show	 that	 HVC	 LFP	

features	can	be	leveraged	to	predict	vocal	activity.  These algorithms	can	be	run	in	real	

time	to	predict	both	the	identity	and	onset	of	syllable	production.	Leveraging these simple 

algorithms, we analyze preliminary system requirements necessary for decoding vocal 

elements. The	methods	developed	to	leverage	these	LFP	features	to	predict	vocal	behavior	

can	be	implemented	in	real-time	and	suggest	a	path	for	developing	a	similar	system	for	

humans.	 

Finally,	 this	 thesis	 details	 both	 software	 and	 hardware	 designs	 to	 enable	

reproduction	and	wider	adoption	of	the	songbird	animal	model	by	the	speech	prosthesis	

research	field.	We	developed	novel	methods	to	partition	freely	produced	vocal	behavior	

data	 based	 on	 the	 subjects’	 behavior,	 which	 are	 provided	 to	 the	 field	 as	 open-source	
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software.	We also designed an integrated counterweight and tether management system that 

dramatically lowers the stress on chronically implanted small animal subjects. 

Collectively, these works enrich the literature connecting human and avian vocal-motor 

production, and we believe strengthen the argument for utilizing songbirds to supplement 

human speech prosthesis research. 
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Chapter 1 : Introduction 
1.1   Background 

Vocal communication is a fundamental tool necessary to survive and thrive. However, each 

year, hundreds of thousands of people will experience a total loss or reduction in their ability to 

communicate [1]. Losing the ability to speak—whether from stroke, traumatic brain injury, or 

other neurological disorders— can have a considerable negative impact on someone's quality of 

life. It can stress interpersonal relationships, impair one's ability to perform at work, and become 

a major barrier to receiving adequate medical care [2–4].  

Neuroprostheses — electronic devices that directly decode the neural correlates of a 

person’s desired actions, thereby bypassing the injured part of the nervous system — stand to 

radically improve the quality of life for individuals with lost motor, speech, and language function. 

Current state of the art Motor Brain-Computer Interfaces (BCIs) have enabled paralyzed 

individuals to communicate through handwriting; with the current highest BCI performance to 

date being 19 words per minute1 with 94.1% raw accuracy online [5]. However, the speed at which 

information can be conveyed through handwriting—which is about 15 to 40 words per minute for 

an average adult [6]—pales in comparison to natural speech; with an average speaker able to say 

100 to 300 words per minute [7–9] as compared to writing. Vocal communication focused neural 

prosthesis aim to eventually return naturalistic, or close to naturalistic, speech rates to individuals 

who have lost the ability to speak. 

 
1 The system developed in this study was originally benchmarked at 90 characters per minute. 
This is roughly equivalent to 19.14 words per minute; given the average word length in the English 
language is 4.7 characters. 
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1.2   Overview of the Vocal Communication Field 

Vocal communication requires dynamic coordination of the vocal tract articulator muscles. 

Remarkably, these synchronized sequences of motor movements produce a complex vocal output 

that is mutually comprehensible to both the communicator and their target. Speech focused BCIs 

are designed to decode the motor commands of a user’s intended speech from neural signals 

recorded directly from motor regions of the brain. This is accomplished by applying statistical 

signal processing techniques to extract useful features from electrical signals recorded from speech 

related brain regions during vocal production. These features are then used to develop mappings 

from the neural activity to the message vocalized by the subject.  Broadly, the communication 

output of all speech focused BCIs fall under two main types; (1) Acoustic Synthesis where the BCI 

tries to reproduce the intended sounds of the decoded communication [10–13], and (2) Symbolic 

Decoding where the BCI tries to decode symbolic components of the decoded communication (i.e. 

phonemes, vowels,  words, etc) [14–16]. 

To date major progress has been made utilizing both approaches. One such recent 

breakthrough allowed a patient with anarthria—where someone loses all or significant amount of 

control of the speech musculature—was once again able to communicate [14]. However, current 

Speech BCIs are still significantly slower than natural speech. Increases in data quantity (many 

hours), scale (hundreds of parallel views of the brain), and diversity (different behavioral 

conditions) would help accelerate performance, however data from humans during speech is 

limited and no animal model supplements human work. 
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1.3   Motivating the Need for the Songbird Animal Model 

While neural prostheses to restore limb movement have improved significantly over the 

years, speech and communication focused prostheses have lagged significantly behind. This is in 

large part due to the availability of a translational animal model, namely the rhesus macaque, to 

answer basic science questions regarding the neural encoding of motor movements. These basic 

science advances are then applied to proof-of-concept prototypes that are first validated in lab 

settings with the macaques before being translated to devices that are able to be used by humans 

in clinical settings. There is a long history of this translation of basic science advances in motor 

control in macaques [12,17–24] into advances in clinical motor BCIs in humans [5,25–28]. 

Unfortunately, macaques are a poor model for human speech as their capacity for learning complex 

vocalizations does not approach the abilities of humans. Nevertheless the speech BCI field would 

benefit from having a translatable animal model to supplement work currently done in humans. 

A viable candidate to fulfill this need is the songbird. There is extensive research, spanning 

over 50 years [29,30], focused on the song system of songbirds. As a member of a short list of 

complex vocal learners—which includes humans, bats, elephants, whales, seals, and dolphins—

they were first studied for their vocal learning capacity. However they have recently been studied 

for vocal motor control [31–33] and vocal memory [34]. Songbirds as a whole have the benefit of 

numerous species with varied levels of complexity ranging from simple (e.g. zebra finch) to 

complex (e.g. Starlings) with multiple species in between these levels (e.g. Bengalese finch and 

Canary).  
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1.4   Requirements of a Translatable Animal Model 

 To fulfill the role of a viable animal model for speech BCI development, songbirds must 

meet some minimum requirements. They must have similar physiology for vocal production, 

comparable neurophysiology for vocal motor control, enable invasive chronic recordings over long 

time periods (weeks to months), and have validated scientific tools to facilitate in-depth study. 

Although the underlying physiology for producing vocalizations differs between songbirds and 

humans they have been found to have similar auditory feedback requirements while producing 

vocalizations [35–37]. In addition, the nuclei crucial for song production have been found to be 

both functionally [38–41] and genetically [42,43] analogous to the premotor cortex of humans and 

non-human primates.  

The birdsong neuroscience field, taking advantage of the accessibility of the song system, 

has largely focused on fundamental physiology. For this reason most songbird research has largely 

focused on carefully identified neural units and their spiking activity. As a result much is known 

about the spiking activity of nuclei crucial for song production, such as HVC and RA. However, 

while spiking activity from these nuclei has been well documented, local field potential activity 

(LFP) from these regions has only just recently begun to be studied [32,44]. This is significant 

because volume conductance signals, such as LFP, have been the most commonly studied features 

for most state-of-the-art speech BCIs [11–14]. It is important then to validate this proposed animal 

model in terms of its similarities and differences in regards to this important neural feature; as well 

as to demonstrate that these signals can be leveraged for decoding and predicting vocal elements.  

Finally to enable widespread adoption of the animal model by the broader vocal 

communication BCI field there must be accessible tools to facilitate its study. This will be crucial 

as an animal model is only as reliable as the tools available to study it.  



Chapter 1: Introduction 
 

 5 

 

1.5   Chapter Previews 

 This thesis aims to address many of the unaddressed hurdles to validating and developing 

the songbird animal model as a suitable preclinical model to accelerate the development of speech-

prosthesis technology. I first analyze LFP activity of HVC during vocal production using neural 

engineering approaches. Finding many remarkably similar spectral characteristics to LFP in 

human motor cortex during speech. I then extract useful neural features to develop simple proof-

of-concept algorithms that can be leveraged to decode which syllable the bird will sing and predict 

when they will sing the. Finally I develop research tools to help facilitate reproduction of my 

findings by other labs and help lower the barriers for the songbird animal model to be adopted by 

the wider vocal communication prosthesis research field. 

Chapter 2 is an in-depth analysis of HVC LFP from a neuroengineering perspective. It 

gives a brief introduction of the simplest songbird animal model, the zebra finch, then elucidates 

the network neural activity that proceeds vocal production.  

Chapter 3 leverages the features documented in Chapter 2 to develop proof-of-concept 

BCIs for birdsong. It characterizes which component of the LFP, phase or power, is the most 

salient for decoder performance. It also asks many preliminary questions regarding the minimum 

system requirements for adequate decoder performance. 

Chapter 4 documents tools developed to facilitate long term chronic invasive neural 

engineering research in small animals. Originally developed for songbirds, this system can be 

easily translated to other small animal models commonly used in neuroscience research. 
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Chapter 5 concludes this work with a brief description of future directions of this work as 

well as a discussion on where the songbird animal model fits into the larger Vocal Communication 

BCI field
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Chapter 2 : Characterization of HVC LFP 

2.1   Abstract 

Neuronal activity within the premotor region HVC is tightly synchronized to, and crucial 

for, the articulate production of learned song in birds. Characterizations of this neural activity 

detail patterns of sequential bursting in small, carefully identified subsets of neurons in the HVC 

population. The dynamics of HVC are well described by these characterizations, but have not been 

verified beyond this scale of measurement. There is a rich history of using local field potentials 

(LFP) to extract information about behavior that extends beyond the contribution of individual 

cells. These signals have the advantage of being stable over longer periods of time, and they have 

been used to study and decode human speech and other complex motor behaviors. Here we 

characterize LFP signals presumptively from the HVC of freely behaving male zebra finches 

during song production to determine if population activity may yield similar insights into the 

mechanisms underlying complex motor-vocal behavior. Following an initial observation that 

structured changes in the LFP were distinct to all vocalizations during song, we conduct an in 

depth analysis using signal processing techniques. Surprisingly, the time frequency structure of 

HVC LFP is qualitatively similar to well-established oscillations found in both human and non-

human mammalian motor areas. This physiological similarity, despite distinct anatomical 

structures, may give insight into common computational principles for learning and/or generating 

complex motor-vocal behaviors. 
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2.2   Introduction 

Learned vocalizations, such as speech and song, are generated by the complex coordination 

of multiple muscle groups that control the vocal organs[1–3]. As with other voluntary movements, 

this coordinated action arises from premotor brain regions [4–8] and is prepared prior to the 

physical initiation of movement [4,9,10]. How these behaviors are encoded during both 

preparation and generation remains an important topic of ongoing research. Developing an 

understanding for how the brain encodes complex sequential motor movements carries 

implications for the development of neural prostheses that aim to return or supplement lost motor 

function. In addition to their clinical application, such systems will help create new tools for 

examining the brain’s mechanisms for learning and executing motor sequences. 

At present, studying the motor encoding of speech and other complex motor movements 

in humans is challenging due to the intrinsic hurdles of conducting invasive human studies [11–

15] and the complexity of human language [2,14]. Invasive studies that employ implanted 

electrodes are typically conducted in a clinical setting and clinical studies are inherently difficult. 

The clinical setting constrains experimental study duration and access to brain regions are limited. 

The study of other motor movements in humans is often supplemented by first studying simpler 

animal models such as non-human primates [16,17] and rodents [18–21]. However, these animal 

models fall short with respect to more complex freely generated motor sequences such as speech; 

this is primarily because none of the dominant models employed are capable of learning vocal 

behavior resembling the complexity of human speech [2,22]. For this reason, speech production 

studies, unlike other motor behavioral fields, have been limited exclusively to invasive [11,23,24] 

[25] and non-invasive [26], clinical studies in humans.  
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Work in non-human primates and rodents have yielded physiological and engineering 

insights that enable the continued development of neurally driven upper limb prostheses for 

clinical functional restoration [4,16,27–32]. Given this track record of translation from animal 

models to clinical studies, despite anatomical differences in both limbs and brain structure, an 

animal model that exhibits similar vocal behavior, despite anatomical differences, could similarly 

benefit human speech prosthesis development. A natural candidate model is the songbird, which 

is widely used to study complex learned vocal behavior [33,34]. The zebra finch (Taeniopygia 

guttata), in particular, is known for its precisely timed sequentially structured song which is stable 

over the course of its adult lifetime. Experiments with this system have yielded insights into the 

acquisition [35,36], maintenance [37,38], and generation [8,39,40] of complex motor-vocal 

sequences. 

 Although the anatomical structure of avian and mammalian brains are divergent, relevant 

similarities between avian nuclei and human cortex have been identified. The premotor nucleus 

HVC, used as a proper name, contains neurons with sparse spiking patterns precisely aligned to 

vocal production [8,41]. Multiple studies suggest HVC is analogous to premotor cortex in human 

and non-human primates with respect to both functional [42–45] and genetic profile [46,47]. HVC 

provides input to two pathways that lead to neurons within nuclei that control the vocal muscles 

of the syrinx (Figure 2.1). The first is directly through the arcopallium (RA) in the posterior 

descending pathway (PDP), which is necessary for both the acquisition and production of learned 

motor-vocal behavior. For reference to mammalian anatomy, the PDP is analogous to a motor 

pathway that starts in the cerebral cortex and descends through the brain stem. The second, named 

the anterior forebrain pathway (AFP), plays a strong role in acquisition and adjustment of vocal 

output throughout life and projects indirectly through several nuclei; it is analogous to a cortical 
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pathway through the basal ganglia and thalamus in mammals [34]. These analogous regions share 

thousands of convergent genes despite their last shared ancestor being millions of years ago [47].  

At a circuit level, the similarities between the neural activity in humans and songbirds is 

much harder to compare. Single-unit work and techniques, like those studied in songbirds, are 

difficult to conduct within a clinical setting. In contrast, given the accessibility of the system and 

a focus on fundamental physiology, songbird studies [6,10,34,35,37,38,40,44,48,49] have largely 

focused on carefully identified neural units and their spiking activity, with limited examination of 

other neural features that may correlate with vocalization behavior. Examining neural features 

readily accessible in both species and their relationship to motor-vocal behavior will enable direct 

comparison between the neural activity in birdsong and human speech production. Clarifying 

similarities (and differences) that may exist will bridge the gap between the two species. 

Local field potentials (LFP) are thought to reflect both aggregate local postsynaptic activity 

and presynaptic inputs to the recording site [50]. As stable single units can be difficult to acquire 

and maintain in humans and non-human primates, there is a rich history of literature looking at 

both spiking and LFP for understanding, decoding, and predicting motor production [28,51–54]. 

At present, characterization of the neural dynamics of HVC and their relationship to behavior in 

songbirds has focused primarily on single- and multi-unit spiking activity [6,34,40,55,56], and 

limited work has focused on the structure of LFP and how it relates to song production. The most 

detailed characterization of this signal in songbirds is the relationship between LFP and 

interneuron synchrony [39]. This leaves a gap in the literature regarding the structure of LFP 

activity in HVC and whether its characteristics have any similarities to LFP in human, non-human 

primates, or mammalian premotor and motor regions. 
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 We address this gap by chronically implanting and recording from freely behaving male 

zebra finch (Figure 2.1B) and analyzing LFP, presumptively from HVC, in relation to each bird’s 

performed song (Figure 2.1C and D). We identify narrow-band oscillations [57–59] similar to 

those reported in human, non-human primate, and rodent motor electrophysiology literature. 

Further we provide evidence that phase and amplitude modulation within these frequency bands 

is predictive of vocalization behavior. 

2.2 Data Acquisition 

2.2.1   Overview of Recording Methods and Data Collected 
Adult male zebra finches (n=3) were chronically implanted with laminar silicone 

microelectrode probes (Figure 2.1A). Local field potentials from these probes and vocal behavior 

from a microphone were simultaneously recorded (Figure 2.1B-D) (see section 2.2.4   Electrode 

implantation procedure). All references to LFP localization are recognized to be presumptively 

from HVC. The male zebra finches’ learned song is structured and was annotated (Figure 2.2). 

The song consists of 1-7 repetitions of a motif, each of which is composed of a precisely ordered 

sequence of 3-10 discrete units called syllables. Beyond the syllables of the motif, male zebra 

finches may have an additional syllable or sequence of syllables that they will optionally insert 

between successive repetitions of motifs. These are called “connector” [60] or intra-motif notes. 

Song motifs are also grouped into larger structures called bouts, which consist of multiple 

repetitions of motifs. The bout is typically preceded by a variable number of repetitions of the 

same note, called Introductory Notes. Syllables of each bird’s learned song, other non-learned 

vocalizations, and tokens of non-vocal intervals were segmented and annotated within periods of 

vocal behavior, referred to as vocally active periods (VAP), using acoustic landmarks (Figure 

2.2B,C). Figure 2.3 provides state diagrams that describe the specific transitions between syllables 
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and other vocalization behaviors observed for all three of the subjects’ VAP (colloquially, their 

song’s “grammar”). Temporal boundaries of VAPs were used to define behaviorally relevant 

epochs in the simultaneously recorded neural signal. Subjects were recorded for 1-10 hours per 

day; statistics of recorded behavior data are documented in Table 2.1 and Table 2.2. For statistical 

power, we selected the two recording session days with the most vocal activity from each bird for 

the analyses reported here (Table 2.3, Table 2.4, and Table 2.5). Results from days with fewer 

recorded motifs were qualitatively similar. 

 
Figure 2.1: Continuous electrical and audio recording of chronically implanted freely 
behaving male zebra finch.  
(A) Four-Shank multi-site Si-Probes were chronically implanted targeting nucleus HVC. HVC provides input to two 
motor pathways that innervate neurons in the tracheosyringeal half of the hypoglosssal nucleus (nXIIts) that projects 
to vocal muscles. The posterior descending pathway (PDP) comprises a direct projection to the robust nucleus of the 
arcopallium (RA) and is necessary for both the acquisition and production of learned vocal behavior (song). The 
anterior forebrain pathway (AFP), provides an indirect pathway to RA, through Area X, the dorsolateral anterior 
thalamic nucleus (DLM), and LMAN, and is necessary for song acquisition. The PDP is homologous to a motor 
pathway in mammals that starts in the cerebral cortex and descends through the brain stem, while the AFP is 
homologous to a cortical pathway through the basal ganglia and thalamus. (B) Neural and audio recording apparatus. 
We recorded LFP and vocal activity from male zebra finches stimulated to sing by the presence of a female 
conspecific. (C) Exemplar sound pressure waveform (1.3 seconds in duration, top) from bird z007 above the 
corresponding spectrogram. (D) Voltage traces (µV) of ten randomly selected channels of simultaneously recorded 
neural activity aligned to the song during audio recording, after a 400 Hz low-pass filter. 
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2.2.2   Subjects 

All procedures were approved by the Institutional Animal Care and Use Committee of the 

University of California (protocol number S15027). Electrophysiology data were collected from 

three adult male zebra finches. Birds were individually housed for the entire duration of the 

experiment and kept on a 14-hour light-dark cycle (Figure 2.1). Each day had one session that 

lasted multiple hours: recording days were unstructured, as they depended on the subject’s 

willingness to sing (Figure 2.2). All available days were analyzed; however, the two highest motif 

yielding days, hereafter referred to as high-yield days, were reported and used for statistical 

analysis. The full duration of chronic recordings ranged from 5 to 19 days. The birds were not used 

in any other experiments. 

 
Table 2.1: Overall Description of Subject Data 

Overall Description 

bird_id # of Days 
Recorded 

Total 

# of uniquely Labeled 
Syllables in Song  

(Including Intra Motif 
Notes) 

# of Intra 
Motif Notes in 

Song 

Presence of 
Unique 

Introductory 
Note 

Electrode Geometry 
(Neuronexus Probes)  

z020 5 4 1 Yes A4x1-tet-3mm-150-121 

z007 9 5 0 Yes A4x4-tet-5mm-150-200-
121 

z017 19 7 2 No A4x4-3mm-50-125-177 
 

2.2.3   Electrophysiology and audio recording 
Electrophysiological recordings were gathered from 3 subjects, in which two were 

implanted with 16-channel probes and one with a 32-channel probe (Figure 2.1A). We used 4-

shank, 16/32 site Si-Probes (Neuronexus), which were PEDOT-coated in-house2. The probes were 

mounted on a custom designed printable microdrive [61] and implanted targeting nucleus HVC 

 
2Protocol is available at  https://www.protocols.io/view/EDOT-PSS-c2syed 
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(Figure 2.1A & B). Audio (vocalizations) was recorded through a microphone (Earthworks M30) 

connected to a preamplifier (ART Tube MP) and registered temporally to ongoing neural activity 

(Figure 2.1)]. Extracellular voltage waveforms and pre-amplified audio were amplified and 

digitized at 30 kHz using an intan RHD2000 acquisition system, Open Ephys and custom software 

(Figure 2.1D) [62]. 

2.2.4   Electrode implantation procedure 
Animals were anesthetized with a gaseous mixture of Isoflurane/oxygen (1-2.5%, 0.7 lpm) 

and placed in a stereotaxic frame.  Analgesia was provided by means of a 2mg/kg dose of carprofen 

(Rimadyl) administered I.M. The scalp was partially removed and the upper layer of the skull over 

the y-sinus was uncovered. The probe was attached to the shaft of a microdrive of our design3, 

which was printed in-house using a b9 Creator printer and the BR-9 resin. A craniotomy site was 

open 2400 𝜇m medial to the y-sinus (right/left hemispheres). The dura was removed and the 

electrode array was lowered to a 300-500𝜇m depth. The opening was then covered with artificial 

dura (DOWSIL 3-4680 Silicone Gel Kit) and the microdrive was cemented to the skull using dental 

cement (C&B Metabond). A reference wire was made with a 0.5 mm segment of platinum-iridium 

wire (0.002”) soldered to a silver wire lead and inserted between the dura and the skull through a 

craniotomy roughly 3mm medial (contralateral to the hemisphere where the electrode was 

inserted) and 1.5 mm anterior to the y-sinus. The reference electrode was cemented to the skull 

and the silver lead was soldered to the ref and gnd leads of the neuronexus probe. The craniotomy, 

the electrode, and the Microdrive were then covered with a chamber designed and 3D printed in-

house, and which was subsequently cemented to the skull. The skin incision was sutured and 

adhered to the chamber with adhesive. The mass of the probe, Microdrive, and protective chamber 

 
3 Design Files for microdrive are available on Github. 
https://github.com/singingfinch/bernardo/tree/master/hardware/printable_microdrive 
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were measured to be 1.2-1.4g. Upon the finches returning to a single-housing cage, a weight 

reliever mechanism was attached using the end of a thin nylon wire that was attached to an ad-hoc 

pin in the chamber; the other end routed through a set of pulleys and attached to a counterweight 

mass of ~1g [62]. 

2.2.5   Analysis of electrophysiology data  
Extracellular voltage traces were multiplexed and digitized at 30kHz on the headstage, and 

stored for offline analysis. –offline– They were then low-passed filtered at 400 Hz using a 

Hamming finite impulse response (FIR) filter and downsampled to 1 kHz. The group delay 

introduced by the filter is compensated by introducing a temporal shift to the filter output [63]. 

2.3   Annotation and alignment of behavioral data  

The song of an adult male zebra finch can be partitioned and labeled in multiple ways. 

However, the most fundamental characteristic of their song that is agreed upon is their stereotyped 

motif. The motif is a consistent sequence of sounds interleaved with silent periods that is learned 

from a tutor while they are young [10,35,36]. Song motifs are also grouped into larger structures 

called bouts, which consist of multiple repetitions of motifs [10,35,60]. Depending on the 

definition used, bouts can include a short, repeated vocalization that typically precedes the first 

motif of the bout. For the purpose of the analysis done, the start of the bout is explicitly defined to 

be the start of the first motif in that bout. This is due to the focus of understanding the correlation 

between LFP and learned motor sequences. Beyond the syllables of the motif male zebra finch 

may have an additional syllable or sequence of syllables that they will optionally insert between 

successive repetitions of motifs. This is called a “connector” [60] or intra-motif note. In our 

recordings, both z017 and z020 had intra-motif notes. As z007 did not have any intra-motif notes, 
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and therefore had a more stereotyped song, this bird will be used for all of the empirical figures 

shown. 

A custom template matching algorithm written in Python was used to find potential 

instances of vocal activity (using an exemplar motif as the template); these instances were then 

curated manually to rule out false positives [62]. The curated motif start times were grouped into 

larger time segments that ensured that the gap between each motif was no greater than 20 seconds 

(Figure 2.2B). These chunks of time are subsequently referred to as vocally active periods (VAP). 

These VAPs were then manually labeled using the Praat speech analysis software [64]. Vocal 

events were segmented by hand (Figure 2.2C) and labeled based on identity. There is a unique 

label for each individual syllable and introductory note (if the bird demonstrated one). All other 

male vocalizations were grouped together and labeled as a call. Calls are short, simple 

vocalizations that are produced by both sexes and which mostly do not have learned components 

[36]. There were also two labels for silence in these VAPs: one for the gaps between song syllables, 

and another for silence not during song in the VAP. 
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Figure 2.2: Temporal structure of vocal behavior.  
(A) Schematic showing the intermittent occurrence of vocally active periods (VAPs, black bar) at sporadic intervals 
throughout the first hour of a multiple-hours-long continuous recording session of one male zebra finch (z007). (B) 
Zoomed-in view of one 25-second-long VAP comprising several bouts, denoted by light-blue rectangles above the 
sound pressure waveform and corresponding spectrogram. (C) Zoomed-in view of the first bout in segment (B) 
showing introductory notes, typically repeated a variable number of times prior to the start of the bout and labeled as 
‘’'; other vocalizations not part of the courtship song, labeled ‘C’; and syllables comprising the courtship song, labeled 
‘1’, ’2’, ‘3’, ‘4’, and ‘5’, based on their sequential order in the motif. 
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Figure 2.3: State Diagram of All Subjects Observed Song Behavior during High Yield 
Days. 
(A) Schematic showing the vocalization structure of subject z007’s song. (B) Schematic showing the vocalization 
structure of subject z020’s song, including its intra-motif note syllable 4. (C) Schematic showing the vocalization 
structure of subject z017’s song, including both of its intra-motif notes, syllable 6 and 7.  For all three diagrams the 
green arrow represents the transition into the stereotyped motif song behavior; this sequence is underlined by a black 
bracket. The red arrow indicates the termination of the repeated motif sequence and the end of the bout.  
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Table 2.2: Detailed Description of available labeled data 
 

Bird ID Date # of VAPs Duration (hr. min. sec.) # of Autodetected 
Motifs 

z020 day-2016-06-02 6 5 hr. 13 min 9.092 sec 34 

z020 day-2016-06-03 27 7 hr. 32 min 18.526 sec 113 

z020 day-2016-06-04 14 7 hr. 43 min 43.603 sec 24 

z020 day-2016-06-05 15 3 hr. 9 min 32.552 sec 85 

z020 day-2016-06-06 9 2 hr. 40 min 39.42 sec 44 

z007 day-2016-09-07 10 2 hr. 32 mins 46.24 sec 37 

z007 day-2016-09-09 5 2 hr. 19 min 5.739 sec 19 

z007 day-2016-09-10 14 2 hr. 13 min 26.45 sec 71 

z007 day-2016-09-11 20 5 hr. 14 min 40.959 sec 92 

z007 day-2016-09-12 11 5 hr. 27 min 7.001 sec 44 

z007 day-2016-09-13 5 1 hr. 18 min 5.539 sec 60 

z017 day-2016-06-19 18 8 hr. 38 min 29.42 sec 97 

z017 day-2016-06-21 16 10 hr. 8 min 10.959 sec 76 
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Table 2.3: Behavior of Subject z007 during High Yield Days 
  

z007 

Day 1 

Sylla
ble 

# of 
Instances 

Duration (ms.) +/- 
std 

Start within Motif relative to First Syllable (ms.) +/- 
std 

1 72 100.084 +/- 3.558 - 

2 72 55.406 +/- 2.877 125.694 +/- 3.101 

3 71 164.915 +/- 3.296 221.830 +/- 4.087 

4 71 120.870 +/- 2.654 448.069 +/- 6.111 

5 71 53.958+/- 2.620 604.796 +/- 7.754 

I 157 53.520+/- 4.662 - 

Day 2 (Highest Yield Day) 

Sylla
ble 

# of 
Instances 

Duration (ms.) +/- 
std 

Relative Start within Motif (ms.) 

1 100 102.532 +/- 6.561 - 

2 100 57.612 +/- 7.598 127.509 +/- 6.525 

3 100 167.799 +/- 8.020 224.254 +/- 8.082 

4 100 124.418 +/- 5.822 452.354 +/- 9.369 

5 98 55.548 +/- 4.489 611.310 +/- 9.780 

I 178 53.621 +/- 6.870 - 
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Table 2.4: Behavior of Subject z020 during High Yield Days 
  

z020 

Day 1 (Highest Yield Day) 

Sylla
ble 

# of 
Instances 

Duration (ms) +/- 
std 

Start within Motif relative to First Syllable (ms) +/- 
std 

1 160 38.882 +/- 4.716 - 

2 160 132.902 +/- 8.230 65.039 +/- 5.053 

3 160 49.861 +/- 5.099 203.551 +/- 10.469 

4 91 110.964 +/- 3.476 347.219 +/- 23.193 

I 235 42.081 +/- 5.792 - 

Day 2 

Sylla
ble 

# of 
Instances 

Duration (ms) +/- 
std 

Relative Start within Motif (ms) +/- std 

1 109 39.887 +/- 6.139 - 

2 109 132.925 +/- 4.865 67.670 +/- 5.01 

3 109 50.257 +/- 5.011 206.310 +/- 4.985 

4 75 111.741 +/- 6.112 348.720 +/- 12.329 

I 191 46.922 +/- 9.378 - 
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Table 2.5: Behavior of Subject z017 during High Yield Days 
 

z017 

Day 1 (Highest Yield Day) 
 

Syllable 
# of 

Instances 
 

Duration (ms) +/- std 
 
Start within Motif relative to First Syllable (ms) +/- std 

1 97 50.692 +/- 5.341 - 

2 97 57.389 +/- 6.629 73.109 +/- 5.061 

3 97 117.752 +/- 7.757 157.192 +/- 7.368 

4 97 106.304 +/- 5.832 307.916 +/- 9.093 

5 97 127.465 +/- 4.870 420.749 +/- 9.343 

6 97 154.392 +/- 6.617 591.343 +/- 13.956 

7 52 72.894 +/- 8.067 809.046 +/- 21.541 

Day 2 
 

Syllable 
# of 

Instances 
 
Duration (ms) +/- std 

 
Relative Start within Motif (ms) +/- std 

1 84 49.162 +/- 6.525 - 

2 84 51.217+/- 9.207 75.058 +/- 6.447 

3 86 114.807 +/- 15.198 155.762 +/- 12.082 

4 83 106.109 +/- 8.912 306.191 +/- 18.28 

5 82 127.825 +/- 11.710 420.302 +/- 22.832 

6 66 154.634+/- 11.803 584.710 +/- 14.729 

7 41 68.696 +/- 8.431 803.838 +/- 26.629 
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2.3.1   BirdSongToolbox 
To leverage the behavioral annotations for contextual analysis of their synchronously 

recorded neural activity, custom Python software was developed [BirdSongToolbox]4. This 

software added additional labels to the hand labels based on their sequence and context within the 

larger bout structure (e.g., first or last motif in bout). Labeled vocalization segmentation times 

were adjusted to the proper sampling rate for the downsampled neural data using this same 

software. Finally, the software used these additional contextual labels to select particular event 

times to align both vocal and neural data that fit certain criteria matching the particular vocalization 

of interest. 

 BirdSongToolbox is designed to take in a dictionary that describes all annotated vocal units 

for a particular subject. This dictionary includes information about what type of vocalization the 

annotation refers to; i.e. ‘part of song’, ‘call’, or ‘introductory note’.  For vocalizations that are 

part of the song there is an additional indication of whether they are part of the stereotyped motif 

or an intra-motif note. The software then reviews the sequence of vocalizations and groups them 

into hierarchical labels based on the song sequence rules inferred from the subject specific 

dictionary. The base class for these annotations are designed specifically for the song structure of 

Zebra Finches, however it can be expanded to work with songbirds whose song structure is more 

complicated. This agnostic approach allows for a flexible software that can quickly be adapted for 

multiple subjects with little user intervention and can be expanded as the burgeoning songbird BCI 

field expands its repertoire of songbird species studied. 

 Although originally intended to be applied to annotated birdsong data, the species agnostic 

design of BirdSongToolbox can potentially be expanded to work with human speech research to 

 
4 BirdSongToolbox and its documentation are available on Github.  
https://github.com/Darilbii/BirdSongToolbox  



Chapter 2: Characterization of HVC LFP 

 27 

enable neurophysiology and neural engineering studies. This would be accomplished by using a 

dictionary derived from the language of focus and using techniques from natural language 

processing to create a class that would create relevant hierarchical labels. BirdSongToolbox’s 

indexing functionality would be the real utility to researchers in this approach. Human Speech 

Researchers would be able to study free vocal behavior in humans yet have the capability to index 

both the recorded audio and neural activity data to conduct traditional neural engineering analysis. 

 

2.4   Time series power spectral analysis of LFP during song 
production 
2.4.1   Time series power spectrum 

Spectrograms were calculated by first filtering the data with 100 partially overlapping 

narrow frequency bands that were equal width in log-space. These filtered time series were Hilbert-

transformed to extract the analytic amplitude at each time point. Each narrowband amplitude time 

series was then normalized by the mean of that frequency band over the entire duration of its VAP. 

 
2.4.2   Cross trial z-scored ratings of averaged spectrograms  

The cross trial z-scored ratings of averaged spectrograms was calculated by first mean 

centering each frequency by its trial-wise mean  

𝒔#(𝒇, 𝒕, 𝒏) = 𝒔(𝒇, 𝒕, 𝒏) 	−	 𝟏
𝑻∗𝑵

∑ ∑ 𝒔(𝒇, 𝝉,𝒎)𝒕
𝝉'𝟏

𝑵
𝒎'𝟏     (1) 

Where s(f,t,n) represents every time, t, frequency, f, sample for each of the trials, n, spectrogram 

which were averaged in the manner used to create Fig 4. The mean of each time-frequency sample 

was then divided by the standard deviation of its time-frequency sample across trials. 

𝑺(𝒇, 𝒕) = 	
𝟏
𝑵
∑ 𝒔+(𝒇,𝒕,𝒏)𝑵
𝒏$𝟏

𝒔𝒕𝒅𝒆𝒗𝒏4𝒔+(𝒇,𝒕,𝒏)5
     (2) 
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This approach calculates a z-score of each time-frequency mean to evaluate how well it represents 

that result across all trials. The closer to zero the value the more accurately it reflects the spectral 

change across all renditions of the motif. The greater in absolute magnitude the value the more it 

is above or below the norm across trials. A value of +/-2 is a approximately to within a 95% 

confidence interval for all trials values. 

2.4.3   Song-related LFP spectral changes in HVC  
 Figure 2.4A illustrates the spectrotemporal characteristics of the LFP amplitude during the 

preparation and production of bird song, with an exemplar single trial time-varying power spectral 

density (PSD) during the course of three separate bouts. For each frequency, power is scaled to 

percentage of the mean amplitude during the respective VAP (see section 2.4.1). Through visual 

inspection of individual trials, relative to the post-bout period we noted a broadband increase in 

power in all frequencies above roughly 50 Hz prior-to and during vocal production (Figure 2.3). 

This occurs simultaneously with rhythmic changes in frequencies below roughly 50Hz (i.e. bout 

aligned increases and decreases in amplitude). When assessing single trials, we noted that changes 

in LFP amplitude appeared to correspond with each instance of vocal behavior, including non-

learned portions such as introductory notes.  
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Figure 2.4:  Variation in HVC LFP power correlate with vocal behavior.  
(A) Normalized spectrogram (bottom) of LFP activity from one representative channel (see section 2.4.1   Time 
series power spectrum) aligned to the free vocal performance of a male zebra finch (z007) during the production 
of three separate bouts. Each frequency is scaled to its percentage of the mean amplitude during the respective VAP. 
Above the spectrogram is the z-scored power of the 50-200 Hz band smoothed with a 50ms rolling mean window 
aligned to the same behaviors. Colored bars above the spectrum annotate the vocal behavior, with color representing 
a distinct syllable with the same color-coding as Figure 2.2. (B) Normalized spectrogram (bottom) from the same 
representative channel as (A) averaged across multiple renditions of similar bouts (n=27, top) aligned to the start of 
the first motif in the bout. (C) As in (B) but aligned to the end of the last motif in the bout. Above each is a behavioral 
raster showing the time course of the behavior being averaged (n=27 bouts). No dynamic-time warping was used, and 
all motifs were from the highest yield day for the subject. To ensure the start and end of the bout are unique time 
periods, only bouts with more than one motif in duration were used. Behaviorally inconsistent bouts were excluded 
for clarity of visualization; including them does not qualitatively alter the result. 
 

To evaluate the consistency of these changes in amplitude, we used the one-sided z-test to compare 

the distributions of power values during vocalizations to the distribution of power values during 

silence. A statistically significant increase in power for frequency bands above 50 Hz was seen 

across most, if not all, channels for all but one of the high yield days for z020 (Table 2.6 and Table 

2.7). Changes in amplitude for frequency bands below 50 Hz were more nuanced, with no 
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consistent trend across subjects; however, frequency changes tended to be consistent across days 

for two of the birds, particularly z017 and z007 (Table 2.6 and Table 2.7).  

 

Table 2.6: Characteristic Increases in Power in Narrowband Frequencies during Song 
Across Channels.  
The percentage of channels whose distribution of power values were greater during periods of vocal activity than 
during silence. To determine statistical significance between the two distributions the one-sided z-test was used with 
each frequency and channel pair. The percentages shown are the number of good channels that still were significant 
after using the Benjamini-Hochberg False Discovery Rate (p<0.05 and q<0.05). 
 

  
Percentage of Channels with Increased Power During Vocally Active Periods  

(After FDR Correction) 

Bird_ID Date 4-8 Hz 8-12 Hz 25-35 Hz 35-50 Hz 50-70 Hz 80-200 Hz 

z020 day-2016-06-03 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

z020 day-2016-06-05 53.33% 26.66% 26.66% 26.66% 40.00% 26.66% 

z007 day-2016-09-10 70.00% 76.66% 86.66% 100.00% 100.00% 100.00% 

z007 day-2016-09-11 73.33% 80.00% 100.00% 100.00% 100.00% 100.00% 

z017 day-2016-06-19 0.00% 6.25% 62.50% 68.75% 87.50% 100.00% 

z017 day-2016-06-21 0.00% 6.25% 81.25% 81.25% 100.00% 100.00% 
 

Table 2.7: Characteristic Decrease in Power in Narrowband Frequencies during Song 
Across Channels.  
The percentage of channels whose distribution of power values were smaller during periods of vocal activity than 
during silence. To determine statistical significance between the two distributions, the one-sided z-test was used with 
each frequency and channel pair. The percentages shown are the number of good channels that still were significant 
after using the Benjamini-Hochberg False Discovery Rate (p<0.05 and q<0.05). 
 

  
Percentage of Channels with Decreased Power During Vocally Active Periods  

(After FDR Correction) 

Bird_ID Date 4-8 Hz 8-12 Hz 25-35 Hz 35-50 Hz 50-70 Hz 80-200 Hz 

z020 day-2016-06-03 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

z020 day-2016-06-05 40.00% 53.33% 40.00% 60.00% 46.60% 60.00% 

z007 day-2016-09-10 30.00% 19.99% 3.33% 0.00% 0.00% 0.00% 

z007 day-2016-09-11 26.66% 19.99% 0.00% 0.00% 0.00% 0.00% 

z017 day-2016-06-19 100.00% 93.75% 31.25% 31.25% 0.00% 0.00% 

z017 day-2016-06-21 100.00% 87.75% 6.25% 0.00% 0.00% 0.00% 
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The spectral structure of the LFP activity immediately prior to and during the production 

of learned song is highly consistent across bouts, as suggested when viewed across time for 

multiple bouts (Figure 2.4A) and when they are aligned to their initiation and termination (Figure 

2.4B,C and Figure 2.5). Visualizations of activity around the times of bout initiation and 

termination were calculated by aligning to the start of the first syllable of the first motif in the bout 

(initiation) and the start of the last syllable of the last motif of the bout (termination) for all bouts 

recorded over the course of a single day. The aligned neural activity was then averaged for each 

time-frequency sample. These spectral structures were validated as a strong summary 

representation of the activity during the transition into and out of the stereotyped motif, despite 

trial-by-trial variability, by a modified z-score method (Figure 2.6) (see section 2.4.2   Cross trial 

z-scored ratings of averaged spectrograms). As with the single trial time-varying PSD, there is an 

increase in amplitude for all frequencies above roughly 50 Hz (Figure 2.5 and Figure 2.7).  
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Figure 2.5: Song-correlated modulation of LFP power across subjects and days.  
Averaged spectrotemporal power activity (see section 2.4.1   Time series power spectrum)  aligned to the start of 
the first motif in the bout, left, and the last motif in the bout, right, for each recording day not shown in Fig 4. Shown 
above all results is a behavioral raster showing the time course of the behavior being averaged. (A) The averaged 
results for the second highest-yielding day, designated Day 1, for z007 (n=25 Bouts). The other subjects’ results are 
show as follows; (B) z020’s first high yield day (n=29 Bouts), (C) z020’s second high-yield day (n=25 Bouts), (D) 
z017’s first high-yield day (n=27 Bouts), and (E) z017’s second high-yield day (n=21 Bouts). As z017 would end its 
bout on either syllable ‘5’ or ‘6’, the end of the bout was aligned to syllable ‘5’. No dynamic-time warping was used. 
To ensure the start and end of the bout are unique time periods, only bouts with more than one motif in duration were 
used. Behaviorally inconsistent bouts were excluded for clarity of visualization; however, results are consistent when 
including them in the analysis.  
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Figure 2.6: Evaluation of consistency across trials of song correlated modulation of LFP 
power across subjects and days.  
Cross trial z-scored ratings of average spectrograms (see section 2.4.2   Cross trial z-scored ratings of averaged 
spectrograms ) aligned to the start of the first motif in the bout, left, and the last motif in the bout, right, for each 
recording day. The z-score metric normalizes the modulation in LFP power at each frequency and time point by its 
standard deviation across trials. Thus the metric quantifies the number of standard deviations, as measured across 
trials, between the mean LFP power at each timepoint/frequency and the mean LFP power across the VAP. Shown 
above all results is a behavioral raster showing the time course of the behavior being evaluated. (A) The z-scored 
results for the first high yield day, designated Day 1, for z007 (n=25 Bouts) (B) The z-scored results for the second 
high-yield day, designated Day 2, for z007 (n=27 Bouts). The other subjects’ results are shown as follows; (C) z020’s 
first high yield day (n=29 Bouts), (D) z020’s second high-yield day (n=25 Bouts), (E) z017’s first high-yield day 
(n=27 Bouts), and (F) z017’s second high-yield day (n=21 Bouts). As z017 would end its bout on either syllable ‘5’ 
or ‘6’, the end of the bout was aligned to syllable ‘5’. No dynamic-time warping was used. To ensure the start and end 
of the bout are unique time periods, only bouts with more than one motif in duration were used. Behaviorally 
inconsistent bouts were excluded for clarity of visualization; however, results are consistent when including them in 
the analysis 
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Figure 2.7: Song correlated changes in power of 50-200 Hz band across days and subjects.  
Z-scored changes in power of the 50-200 Hz band aligned to the start of the first motif in the bout, left, and the last 
motif in the bout, right, for each high-yield recording day. Black traces in each subpanel show the mean, and the green 
shading is the standard deviation. The end of the bout, and the subsequent drop in power are annotated by a black 
arrow. Above all results is a behavioral raster showing the time course of the behavior being averaged. (A) The results 
of the first-high yield day of z007 (n=27 Bouts). (B) The results for the second high-yield day for z007 (n=25 Bouts). 
The other subjects results are shown as follows; (C) z020’s first high-yield day (n=29 Bouts), (D) z020’s second high-
yield day (n=25 Bouts), (E) z017’s first high yield day (n=27 Bouts), and (F) z017’s second high-yield day (n=21 
Bouts). As z017 ends its bout on either syllable ‘5’ or ‘6’, both types of bout endings are shown separately. No 
dynamic-time warping is used. To ensure that the start and end of the bout are unique time periods, only bouts with 
more than one motif in duration are used. Behaviorally inconsistent bouts are excluded for clarity of visualization; 
however, results are consistent when including them in the analysis. 
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The amplitude of these high frequencies were found to significantly decrease during the 

100 millisecond window immediately after the end of the bout for most if not all channels for all 

days; with the second high-yield day of z020 being the only exception (Table 2.8). Within subject, 

there was strong stereotyped structure for frequency bands below 50 Hz arising from co-

occurrences in changes from both phase and amplitude. Figure 2.8 and Figure 2.9 Fig illustrate 

this stereotypy of time correlated spectral structure in HVC as it relates to the preparation and 

production of bird song. No dynamic time warping was used to align the behavior.  

As in previous work [37,39], we found a strongly stereotyped 25–35 Hz oscillation that 

was consistent across renditions of motifs (Figure 2.8 and Figure 2.9). Consistent with common 

usage in neuroscience literature [57,58], by oscillation we refer to energy in the specified frequency 

range. In addition to this previously reported frequency band, structured activity was observed in 

several frequency ranges that are commonly studied in mammalian literature, namely 4–8 Hz, 8–

12 Hz, and 35–50 Hz. This structure, observed to be stable across trials, arises from fine time-

alignment of both phase and amplitude, and occurred over times-scales longer than a single cycle 

for a given frequency below approximately 50 Hz (Figure 2.8 and Figure 2.9). These oscillations, 

with consistency in both phase and amplitude, were observed to start just prior to song onset and 

to end immediately after vocal production stopped (Figure 2.9). Similar patterns emerged in each 

of the birds and within birds across days (Figure 2.8 and Figure 2.9) [39]. This finding led us to 

ask: What frequencies in the LFP might carry information about the preparation and production of 

song through either phase or amplitude changes? 
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Figure 2.8: Stereotyped song correlated rhythmic changes in LFP across days and subjects 
(single trial).  
Single-trial z-scored LFP traces of four narrowband frequency bands aligned to the start of the first motif in the bout, 
left, and the last motif in the bout, right, for each high-yield recording day. Each trace is colored its respective 
narrowband frequency. Shown above all results are behavioral rasters showing the time course of the behaviors being 
shown. The black line in each row below the behavior shows the time point the trials are aligned to, and the blue line 
denotes the time prior to (left) or after (right) one full cycle of the highest frequency in the narrowband frequency. (A) 
The results of the first high-yield Day of z007 (n=27 Bouts) (B) The results for the second high-yield day for z007 
(n=25 Bouts). The other subjects’ results are shown as follows; (C) z020’s first high-yield day (n=29 Bouts), (D) 
z020’s second high-yield day (n=25 Bouts), (E) z017’s first high-yield day (n=27 Bouts), and (F) z017’s second high-
yield day (n=21 Bouts). As z017 would end its bout on either syllable ‘5’ or ‘6’, the end of the bout was aligned to 
syllable ‘5’. No dynamic-time warping was used. To ensure that the start and end of the bout are unique time periods, 
only bouts with more than one motif in duration were used. Behaviorally inconsistent bouts were excluded for clarity 
of visualization; however, results are consistent when including them in the analysis. 
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Figure 2.9: Stereotyped song correlated rhythmic changes in LFP across days and subjects 
(mean and standard deviation).  
The mean and standard deviation of the z-scored LFP traces of four narrowband frequency bands aligned to the start 
of the first motif in the bout, left, and the last motif in the bout, right, for each high-yield recording day. Each row is 
colored its respective narrowband frequency. Above all results is a behavioral raster showing the time course of the 
behaviors being shown. The black line in each row below the behavior shows the time point that the trials are aligned 
to, and the blue line denotes the time prior to (left) or after (right) one full cycle of the highest frequency in the 
narrowband frequency. (A) The results of the first high yield day of z007 (n=27 Bouts) (B) The results for the second 
high-yield day for z007 (n=25 Bouts). The other subjects’ results are shown as follows; (C) z020’s first high-yield day 
(n=29 Bouts), (D) z020’s second high-yield day (n=25 Bouts), (E) z017’s first high-yield day (n=27 Bouts), and (F) 
z017’s second high-yield day (n=21 Bouts). As z017 would end its bout on either syllable ‘5’ or ‘6’, the end of the 
bout was aligned to syllable ‘5’. No dynamic-time warping was used. To ensure that the start and end of the bout are 
unique time periods, only bouts with more than one motif in duration were used. Behaviorally inconsistent bouts were 
excluded for clarity of visualization, however results are consistent when including them in the analysis.  
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2.5   Unsupervised Decomposition of HVC LFP 
2.5.1   Principal spectral decomposition 
 Following Human ECoG studies [65], a principal component method was applied to find 

consistent changes in LFP spectrum related to motor-vocal behavior. This method required 

calculation of the power spectral density (PSD) for windows of time during either vocal activity 

or inactivity. Although the behavioral changes in birdsong are on a smaller timescale (20-100 ms) 

than human limb movements, to keep methods consistent between studies the same window size 

of 1 second was used for the trial length, 𝜏6.   

PSDs of vocally active trials centered on song activity, which included introductory notes 

and calls, were analyzed alongside trials of neural activity centered within larger periods of vocal 

inactivity longer than 2 seconds in duration. All PSDs were calculated using the multitaper method 

with the time_frequency.psd_array_multitaper function from the MNE-Python software package 

[63]. The frequency range was set from 0 to 200 Hz with 14 orthogonal slepian tapers. Each PSD, 

𝑃3𝑓, 𝜏65,  was individually normalized using two steps: each spectral sample was elementwise 

divided by the mean across the ensemble, at each frequency, and then the log was taken. This 

centers the data around the log of the mean spectrum. 

𝑷3𝒇, 𝝉𝒒5 =𝒍𝒏 𝒍𝒏	 8𝑷3𝒇, 𝝉𝒒59 	−𝒍𝒏 𝒍𝒏	 :
𝟏
𝑵𝒒
∑ 𝑷3𝒇, 𝝉𝒑5
𝑵𝒒
𝒑'𝟏 ;	    (3) 

The label 𝑞 refers to the times centered within periods of high vocal activity and vocal inactivity 

(silence). The number of instances, or trials, per class were balanced to be equal; their combined 

total number of PSDs is denoted by 𝑁6. The order of the trials was explicitly ignored, meaning 

that they together represent a balanced ensemble of 𝑁6 independent measurements of the power 

spectrum during the two conditions. The covariance matrix 𝐶3𝑓, 𝑓?5 between frequencies of these 

normalized PSDs were calculated: 
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𝑪3𝒇, 𝒇A5 = ∑ 𝑷B3𝒇, 𝝉𝒒5𝑷B3𝒇A, 𝝉𝒒5	
𝝉𝒒     (4) 

The covariance measure is centered with respect to the log of the mean spectrum. The eigenvalues, 

𝜆:, and eigenvectors, 𝑒:, of this matrix elucidate common features during song production. These 

eigenvectors, 𝑒:, are referred to as “principal spectral components” (PSCs) and they have been 

described in prior literature to reveal which frequencies vary together [65].  

2.5.2   Cosine Similarity.  
Cosine similarity is a measure of similarity between two non-zero vectors of an inner 

product space. For the purpose of comparing the principal spectral components, cosine similarity 

evaluates the orientation, not magnitude, of two vectors in relation to one another. To calculate 

this, one takes the inner product of two unit vectors, or two vectors that have each been normalized 

to have a length Of 1. 

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 = 𝜜 · 𝜝 = ‖𝑨‖‖𝑩‖ 𝐜𝐨𝐬𝜽	    (5) 

To calculate the cosine similarity for the PSCs we must take the dot product between two 

unit vectors. As the PSCs are all eigenvectors calculated using PCA they are already unit vectors 

and their sign can thus be flipped without altering their information. A template of each PSC is 

calculated by taking the mean of the PSCs across all good channels after all of their signs have 

been aligned. This template PSC is then normalized to have a length of one by dividing it by its 

norm. The cosine similarity matrix is then calculated by taking the dot product of these two unit 

vectors. This is expressed below with the template PSC represented as T and the PSC symbolized 

by P from a selected channel, c. 

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 = 𝑷𝒄 ·
𝜯
‖𝜯‖

     (6) 



Chapter 2: Characterization of HVC LFP 

 40 

2.5.3   Decoupling LFP power-spectrum reveals song related spectral 
features 

A spectral decomposition technique previously applied to human motor cortex data [65] 

was used to determine which frequencies’ amplitude changes were correlated with the production 

of birdsong. As suggested in Figure 2.10 and supported by Table 2.8, during times of vocal activity 

for all birds we observe an increase in power aggregated across higher frequencies that are in a 

range often referred to as “High Gamma” [66,67]. The frequency ranges for “High Gamma” vary 

in the literature, but Miller et. al. described it as 80-200Hz. Following the steps of the spectral 

decomposition approach described in the methods of Miller et. al., the principal component 

decomposition of these PSDs found principal spectral components (PSC) similar to those 

previously reported in [65] (Figure 2.9B & C). The PSC’s shown in Figure 2.10 are results from 

one channel, which was representative of all channels for each subject. The first PSC, or the most 

significant principal component, in Miller et al. is characterized for having most of its element 

magnitudes with the same sign and being consistently non-zero, with values approaching a 

constant across frequencies. This was subsequently described as reflecting a broad spectrum 

increase in power most clearly visible in High Gamma. 
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Figure 2.10: Naïve decomposition of LFP power spectra reveals song correlated features.  
Representative results from a single electrode channel for each of the three subjects during its highest yield day. (A) 
Averaged power spectra during trials centered in 1-second intervals where the bird either initiates a motif, called 
vocally active (light blue), or does not vocalize, called vocally inactive (purple). The 80–200 Hz, or ‘High Gamma’ 
band, is shaded in grey. (B) The power spectra in Figure 2.4A are normalized and naively decomposed into PSCs (see 
section 2.5.1   Principal spectral decomposition). The elements of the first principal spectral component (1st 
PSC, blue) is non-zero across all frequencies, likely due to the power law in LFP PSDs. The 2nd PSC, golden-yellow, 
peaks between 0 and 10 Hz. The 3rd PSC, burgundy, peaks between 10 and 30 Hz, but has variations across birds that 
extend into 50Hz. As the PSCs are all eigenvectors, their signs do not matter when interpreting them. This structure 
is largely consistent across channels and across days. Note that the other PSCs are not shown. (C) Projection of both 
the vocally active and vocally inactive trials onto the first three PSCs for the same channels in (A) and (B). The color 
coding is the same as (A). 
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Table 2.8: Characteristic Decrease in High Gamma Power After Bout Termination Across 
Channels.  
The percentage of channels whose distribution of power values for 80-200 Hz, or High Gamma, were smaller during 
the 100ms silent period after the bout ends than the 100ms period prior to the end of the bout. To determine statistical 
significance between the two distributions, the one-sided Welch’s t-test was used for each channel. The percentages 
shown are the number of good channels that still were significant after using the Benjamini-Hochberg False Discovery 
Rate (p<0.05 and q<0.05). 
 
  Percentage of Channels with Decreased Power Immediately After the Bout  

(After FDR Correction) 
Bird_ID Date Primary Bout Ending Syllable Alternative Bout Ending Syllable 

(z017 Syllable 6) 
z020 day-2016-06-03 100% (n= 15/15 Channels) — 

z020 day-2016-06-05 19.99% (n= 3/15 Channels) — 

z007 day-2016-09-10 100% (n= 30/30 Channels) — 

z007 day-2016-09-11 100% (n= 30/30 Channels) — 

z017 day-2016-06-19 100% (n= 16/16 Channels)   93.75% (n= 15/16 Channels) 

z017 day-2016-06-21 100% (n= 16/16 Channels)   93.75% (n= 15/16 Channels)  

 

In our analysis the most consistent PSC, which is the first principal component, was a 

spectrum wide-amplitude change that was consistent across channels and subjects (Figure 2.11A 

Fig). The second PSC in Miller et al. peaked in the “alpha/low beta range”—alpha is described as 

8-12 Hz and beta is described as 12-30 Hz—which mirrors PSC 3 found across subjects and 

channels in zebra finches (Figure 2.11C Fig) [65]. These frequency bands in humans have been 

proposed to reflect the resting rhythms that decrease when cortical areas are activated [68].  
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Figure 2.11: Summary of principle spectral component analysis.  
(A) The 1st Principle spectral components for every channel (light grey) with the mean across channels in Blue for all 
High Yield Days for each subject. (B) The 2nd Principle spectral components for every channel (light grey) with the 
mean across channels (golden-yellow) for all High Yield Days for each subject. (C) The 3rd Principle spectral 
components for every channel (light grey) with the mean across channels (burgundy) for all High Yield Days for each 
subject. 
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The characteristic structure of each PSC was found to be consistent across subjects, 

channels, and days using the cosine similarity metric (see section 2.5.2) (Figure 2.12 Fig). Cosine 

similarity is a measure of the degree of similarity of two non-zero vectors of an inner product 

space. It evaluates their orientation—and not their magnitude—with two vectors that have the 

exact same orientation having a value of 1 and two vectors that are orthogonal to one another 

having a value of 0. In addition, with this metric we also found that the similarity of each PSC to 

another across subjects was greater than was the case with a different PSC (Figure 2.12E-G Fig). 

Although the PSCs were calculated without explicit knowledge of distinct vocally active and 

inactive time periods, the first three PSCs show that the power spectrum during vocal production 

is separable from vocally inactive periods (Figure 2.10C). This separation between behavioral 

states was evaluated using the sensitivity index, or d’, between the two behavior states; each 

channel was analyzed independently (Figure 2.13A). The sensitivity index for each PSC was 

compared to the bootstrapped distribution of sensitivity indexes (n = 20,000) when the state labels 

were shuffled (Figure 2.13); the Benjamini-Hochberg False Discovery Rate was used to account 

for multiple comparisons across all of the channels (Table 2.9). This separation without explicit 

knowledge of the state labels suggests that these frequencies could be used to detect the onset of 

vocal production. 
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Figure 2.12: Similarity of principal spectral components across channels, days and 
subjects.  
Boxplot of the distribution of cosine similarity metric values between a template, which is created by taking the mean 
across the sign-aligned PSC of all channels for a specific PSC. The cosine similarity matrix ranges from 1 and -1, 
however, the absolute value of the metric is shown (see section 2.5.2). (A) The cosine similarity of each channel’s 
PSC to the same recording day’s template PSC for both high-yield days for subject z007. (B) The cosine similarity of 
each channel’s PSC to the same recording day’s template PSC for both high-yield days for subject z020. (C) The 
cosine similarity of each channel’s PSC to the same recording day’s template PSC for both high-yield days for subject 
z017.  (D) The cosine similarity of each channel’s PSC from the second high-yield day with the template of the PSC 
from the first high-yield day. (E)  All templates for PSC 1 compared either with the PSC 1 for the other two birds, 
same, or the PSC for one  of the other PSCs for the other two birds, other. (F) All templates for PSC 2 compared either 
with the PSC 2 for the other two birds, same, or the PSC for one of the other PSCs for the other two birds, other. (E) 
All templates for PSC 3 compared either with the PSC3 for the other two birds, same, or the PSC for one  of the other 
PSCs for the other two birds, other. 
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Figure 2.13: Separability of Active vs. Inactive trials using principal spectral components.  
(A) Box plots of the sensitivity indexes (d’) for the separation of the Active and Inactive trials for all channels using 
the first 9 PSCs. The plots show the distribution of values for both high yield days for all three subjects. (B) Blox plots 
of the p-values of the sensitivity indexes shown in (A) when tested against a bootstrapped shuffle control (N=20,000 
Shuffles).  
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Table 2.9: Sensitivity of Channels as Assessed by Permutation Test 
 

 
Number of Channels with Sensitivity Index Significantly Greater than the Permutation 

Test Based Control After FDR Correction (N=20,000 Shuffles) 
 z007 z020 z017 

 day-2016-09-10 day-2016-09-11 day-2016-06-03 day-2016-06-05 day-2016-06-19 day-2016-06-21 

PSC 1 30 Channels 
(100%) 

30 Channels 
(100%) 

15 Channels 
(100%) 

7 Channels 
(46.67%) 

6 Channels 
(37.5%) 

5 Channels 
(31.25%) 

PSC 2 17 Channels 
(56.67%) 

26 Channels 
(86.67%) 

13 Channels 
(86.67%) 

12 Channels 
(80%) 

16 Channels 
(100%) 

15 Channels 
(93.75%) 

PSC 3 12 Channels 
(40%) 

19 Channels 
(63.33%) 

15 Channels 
(100%) 

13 Channels 
(86.67%) 

15 Channels 
(93.75%) 

13 Channels 
(81.25%) 

PSC 4 4 Channels 
(13.33%) 

3 Channels 
(9.99%) 

15 Channels 
(100%) 

12 Channels 
(80%) 

12 Channels 
(75%) 

15 Channels 
(93.75%) 

PSC 5 1 Channel 
(3.33%) 

2 Channels 
(6.67%) 

8 Channels 
(53.33%) 

10 Channels 
(66.67%) 

10 Channels 
(62.5%) 

12 Channels 
(75%) 

PSC 6 1 Channel 
(3.33%) 

2 Channels 
(6.66%) 

10 Channels 
(66.67%) 

3 Channels 
(19.99%) 

8 Channels 
(50%) 

10 Channels 
(62.5%) 

PSC 7 1 Channel 
(3.33%) 

2 Channels 
(6.66%) 

10 Channels 
(66.67%) 

6 Channels 
(40%) 

6 Channels 
(37.5%) 

8 Channels 
(50%) 

PSC 8 0 Channels 
(0%) 

2 Channels 
(6.66%) 

9 Channels 
(60%) 

8 Channels 
(53.33%) 

4 Channels 
(25%) 

5 Channels 
(31.25%) 

PSC 9 0 Channels 
(0%) 

2 Channels 
(6.66%) 

8 Channels 
(53.33%) 

4 Channels 
(26.67%) 

2 Channels 
(12.4%) 

10 Channels 
(62.5%) 

 

2.6   Phase locking of LFP during song production 

2.6.1   Computation and statistical testing of phase locking across 
renditions 

We computed the inter-trial phase coherence (ITPC) to assess trial-to-trial synchronization 

of LFP activity with respect to time-locked syllables within the motif. The ITPC is a measure of 

the phase synchronization of neural activity in a given frequency, calculated relative to critical 

event times that are repeated over an experimental paradigm. To calculate the ITPC across trials, 

for each channel, data were first filtered in 100 partially overlapping narrow frequency bands that 

were equal width in log-space. These filtered time series were then Hilbert-transformed to extract 
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the analytic phase at each time point. Then, at each time point, for each channel and frequency 

band, we calculated the phase-consistency across trials to estimate the ITPC. Here, ‘trials’ were 

defined as the start or end of a specific type of vocal event, which could be further refined by its 

context within the bout (e.g., first or last in bout). Once all instances of the event of interest were 

selected, a window of time centered on each was implemented. The ITPC for each frequency and 

time sample pair must be calculated independently. The equation for calculating the ITPC is 

described as below, for n trials, if, Fk(f, t) is the spectral estimate of trial k at frequency f and time 

sample t  

𝑰𝑻𝑷𝑪	(𝒇, 𝒕) = 	 𝟏
𝒏
∑ 𝑭𝒌(𝒇,𝒕)

|𝑭𝒌(𝒇,𝒕)|
𝒏
𝒌'𝟏 	 (7) 

where |x| represents the complex norm of x [69]. The spectral estimate, Fk(f, t), is the instantaneous 

phase of frequency f at time sample t. This was repeated for all narrow-band frequencies and time 

samples within the event window.  

The ITPC value, or resultant vector length, scales from 0 to 1, with 0 being the null 

hypothesis where phases are uniformly distributed about the polar axis and 1 being perfect 

synchrony. To determine the significance of this vector length, and to determine if it could have 

been randomly sampled from a uniform distribution by chance, p-values were calculated for each 

frequency and time sample. The mean resultant vector of the instantaneous phase across trials for 

a specific time sample, and its corresponding bootstrapped p-value, were calculated using the 

pycircstats toolbox. To enable visualization of the results for comparing ITPC values while 

accounting for all of the frequency and time sample combinations, the Rayleigh Z statistic was 

calculated. 
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2.6.1.1   Rayleigh statistic.  

The ITPC over the time length of a syllable or motif is evaluated in terms of the Rayleigh 

Z statistic and is defined as 𝑍 = A'

B
where R is the Rayleigh’s R, 𝑅	 = 	𝑛𝑟 where r is the resultant 

vector length, and n is the number of trials. P-values were estimated using the following equation 

[70–73]: 

𝑷	 = 	𝒆𝒙𝒑]^𝟏 + 𝟒𝒏 + 𝟒(𝒏𝟐 − 𝑹𝟐) 	−	(𝟏	 + 	𝟐𝒏)d     (8) 

 

2.6.1.1   Normalized sustained Rayleigh Z statistic.  

To determine which, if any, frequency bands could potentially be used as a feature to 

decode vocal behavior, a measure of how consistently significant a band stayed phase-locked was 

created. As we don’t expect the Rayleigh Z statistic across both channels and frequencies to be 

exactly the same, we wanted to understand the relative significance across birds and channels. The 

measure ranks how consistently phase-locked across time a frequency was during song production 

overall for one recording session. The mean Rayleigh Z-statistic of samples over the course of one 

oscillation for a set frequency normalized by the maximum Z-statistic value for the entire time 

period analyzed was used and will be referred to as the normalized sustained Z statistic. This 

analysis informed the frequency bands used for the classification and onset detection analysis. 

2.6.2   Syllable onset is phase-aligned to underlying LFP rhythms 
We calculated the inter-trial phase coherence (ITPC) of the spectrum (see section 2.6.1   

Computation and statistical testing of phase locking across renditions) from 2–200 Hz to determine 

which frequencies had stable song-aligned structured changes in phase. The ITPC is a measure of 

the phase synchronization of neural activity in a given frequency at a specific time sample. A 
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defining characteristic of zebra finch song is its stereotyped motif. Leveraging this stereotypy, we 

calculated the ITPC aligned to the first motif of all bouts recorded in a single day (n>28). Any LFP 

phase coherence occurring prior to song production can be attributed to the preparation of the 

subsequent vocalization. In two of the three birds, the first motif was almost always preceded by 

an introductory note. As each frequency and time sample are separate results with an attributed p-

value, they are all visualized in terms of their Rayleigh Z statistic (see section 2.6.1.1   Rayleigh 

statistic.) to allow for comparisons. By scaling the p-values of each independent ITPC result, the 

Rayleigh Z statistic provides a measure by which multiple comparisons in circular statistics can 

be accounted. Based upon the number of trials and conditions tested, a threshold value can be 

applied to the Rayleigh Z statistic to determine statistical significance. Figure 2.11A shows long-

lasting phase structure that precedes the onset of the bout by up to 100 ms in frequencies lower 

than 50 Hz (note that in this figure and in all subsequent ITPC Rayleigh Z statistic images we have 

set all non-significant times and frequencies to black based upon the appropriate threshold value 

for the condition evaluated). This consistency in phase continues during the course of the bout and 

terminates soon after the end of the bout (Figure 2.11B). Although the precise frequency ranges 

vary across subjects, the subject specific pattern present prior to bout onset and sustained 

throughout the bout was consistently observed across channels, subjects, and days [Figure 2.15].  
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Figure 2.14: LFP Inter-trial phase coherence during production of learned sequences.  
(A) ITPC of LFP aligned to the start of the first motif of the bout for bird z007 (bottom) across 
multiple renditions of similar bouts (n=27, top) aligned to the start of the first motif in the bout. 
(B) the same as (a) aligned to the end of the last motif of the bout. No dynamic-time warping was 
used. To ensure that the start and end of the bout are unique time periods, only bouts with more 
than one motif in duration were used. Behaviorally inconsistent bouts were excluded for clarity of 
visualization; however, including these bouts does not alter the result. (p<0.006 for all Rayleigh Z 
> 5; all non-black time-frequency points in this plot are above the significance threshold). (C) 
Normalized sustained Z-statistic of the ITPC for samples preceding the labeled start of the bout. 
The steps for calculating this metric are detailed in the section 2.6.1.1   Normalized sustained 
Rayleigh Z statistic.. Data reflect all bouts from both high-yield days for three birds. 
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Figure 2.15: Inter-trial phase coherence of LFP phase during production of learned 
sequences across subjects and days.  
ITPC of LFP aligned to the start of the first motif in the bout, left, and the last motif in the bout, right, for each 
recording day not shown in Fig 4. Shown above all results is a behavioral raster showing the time course of the 
behavior being averaged. (A) The averaged results for the second highest-yielding day, designated Day 1, for z007 
(n=25 bouts). The other subjects’ results are show as follows; (B) z020’s first high-yield day (n=29 bouts), (C) z020’s 
second high-yield day (n=25 bouts), (D) z017’s first high-yield day (n=27 bouts), and (E) z017’s second high-yield 
day (n=21 bouts). As z017 would end its bout on either syllable ‘5’ or ‘6’, the end of the bout was aligned to syllable 
‘5’. No dynamic-time warping was used. To ensure that the start and end of the bout are unique time periods, only 
bouts with more than one motif in duration were used. Behaviorally inconsistent bouts were excluded for clarity of 
visualization; however, results are consistent when including them in calculating the ITPC. (p<0.006 for all Z > 5 for 
all subjects and days; all non-black time-frequency pints in this plot are above the significance threshold). 
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To determine the frequencies where phase coherence is most consistent across individual 

subjects, we computed the normalized sustained Rayleigh Z Statistic (Section 2.6.1.1   Normalized 

sustained Rayleigh Z statistic.) for the two high-yield days for all subjects (Figure 2.14C). The 

frequencies that contained sustained high ITPC values across animals include the 25–35 Hz range, 

as previously established [37,39], and several other frequencies: 4–8 Hz, 8–12 Hz, 35–50 Hz, and 

50–70 Hz. These oscillations fall within well-documented frequency ranges in mammalian 

literature, namely theta (approximately 4–8 Hz), alpha (approximately 8–12 Hz),  and low gamma 

(approximately 30–70 Hz) [74]. The lower frequencies exhibited longer periods of phase 

coherence through time than did the higher frequencies. These periods occurred over several 

cycles, and they fell out of alignment faster than a full cycle once the song terminated (Figure 

2.14B and Figure 2.15). Strong phase coherence was observed throughout the production of the 

motif without the need for dynamic time warping to force motifs into alignment on a warped time 

scale (Figure 2.14 and Fig. Figure 2.15). However, when viewing the ITPC in Figure 2.14 across 

the longer time scale of the bout, it is important to note that there is considerable variation in the 

timing of individual renditions of the bout. If the dynamics of LFP phase are aligned to the time 

scale of underlying behavior, then the variation in motif timing across bouts will result in a 

reduction in ITPC at time points further away from the point of alignment. In particular, such a 

reduction will be more pronounced for higher frequencies which have shorter cycle times. 

To better understand the dynamics underlying HVC population activity within the bout, 

we examined the song-aligned LFP phase coherence in greater detail. One hypothesis, given the 

highly stereotyped spectro-temporal structure of the motif including the brief gaps between each 

syllable, is that both the vocal output and the underlying HVC dynamics are largely deterministic 
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(i.e., the observed coherence may reflect an initial, single alignment at the start of the motif, which 

endures only by virtue of the very low song-to-song variability). Alternatively, it could be possible 

that HVC population activity reflects a more tightly controlled timescale, in which the observed 

oscillations are aligned to shorter timescale vocal events such as syllables. Previous work has 

shown that local spiking activity in HVC is aligned to syllables not motif onset [55,56], however 

as LFP largely reflects postsynaptic and transmembrane currents coming into the region of the 

recording the site it is unknown whether LFP shares this temporal alignment.  

To determine whether alignment is tied to the motifs (hypothesis one), or is unique to each 

syllable (hypothesis two), a smaller scale time alignment was used. We first verified that phase-

locking was found when localized to shorter sub-components of vocalization. Syllable-specific 

polar phase analysis (Figure 2.16A) shows a strong phase preference to the onset of each syllable 

in all of the previously determined frequency bands of interest.  
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Figure 2.16  Syllable specific inter-trial phase coherence reveals phase preference to 
syllable onset.  
(A) Polar histogram of the phase for each LFP frequency band at the labeled start of all instances of a given syllable 
or the introductory note over the course of one day (Day 2), for  bird z007. The number of instances (n=100) are equal 
for all syllables and the introductory note, and is set by the syllable class with the fewest renditions. (B) ITPC resultant 
vector length, indicating the level of phase consistency across trials, for each frequency over time relative to the labeled 
start of each syllable or introductory note (0 ms) over the same instances as in (A). (C) Rayleigh Z-statistic of the 
ITPC over the same time and frequencies as (B) (p<0.007 for all Z > 5  for all syllables; all non-black time-frequency 
points in these plots are above the significance threshold). 
 
These phases were unique to each frequency band for each syllable. Similar results were seen for 

all subjects across all days (Figure 2.18–Figure 2.21). We also found the same phase preference 

to vocalization onset for the introductory note despite its huge variability in duration and structure 

beyond a single utterance. Figure 2.16C demonstrates that this stereotyped phase structure occurs 

prior to and during each vocalization and is statistically unlikely to have occurred by chance. To 

directly test the two hypotheses, we compared, relative to the onset time of the first syllable, the 

ITPC centered on onset time of each subsequent syllable to the ITPC centered on the stereotyped 

time of the same syllable (Figure 2.17). Centering on the actual labeled syllable start time yielded 

significantly stronger ITPC compared to centering on the stereotyped, or across-bout average, start 
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time for each syllable (Figure 2.18–Figure 2.21). Thus, the result of this analysis supports 

hypothesis two as the more likely description of this phase locking characteristic. 

 

 
Figure 2.17:  Phase preference to syllable onset is reflective of constitutive syllables rather 
than of the larger motif structure.  
Box plots of the differences in Rayleigh Statistic between the syllable aligned ITPC and the ITPC aligned to that same 
syllable’s stereotyped onset time within the motif. Positive differences indicate greater phase consistency at the 
syllable aligned time versus that of the stereotyped time across LFP frequencies (4–8 Hz, 8–12 Hz, 25–35 Hz, 35–50 
Hz, and 50–70 Hz). This difference was determined by first concatenating the Z statistic for each channel centered at 
the designated time point to get a vector of all partially overlapping frequencies for all channels. The vector of 
stereotyped alignment was then subtracted from the labeled onset alignment to achieve the difference for each 
frequency on every channel. This was repeated for all syllables, excluding the first, with each syllable represented by 
a specific color, as indicated. (A) Shows the results for the two high-yield days for z007, (B) shows the results for 
z020, and (C) shows the results for z017. All instances of each syllable that were preceded by the first syllable were 
used. To determine statistical significance, we used the one-sided Wilcoxon signed-rank test, with each frequency and 
channel pair. * denotes that the comparison was not statistically significant when using the using the Benjamini-
Hochberg False Discovery Rate. All other results p<0.05 and q<0.05. 
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Figure 2.18: Unique LFP phase preferences at each syllable onset (z007, day 1).  
(A) Polar histogram of the phase for each LFP frequency band at the labeled start of all instances of a given syllable 
or the introductory note over the course of one day (Day 1), for one bird (z007). The number of instances (n=71) are 
equal for all syllables and the introductory note, and are set by the syllable class with the fewest renditions. (B) ITPC 
resultant vector length for each frequency over time relative to the labeled start of each syllable or introductory note 
(0 ms) over the same instances as in (A). (C) Rayleigh Z-statistic of the ITPC over the same time and frequencies as 
(B). (p<0.007 for all Z > 5  for all syllables and the introductory note; all non-black time-frequency pints in this plot 
are above the significance threshold). 
 



Chapter 2: Characterization of HVC LFP 

 58 

 
Figure 2.19: Unique LFP phase preferences at each syllable onset (z020).  
(A) Polar histogram of the phase for each LFP frequency band at the labeled start of all instances of a given syllable 
or the introductory note over the course of one day (Day 1), for one bird (z020). The number of instances (n=91) are 
equal for all syllables and the introductory note, and are set by the syllable class with the fewest renditions. (B) ITPC 
resultant vector length for each frequency over time relative to the labeled start of each syllable or introductory note 
(0 ms) over the same instances as in (A). (C) Rayleigh Z-statistic of the ITPC over the same time and frequencies as 
(B). (D) Polar histogram of the phase for each LFP frequency band at the labeled start of all instances of a given 
syllable over the course of one day (Day 2), for one bird (z020). The number of instances (n=75) are equal for all 
syllables and the introductory note, and are set by the syllable class with the fewest renditions. (E) ITPC resultant 
vector length for each frequency over time relative to the labeled start of each syllable (0 ms) over the same instances 
as in (D). (F) Rayleigh Z-statistic of the ITPC over the same time and frequencies as (E). (p<0.007 for all Z > 5  for 
all syllables and the introductory note for both days; all non-black time-frequency pints in this plot are above the 
significance threshold). 
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Figure 2.20: Unique LFP phase preferences at each syllable onset (z017).  
(A) Polar histogram of the phase for each LFP frequency band at the labeled start of all instances of a given syllable 
over the course of one day (Day 1), for one bird (z020). The number of instances (n=97) are equal for all syllables, 
and set by the syllable class with the fewest renditions. (B) ITPC resultant vector length for each frequency over time 
relative to the labeled start of each syllable (0 ms) over the same instances as in (A). (C) Rayleigh Z-statistic of the 
ITPC over the same time and frequencies as (B). (D) Polar histogram of the phase for each LFP frequency band at the 
labeled start of all instances of a given syllable over the course of one day (Day 2), for one bird (z020). The number 
of instances (n=82) are equal for all syllables, and set by the syllable class with the fewest renditions. (E) ITPC 
resultant vector length for each frequency over time relative to the labeled start of each syllable (0 ms) over the same 
instances as in (D). (F) Rayleigh Z-statistic of the ITPC over the same time and frequencies as (E). (p<0.007 for all Z 
> 5  for all syllables for both days; all non-black time-frequency pints in this plot are above the significance threshold). 
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Figure 2.21: Unique LFP phase preferences for sparsely used intra-motif note onset (z017).  
(A) Polar histogram of the phase for each LFP frequency band at the labeled start of all instances (n=52) of syllable 7 
over the course of one day (Day 1), for bird z017. (B) ITPC resultant vector length for each frequency over time 
relative to the labeled start of syllable 7 (0 ms) over the same instances as in (A). (C) Rayleigh Z-statistic of the ITPC 
over the same time and frequencies as (B). (D) Polar histogram of the phase for each LFP frequency band at the labeled 
start of all instances (n=41) of syllable 7 over the course of one day (Day 2), for bird z017. (E) ITPC resultant vector 
length for each frequency over time relative to the labeled start of syllable 7 (0 ms) over the same instances as in (D). 
(F) Rayleigh Z-statistic of the ITPC over the same time and frequencies as (E). (p<0.007 for all Z > 5  for both 
syllables; all non-black time-frequency pints in this plot are above the significance threshold). 
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Figure 2.22: Detailed view of the syllable phase preference to syllable onset for z007.  
Detailed rendering of the phase preference to syllable onset for z007 shown in Fig 7A. Each row shows a different 
vocalization type, which includes the five syllables of the motif and the introductory note. Each column shows a 
different frequency band and is organized top to bottom from least to greatest. As such they are the polar plots for the 
(A) 4-8 Hz band, (B) 8-12 Hz band, (C) 25-35 Hz band, (D) 35-50 Hz band, and (E) the 50-70 Hz band. The number 
of instances have been balanced to match the class with the least number of instances (n=100) for each class. 
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2.7   Discussion 

In the current study we demonstrate that LFP in zebra finch HVC carry significant 

information tied to vocal production. More specifically, the time-varying structure of this meso-

scale signal, captured by both the power and phase of various LFP frequency bands, correlates 

with behaviorally-relevant timepoints during this complex, learned motor behavior. Our results 

builds upon previous studies in zebra finch HVC [39], by establishing that LFP features can be 

used to detect both when the bird will sing and the specific syllable that the bird will sing. Prior to 

that previous study and our work here, little was known about the relationship between LFP 

features and vocal production in birds. This limited the generalizability of the otherwise powerful 

birdsong model to other systems, including non-human primates and humans, where LFP and 

surface potentials are broadly used to measure the dynamics of cortical motor control 

[12,54,65,75]. In addition, we note that the bandwidth and features of the LFP signals investigated 

in this paper share similarities with LFP features tied to motor control in humans, non-human 

primates, and other mammals. For example, the power spectrum components most closely tied to 

song in finches (Figure 2.10 and Figure 2.11–Figure 2.13) match those documented in the human 

motor cortex during finger flexion [65]. We suggest that LFP recordings can serve as useful targets 

to further our understanding of songbird neurophysiology, and to more closely connect the 

powerful birdsong model to motor control studies in mammals, including non-human primates and 

humans. 

A striking feature of the amplitude changes in LFP during song is the increase in higher 

frequencies that are within the band often referred to as “high gamma”. Although changes in this 

frequency band in another brain region in the song bird system, named  Nif, have previously been 

reported [76], they were not found to be premotor related. We have shown the first preliminary 



Chapter 2: Characterization of HVC LFP 

 63 

evidence, to our knowledge, of premotor activity related amplitude changes in high gamma  

(Figure 2.7). This is significant, as this band is often the feature of choice for many state-of-the-

art neural decoding studies in humans and suggests designs for neurally driven speech prostheses 

[12,24]. Notably, these changes empirically appeared to correspond to introductory notes in 

addition to song syllable. Future work should evaluate if these amplitude changes also occur during 

calls, which are considerably less deterministic and more syntactically complex than the zebra 

finch motif.  

A consistent feature observed in the LFP of HVC during singing is tight phase-locking to 

vocal behavior. In evaluating the nature of the observed song-aligned phase-locking; we proposed 

two hypotheses: (1) where the phase locking is related to the larger motif sequence and (2) in 

which the phase-locking can be attributed to the timing of each unique vocal unit (syllables). In 

simpler terms, we ask if the phase-locking is a process aligned to the start of the motif (hypothesis 

one) or if it is a process that aligns to the timing of each syllable (hypothesis two). In our 

examination of syllable level timing, we aligned time based upon the syllable onset time. This 

mirrors the time relationship between spiking activity and syllable onset [55,56]. Further 

examination would be required to examine the progression of phase with respect to the temporal 

structure within each syllable. 

When directly testing these hypotheses, the second hypothesis was supported by statistical 

analyses of the data. However, it is important to note that while there is noticeable non-

deterministic jitter in the brief gaps of silence between the syllables that make up the motif, this 

may not be sufficient to completely disprove hypothesis one. On the other hand, there are 

additional notes, beyond the stereotyped sequences of the motif, that occur non-deterministically 

between motifs. These notes are referred to as intra-motif notes or “connectors” [60] and 
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introductory notes for whose timing before the motif is variable. Examination of the phase polar-

plots of individual syllables would either show high selectivity of phase preference for all unique 

vocalizations if our second hypothesis is correct, or low levels of phase-locking for motif syllables 

and a random distribution about the polar axis (null) for the intra-motif notes and introductory 

notes if our first hypothesis is correct. As shown in Figure 2.16 and Figure 2.17, each syllable has 

phase preference that is stable across every specific vocalization type, including intra-motif notes 

(z017 & z020) (Figure 2.19–Figure 2.21) and introductory notes (z020 & z007) (Figure 2.16 and 

Figure 2.18). This finding demonstrates that precise phase preference is behaviorally relevant to 

both learned and non-learned vocalizations. We argue that the long template phase traces in lower 

frequencies that precede and persist during song production are a byproduct of the zebra finches' 

stereotyped song structure. This structure is composed of encoding at a smaller time scale centered 

on each individual syllable during song production. Similar phase preference to motor onset has 

been found in both human and non-human motor cortex [77].  

The results of the normalized sustained Z statistic of inter-trial phase coherence suggest 

that there are differences in magnitude of coherence peaks both between and within birds. This is 

likely due to significant variation in signal statistics. This variation likely has many sources, 

including precise electrode placement and varying signal-to-noise ratios across days. Within days, 

the peaks in the Z-statistic denote consistency in phase-locking. Although the magnitude of these 

peaks varied, the frequency bands that contained them were empirically similar to those described 

previously in mammalian literature. These results, the existing literature, and our empirical 

inspection of the narrowbands, as shown in Figure 2.8 and Figure 2.9, informed our narrowband 

feature selection. 
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Previous work in zebra finch by Markowitz et al. demonstrated that spiking of both 

excitatory and inhibitory neurons were locked to the phase of the 25-35 Hz band [37,39]. 

Admittedly, this previously identified phase-locking, combined with the behavior-locked manner 

of local spiking activity to song behavior, gives further credence to some of the phase-locking we 

observed. However, it is important to note that local neural spiking activity and LFP are not 

deterministically linked. LFP reflects the postsynaptic inputs to the local neuronal population and 

transmembrane currents in the recorded region, which is of course different from the spiking in 

that region, which reflects neuronal outputs [78]. Additionally, our work establishes that other 

frequency bands beside the 25-35 Hz band are phase locked to the behavior. More importantly, we 

find that these frequencies, and the 25-35 Hz band, are also locked to behaviors beyond the 

syllables of the motif, namely intra-motif notes and introductory notes. Collectively these results 

show the utility of using LFP to study vocal production in songbirds. 
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Chapter 3 : Proof-of-Concept Birdsong BCIs 
3.1   Abstract 

The previous chapter focused on the population activity presumptively from HVC in awake 

free behaving zebra finches. The analyses described characterize Local Field Potentials (LFP) 

during song production and document several features that are qualitatively similar to well-

established oscillations found in both human and non-human mammalian areas. Given these newly 

described physiological similarities, despite distinct, species specific anatomical structures, we 

next examine if these features can be leveraged to decode vocal activity using methods that are 

complementary to current human speech BCI studies. In this chapter we describe novel approaches 

and methods that show that this neural activity can be used to predict both the identity of each 

vocal element (syllable) and when it will occur during song.  We also briefly describe 

contemporaneous work that uses this same data and develops novel methods for synthesizing songs 

directly from neural activity. All novel methods described in this chapter can be implemented in 

real-time using neural features that proceed the vocal behavior. Collectively these works 

demonstrate novel methods that could be translated to human clinical speech BCIs research and 

provide strong preliminary evidence for the utility of the songbird animal model for supplementing 

speech BCI studies. 

 

3.2   Introduction 

 
At a high level vocal communication involves the production of an acoustic signal that is 

mutually comprehensible to the communicator and the intended listener. This acoustic signal can 

be perceived and decomposed into symbolic components that carry the intended message. Human 
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speech BCI researchers aim to develop therapeutic devices that enable those who have lost or 

diminished ability to control the speech articulator musculature necessary to produce these 

communication signals. Most approaches to study and develop these systems involve using 

features derived from neural signals recorded directly from motor brain regions related to speech 

during vocal production.  

Broadly, the communication output of all speech focused BCIs fall under two main types; 

(1) Symbolic Decoding, and (2) Acoustic Synthesis: 

 

 (1) Symbolic Decoding attempts to decode the intended vocal communication by 

approaching it using classification methods. Instead of trying to reconstruct all of the 

spectral features of the acoustic signal it tries to decode the components of the message 

itself. This approach has found success by decoding symbolic components at varying levels 

of complexity such as articulatory gestures [1],  phonemes [2,3], phonetic features [4,5], 

words [6] and continuous sentences [7–9].  

 

(2) Acoustic Synthesis attempts to produce all of the spectral features of the intended 

vocalizations. The communication target is tasked with both hearing and understanding the 

message in the same way they would comprehend another person speaking. This synthesis 

can involve synthesizing different scales of vocalizations from components such as vowels 

[10], spectral features of subunits of speech [11,12], and full sentences [13]. This approach 

has also had recent progress synthesizing both imagined and whispered speech [14].  
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Both approaches have their advantages and challenges, however neither approach has 

achieved system performance levels that would enable widespread adoption as a therapeutic 

device. Speech prosthesis research as a whole has several challenges that impedes scientific 

progress and translation. Namely limits in data quantity, experiment duration, and brain coverage. 

It is important then to supplement this work with a viable translatable animal model. For this reason 

we have sought to validate both approaches in the songbird animal model. This chapter will mostly 

focus on a Symbolic Decoding approach in songbirds using features described in chapter 2 [15]. 

We will also include a brief summary of Acoustic Synthesis results, which use the same neural 

recordings, so that we can discuss both approaches and their context within the large vocal 

prosthesis research field. 

 

3.3 Symbolic Decoding of Bird Song: Decoding Vocalization 
Identity  
3.3.1   Overview of Methods  

We implanted male zebra finches with laminar electrodes and simultaneously recorded 

their vocal behavior and neural activity as described in sections 2.2.2   Subjects–2.2.4   Electrode 

implantation procedure. The recorded neural signals were processed with signal processing 

techniques that are described in detail in section 2.2.5   Analysis of electrophysiology data. 

Through a series of steps, explained in detail in section 2.3   Annotation and alignment of 

behavioral data, we found segments of the recording that contained songs and hand-annotated them 

using Praat (Figure 2.2). These behavioral labels were applied to analyze the neural activity in 

relation to specific classes of behavior to determine what frequencies, if any, correlated to the 

behavior. The resulting frequencies were used to classify and predict behavior onset to clarify their 

relationship to the vocalizations (Figure 3.1–Figure 3.8).  
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3.3.2   Feature extraction 

Feature extraction from the preprocessed data comprised a series of steps that involved first 

Common Average Referencing and then narrow band-pass filtering. Common Average 

Referencing has been shown to minimize or remove the contributions of correlated noise sources 

such as 60 Hz noise and intermittent noise sources such as movement artifacts [16]. We used the 

Hilbert transform to compute the analytic signal. To extract oscillatory power, we used the absolute 

value of the analytical signal; this effectively removed all phase-related information. To extract 

oscillatory phase, we used the instantaneous angle of the complex argument of the analytical 

signal; this was further smoothed using a sine function. This effectively removed all information 

related to power from the signal.  

These signals, whether Hilbert-transformed or not, were then sub-selected at times relative 

to the label onset for a syllable using two parameters: bin width and offset. The bin width is the 

number of samples used prior to the offset, and the offset is the number of samples, or milliseconds, 

prior to the labeled start time to a specific syllable. All combinations of these hyperparameters 

used offset that were prior to the start of the vocal behavior. 

 
3.3.3   Band templates and Pearson correlation features.  

Using the optimized bin width and offset for a particular frequency band, we calculated a 

template for that band by taking the mean of the LFP traces of the training set of a specific behavior 

class. This template represents the average LFP activity prior to and during the production of a 

particular vocal behavior. This template was then used to extract features from a narrow-band LFP 

trace by taking the Pearson correlation of the template from a segment of neural activity of the 

same length in samples. This correlation value is set between -1 and 1. For the behavioral 
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classification results, a segment of the corresponding LFP frequency band that is set by the 

optimized bin width and offset is used as the feature. For the onset detection analysis, the Pearson 

correlation for each sliding segment equal in length to the optimal bin width is used to detect 

behavior that corresponds to its optimal offset. 

 

3.3.4   Linear classifier 
To classify behavior using the LFP features, a linear discriminant analysis (LDA) model  

using singular value decomposition (SVD) was trained using the scikit-learn toolbox [17] in 

Python. This classifier is tasked to correctly classify examples of all vocalizations during song, 

both motif syllables and intra-motif notes, in addition to introductory notes and periods of silence. 

As the classifier must learn how to distinguish between both vocal and non-vocal events, these 

events are collectively referred to as classes. All priors for each class were set equal, and all classes 

were balanced in the datasets used for classification analyses. Detailed information regarding the 

number of instances in each class can be found in S3-S5 Table. No shrinkage or regularization 

were used; however, the SVD optimizer was used to avoid ill-conditioned covariance matrices. 

Results were validated using 5-fold cross-validation. Templates for feature extraction were created 

by taking the mean across the training set. These templates were used to extract features from both 

the training set and the testing set. All frequencies were trained and tested independently of one 

another. 

 
3.3.5   Channel-Adding Analysis.  

Channel-adding curves were calculated using a bootstrap approach to determine how many 

channels were needed until additive information saturation. The channel-adding curves were 

calculated by first training and testing a classifier with the neural features of only one channel, 
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using the steps described previously, then repeating this analysis after adding the features of 

another randomly selected channel. This repeated training and testing after adding a random 

channel is considered complete once a classifier that uses the features from all available good 

recording channels is evaluated. This channel-adding analysis was repeated 5,000 times, changing 

the order in which each channel was included, with 5-fold cross validation. The order in which 

channels were added over the 5,000 repetitions was maintained across the folds to enable fair 

calculation of their validated mean. These are subsequently used to calculate the mean and standard 

deviation across repetitions. 

 
3.3.6   LFP features encode intended syllable identity 

Having isolated potential LFP bands of interest through the decomposition of both phase 

and power, we next asked whether the LFP bands’ spectral features were correlated to vocalization 

identity. If so, then these features could be used to classify vocalization identity from neural 

activity alone. As the dominant characteristic of these features are their consistent structure, a 

promising approach was to create frequency band-specific LFP templates that could be correlated 

with representative time traces. It was unclear, however, what the ideal time range and latency 

relative to song onset for this information might be.  With the goal of better understanding the 

ideal time range and latency, we conducted a hyperparameter search using a linear discriminant 

analysis (LDA) model and singular value decomposition (SVD) (see section 3.3.4   Linear 

classifier). The classifier was trained with LFP templates for which the duration in samples (bin 

width) and the time between the event onset and the end of the template (offset) was varied in the 

hyperparameter search. All templates considered fully precede the onset of the event. For most 

frequencies found, multiple combinations of  bin width and offset yielded classifiers that could 

distinguish, significantly above binomial chance, between song syllables, silent (non-vocal) 
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periods, and —for the subject that performed them— introductory notes (z020 & z007) (Figure 

3.1 and Figure 3.2).  

 

 
Figure 3.1: LFP phase and power provide independent and additive information for 
vocalization classification.  
Channel-adding curves calculated by repeatedly training classifiers with an increasing number of randomly selected 
channels (see section 3.3.5   Channel-Adding Analysis.). (A-C) Channel-adding curves showing classifier 
performances with either (A) all LFP phase information removed, (B) all LFP power information removed, or (C) 
with both phase and power used as independent features. Each row corresponds to data from the highest-yield day for 
each bird. These vocal and non-vocal classification events are collectively referred to as classes (see section 2.3   
Annotation and alignment of behavioral data). z007 n=98 for each of 7 classes (1, 2, 3, 4, 5, i (introductory 
note), Silence); z020 n=91 for each of 6 classes (1, 2, 3, 4, i (introductory note), Silence); and for z017 n=52* for each 
8 classes (1, 2, 3, 4, 5, 6, 7, Silence). The results of up to 15 channels are shown to allow for direct comparison across 
subjects. Dark lines show the mean for each vocalization class, shaded areas give the standard deviation over the 
bootstrapped analysis using n=5,000 repetitions across 5 cross-validation folds. The p-value for all of the binomial 
chances calculated for each bird was 0.05. 
 
*The number of instances for each class was limited by Syllable 7, which is an intra-motif note. 
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Figure 3.2: Channel-adding Curves for the second highest-yield days across subjects.  
Channel-adding curves calculated by repeatedly training classifiers with an increasing number of randomly selected 
channels (see section 3.3.5   Channel-Adding Analysis.). Channel-adding curves of classifier performances with 
either (A) all phase related information removed, (B) all power related information removed, or (C) with both phase 
and power used as independent features. Each row corresponds to data from the second highest yielding day for each 
bird. z007 n=71 for each class n=7 (1, 2, 3, 4, 5, i, Silence), z020 n=75 for each class n = 6 (1, 2, 3, 4, i, Silence), and 
for z017 n=41* for each class n=8 (1, 2, 3, 4, 5, 6, 7, Silence). Error bars represent the standard deviation over the 
bootstrapped analysis using n=5,000 repetitions across 5 cross-validation folds. The p-value for all of the binomial 
chances calculated for each bird was 0.05. 
 
*The number of instances for each class was limited by Syllable 7, which is an intra-motif note. 
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As classifiers were trained to distinguish both vocal and non-vocal events, these vocalization event 

types are collectively referred to as classes (see section 3.3.4   Linear classifier). The parameter 

search for each frequency was performed separately, and, although there was considerable 

variation, the best bin width and absolute value of offset tended to decrease as LFP frequency 

increased. Table 3.1 and Table 3.2 summarize the parameters in the search that yielded the highest 

classification accuracy. 

 
Table 3.1: Bin Width Hyperparameter Search Results 

  Best Bin Width (ms) 

Bird ID Date 4-8 Hz 8-12 Hz 25-35 Hz 35-50 Hz 50-70 Hz 

z020 day-2016-06-03 90 185 90 85 90 

z020 day-2016-06-05 190 125 35 160 70 

z007 day-2016-09-10 170 75 90 25 30 

z007 day-2016-09-11 195 170 70 20 70 

z017 day-2016-06-19 175 170 85 50 35 

z017 day-2016-06-21 150 170 70 60 40 
 

Table 3.2: Offset Hyperparameter Search Results 
  Best Offset (ms) 
Bird ID Date 4-8 Hz 8-12 Hz 25-35 Hz 35-50 Hz 50-70 Hz 
z020 day-2016-06-03 -10 -5 0 0 0 
z020 day-2016-06-05 -25 -5 0 -20 0 
z007 day-2016-09-10 -35 -5 -10 -10 0 
z007 day-2016-09-11 -5 -5 -15 0 -15 
z017 day-2016-06-19 -50 0 -10 -5 -5 
z017 day-2016-06-21 -10 -15 -30 0 0 

 

Nearly all frequencies we examined were useful for classifying prior neural activity as it relates to 

the song it will produce downstream; however, it is not immediately clear what component of these 

oscillations (i.e., phase or amplitude), carries information regarding song identity. 
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To determine which component (phase or amplitude) of each frequency band provided 

information about the vocalization identity, we applied the Hilbert transform to selectively remove 

either phase or power, while retaining only the contributions of power or phase information, 

respectively. Information provided by a given component was inferred from classifier accuracy. 

As shown in Figure 3.1A–C, both phase- and amplitude-based classifiers had accuracies above 

binomial chance for all frequencies; from this, we inferred that they each carried song-related 

information. In general, however, phase had higher classification accuracy than power for the 

frequency bands below 50 Hz (Figure 3.3). This difference in accuracy between phase and power 

was greater for lower frequencies (i.e., those below 30 Hz). The highest frequency band, 50–70 

Hz, had marginally higher performance for power-only than for phase-only. We also queried if the 

number of channels recorded were necessary for decoding song identity by running a channel-

adding analysis for each frequency band (see 3.3.5   Channel-Adding Analysis.). This analysis 

evaluates improvements in classifier performance enabled by increasing the number of recording 

sites on the probe and provides insight into the point beyond which additional electrodes provide 

diminishing returns. As shown in Figure 3.1A, the LDA classifier performed well above binomial 

chance with only 5–10 channels of neural activity when classifying between song syllables, silence 

and introductory notes.

 
Figure 3.3: Difference in Decoding Accuracy between Phase Only and Power Only 
Classification.  
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Classification accuracy for each high-yield day for each bird with 15 channels of neural data when all phase-related 
information is removed, left, and all power-related information is removed, right, for (A) 4–8 Hz band, (B) 8–12 Hz 
band, (C) 25–35 Hz band, (D) 35–50 Hz band, and 50–70 Hz band.
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3.4   Symbolic Decoding of Bird Song: Onset Detection 

3.4.1   Syllable onset detection 
In order to analyze the temporal relationship between LFP and song production, we used a 

template-matching approach to determine whether LFP can predict syllable onset. Each syllable 

of the motif—excluding the first—had every labeled instance recorded in the same day split into 

training and testing sets using a 5-fold stratified split (80% training set and 20% testing) (S3-S5 

Table). Both the template and the stereotyped onset of the syllable were calculated from the 

training set. Templates are the mean of the LFP traces of the training set. The stereotyped onset is 

the average time the syllable occurs in the training set with respect to the first syllable of the motif 

it occurred in. These templates were then used to compute the Pearson correlation across time for 

each of the motifs that contain the syllables of the test set, maintaining the temporal relationship 

of the optimal offset and the bin width for its respective frequency. 

The prediction confidence of a single frequency band was calculated by first thresholding 

the Pearson correlation values at zero, and taking the average of the resultant time series across 

channels. The maximum confidence within a 100-millisecond window centered on the behavior-

derived stereotyped onset time is then used as the frequency’s prediction for that instance of the 

syllable. We followed the same steps as previously stated in order to produce the results of a 

predictor that uses all of the frequencies; only the prediction confidence across all frequencies and 

channels is used. The prediction of the syllable onset using the birds’ stereotyped behavior was 

determined by adding the stereotyped onset time, calculated from the training set, to the actual 

start of the first syllable for the motif the syllable occurred in. It is important to note two things 

with this approach: (1) neither approach receives information on the actual start time of the syllable 

in its respective motif and (2) this 100-millisecond window is significantly larger than the natural 
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variability of syllable onsets, providing the neural-based predictor a more difficult task than the 

baseline stereotyped comparison. In addition, for later syllables of the motif there are a few 

instances where the syllable occurs after the 100-millisecond window; meaning that the neural 

detector will be forced to predict the syllable in a window where it hasn’t yet occurred. Due to this 

the neural decoder has a larger possible maximum prediction error than the behaviorally based 

predictor. Both predictions were then normalized by taking the difference between the predicted 

time and the actual labeled start time of the syllable within the same motif. 

Statistical significance of the results was calculated with a one-sided Wilcoxon signed-rank 

test using the difference between the relative predictions of the stereotyped behavioral model and 

the neural features models. Two null hypotheses were tested, first that there was no difference 

between the stereotyped behavior and the prediction using neural features, and the second being 

that the predictor using the neural features was closer to the actual labeled onset time. The second 

null hypothesis requires that the LFP based predictor must outperform the behavior-based 

predictor. Results must pass both tests with a p-value less than .05 to be considered significant. 

The Benjamini-Hochberg procedure was used to control the False Discovery Rate to account for 

the multiple comparisons done. The procedure was implemented for each day treating the results 

of each individual frequency and the predictor which uses all frequencies as separate results (n=6, 

q=.05).  

3.4.2   LFP Features Predict Syllable Onsets 
The demonstrated ability to accurately classify syllable identity with LFP features could 

be a consequence of a unique LFP signal structure associated with specific syllables or could be a 

consequence of a motif level LFP signal structure and stereotypy in the syllable onset time within 

the motif. To disambiguate these two possibilities, we examined whether the template features 

optimized for determining syllable identity (Table 3.1 and Table 3.2) could also predict specific 
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onset times of each separate vocalization within the full motif. To accomplish this task, we 

implemented a naive pattern-matching approach (see Section Error! Reference source not f

ound.). As the syllables’ onset is predicted using features derived from causal bandpass filters and 

samples that occur prior to their start, the features are based entirely upon signals recorded prior 

to syllable onset. As the stereotyped structure of the zebra finch’s song is well documented, we 

used the mean error between the stereotyped (average across trials) start time of each syllable—

relative to its first syllable—and the actual time the syllable occurred as a benchmark to test the 

performance of a predictor that used the LFP features described previously. The observed 

behavioral variability in onset timing for each syllable relative to the first is detailed in Table 2.3–

Table 2.5. An example of one motif and its corresponding confidences is shown in Figure 3.4A.  
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Figure 3.4: Onset detection using LFP features for Subject z007.  
(A) State diagram of z007’s observed song structure. Syllable colors are the same as in Fig 2 and Fig 3. (B) Example 
motif from the highest-yield day for subject z007. Annotated behavior (top) using the same color scheme as in Fig 2, 
sound pressure waveform and the corresponding time-aligned spectrogram (middle), and the time-varying naïve 
confidence of the onset prediction (bottom) for each syllable in this example motif. Confidence signal traces are the 
same color as the syllable they are meant to predict. (B) Histogram of onset prediction times for each syllable relative 
to its annotated start time. The annotated start times are relative to the start of the first syllable of the motif that the 
syllable occurred in. The histogram compares two approaches: The first, in pink, uses only behavioral information 
(the stereotyped onset relative to the start of the first syllable), and the second, in blue, uses all the neural features to 
predict the start of the syllable. (C) Boxplot of onset prediction times relative to the labeled onset time for both of the 
high-yield days for z007. The order of each feature used is the same, going left to right: first is the stereotyped onset 
time using only the deterministic behavior (colored red), next are the results using all of the neural features (colored 
navy blue), then each frequency band only in order from least to greatest (4–8 Hz, 8–12 Hz, 25–35 Hz, 35–50 Hz, and 
50–70 Hz). The time window that the neural based predictor must make a prediction within is represented by the 
dotted black line (see section Error! Reference source not found.). Statistical significance was calculated using the o
ne-sided Wilcoxon signed-rank test, and * denotes results that are not statistically significant when using the 
Benjamini-Hochberg False Discovery Rate. All other results p<0.05 and q<0.05. 
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Across all syllables for all birds, the predictor that used all of the frequencies performed 

better than predication based upon the stereotyped onset of the syllable, Figure 3.4B and Figure 

3.5–Figure 3.7. Similar results were found for the 2 additional syllables for z017 as well (S20 Fig). 

Statistically significance was assessed based upon the Wilcoxon signed rank test and the 

Benjamini-Hochberg false discovery rate (FDR) correction (p<0.05; q<0.05). The paired test 

directly compared the error in onset time prediction between the neural predictor and the 

behaviorally based stereotyped start time to evaluated if the neural-based predictor was more 

accurate. When applying the FDR correction, the higher performance achieved by the all 

frequencies LFP predictor over the stereotyped onset time predictor was statistically significant 

for all syllables across all birds and high-yield days except for only three cases out of the 26 tested; 

these were syllables 2 & 4 for z020’s 2nd high-yield day and syllable 2 for z017’s 2nd high-yield 

day (Figure 3.7).  
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Figure 3.5: Onset detection and branch behavior analysis using LFP features for Subject 
z020.  
(A) State diagram of z020’s observed song structure. Syllable colors are the same as in Fig 3. (B) Example motif from 
the highest-yield day for subject z020. Annotated behavior (top) using the same color scheme as in Fig 3, sound 
pressure waveform and the corresponding time-aligned spectrogram (middle), and the time-varying naïve confidence 
of the onset prediction (bottom) for each syllable in this example motif. Confidence signal traces are the same color 
as the syllable they are meant to predict. (C) Boxplot of onset prediction times relative to the labeled onset time for 
both of the high-yield days for z020. The order of each feature used is the same, going left to right, as is shown in Fig 
10. The time window that the neural based predictor must make a prediction within is represented by the dotted black 
line (see Section 3.4.1   Syllable onset detection). Statistical significance was calculated using the one-sided 
Wilcoxon signed-rank test, and * denotes results that are not statistically significant when using the Benjamini-
Hochberg False Discovery Rate. All other results p<0.05 and q<0.05.  
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Figure 3.6: Onset detection and branch behavior analysis using LFP features for Subject 
z017.  
(A) State diagram of z017’s observed song structure. Syllable colors are the same as in Fig 3. (B) Example motif from 
the highest yield day for subject z017. Annotated behavior (top) using the same color scheme as in Fig 3, sound 
pressure waveform and the corresponding time-aligned spectrogram (middle), and the time-varying naïve confidence 
of the onset prediction (bottom) for each syllable in this example motif. Confidence signal traces are the same color 
as the syllable they are meant to predict. (C) Boxplot of onset prediction times relative to the labeled onset time for 
both of the high-yield days for z017. The order of each feature used is the same, going left to right, as shown in Fig 
10. The time window that the neural based predictor must make a prediction within is represented by the dotted black 
line (see Section 3.4.1   Syllable onset detection). Statistical significance was calculated using the one-sided 
Wilcoxon signed-rank test, and * denotes results that are not statistically significant when using the Benjamini-
Hochberg False Discovery Rate. All other results p<0.05 and q<0.05.   
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Figure 3.7: Onset detection across all high-yield days.  
Boxplots of onset prediction times relative to the labeled onset time for each bird for every syllable for two highest-
yielding days. Each column reflects the result for syllable number within the motif. Each row is for a specific bird 
with (A) corresponding to z007, (B) corresponding to z020, and (C) corresponding to z017. The order of each feature 
used is the same, going left to right: first is the stereotyped onset time using only the deterministic behavior, next is 
the results using all of the neural features, then each frequency band only in order from least to greatest (4- 8 Hz, 8-
12 Hz, 25-35 Hz, 35-50 Hz, and finally 50-70 Hz). The recording day designation number refers to the chronological 
order that the recordings took place. Statistical significance was calculated using the one-sided Wilcoxon signed-rank 
test, and * denotes results that were not statistically significant when using the Benjamini-Hochberg False Discovery 
Rate. All other results p<0.05 and q<0.05. 
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We next asked which frequency, if any, might be best at predicting the onset time of the 

syllables. As demonstrated in Figure 3.4C and Figure 3.7, no single frequency performs best for 

predicting onset times across all frequencies and all subjects. Although the higher frequencies tend 

to perform better with less variance than the lower frequencies, using all of the frequencies yields 

better performance than any one frequency across all subjects and sessions. There were poor 

prediction performances for 4–8 Hz, 8–12 Hz, and the 50–70 Hz for some syllables for certain 

birds with multiple examples of performance lower than that of the stereotyped onset.  

As much of the sequence of the zebra finch song can be viewed as deterministic when only 

viewing the syllables of the stereotyped motif, it could be hypothesized that our onset prediction 

results are not decoding the song identity and are instead only finding the warped time of the 

syllable within the motif. To further evaluate this possibility, we analyzed the model’s performance 

during the non-deterministic syllables of the birds’ behaviors (i.e., their intra-motif notes). As 

shown in Figure 2.3B, Subject z020 has one behavioral branch point immediately after the third 

syllable, where it can either transition to its intra-motif note (syllable 4) or omit syllable 4. There 

are two different behavior options when the subject omits syllable 4; he can either immediately 

start another motif (skip syllable 4), or terminate the bout (end bout). Thus there are two types of 

omissions: (1) skip syllable 4 and (2) end bout. An example of the model’s single-trial performance 

for each case is shown in Figure 3.8A–C. As syllable 4 does not occur during every motif, when 

testing the model’s performance on motifs that omit syllable 4 every template from the cross-

validation folds is valid; because none of the motifs being tested can be in any of the training sets. 

Thus, we used each template to independently evaluate performance of each fold. Confidences 

that were derived from the same template across the different conditions were evaluated against 

one another. When comparing the distribution of the maximum confidence values during the time 
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window the model would be required to predict this divergent behavior to occur, its confidence 

was statistically higher when the syllable occurred versus when it was omitted, grouping the two 

omission types together, across all five folds. These results were evaluated using the one-sided 

Welch’s t-test for each individual fold. In addition, repeating this test while treating the two 

syllable omission types as separate distributions yielded similar pair-wise results (Figure 3.8E). 

This same branch point analysis approach was used to evaluate the performance of subject z017, 

which has two intra-motif notes (Figure 2.3C) and two different branch points Figure 3.8I and 

Figure 3.8J. Figure 3.8F–H show exemplar single-trial results that demonstrate performance that 

is robust to these non-deterministic behaviors. In addition, following the same branch point 

evaluation approach as previously described, we found when evaluating subject z020’s behavioral 

bifurcations the distribution of confidence values between motifs that contained the intra-motifs 

notes were significantly higher than when they were omitted (Figure 3.8K and Figure 3.8L). 
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Figure 3.8:  Onset prediction of non-deterministic syllables and decoding divergent 
behaviors using LFP features.  
(A) Example motif with all four syllables from the highest-yield day for subject z020. Annotated behavior (top) using 
the same color scheme as in Fig 3, sound pressure waveform and the corresponding time-aligned spectrogram 
(middle), and the time-varying naïve confidence of the onset prediction (bottom) for each syllable in this example 
motif. (B) Example motif from the same high-yield day as (A) where the subject skips syllable 4 and continues the 
bout. The shaded lightgray time period is the time window that the behavior-based model would predict that the 
omitted syllable would occur. (C) Example motif from the same high-yield day as (A) where the subject ends the bout 
with syllable 3. The shaded darkgray time period is the time window that the behavior-based model would predict that 
the omitted syllable would occur. (D) State diagram of z020’s observed song structure with the three transition types 
highlighted; ‘Syllable 4’: syllable 3 to syllable 4 (teal) shown in (A); ‘Skip Syllable 4’: syllable 3 to syllable 1 
(lightgray) shown in (B); ‘End Bout’: syllable 3 to silence (dark gray) shown in (C). Syllable colors are the same as 
in Fig 3. (E) Boxplot of the difference in maximum confidence values between the three behavioral transition types 
shown in (A–C) using the same transition colors used in (D) across both high-yield days. (F) Example motif with all 
seven syllables from the highest yield day for subject z017. (G) Example motif from the same high yield day as (F) 
where the subject ends the bout with syllable 5. The shaded lightgray time period is the time window that the behavior-
based model would predict the omitted syllable would occur. The prediction trace of the omitted syllables, both 
syllables 6 and 7, shows the mean across all folds, with shading indicating the standard deviation. (H) Example motif 
from the same high-yield day as (F) where the subject ends the bout with syllable 6. The shaded slategray time period 
is the time window that the behavior-based model would predict the omitted syllable would occur. The prediction 
trace of the omitted syllable, syllable 7 only, shows the mean across all folds with shading indicating the standard 
deviation across folds. (I) State diagram of z017’s observed song structure with the two transition types of the first 
behavioral branch point highlighted; ‘Syllable 6’: syllable 5 to syllable 6 (blue) shown in (F); ‘End Bout’: syllable 5 
to silence (lightgray) shown in (G). Syllable colors are the same as in Fig 3. (J) State diagram of z017’s observed song 
structure with the two transition types of the second behavioral branch point highlighted; ‘Syllable 6’: syllable 6 to 
syllable 7 (yellow) shown in (F); ‘End Bout’: syllable 6 to silence (slategray) shown in (G). Syllable colors are the 
same as in Fig 3. (K) Boxplot of the difference in maximum confidence values between the two transition types, 
shown in (F) and (G), of the first behavioral branch point using the same transition colors used in (I) across both high-
yield days. (L) Boxplot of the difference in maximum confidence values between the two transition types, shown in 
(F) and (G), of the second behavioral branch point using the same transition colors used in (J) across both high-yield 
days. Statistical significance was calculated using the one-sided Welch’s t-test (***p < .02 for all folds; **p < .05 for 
all folds; *p < .05 for four out of five folds). 
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3.5   Acoustic Synthesis of Bird Song 

3.5.1   Overview of Methods 
In work done in collaboration with Ezequiel M. Arneodo and Shukai Chen [18], we 

describe methods for synthesizing realistic vocal signals from neural activity recorded in a 

premotor nucleus of zebra finches (Taeniopygia guttata). These methods leverage the field's 

current understanding of the biomechanics of birdsong production. In this work we employ a 

biomechanical model of the vocal organ that captures much of the spectro-temporal complexity of 

song in a low-dimensional parameter space [19]. This approach enables training of a shallow 

feedforward neural network (FFNN) that maps neural activity onto the model parameters. 

Although both the described symbolic decoding study and this song synthesis study decode 

behavior from neural activity putatively recorded in sensorimotor nucleus HVC, they use different 

features of this recordings. In contrast to LFP features applied for symbolic decoding, the song 

synthesis study employed spiking activity. All subjects described in section 2.2.2   Subjects were 

also used in this work, with the addition of one subject that wasn’t, using recording methods 

described in sections 2.2.3   Electrophysiology and audio recording–2.2.5   Analysis of 

electrophysiology data. 

To obtain ensemble HVC activity and vocal output, we implanted 16- or 32-channel Si 

probes in male, adult (>120-day-old) zebra finches and recorded extracellular voltages 

simultaneously while each bird sang (n = 4 birds, 70–120 vocal motifs per session). Neural 

recordings were sorted automatically using Kilosort and manually curated to exclude noise [20]. 

Non-noise clusters were classified as single- or multi-unit activity (SUA or MUA) based on the 

number of refractory period violations and putatively as projection or interneurons based on the 
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sparseness of the activity during singing. The recordings were dominated by MUA clusters (n = 

88) and HVC interneurons (HVCI; n = 29), with relatively few putative projection neurons 

(HVCx/RA; n = 15). Example song-aligned neural activity histograms are shown in Figure 3.9A. 

Example rasters with the numbers of clusters per bird are shown in Figure 3.10. 

 

 
Figure 3.9:  A neural-network-based decoder to synthesize birdsong from premotor neural 
activity  
(A) Neural activity is collected from awake-singing animals. Sorted, extracellularly recorded single- and multi-units 
show different degrees of singing-related sparseness, robustness, and spiking precision (4 example clusters; top traces: 
normalized mean firing rate over 70 repetitions of the bird’s motif; below: spectrogram of the motif; see also Figure 
3.10). (B) Downstream of HVC, the posterior motor pathway leads into nuclei that control the muscles 
driving the sound production (nXII and RAm/ PAm) [21]. Syringeal and respiratory muscles act coordinately to 
modulate the flow of air through sets of labia and produce sound [22]. The complex labial motion is captured by the 
equations of a nonlinear oscillator [23]; parameters that define acoustic properties of the sounds are surrogates of the 
activities of syringeal and respiratory muscles [24]. (C) To reproduce a particular vocalization (top) from the 
biomechanical model, we fit the parameters (middle {a(t), b(t), e(t)}) such that, upon integration, the synthetic song 
(bottom) matches the pitch and spectral richness. 
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Figure 3.10:  Example clusters of sorted units, Related to Figure 1.  
(A) Raster plots of 23 automatically clustered units, for 91 repetitions of a motif, spanning 12 hours of recording (top), 
aligned to an example motif’s spectrogram (middle) and waveform (bottom). (B) Example of a (putatively) single unit 
activity cluster (SUA), likely an interneuron (HVCI). In the left panels are, from bottom to top: the raster; the 
corresponding histogram (10ms bin); example traces of the 4 neural channels where the cluster’s representative 
waveform has the largest amplitudes; spectrogram of an example motif; waveform of an example motif. In the right 
panels: (top) a representative waveform for the cluster (mean of 10,000 events), plotted for the 4 channels with the 
largest amplitude (peak to trough) and (bottom) inter-spike-interval (ISI) histogram (0.5ms bins). Vertical dotted line 
indicates 1ms, horizontal dotted line indicates 3% level of refractory period violations. (C) Example of a (putatively) 
SUA cluster, likely a projection neuron (HVCx or HVCRA). (D) Example of a (putatively) multi unit activity cluster 
(MUA). For this study, we used the highest yield session for each bird (z007: 29 MUA, 11 HVCI, 12 HVCX/RA; 
z017: 18 MUA, 4 HVCI; z020: 19 MUA, 2 HVCI; z028: 22 MUA, 4 HVCI, 11 HVCX/RA). 
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3.5.2   Dataset Preparation 

3.5.2.1   Spike sorting  
Spikes were detected and sorted using Kilosort; details of the procedure can be found in 

Pachitariu et al [20]. The number of clusters was initialized to 32/64 (twice the number of channels 

of the probe) and the algorithm was allowed to automatically merge similar clusters. In post hoc 

curation, we removed the clusters that were visibly noise (as per the waveform) and labeled units 

as putatively SUA/MUA depending on whether the fraction of refractory period (2ms) violations 

was below/above 3% respectively 

 

3.5.2.2   Single Unit type classification  
Single Unit Activity (SUA) clusters were classified as putatively representing sparse firing 

projection neurons or tonically firing interneurons, based on their base firing rate and their bursting 

behavior. We labeled a SUA cluster a putative projection neuron if its mean, spontaneous firing 

rate was below 5Hz and it produced at most 4 bursts with a frequency of 100 Hz or higher during 

the motif [25]. 

 

3.5.2.3   Neural activity features  
With all clusters spike-sorted or supra-threshold events, we extracted spike counts within 

each motif and collapsed them into 1ms (30 samples at 30,000 samples/second) time bins. 

 

3.5.2.4   Spectral features  
When training the networks with spectral features, the target at each time step was a vector 

containing a spectrogram slice (in log power scale). We generated the spectral slices using the 

spectrogram function of the signal module in the scipy package [26]. We used 5ms windows (150 

samples) and kept the 64 first bands above 300 Hz. 
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3.5.3   Biomechanical model of the vocal organ  

3.5.3.1   Model  
A model of the zebra finch vocal organ has been previously introduced and it is explained 

in detail in Perl et al. [24] and Arneodo et al [27]. This model considers mainly a sound source and 

a vocal tract that further shapes the acoustics of the vocalizations.  

The source (syrinx) comprises two sets of tissues or labia that can oscillate induced by the 

sub-syringeal pressure and modulate the airflow to produce sound [22]. The motion of the labia is 

represented as a surface wave propagating in the direction of the airflow, that can be described in 

terms of the lateral displacement of the midpoint of the tissue [23]. Its mathematical form is the 

motion equation of a nonlinear oscillator in which two parameters that determine the acoustic 

features of the solutions are controlled by the bird: the sub-syringeal air sac pressure and the 

stiffness of the restitution (through the activity of syringeal muscles). In order to integrate the 

model in real time, a set of equations was found that is computationally less expensive yet capable 

of displaying topologically equivalent sets of solutions as the parameters are varied: [28]  
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where 𝑥 represents the departure of the midpoint position of the oscillating labia, 𝛾 is a time scaling 

factor, and the parameters 𝛼 and 𝛽 are functions of the air sac pressure and the activity of the 

ventral syringeal muscle, respectively. The upper vocal tract further shapes the sound produced by 

the source, determining spectral properties such as the timbre. We used a model for the vocal that 

includes a tube, accounting for the trachea, followed by a Helmholtz resonator, accounting for the 

oropharyngeal-esophageal cavity (OEC) [29,30] (see also Figure 1A in Arneodo et al. [27]). The 

pressure at the input of the tube that represents the trachea is	𝑃H(𝑡) 	= 𝑎𝑥(𝑡) − 𝑟𝑥(𝑡 − 	𝜏), where 
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𝑎𝑥(𝑡)	is the contribution to the fluctuations by the modulated airflow, 𝑟 is the reflection coefficient 

at the opposing end of the tube of length 𝐿 and 𝜏 = 2𝑙/𝑐, with 𝑐 the sound velocity. The pressure 

fluctuations at the output of the trachea force the air at the glottis, approximated by the neck of the 

Helmholtz resonator that represents the OEC. The mass of air at the glottis, forced into the cavity, 

is subject to a restitution force exerted by the larger mass of air in it. In acoustics, it is common to 

write an analog electric computational model to describe a system of filters. The acoustic pressure 

is represented by an electric potential and the volume flow by the electric current. In this 

framework, short constrictions are inductors, and cavities (smaller than the wavelengths) are well 

represented by capacitors. The equations for the equivalent circuit of the post-tracheal part of the 

vocal tract, (see Figure 1B in Arneodo et al. [27]) read: 
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where the electric components relate to geometric parameters of acoustic elements, and are 

described in detail in Perl et al [24]. and Arneodo et al [27]. The pressure fluctuations at the glottal 

end of the trachea relate linearly to the electric tension 𝑉SEF driving the circuit. Following the same 

scheme, the electrical potential at the resistor standing for the beak 𝑉R =	 𝑖N𝑅R is the analog of the 

pressure fluctuations at the output of the beak. In our model, this quantity is the sound radiated by 

the vocal organ. 

3.5.3.1   Parameter fitting  
In order to fit the parameter series that will lead to reconstruction of the song, we perform 

a procedure similar to that previously described [24,31]. Timescale parameter is set to a value of 

23,500; 𝛼 is set to 0.15 during vocalization and 0.15 otherwise, and 𝛽 is set in order to minimize 
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the distance in the (pitch, spectral content) space between the synthesized and the recorded song 

segments [24]; the envelope 3𝑒(𝑡)5 is obtained by rectifying and smoothing the recorded 

waveform; the parameters of the vocal tract were fixed, in the same values as in Perl et al [24]. In 

order to extract the pitch of the song, we follow a modification of the automatic procedure 

presented in Boari et al. [32], and we add a layer of manual curation. When integrating the model, 

we apply the extracted envelope 3𝑒(𝑡)5 as an extra multiplicative factor when computing 3𝑎𝑥(𝑡)5, 

since it recovers the amplitude fluctuations that were discarded when reducing the model to its 

normal form and driving it with the bi-valued parameter 𝛼. The parameters accounting for the 

geometry of the vocal tract are constants and are set to the same values as in Perl et al [19]. 

 
3.5.5   Quantification and statistical analysis  
 

3.5.5.1   Performance evaluation root mean square error (RMSE)  
We used RMSE between each pair of original and predicted spectrogram magnitude as a 

metric to evaluate the performance of our models.  

 

3.5.5.2   Spectral correlation  
To obtain the spectral correlation across time for a pair of spectrograms, we first computed 

the pearson correlation coefficient between each corresponding pair of spectral slices that conform 

the two spectrograms (via the function pearsonr from the stats module of the scipy python package 

[26]). Then, we obtained the time-averaged value across the span of the motif. 
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3.5.5.3   Earth mover’s distance  
To obtain the distance across time for a pair of spectrograms, we computed the earth 

mover’s distance (𝑑TUV) or Wasserstein metric between each pair of spectral slices that conform 

the two spectrograms (via the function wasserstein_distance from the stats module of the scipy 

python package [26]). Prior comparison, each spectral slice was normalized such that the total area 

under the slice be 1; for silences, a value of 1 was assigned to the first bin of the spectrogram. 

Then, we obtained the time-averaged value across the span of the motif. 

 

3.5.6   Biomechanically meaningful compression enhances neurally 
driven synthesis  

Synthesizing a complex motor sequence from neural activity requires mapping between 

two high-dimensional representations. To reduce the dimensionality of the problem, we leveraged 

a biomechanical model of the avian vocal organ that transforms neural activity to vocal output. 

The model accounts for the syrinx and the vocal tract [19,27,31]. The syrinx contains labial folds 

that oscillate when induced by the sub-syringeal air sac pressure and modulate the airflow to 

produce sound (Figure 3.9B) [22]. The dynamics of the labia can be modeled after the motion 

equations of a nonlinear oscillator, in which the features of the sounds produced are determined 

by two time-varying parameters [19,23,24], representing physiological motor instructions (the 

sub-syringeal pressure and the activity of the muscles that tense the labia) [19]. In its simplest 

form, the syrinx model is computable in real time to produce synthetic vocalizations [27]. We 

model the vocal tract (the trachea, the oropharyngeal-esophageal cavity, and the beak) as a passive 

acoustic filter that determines species-specific spectral traits, such as the timbre [19,31,33].  

To synthesize song from neural activity via the biomechanical model, we first fit the 

parameters of the model to produce a synthetic version of each vocalization [19,27,31]. We 
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searched for the parameters that produce, upon integration of the equations of the model, the 

closest match in pitch, spectral richness, and amplitude of the target vocalization. This effectively 

compresses each segment of a bird’s own song (BOS) into a time series in a 3D parameter space, 

which generates a corresponding segment of synthetic song (SYN) (Figure 3.9C) [19,27]. For each 

session, we randomly select 60% of the motifs for training, split each motif into 5-ms bins, and 

train a one-hidden-layer FFNN to predict the biomechanical model parameters corresponding to 

each bin independently from the neural activity in a 50-ms, immediately preceding time window. 

The neural activity was represented by the average firing rate of each cluster, split into 1-ms bins. 

To avoid introducing temporal correlations, we randomized the order in which each pair of neural 

activity window and target model parameters was presented to the network. After training, we 

predict the values of the biomechanical model parameters corresponding to a test set of neural 

activity and integrate the differential equations of the model to produce each bin of neurally driven 

synthetic song. This yields synthetic vocalizations that sound similar to the bird’s own. An 

example motif from each bird is illustrated in Figure 3.11. 
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Figure 3.11:  Song synthesized from premotor neural activity via a biomechanical model of 
the vocal organ is similar to the recorded bird’s own song.  
Spectrogram of one or two instances of a bird’s motif (BOS; upper) and corresponding song generated by inferring 
the biomechanical model parameters from neural activity using a shallow FFNN and integrating the model, for four 
different birds (z007, z017, z020, and z028, respectively). 
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3.6   Discussion 

 3.6.1   Symbolic Decoding 
Naturalistic motor behavior is intrinsically difficult to study due to its high degree of 

variability. Zebra finch represents a desirable model species because they mitigate this difficulty. 

Their song allows for repeated segments of the same sequence to be produced with two almost 

opposing characteristics: near perfect precision of each utterance and the natural irregularities that 

exist in all of nature. This provides a dataset that has both high repetitions of each syllable class 

and a non-deterministic structure beyond the motif level that facilitates detailed analyses. However 

this stereotypy alone would not be an adequate model for the complex sequential structure of 

human speech. Fortunately, there is an additional level of nondeterminism that arises from the 

intramotif notes which have been found to have various combinations of ‘syntactic’ rules. These 

nondeterministic sequences were leveraged in the results described in Figure 3.8, where we show 

that  LFP features predict the presence or absence of intra-motif notes, as well as their onset time 

(Figure 3.8). These findings suggest that additional vocalizations in the zebra finch repertoire can 

be used to study motor-vocal control. These behaviors are significantly less deterministic than the 

syllables of the motif. The stereotyped structure of the zebra finch’s song differs from the more 

complex structure of human speech. Broadening the vocal behaviors that can be used in 

physiological and neural engineering motivated studies can help mitigate this weakness in the 

zebra finch model. In addition, the methods and insights learned from these less deterministic 

vocalizations can be applied to songbirds with more complex song structures such as starlings, 

canaries, and Bengalese finches. Collectively these songbird models provide an opportunity to 

investigate vocal-motor encoding at varying levels of behavioral complexity. 
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We present a unique testbed for approaches to predict the onset of vocalizations in other 

animals, particularly humans. The onset prediction results in which each syllable beyond the first 

was predicted from LFP features, described in Figure 3.4, were computed with little-to-no 

parameter optimization. Better performance could be achieved with more elegant approaches with 

minimal increases in computational complexity. Furthermore, all computations were conducted 

with neural activity preceding syllable onset, suggesting that these features could be leveraged to 

predict syllable onset with low latency. 

 At present the state of the art for human speech decoding intended for neural prosthesis 

applications are non-causal, utilizing neural signals before and after the intended vocalization to 

synthesize sounds similar to those of the intended speech [34–36]. While promising, the non-causal 

nature of these algorithms introduces significant latency [36] and ultimately limits the quality of 

interaction with such a prosthesis. Even further, the limits on duration over which neural signals 

can be studied impedes the pace at which these methods can be established and translated into 

clinical application. This is where the songbird model can contribute to the development of neural 

prostheses: providing an animal model for proof-of-concept system development in which closed-

loop interaction with prosthesis designs can be rigorously studied. Systems derived and refined in 

this model system could then be translated to the human clinical setting, in which such rigor and 

repeatability are more challenging to achieve. These features and this approach provide a starting 

point for further analyses that look to zebra finch and other songbirds as more than a model for 

vocal learning and sequence generation, but also as a model of vocal prediction and neural 

prosthesis development. 
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3.6.2   Comparing and Contrasting Symbolic Decoding and Acoustic 
Synthesis and their implications for Human Speech BCIs 
 

In this chapter we present methods and results for both Symbolic Decoding and Acoustic 

Synthesis of bird song. Every one of the methods described use neural features that precede the 

production of the vocalization and can be implemented in real-time systems. Although their end 

goal is the same, to decode the intended vocalization from neural activity, the features they use 

and the route they take to get there vary. The methods for Symbolic Decoding use LFP which are 

more readily accessible using invasive recording techniques, while methods for Acoustic Synthesis 

use neuronal spiking activity which are not as readily accessible but if recorded from many neurons 

simultaneously can provide higher fidelity readout of brain state than LFP.  

Both methods have their advantages and disadvantages. Symbolic Decoding can 

reconstruct a vocal communication signal with high fidelity using acoustic templates of the 

symbolic units used. However it is limited by the size of the bank of symbolic units used to train 

it. Acoustic Synthesis has much higher flexibility and generalizability and could potentially 

encapsure prosody, emphasis, and tone. These components of the vocal signal are generally lost 

when utilizing Symbolic Decoding approaches. However Acoustic Synthesis systems require 

larger datasets and more complex systems  architecture to be implemented. In addition, evaluation 

of their performance is significantly more difficult and many of the currently used metrics may not 

be functionally relevant. 

Another point of departure from the two methods are their evaluation metrics. Symbolic 

Decoding is straightforward: (1) classifier accuracy, (2) Onset prediction error. Classifier accuracy 

has several well defined metrics that are easily adapted to benchmark Symbolic Decoding work. 

Onset timing is basically how close to the time of vocalization initialization the decoder predicts 

the vocalization. However it is important to keep in mind that decoder accuracy is limited by what 
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percentage of the entire vocal repertoire of the subject is being covered by the classifier. For 

example for the work presented in this chapter all of the syllables of the song in addition to the 

introductory note are being classified. However this doesn’t represent the full vocal repertoire of 

the zebra finch. The majority of their vocalizations are loosely grouped together as ‘Calls’. So the 

accuracy of our system is representative of its performance only when the bird is singing and does 

not describe how accurately the system would perform if run over all periods of time, whether 

singing, vocalizing calls, or silent. Acoustic Synthesis is a bit more complex. The work presented 

utilized similarity metrics such as Correlation, Root Mean Square Error (RMSE), and Earth 

mover’s distance. Although these metrics have succinct mathematical definitions their relation to 

the perception of the communication signal produced, the most important performance benchmark, 

is unclear. 

Overall, these methods showcase the versatility of the songbird model for testing proposed 

methods for human speech BCI research regardless of output strategy. They open new doors for 

testing and developing proof-of-concept systems architecture before testing them in humans. In 

addition, given the extensive history of using songbirds for auditory perception research they stand 

to be an excellent model for developing novel perceptually derived evaluation metrics for Acoustic 

Synthesis systems. Collectively these works exhibit the utility of the songbird animal model for 

testing decoding strategies that can be feasibly translated to human speech BCI research.  
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Chapter 4 : Dynamic Counterbalance  
to Enable Chronic Invasive Electrophysiology Studies 
in Small Animals 
4.1   Abstract 

Both basic science and translational medical research are highly dependent on small animal 

models. In fact 95% of all lab animals are mice and rats, according to the Foundation for 

Biomedical Research (FBR)5. This is especially true for neurotechnology research. However, 

working with small animals has several technological hurdles. One of the most difficult 

engineering hurdles is the small size and low weight tolerance of small animal models, which not 

only impedes the rate of scientific progress but also reduces the types of experiments that are 

possible to conduct in both an experimental and clinical setting. At present the weight of recording 

instruments used in small animal research is addressed by using a simple counterweight system. 

While great in theory this approach both doubles the inertia on the animal making it harder for 

them to move and creates a force that can stress the subject, thus, introducing behavioral confounds 

into the data being collected. We have created a dynamic counterbalance system that not only 

reduces the inertia of instrumented subjects but also reduces the forces experienced by the animals. 

Not only will this potentially reduce the stress on the animals used in research but also increase 

the total weight of instruments that can be used safely in these types of research paradigms. This 

will not only improve data acquisition of existing experiment paradigms by removing the stress 

due to instrument weight, but also enable novel experimental protocols that were not feasible due 

to current weight constraints. 

 
5 https://fbresearch.org/biomedical-research/  
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4.2   Problem Statement 

Utilizing small animal models for long term chronic experiments involves an inherent 

hurdle of accommodating for their limited weight bearing abilities. Current solutions either require 

employing simple mechanical solutions — i.e. simple counterweight systems, commutators, and 

rubber bands—or utilizing cutting edge lightweight wireless technology. The current gold standard 

counterweight approach creates new problems, namely doubling the effective inertia experienced 

by the test subject and creating corrective forces that try to move the animal back to the center of 

their enclosure. These forces and reduced mobility are thought to stress the animals, thus 

negatively impacting data collection and reducing the time that experiments can be safely 

conducted. The lightweight technology approach is still not ideal due to both limits in both existing 

fabrication techniques and current wireless technology. For high throughput recording wired 

recording systems are still better suited for many chronic recording instruments. There exists a 

need for a dynamic counterbalance system that can counterbalance the weight of recording 

instruments without creating restorative forces that will unnecessarily stress the recording subject. 

4.3   Background 

Small animal models (e.g. mice, rats, and songbirds) are heavily employed throughout 

medical research. They are employed to study behaviors and biological phenomena that are 

difficult to study in humans or larger animal models (e.g. non-human primates, pigs, etc). Some 

of the major strengths of small animal models are their size and availability, as well as the 

accessibility of reliable scientific tools to study them at multiple scales. However, for those who 

study complex behaviors this small size creates limits on what instruments can be used to record 
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vital data from their subjects. The problem is simple: small animals have a limit to how much 

additional weight they can bear. Scientists and engineers have largely addressed this problem using 

three methods: (1) Head fixing the animal, (2) Miniaturizing instruments so that they weigh less, 

(3) Counterweighting the recording instruments.  

(1) Head Fixing overcomes the weight issue by having recording instruments self-supported 

and attaching the animal to the recording rig. The animal is held in place and any movement 

it makes does not cause it to physically move and instead moves a part of the recording 

setup. Although the animal is freely moving this behavior does not fully encapsulate all of 

the behavior researchers wish to understand and the animal cannot safely be continuously 

recorded for days without long resting periods.  

(2) Miniaturizing instruments directly addresses the weight problem by reducing the size and 

weight of the recording instruments. However, there is a fundamental limit to how small 

and how light recording instruments can be made even with continuous improvements in 

fabrication techniques.  

(3) Counterweighting reduces the stress the subject experiences from the weight the recording 

instruments by tying a weight of equal or slightly lesser weight. This is often the method 

of choice for researchers who conduct chronic recordings of free behavior in small animals. 

Both (2) and (3) are the current best methods for conducting long chronic scientific research with 

small animal models. However they both have major weaknesses. Only (3) reduces the weight the 

animal has to bear from the recording instruments, and it does so at the cost of doubling the 

experienced inertia the animal has to contend with. This means that the animal has to try twice as 

hard to move with the instrument and the counterweight than if it had to move with the weight of 

the recording instruments alone. What's more, counterweights often only balance properly at a 
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single point in the cage and produces a slight pull towards that equilibrium point at any other point 

in the cage the animal tries to move. The field needs a method that will address the recording 

instrument weight issue without causing additional stress to the animal. 

 To illustrate how significant the weight issue is for the field I will use our own experimental 

setup as an example. Our recordings use Neuropixels probes to record neural activity from awake 

free-behaving zebra finches. Neuropixels, which are the current state of the art for neural 

recordings, weigh about 1.8 grams and are impressive in terms of signal count and signal quality 

for their small size. They are the result of years of improvements in fabrication techniques for 

miniaturizing electronics. However a large male zebra finch may weigh at most 16 grams, which 

means the neural pixel alone weighs about 11.25% of the subject's weight. This is the equivalent 

of attaching a 20.25 lbs weight to the top of a 180 lb man. This estimate doesn’t include the weight 

of the protective headcap that is installed to protect the probe and the bird, the dental cement used 

to secure the headcap, or the electrical tether that connects the probe to the recording system. 

4.3   Solution 

Here we have developed a dynamic counterbalance system using a Variable Radius pulley 

[1], a miniature compound pulley system, a dynamic adjustment arm, and a dynamic pulley. The 

designed parts are capable of being 3D printed and are significantly cheaper to make than existing 

technologies often deployed in science and industry research. (Note: currently most teams only 

deploy commutators that only address concerns regarding the electrical tether connected to the 

recording instruments and Do Not address the weight of the system). 
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Variable radius pulleys (VRP) are mechanical systems that convert the linearly increasing 

force of a spring into a constant force. This is done by adjusting the radius of one side of the pulley 

to change such that the torque on one end stays constant as the other linearly increases with the 

spring. These mechanical systems have found use in medical robotics and are significantly smaller 

than constant force pulleys. The Variable radius Pulley developed for this invention can be fine-

tuned at the design stage, using inhouse written python scripts, to counterbalance a specified 

weight. The first prototype was designed to counterbalance a weight of 1.8 grams. 

 

Figure 4.1: CAD Rendering of Variable Radius Pulley 

Figure 4.2: CAD Rendering of counterbalance system  
(Compound Pulley System and Spring Excluded) 
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Figure 4.3: Engineering Drawing of VRP 
 

As most commercial springs are too strong to use at the regime that small animal model 

recording instruments weigh, we developed custom light weight pulley units to create a compound 

pulley system. This compound pulley system is used connected in reverse such that the system is 

doing work on the VRP & Spring instead of the animal subject. Pulley systems allow one to do 

more work by reducing the force necessary to move an object by increasing the distance you must 

pulley to move it.  
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This approach gives our system two benefits: (1) it allows us to use commercially available 

springs for our system (2) it increases the distance our system is able to counterbalance a weight. 

The supportive structure used to support both the VRP and the compound pulley system is compact 

and designed to fit within more recording rigs employed in both academia and industry. 

To address the problem of only having only one point in the animal enclosure being 

balanced we developed a dynamic adjustment arm that inverts the problem.  Typically, when using 

a counterweight system the equilibrium point is the center of the animal enclosure, however for 

most small prey animals the center of the enclosure is the least desirable location for them. The 

dynamic adjustment arm makes it so that most of the enclosure will have the system balanced and 

only at the center or the extreme corners of the enclosure will have a slight off angle imbalance. 

The adjustment arm has a bore hole through it which allows any commercially available electrical 

tether to pass through it. This means that the system is compatible with all active and passive 

commutator systems available on the market. In addition, the adjustment arm can work with either 

the counterbalance or with a traditional counterweight. 

Figure 4.4: CAD Rendering of an individual Pulley Unit 
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Figure 4.5: CAD Rendering of Adjustment Arm 
 

 For highly mobile small animals such as songbirds it is necessary to prevent the tethers — 

the electrical wire which connects to the recording system and the mechanical wire which connects 

to the VRP — from wrapping around each other in a way that limits the animals mobility. Having 

two wires that move independently of each other means that there is no way the tethers will not 

wrap around each other, so we designed a lightweight dynamic pulley system that will allow the 

two tethers to wrap each other without compromising either tether's functionality or limiting the 

mobility of the animal subject. This dynamic pulley system can be 3D printed and weighs under 

one gram. 
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Figure 4.6: Engineering Drawing of Adjustment Arm 
 
 
 

 

Figure 4.7: CAD Rendering of Dynamic Pulley Unit 
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Figure 4.8: Prototyped of Adjustment arm. 
(Left) Adjustment arm prototype with example electrophysiology cable passing through the center of rotation. (Right) 
Adjustment arm with its’ traveling pulley resting in the center of the arm. 
 
 

 

Figure 4.9: Prototype of full counterbalance system. 
The full prototype of the dynamic counterbalance system. Shown is the counterbalance casing (Black), the compound 
pulley system which comprises of 5 individual pulley units (Center and clear in color), the VRP (lower right and clear 
in color), and the spring (Lower left and silver in color). The weight suspended to the left weighs 1.8 grams.  
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4.4   Conclusion 

 

Together the dynamic counterbalance system, dynamic adjustment arm, and dynamic 

pulley provide a low cost system that addresses several of the pressing weight constraints of 

chronic small animal experiments. Together they will enable researchers to conduct experiments 

that would not have previously been possible due to weight restrictions of existing recording 

instruments. 

4.5   Discussion 

 
Initially there will be a big barrier to entry for neuroengineering researchers who wish to 

begin working with songbirds. These barriers will not only prevent interested researchers from 

incorporating songbirds into their work, but also slow the wider adoption of the animal model by 

the field. This delayed adoption translates to slower progress in research advances and impedes 

the translation of such findings into clinically viable devices that would eventually help patients 

who greatly need them now. By leveraging my mechanical engineering skills to solve these major 

pain points, documenting the solutions, and making them readily available for others I aim to help 

lower these barriers to entry and help speed up the adoption of the songbird animal model. This 

also makes research findings easier to reproduce by using a common framework for conducting 

free behavior experiments in small animals. These actions can potentially set a standard for the 

field that will undoubtedly pay dividends for the acceleration of speech prosthesis development. 
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Chapter 5 : Conclusion 

5.1   Summary of Contributions 

 
This thesis develops songbirds as an animal model to supplement and help advance human 

speech BCI research. Chapter 1 sets the context for this work by describing the current state of the 

field and the hurdles impeding its continued progress. I describe the two main target outputs 

modalities for speech BCIs, namely Acoustic Synthesis and Symbolic Decoding. I also give a brief 

overview of the historic benefit of having a translatable animal model, such as the rhesus macaque, 

which accelerates progress in the motor limb BCI field. That chapter presents our initial 

motivations for targeting the songbird as a potential animal model to fill the needs of the speech 

BCI field and describes what characteristics must be verified to justify this approach. 

Chapter 2 helps validate the songbird animal model by characterizing a nucleus crucial for 

song production and elucidating several LFP features that are qualitatively similar to neural 

features known to be useful for speech decoding in human and non-human mammalian motor 

cortex. These features were found to be correlated with vocal production and are modulated prior 

to the onset of vocal units. Volume conductance signals, such as LFP, are more readily accessible 

than action potentials and thus the bulk of human speech BCI research uses volume conductance 

signal features as inputs for BCIs. Prior to this work there was limited knowledge about the 

characteristics of LFP activity in zebra finch HVC. This work fills the gaps in the literature and 

helps strengthen the argument for using songbirds to supplement human vocal production BCI 

research. 

Chapter 3 demonstrates several methods for decoding songbird vocal activity from neural 

activity that precedes vocal onset. The first two methods, which are components of a Symbolic 
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Decoding approaches, utilizes the LFP features first described in chapter 2. The first method 

decodes the syllable identity and the second method predicts vocal onset. In addition, to further 

validate the zebra finch model we leveraged the nondeterministic intra-motif note to test the 

decoder's generalizability. The final method described comes from work done in collaboration 

with lab mates and developed Acoustic Synthesis systems for bird song. Together these methods 

demonstrate the versatility of the songbird animal model for testing and prototyping approaches 

that can feasibly be translated to human clinical speech BCI research. 

Finally, in Chapter 4 I document mechanical designs for an integrated counterbalance and 

tether management system that lowers the stress on the subject caused by the weight of the 

recording equipment. This is a major pain point for conducting long duration chronic free behaving 

experiments in songbirds. Although designed with songbird in mind, the system is species agnostic 

and can easily be adapted to most small animal research such as mice and rats. Contributions such 

as these are crucial for long term invasive experiments with small animals where wireless 

recordings can be unfeasible.  

Collectively, these neurophysiology and neural decoding contributions enrich the literature 

connecting human and avian vocal-motor production. They demonstrate proof-of-concept systems 

that can be translated to humans. Opening new opportunities to ask basic science questions 

regarding vocal motor control as well as prototyping novel proof-of-concept vocal motor BCI 

systems, and thus, bringing the lofty goal of this thesis closer to reality. 
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5.2   Contextualizing the Songbird Animal Model in the 
Broader Speech BCI Research Field 
 

The development of high performance speech BCI will require invasive studies in humans. 

The songbird model is not intended to replace such human work, but supplement it. Despite 

anatomical differences in the musculature that produce their vocalizations, songbirds and humans 

have a few key similarities that strengthen the argument for this approach. Notably songbirds have 

similar auditory requirements to Humans during vocal production [1–3]. Just like humans, when 

songbirds sing they are constantly listening to themselves to evaluate their vocal performance. 

Implementing any of the song decoding methods documented in this thesis in real-time would 

allow researchers to ask basic science questions regarding the design and performance of closed 

loop BCI systems. A range of questions can be explored with this model system, such as, (1) what 

are the salient aspects of intended behavior that the BCI system must produce for the subject to be 

satisfied, and (2) what are the basic system requirements to implement a basic BCI for real-time 

online applications. The results of the first questions could be used to develop physiologically 

relevant evaluation metrics for Acoustic Synthesis systems or to help define an adequate set of 

symbols for effective Symbolic Decoding Systems. The second question can inform system 

architecture for human speech BCI systems. This approach of asking basic science questions in 

the songbird animal model then leveraging newly gained knowledge to inform human experiments 

could help accelerate the rate of progress for the field.  
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5.3   Future Work and Potential Directions 

 
 Most of the work discussed in this thesis focused on the learned vocalizations of the zebra 

finch, namely song syllables and introductory notes. However, this is just a small portion of the 

zebra finch’s vocal repertoire. The majority of the zebra finch’s vocal behavior consists of 

vocalizations collectively referred to as ‘calls’. Some calls are learned and others are not [4–6]. 

While previous work has found that neural activity in pre-motor nuclei (i.e HVC and RA) encodes 

information regarding which syllable the bird will sing [7–9], few studies focus on elucidating 

what activity, if any, relates to call production [4–6]. Future research that would elucidate the 

contribution, if any, of HVC and RA to producing Calls and leveraging them for vocal decoding 

would significantly strengthen the songbird animal model. Our lab has found some preliminary 

success investigating this question, however, this preliminary work while initially promising is not 

mature enough to be included in this thesis. 

 Finally, future efforts should broaden songbird BCI research by incorporating songbirds 

with greater song structure complexity; namely Starlings and Canaries. This thesis focuses on 

Zebra Finch for good reason, their songs have much simpler sequential structure than Starlings 

which are lifelong learners. This simpler, though still relevant, song structure of the zebra finch 

allowed us to verify the feasibility of the proposed approach. Now equipped with the preliminary 

work described in this thesis, future work should reproduce these findings in other songbird 

species. In doing so it will ensure that the songbird animal model fulfills its full potential for 

supplementing human speech BCI research. By this I mean having a suite of songbird animal 

models with varying degrees of complexity of song structure to choose from when designing 
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research experiments. This will equip researchers with the means of studying vocal motor 

production with a previously unimaginable degree of control.  

It is my hope in writing and completing this thesis that a flag has been set and a call to arms 

is heard by the field. There is a lot of uncharted intellectual territory to be explored with this 

approach, and it could potentially help a lot of people.  
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