
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Infants Track Environmental Volatility to Optimize Their Learning

Permalink
https://escholarship.org/uc/item/68r1k5gh

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
Poli, Francesco
Ghilardi, Tommaso
Bersee, Jana H. M.
et al.

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/68r1k5gh
https://escholarship.org/uc/item/68r1k5gh#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Infants Track Environmental Volatility to Optimize Their Learning 

Francesco Poli (francesco.poli@mrc-cbu.cam.ac.uk) 
University of Cambridge, Herchel Smith Bldg, Robinson Way 

Cambridge, CB2 0SZ UK 

Tommaso Ghilardi (t.ghilardi@bbk.ac.uk) 
Birkbeck University of London, Malet Street 

London WC1E 7HX UK 

Jana Bersee (jana.bersee@student.uva.nl) 
University of Amsterdam, Amsterdam Science Park 904 

Amsterdam, 1098 XH the Netherlands 

Rogier B. Mars (rogier.mars@ndcn.ox.ac.uk) 
University of Oxford, John Radcliffe Hospital 

Oxford, OX3 9DA UK 

Sabine Hunnius (sabine.hunnius@donders.ru.nl) 
Donders Institute, Thomas Van Aquinostraat 4  

Nijmegen, 6525GD the Netherlands 

 

 

Abstract 

Infants’ bodies, brains, and environments are ever-changing. 
Although this continuous transformation is a fundamental 
feature of development, how infants actively adapt and learn 
amidst such volatility is still unknown. To address this, we 
devised a novel learning task in which the location of a reward 
was systematically altered, transitioning from stable to volatile 
periods. Through computational modelling, we inferred from 
the infants’ gaze and pupil data the learning processes that 
enabled them to navigate these changing environments. We 
found that infants’ tonic pupil size reflected trial-by-trial 
changes in the level of environmental volatility. Moreover, 
phasic changes in pupil size when observing the reward 
indicated that infants relied on the information about volatility 
to optimize their learning. This resulted in the successful 
performance of the task, as indicated by the pattern of 
anticipatory looks to the correct reward locations. Together, 
these results identify the active role that infants play in adapting 
to change. 

Keywords: Infancy; Learning; Computational modelling; 
Pupillometry; Volatility.  

Introduction 

As infants develop, their perceptual, motor, and cognitive 

skills undergo a rapid transformation, continuously altering 

their experience of the world (Hunnius, 2022; Westermann et 

al., 2007). For example, after lying supine during the first 

months of their lives, infants gain the ability to sit 

independently, which revolutionises how they interact with 

the environment and learn from it (Karasik et al., 2011). 

Cognitive development is marked by alternating periods of 

stability and volatility, presenting infants with the ubiquitous 

challenge of adapting to change.  

Beyond these internal developmental dynamics, infants are 

also confronted with volatility stemming from external 

events (Walasek et al., 2022). The effects of volatile 

environments on cognitive development have been 

documented extensively (Frankenhuis et al., 2016; Li et al., 

2023). In volatile environments, children display higher 

vigilance (Silvers et al., 2017), are more exploitative (Xu et 

al., 2023), act more impulsively (Peviani et al., 2019), and 

favour instant over delayed rewards (Kidd et al., 2013). 

Recent work shows that volatile environments do not only 

impact immediate behaviour, but also affect brain 

development, changing the brain’s structure and connectivity 

(Carozza et al., 2023) with a cascade of potential 

consequences for later cognitive development and 

psychosocial wellbeing (Davis et al., 2017; Molet et al., 

2016). 

Yet, the active role that infants might play in adapting to 

volatile environments remains unexplored. Both internal and 

external sources of change may require infants to estimate the 

degree of volatility that they are facing, and adjust their 

learning accordingly. Stable environments allow for the 

maintenance of learned behaviours, whereas increased 

volatility necessitates the discontinuation of past behaviours 

in favour of new adaptations. Research in adults has shown 

that humans can estimate environmental volatility to improve 

their learning efficiency (Behrens et al., 2007; Vincent et al., 

2019). Moreover, variations in this ability have been linked 

to multiple mental conditions, to the extent that 

(mis)estimation of volatility has been proposed as a 

transdiagnostic process that broadly affects mental health 

(Sandhu et al., 2023). Hence, understanding how infants 

develop the ability to estimate and adapt to volatility may 

offer critical insights into the early mechanisms that shape 

cognitive resilience and vulnerability (Moscarello & Hartley, 

2017). 
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In this study, we employed a novel experimental paradigm 

and computational modelling approach (Figure 1) to identify 

the early origins of volatility estimation, shedding light on the 

active role played by infants in responding to environmental 

change. First, we demonstrate that infants are capable of 

actively adjusting their behaviour in response to volatility, 

rather than being at the mercy of (and reactive to) external 

events. Second, we investigate the cognitive mechanisms that 

allow infants to achieve this learning. Infants might learn by 

constantly disregarding previous evidence, only valuing 

current events. This would allow them to respond relatively 

well to the ongoing challenges, but at the cost of storing little 

or no information from the past – a phenomenon known as 

catastrophic forgetting (Kirkpatrick et al., 2017; Zosh & 

Feigenson, 2015). Alternatively, infants might learn by 

adjusting their learning rate depending on the level of 

volatility, thus displaying an optimal form of learning. 

Methods 

Participants 

    Infants (N = 61, age = 7.8 months, SD = 0.3, F = 29) were 

recruited via a database with volunteer families. Infants who 

were born prematurely or had visual impairments were 

excluded from the recruitment. During the task, trials were 

presented until the infant lost attention or became fussy. For 

6 infants, data was absent due to fussiness or lack of 

calibration. In addition, infants with 80% or more missing 

trials were excluded (N=17) resulting in a final sample of 38 

infants. Caretakers of participating infants received either 10 

Euros or a children’s book as compensation. The study was 

approved by the faculty’s board of ethics. 

Figure 1: An example trial from the reversal learning task (A). A schematic representation of the volatile Kalman filter (VKF) 

and the dependent measures collected from infants’ gaze and pupil data, where 𝑣0 indicates the initial volatility, 𝜆 is the 

volatility learning rate, 𝑣𝑡 is the volatility of each trial, 𝑝𝑡  is the belief about the target location, and 𝑜𝑡 is the observed outcome 

of the target location (B). The target locations order (red and blue dots) with the VKF’s probability estimates about the target 

location (red line) and the VKF’s volatility estimates (blue line) (C). 

770



Procedure 

    Caretakers were asked not to distract or redirect the 

infant’s attention during the task. Infants were tested in a 

quiet room without daylight. The infant was positioned in 

front of the screen, either directly on the caretaker’s lap or in 

a baby seat at a distance between 60 and 65 centimetres from 

the eye-tracker. After a 5-point calibration, the reversal 

learning task started. During the task, gaze and pupil data 

were collected using a Tobii X300 eye-tracker with Python 

via the tobii_research module. 

Materials 

    Each trial consisted of a fixation bullseye, two cue boxes, 

and a target, which were presented on a screen at 1920x1080 

pixel resolution. All images were 250x250 pixels and were 

presented on a grey background (#656565). The fixation 

bullseye was presented in the centre of the screen and the cues 

and target were presented 300 pixels to the left or the right of 

the centre. The target stimuli consisted of 40 different fantasy 

figures. The cues were created by scrambling the target 

stimuli and reshaping them into a square. This way, the 

luminance of the target and the cue were kept constant.  

Experimental Paradigm 

As depicted in Figure 1A, all trials started with the fixation 

bullseye (3000 ms ± 1000 ms). Then, the cues were presented 

on the left and right side at the same distance from the center 

of the screen (2000 ms ± 325 ms). At the start of the cue 

presentation, a sound was played to signal to the infants the 

start of a new trial. During the cue presentation, the cues 

rotated with an angle of 20 degrees and an accompanying 

sound was played to attract the infants’ attention. Afterwards, 

a target stimulus appeared in place of one of the two cues for 

750 ms. The target was also accompanied by a sound. After 

the target presentation, the same cues were presented 

statically for 2250 ms. 

Four different sequences were generated and they were 

presented to participants in a pseudo-randomized order. An 

example of a sequence of trials can be seen in Figure 1C. The 

target appeared in a high-likelihood location approximately 

90% of the times, and in a low-likelihood location the 

remaining 10% of the times. The high-likelihood location 

(e.g., left) remained stable for the initial 18 trials. Then, it 

changed for 9 trials (e.g., right), and again for 9 more trials 

(e.g., left). Afterwards, the high-likelihood location returned 

to stable for 18 trials (e.g., right). This stable-changing 

pattern allowed us to introduce variation in volatility levels, 

with stable periods being less volatile, and changing periods 

being more volatile. The stable-changing pattern was 

repeated until infants stopped looking at the screen for more 

than one minute or became fussy. The task was programmed 

in Python 3.6 using PsychoPy software (Peirce et al., 2019).  

Measures 

From the pupillometry data, we extracted a measure of 

tonic pupil size during the fixation period (i.e., before the trial 

started) and a measure of phasic pupil size during the target 

presentation. Phasic pupil size was baseline-corrected using 

the 500ms preceding the target stimulus presentation. In 

research with adults, tonic pupil size has been shown to 

reflect subjective uncertainty (Muller et al., 2019), while 

phasic pupil size tracks the amount of information contained 

in a stimulus (Zénon, 2019) and whether such information is 

used to improve future predictions (O’Reilly et al., 2013).  

From the gaze data, we extracted the proportion of 

anticipatory looking to each cue location before the target 

appeared. This measure is widely used as an index of infants’ 

expectations (Téglás & Bonatti, 2016) and it was used here 

to assess whether infants correctly predicted the most likely 

target location. Specifically, the proportion of anticipatory 

looking indexed the looking time spent over the left cue, 

divided by the overall looking time for both left and right cue. 

We expect this value to be high when infants are anticipating 

that the target is on the left, and low when they expect it to be 

on the right. 

Computational modelling 

A binomial volatile Kalman filter (Piray & Daw, 2020) was 

employed to track trial-by-trial changes in volatility (Figure 

1B). The model learns the most likely target location via a 

trial-by-trial updating rule: 

𝑝𝑡 = 𝑝𝑡−1 + 𝛼𝑡(𝑜𝑡 − 𝑠(𝑝𝑡−1)) 
where the probability of where the target will appear (i.e., left 

or right side) is updated depending on the previous belief 

𝑝𝑡−1, adjusted by the prediction error (i.e., the difference 

between the actual outcome 𝑜𝑡 and the previous belief). The 

previous belief is mapped to the unit range (i.e., [0,1]) via a 

sigmoid function s. The prediction error is weighted by the 

learning rate 𝛼𝑡, which is computed as follows: 

𝛼𝑡 = √𝑤𝑡 + 𝑣𝑡 

where 𝑤𝑡  is the variance of the probability 𝑝𝑡 , which can be 

seen as first-order uncertainty (i.e., uncertainty in the 

outcome), while 𝑣𝑡 is the volatility of the environment, which 

can be seen as second-order uncertainty (i.e., uncertainty in 

whether the environment will change). Volatility is updated 

on every trial with its own update rule: 

𝑣𝑡 = 𝑣𝑡−1 + 𝜆(𝛥𝑣𝑡) 
where 𝜆 is the learning rate that determines how much 

volatility prediction errors 𝛥𝑣𝑡  change previous expectations 

about volatility 𝑣𝑡−1 and was introduced in the model as a 

free parameter. The value of 𝑣𝑡 at the start of the task (i.e., 

when t = 0) was introduced as an additional free parameter 

𝑣0. The free parameters 𝜆 and 𝑣0 were fitted based on the 

tonic pupil size during the fixation period, such that the 

relation between volatility and tonic pupil size was 

maximized with a grid-search algorithm: 

𝑃𝑢𝑝𝑖𝑙𝑡 = 𝛽0 + 𝛽1𝑣𝑡 + 𝛽2𝑡 + 𝑓(𝑡𝑖𝑚𝑒, 𝑖𝑛𝑓𝑎𝑛𝑡) + 𝜀 

where tonic pupil size on each trial was predicted by volatility 

estimates 𝑣𝑡, trial number 𝑡 (which allowed us to control for 

changes in pupil dilation over time), a smoothing function 

that captured constant fluctuations across time within the trial 

(in milliseconds) and across infants, as well as noise 𝜀.  
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Results 

Infants track environmental volatility  
    The model estimates of environmental volatility 

significantly correlated with infants’ tonic pupil size (t = 

139.17, β = 0.23, SE = 0.001, p < .001), indicating that infants 

were successfully tracking environmental volatility (Fig. 

2A). Specifically, the model parameters that best predicted 

infants’ phasic pupil size were λ (learning rate) = .30 and 𝒗𝟎 

(initial volatility) = .01. These values indicate that infants 

started the task expecting a stable environment (i.e., low 

initial volatility), and successfully adapted their beliefs about 

environmental volatility as the environment changed, as 

indicated by levels of λ different from zero. 

    The model predictions about the most likely target location 

significantly correlated with infants’ anticipatory looking (t = 

3.78, β = 1.68, SE = 0.44, p < .001) (Fig. 2B). This indicates 

that, by tracking environmental volatility, infants flexibly 

adjusted their predictions about where the target was most 

likely to appear. Crucially, infants successfully predicted the 

target locations not only in stable but also in volatile 

environments. This demonstrates that infants were not simply 

more uncertain or confused when volatility was high, but 

were instrumentally using the information about 

environmental volatility to optimize their learning. 

 

Infants optimize their learning 

   To shed light on the mechanisms that underlie the 

optimisation of learning in changing environments, we 

analysed the relation between infants’ phasic pupil size and 

the trial-by-trial prediction errors estimated by the VKF 

model. In volatile environments, high prediction errors likely 

signal a change in the observed regularities, and should thus 

have a large impact on the observer’s existing expectations. 

Conversely, in stable environments, high prediction errors 

are likely to be isolated instances that should be disregarded. 

    Consistent with these predictions, the interaction between 

volatility and the magnitude of the prediction errors 

significantly modulated phasic pupil size (t = 14.71, β = 0.10, 

SE = 0.006, p < .001). As depicted in Fig. 3, when the 

environment was more volatile, greater prediction errors led 

to a greater phasic pupil response (t = 10.01, β = 0.3, SE = 

0.003, p < .001). This indicates that their importance was up-

weighted. Conversely, when the environment was more 

stable, greater prediction errors led to a reduction in phasic 

pupil size (t = -16.20, β = -0.05, SE = 0.003, p < .001). This 

indicates that their importance was down-weighted. Hence, 

infants optimised their learning by flexibly weighting the 

impact of the prediction errors, depending on the volatility of 

the current environment. 

 

Figure 2: Infants’ tonic pupil size correlated with the VKF model’s estimates of volatility (A). Infants’ proportion of 

anticipatory looking correlated with the VKF model’s predictions about the target location (B). Predictive means (y-axes) were 

obtained generating trial-by-trial estimates of pupil size and proportion of anticipatory looking from the beta coefficients of the 

fitted regression models. 
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Discussion 

While previous work has addressed the impact of volatile 

environments on cognitive development, the active role that 

infants play in responding to environmental change is 

unexplored due to a lack of precise behavioral or 

physiological measures that probe into infants’ learning 

abilities, as well as a lack of computational methods that can 

adapt to the higher levels of noise that are typical of 

developmental populations.  

Here, we used a novel experimental paradigm that 

systematically manipulated volatility levels, and we 

quantified these trial-by-trial changes in volatility with 

computational modelling. By relating infants’ tonic pupil size 

to the model’s estimates of volatility, we showed that infants 

track changes in volatility, with their tonic pupil size reducing 

when the environment is more stable and increasing when the 

environment is more volatile. 

As indexed by phasic pupil size in response to the target 

presentation, tracking volatility allowed infants to flexibly 

weight the relevance of incoming prediction errors, such that 

prediction errors were up-weighted when the environment 

was volatile and environmental change was likely, but down-

weighted when the environment was stable and change was 

unlikely. In turn, this adaptive learning led to correct 

predictions of the target location both in stable and volatile 

periods, as indicated by the infants’ anticipatory looking to 

the cue locations that were more likely to display the target. 

This pattern of results indicates that infants are not only 

sensitive to changes in environmental volatility, but they 

track and use this information about volatility to optimize 

their learning. As such, these findings promote an outlook on 

cognitive development where the infants and their adaptive 

skills play an active role in shaping the effects of the 

environment on their developing minds.  

In adults, abnormalities in the ability to adapt to change 

have been linked to multiple mental conditions, to the extent 

that (mis)estimation of volatility has been proposed as a 

transdiagnostic process that broadly affects mental health 

(Sandhu et al., 2023). Revealing how infants estimate and 

adapt to volatility offers critical insights into the early 

mechanisms that shape vulnerability and resilience 

(Moscarello & Hartley, 2017). First, the stability of the 

environment (and lack of thereof) might affect the learning 

strategies that infants acquire: Infants who grew up in volatile 

environments might be able to respond promptly when the 

world is unpredictable, but struggle in decreasing their 

learning rate when stability is (re)introduced. Conversely, 

infants who only experienced stable environments might lack 

adaptiveness when new changes arise. Given the active role 

played by infants in adapting to change, cognitive 

development might not only depend on the early exposure to 

different kinds of environments, but also on the infants’ own 

ability to adapt to them. From a simple change in routines to 

more fundamental changes in caregivers or social dynamics, 

it is the infant’s ability to adapt to change that will ultimately 

shape their experience. Rigid infants might struggle even in 

more stable environments, while adaptive infants might be 

able to better tackle volatile situations. Hence, it is likely to 

be the combination of early experiences and the infants’ 

Figure 3: Raw data for phasic pupil size (baseline corrected) at the moment of the target presentation, divided in four groups 

depending on volatility (high or low) and the magnitude of the prediction error (big or small) (A). Predictive means of phasic 

pupil size as a function of environmental volatility and the magnitude of the prediction error (B). Phasic pupil size was 

significantly modulated by both volatility and prediction error, with greater levels of phasic pupil size for small prediction 

errors in more stable environments and for high prediction errors in more volatile environments. 
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adaptive learning abilities that together shape later 

psychosocial wellbeing. Research on individual differences 

in infants’ volatility estimation – possibly across a variety of 

environments – is needed to ultimately understand how early 

variability in volatility (mis)estimation influences later 

cognitive development and psychological wellbeing. 
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