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The connection between formal perturbation theory and the modern theory 

of superconductivity is investigated. It is found that the condition for ladder 

diagrams to give a convergent sum is identical with the condition for the 

temperature to be above the critical temperature. The effect of the residual 

terms of the Hamiltonian is investigated and found to be small. 

to a correlation between electrons in the normal state and to a 

They give rise 

IT - T ,-l/2 c 
singularity in the specific heat, but with a very small coefficient in both 

the ·normal and superconducting states. It is found that, below the critical 

temperature, most of the divergence is removed by using the BCS Hamiltonian 

as the unperturbed Hamiltonian, but that ladder diagrams with momentum exactly 

zero still diverge. The convergence of the ladder diagrams is suggested as a 

criterion which the BCS solution must satisfy, and this criterion is used to 

investigate some more complicated interactions. It is found that there is an 

interaction for which pairing of particles with opposite spin or with the 

same spin is not possible, and a more complicated trial wave function must 

be used. 

* This work was performed under the auspices of the U.S. Atomic Energy 

Commission. 
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In the past few years, powerful methods have been developed for treating 

the statistical mechanics of quantum systems.
1

' 2' 3 These methods are based on 

the fact that the grand canonical partition function is 

]=Trw Tr exp(aN ~ ~H) , ( 1) 

and the distribution function 'If satisfies the Bloch equation 

( 2) 

since the Hamiltonian H commutes with the number operator N • Here ~ is 

=1 
(kT) , where k is the Boltzmann constant and T is the temperature. This 

equation looks like the time-dependent Schrodinger equation, and the whole 

apparatus of formal perturqation theory--originally developed for studying 

field theories, but later used for a more closely related problem, the 

4 determination of the ground-state ener~ of a many-fermion system --can be 

taken over with a few modifications. The main differences are that we 

assume the solution known for ~ = 0 , infinite temperature, instead of for 

t = -co, before the interaction wasswitched on, and that the derivative on 

the left of Eq. (2) is not multiplied by i as it would be in the Schrodinger 

equation. A particularly important feature of the methods is that cumbrous 

expressions in the perturbation expansion can be represented by comparatively 
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simple Feynman diagrams, and this notation allows some otherwise complicated 

formal manipulations to be carried out quite easily. 

The theory of superconductivity developed by Bardeen, Cooper, and 

Schrieffer5 (which is referred to throughout this paper as BCS) seems to 

account for most of the phenomena observed with superconductors. This theory 

is based on the discovery by Cooper that, if we have an extended system of n 

electrons (density kept constant as n varies) which interact by predominantly 

attractive forces, there is a wave function 0c with a lower energy than the 

wave function 00 for a degenerate Fermi gas. 6 The wave function 0c differs 

from 00 by the coherent excitation of pairs of particles, Cooper pairs. The 

expectation value of H for 0c differs from the expectation for 00 by an 

amount which varies as exp(-ljg), where g is the strength of the attractive 

interaction, so that no expansion in powers of g can give 0c • The difference 

between (0c' H0c) and (00 , H00 ) is almost entirely due to the interaction 

between particles of exactly opposite momentum and spin, and the rest of the 

interaction could be thrown away without altering Cooper's result. The 

interaction terms in the Hamiltonian which are significant are a fraction 
-1 

n 

of the total (each electron interacts with only one other instead of with all 

others), and any finite order of perturbation theory, starting with 00 as 

the unperturbed wave function, gives a contribution to the energy which is, 

at best, independent of n • Cooper's result is, however, that there is a 

contribution to the energy proportional to n , and this result, being based 

on a variational argument, cannot be doubted. 

The unusual properties of this wave function 00 are basic in the BCS 

theory of superconductivity. A variational principle can also be used to derive 

the free energy at finite temperatures, and very good agreement with the 
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qualitative thermodynamic properties of superconductors is found. The exci tat:lon 

spectrum obtained by considering a simple class of excitations from the ground 

state has the important property that the first excited state is separated from 

the ground state by an energy gap independent of n ; this is essential for an 

explanation of the stability of supercurrents. A different approach, used by 

Anderson, based on the random phase approximation, shows that there are other 

excitations, longitudinal sound waves, which are not separated by an energy gap 

unless the Coulomb repulsion is taken into account. 7 The problem here is that 

there is no variational principle to give a rigorous proof of the existence of 

a gap. 

Perturbation theory is used to examine certain important questions in 

the BCS theory. The question of whether ¢c is an exact solution of the 

Schrodinger equation when there is interaction only between particles of opposite 

spin and momentum has been discussed by several authors. Bogoliubov has 

demonstrated that every term in the perturbation series for the energy (using 

as the unperturbed wave function) remains constant as n . 8 d 1ncreases, an 

he interprets this as showing that the solution is asymptotically exact in the 

limit of large n • This conclusion is by no means certain, since any 

contribution to the energy varies as exp(-ljg) gives zero in all orders of 

perturbation theory. The selection of a proportion -1 
n of the terms in the 

interaction makes the application of perturbation theory uncertain. A concrete 

illustration of this is that Bogoliubov, Zubarev, and Tserkovnikov9 find, by 

applying perturbation theory to the Bloch equation, that both the BCS free 

energy and the free energy for a noninteracting Fermi gas are exact solutions 

in the limit of large n , for temperatures below the critical temperature. 

They interpret this as meaning that the system can be either in a 11 superconducting" 

or in a "normal" state, with the normal state metastable below the critical 
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temperature. It has been shown'by the author that, in the strong coupling limit 

of this model, the normal state is certainly not metastable below the critical "' 

10 temperature, and this interpretation of the apparent existence of t-vro solutions 

for the equations for the partition function is open to doubt. 

Perturbation theory has also been used to calculate the effect of the 

"residual terms" in the Hamiltonian, the terms describing the interaction of a 

particle with any particle other than the one with exactly opposite spin and 

momentum. The small size of the low-order terms in this perturbation series is 

not adequate justification of the neglect of these terms, since the same peculiar 

features of the problem which led to the existence of Cooper pairs may lead to 

more complicated wave functions, with lower energies than ¢c , differing from 

¢0 by the coherent excitation of groups of four or more particles. A concrete 

example of this is given in this paper, although, fortunately, the interaction 

assumed does not·seem to occur in metals. It is possible for there to be 

competition between the formation of Cooper pairs with spin zero and with spin 

one. As the ratio of the interactions leading to spin-one pairs and to spin-

zero pairs varies, there may be an intermediate region in which coherent 

"quartets" are formed. Furthermore, it has been suggested by Heine and Pippard 

that, if the interaction between particles with momentum not exactly opposite 

is taken into account properly, it may be possible to explain the paramagnetism 

of small samples of superconductors which seems to be observed even at very 

11 low temperatures. This conjecture is not supported by the work described 

here. 

Anderson's approach to such problems seems more satisfactory than 

the perturbation methods, but it has not yet answered many of the questions 

raised here. An attempt has been made by Prange to use modern perturbation 

theory in this problem, and he concludes that there is no gap between the 

~·. 
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12 
ground state and the fi.rst excited state; this would probably mean that the 

actual phenomenon of superconductivity remains unexplained. The difficulty seems 

to be that it is not known how the simple BCS theory can be expressed in the 

language of formal perturbation theory. It is widely believed that there is an 

infinite class of terms in the perturbation series which can be formally summed 

to give the BCS results, but it is not known what this class of terms is. 

For these varied reasons it seems desirable to examine the BCS theory 

by using the language of formal perturbation theory, and this is the principal 

aim of this paper. The clue to the connection between BCS theory and formal 

perturbation theory was discovered in the course of work on the foundations of 

Brueckner's theory of the energy of nuclear matter. 13 It was found that 

Brueckner 9 s equation for the effective interaction between two particles has 

divergences if the force is on the whole attractive. These divergences occur 

for two particles with almost opposite momentum and with energies close to the 

Fermi energyj and its occurrence does not depend on the strength of the inter-

action. The weaker the interaction isJ the nearer to the Fermi surface the 

particles have to bej and the closer to zero their total momentum has to be. 

The terms in zero~temperature perturbation theory which Brueckner's 

equation takes into account are represented by 11 ladder diagrams"; in these, the 

two particles of a pair scatter each other any number of times in such a way 

that their intermediate states are always outside the Fermi sea. The "ladder 

diagrams" used in this paper are an obvious generalization of the Brueckner 

\v type of ladder diagrams, in which states b~low the Fermi surface are given 

the same weight as states above the Fermi surface. This is clearly necessary 

in any theory of the behavior of particles very close to the Fermi surface. 

At zero temperature the divergence of the expansion is still there, for the 

same reason as in the Brueckner theory. At finite temperature the expansion 
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of the thermodynamic potential (minus pressure times volume, equal to -kT log Jf ), 
which is the analog of the expansion of energy at zero temperature, may converge 

if only the ladder diagrams are taken into account. The condition for convergence 

is found to be that the temperature should be greater than the greatest 

temperature for which a solution of the BCS variational problem is possible. 
is identical with the equation derived 

The equation derivedAfor the critical temperature by Bogoliubov, Zubarev, and 

Tserkovnikov, 9 and the temperature above which the- ladder diagrams converge will 

therefore be referred to as the critical temperature. This is the main result 

of Sec. II. The sum of the ladder diagrams is similar in form to the sum of 

2 
ring diagrams derived by Montroll and Ward, and their result is rederived in 

a slightly simpler form in Appendix A to show the relation betvreen the two sums. 

Each ladder diagram is characterized by its total momentum, the sum of 

the momenta of the two particles involved. It is the sum of those ladders which 

have total momentum zero which diverges at the critical temperature. The sum 

of those ladder diagrams which have a particular momentum 2K not equal to 

zero is convergent even at the critical temperature, but this sum goes to 

infinity like -log K as K approaches zero. In Sec. III the properties of 

the system in the "normal state" just above the critical temperature are 

examined in the ladder approximation. It is found that the ladder diagrams 

with K close to zero could produce some interesting physical properties. 

The most striking result is that the specific heat should behave like (T - TC)-~2 , 
which is similar to the behavior of specific heats near a critical point at 

14 
which a second-order transition becomes first~order, in the Landau theory. 

All the effects discussed seem to be far too small for observation because 

of the very small ratio of the critical temperature to the Fermi temperature 

of the electrons, and the properties discussed are of merely theoretical 

... 
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interest. Another result of this nature is that there is a correlation between 

electrons, of the same nature as the correlation in the superconducting state 

of the BCS theory, but this correlation (either i~ the BCS theory or here) seems 

to be too small to observe. 

In Sec. IV an attempt is made to apply similar methods to the 

superconducting state. The perturbation series diverges below the critical 

temperature in the ladder approximation, and there is always a value of the 

total momentum 2K for which the sum of ladders with that momentum is infinite, 

so that it does not seem reasonable to try to make an analytic continuation. 

Instead, we make a canonical transformation of the Bogoliubov type, and then 

apply perturbation theory in the ladder approximation. This is just using 

perturbation theory to estimate the effect of the residual terms of the 

Hamiltonian, but it is a consistent approximation. The ladder diagrams give 

the divergence in the perturbation series which indicates the phase transition, 

and we want to find if the canonical transformation can remove this divergence. 

After making the temperature-dependent transformation given by 

Bogoliubov, Zubarev, and Tserkovnikov, 9 we can add up the ladder diagrams, if 

we use the simplified interaction (o function in coordinate space, with a 

cutoff in momentum space) assumed. by BCS. It is found that the sum of ladders 

with momentum zero is infinite, and we have to neglect these on the grounds 

that they should contribute only a negligible amount for an extended system. 

The sum of ladders with momentum 2K is finite in the transformed system, 

but goes to infinity like -log K as K goes to zero. There is a 

distinction between K close to zero and K = 0, since some of the interaction 

between a pair of particles with total momentum zero is included in the 

unperturbed Hamiltonian by the Bogoli.ubov transformation, and the more 

difficult problem of adding up ladders with K = 0 is treated in Appendix B. 
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The value of pairing particles with exactly opposite momentum in the BCS theory 

can be understood in these terms; if particles with total momentum 2K0 were 

paired, ladder diagrams with total momentum 2K < 2K0 would give a divergent 

sum. 

Once again an attempt is made to find what physical effects the ladders 

with momentum almost zero might have. The specific heat behaves like (TC - T)-112 

in the neighborhood of the transition, but the coefficient of this term is again 

very small. Other effects considered also seem to be too small for detection, 

and, in particular, the hypothesis of Heine and Pippard11 that there should be 

a finite paramagnetism at zero temperature is rejected. 

In Sec. V the methods developed in the earlier parts of the paper are 

applied to interactions with a more complicated form than the one originally 

used in BCS. The equations for the canonical transformation usually have more 

than one solution, and the usual criterion for distinguishing between these 

solutions is that the right one should give the lowest free energy. The 

methods of this paper suggest the alternative criterion that the ladder 

diagrams with nonzero momentum should have a convergent sum in the transformed 

system. The value of this criterion is illustrated by considering a problem 

in which neither of the two possible BCS solutions makes the ladder diagrams 

converge. In this case, there is in fact a lower energy state in which four 

particles are excited at a time from the Fermi sea. Application of this 

criterion to an angular-dependent interaction leads to conditions for the 

ground state to be not spherically symmetrical. 

.{ 
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II. THE LADDER APPROXHfJA.TION AT FINITE TEMPERATURES 

We wish to work out the equation of state of a system of fermions 

interacting by two-body forces. The crystal structure of the superconducting 

metal is ignored, except in so far as it changes the effective mass of the 

electrons and the Fermi energy. There is a predominantly attractive interaction 

between electrons mediated by phonons, as well as the repulsive Coulomb force, 

but we include both of these in a two-body potential acting between the particles. 

The Hamiltonian must conserve momentum and spin, and we can write 

H- ~ .E Ek(atk ak + t ak a k 
k ,+ ,+ ,-

' 

.E .E .E (V 
K 

at at + a a 
K p q pq K+p,+ K-p,- K-q,- K+q,+ 

+ ]: W K( at at a a 
2 pq K+p,+ K-p,+ K-q,+ K+q,+ 

+ at at a a . ) } 
K+p,- K-p,- K-q,- K+q,-

The operators atk and a are the operators which create and destroy 
,+ k,+ 

particles with momentum k and spin up (any specified direction), and the 

operators and a 
k,-

refer to particles with spin down. is the 

single-particle energy of an electron in the state k , measured from the 

( 3) 

chemical potential ~ , while V and W give the interactions of particles 

with opposite spin and the same spin, respectively. The sums go over all 

states in momentum space. 

We use the expansion of the thermodynamic potential derived by Bloch 

and De Dominicis. 3 Graphs, consisting of vertices (denoted by dots) and 

directed lines, are drawn with the following properties. Each line joins two 
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vertices, or joins a vertex to itself. Two directed lines go into each vertex, 

and two come out of each vertex. Each vertex i is labeled with a coordinate 

ti where 0 < t. < ~; 
1 

we draw the graph so that a vertex has a greater value 

of the coordinate t than all vertices to its right. We refer to a line going 

from left to right as a hole line, and a line going from right to left as a 

particle line. The graphs must be connected; that is, they must not consist 

of two or more parts unconnected by any lines. Each line is labeled with a 

momentum k and a spin up or down; there is no restriction on the label except 

that it must correspond to an eigenstate of the unperturbed Hamiltonian. It 

is convenient to regard a line as continuing through an interaction above the 

other line if it was originally above, and below it if it was originally below. 

The directed lines then form a series of closed loops whose number is well 

defined. 

The contribution of a graph to the thermodynamic potential is found by 

getting a factor from each vertex, a factor from each line, and a factor -1 

from each closed loop. The factor from a vertex is -1 times the matrix 

element of the interaction which annihilates particles in the states that 

label the lines entering the vertex and creates particles in the states that 

label the lines leaving the vertex. We use the convention that the upper line 

entering a vertex corresponds to the annihilation operator on the right, and 

the upper line leaving the vertex corresponds to the creation operator on 

the left of a term in Eq. (3). The factor from a line with momentum k , 

going from a vertex at t to a vertex at t 1 is the propagator 

= 
S(k, t- t') 

= 

-fk exp [~(t- t')] , 

(1- fk) exp [~(t- t')] 

t ~ t' 

t < t' 
' 

(4) 
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where 

= + ( 5) 

We take the product of all these factors for a particular graph, integrate over 

all the coordinates from 0 to ~ , and divide by ~ • We must add the 

contributions from all distinct graphs to the expression for the thermodynamic 

potential of noninteracting fermions, 15 which we would get if V and W in 

Eq. (3) were zero. 

Since it is impossible to make an.exact calculation, we try to take 

into account a large class of graphs, in the hope that these will give the most 

important properties of the system. The usual first step in such an approximation 

is to redefine the single-particle energies so that they include some of the 

effects of the interaction; this is the procedure used to obtain the Hartree-Fock 

16 
approximation, for example. It will be assumed that this has been done 

already, since the single-particle energy spectrum used in Eq. (3) is the 

experimental one, and we cannot conveniently separate effects due to the 

lattice structure from the effects of the interaction of conduction electrons 

with one another. We therefore ignore "self-energy parts" of graphs. It can 

be seen from the results of Sec. III that the effects we consider here do not 
/ 

m~ch influence the single~particle energies. 

The graphs we consider are the ladder graphs, of which a few are 

shown in Fig. 1. These have the property that the two lines coming out of 

one vertex both go to one other vertex. We do not distinguish between particle 

lines and hole lines, which makes this definition of ladder diagrams different 

from the definition used in some other papers. 3' 4 This class of diagrams, 

2 
like the ring diagrams of Montroll and Ward, is one of the simplest infinite 
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classes. We will now derive a linear integral equation which gives the sum of 

these graphs, and show how an explicit formula can be derived for simple forms 

of the interaction. 

Since momentum and spin are conserved in the interaction, the total 

momentum and total spin of a pair of lines going from one vertex to another is 

constant within a ladder diagram. We call these the momentum and spin of the 

ladder, and add together all ladder diagrams with the same momentum and spin. 

We consider only ladders with spin zero, since ladders with spin up or spin 

down can be summed in the same manner, replacing V by W. We define the 

ladder propagator Lnm(K; t', t) to be the propagator which carries a pair of 

lines [K + m, +] and [K- m, -] at coordinate t to a pair of lines 

[K + n, +] and [K- n, -] at coordinate t' with any number of vertices 

in between, provided that the two lines which leave one vertex both go on to 

the next. Some diagrams contributing to the ladder propagator are shown in 

Fig. 2. To a first approximation, it is just the product of two single-particle 

propagators as defined by Eq. (4), for m = n. It satisfies the integral 

equation 

L (K· t' t) = 
nm ' ' 

S(K + m, t- t') S(K- m, t- t')onm 

!: 
p 

f3 
J S(K + n t"- t') S(K- n t"- t')V K L (K· t" t)dt". 

' ' np pm ' ' 0 

( 6) 

Unless this equation is singular, we can show that Lnm(K; t', t) is 

periodic with period f3, and that it is a function only of t- t' •17 We 

use the property of S which follows from Eqs. (4) and (5), that, for 

O<t<f3, 
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S(k, t) = -S(k, t - ~) . ( 7) 

This gives, with Eq. (6), 

(8) 

d d We can now operate on Eq. ( 6) vri th ( dt + dt 1 ) to get 

= 

= ~ 
p 

[S(K + n, t"- t 1 )S(K- n, t"- t 1 )V KL (K·t" t)] ~ 
np pm ' ' 0 

~ 
- ~ f S(K + n, t"- t 1 )S(K- n, t"- t 1 )VnpKCft + ftn)Lpm(K; t", t)dt" 

p 0 

- ~ j S ( K + n, t" - t 1 
) S ( K - n, t" - t 1 

) V np K ( ft + ~" ) L pm ( K j t" , t) d t" • 
p 0 

(9) 

Since this is a homogeneous integral equation for ( ~ + ~,)Lnm(K; t•, t) 

with the same kernel as Eq. ( 6), which vre have assumed to be nonsingular, we 

know that L (K; t 1
, t) must be·:i,.ndependent of t + t 1 

, and must be a function nm 

only of t - t 1 
• 

Since Eq. (8) shows that L is a periodic function, we can write it 

as a Fourier series, 

co 
= t Lnm(K, -.}) exp [ 2rc i y ( t - t I v~] . 

)) =-00 

Substitution of this in Eq. (6) gives the matrix equation 

( 10) 
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1 
€K+n) 

1 
€ ) tanh( 2 f3 + tanh( 2 f3 

K L (K -) ) ] L (K, V) = K-n [ 0 - f3 z v 
run 

2f3(~ + €K-n) - 4:rc i )) run np pm ' 
+n p 

( 11) 

The solution of this equation does not immediately give the contribution 

of the ladder graphs to the thermodynamic potential ~ • If we close the graphs 

K 
of Fig. 2 with a vertex, getting a series for - Z Z V L (K; t, t), we 

mn run m n 
have closed-ladder graphs with one vertex singled out, and we obtain each distinct 

ladder graph a number of times equal to the number of its vertices. This means 

K that - Z Z V L (K; t, t) gives the contribution of the ladder graphs 
mn run· m n 

to g ~/dg, where g is a coupling constant measuring the strength of·the 

interaction V , rather than to ~ itself. There is also a slight difficulty 

due to the discontinuity in Lrun(K; t', t) at t' = t, which comes from the 

discontinuity in S given by Eq. (4). This discontinuity is entirely in the 

first-order term, and we get around the difficulty by subtracting out the first-

order term, represented by Fig. l(a), and treating it separately if necessary. 

The behavior of Eq. (11) is best illustrated by choosing 

"separable." The most general separable potential is 

v mn 
K * g v m vn ' 

V K to be 
np 

( 12) 

where the coupling constant g is a real number. If this is substituted in 

Eq. (11), we can immediately solve the equation to get 

Z Z gv L (K, j))v* = f3-l gQ(K, .,}) /[1 + gQ(K, ))] , 
n run m / 1 ( 13) 

m n 
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where 

Q(K, y) 
l t3 I v 1

2 

= Z 2 n [tanh( _21 t3 €K ) +tanh ( l t3 €K· )] . 
n t3( L + €K ) _ 21! i y +n 2 -n 

K+n -n 

We can also solve for L (K, V) alone, and get nm 

L (K, ~) nm = F(K, n, ,!) { 5nm -
g t3 v* v F(K, m, V) } n m 

1 + g Q(K, ~) 

where 

' 
( 15) 

F(K, n, ~) -..---1---.----4.--d-~--..,... 1 [tanh( _21 t3 €K+n) + tanh ( _21 t3 €K-n) ] • 2t3( €K+n + €K-n) " ... v 

( 16) 

Equation (13) gives the contribution of the ladder diagrams to 

g ~dg , and so we must integrate from zero to ~ in order to get the 

contribution to Q, The integral is t3-l log[l + gQ(K, Y)]. If we subtract 

the first-order term from this to-remove the discontinuity in L(K; t', t), 

we can substitute the expression for L(K, y) into Eq. (8) and take the 

limit t' = t. The contribution of the ladder diagrams to the thermodynamic 

potential is now 

QL = Z ~ t3 -l { log[ 1 + gQ·(.K, )! ) ] - gQ,{K, ,) ) l 
K -)=-CD J 

( 17) 

This expression is similar in structure to the expression obtained by 

Montroll and Ward for the sum of the ring diagrams,
2 

although there the final 

sum (integration) is over the momentum transfer q rather than the total 



UCRL-8884 

-17-

momentum 2K. In Appendix A, the result of Montroll and Ward is rederived by 

the methods used here, in order to emphasize the closeness of the analogy. 

Equation (17) was derived by formally summing a power series in g , 

and this derivation will be suspect unless the sum has a convergent power series 

in g ; the condition for this is I gQ(K, ~) I < 1 . Every term in the sum of 

Eq. (14) is positive for ~ = O, and therefore Q(K, 0) is greater than the 

sum of the moduli of the terms in the sum for any Q(K, ) ) , ~ -J 0. Therefore 

Q(K, 0) determines the radius of convergence of the power~series expansion 

of the summand of Eq. (17). It also seems probable that Q(K, 0) has a 

maximum for K = o, although this depends on the behavior of v , so that 
n 

Q(O, 0) determines the radius of convergence. The question of the maximum of 

Q(K, 0) will be examined more carefully in Sec. III. The condition for 

convergence is I gQ(O, 0) < 1, and, from Eq. (14), this gives 

I g I ~ ( lv 1~2 e ) tanh( -2
1 ~ e ) < 1 

n n n n 
( 18) 

The failure of convergence would be of no particular interest for positive g 

(repulsive forces), since one could then regard Eq. (17) as an analytic contin-

. 18 
uation, similar to that made in the papers of Gell-Mann and Brueckner and 

2 Montroll and Ward. If, however, g is negative (attractive forces) and the 

inequality'· (18) is not satisfied, then there w'ill be some value of K for 

which gQ(K, 0) = -1, since Q(K, 0) falls off smoothly to zero for very 

large K , with a finite potential. This means that there are infinite terms 

in the sum of Eq. (17). For fixed g, which we take equal to -1, Eq. (18) 

can be regarded as a condition on the inverse of the temperature, and can be 

written as ~ < ~C , where 

'"' 
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( 19) 

The potential used for the calculations of BCS is of the form (12), with g = -1 

and lvnl
2 

a constant for n within a certain distance of the Fermi surface 

and zero otherwise. Equation (19) is identical with the BCS equation for the 

critical temperature. The condition for convergence of the sum of the ladder 

diagrams is simply that the temperature be greater than the critical temperature, 

or that the equilibrium state of the metal should be the normal state. 

It is not only with this simple interaction that our condition for 

convergence is equivalent to the BCS condition for the normal state to be the 

stable state. We can replace V in Eq. ( 11) by -gV , and then get a np np 

power series in g by iterating the equation. This power series will converge 

for g = 1 if L , regarded as a function of g , has no singularities for nm 

jgj < 1 . The condition for a singularity is the existence of a nonzero 

solution of the homogeneous equation 

c = 
n 

~ g F(K, n, J)v c np P ' 

where F is defined by Eq. (16). The condition that there should be no 

( 20) 

solution of this for K = o, ~ = 0 , jgj < 1, can be regarded as a condition 

on the temperature. Since F(K, n, 0) is real and positive, Eq. (20) can be 

written as an eigenvalue equation for the Hermitian matrix 

J/2 [F(K, n, O)F(K, p, 0)] V , and the eigenvalues must be real. For a np 

repulsive potential, the eigenvalues are negative and do not correspond to 

infinite terms in the ladder approximation. For an attractive potential, the 

existence of solutions of Eq. (20) with g < 1 is equivalent to ~ < ~C , 
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where ~C is the smallest solution of 

c = z (1/2~ )tanh( -2
1 ~c ~ )V c n n n ~ p 

p 

This is equivalent to the condition for the critical temperature derived by 

BogoJiubov. 19 

( 21) 

It will be convenient here to generalize these results and consider a 

representation in which the propagators 8 defined by Eq. (4) are not diagonal. 

Writing the Fourier transform of the product of two propagators as Snm(K, Y), 

where the index m defines the initial state and the index n defines the 

final state, we get an equation for the ladder propagator equivalent to Eq. (11), 

L (K, ~) 8 (K, 0) - ~ z z 8np(K, J)vpq Lqm(~, -)) (22) 
nm nm p q 

If we can write the potential as 

v z i* i ( 23) = gi v v 
' pq i p q 

we can transform the matrices to 

Ljk(K, J) ( )1/2 v j J k.X-
= gj~ z z L (K, )v 

' n nm m n m 
(24) 

sjk(K, V) (gi~)J/2 j J k* = z z v 8 (K, )v 
' n nm m '-' n m 

and get the e'luation 

Ljk(K, ~) = 8jk(K, .Y) - ~ E 8j£(K, v)Ltk(K, Y) (25) 
£ 
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.}c 7 
If the eigenvalues of SJ (K, 0) are ~i(K, Y) , then this gives 

(26) 

The condition for convergence of the series expansion of this is lt3~. I < 1, 
J. 

although there is an infinity in the sum only if there is an i for which 

t3~. = -1 . 
J. 
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III. APPROACH TO THE CRITICAL TEMPERATURE FROM ABOVE 

Evaluation of the Thermodynamic Potential. 

When ~ is just below the value ~C defined by Eq. (19) or (21), the 

series expansion given by perturbation theory should converge, but the. ~mm on 

the right of Eq. (17) has some very large terms in it, because Q(O, 0) is very 

nearly unity. We use Eq. (14) to evaluate Q(K, J) for ~ just less than ~C 

and K small. For simplicity, we take the potential used in BCS; this is like 

the potential of Eq. (12), with IV 
'

2 
equal to a constant, n .:;121, where 

2/ is the total volume of the system, for ~ - w < n < ~ + w, and with 

IV 1
2 equal to zero otherwise. 

n 
The Fermi momentum ~ is defined by 

( 27) 

where ~ is the chemical potential and M is the electron effective mass; we 

set -1'l = 1 throughout this paper. We have, then, 

Q(K, )) 
~+W 1 

J n
2 

dn J d(cos e) 
~-w -1 

1 
2 

+ n -

[~(~ + n
2 

- ~2 
+ 2n K cos eV4M] 

+ tanh[~(K2 + n
2

- ~2 - 2n K cos ey/4M]} 

= 

( 28) 
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To evaluate this integral, we must make some assumptions about the 

magnitudes of the quantities entering the expression. Our assumptions are 

~ >> w >> K and ~ ~~M >> 1. We change the variable to 

(29) 

and drop all but the highest powers of ~· This gives 

JM2 B+C dz cosh(z +A) 
Q(K, y) = 

1!2~ K 
I 4z - 21! i ';) 

log 
cosh(z -A) -B+C 

( 30) 

where 

A = ~ K y2M, B = ~ ~ vy/2M ' c ~ K~4M ( 31) 

The integral on the right of Eq. (30) can be evaluated by contour integration, 

because of the assumption that B is large. The integrand has branch points 

at z = ~(2 ~' + 1) 1! i ±A, where ~' is a whole number, and we define the 

integrand by making straight cuts of length 2A between them. .There is a 

pole at z 1 . y = 2 1! l for odd, but we take the contour of integration 

in the lower half plane if ~ is positive, and in the upper half plane if 

~ is negative, and thus we avoid contributions from the pole. We take 

the contour of integration to be three sides of a recta~ with vertices at 

z = -B + C, z = -B + C + 1! i v", z = B + C + 1! i y", and z = B + C, 

where -)" is a whole number of opposite sign to ).) • The logarithm in 

Eq. (30) tends to -2A if the real part of z is negative, and to 2A if 

the real part of z is positive, with only exponentially small terms left 

over. The sum of the contributions to the integral of the first and third 

sides of the rectangle is 
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2: A log 
2 ( B + C + re i '))" - ,! re i ")) ) ( -B + C + re i y" - ,! re i V) 

2 2 

( B + c - ~ re i ")))( -B + c - ~ re i V) 

( 32) 

On the second side, the modulus of the integrand is not more than 

Aj2rc 12 '))" - '))I , so that the integral along a line of length 2B can be made 

to vanish by taking I v" I large enough. The contribution from one of the 

cuts is 

1 
2(2v' +l)rei+A 

:r- 2re i f 
~( 2 )J' +l)rei-A 

dz 1 rei(2v' - v + 1~ + 2A + 2 re i log rei(2y' - v + 1 - 2A 4z - 2re i ')) 

( 33) 

where the upper sign is for ;) positive and the lower for -) negative. We 

can combine the expressions (32) and (33) to get the result 

B+C 
dz 

f 4z 2rc · v log 
-B+C - ~ 

= ~ A log[ ( B + C - ~ rei ) ) ( B - C + ~ rei J Yre
2 

] 

{-A log~" 1 . 
.Y"-1 rei( 2~' + 1~1 + 1) +~1 + lim +- re~ I: log 

rei( 2.Y' + 1) -2A 
'))"-.oo 

2 
y'=O 

+ 

( 34) 

The dependence on C is unimportant and is neglected. If A is much less 

than unity, we can expand Eq. (34) as a power series in K , and, keeping the 

leading terms, we get 
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Q(K, ;) ) 
(

(32 ~2 w2 1 2 
2 + 4 1t 

· 4 M 

1 
2)} I -·1 

for -) even, 

~ {1 Q(K, y) = 21t2 2 log + · y - log 1t 

~<lvl~l) 
,.E 

.)) =1 

1 l 

1 J \ 
2< I v 1-1) 

2: 
'))'=1 ?j 

for ')) odd. 

Here y is Euler's constant, equal to 0.577, and s(3) is the 

Riemann zeta function of argument three, equal to 1.202. 

We can evaluate the integral in Eq. (30) for A large (but still 

smaller than B) by putting log[cosh(z +A)]= I z +A I· This gives, if 

we neglect C , 

Q(K, .) ) 
1 +41t )I 

{ 

B
2 1 2 _j2 

2 log 2 1 2 2 
A +4rc "}). 

+ 1 - 1t v tan-1 ( 2 A )1 
2A ;-;) ( 

J 

' 

( 35) 

( 36) 

According to Eqs. (35) and (36), Q(K, )) appears to have its largest 

value for K = 0 and .J = 0, while Q( 0, 0) = 1 substituted in Eq. ( 35) 

gives an equation for f3c in agreement with BCS Eq. (3.29). We wish to 
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evaluate Eq. (17) for the case of Q(O, 0) just less than unity, and vre are 

interested mainly in the effect of the logarithmic singularity of the summand. 

Now, although the argument of the logarithm in Eq. (35) is a large number, 

essentially the square of the ratio of the Debye temperature to the critical 

temperature, the logarithm is only about 10, and Q(O, ) ) falls off from its 

maximum value quite rapidly as -) increases from zero. For this reason, we 

shall consider only those terms in Eq. (17) with J = 0, since we should be 

able to use low-order perturbation to take account of the effects of the other 

terms. For the same reason, we consider the contribution only of terms with 

very low K , and we therefore cut off the summation over K at a value L , 

42/ 
-2-
1{ [3 

f ~log{: 
0 21! 

f3c 
[log "F + 

1 
I 

~ ] ~ dK , 

) 

where we have made use of the equation for f3c· This expression can be 

evaluated by use of the equation 

L 2 2 2 __ 2 J K log(a + b ~)dK = 
0 

2 3 -1 b 
3 ( ~ ) tan (La ) 

( 37) 

( 38) 
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Specific Heat Anomaly 

Thermodynamic quantities can be calculated by taking derivatives of 

Eq. (37) with respect to ~ and ~ The terms on the right of Eq. (38) are 

all regular near a = 0 except for the last one. This last term is finite and 

2 has finite first derivatives, but its second derivative with respect to a 

behaves like 1 -1 -3 - 4 ~ a b near a = 0. It follows that the specific heat 

of the electron gas should become infinite at the critical temperature 

If we write this anomalous part of the specific heat per unit volume as 

and write e = (T - TC~TC , we get, from Eqs. (37) and (38), 

(39) 

This must be compared with the contribution from the unperturbed system at the 

t t T h • h . 20 empera ure C , w 1c 1s 

( 40) 

and the ratio of the two is 

( 41) 

where the Fermi temperature TF is defined by k TF =~~2M • 

Equation (4~ shows that this specific-heat anomaly is far beyond the 

range of observation for usual superconducting substances. A quite favorable 

-4 where y = 19 x 10 ld b . b. 21 h. h h case wou e n1o 1um, w 1c as C = y T, 
2 

cal;l.ffiole deg. , and, presumably, five electrons per atom. This would give 

;, -6 -1/2 
c~c = 1.3 x 10 e , so that •t ld b t . 'th' lo-11 1 wou · e necessary o go w1 1n 

degrees of the critical temperature for the anomalous part of the specific 

heat to be comparable to the normal part of the electronic specific heat. 
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Although this specific-heat anomaly is so small, it is of some theoretical 

interest, since the theory presented here suggests that the specific heat appears 

finite but discontinuous at the critical temperature only because of the small 

ratio of the critical temperature to the Fermi temperature. This behavior of the 

specific heat should be contrasted with the logarithmic behavio! of the specific 
4 22 

heat of He observed near the lambda point. The specific heat of a substance 

near a critical point at which a second-order transition becomes first-order 

14 behaves like Eq. (39), according to Landau's theory. · 

Electron Correlation Function 

The electron correlation function g(x+, x'-) is defined as the 

probability per unit volume of finding an electron with spin up at x and an 

electron with spin down at x' , minus the probability of finding an electron 

at x times the probability of finding an electron at x' . Making use of the 

conservation of momentum, we can write this as 

g(x+, x'-) V
-2 zzz 

Kmn 

t t ) i(n-m)(x-x') 
( ~+n,+ aK-n,- aK-m,- aK+m,+ e 

a 
p,+ 

2 
) ] 

( 42) 

where the averages are taken over the statistical ensemble. For noninteracting 

particles, this function would be zero. In the ladder approximation, the first 

average is just lim L (K; O, t). Use of Eqs. (10) and (15) shows 
t-. +0 nm 

I Z v F(K, m, y)exp[ i m(x - x')] 12 
13 ~~-2 

m 
g(x+, x'-) z z m 

= 
~ K 1 Q(K, Y) 

( 43) 
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This function vanishes for x and x 1 far apart. From Eqs. (16) and (14) and 

IV 1
2 rh/ from the form of interaction we have chosen, with m equal either to J; ~ 

or zero, we deduce 

(44) 

Again we are interested in the effect of the smallness of the denominator, we 

take only the ~ = 0 term, and integrate over K within L of zero, putting 

~(K, 0) = 1 in the numerator and using the same approximation for the 

denominator as was used in Eq. (37). This leads to 

g(x+, x-) = 

where e again denotes "(T - TC)~TC and 

= 

The rightahand side of Eq. (45) goes to zero if e is large, but 

goes to 8L~~ J
2 M ~ b2 if e is much less than unity, since L b is of 

( 45) 

( 46) 

the order of unity. Therefore, as 9 goes to zero, the probability of finding 

two electrons of opposite spin close together increases. The range of this 

correlation is of the order of -1 b , since the main contribution to the sum 

over m in Eq. (43) comes from the region in which m is less than b. Thus, 

there is a correlation between electrons of opposite spin in the normal state 

just above the critical temperature very similar to the correlation in the 

superconducting state of the BCS theory, with the same range, and of the 

same order of magnitude. This correlation is, however, very small, and it can 

be described by saying that the electrons are distributed in such a way that 



there are about Tc/TF more electrons within a distance 

than there would be in a random distribution. 

UCRL-8884 

-1 b of a given electron 

There are various other effects predicted by this theory which should 

also be very small. There is a slight enhancement of the spin paramagnetism, 

and an enhancement of the number of high-energy phonons present as the temperature 

approaches the critical temperature. No effect has been found which might be 

experimentally detectable. 
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rY. THE SUPERCONDUCTING STATE 

The Ladder Approximation in the BCS Theory 

Below the critical temperature, the perturbation series no longer converges 

in the ladder approximation. We might try to avoid this difficulty by making 

an analytic continuation and using Eq. (17), in spite of the lack of convergence 

of its power-series expansion. Such a procedure is used in the theory of 
. 2 

Montroll and Ward, but there are two reasons for not using it here. One reason 

is that, before we take the limit of an infinite system, Q(K, 0) may take the 

value unity for a point on the reciprocal lattice, and the pressure will be 

infinite in such a case. There will therefore be violent and quite meaningless 

fluctuations of the pressure which depend on the size of and shape of the 

system. The second reason is that we know from BCS theory that interactions of 

particles with total spin and momentum zero contribute a finite amount to the 

pressure (or to the energy per particle at zero temperature), and no such effect 

appears from Eq. (17). 

We therefore take the BCS theory as a starting point, and then apply 

perturbation theory. The most convenient form of the theory is that proposed 

by Bogoliubov, Zubarev, and Tseikovnikov,9 which is equivalent to BCS theory. 

We make the canonical transformation 

* at a:mo = X a - y m m,+ m -m,-

( 47) 

* at a:ml = X a + y 
' m -m,- m m,+ 

where 



lx 12 + 1Yml
2 

= 1 ' m 

lx 1
2 

1Yml
2 

= € /~ m m m 

X y m m cnf2~m 

~ = /(€m2 + lc 1
2

) m m 

The quantity C is determined by 
m 
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' 

( 48) 

' .( 49) 

where Vmn is the interaction between particles of opposite spin which occurs 

in Eq. (3). If the transformation (47) is applied to the part of the Hamiltonian 

which takes into account interaction between particles with opposite spin and 

momentum--the first sum on the right of Eq. (3) together with the K = 0 term of 

the second sum--the Hamiltonian becomes 

L [€ - ~ + ( lc l 212~) tanh( -2
1 ~ ~ )] n n n n/ n n 

+ L LV Bt B 
m n mn m n 

(50) 

where 

B = a a m -m,- m,+ (C ;2~ ) tanh( -2
1 ~ ~ ) • 

m m m 

I 
(51) 

The operators anO and anl are annihilation operators for "quasiparticles," 

and the BCS solution of the statistical mechanical problem is the solution 

for noninteracting quasiparticles, so that the probability of a quasiparticle 

states being occupied is ) -1 
[exp(~ ~n + 1] . The first two sums on the 

right of Eq. (50) give the unperturbed Hamiltonian, while the third sum on 
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the right of Eq. (50), together with the 11 residual" terms not included in Eq. (50), 

give the perturbation. 

In this section we assume that W is zero and that V is separable, given 

by Eq. (12) with g = -1, as we assumed in the preceding section. In Sec. V we 

consider the effects of removing this restriction in some simple cases. 

Equations (49) and (48) now have a unique solution for ~ > ~C (apart from an 

arbitrary phase factor), and no solution for ~ < ~C • There are two kinds of 

terms in the perturbation series which we must consider separately. Firstly 

there are those which result from interactions between particles with total 

momentum zero. It is shown in Appendix B that the series of ladder diagrams 

with total momentum zero gives an infinite sum even when the BCS energy has 

been subtracted. This indicates that the Hamiltonian (50) requires more careful 

study, but we ignore this, and neglect these terms on the usual grounds that 

'"lf-1 • their contribution to the pressure is of order u Secondly there are those 

terms which result from interactions between particles with nonzero total 

momentum, and it is from these that we expect results not contained in BCS. 

We use a particle representation rather than a quasi-particle 

representation. The propagators, being diagonal in the quasi-particle repre-

sentation, are nondiagonal, since they mix a particle of one spin and momentum 

with a hole of the opposite spin and momentum. We wish to solve Eq. (22), 

which is an equation in a space of two-particle states. The intermediate 

state in this equation could be two particl~ or a hole and a particle, or two 

holes. We ignore the possibility of the state's containing one hole and one 

particle, since the corresponding matrix element of V gives a small 

momentum transfer K to two particles instead of involving two particles 

with small total momentum 2K , and we are neglecting the long-range part of 
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the potential. We denote the state with particles in [K + n,+] and [K- n,-] 

by the suffix n , and the state with holes in [-K- n,-] and [-K + n,+] by 
_;. l -· the suffix n • The potential is given by 

y;,;._ 
mn = vnm * -v v 

n m ' 

V- = V - = 0 mn mn 

Application of the transformation (47) to the propagators, which look like 

Eq. (4) with e replaced by ~ in the quasi-particle representation, gives 

the two-particle propagators as 

S (K, y) 
mm 

+ 

S -(K, )I) = 
mm 

- Re 

r ~(~KJ ~:m~i
2 

; :~mn 1: V I +m --K-m 

1 I 12 12 l + 2 · YK+m I YK-m .J 

r3( ~K + u__ ) + 2rc i J +m --K-m 
'--

+ 

1 1 
X [tanh( 2 r3 ~K+m) - tanh( 2 r3 ~K-m) ] 

l tanh( ~ r3 ~+m) + tanh( ~ r3 ~K-m ) l Re ~(~+m + ~-m) - 2n i V 

tanh( ~ r3 ~+m) - tanh( % J3 ~K-m) l 

(52) 

(53) 
r3(~+m - ~K-m) - 2

1( i .· Y ; J 
(Eq. (53) Cont.) 
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(53) 
* 8--(K, yl) = S (K, ~) mm mm ' 

with all other matrix elements zero. 

The potential defined by Eq. (52) is the sum of two separable parts, the 

first part being zero for all hole states, and the second part being zero for 

all particle states. We can define the two-by-two matrix Sij(K, -/) in 

accordance with Eq. (24); this has components equal to -E lv l2s (K, ) ) , 
m m mm 

2 ) * 2 -E v S - (K, Y) , -E v . S- (K, ~) , and -E mm mm m m mm m lv 1
2 s-- (K, )) • m mm 

This can be evaluated by using Eq. (53), together with Eq. (48), to give 

1 0 

1- {tanh( ~ ~ ~-!ill) + tanh( ~ ~ ~-m>} 
0 1 

+ E { Re tanh( ~ f3 ~+m) + tanh( ~ f3 ~-m) _ Re tanh(b~+m)- tanh(b~-m)} 
m f3(~+m + ~-m) - 2:Jt i Y f3(~+m - ~-m) - 2:Jt i j) . 

' 

~O~+mYK-m 12 
+ IYK+m~-m 12} lvm 1

2 
XX+mYK+m ~-mYK-m vm 

2 

* * * * * 2 X Y X y V K+m K+m K-m K-m m 

(59) 
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In the case K == 0 , the second matrix on the right of Eq. (54) can be 

shows that 
I ·X­

c:rr{ v m must be a constant A • If 1-re simplified, since Eq. (49) 

take the factor jv i412Q m 1· m out of the matrix, according to Eq. ( 48) vre are left 

with a matrix independent of m , vrhos:e elements ar:e 

and vrhose eigenvalues are gero and ~:JA]2 

are therefore 

I 1
2/ 2 2. 1 - ~ ( · c v 1 4Q ) sech ( -2 [3Q ) o~Jo 

:in m m m · . m Y 

Equation (49) gives 

~( lv J'l2Q )tanh( -2
1 [3Q ) 

n n n n 
1 

jA 1
2 

, 
2 

A ' 

The eigenvalues of 

and 

ij • s (o, y) 

(55) 

is 
-1 has modulus less than 13 for 

Y I= 0 . The modulus of t.
2
(o, y) is clearly less than 13-l for )) ;i 0 , and 

the modulus of t.2(o, 0) is less than [3"" 1 because (2[3Qm)-1tanh( ~ [3Qm) is 

1 ' 2 1 ) greater than 4 sech ( 2 [3Qm • Since the con9-ition for convergence of the 

perturbation series is that j[3'A.j sh0uld a1ways be less than unity, we need 

be concerned only with t.1(K, 0) , w:P,en K is close to zero. 

Considering just this eig;envalue A-1{K, 0) , with K close to zero, 

we shall certainly not decrease the modulus of the eigenvalue if we replace 
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the nondiagonal elements of the second matrix of Eq. (54) by their moduli; for 

K = 0 this does not change the eigenvalue. The eigenvalue is 

= -E lv 1
2 [2~(n__ + QK )]-l [tanh( -2

1 ~~- ) +tanh( -2
1 ~Q- )] m m --.K+m -m --K+m . --K-m 

m 4 n__ Q 
--K+m K-m 

1 1 
tanh(2' ~~+m) +tanh(~QK-m) 

~(~+m + ~-m) 

(57) 

This equation is also valid if v is everywhere real. Equation ( 48) shows 
m 

(58) 

which is always positive. The second sum on the right of Eq. (57) is therefore 

always positive, but whether the first sum on the right is greater or less 

than -~-l depends on the form of lv 12 
• For lv 12 roughly constant in m m 

the neighborhood of the Fermi surface, we expect 11.1(K, 0) to have a minimum 

at K = o. 

We now make an expansion of Eq. (57), keeping only the second order 

in K • We neglect the variation of C with m, so that we have 
m 

n__ ~ Q + € (m·K) /MU + € ~/2W1 + ( lc. 1;;a1Q 3)(m.K) 2 
--K+m • m m V 1 m m m m m (59) 
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In this approximation, Eq. (57) becomes 

+ 1:: 
m 

lv I (32 e 2 
m m 

8~ Q 3 
m 

2 (m•K) 

( 6o) 

The assumption of very large ~ , with lvml
2 

an even function of m- ~' 

which was made in Sec. III and in BCS, can be used to simplify this considerably. 

If we do the angular integration, and then cancel out terms in the sums which 

have an odd dependence on e , we are left with 
m 

1 2 (32 n 2 h2(1 Rn ) t nh( 1 Rn ) + 2 em ~6m sec '2 f-'~6m a 2 f-'~6m 

( 61) 

which is certainly positive. 

Specific Heat Anomaly 

Just below the critical temperature, as 

tends to the limit 

lc I tends to zero, Eq. (61) m 
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' 2 3 __ 2/. 2 co -1 2 
_ ( J t3 ~ Kj 48 :rc M) f x sech x tanh x dx 

-co 

which agrees with Eq. (35) in·the same limit. Although_ )1.1(K, 0) gives no 

anomalous effects, )1.2(K, 0) differs from )1.1(K, 0) by approximately 

Expanding Eq. (56) in powers of lcnl
2 

and in powers of e = (T- Tcy/TC , 

we get, close to the critical temperature, 

!: ( I C v I ;;4 E: 
3)[ tanh( -2

1 t3 E: ) - .!2 t3 E: sech
2

( -2
1 t3 e ) ] m mm m m m m 

1 I 
1
2 2 1 ) 

= -t3 e ~ 4 vm sech ( 2 t3 1n 

Close to the critical temperature, we get from Eqs. (62), (63) and (64) 

This produces a specific-heat anomaly very similar to the one predicted for 

the normal state. The contribution to the thermodynamic potential is 

(63) 

( 64) 

(65) 

1 -1 ( 2 t3 ~ log[l + t3 )1.2 K, 0)], since we have counted graphs in such a way that 
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we have gone round each ladder once in each direction, so that each graph has 

been counted twice. Comparison of Eqs. (65) and (37) shows that the anomalous 

specific heat just below the critical temperature is (2 times Eq. ( 39), 

with 8 replaced by -8 , and so it also is far too small to be detected. 

Law-Temperature Paramagnetism 

It has been suggested by Heine and Pippard11 that, if proper account 

were taken of interactions between particles with momenta not exactly opposite, 

a finite spin paramagnetism might be obtained. The BCS theory gives a 

paramagnetism which falls off exponentially as ~ goes to infinity, 23 and we 

shall examine the perturbation-theory corrections to this result. Suppose that, 

when we switch on a magnetic field of strength ~ , allthe single-particle 

states with spin up lose energy ~ ~O , and all the states with spin down 

gain the same amount. The same will be true of the quasi-particle states 

defined by Eq. (47), and they will lose or gain energy according to whether 

they have the label zero or one. We can do all the calculations with these 

altered. quasi-particle energies, and then find the susceptibility by 

calculating o2Q~2 for ~ = 0. Equation (56) is altered by the magnetic 

field, and this gives the BCS expression for the spin susceptibility. The 

quantities of Eq. (48) are altered by only a small amount which falls off 

exponentially at low temperatures. In Eq. (54), ~ ~O must be subtracted 

from f.L_ . and added to f.L_ everywhere they occur. For large ~ , --K+m --K-m 

however, this makes only exponentially small alterations, and the same is 

true of Eq. (60), and so there is only an exponentially small contribution to 

the magnetic susceptibility. 
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V. MORE GENERAL FORMS OF THE INTERACTION 

A Criterion for Convergence 

In the form of the theoryreveloped by Bogoliubov and his collaborators, 9 

the canonical transformation (47),.with coefficients given by Eqs. (48) and (49), 

is made. The new unperturbed Hamiltonian is given by the first two sums on the 

right of Eq. (50), ard'we:w:Lsh to find the condition that the sum of ladder 

diagr~s should now converge. We know from Appendix B that the sum of ladders 

with momentum zero is infinite, but we require that the sum of ladders with any 

other momentum should converge. Since Eq. (49) in general has several sets of 

solutions, this requirement may enable us to determine which solutions are 

acceptable. 

The condition for convergence is that the solution of Eq. (22) can be 

expanded as a power series in the coupling constant. An equivalent condition 

is that the equations 

~ d = -~ L(V S d + V S -d-) m n mnnnn mnnnn ' 
(66) 

~ d- -~ E(v-~s= d + v--s--d-) 
m n mnnnn mnnnn 

should have no eigenvalues with 1~1 > 1 , since the thermodynamic potential 

is ~ ~-l times a sum of the possible log(l- ~). The terms in Eq. (66) are 

understood to be functions of the total momentum 2K of the ladder, and of the 

Fourier component V . As in Eqs. (52) and (53), -m denotes a state 

consisting of two holes, and we neglect states consisting of a hole and a 

particle, on the grounds that they involve the long-range part of the interaction. 

. * The elements of the matrix S are given by Eq. (53), and V-- = V • For 
mn mn 

the case of total moment¥ID close to zero and ~ = 0 , Eq. (66) becomes 
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~ d = Z V (-Ad + IX ld + X d-) m n mn nn n n nn 

* ' * ~ d- = ~ V (X d - A d- + IX !d-) m n mn nn nn n n 

A 
n 

= (2Q )-
1 tanh( -

2
1 ~Q ) n n ' 
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(67) 

( 68) 

One solution of Eq. (67) is certainly given by A= 1 , d = c ' m m 
* d- = -C m m' 

since it then reduces to Eq. (49) and its complex conjugate. We require that 

there be no eigenvalues greater than this. 

The advantage of using Eq. (67) to distinguish between different 

solutions of the BCS problem is that, unlike the original Eq. (49), it is a 

linear equation. We use it here. to study the problem of more general interactions 

than the one we have so far studied, which is the separable S-state interaction 

between two particles of opposite spin. 

Interaction between Particles with Parallel Spin 

The first problem to which we apply Eq. (67) is a very artificial one. 

We assume that, in addition to the interaction (12) between two particles with 

opposite spins, there is a separable interaction 

* W = -w w mn m n (69) 

between two particles with parallel spins. This interaction is an S-state 

interaction, and therefore has the wrong symmetry, but the simplification 

produced by assuming the potential to be separable is considerable. 
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Suppose that the usual Bogoliubov transformation (47), pairing particles 

of opposite spin, is made. Then the sum of ladder graphs with total spin unity 

is given by an equation like Eq. (67), with V replaced by W • The solutions 

* of this equation are given by dm)W m and dm(wm equal to constants, and there 

are two eigenvalues, 

~ = E(A - lx I) lw 12 
± n n n n 

EX w 2 
n n n 

If we take both v and w to be real, the largest eigenvalue is 
n n 

A. = E ( w 
2j2Q ) tanh( -2

1 t3Q ) 
n n n n 

( 70) 

(71) 

If v and w are proportional, then Eq. (71) gives an eigenvalue n n 
2 2 2 2 less than one for v > w , and greater than one for w > v • In the n n n n 

latter case, we could make a transformation which correlated particles with 

parallel spin, and we would then get a set of equations analogous to Eqs. (48), 

( 49) , and ( 71) , 

Q' 2 = 
n 

' 

E( w 'l2Q' ) tanh( l t3Q' ) = 1 n n n 2 n 

If v and w are proportional, one and only one of these two sets of 
n n 

equations is consistent. If they are not proportional, it is possible for 

neither to be consistent, but it is not possible for both to be consistent. 

The relations which would have to be satisfied can be written as 

(72) 
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A2 = r: p fn(pn) n n 

B2 
~ r: ~ f (p ) ' n n n 

( 73) 
B2 = ~ ~ fn(~) ' 
A2 ?- r: pn fn(pn) 

n 

2 2 2 2 2 2 where we have written Q = e +A v p = A v n n n n n 

and ( ) 1( 2 2)-1/2 t h[ 1 A( 2 2)1/2 ] fn x = 2 en + x an 2 ~ en + x . These four relations 

imply 

r: (p - q )[f (p ) - f (q )] ~ 0 n n -n nn n-n,. (74) 

which is impossible, since f (x) 
n 

is a monotone decreasing fUnction of x for 

positive x . We have therefore proved the statement that both of the possible 

solutions cannot give a convergent perturbation series. 

At zero temperature, we can show how the intermediate region, in which 

neither coupling with spins opposite nor coupling with spins parallel gives a 

convergent perturbation expansion in the ladder approximation, really gives 

rise to a more complicated coupling, even when we use a realistic Hamiltonian 

like Eq. (3). We take all the matrix elements of the interaction to be 

real, and use the trial wave function 

v = n [ ( 1 t-
k ~ + ~k a k,+ a -k,-

( t t t +Yk·ak· a k +ak )+ - ,+ ,-

+ at at ) 
-k,+ k,-

at ) 
-k, 

+ 8 at at al a/ 
k k,+ -k,- -k,+ k,-

~ 2 + 2 ~k 2 + 2 r k 2 + ok 2 = 1 
' 

J lo > , 

(75) 
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where the product is taken over all single-particle states which have positive 

component of momentum in a chosen direction. The expectation value of the 

reduced Hamiltonian, the part of Eq. (3) which includes only the interactions 

between pairs of particles with total momentum zero, is 

E = I: 
m 

2 2 2 
2 e (~ + r + o ) + I: I: (a ~ + ~ o )V (a ~ + ~ o ) m m m m mn m m m m mn_n n n n 

+ I: I: (a r + r o )w (a r + r o ) mn m m m m mn n n n n ' (76) 

where the sums go over all states in momentum space. We understand that a , ~ , 

and o for states of opposite momentum are the same, but that r has opposite 

signs in the two states. One set of coefficients which gives a stationary 

2 value of Eq. (76) is a = x , ~ = x y , r = o , m m m m m m 
2 o = y , where m m 

x and y are given by Eqs. (48) and (49), since Eq. (75) is then the BCS trial 

wave function. We make a small variation of the coefficients away from this 

solution of the variational problem, by making rm proportional to drn(2Qm , 

where d satisfies the equation 
m 

d = - ~ I: (V /2.Q )d m n rm:{ nn ( 77) 

2 We have to make changes of order y in a , ~ , and o , but Eq. (76) is 

stationary with respect to changes which satisfy a2 + 2~2 + o2 = 1 , and so 

the change in Eq. (76) depends only on the values of the rm . Equations (48), 

(49), and (77) show that the change in E is simply (1 - ~) I: 2 I r 1
2 Q 

m m m 

The existence of an eigenvalue of Eq. (77), which must also be an eigenvalue 

of Eq. (67), greater than unity is a sufficient condition for a trial wave 

function like Eq. (75) to give a lower energy than the BCS wave function. The 

best solution can therefore be more complicated than the solutions considered 
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by BCS, and the failure of convergence of the perturbation expansion in the ladder 

approximation seems to be a sign of this possibility. 

Angle-Dependent Interactions 

It is usually assumed that the solution of Eq. (49) is spherically 

symmetric, so that only the S-state part of V is effective. It is possible 

for there to be solutions which have a dependence on angle, either because of a 

strong interaction in some higher angular momentum state, or because the 

effective mass depends on angle. 24 There are many possible forms of the 

dependence of the solution on angle, since Eq. (49) is nonlinear, and Eq.(67) 

may tell us which forms are acceptable. 

Suppose we have an interaction 

00 

(2.£ * v £ pi cos 9 ) v = !: + l)v £ rnn £=0 m, n, rnn 

(78) 
00 £ * * . = -41( !: !: v 

2
Y

2
(e, ¢m)vn,.£ y.£~( 9n' ¢n) ' .£=0 ~=-.£ 

m, ~ m 

where vm,.£ = ~ for m within a certain distance of the Fermi surface. 

Equation (21) for the critical temperature is a linear equation, and it 

separates into angular-momentum components in such a way that C must be a 
n 

pure spherical harmonic. If the largest of the numbers J.£ is J
0 

, then the 

S-state potential alone will determine the critical temperature. Below the 

critical temperature, we have the usual spherically symmetric solution, and 

Eq. (67) is also separable. The larger eigenvalue corresponding to a solution 

with the angular dependence of an .£th-order spherical harmonic is 

A. = 2 1 
!: (v n /2U ) tanh( -2 ~ Q ) m m,k m m ' (79) 

and this will be less than unity if the S-state interaction is the strongest 

interaction. 
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If the S-state interaction does not dominate, and solutions of Eq. (49) 

other than the spherically symmetric one are involved, the situation becomes much 

more complicated, because of the angular dependence of Q • We take, for 
m 

example, a potential which acts only in the state with angular momentum £ , 

and, at zero temperature, Eq. (49) becomes 

where 

* * c = E v r Y n (e , ¢ ) , 
m iJ. m iJ. .K!IJ. m m 

r = 
iJ. 0 2 2 J./2 

4~ E v c Yn (e, ¢ 2(e + lc I ) 
m m m kiJ. m m . m m 

(80) 

( 81) 

The dependence of lc 12 on angle can therefore be quite complicated, although 
m 

it does not depend on the magnitude of m if v 2 = J , and the integration 
m 

over energies can be done by the usual methods. We assume that Q is axially 
m 

symmetric, since this is the simplest case. Only one of the numbers r is 
iJ. 

nonzero, and the equation that must be satisfied if Eqs. (80) and (81) hold is 

(82) 

With this solution for em , we look for a solution of Eq. (67) of the 

form 

(83) 

and this satisfies Eq. (67) if 
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= 

4~ ~ { [ lv0 Y£, 2"_",(80 , ¢0 ) io/2lln­ lv Yn
2 

,(9,¢)C 1
2/4Q3]E, n ,c,, 1-1-1-1 n n n Y L n 1-1 

!O)Y*n ,(e,¢)/4Q3]6,}. n ,c,,f.l n n/ · n 1-1 
* 2 * 2 * [v c Y (e 

n n £,21-1-1-1' n' 

(84) 

There are also solutions of Eq. (67) which have a different value of £ , but we 

do not consider those here. If we take vm = {J for ~ - w < m < ~ + w , 

we can perform the integrations over energy which occur in Eqs. (83) and (84). 

The integrals we need are 

"*F/M 
J 

-w~;M 

(X) 

J 

d€ 
log(2wk/Mic I) 

1 
2 

The eigenvalues of Eq. (84) can now be determined by comparing the angular 

integrals which occur in Eqs. (82) and (84). 

(85) 
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We take the simplest example, which is a P-state interaction. For ~ = 0, 

there is a solution of Eq. (84) with 6
1 

= E
1 

, and the corresponding eigenvalue 

is 

"' = 

= 

t f sin
2 e log( A/I cos e I) d( cos e) 

-1 

~ f cos
2 e log( A/ I cos el) d( cos e) 

-1 

(log A + ~)/(log A 
1 

+ -
3 

which is greater than unity, since log A is positive. The solution with· 

(86) 

~ = 0 is not allowed, so we try ~ = 1. There are then solutions of Eq. (84) 

with E0 = o or with E = 0, and both have eigenvalue unity. 
-1 

The eigenvalue 

for ~' = 0 is 

"' = 

3 l. 2 
- f cos e [log(A~sin e) 
2 -1 

1 - 2] d(cos e) 

3 
1 

2 ~ f sin e log(A;isin e) d(cos e) 
-1 

= (log A + t - log 2) (log A + t - log 2) = l • 

In this way, we have shown which of the axially symmetric solutions of the 

BCS equations is possible with a pure P-state interaction. 

(87) 
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VI. CONCLUSIONS 

We. have shown that there is a close connection between the BCS theory of 

superconductivity and the ladder diagrams of perturbation theory, although we 

have not been able to show which graphs of perturbation theory the BCS theory 

takes into account. It seems likely that, if a wider class of diagrams than the 

ladder diagrams were taken into account in the normal state, the critical 

temperature would be different. The Bogoliubov transformation almost solves 

the convergence problem below the critical temperature, but not quite, since 

perturbation theory applied to the reduced, transformed Hamiltonian does not 

give a convergent result if only the terms independent of the extent of the 

system are included. Convergence of the other ladder terms in the perturbation 

series, which involve the residual terms of the Hamiltonian, seems to be a 

useful criterion for the best BCS solution, although nothing general has been 

proved about this. It is a simple criterion, because it involves only linear 

equations. This work reveals more that is new about perturbation theory than 

about superconductivity theory, but may provide a useful additional tool for 

the latter study. 

I should like to thank Dr. A. E. Glassgold and Dr. B. J. Mottelson 

for some useful discussions. 
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APPENDIX A 

The ring diagrams look very like the ladder diagrams, but half the 

lines are reversed, so that there is one particle line and one hole line 

joining two successive vertices, instead of two particle lines or two hole 

lines. We can define a propagator R (q; t- t') nm as the sum of graphs like 

those shown in Fig. 3. They start with the state m + q, m - q at t, and 

end with the states n + q, n- q at t'. Since one line is reversed in 

direction, it is now the relative momentum rather than the total momentum 

which is conserved by the interaction. The propagator now satisfies an 

equation analogous to Eq. (6), which is 

R (q; t- t') = S(n + q, t- t'1 S(n- q, t' - t)B nm nm 

f3 
+ E f S(n + q, t"- t') S(n- q, t'- t")V(q)R (q; t- t")dt", 

p 0 pm 

(Al) 

where we have assumed the matrix element of the interaction to depend only on 

the momentum transfer 2q. We have written R as a function of t- t', 

since this can be proved in the same way as it was proved for L • It 

satisfies the same periodicity condition 

R (q; t - f3) = R (q; t) . nm nm · (A2) 

In the same way as in Sec. II, we write R as a Fourier series, and solve 

Eq. (Al) to get 

f3 E E R (q, ~)V(q) 
mn nm = X(q, ")))[1 + X(q, y)]-l 

' 
(A3) 



where 

x( q, v) = L: 1 r3 
n 2 
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1 
~ [tanh( -2 r3 € ) 

n+q 
- tanh( -

2
1 r3 € · ) ] • 

n-q 

The contribution to Q , excluding the first-order term, is 

1 +CO ~ I r3- L: log[l + X(q, ~)] 
..) =-CO l 

UCRL-8884 

which is very similar to the expression found by Montroll and Ward. 2 

• 

(A4) 

(A5) 
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APPENDIX B 

We outline the proof that ladder diagrams with zero momentum still diverge 

after the transformation (47) has been made. It has been shown9 that only terms 

is paired with another B or Bt do not vanish, 
m m 

and that these terms give a contribution of order unity to the thermodynamic 

potential. We use this fact by introducing, as well as the two-particle states 

m and the two-hole states m , a third kind of state ~ which has no particles 

or holes in it. Equations (50) and (51) show 

V-v 
mn 

V-.v 
mn 

= v* v (C /2Q ) tanh( -2
1 ~ Q ) m n n n n 

* * 1 = v v ( C /2Q ) tanh( -
2 

~ Q ) m n n n 

' 

' 

~,.v = - 2 Re[(v* v c* C /4Q Q) tanh( -2
1 ~ Qm) tanh( -

2
1 ~ Qn)] mn mn mn mn 

(Bl) 

The sum of this and Eq. (52) is still the sum of two separable potentials. The 

propagator of the state ~ is unity, and therefore the matrix Sij(o, 0) is given 

by the limit K = 0 of Eq. (54) together with the additional term 

R .. (o, o) = E tanh2( -2
1 ~ Q ) 

1J m m 

lc v 12 /4Q 
2 

m m /' m 

(B2) 

The matrix here is the same as the second matrix on the right of Eq. (54) in 

the limit K = 0, and one eigenvalue of the sum of Eqs. (54) and (B2) is still 

-~-1 • 
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CAPTION FOR FIGURES 

Some typical ladder diagrams. 

Some diagrams contributing to the ladder propagator 

UCRL-8884 

L (K; t', t). nm 

Some diagrams contributing to the ring propagator R (q; t- t'). nm 
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Fig. 1 
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