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ABSTRACT

This paper proposes a new framework for determining whether a given relationship is
nonlinear, what the nonlinearity looks like, and whether it is adequately described by a
particular parametric model. The paper studies a regression or forecasting model of the
form y; = u(x;) + &, where the functional form of p(.) is unknown. We propose viewing
p(.) itself as the outcome of a random process. The paper introduces a new stationary
random random field m(.) that generalizes finite-differenced Brownian motion to a vector
field and whose realizations could represent a broad class of possible forms for u(.). We
view the parameters that characterize the relation between a given realization of m(.) and
the particular value of u(.) for a given sample as population parameters to be estimated
by maximum likelihood or Bayesian methods. We show that the resulting inference about
the functional relation also yields consistent estimates for a broad class of deterministic
functions u(.). The paper further develops a new test of the null hypothesis of linearity
based on the Lagrange multiplier principle and small-sample confidence intervals based on
numerical Bayesian methods. An empirical application suggests that properly accounting for
the nonlinearity of the inflation-unemployment tradeoff may explain the previously reported

uneven empirical success of the Phillips Curve.



1 Introduction

There has been a lot of interest recently in whether nonlinear statistical models can improve
on linear forecasts or shed light on particular economic hypotheses. Parametric approaches
to nonlinear dynamics include time-varying parameter models (for example, Sims 1993),
ARCH-related specifications (surveyed by Bollerslev, Chou, and Kroner, 1992, and Hamilton,
1994), threshold autoregressions (Tong, 1983; Tsay, 1989; Potter, 1995), regime-switching
models (Hamilton, 1989), and smooth transition autoregressions (Granger, Terasvirta, and
Anderson, 1993). A problem with any of these parametric approaches is deciding which
model to use, that is, deciding in what way the data might be nonlinear.

There is much to be said for flexible nonparametric methods that offer consistent es-
timates within a broad class of nonlinear relations. Popular flexible nonparametric ap-
proaches include kernel methods (Nadaraya, 1964; Watson, 1964; Héardle, 1990; Robinson,
1983; Diebold and Nason, 1990; Fan, et. al., 1996), series expansions (e.g., Gallant and
Nychka, 1987), wavelets (Donoho, et. al., 1995), nearest neighbor (Yakowitz, 1987; Mizrach,
1992); smoothing splines (Reinsch, 1967; Eubank, 1988; Wahba, 1990), and local polyno-
mials (Seifert and Gasser, 1996). Unfortunately, these nonparametric approaches sacrifice
many of the benefits of parametric methods. First, one needs some system for adjusting
a bandwidth or series expansion length as the sample size grows. Second, it is unclear
how a classical or Bayesian statistician should interpret the inferences that result from the
procedure for a given sample of fixed size. Third, the methods are not readily adapted for

the hypothesis testing and model simplification that are quite necessary in order to make



sense of a multivariate nonlinear relation.

This paper proposes a flexible parametric framework for investigating nonlinear relations
that combines the advantages of the two approaches.

The object we seek to estimate is the expectation of a scalar y; conditional on an observed

vector X;:
E(yilxe) = p(xe). (1.1)

The proposal is to view the underlying conditional expectation function p(x) as itself the
outcome of a stochastic process that associates any possible value for x with a scalar p(x).
We think of nature as having generated a single realization of y(.) prior to generating the
observed data {x;,y;}7_;. The econometrician’s task is then to form an inference about the
nature of the realized value for u(.) based on the properties of the observed data.

For x; a scalar, one possibility would be to view u(z) as an unobserved realization of
Brownian motion. As noted by Lauritzen (1981), this idea goes back over a century to work
by T. N. Thiele in 1880. Wahba (1978) showed that such a structure implies that inference
about the unknown function takes the form of a smoothing polynomial spline, and most
of the literature has pursued such models from the perspective of choosing the smoothing
parameter (or an implicit variance of the Brownian motion) by means of cross-validation
or other nonparametric methods. By contrast, the approach followed here more closely
follows Wecker and Ansley’s (1983) view that the latent stochastic process is part of the true
data-generating process, with the properties of the latent process regarded as population

parameters to be estimated by maximum likelihood or Bayesian methods.



More generally, for x; a vector, if u(x) is viewed as a realization of a particular Gaussian
random field, then the optimal inference about the unobserved nonlinear relation appears
to take the form of a thin-plate spline for some specification of the smoothness penalty (see
Wahba, 1990, Section 2.5). One key unanswered question is, what Gaussian random field is
appropriate to employ, or what is the logical way to generalize univariate Brownian motion
to k£ dimensions?

This paper introduces a new Gaussian random field that appears to provide a sensi-
ble answer to this question. The estimator that results from this specification could be
interpreted as an example of a thin-plate spline, albeit a particular thin-plate spline that
does not appear to have been used previously by empirical researchers. The key difference
from most of the existing nonparametric literature is the perspective adopted throughout
this paper that the estimator represents the optimal inference for a maintained parametric
model as opposed to an atheoretical data-smoothing device. The claimed benefits of this
focus are the following. (1) The paper develops a test of the hypothesis of linearity against
a broad class of nonlinear alternatives based on the Lagrange multiplier principle; no such
result appears in the nonparametric literature. (2) Fixed values of the parameters in the
framework proposed here would be associated with different values of the implicit smooth-
ness or bandwidth parameters for different sample sizes, with the result that the inference
procedure proposed here automatically adjusts what would correspond to smoothness or
bandwidth parameters in a nonparametric formulation as the sample size increases so as to

obtain consistent estimates. (3) The framework here is specifically designed to identify which



variables contribute to the nonlinearity. (4) The framework here allows ready calculation of
exact small-sample confidence intervals for the nonlinear relation. (5) The framework here
allows immediate testing of whether a conventional parametric nonlinear model adequately
describes any nonlinearities in the data. In sum, the paper thus proposes a new tool-kit
for the task of modelling a nonlinear relation, with new methods to see if the relation is
nonlinear, what that nonlinearity looks like, and whether it is correctly described by some
particular model, and do all this within a single encompassing framework.

The plan of the paper is as follows. Section 2 describes the stochastic process assumed for
p(x). Section 3 describes algorithms for optimal statistical inference about p(.) conditional
on the population parameters and for estimation of population parameters by maximum
likelihood. Section 4 discusses asymptotic properties of the inference. Section 5 develops
procedures for small-sample Bayesian inference. Section 6 develops the Lagrange multiplier

test of the null hypothesis that u(x) is linear. Applications are provided in Section 7.

2 The stochastic process assumed for the conditional

expectation function

2.1 The case of a single explanatory variable

We first describe a latent stochastic process m(z) which will be used to characterize the
conditional expectation function p(z) when the explanatory variable z is a scalar. Consider

[a,b] a closed interval in ®!. Let w be a parameter to be described shortly, and partition the



interval [a —w, b+ w] as {x1,...,xx} where 21 =a —w, xy = b+ w, and x; = x;_1 + Ay for
i=2,...,N. We imagine generating for each point x; a standard Normal variable e(z;) with
e(x;) independent of e(z;) for ¢ # j. Figure 1 displays an illustrative example for Ay = 0.5.

For each node x; such that a < x; < b, we further construct a random variable my(z;)
which is proportional to the average value of e(x;) for all z; whose distance from z; is less
than or equal to w. The constant of proportionality is the square root of the number of

values of e(z;) that are averaged. For example, when w/Ay is an integer,

w/Ay

my(z;) = (1+20/Ax)72 37 elniyy).
j=—w/AN

This is illustrated in Figures 1 and 2 for w = 1. The constant of proportionality ensures
that my(x;) ~ N(0, 1), though my(x;) is correlated with my(z;) whenever |z; — ;| < 2w.

We consider successive refinements of the partition by letting N — oo and Ay — 0, thus
arriving at a stochastic process defined over a continuum of possible values for z. A single
realization of this process associates each x € [a, b] with a value m(z) € R'. The function

can be characterized as
m(z) = (2w)_1/2 W(z+w)— Wz —w) (2.1)

for W(.) a standard Wiener process. Note that, like the Wiener process, any given realization
of m(.) is continuous in = but not differentiable using standard calculus. It has the further

properties that, for any =, m(z) ~ N(0,1) and

1—|zg — 21|/ (2w) if |29 — 1] < 2w
Elm(z1)m(z,)] =

0 otherwise



We find it convenient to normalize the distance parameter w = 1 and consider the non-
linear component of the mean function p(z) to be governed by two other scalar parameters.
The first is a constant g which multiplies the value of x, and the second is a constant A

which multiplies the value of m(.):

u(x) = g + g + dm(gz). (2.2)

Thus, prior to generating any data on g, or x;, nature is presumed to have generated a single
realization of the stochastic process described by (2.1) for w = 1, and thus to have settled
on a value for p(x) for any = € [a/g,b/g]. Finally, nature generates observed values for x;

and y; according to
Ye = p(ze) + & (2.3)

where x; could be either a lagged value of y;_; or else an exogenous variable that is inde-
pendent of the realization of the stochastic process p(.), and &; is i.i.d. with mean zero and
independent of both u(.) and x, for 7 =¢,t —1,..., 1.

The parameter A in (2.2) governs how big a contribution the nonlinear component m(.)
makes to the conditional expectation function p(.). When A = 0, the conditional expectation
is linear and (2.3) would describe a standard regression model. The parameter A also reflects
the scale of the dependent variable y;; a doubling of the units in which y; is measured would
be associated with a doubling in the value of \. The parameter g in (2.2) governs the
curvature of p(x):

Elu(r:) — o — anae][p(zs) — o — g



1 _g‘a:t —$5’/2 ifg‘xt _335’ S 2

0 otherwise

A doubling of the units in which z is measured would be associated with cutting the value of
gby 1/2. As g — oo, the contribution of m(gx;) to the value of y, becomes indistinguishable
from that of ¢;, while when g — 0, the contribution becomes indistinguishable from that of

Q.

2.2 The case of k explanatory variables

Define a grid in ®* by the nodes {x(iy,%2,...,7x)} where the index i; € {1,..., N} for j =
1,...,k and where, for a given set of indexes (i1, i2, ..., i), the variable x(i1, ia, ..., i) denotes

a k-dimensional vector whose jth element is given by

aj—i-Aij’N(ij—l) for le = 1,...,N—1
$j<i1,i2,...,iN) = .
b; fori; =N

Let Ay be the set consisting of the N* distinct points in R* covered by this grid,

AN = {X(il,ig, ...,ik), ij = 1, ...,N, ] = 1, ,]{J}

For each x € Ay, let e(x) ~ N(0,1) with e(x) independent of e(z) for all x # z. Also
associated with each x € Ay we define By(x) C Ay to be the set of all points in Ay whose

distance from x is less than or equal to unity:

By(x)={z€ Ay : (x—2)(x—2z) < 1}.



Let ny(x) denote the number of points in By(x). Associated with any point x in Ay, we
then calculate a scalar my(x) which is defined as (/ny(x) times the average value of e(z)

for all z contained in By (x):

my(x) = [nnx)] Y e(z). (2.4)

z€BN(x)
Figure 3 illustrates this for £ =2 and Ay = Agy = 0.5.

Taking the limit as the partition becomes arbitrarily fine (A;; y — 0) gives the probability
law for m(.), m : x € ®* — R, where m(.) represents a continuous-valued k-dimensional
random field. For any x, the scalar m(x) is distributed N(0,1). For x and z arbitrary
elements of R*, the correlation between m(x) and m(z) is zero if (x —z)'(x —z) > 2 and
otherwise is given by the ratio of the volume of the overlap of k-dimensional unit spheroids
centered at x and z to the volume of a single k-dimensional unit spheroid. An expression
for this correlation is given in the following results, proved in Appendix A.

Lemma 2.1. Let r and h be scalars satisfying » > h > 0 and define

Gi(h,r) = /]:(7“2 — 2224z, (2.5)

Then Gg(h,r) can be calculated recursively for k = 2,3, ... as

kr?

Gi(h,r) = En k(rz — hAk2 4 T ka_g(h, T) (2.6)

with initial values
Go(h,7)=r—nh (2.7)
Gi(h,r) = (x/4)r* — (1/2)h(r* — h2)1/2 — (r?/2)sin"*(h/r) (2.8)

8



where 6 = sin"!(w) indicates that 6 € [-7/2,7/2] and sin(f) = w.
Theorem 2.2. Let x € R and z € R* and let m(x) and m(z) be the random field

generated as the limit of (2.4) as A;; y — 0 evaluated at the fixed points x and z. Define

h=(1/2)[(x —2z)(x — 2)]Y%. Then E[m(x)m(z)] = Hy(h) where

) — Gia(h, 1)/Gia(0,1) iR <1 29

0 ith>1
Closed-form expressions for Hy(h) for k = 1, ..., 5 are tabulated in Table 1 for convenience.
Again we view nature as generating a single realization m(.) of this random field, from

which a conditional expectation function p(x) is determined according to
pu(x) =g + a'x + Am(g ® x) (2.10)

where ® indicates element-by-element multiplication. Here o and A are scalars and v and
g are (k x 1) vectors of population parameters. A zero value for the ith element of g implies
that the conditional expectation function is linear in ;. Observed data are then viewed as

if generated by

Yr = p(Xe) + & (2.11)

where x; and ¢; are independent of the realization of the random field m(.). Furthermore,

e has mean zero and is independent of x; and of lagged values of y;_; or x;_;.



3 Inference about the conditional expectation function

3.1 A recursive formulation

Suppose we have observed data on {x;,y:}_, generated by (2.10) and (2.11) where &; ~
i.i.d. N(0,0%). The next subsection will explain how to estimate the vector of population
parameters, (g, @', 0,8, A). In this subsection, however, we proceed as if these parameters
were known with certainty, and the goal is to form an optimal inference about the properties
of the unobserved conditional expectation function p(x) given the data using an iteration.
Like the Kalman filter, the algorithm is a straightforward application of the following well-
known result; (see, for example, Hamilton, 1994, p. 102).

Lemma 3.1. If (y},y,) is multivariate nonsingular Normal with y; ~ N(p;, Q1)
and yo ~ N(py, Q92) with €45 the covariance, then ys|y; is N(m,H) where m = p, +
Q1 Q77 (y1 — 1) and H = Qg5 — Q91077 Q1.

Consider evaluating the function p(x) at a finite set of N values for x that might be of

particular interest, denoted x = 71,79, ..., or 7. Collect these in an (N x 1) vector p:
_ n(T1) _
. 1(72) 51)
(TN

Notice from equation (2.10) and Theorem 2.2 that

p~ N(&, Po) (3-2)

10



where the ith element of &, is given by ag + a’7;, while the row ¢, column j element of P

is given by
Py = (3.3)
for
hiy = (1/2){g® (r, = 7)|'[8 © (v, — T;)]}'/* (3.4)

and Hy(h) the function given in Theorem 2.2 or Table 1.

It will turn out that a particular value of 7; only matters for evaluating the likelihood
function if 7; corresponds to an observed value of x; for some ¢. For now we simply assume
that the grid {71,..., 7n} is sufficiently dense that for every value of x; that is observed in
this particular sample, there exists a grid index j; such that x; = 7. Let i; denote column

ji of the (N x N) identity matrix, so that
Y = i, ptey. (3.5)
Notice that (3.2) and (3.5) imply
y|xi ~ N(i;&g, ;Pois + 0?)
Covlys, p'|x1) = El(yr —i1€o)(k — &)
= El(y - iI1PJ + il1ﬂ - i;éo)(ﬂ — &)

= Elai(p—&)+ illE[(u — &) (1 —§)']

N

11



It follows from Lemma 3.1 that!

ply,x1 ~ N(§, Py)

where

POil(yl - i/1€0)

i1Poi; + 02
Poi; i Py

i\Poiy + 02

§ =&+ (36)

P, =P, — (3.7)

This same principle can be used to generate a recursion analogous to the Kalman filter.
Let the (N x 1) vector &, represent our inference as to the value of p on the basis of
observation of Y; = (yt, X}, Yt—1,X;_1, ..., y1,%;)" and let the (N x N) matrix P; represent

the mean squared error of this inference:

& = E(N‘Yt>

P,=E(p—&)(n—25§).

Suppose that prior to the tth step of the iteration we have established that

plY, |~ N, Pea). (3.8)

We assume that x; contains no information about the realization of y(.) beyond that con-
tained in Y;_1, which would be true if x; contains either lagged values of y or variables that
are strictly exogenous:

il Yooy ~ N(E 1. Py, (3.9)

Y Here y1 = y1, y2 = p, py = 11&q, o = &g, Q11 = 1{Poi; + 02, Qoo = Py, and Q42 = i{Py.

12



It then follows from exactly the same calculations that produced (3.6) and (3.7) that

/J’|Yt ~ N(éta Pt)

where
Py i (y: — 1€, 4)
— 3.10
€t €t—1 + iéPt_lit + 0_2 ( )
P, {i,i'P,_
P, =P, — el (3.11)

itP; 11y + 02
Thus one iterates on (3.10) and (3.11) for ¢t = 1,2, ..., T starting with &, and Py as given in
(3.2) and (3.3). The end result of this iteration (for t = T') is an inference as to the value
of w, that is, an inference as to the value of the conditional mean function u(x) evaluated
at the set of N particular values of x represented by the values {71, 72,...,7n}.

The above calculations require only that each observed x; corresponds to some point
7, at which the function p(x) is to be evaluated. Furthermore, if 7; = 7; for some 7
and j, then the ith and jth rows of &, calculated from the above recursion will be iden-
tical and will be perfectly correlated with each other through the matrix P; for each
t = 0,1,...,7. Thus without loss of generality we can take N = T and define p to be
the vector g = (u(x1), u(x2), ..., u(xn))" so that i; in equation (3.5) is the tth column of the

(T x T') identity matrix. In this case the initial conditions for &, and Py could be written

1 X}
1 XY

o = ao + o (3.12)
1 X/

13



Py = N Hy(hij)ijet,.1 (3.13)
hij = (1/2){[g © (x; —x)|'[g © (x; —x))]}'/*. (3.14)
3.2 Evaluating the likelihood function

It follows from equations (3.5) and (3.9) that
Yilxe, Yeo1 ~ N(i€,_y, ijPy_1i, + 0%). (3.15)

Thus iterating on (3.10) and (3.11) allows us to calculate the log of the conditional likelihood

of the tth observation from

11’1 f(yt|xt7 Yt—l; Qy, ala g, gla /\) = _(1/2> 111(27T)

(ye — igt—l)z

—(1/2) In(i\P,;_4i 2y —(1/2 .
(/)n<1t t11t+a> </)i2Pt—1it+O—2

(3.16)

We can then estimate the value of the vector of unknown population parameters (ag, @, o, g, \)’

by numerical maximization of

T
Zlnf(yt‘XhYt—l;aO;a,707g/7>\>- (317)
t=1

3.3 Relation to GLS

We derived the above formulas by considering the distribution of y; conditional on its own
lagged values and on current and past values of x;. It is possible to perform the identical

calculations in a single pass by regarding this as a GLS regression problem. Define

o !
(TZI)_ (y17 Y2y -eeny yT)

14



1 x)

B 1 x)
[T><(k+1)]_

1 xp

/3 _(a07a/),
[(k+1)x1]

Return for the moment to regarding p to be the function p(x) evaluated at an arbitrary set

of T points, rather than evaluated at observed data. Suppose X were a deterministic [T" X

(k+1)] matrix summarizing these particular points. Since m(x) in (2.10) has unconditional

expectation zero for any x, we would in this case regard the vector p as having unconditional

expectation X3 with variance Py. Since y = p+ ¢, the vectors y and p then have the

following unconditional joint distribution:

y N Xg (Po+ 0?I7) Py

m X3 Py Py

Applying Lemma 3.1 to (3.18) yields immediately
ply ~ N(p, V)

where

o =XB +Py(Py + 0°Ir) "} (y — XB)

\Af = PO - P0<P0 + 021T>_1P0-

15
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Furthermore, from the first block of (3.18) we would write the unconditional log likelihood

of y as

Inf(y) = —(T/2)In(27) — (1/2)In|Pg + oIz (3.22)

—(1/2)(y = XB)'(Po + 0*Ir) " (y — XB).

If the explanatory variables {x;}._, were purely deterministic, then (3.18) is accurate
and results (3.19)-(3.22) hold exactly. When x, contains lagged values of y;_;, it is not the
case that y|X ~ N(Xg, (P, + ¢*Ir)) as implied by the first block of (3.18). Nevertheless,
it turns out that the derived formulas (3.19)-(3.22) are perfectly valid even when x; includes
lagged values of y;_;, indeed, they are identical to those arrived at by following the recursion
proposed in Subsection 3.1. An analogous result occurs in the familiar problem of estimating
the parameters of an autoregression, y; = ¢y;_1 + €;. If one writes this autoregression in
matrix form as y = X3 + €, even though it is no longer true that y|X ~ N(X3,021r), the
formulas derived for OLS with deterministic regressors also maximize the true conditional
log likelihood. The result for the present case is provided by the following theorem.

Theorem 3.2. Let &, and P denote the terminal values resulting from iteration on
(3.10) and (3.11) for ¢ = 1,...,T starting from £, = XB. Then (a) Py is numerically
identical to V in equation (3.21); (b) & is numerically identical to fi in equation (3.20);
and (c) expression (3.17) and (3.22) are identical.

To take full advantage of the GLS representation, it is convenient to define { = \/o
to be the ratio of the standard deviation of the nonlinear component Am(x) to that of the
regression residual €. Let 1 = (ag, @/, 0%)" denote the vector of parameters characterizing

16



the linear part of the model and let 8 = (g’, ()" denote the nonlinear parameters. For each

pair of observations ¢t and s, calculate X, = g ® x, and hy(g) = (1/2)[(X, — %) (X, — %,)]Y/2.

Let H(g) denote the (7" x T') matrix whose row ¢, column s element is Hy(h:s(g)) for Hy(.)

given by Theorem 2.2 and define
W(X;0) = (*H(g) + 1. (3.23)
Note from (3.22) that the log likelihood can be written
Inf(y;4,0) = —(T/2)In(2r) — (T/2)Ino?* — (1/2) In|[W(X; 8)| (3.24)
—[1/(20%)(y — XB)'W(X;60) ' (y — XB).
For given 6, the value of 4 that maximizes (3.24) can be calculated analytically as
B(6) = X'W(X;6) ' X] ' [X'W(X;0)y] (3.25)
5%(0) = [y — XB(0)] W(X;0) [y — XB(6)]/T. (3.26)
This allows us to concentrate the log likelihood (3.22) as
T ~
n(6;y,.X) = t;ln Felxe, Yi_15(6), 6)
= —(T/2)In(27) — (T/2)In62(0) — (1/2) In |W(X; )| — (T/2). (3.27)

The maximum likelihood estimate @ can then be found by maximizing (3.27) with respect
to @ using numerical methods. The maximum likelihood estimate @ is found by plugging

this value of 8 into (3.25) and (3.26).

17



3.4 General inference about u(.)

So far we have discussed forming an inference about the value of u(x) evaluated only at
those points x; observed in the sample. The general framework, however, allows us to
make statements about the value of u(x*) for arbitrary x*. The simplest derivation of the
appropriate formulas follows the deterministic regressor framework of (3.18), though the
results can again be shown to be perfectly appropriate for the case of lagged dependent
variables as well. Let y be the (T x 1) vector of observations on the dependent variable and
let X be a [T' x (k+1)] matrix whose first column contains all ones and whose other columns
contain observations on the explanatory variables. Let X* = (1,x*) be a [1 X (k+1)] vector
whose first element is unity and whose next k elements are the values x* for the explanatory
variables at which one would like to evaluate the function p(x*). Let q be a (T x 1) vector

whose tth element is the covariance between p(x*) and pu(xy):

N Hy(hy) if by <1

qt
0 ifh;‘>1

where
hy = (1/2)[(% — %) (% — ]2
Xt =8Ox
X" =g®x".
We then simply replace p in the system (3.18) with p* = p(x*):
Yy X,B (Po + O'ZIT) q
~ N
,U* X*/@ q/ )\2

18



from which it follows as in (3.19)-(3.21) that, given knowledge of the population parameters

0 and 1,
Wiy, X~ N (", V™) (3.28)
where
i =X*B+q (Po+0’Ir) ' (y — XB) (3.29)
V=X —q(Py+0%17) lq. (3.30)

4 Consistent estimation of the conditional mean

We next turn to the behavior of the inference proposed in (3.29) when the sample size T
becomes large. It is first interesting to comment on the properties of this algorithm when

the explanatory variable x; can only take on one of N discrete values.

4.1 Discrete-valued explanatory variables

Theorem 4.1. Suppose that the true data are generated according to
Y = K(Xt) + Et (41)

where {x;}7_, is a deterministic sequence with x; € {x(1),...,x(N)} for all ¢ and where
((x(1)), ..., £(x(N)) are N arbitrary numbers. Let T; = Y/, 6x,—x(;) be the number of times
that x; assumes the value x(7) within the given sample of size T', so that Ty +To+- - -+Tny = T.
Let I, be the (N x 1) vector whose ith element is £(x(i)). Let &, be an arbitrary (N x 1)
vector and Py an arbitrary (N x N) positive definite matrix. Let fi;, denote the ith element

of the vector &, as determined from the recursion (3.10).
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T
711'_1 Z Et(sxt=x(i) 2 0 (42)
t=1
as T" — oo, then
flr = 0(x(7)) (4.3)

as T — oo.

(b) If (4.2) holds for i = 1, ..., N, then the log likelihood in (3.17) converges to ¢*,

Sl (i Yicii.0)| — 20 (1)
where
¢ = @) - (7 - N2 - 123 () (4.5
/20 3T~ (/2) 1 Bl — (1/2)L — €0P5 (5 60

for 5? = Tz‘_l Z;‘F=1(yt — hi)26Xt=x(i) and h; = Tfl Zle YO —x(i)-

(c) If (4.2) holds for ¢ = 1,..., N, then the maximum likelihood estimate 62 satisfies
T
52 LTS e (4.6)
t=1

and the maximum likelihood estimates B, g, and \ are asymptotically equivalent to the

values that maximize

—(1/2)In [Po(g.\)| — (1/2)(L — XB)'[Po(g. V)] (L — XB). (4.7)

Although the estimator ji;; was motivated by assuming that the error £; is i.i.d. Normal,
Theorem 4.1 shows that ET is consistent for the population mean I, under much more general
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conditions. For example, &, could come from a stationary ARMA process, ¢(L)e; = 6(L)ay,
with roots of ¢(z) = 0 outside the unit circle and a; a non-Gaussian white noise process. All
that is required for consistency of ji,p is that the residuals associated with the observations
x; = x(4) have population mean zero and obey a law of large numbers (expression (4.2)).
Note further that the estimate ET is consistent for any values of Py and &,— any assumed
latent process for g works equally well. The reason for this result is that the latent process
for p functions basically as a Bayesian prior for . Regardless of the values of the prior, it
is eventually dominated by the inference from the observed sample means for any given 1.
Result (4.6) establishes that the maximum likelihood estimate 6% gives a consistent esti-

mate of the true variance of ;. If moreover the true e, ~ i.i.d. N(0,0?), then
VT(5% - 0% 5 N(0,V)

where V' is consistently estimated from the element of the negative of the inverse of the
matrix of second derivatives of (3.17) corresponding to 0. In other words, the standard
formula for an asymptotic Wad test about a maximum likelihood estimate (e.g., Hamilton,
1994, p. 143) is perfectly appropriate.

By contrast, the maximum likelihood estimates 3 and @ do not give consistent estimates
of any population magnitudes in this case. This is because the process is nonergodic for
these parameters. The most the data Y can ever tell us about the process whereby p was
generated is the realized value of p governing the sample. Nevertheless, maximization of
the observed log likelihood is a perfectly reasonable way to estimate these parameters. In
particular, (4.7) establishes that the MLE B is asymptotically equivalent to a GLS regression
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of the (N x 1) vector of population means I, on X3, for X the [N x (k + 1)] matrix whose

ith row is given by (1,x(7)"):
B4 (X'Py'X) " (X'Py'L). (4.8)

In other words, B is chosen so as to minimize the GLS distance between X3 and the
true value of the vector of population means, I,. Furthermore, the information matrix is
asymptotically block diagonal between o and (B,, g, 5\)’ , so that the standard estimate of the
variance-covariance matrix of the latter parameters should be a reasonable approximation.
In particular, note from (4.7) that if g and A were known, the standard formula would imply
B ~ N(B,(X'P, 1X)_1), which for deterministic x; and stochastic Gaussian I, would in fact

be the exact small-sample distribution for a GLS regression of I, on X33.

4.2 Continuous-valued explanatory variables

We now suppose that x; is observed over a continuum in #**. A critical condition is that all
relevant regions of R* get repeatedly sampled. We state and develop convergence results
for the case of deterministic regressors, though comparable results for stochastic regressors
are presumably obtainable.

Definition 4.2. Let A C R* be a closed rectangular region and let {x;} be a determin-
istic sequence in A {x; € A fort =1,2,...}. The sequence is said to be dense for A if there
exists a continuous function f: A — R! such that f (x) > 0 for all x € A and such that, for

any € > 0 and any continuous function #: A — R!, there exists an N such that

T 0(x,) — /A 0(x) f (x)dx

t=1

| 3 <e (4.9)
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forall T > N.

Note that if x; were a stochastic i.i.d. sequence with density f(x), then denseness
(with deterministic convergence replaced by convergence in probability) would be a simple
consequence of the law of large numbers along with a requirement that the density of x
be everywhere positive. However, denseness is a much weaker condition than i.i.d. The
essential requirement is that, given any measurable subset of A, one can obtain an arbitrarily
large number of observations on x; within that subset as the sample size T' grows.

In describing the asymptotic properties for the continuous case, it will be helpful to

replace the (T'x 1) vector &, in (3.10) with the function ¢, : A — R! having the interpretation
§i(x) = Elu(x)[Y]. (4.10)

We likewise replace the (7' x T') matrix P; with the function p; : A x A — R! where
pi(z, w) = E[€,(2) — p(2)][€,(w) — p(w)] (4.11)

for z and w arbitrary elements of A. The recursions (3.10) and (3.11) are then replaced by

functional recursions:

62) = & 1(a)- PRI b ) (1.12)
_pt—l(Z, X, )pe—1(Xy, W)

4.13
Di—1(Xe, X¢) + 02 ( )

pt(Z7 W) - pt—l(Z7 W)
Notice that if £,_,(z) and p;_1(z, w) are continuous, then so are &,(z) and p;(z, w).
Definition 4.3. A continuous function p : A x A — R! is said to be positive semidefinite

if for any continuous function 6 : A — R! it is the case that

/zeA /VVEA9<Z>p<Z’W>9<W> dw dz > 0. (4.14)
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Theorem 4.4. Let 02 > 0 be an arbitrary positive number and let A C R* be a closed
rectangular region. Let py : Ax A — R! be an arbitrary initial positive semidefinite function

and let p; : A x A — R! be given by (4.13). Suppose that {x;} is dense for A. then
jlim pr(z,w) =0 (4.15)

for all z and w in A.

Recall that if the data were really generated from the maintained model with py(z, w)
the true covariance of the nonlinear component, then pr(x,x) is the MSE of the optimal
inference about the unobserved function p(x) based on the observed data Y. Theorem 4.4
thus implies that the unobserved mean function for this class of processes can be consistently
estimated using this algorithm.

It is also easy to show that if the true relation is linear, then the algorithm will consistently
uncover this linear relation regardless of the population parameters used to describe the
nonlinear portion, that is, regardless of the values used for Py and ¢2. The key to this
result is the following lemma.

Lemma 4.5. Let {x;} be dense and let Py be a (T' x T') matrix whose row ¢, column s
matrix is given by po(x¢, Xs) for pg : Ax A — R! a continuous function satisfying (4.14). Let
/

qr be a (T x 1) vector whose tth element is py(x, x,) for some x € A. Let a = (ay, as, ..., ar)

where {a;} is a white noise sequence not depending on {x;}:

V2 ift=s

E(aias) =
0 otherwise
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Then

lim E [qp(Po + 0°Tr) "a] = 0. (4.16)

T—o00

It follows immediately from Lemma 4.5 that if the true relation is linear,
y =XB +a,

then the inferred value for the conditional expectation of y given x* as calculated from (3.29)

converges in mean square to X*3,
i =X*B + qp(Py + o’Ir) ta ™5 X*3,

regardless of the values used for Py and 0% > 0.

We next describe a general class of nonlinear models for which our algorithm would also
lead to consistent estimation of the conditional mean. To do so we first introduce the
concept of representability.

Definition 4.6. Let A be a closed rectangular region of ®* and let ¢ : A — R!
and p : A x A — R! be arbitrary continuous functions. The function #(.) is said to be
representable with respect to p(.,.) if there exists a continuous function A : A — R! such

that
((x) = / p(x,2)\z) dz. (4.17)
A
Theorem 4.7. Let py : A x A — R! denote the particular positive semidefinite function

from which the iteration on (4.13) is to be started, and let § : A — R! be an arbitrary

continuous function. For a given sample of T" observations on the explanatory variables
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{x1, X3, ...,xp} construct the function /7 : A — R! from

fr(x) = T3 polx,x,)0(x,). (4.18)

Consider a sequence of samples of size T' = 1,2, ... where the sample of size T is generated
according to

Y=o+ &% + lp(xg) +ap t=1,2,...,T (4.19)

where

V2 ift=s

E(aias) = . (4.20)
0 otherwise

Let &7(z) and pr(z, w) be the values obtained by iterating on (4.12) and (4.13) where 02 > 0

is an arbitrary constant. If {xr} is dense for A, then
T
T E{&r(xt) — oo + &' + p(x4)]}> — 0 (4.21)
t=1

as T' — oo.

For given functions po(.,.) and 6(.), expression (4.18) describes a sequence of continuous
functions ¢7(.). The claim of Theorem 4.7 is that the algorithm (4.12)-(4.13) will converge
to the limit of this sequence of functions. From (4.9), the sequence of functions has a

limiting continuous function described by

lim 7 (x) = /A po(x,2)0(2)f(z) da. (4.22)

T—o00

By varying 6(.), a class of functions that can be consistently estimated by using this particular

po(.,.) is thus generated. Comparing (4.22) with (4.17), it appears that if the data were
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generated from

= o+ a'xy + L(x¢) + ay,

then the conditional mean can be consistently estimated provided that the conditional mean
function ¢(x) is representable in terms of the py(x,z) covariance function that is used to
start the iteration.

For the particular function py(x, z) proposed in (3.3), we obtain the following alternative
characterization of representability.

Lemma 4.8. Let x and z be elements of A C ®* and let
PO(X; Z) = /\2Hk(h(xaz))

where A > 0 and Hy(h(x,z)) is the function described in Theorem 2.2 with h(x,z) =
(1/2){lg® (x —2)[g ® (x — z)]}"/* and g is a (k x 1) vector of nonzero constants. Then
{:x € A — R is representable with respect to py(x, z) if there exists a continuous function

n:z e A— R such that

0(x) = / / dz d 423
(X) YEW (x) zEW(y)ﬂAn(Z) 24y ( )

for W(x) = {y € % [g© (x —y)]lg © (x —y)] < 1}.

Lemma 4.8 suggests that we can think of a representable function ¢(x) as having been
arrived at from an underlying continuous function 7(z) through two steps. First, for any
point y such that the distance between (g ® x) and (g ®y) is less than unity, we find all
the vectors z that both are within A and are such that the distance between (g ® x) and
(g ®y) is less than unity, and take the average value of n(z) for all such values z. Second,
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we take an average of the resulting function of y over all such vectors y in order to calculate
the value ¢(x). By choosing a different function 7(z) we will arrive through this process
at a different function ¢(x) and the set of all such possible functions ¢(x) that could result
from starting with any continuous 7(z) is the set of functions ¢(x) that will be consistently
estimated with our procedure.

The set of functions ¢(x) that are representable in terms of (4.23) is a broad and flexible
class. For the case of a single explanatory variable with & = 1 and A = [a, b], condition

(4.23) becomes

at+g~!  rmin{by+g'}
z) = /y / n(z) dz dy. (4.24)

=z—g~—! Jz=max{a,y—g~1}

Suppose that the true functional form is either an rth-order Taylor series,

Ux) =) cpP, (4.25)
p=0
or an rth-order Fourier sine series,
U(z) = cpsin(wyz). (4.26)
p=0

For values of z that are far enough from the boundaries, specifically, for values of x €
[a+2g71, b —2g71], either of these functions are representable by a suitable choice for 7(z),
as the following lemmas demonstrate.

Lemma 4.9. If /(z) is given by (4.25), then for any constant g > 0, there exists a
function n(z) = 337 _,v,2" such that

-1 1

T+g Yy+9-
z) = / / n(2) dz dy. (4.27)
y=z—g~ ' Jz=y—g~!
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Lemma 4.10. If /(z) is given by (4.26), then for any constant g > 0 such that
sin(wp/g) # 0 for p = 0,1,...,7, then (4.27) holds for the function n(z) = >37_, 7, sin(w,z)
where

2

prp
= — "t 4.28
T T (w,/g) (428)

These results suggest that the class of nonlinear models that one can estimate consistently
with this procedure is quite general and flexible. Note moreover that these results hold for
any value of the smoothing parameter g. Thus a major advantage of this approach over
nonparametric methods is that one does not need to adjust a bandwidth parameter as a
function of the sample size; the algorithm given by (4.12) and (4.13) automatically adjusts
the inference about p(x) as the information from a growing sample accumulates.

Having said this, a few qualifications are in order. First, these lemmas do not imply
that the function £(z) = >7_;c,2P is representable at all € [a,b], but only that the
representability condition (4.24) holds for interior points z € [a + 297 !,b — 2¢g7!]. The
actual result proven is that the conditional mean could be consistently estimated if it takes
the form of £(x) = Y7o cpa? for © € [a+2¢7",b—2¢7"] but has a different characterization

near the boundaries, namely

-1 1

z+g min{b,y+g~ "'} r
l(z) = / / > 2P dz dy
y=r—g~! Jz=max{a,y—g~'} ;0
where the coefficients «,, are given in the proof of Lemma 4.9. If instead £ (x) took the form
of 37/ cpa? for all x, then there is no guarantee that our algorithm will provide consistent

1

estimates of the conditional mean ¢ (z) for values of z less than a + 2g™" or greater than

b—2g L
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Second, no claim has been made about the rate of convergence. For example, suppose
that the true function is ¢(z) = sin(wz). If ¢ = w/m, then the region over which one is
averaging in (4.27) (namely, z + ¢g~') would be exactly the same as the interval needed for
the functional form to complete a cycle (z + 7/w), and the condition for representability in
Lemma 4.10 (sin(w/g) # 0) would fail to hold. Suppose instead that sin(w/g) is close but
not equal to 0. The function 7(z) of which Lemma 4.10 demonstrates the existence is given
by {w/[2sin(w/g)]}?sin(wz), which could assume quite large values at its peaks and troughs
if sin(w/g) is near zero. Suppose for illustration that x is uniformly distributed over [a, b],
so that f(2) = (b —a)™!. Then the function 6(z) in (4.22) is proportional to n(z). The
proof of Theorem 4.7 is based on the assumption that there exists a sample size T such that
T ST pr(x, 2,)0(x,) is negligible, where pr(z;, 7) is the result of T iterations on (4.13).
as sin(w/g) approaches 0, the magnitude of 6(z;) becomes larger and the necessary value of
T becomes bigger. Obviously for a given finite sample, looking at averages over a region
that roughly corresponds to the periodicity of the functional form is not going to be a very
good way to find out about the function.

More generally, the function #(x) will be proportional to n(x)/f(x) where f(.) is the
density of the independent variable x;. If some region of the x-space is sparsely sampled (so
that f(x) is small), a large number of observations will be necessary in order to estimate the
value of the function in that region, since again a large value of T" will be needed to make
TS pr(x:,x,)0(x,) small.  Obviously the curse of dimensionality applies as well; the

larger k, the larger T" must be to ensure adequate coverage of any given neighborhood.
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Finally, we note the critical role of the assumption that {x;} is a dense sequence for a
compact region of support A. It might be technically possible to relax the assumption of
conpactness through the device of allowing the boundaries of the region to grow at the proper
rate as the sample size increases. However, the theory that any nonzero value of g would
work is based on the assumption that, for any x* of interest, one has an arbitrarily large
number of observations such that 3%, g?(z;; — x})? < 1. For any given finite sample, there
exists a value for g sufficiently large that no observations fall in this region, in which case the
expectation that we would have an infinite number of such observations in an infinite sample
offers little practical comfort. On the other hand, as g becomes smaller, more observations
will be included in the averaging region, but one would have growing concerns that the
function is roughly periodic over such regions, that convergence toward a given polynomial
will be slower, and that a larger number of observations will fall near the boundaries for
which the estimates may be unreliable.

The approach suggested in this paper of choosing g and A so as to maximize the likelihood
function (3.22) or by the Bayesian methods suggested in the following section seems a sensible
way of dealing with these issues. When g — oo, the nonlinear component Py becomes I
which is indistinguishable from the disturbance covariance o?Iz, and the value achieved for
the likelihood function would be identical to that of a simple linear regression. Likewise,
when g — 0, the nonlinear component Py becomes A?11’, which makes a contribution to
the likelihood function identical to that of the constant term in X3, and the fit achieved

would again be no better than that for the linear regression. Treating these as population
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parameters to be estimated by maximum likelihood or Bayesian methods thus avoids both
extremes by construction, and uses values that are most appropriate given such evidence of
nonlinearity as appears in the data.

Ultimately, the question of whether the convergence rate is satisfactory depends on the
practical experience of applied users. On this score, the examples presented in Section 6
of this paper and the extensive Monte Carlo investigations by Dahl (1998) suggest that the

method holds a great deal of promise.
5 Bayesian analysis

One benefit of the parametric approach to flexible inference is that it allows one to evaluate
the small-sample properties of any statistic of interest using numerical Bayesian methods,

as described in this section.

5.1 Priors

As in Subsection 3.3, let 1 = (3',072)’ denote the vector of parameters for the linear part
of the model and 8 = (g, ¢)’. We follow standard Bayesian practice (e.g. DeGroot, 1970,.

p. 252) in adopting a diffuse prior for 1),

p(y) o 0. (5.1)

It is necessary, however, to use an informative prior for 6, since these parameters become

unidentified (have no marginal effect on the likelihood function) as §; — oco. To ensure
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nonnegative values, we propose using an independent I'(«ay, §;) prior for each element of 6,

p(0) =11 F(EZ )9‘“_1 exp(—00;). (5.2)

i=1
We expect the parameter g; to be inversely proportional to the standard deviation of variable
i. For the prior mean (m; = «;/6;) for parameter g;, we accordingly specify

T ~1/2

(k/T) Z Ty — T;)° i=1,...k (5.3)

t=1
with z; = T~! Zle x; and k the number of explanatory variables, not counting the constant
term. Note the rationale for choosing the constant of proportionality, 2/ Vk, in expression

(5.3). With this choice, the argument of the function Hg(hss) in (3.14) when g; is equal to

the prior mean would be

his = (1/2){g3(z1s — 15)* + g5(ar — Tos)® + -+ + G (T — Tps)*}?

P (mer — T4s)? 2
e
/=1

St
for s? the sample variance of variable . Thus if each explanatory variable in observation
t differs from its counterpart in observation s by more than one standard deviation, then
his > 1 which implies that the nonlinear components of u(x;) and p(x;s) have nothing in
common. We specify the prior variance 7; = «;/ 6? for parameter g; to be the square of the
prior mean. Thus we take a; = 1 and 6; = 1/m; for i = 1,....,k. We set the prior mean

and variance of ¢ equal to unity (ag1 = Opr1 = 1).
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5.2 A useful decomposition of the posterior distribution

The goal of Bayesian analysis is to evaluate properties of the posterior distribution,

where
f(,0,Y ) = f(Yr|,0) - p(ap) - p(6) (5.5)

which is the product of (3.24), (5.1), and (5.2) and where the constant of proportionality in
(5.4)is 1/ [ f(¢,0,Y ;) dip dB. Because this constant is not known analytically, numerical
Bayesian methods are needed.

The numerical methods described below could be used to analyze (5.4) directly. However,
it is much more efficient to use known analytical results for the linear part of the problem,
and reserve the numerical evaluations for the nonlinear component. Specifically, we will

write
f($,0,Yy) = f(|0,Y;)- f(0,Y) (5.6)

and use the fact that f(v|@, Y ) is known analytically to simplify the analysis. To recognize
the form of f(1|0,Y 1), let K(@) be the Cholesky factor of the inverse of the matrix W (X; )
in (3.23),

K(0)K(9) = [W(X;0)] .

Conditional on @, and treating X as deterministic throughout this section, expression (3.24)

implies that § = K(8)'y is related to X = K(H)/X according to a classical Normal regression
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model. Thus we know as in DeGroot (1970, p. 252) that

i T—-k—1 T5*9)
o0, Y, ~T ( 5 — ) (5.7)
Blo2%0,Y, ~ N <B(0>,02(X'5<)‘1) (5.8)

for 52(0) and B(0) given by (3.25) and (3.26).
We show in Appendix D that expressions (3.24), (5.1), (5.2), (5.6), (5.7), and (5.8) imply

that

-9 —(T—k—1)/2 .0)\|~1/2 k+1
k[T5%(0)] _|1VV(_>1(;29)| H 6‘11 exp(—8,6;) (5.9)
IX'W(X;0) X]|

f(07 YT) -
where the constant x does not depend on 6,1),Y ;, or X.

5.3 Importance sampling

The goal in this subsection is presumed to be to infer the posterior expected value of some

function £(@) of the nonlinear parameters,
/ 0(0)£(0]Y.) (5.10)

where

f(6,Yr)
[ f(6,Y7)do

f01Y ) =
Following Geweke (1989), one can in principle infer the value of (5.10) with any desired

accuracy by generating an artificial i.i.d. sample 8%, ...,0%) drawn from an essentially

arbitrary “importance” density I(6) and calculating the value of

Zé\le g(g(j))w(g(j)’ Yr)
S w0, Yr)

(5.11)
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where

(5.12)

The key property that 7(6) must satisfy in order for the estimate (5.11) to be acceptably close
to (5.10) for a feasible value of N is that w(6,Y ;) approaches zero for large or small values
of 8. One can show that in the tails, (5.9) simply becomes proportional to the prior p(@).
Hence the key requirement is that the importance density should be more spread out than
the prior. We have developed a reasonably efficient algorithm based on a truncated mixture
density. With probability 0.7, we generate 8 from a multivariate Student ¢ distribution with
v = 2 degrees of freedom, centered at the maximum likelihood estimate, and with precision
matrix given by (-1/2) times the matrix of second derivatives of the log likelihood function,
in other words, a distribution similar to the assumed asymptotic distribution of the MLE,
though more spread out. With probability 0.3, the elements of 8 are drawn independently
from a I'(a;/2,6;/2) distribution, which has the same mean but twice the variance as the
prior itself. The truncation was achieved by throwing out any draw for which some 6; < 0.

Thus the importance density is proportional to

10) x (0.7) Fr([ng(;;(ﬁf}z o +e-ayare-o) " (5ag)
+(0.3) kﬁl B/ o= exp(—6:0,/2)

[(aif2)

=1

for 0, > 0,i=1,2,...k+1

where the constant of proportionality reflects the truncation, @ is the maximum likelihood

estimate, Q is twice its asymptotic variance matrix, v = 2, ; = 1, and 6; = 1/m; with m;
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given by (5.3). Other values for any of these parameters that characterize the importance
density would have worked equally well; these values were chosen so as to satisfy the tails
condition and still have a reasonable concentration of mass in the same region as does the

unknown f(0[Y ;).

5.4 Confidence intervals

Let ¢ be any random vector whose distribution conditional on 8 and Y is known (f({|0,Y ;)).
As shown in Appendix D, we can estimate the posterior probability that ¢ falls in some re-
gion C' as follows. For each oY) generated from the importance density in (5.13), generate
¢Y) from f(¢|0Y,Yr) and calculate

Z;V:1 5[C(j>€c]w(0(j), YT)
ZéYzl w(‘g(j)7 Yr)

Pr(¢ € C|Yr) = (5.14)

Thus for example one can obtain the posterior mean of the vector of linear parameters 1 by

generating ¥ from f(|0%), Y1) in (5.7) and (5.8) and calculating

Zé\/:l w(j)w(g(j)7 Yr)

BolYy) = = e (515)
Similarly, we know from (4.12) and (4.13) that, conditional on % and 6,
pX)|,0, Y ~ N (Er(x[9h, 0), pr(x,x|¢,0)) . (5.16)
Hence the posterior mean can be calculated from
B[] = S x|y, 0w (0, Yr) (5.17)

Zé\le w(H(j), Yr)
A 100(1 — @)% confidence interval can be found as follows. Cenerate 89 from (5.13) and
use this 89 to generate ¥V from (5.7) and (5.8). From these then generate a scalar ¢V/)
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from the density in (5.16). Sort the values of {¢, ..., ¢™} from smallest to largest and find
the observation indexes j; and js for which 2?:1 w09 Yr) + ¥ w(®Y Yr) = a/2 and

SN w9, Yr) =N w(@?,Yr) =a/2. The confidence interval is then [¢U), ¢172)],

J=J2 j=1

5.5 Limitations of the parametric approach

Conditional on the data and the value of the population parameters ¥ and @, the inference
&r(x;, 0) determined by (4.12) is the optimal estimate of p(x) for a quadratic loss function.
Likewise, with the parameters @ and 0 stochastic but governed by the prior distributions
(5.1) and (5.2), then the limit of (5.17) as N — oo would be the optimal estimate of p(x).
These optimality properties, however, hold only if the data were truly generated from the
model specified by (2.4), (2.10), and (2.11). Although the estimate &, (x; 1, @) converges to
the true u(x) even if (2.4) and (2.10) do not hold, we can not claim that £,(x; 1, 8) would
be the optimal estimate no matter what the true p(.).

Indeed, the very definition of optimality over some broad class of possible yu(.) is prob-
lematic. The conventional nonparametric approach focuses on the rate of convergence for
the most troubling possibility within the class of allowable x(.). This min-max formulation
of the problem, however, is not one that arises naturally from thinking about the researcher’s
ultimate objectives. For example, if what one really cares about is minimizing the value of
[i1(x) — p¢(x)]?, then under the Friedman and Savage (1948) postulates, the optimal strategy
is to place probability weights on all the possible values for ;(x) and integrate. The priors
for @ and @ imply a prior distribution for possible p(.), and if one accepts this implicit

assignment of prior probabilities, then the estimator (5.17) would be strictly superior to
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min-max methods for choosing an implicit bandwidth. Of course, as is a potential problem
for any Bayesian estimator, not all researchers will embrace this particular prior.

Similar caveats apply to the confidence intervals generated by this approach. We claim to
have a procedure that consistently estimates the value of pu(x) for u(.) any function within
a broad class, and claim to have small-sample 95% confidence intervals for the inference.
However, we can not claim, as a classical econometrician might wish, that for any particular
function p,(.) within this class, if the data were truly generated from y; = po(x;) + &, then
the confidence intervals for p(x) would include the true value py(x) in 95% of the samples.
Rather, the claim is that, if one assigns prior probabilities to various possible values for pu(.)
as in (5.1) and (5.2), then the posterior probability that p(x) falls within the calculated
band is 95%.

There is, however, one hypothesis of special interest for which such qualifications and
caveats do not apply. This is the hypothesis that the true relation is linear, to which test

we now turn.
6 Testing for nonlinearity

One advantage of having an explicit parametric model of general nonlinearity is that it
suggests a simple way to test the null hypothesis that the true relation is linear, namely,
by testing whether the value of A? in equation (3.13) is zero. Admittedly, if the true
relation is linear, then the parameters g that govern the scale of the nonlinearity in (3.14)

are unidentified. Fortunately, it is quite natural for purposes of testing the null hypothesis
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of linearity simply to fix these values on the basis of the scale of the data, for example, by
setting g; equal to the prior mean suggested in (5.3).

Theorem 6.1. Let Hy be a known (7" x T') positive semidefinite matrix and let
Qr = N’Hy + 017 (6.1)
Consider the likelihood function under the assumption that y|X ~ N(Xg3, Q;):
In f(y|X;¢) = —(T/2) In(27) — (1/2) In || — (1/2)tr(Q ee’) (6.2)

fore =y — X8 and ¢ = (\?,02,3)".

(a) The score is given by

0 In f(y1X;¢)

ol (20" ['Hre — otr(Hy)). (6.3)

(b) Suppose that the data were actually generated from (6.2) with some true parameter
vector ¢y = (0,02, 8,). Then the score in (6.3) evaluated at ¢, has expectation zero, and

the information matrix is

) I f(yIX %)
. { o6 aC/ ¢=Co } (64)

(20%)Mr(HZ) (20%)'tr(Hy) 0O

= | (20%) 7 tr(Hy) (20)71T 0

0 0 o2X'X

(¢) The Lagrange multiplier test of the null hypothesis that A*> = 0 is given by

AETa A2
Ry — g'Hré — 67tr(Hy) (6.5)

63v/3 {t(H) — T [ix(Hp) )
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where 2 =y — X8, 8 = (X X) X'y, and 62 = T-1¢’e.
(d) Suppose that the data were actually generated from (6.2) with A* = 0. Let Hy be a
(T' x T') positive semidefinite matrix whose row ¢, column s element is given by some function

h(x:,x5) where diagonal elements h(x;,x;) are all unity. Define
Ar = Hy — T Htr(Hp)|Ir (6.6)

so that Ar is the same as Hy except that diagonal elements are all zero. Let {x;} be a
deterministic sequence where h(.,.) and {x;} satisfy
(i) T7'X'X — Q, a positive definite matrix;
(i) T'X’A7X — P, a positive semidefinite matrix;
(i17) T'X’A2X — R, a positive semidefinite matrix;
(iv) 36 > 0 such that T~ 1tr(A2) > 6§ VT.
Then as T'— oo, Ny L N(0,1).
The LM test statistic (6.5) has a small-sample bias which can be corrected using the
following result.

Lemma 6.2. For x; deterministic, the following score-based sample statistic,

~ g'Hré — 62tr(MrHrM
NT: g rnre ot I‘( TIT T) (67)

(2 o {[MTHTMT —(T' =k = 1)"'Mgtr (MTHTMT)]Q})1/2,

has mean zero and variance od, where My = Iy — X(X'X)'X’ and 62 = (T — k — 1) '&'¢.

The recommended test of the null hypothesis that the true relation is a linear model of
the form y; = ap + a'x; +&; with € ~ N(0,02I7) against the alternative that y; = u(x;) + &
for p(.) given by (2.10) is thus conducted as follows. Set g; = m; as specified in (5.3) for k
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the number of explanatory variables, not counting the constant term. Calculate the (7' x T)

matrix H whose row ¢, column s element is given by

H, ((1/2) [gf(a:u — 215)° + g5 (Do — @25)> + -+ - + G (The — aiks)ﬂ 1/2> (6.8)

for Hy(h) the function given in Theorem 2.2 or Table 1. Next perform a linear OLS
regression of y; on (1,x})" with the usual (7" x 1) residual vector & OLS squared standard
error 52 = (T — k — 1)7'&’&, and (T x T) projection matrix M = I, — X(X'X) "X’ for X
the [T x (k + 1)] matrix whose tth row is (1,x}). Finally, calculate the value of

[¢'He — 5*ur(MHM)]”
&* (2t {[MHM — (T — k — 1)~ Mtr(MHM)]*} )

V2:

(6.9)

If 2 > 3.84, the null hypothesis of linearity should be rejected at the 5% level.
Note that a further implication of Theorem 6.1 is that, if the true model is linear (A3 = 0)
and one estimates a model of the class suggested here, then for fixed g, the estimate 5\2

is consistent for the true value of zero and, if not constrained to be nonnegative, A is

asymptotically Normal.

7 Illustrations.

7.1 Example 1
We generated T' = 100 observations from the following threshold regression model,
Y = 0.6I1t(5[$1t>0] + 0.2(E2t + &t (71)

where z;; ~ N(0,100) and & ~ N(0,1). Thus the true model is linear in x5 and nonlinear
in z;. The nonlinearity is quite dramatic for this example; correct specification of the
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nonlinearity would produce a large improvement in the R? relative to a linear model. Not
surprisingly, the LM test of the null hypothesis that the true relation is linear (expression
(6.9)) yields a x? (1) test statistic of 232.93, so this test would leave the researcher no doubt
that a nonlinear specification is needed. The challenge is to let the data guide us to choose
the particular nonlinear form (7.1) if we know nothing a priori about the process.
Maximum likelihood estimates under the (false) assumption that the data were generated

from (2.10) and (2.11) are as follows

Y = é%)g)% + %%52) Tt 0 21 ot (72)
[1.25] [0.06] [o 02]

+ ?088?3 [(10 §65) m(%)o(gg% T1t, (()O%OOO? Tor) + vy
[0.09]  [0.63] [0.027] [0.00540]
The term v; in (7.2) represents a variable distributed N(0,1) and m(7y,72) represents the
value at (71,72) of an unobserved realization of a random field characterized as the limit
of (2.4) as N — oo. The estimated population parameters ¢ = 1.85,4; = 0.084, o =
0.00006,and ¢ = 0.93 characterize the relation between the unobserved m(.) and v; and
the unobserved conditional mean function p(z1,x). Numbers in parentheses in (7.2) are
the square roots of diagonal elements of the negative of the inverse of the matrix of second
derivatives of (3.24), in other words, the usual asymptotic standard errors for maximum
likelihood estimation. Numbers in brackets are the square roots of the posterior Bayesian
variances E{[0; — E(0;|Y7))?| Y7} as calculated from (5.11) or (5.14). The estimate g5 is
essentially zero; in other words, x5 is correctly inferred to play no role in the nonlinearity.
By contrast, the coefficients g, and é are highly statistically significant, consistent with the

strong evidence of nonlinearity found from the LM test.
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Given this finding of linearity with respect to xo, the next task would be to plot the
conditional expectation function with respect to z; holding x5 constant. Figure 4 plots
Ep(x1, %) Y] as calculated from (5.17) as a function of z; for Z the sample mean of the
second explanatory variable, along with 95% confidence intervals. The true function is also
shown. Figure 5 shows the analogous plot of E[u(Zy,x3)|Y7] as a function of z,. Based
on these results, a researcher would have little trouble in correctly inferring that the true

specification is linear in x5 and a threshold-linear relation in z;.

7.2 Example 2

In the second example, the nonlinearity is more complicated and slightly harder to detect
statistically:

Yt = 5 4 2211720 (21,50)0 (22, >0) + 0.7T34 + &4 (7.3)

where x;; ~ N(0,4), ¢, ~ N(0,1), and again 7" = 100. Thus p(z1,x2, z3) is linear in z3 and
depends on z; and x5 through their product, but only if both are positive. The LM x?(1)
test statistic of 64.39 again overwhelmingly rejects the null hypothesis that p(.) is linear in

all three variables. The maximum likelihood estimates are as follows:

= 7.94 4+ 0.90 1. 06 0 71 7.4
Yt s + N T+ 9 Top+ T3t (7.4)
[1.34] 0.31] [0.37] [0 11]
+ 0.61 [5.15 m(0.26 w1, 0.35 30, 0.015 ) + ).
(0.19) "(2.01)  (0.07) (0.06) (0.016)
[0.14] [1.21] [0.08] [0.10] [0.021]

The insignificant value for g; would correctly lead us to conclude that u(xy, z2, x3) is linear
in 3. To see what the maximum likelihood estimates reveal about the nature of the

nonlinearity in z; and z9, Figure 6 plots contours of the function &, (x1, 2, :1_63]1}, 9) for T3
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the sample mean of the third explanatory variable, {,(.) the result of the calculation in (3.29)
or (4.12), and ¢ and  the maximum likelihood estimates. This plot would correctly instruct
the econometrician that values of x; or x5 outside the northeast quadrant are irrelevant for
p(.). The figure would also lead us to infer correctly that contours in the northeast quadrant

take the form of rectangular hyperbolas; in other words, that p(.) is of the form

(1, T2, 23) = By + B121720 (21 50)0 (2050) + B3T3 (7.5)

The model specified by (7.5) and (2.3) could then be estimated by maximum likelihood. In
this case, maximum likelihood is achieved by simple OLS estimation, whose results turn out
to be

Yr = %?% + (20(0)72) 21+ 8)?59) T3 + & (76)

for zi; = 21:220(21,50)0(25,>0)- One can now use the LM statistic to test whether the form
of the nonlinear function p(zi,z2,z3) has been correctly identified in (7.5), by taking &
and M in (6.9) to be the vector of residuals and orthogonal projection matrix from (7.6)
while continuing to calculate H from the original explanatory variables (14, o, 23;). The
resulting x?(1) test statistic from (6.9) is now 0.54, so that we would (correctly) accept the
null hypothesis that the true nonlinear relation is of the form we guessed in (7.5).

This example illustrates a four-step procedure that may be useful for choosing a con-
ventional parametric nonlinear model. First, we use the LM test (6.9) to see whether the
relation between 1; and x; is nonlinear. Second, if the relation appears to be nonlinear, we
then estimate a flexible model of the form of (7.4). Third, we use this flexible nonlinear
inference to learn about the nature of the nonlinearity and to suggest a conventional para-
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metric model of the nonlinearity such as (7.5). Finally, we estimate this parametric model
and now use the LM statistic (6.9) as a specification test to see whether the nonlinearity has

been successfully modeled.

7.3 Example 3

Our third example is a re-examination of the structural stability of the Phillips Curve, a
subject recently addressed by Cooley and Ohanian (1991), King and Watson (1994), King,
Stock, and Watson (1995), Raun and Sola (1995), Staiger, Stock and Watson (1997), and
Gordon (1997), among others. We use annual data for the inflation rate (m;) and unem-

ployment rate (u;) in year t. An OLS regression estimated for ¢ = 1949 to 1997,

7rt:—65—044u+0737rt 1+ 0.035 t + &, (7.7)
(54)  (0.27) (0.1 (0.028)

reveals statistically insignificant evidence of a negative inflation-unemployment tradeoff in
postwar U.S. data. Note that the large negative intercept of this relation is a consequence
of the large positive values for t.

We are interested in whether a nonlinear relation of the form

Ty = M(Ut, Tt—1, t) + & (78)

might be an improvement over the model in (7.7). The x?(1) LM test in (6.9) yields a value
of 5.14, leading us to reject the null hypothesis of a linear relation with a p-value of 0.02.

Maximum likelihood estimates of the nonlinear alternative are as follows:

my = —43 — 0.93 us+ 0.38 m;_1+ 0.026 ¢ (7.9)
(169)  (0.43) (0.27) (0.086)
[148] [0.48] 0. 25] 0. 075]
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+ 1.34 [2.16 m(0.08 uy, 0.12 m;_1,0.071 t) + vy].
(0.38) “(1.30)  (0.12)  (0.07) (0.016)
[0.39]  [1.10] [0.39] [0.18] [0.054]

The variable making the most important contribution to the nonlinear part of the conditional
expectation in (7.9) is clearly the time trend. Figure 7 plots the value of {,(u, T, t]{b, 9) as
a function of ¢, which represents the rate of inflation we would have expected at any date
in the sample if the unemployment rate in that year and the inflation rate for the previous
year had been equal to their historical average values. The model characterizes the 1970s
as a period of unusually high inflation that is not solely attributable to the unemployment
rate or the lagged inflation rate.

Figure 8 offers a second way of summarizing the estimated historical relation. It displays
a scatter plot of the pair (m, u;) for all dates in the sample; solid boxes denote observations
from 1948 to 1972, empty boxes denote observations during 1973-1983, and boxes with x’s
denote observations during 1984-1997. One can think of the model (7.9) as implying a
different ”Phillips Curve” for each date in the sample, namely the function p(u,m;_1,t)
plotted as a function of u with m,_; and ¢ the actual historical values for year t. Figure
8 shows three representative Phillips Curves corresponding to ¢ = 1955,1975, and 1985.
The diagram is consistent with the standard textbook account according to which there is a
short-run negative tradeoff between inflation and unemployment with the intercept of this
relation shifting over time. The statistical significance of the estimate &; in equation (7.9)
confirms that, once one has allowed for a shifting intercept, there is indeed an important
short-run effect of the unemployment rate on the rate of inflation; a 1% increase in the

unemployment rate typically lowers the inflation rate for that year by 0.93%.
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These findings are, of course, entirely consistent with the conventional textbook account
and several of the recent econometric inquiries noted above. The value added by the present
exercise is to confirm that interpreting the scatter plot in Figure 8 as the outcome of a shifting
Phillips Curve is not the result of sticking obstinately to an ideological prior, but rather is
exactly the kind of relation that one would have arrived at using a flexible, atheoretical

investigation of the data.
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Table 1

Covariance between m (x) and m(z) as a function of £ (the dimension of x) and h (one-

half the distance between x and z), where 0 < h < 1.

k Hy(h) = Cov(m(x)m(z)|[(x — 2)'(x — 2)]"/* = 2n)

1 1-h
21— (2/m) [h(1 = BH)Y2 + sin " (h)]

31— (3h/2) + (h3/2)

41— (2/m) [(2/3)h(1 = B2/ 4 h(1 = B2)V/2 4 sin ™" (h)]

51— (3/2)h+ (h?/2) — (3h/8)(1 — h2)?

Notes to Table 1: For any k, the covariance is unity when h = 0 and is zero when A > 1.
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Figure Captions

Figure 1. Sample realizations of e(z;) fora=1,b=3,w =1, and Ay = 0.5.

Figure 2. Sample realizations of my(z;) fora =1,b=3, w =1, and Ay = 0.5.

Figure 3. Grid of values for x(i,i2) for k = 2 and A;xy = Aoy = 0.5 and illustration of
nodes whose values for e(x) get averaged to determine my(2.0,1.5) and my (2.5, 1.5).

Figure 4. Solid line: posterior mean (as estimated from (5.17)) with N = 10,000 Monte
Carlo draws for a fixed sample of size T' = 100 generated from the model (7.1). The figure
plots E[u(z1,Z,)[Yr] as a function of z; for Z, the sample mean for variable 2 and Y the
given sample of observations on ¥, x1;, and x9. Dashed lines: 95% confidence intervals.
Dotted line: true relation.

Figure 5. Solid line: posterior mean for sample of size 100 generated from the model
(7.1). The figure plots E[u(Zy, )Y as a function of z, for Z; the sample mean for
variable 1. Dashed lines: 95% confidence intervals.

Figure 6. Contour lines for estimated p(x) function for sample of size 100 generated from
the model (7.3). The figure plots combinations of z; and z5 such that {(x1, 22, T3; b, 0) is
constant for Z3 the sample mean for variable 3 and 1,Ab, 6 the maximum likelihood estimates.

Figure 7. Posterior mean and 95% confidence intervals for the intercept of the historical
Phillips Curve as estimated from (5.17). The figure plots E[a, 7, t| Y] as a function of ¢ for
@ and 7 the historical average unemployment and inflation rates, respectively.

Figure 8. Scatter plot for inflation and unemployment data used in estimation; solid

boxes correspond to data from 1948-72, empty boxes 1973-83, and boxes with z’s 1984-
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97. Line labeled ”1955” plots &p(u, m1954, 1955; b, 9) as a function of u for 7954 the actual
inflation rate in 1954 and %, @ the maximum likelihood estimates. Line labeled ”1975” plots

Ep(u, T1g74,1975; ), 0) while 71985” plots & (u, T1gss, 1985; 9, 6).

56



—
»
T - = |
w/
m(x=2.5)
0 2 3




m(x)




m(2.0,1.5)
i o= NSRS
» 28 BR BN RASESSm
§¥|F m = q; -
[ik\ l%\\ N il i;%?\ ]
i EE N AN
m(2.51.5) |

O 05 1 15 2 25 3 35 4 45 5

x(1)




G

0c¢

Sl

Ol

0C—

1+ 94NDI

Ol

1



0c¢

91

¢l

cl—

91—

0C—

G &Jnbl4




Figure 6




010c

000¢

O6ol

086l 0s61

096l

0561

Orol

/ 2Jnbl4

Ol

1



Inflation

14

12

10

1975 |

[

\ I&- - 1985
| \
i} 1955
3 5 6 7 8 10

Unemployment Rate



Appendix A: Proots for Section 2

Proof of Lemma 2.1.
Recall the formula for integration by parts: [udv = wv — [wvdu. Interpreting u =

(r? — 22)%/2 and dv = dz, we have
/(7“2 — )y = 2(r? — 22 + IC/ZQ(T2 — 2Dy, (A.1)
Also

/(7“2 — 224y = /(7"2 — 222 — %) dz (A-2)
_ 7“2 /(7“2 . 22)(k_2)/2d2 . /22(7,2 . ZQ)(k_Q)/QdZ.

Multiplying (A.2) by k£ and adding the result to (A.1) establishes
(1+k) /(r2 — 222y = 2(r® — 222 4 r? /(7“2 — H)E=D2q, (A.3)
and so
(1+k) /hr(r2 — )20z = —h(r? — B)P? 4 kr? /hr(r2 — 22) k=22,

Dividing by (1 + k) produces (2.6). Equations (2.7) and (2.8) were obtained by direct
evaluation of (2.5) using standard tables of integrals.
To prove Theorem 2.2, we first establish three lemmas.

Lemma A.1. The sequence G(0,7) of Lemma 2.1 satisfies

Gr(0,7) = r*1GL(0,1). (A.4)



Proof of Lemma A.1.

From (2.7) and (2.8) we see that (A.4) holds for £ =0 and k = 1:
Go(0,7) = =rGo(0,1)

G1(0,7) = (7/4)r* = r*G1(0, 1).
By induction, given that (A.4) holds for k£ — 2, it follows from (2.6) that it holds for k:

2
Gr(0,7) = %Tk_le_g(O, 1) = r"1G(0,1). (A.5)

Lemma A.2. Let x = (21, ..., 1) € R* and define the k-dimensional spheroid of radius

r to be Ag(r) = {x: x'x <r?}. Let Vi(r) denote the volume of Ax(r). Then
Vi(r) = r*Vi(1) (A-6)
where V1(1) = 2 and Vj(1) can be found recursively from
Vi(1) = 2Vj_1(1)Gy-1(0, 1) (A.7)

and where G (h,r) is given by Lemma 2.1.
Proof of Lemma A.2.
Notice that for any x} such that |z}| < r, the values x such that x € Ag(r) and zy = }

can be characterized as

{x : (zel+23+---+27)<r® and z = 2}}

= {x:(@+a3+---+2i )< 0* =2} and z) =z}}.



For given z} this is the description of a (k — 1)-dimensional spheroid of radius (r? — x}2)/2,
denoted Aj_1((r?> — 232)1/2). Consider a k-dimensional cylindroid defined as the set of all
points whose first k — 1 coordinates are in A;_;((r? — x32)'/2) and whose kth coordinate
is in the interval [z}, x} + dzi]. The volume of this cylindroid is Vi_1((r? — z}2)'/2)dxy.
The volume of Ag(r) can be found by integrating these volumes over xj € [—r,r], or from

symmetry
Vi(r) = 2 / Ve r((r2 — 22)"/2)day, (A8)
0

Result (A.6) can then be shown by induction. We know directly that Vi(r) = 2r =

rVi(1). Given that Vj_1(r) = r*1V;_1(1), it follows from (A.8) that

V() = 2 / (2 — 22)5D2Y, | (1)day,
0

= 2Vk_1(1)Gk_1(0,7“)
from the definition of Gy_1(0,r) in (2.5). From Lemma A.1, then,
Vk(r> = 2Vk—1(1>rka—1(O7 1)7 (Ag)

establishing both (A.6) and (A.7).
Lemma A.3. Let Ax(1) be the k-dimensional unit spheroid centered at the origin and

let Bg(h,1) be a k-dimensional unit spheroid centered at (0,0, ...,0,2h) with 0 < h < 1:
A () ={x:2]+ - +22 <1}

By(h,1) = {x: @i+ +xj_y + (zx — 20)* < 1}



Let Cx(h) = Ag(1) N Bg(h,1). Then the volume of Cx(h) is given by

/ dx = 2V 1 (1)1 (b, 1), (A.10)
Xeok(h)

Proof of Lemma A.3.

Notice that if x € Cg(h), then it must be the case that both

i+t a2 <1—1} (A.11)

and

4+t ap g <1 — (3, —2h)% (A.12)
If x; > h, then (A.11) implies (A.12), whereas if z; < h, then (A.12) implies (A.11). Thus
for given zy, satisfying h < x < 1, the set of values of (z1, ..., xx) contained in Ck(h) are fully
characterized by (A.11), which describes a (k — 1)-dimensional spheroid of radius (1 —z2)/2.
By symmetry, the points in Cy(h) satisfying h < z; < 1 comprise half the total of C(h).

The volume of Ci(h) is thus

1
/ ix — 2/ Vit (1 — 22)42)dz,
x€Cy(h) h
1
= 2/ (1 —2)*E D21y (1) day,
h

- 2Vk_1 (1)Gk_1 (h, 1)

as claimed.

Proof of Theorem 2.2.

If x and z are separated by a distance of 2h, then the correlation between m(x) and
m(z) is given by the ratio of the volume of the overlap of unit spheroids 2h units apart,
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2Vi—1(1)Gg—1(h, 1), to the volume of a single unit spheroid, Vj(1). From (A.7), this ratio is
2Vie1(1)Gr—1(h, 1)/ V(1) = Gi—1(h, 1) /G-1(0,1).
Appendix B: Proofs for Section 3

Proof of Theorem 3.2.

(a) Recall (e.g. Maddala, 1977, p. 446) that
(A+BDB) !'=A""-A'BBA'B+D ) 'B'AL (B.1)
Letting A= = P,_;,D~! = ¢2, and B = i, for i; the tth column of Iy, this means
(P +07%i) " = Py — Poyiy(ifPy_1iy + o) P,y (B.2)
Equation (B.2) allows the recursion (3.11) to be written
P, = (P}, + o %) "

or

P! =P + 0%, (B.3)

Recursive evaluation of (B.3) for ¢t = 1,2, ..., T establishes
T
Pyl =P +07°) i =Py +07Iy
t=1

SO

Pr =Py +07%Ip) " (B.4)



Appealing to another matrix result from Liitkepohl (1996, p. 29), expression (B.4) can be

written

PT = 021T<P0+021T>_1P0
= (PO —|— UQIT — P())(PO —|— UzIT)_lpo

= PO — Po(Po + O'QIT)_IPO

which reproduces (3.21).

(b) Since y; = i}y, the recursion (3.10) can be written

Py iy (y — &1)
i,P; iy + 02
P, 1idP, P (y — &, )
i,P; 11, + 02

£t = gt—l""

= gt—l +

Substituting (3.11) into (B.6),

& = &+ (P — Pt>Pt_—11 (y —&i-1)

= &§ i+ (y—&-1)— PtPt_—11<y —&1)

implying
y—&=PP(y — & 1)
Recursive evaluation of (B.7) for t = 1,..., T establishes
y—& = (PrPzl))(PriPzly) - (PiPgh)(y — &)

= PrPyl(y &)

or

Er =&+ (Ir — PTP51)(y —&)-

6

(B.8)

(B.9)



Substituting (B.5) into (B.9) gives

Er =& +Po(Po+0%Ir) ' (y — &)

which for €, = X3 is identical to (3.20).

(c) We first show that

T

(?Jt — iégt—ﬂz

=(y —X3) (P 1) Yy — XB3).
iP; i, + 02 (v B) (Po+o°Ir) " (y B)

t=1

Recall that y; = y'i; so that

i;Pt_lit + o2 i;Pt_lit + o2

(y: — i;jgt—l)z _ (y — &) ii(y — €t—1)_

It further follows as in (B.8) that

y—§&.1= Pt—lpal(y - &)

so that (B.12) becomes

(yt - i;ét—1)2 _ (y - 50)’P51Pt—1itigpt—1po_l<y - 50)
i;Pt—lit -+ 0'2 i;th—lit + 0'2

= (y-— €0>/P51(Pt—1 - Pt)Pal(y — &)

with the last equality following from (3.11). Summing (B.14) over t establishes

T
ZPtl—Pt

= (y— 50)/Pa (Po — PT)PE (y — &)

d 1t€t 1)
E P = y 50 ,PO (Y—go)
=1 t—

1lt -+ O'2

But (B.5) implies that

P, (Py— Pr)P,! = (Py+ o%Ip)*

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)



Substituting (B.16) and &, = X3 into (B.15) reproduces (B.11).

Next we show that
T

> In(iPy1is + 0%) = In[Pg + 0”I7|. (B.17)

t=1

Define €2; to be the (T' —t + 1) x (T' — t + 1) matrix consisting of rows ¢ through 7" and

columns ¢ through T of the matrix P,_; + 0?I;. Define n = T — t and partition this matrix

as
Qll 912
Qt _ (1x1) (1xn)
921 922

(nx1) (nxn)

The triangular factorization (e.g. Hamilton, 1994, equation [4.5.26]) of €2, is ©; = ADA’

where
1 o’
A_ pr—
Q07 I,
Qll o’
D pr—
0 (2 — 92191_11912)
But since |A| =1, we see
Q| = |A]-|D|-|A'| = D] = Qu1 - [Q22 — Q21077 Qua. (B.18)

Now, €1 is defined as the row ¢, column ¢ element of P;_; 4+ o?Ip, which can be written

Qll = iQPt—lit + 0'2. (Blg)

Furthermore, €25, is the submatrix consisting of the last n rows and columns of P, | +

o*Ir. Finally, Q9 comprises the last n elements of the vector P;_ii;. It follows that
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Qoo — 921(21_11912 is identical to the submatrix comprising the last n rows and columns of

the matrix

-
P, 131 P;

P T e

But from (3.11), this is identical to the submatrix consisting of the last n rows and columns
of P; + 0*I7. But the latter submatrix was earlier defined to be €;,1. Thus from (B.18)
and (B.19) we conclude

1] = ({,P;_1i; + 0°) - [ Q1] (B.20)
Recursive evaluation of (B.20) for ¢t = 1,..,7 — 1 establishes
’91’ = (illpoil + 0'2)<i/2P1i2 + 0'2) cee (i,TPT—liT + 0'2>. (B21)
But since §2; is defined to equal Py + o2Ir, taking logs of (B.21) implies
T
In|Py+ oIy = > In(i/P; 1i¢ + o)
t=1

as claimed in (B.17).

Combining (B.11) and (B.17), we conclude that

T

—(1/2)> (P, iy +0%) = (1/2) )

t=1

(ye — 11€i-1)”
i;Pt_lit + o2

= —(1/2)In [Py + ’Iz| — (1/2)(y — XB)' (Po + 0”Ir) "' (y — XB)

establishing the numerical equivalence of (3.17) and (3.22).



Appendix C: Proofs for Section 4

Proof of Theorem 4.1.
(a) It is easier to prove this result using an alternative expression for &,. Notice that
&p would correspond to the conditional expectation E(uly) for y the (T" x 1) vector of

observations on the dependent variable if p ~ N(&,, Po) and y|u had the following density,

T N
_ —1
flylw) = (2m0®) " exp {72 (e —m)25xf=x(z‘)} (C.1)
t=1 i=1
L X
_ 2\—T/2 - 2 2
= (2n0%)7 " exp{?; [ Tis7 + Ti(hi — ;) ]} :
Expression (C.1) can further be written
F(yp) = KAz exp[~(1/2)(h — ) Az' (b — )] (C.2)
where h = (hy, ..., hy)" and
o2)Tr 0 - 0
0 0Ty - 0
Ap = (C.3)
(NxN) . . . .
0 0 - o*Ty
1 X
k= (210%) T2 (e?)N2(Ty - Tiy) V2 exp {F ,L_Zl TiS?} : (C.4)

The joint density of y and g would in this case be

fyv.p) = wlAz[ 2 exp[~(1/2)(h — p)'Ar'(h — p)] (C.5)

x (2m) M2 [Po| /% exp[—(1/2) (1 — &) Py (1t — &o)]
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Ar+Py Py h—

= w(@2m)™N exp ¢ —(1/2) ’
P, P, \ p—&

-1 \

Ar+Py Py h—-¢,
X
Py Py r—5§ )
Thus from Lemma 3.1,
E(ply) = E(u|h) = & +Po(Ar + Po) '(h — &). (C.6)

We derived (C.6) as the estimator that one would use if the true mean p were distributed
N(&,,Po), and thus as an expression for &, in this case of discrete-valued explanatory
variables. Now that this expression for the estimator has been derived, however, one can
note a key property that it will display for any assumptions about the true population mean
L. In particular, from (C.3), the ith row of Po(Ar + Pg)~! converges to the ith row of Iy

as T; — oo, from which the ith row of (C.6) becomes
fir = frig + (hi — fbig) = hi.

Furthermore, under (4.2), h; 2 £(x(i)), completing the demonstration of (4.3).

(b) Integrating (C.5) over all possible values for p gives the marginal density

f(y) = 6|Ar +Po| 2 exp [—(1/2)(h — &) (Ar + Py) '(h— &)

with log likelihood

Inf(y) = —(T/2)In(2m) — (T = N)/2]Ino” — (1/2) ) In(T3) (C.7)

=1
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—[1/(20%)] > Tis? — (1/2) In| Az + Py

=1

—(1/2)(h — &) (Ar + Po) " (h — &).

Expression (4.5) follows from (C.7) and the facts that Az — 0 and h % T,.

(c) By differentiating (C.7) we see that

Oo? 202

Olmfly) T-N 1 2 P
* _204;E8i_)0

and hence

T N
= - Z Z ; xt =x(1)

as claimed in (4.6). Expression (4.7) follows from (4.5) with £, = X23.

Proof of Theorem 4.4. Observe from (4.11) that if some imaginary data for {g;, x:}
had been generated from ¢; = fi(x;) + & where the function fi(z) had been generated from
a Gaussian field with mean £(z) and covariance py(z, w), then p;(z, z) could be interpreted

as the MSE of the optimal estimate of fi(z) based on a sample of size ¢ for such data,

pi(z,2) = Elfi(z) — &(2)]".

As such, p(.,.) is positive semidefinite for all ¢ and, for given z, {p;(z,z)} is a monotonically

nonincreasing sequence which is bounded from below by zero. The sequence {p;(z,z)}
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therefore converges to some constant p(z,z) as ¢ — co. From (4.13), this requires that for

any €1 > 0, 37} such that Vt > Tj,

[pe-1(x,2,)]?
De—1(Xt, X¢) + 02

< €1.

Since 02 > 0 and p;_1(xs, X;) is bounded, this requires that for any e, > 0,

pe—1(x¢,2,)| < €2 (C.8)

for all ¢t > T.

Next consider the random variable ji(x;) — fi(z), whose variance would be

po(Xt,Xe)—  2po(X¢,2) + po(z,2) (C.9)

< Do (%¢, X¢) — Po(Xt, 2)| + |po(2,2) — po(x¢,2)| .

Let g € ?* be an arbitrary vector of fixed weights and define

Wi(z) ={w e A: [lgO (w—2)| <&}

Continuity of py(z, w) ensures that for any €3 > 0,36 > 0 such that the RHS of (C.9) is less
than e3 whenever x; € Wis(z). Furthermore, the optimal inference about fi(x;) — fi(z) based
on observation of Y;_; could have an MSE no greater than that based on no observations,
requiring

D1 (Xe, Xt) — 2p—1(X¢t,2) + p1—1(2,2) < €3 (C.10)

for all x; € Ws(z). Condition (C.8) thus ensures that

Di—1(Xe, X¢) + pi-1(2,2) < £3 + 2¢e9 (C.11)
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whenever ¢ > T and x; € Ws(z). But denseness of {x;} guarantees the existence of some
x; with ¢ > T, satisfying x; € Ws(z), and for this ¢, (C.11) implies that p;_;(z,z) must be
arbitrarily small. Indeed, from (C.8), denseness ensures that |p;(z, w)| becomes arbitrarily
small for any z and w as ¢t becomes large.

Note that the assumption of artificial data g; was irrelevant for this result. The sequence
(4.13) depends only on py(.,.) and ¢ and is not influenced by any data on y;. Hence (4.15)
must be a property of the recursion (4.13) itself rather than an outcome for a particular data
set.

Proof of Lemma 4.5.

Imagine a different sample that had actually been generated from
y=XB8+m+¢ (C.12)

where m =(m(x1), ..., m(xz))", N> E[m(z)m(w)] = po(z,w), and & ~ N(0,0%Ir) independent

of m. Then from (3.29),
i = X8 =hp(y — XB) = hy(Am + &) (C.13)
where
h = qp(Po + o”Ir) " (C.14)
Subtracting Am(x*) from both sides of (C.13), it follows that
@ —X*B — dm(x*) = A[hrm — m(x*)] + hy.é
and
E[i* — X*B — dm(x*)]?> = N2E[h,m — m(x*)]? + E(h}.&)”. (C.15)
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Now, for data actually generated by (C.12), the left side of (C.15) would be described by
pr(x*,x*), which from Theorem 4.4 converges to zero. Therefore, each term on the right

side of (C.15) also converges to zero; in particular,
E(hy&)? = 02(hhy) — 0. (C.16)

Expression (C.16) was derived under the assumption that the data on y were actually
generated from (C.12). However, the vector hy can be calculated mechanically from an
arbitrary Py matrix as specified in (C.14), without using any data on y. It follows that
(C.16) is a property of the hy vector so constructed rather than a property of the data. This

means that if hy is any vector constructed as in (C.14), then for a the vector in Lemma 4.5,
E(hfa)® = b} Irhy — 0

as T'— oo, as claimed in (4.16).

Proof of Theorem 4.7.

Define the (T'x 1) vectors &€ = (§7(x1), Ep(X2)s -y Ep(X7)) s Lr = (bp(x1), b (X2), ..., br(xT))’,

and 07 = (07(x1),01(x2), ..., 0r(x7)). Then (4.21) can be written

T E(€r — XB—Lr) (€r —XB~Lr) — 0 (C.17)
while (4.18) implies
Ly = T 'Py0r. (C.18)
Notice also from (3.20) that

€r = XB+ Py(Po +o%Ip) y — XB). (C.19)
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It follows from (C.19) that

E&r—XB-Lr = Po(Po+’Iy) (y — XB)—Lr (C.20)

= Po(Po+0°’Iy) ' (Lr+a)—Lr
with the last equality coming from (4.19). Substituting (C.18) into (C.20) gives

€&+ —XB—Lr = T 'Po(Py+0°Ir) 'Py— Pyl0r + Po(Py + 0’Ir) 'a (C.21)

= —T_1PT0T + Po(Po + O'QIT)_la
with the last equality following from (3.21). The tth row of (C.21) states that

Ep(xy) —ap — a'xy — Up(x,) = —T7F ZPT(Xt, x5)0(xs) + [hr(x;)]'a (C.22)

s=1

where [hr(x;)]" denotes the tth row of Po(Py + o*Ir)~!. Squaring (C.22) and taking expec-

tations results in
Elér(x)— a0 —a'x —lr(x)]” = (C.23)
{T‘l ZPT(Xt, XS)H(XS)} + E{[hp(x,)]'a}’.

By continuity of 6 (.), Theorem 4.4 ensures that for any ¢ > 0 there exists a T sufficiently

large to make pr(x;, x5)0(x;) < € for all ¢, and thus to make

{T‘l ZpT(xt, xs)Q(xs)} <e

as well. Likewise, Lemma 4.5 implies a T' such that E{[hp(x,)]a}” < ¢ as well. Hence

(C.23) can be made less than 2¢ by choosing T sufficiently large. The same is then true of

Ty Bler(x) — 00 — o' — fr(x)]”

t=1

16



which was to be shown.
Proof of Lemma 4.8.
Recall that po(x,z) is proportional to the ratio of the volume of the overlap of unit

spheroids in (g ® x)-space centered at x and z to the volume of a unit spheroid

po(x,) = (A2/b) / dy

yE[W (x)NW(z)]

where

b= / dy.
yEW (x)

Note that b, the volume of a unit spheroid, does not depend on x. Recall that the function
¢ (x) is representable with respect to po(x,z) if there exists a continuous function A\(z) such

that

(x) = /EApO(X,z))\(z) iz (C.24)

= (\?/b) / y { /y e dy} \z) dz.

Note further that
{yeRh y e W) NW(2)} ={y € R": [y € W(x)] and [z € W(y)]}
so that (C.24) is equivalent to

0x) = (X2/b) /y i [ / L dz] dy.

Equation (4.23) then follows with n(z) = (A\*/b)\(z).
Proof of Lemma 4.9.
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We first establish that

-1

y+g p )
/ 2 dz = Z ajpy’ (C.25)
z=y—g~1 j=0

where
|

I R A B | A S B
o= oy - () (C.26)

Result (C.25) follows directly by integrating and applying the binomial expansion:

—1

y+g
/ Pdz = (1) y+g VT = (y— g )]
z=y—g~1

p+1
_ -1 P+ )
LR D) ey R

‘]:

pt1

— Z % yl g~ P (1) =D |
L (p+1— )}
7=0

Result (C.25) then follows by collecting terms on 3’ and noticing that the coefficient on y?**

is zero. We then have likewise that

P J p
— Z Qjp Z ixt = Z ﬁipxi (C.27)

where
/Bip = Z OszOéij. (028)

It follows from (C.28) that

z+g~? y+g~t T r p ‘
/ / Z V2" dz dy = Z Yp Z Bipx' (C.29)
y=z—g~! Ja=y—g~' 29 p=0  i=0
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Expression (C.29) will be equivalent to (4.25) provided that we choose the 7’s so as to satisfy

> 1By =ci (C.30)
p=t

fori =0,1,...,7. To satisfy (C.30) for i = r, set v, = ¢./f3,,, which exists since 3,, = a2, =

(297)%. To satisfy (C.30) for i =r — 1, set v, , = 8,24, _4(¢r—1 —7,8,_1,). Continue in
this fashion, setting v; = ﬁz'_z'l(cz‘—%@r_%—ﬁi,r—l — =Y Bigg) fori=r—1,r-2,..,0.
Proof of Lemma 4.10.

We see by integrating that

y+g ! wp(y+g~)
/ sin(wpz) dz = wljl/ sin(v) dv (C.31)

=y—g~! =wp(y—g~1)
= w, " {cosfwy(y — g7")] — coslwy(y + g )]}
= w;l{[cos(wpy) cos(wpg ) + sin(w,y) sin(wpg )]
—[cos(wpy) cos(wpg™) — sin(wyy) sin(wyg )]}

= (2/wp)sin(wy/g) sin(wpy).

Therefore also

-1

]/ L/" Sin(wy) dz dy = /C (2/p) sin(wy/g) sin(wypy) dy (C.32)

=r—g~

= [(2/wy) sin(wy /)] sin(wya).

It follows from (C.32) that

/ / Zyp sin(wpz) dz dy = Zyp (2/wyp) sm(wp/g)] sin(w,),

p=0

which would succeed in demonstrating (4.27) provided we chose 7, so that v, [(2/w,) sin(w,/g)]* =

cp. For any c,, such a v, exists provided that sin(w,/g) # 0.
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Appendix D: Proofs for Section 5

Derivation of (5.9).

Expressions (5.7) and (5.8) imply that

f16,Y,) = f(0726,Yy)- f(Blo>6,Yr) (D.1)
_ [T5%(0)/2]T+ 1/ o 2A(T—k=1)/2-1} o [_T52(9)]
T[T —k—1)/2] P22
~ ~ 1 —-1/2
o?(X'X)

X

ex {_ 8- BO) (XX)(B - BB)] }

(27T>(k+1)/2 202

T5°(0)/A7 D2 s wix. o))
= T ko DgEyEE ¢ XWX
e {_ (y = XB)W(X:0) 'y — Xp) }

202

—-1/2

xwhere the last equality follows from the facts that

~ ~ _11—1/2

o?(X'X)

—-1/2

= o ) IX'W(X; 0) ' X]|
and

(y-XB)W(X;0) ' (y — XB)
= [y —XB(8) + XB(6) - XA W(X;0) [y — XB(8) + XB(6) — X
= [y —XB(0) W(X;0) [y - XB(6)]

+[8 - B(O) X'W(X;0) ' X[3 — B(6)]

Observe from (5.5) and (5.6) that

F(Yrlp,0) - p(s) - p(6)
1O Xr) = =—"0lg¥,)
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Substituting (3.24), (5.1), (5.2) and (D.1) into (D.2) results in (5.9).

Derivation of (5.14).
Observe that the vector (Y, ¢U)'Y is generated from the density 1(0)f(¢|8,Y,). Di-

viding the numerator of (5.14) by N, it follows from the law of large numbers that

N
NS S0 Ye) S [ [ sceon(®. Yo)1(6)(C16.Yy) do d¢ (D3
j=1

[ [ bccare s, o i
- / / Sicccr/(C,0, Y1) d6 dC.

Similarly, for the denominator of (5.14),

N XNjw(aw‘), Yo 2 / w(6,Y7)1(8) o (D.4)

= /f(H,YT) de
(

YT).

It follows from the ratio of (D.3) to (D.4) that as the number of Monte Carlo draws N

increases,

Ficecryy = L 5[460#}%;{0;)%) a8 d¢
= //5[cec1f(c,9|YT) do d¢
= Pr(¢cClYr)

as claimed.
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Appendix E: Proofs for Section 6

Proof of Theorem 6.1(a).
The differential of (6.2) is found as in equation (6) in Magnus and Neudecker (1988, p.

315) to be

dIn f(y|X;¢) = —(1/2)tr(Q7'd2r) + (1/2)tr [Q7'(dQr) Q7 ee’] (E.1)

—(1/2)tr [Q27'd(e€")] .

To find the derivative with respect to A%, set dQp = Hpd)A? and notice that dee’/ON® = 0:

0 In f(y|X; ¢)

e = —(1/2)tr(Q7Hy) + (1/2)tr [Q7'Hy Q' ee’] (E.2)

When evaluated at A> = 0 and Q7 = oIz, expression (E.2) becomes

0 In f(y|X; ¢)
@)\2 )\2:0

= —(20%) (Hr) + (20%) ix(Hipee) (E3)

from which (6.3) follows.
Proof of Theorem 6.1(b).

The expectation of (E.3) is
—(20) " Yr(Hy) + (20*) 'tr(Hpo?I7) = 0.

Recalling from Magnus and Neudecker (1988, p. 151, equation (1)) that df2;' =

—Q:1H(dQ7) Q7 the differential of (E.2) is

0 In f(y|X; () _ —1 -1
d { % } = (1/2)tr [Q7' (dQr)2; ' Hy |
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—(1/2)tr [ (dQr) Q7 Hr Q' ee’] —
(1/2)tr [Q7 ' Hr Q7 (dQr) Q7 ee]

+(1/2)tr [Q7 ' Hr Q7 d(e€)]
and

L (20%) " Ltx[(dQ7)Hy] — (20°)“tx[(d2r) Hpee]

o [2s0)
2
O

—(20%) "M [Hp(dQr)ee’] 4+ (20*)  Htr[Hrpd(e€)]

rom WhiCh
8 hlf y Iiac 2 4\— tr [-]2 _ 6 2 ! E4
6<§\ )’ ) )\2 = ( o ) ! ( T) o tr(Hlee) ( ) )
3 111? yX,C 24_t EI 6t 2 ! E5
(9)\ ((90'| 2 ) A2 - ( o ) ! I( Z) g I'(HT€€ ) ( . )

Similarly we have from (E.1) that

0 In f(y|X;¢)

oor = —(1/2)tr(Q) + (1/2)tr(Q7 )

and

; {a In £ (y]X; ¢)

37 ] = (1/2)tr [Q7'(dQr)Q]

—(1/2)tr { [Q7' (dQ) Q7 + Q72 ()7 | g€’}
+(1/2)tr [Q;°dee’]

SO

0% In f(y|X;¢)
d(o?)? A2=0

= (20" 7T — o~ %tr(e€’). (E.6)

23



Taking expectations of (E.4), (E.5), and (E.6) produces the upper left block of (6.4). The
other terms in (6.4) are standard; see for example Magnus and Neudecker (1988, p. 320).
Proof of Theorem 6.1(c).

The upper left block of the inverse of (6.4) is

204 T —tI’(HT)

To(E) — [ (F )P (E1)

—tr(Hy)  tr(HZ)
The LM test is found by multiplying (6.3) times the square root of the (1,1) element of (E.7)
and evaluating the result at € = &, 02 = 53

252, 12
(H7) — T‘l[tr(HT)P}

Ry = (264) 7 [8'Hré — 62t0(Hy)] {tr

from which (6.5) follows.
Proof of Theorem 6.1(d).

Write the numerator of (6.5) as
&'Hypé — 63tr(Hy) = &'[Hy — T ' Iptr(Hy)E. (E.8)

Recall (e.g. Hamilton, 1994, equation [8.1.11]) that & = [I; — X(X'X) ™' X']e, allowing (E.8)
to be written

&'Hpé — 62tr(Hy) = €' Are + 21 (E.9)
where
2p = e X(X'X) ' X ArX(X'X) ' X'e — 26/ A X(X'X) ' X'e
and
T V20 = (T7%X)(TIX'X) (T XA X)(TIX'X)(TY?X'e)  (E.10)
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—2AT e ArX)(TIX'X) H(T7Y?Xe)

2, 0'Q'PQ !z —200Q 10z

where z ~ N(0,02Q) and use has been made of conditons (i) through (ii7). Hence

!/
A
Ny = - cAre Ay o (E.11)
o7V2 {tr(HE) — T~ [tr(Hr)]?}
Observe from Lemma 8.2 in White (1994, p. 170) that
T
O'_QEIAT€ = Z /\tQt (E]_Q)

t=1
where {Q;} is an i.i.d. sequence of x?(1) variables and {)\;} are the eigenvalues of Ar. Note
that (E.12) is consistent with repeated eigenvalues (\; = As for some ¢ and s) and zero

1

eigenvalues.!  Note further that expression (E.12) has mean zero,

T
E(e'Are) =) A =tr(Ar) =0,

t=1

and the tth element of the sum in (E.12) has variance 2\?. Thus for
T
sp=T7") 2X, (E.13)
t=1
we know from Theorem A.3.3 in White (1994, p. 356) that
(T's2) 2072 Are 5 N(0, 1), (E.14)

provided that

s% >8>0  for almost all T. (E.15)

! White writes this result slightly differently as Y ;_; A\;Q; where A1, ..., A represent ¢ distinct eigenvalues,
m; is the number of times eigenvalue i is repreated, and Q; ~ x?(m;). Result (E.12) is equivalent since a
»2(m;) variable can be viewed as the sume of m; independent »?*(1) variables.

%
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But notice that s2. can be written
5% = 2T 'tr(A%) (E.16)
which exceeds ¢ for all T by condition (iv). Additional algegra reveals that
tr(A2) = tr { [Hy — T‘lITtr(HT)]2} (E.17)

= tr {H} — 27 'Hytr(Hy) + T 217 [tr(Hy))*}

= tr(H2) — T [tr(Hp))%

Substituting (E.16) and (E.17) into (E.14) establishes that

e'Are
02v/2 {te(HZ) — T [tr(H7)]2}"?

L N(0,1).

Using these results along with (E.10) and the familiar property that 67 2, 62, it follows
from (E.11) that Rp EX N(0,1), as claimed.
Proof of Lemma 5.2.

Note that the numerator of (6.7) can be written
&'Hyé — 62tr(MyrHrMy) = &' [Hy — (T — k — 1) "ptr(M7HyMy)] & (E.18)
Since & = Mre, expression (E.18) can be written
g'Hyé — 52tr(MyHrMy) = €'Are (E.19)

for

AT = MTHTMT — (T —k— 1)_1tI(MTHTMT) (E20)
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where use has been made of the fact that My is symmetric and idempotent. Substituting

(E.19) and (E.20) into (6.7) establishes that

-
Ry — A€ (E.21)

e (&)

But we know from Theorem 12 of Magnus and Neudecker (1988, p. 251) that

E(e'Age) = oltr(Ar) (E.22)

Var(e'Are) = 20 tr (A%) . (E.23)

Further, from (E.20),

tr(Az) = tr(MrHrMz) — (T — k — 1) 'tr(Mg)tr(M, HrM7)

which equals zero from the familiar result that tr(Mr) = T —k — 1. Hence (E.21) has mean

zero and variance og.
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