
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Security and Privacy Issues in Content-Centric Networking

Permalink
https://escholarship.org/uc/item/68q6z2w6

Author
Ghali, Cesar

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/68q6z2w6
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Security and Privacy Issues in Content-Centric Networking

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Networked Systems

by

Cesar Ghali

Dissertation Committee:
Professor Gene Tsudik, Chair

Professor Marco Levorato
Doctor Ersin Uzun

2016

Portion of Chapter 3 c© 2013 IEEE
Portion of Chapter 4 c© 2014 Internet Society

Portion of Chapter 4 c© 2014 ACM CCR
Chapter 6 c© 2015 IEEE
Chapter 7 c© 2015 IEEE

All other materials c© 2016 Cesar Ghali

DEDICATION

To Elie ...
May your soul rest in peace

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vii

LIST OF TABLES ix

LIST OF ALGORITHMS x

ACKNOWLEDGMENTS xi

CURRICULUM VITAE xiii

ABSTRACT OF THE DISSERTATION xvi

1 Introduction 1
1.1 Communication History . 2
1.2 The Internet of Today . 3
1.3 The Internet of the Future . 6

1.3.1 MobilityFirst . 7
1.3.2 eXpressive Internet Architecture . 11
1.3.3 NEBULA . 17

1.4 Information-Centric Networking . 22
1.4.1 Data-Oriented (and Beyond) Network Architecture 23
1.4.2 Network of Information . 26

2 Content-Centric Networking 30
2.1 CCN Elements . 30

2.1.1 CCN Roles . 31
2.1.2 Content Objects . 31
2.1.3 Interest Messages . 32

2.2 Node Components . 34
2.3 Content Matching . 35
2.4 Routing and Forwarding . 36
2.5 CCN Security and Privacy . 37

2.5.1 Trust . 37
2.5.2 Authentication . 38
2.5.3 Accounting . 39

iii

2.5.4 Data Confidentiality . 40
2.5.5 Traffic Flow Confidentiality . 40
2.5.6 Privacy and Anonymity . 41

2.6 Attacks on CCN . 42
2.6.1 Interest Flooding . 42
2.6.2 Cache Privacy . 43
2.6.3 Content Poisoning . 44
2.6.4 Cache Pollution . 44

3 Cache Privacy 45
3.1 Cache Privacy Attacks . 47

3.1.1 Consumer Privacy in LAN Environment 48
3.1.2 Consumer Privacy in WAN Environment 48
3.1.3 Consumer Privacy in Local Environment 49
3.1.4 Producer Privacy in WAN Environment 49

3.2 System, Adversary and Privacy Model . 51
3.2.1 System Model . 51
3.2.2 Adversary Model . 52
3.2.3 Privacy Model . 53

3.3 Which Content is Private? . 55
3.3.1 Router-Driven . 55
3.3.2 Consumer-Driven . 56
3.3.3 Producer-Driven . 57
3.3.4 Collaborative Privacy Decisions . 57

3.4 Countermeasures . 58
3.4.1 Interactive Traffic . 58
3.4.2 Content Distribution Traffic . 60
3.4.3 Artificial Delay Properties . 61
3.4.4 Artificial Delay Exceptions . 63

3.5 Handling Distributed Adversaries . 65
3.5.1 Distributed Timing Attack . 66
3.5.2 Mitigating Distributed Adversaries 66

3.6 Improving Privacy-Utility Trade-Off . 67
3.6.1 A Non-Private Näıve Approach . 68
3.6.2 Random-Cache . 68
3.6.3 Comparison of Proposed Schemes . 75
3.6.4 Addressing Content Correlation . 75

3.7 Experimental Evaluation . 77
3.8 Bypassing Cache Delays . 79

4 Network-Layer Trust 82
4.1 Content Poisoning . 84

4.1.1 Injecting Fake Content . 86
4.1.2 Problem Definition . 87
4.1.3 Goals . 88

iv

4.2 Interest-Key Binding Rule . 89
4.2.1 IKB Implications for Producers and Routers 90
4.2.2 Security Arguments . 92
4.2.3 Optimization . 96

4.3 Self-Certifying Names . 97
4.4 Content Ranking . 99

4.4.1 Number of Exclusions . 101
4.4.2 Time Distribution of Exclusions . 102
4.4.3 Excluding Interfaces Ratio . 103
4.4.4 Analysis . 104

4.5 Experiments and Results . 107
4.5.1 Tree-based Topology . 108
4.5.2 DFN Topology . 109
4.5.3 AT&T Topology . 112
4.5.4 Performance Analysis . 113

4.6 Content Trust in Practice . 114
4.6.1 Traffic Types . 114
4.6.2 Network Topologies . 116

5 Accounting 118
5.1 Accounting in CCN . 119

5.1.1 Counting Cache Hits vs. Content Requests 120
5.1.2 Accounting via Content Access Control 122
5.1.3 Accounting via Push Interests . 123
5.1.4 pInt Format and Features . 125
5.1.5 Accounting Correctness . 128

5.2 Security Considerations . 129
5.2.1 Adversary Model . 129
5.2.2 Mitigating Forgeries and Replay Attacks 130
5.2.3 Consumer Anonymity . 132

5.3 Individual Accounting in Practice . 134
5.3.1 Recommendations . 136

5.4 Analysis and Experimental Assessment . 137
5.4.1 Message Count Overhead . 139
5.4.2 Router Overhead . 141

6 Secure Fragmentation 143
6.1 Fragmentation Synopsis . 145
6.2 Fragmentation in CCN . 146

6.2.1 Fragmentation of Interests . 147
6.2.2 Fragmentation of Content . 148
6.2.3 Considering Intermediate Reassembly 152
6.2.4 Fragment Delivery Order . 156
6.2.5 Incremental or Deferred Fragment Caching? 156

6.3 Secure Fragmentation . 157

v

6.3.1 Delayed Authentication . 158
6.3.2 Hash Functions . 159
6.3.3 FIGOA Description . 161
6.3.4 Examples . 163
6.3.5 Content Authentication . 166
6.3.6 Security Analysis . 166

6.4 Implementation . 168
6.5 Evaluation . 170

7 Negative Acknowledgments 173
7.1 Content-NACKs . 175

7.1.1 Benefits . 176
7.1.2 Security Issues . 177
7.1.3 Securing cNACKs . 178
7.1.4 Secure cNACKs: a Blessing or a Curse? 180
7.1.5 Experimenting with Secure cNACKs 181

7.2 Forwarding-NACKs . 184
7.2.1 Securing fNACKs . 185
7.2.2 Experimenting with Secure fNACKs 187

7.3 Mitigating Producer-Focused DoS Attacks 187

8 Related Work 192
8.1 Security and Privacy of FIA Projects . 192

8.1.1 Trust . 192
8.1.2 Authentication and Integrity . 193
8.1.3 Authorization and Access Control . 195
8.1.4 Privacy and Anonymity . 195

8.2 DoS and DDoS Attacks on FIA Projects . 196
8.2.1 Bandwidth Depletion Attacks . 196
8.2.2 Routers Resource Exhaustion . 197
8.2.3 Cache-Related Attacks . 198

8.3 CCN Cache Privacy . 199
8.4 CCN Network-Layer Trust . 201

8.4.1 Cache Poisoning . 202
8.5 Accounting in CCN . 204
8.6 Secure Fragmentation in CCN . 205

8.6.1 Secure Fragmentation . 205
8.6.2 Fragmentation in ICN . 207

8.7 Negative Acknowledgments in CCN . 208

9 Conclusions and Follow-On Work 210

Bibliography 213

Glossary 228

vi

LIST OF FIGURES

Page

1.1 XIP addressing styles [86] . 13
1.2 XIA router diagram . 14
1.3 ICING architecture . 18
1.4 Serval protocol stack [149] . 21
1.5 High-level view of NEBULA components integration 22
1.6 Find primitive forwarding in DONA . 25

3.1 Cache privacy attack experimental setup . 48
3.2 Consumer privacy in WAN environment topology 49
3.3 Consumer privacy in local environment topology 49
3.4 Timing attack results . 50
3.5 Producer privacy in WAN environment topology 51
3.6 Artificial delay length . 62
3.7 Uniform-Random-Cache vs. Exponential-Random-Cache 76
3.8 Cache hit rates: experimental evaluation results 78

4.1 Content object ranking comparison . 106
4.2 Tree-based topology - orange: consumer, blue: router, green: producer, red:

Adv . 107
4.3 Tree-based topology with various malicious consumer rates (b-NDN: basic

NDN with LRU cache replacement, m-NDN: modified NDN with routers im-
plementing our ranking algorithm, MCP: percentage of malicious nodes in
consumer population) . 109

4.4 DFN topology - each edge router above is connected to 5 NDN consumers . 110
4.5 DFN topology results with different rates of pre-populated fake content ob-

jects (b-NDN: basic NDN with LRU cache replacement, m-NDN: modified
NDN with routers implementing our ranking algorithm, FCP: percentage of
pre-populated fake content objects) . 110

4.6 DFN topology results . 111
4.7 AT&T topology - each consumer above represents 10 NDN consumers 112
4.8 AT&T topology results with different rates of pre-populated fake content ob-

jects (b-NDN: basic NDN with LRU cache replacement, m-NDN: modified
NDN with routers implementing our ranking algorithm, FCP: percentage of
pre-populated fake content objects) . 112

4.9 AT&T topology results . 113

vii

4.10 A simplified diagram of the Internet . 116

5.1 Cache hits vs. content requests . 121
5.2 Network overhead imposed by forwarding pInt messages 138
5.3 pInt-based accounting overhead in networks with path topologies 140
5.4 pInt-based accounting overhead in networks with tree topologies 141
5.5 pInt messages generation overhead at routers 142

6.1 Byte count overhead for small signed segments 150
6.2 Intermediate re-fragmentation simple topology 151
6.3 Latency with varying fragment counts per object 155
6.4 Implementing Merkle-Damg̊ard construction to generate content fragments . 165
6.5 End-to-end latency for retrieval of various sizes of content. IP represents

the unmodified version of CCNx, while FIGOA represents modified version
of CCNx. Values above bars represent the increased overhead of FIGOA
fragmentation as compared to IP fragmentation 171

6.6 End-to-end latency of various MTU values at intermediate routers for content
of size 4KB. IP represents the unmodified version of CCNx, while FIGOA rep-
resents modified version of CCNx. Values above bars represent the increased
overhead of FIGOA fragmentation as compared to IP fragmentation 171

7.1 cNACK simulation topology . 182
7.2 cNACKs experiment results . 183
7.3 fNACK generation and forwarding state diagrams (red/upper case: events,

green/lower case: actions) . 185
7.4 fNACKs experiment results . 186
7.5 Bloom filter false positive probability . 190

viii

LIST OF TABLES

Page

1.1 Differences between circuit switching and packet switching [2] 4

4.1 Content objects parameters . 105
4.2 ndnSIM topologies parameters . 108

6.1 Fragmentation terminology . 147
6.2 Latency due to per-hop content reassembly 154
6.3 Fragmentation notation . 161

ix

LIST OF ALGORITHMS

Page
1 Privacy-Aware-Forwarding . 61
2 Random-Caching . 69
3 pInt-Generation . 125
4 Fragment-Content . 162
5 Refragment-Fragment . 162
6 Verify-Fragment . 164

x

ACKNOWLEDGMENTS

Although my name is the only one that appears on this dissertation, I would not have made
it so far without the guidance and support of many great people.

My deepest gratitude goes to Gene Tsudik. I can not find the words to thank you enough
for always being there during my Ph.D. years. Gene taught me how to do real research, how
to always question and better shape my ideas, and how to significantly improve my writing
skills. He always knew when to provide the right feedback and at the right time. Gene,
thank you for being a great adviser and an amazing teacher, I could not have achieved all
of this without your continuous guidance.

I would also like to thank my defense committee members, Gene Tsudik, Marco Levorato
and Ersin Uzun, for their support, and for giving me a great defense experience with all the
constructive feedback and questions. Thank you very much for serving on my committee.

Special thanks goes to Ersin Uzun, a great mentor, who provided me with the feedback I
needed to improve my work. Ersin always made the time for meetings and discussions even
when he was on vacations or during holidays, like Thanksgiving dinner. Thank you very
much for all your guidance and for flying to Irvine to serve on my advancement and defense
committee.

I am also very grateful to my parents who were always there with me in every step I took
and constantly encouraged me towards higher education. Thank you very much for your
unlimited love and support.

I would like to express my gratitude to Michelle Deville, my best friend, my guardian angel,
and my love. You continuously encouraged and supported me to overcome many crisis
situations. Thank you very much for always being there for me!

Special thanks goes to all the people I worked with during my Ph.D. (chronological order):
Paolo Gasti, Gergely Acs, Mauro Conti, Ersin Uzun, Alberto Compagno, Marc Schlosberg,
and Moreno Ambrosin. This dissertation would not have seen the light without your great
contributions.

My years at UC Irvine would not have been as exciting without all members of the SPROUT
research group (chronological order): Paolo Gasti, Kasper Rasmussen, Mishari Almishari,
Quan Nguyen, Naveen Nathan, Sky Faber, Gergely Acs, Mauro Conti, Filipe Beato, Ekin
Oguz, Marc Roeschlin, Ronald Petrlic, Jaroslav Sedenka, Michael Steiner, Tyler Kaczmarek,
Christopher Wood, Alberto Compagno, Luca Ferretti, Tatiana Bradley, Norrathep Rat-
tanavipanon, and Xavier Carpent. Special thanks to Christopher Wood, who co-authored
many of my recent papers. Thank you for being a great colleague and friend. Many thanks
goes to Sky and Ekin (amazing friends and roommates) for all the long nights we spent
working on different projects or even playing Super Mario.

xi

This dissertation is the outcome of several years of research at UC Irvine. I was supported
during these years by fellowships from the Bren School of Information and Computer Science,
and the National Science Foundation (NSF) award: “CNS-1040802: FIA: Collaborative
Research: Named Data Networking (NDN)”.

xii

CURRICULUM VITAE

Cesar Ghali

EDUCATION

Doctor of Philosophy in Networked Systems 2016
University of California, Irvine Irvine, California

Master of Science in Networked Systems 2016
University of California, Irvine Irvine, California

Master of Engineering in Electrical and Computer Engineering 2010
American University of Beirut Beirut, Lebanon

Bachelor of Engineering in Electrical Engineering 2007
University of Aleppo Aleppo, Syria

RESEARCH EXPERIENCE

Graduate Research Assistant 2012–2016
University of California, Irvine Irvine, California

Research Assistant 2010
Deutsches Zentrum für Luft- und Raumfahr Oberpfaffenhofen, Germany

Graduate Research Assistant 2008–2012
American University of Beirut Beirut, Lebanon

TEACHING EXPERIENCE

TA for Network & Distributed Systems Security (ICS 203) Winter 2015
University of California, Irvine Irvine, California

TA for Network & Distributed Systems Security (ICS 203) Winter 2014
University of California, Irvine Irvine, California

TA for Computer & Network Security (ICS 134) Spring 2013
University of California, Irvine Irvine, California

xiii

PAPERS IN SUBMISSION OR UNDER REVIEW

Privacy-Aware Caching in Information-Centric Net-
working

2016

IEEE Transactions on Dependable and Secure Computing (TDSC)

Network Names in Content-Centric Networking 2016
ACM Conference on Information Centric Networking (ICN’16)

REFEREED JOURNAL PUBLICATIONS

G-Route: An Energy-Aware Service Routing Protocol
for Green Cloud Computing

2015

Cluster Computing

Network-Layer Trust in Named-Data Networking 2014
ACM Computer Communication Review (CCR)

ServBGP: BGP-Inspired Autonomic Service Routing
for Multi-Provider Collaborative Architectures in The
Cloud

2014

Future Generation Computer Systems (FGCS)

REFEREED BOOK CHAPTERS

Reputation as a Service: A System for Ranking Service
Providers in Cloud Systems

2014

Security, Privacy and Trust in Cloud Systems

REFEREED CONFERENCE PUBLICATIONS

BEAD: Best Effort Autonomous Deletion in Content-
Centric Networking

2016

IFIP Networking Conference (NETWORKING’16)

Practical Accounting in Content-Centric Networking 2016
IEEE/IFIP Network Operations and Management Symposium (NOMS’16)

Interest-Based Access Control for Information Centric
Networks

2015

ACM Conference on Information Centric Networking (ICN’15)

Secure Fragmentation for Content-Centric Networks 2015
IEEE International Symposium on Network Computing and Applications (NCA’15)

xiv

To NACK or not to NACK? Negative Acknowledg-
ments in Information-Centric Networking

2015

International Conference on Computer Communications and Networks (ICCCN’15)

Needle in a Haystack: Mitigating Content Poisoning in
Named-Data Networking

2014

NDSS Workshop on Security of Emerging Networking Technologies (SEND’14)

Cache Privacy in Named-Data Networking 2013
International Conference on Distributed Computing Systems (ICDCS’13)

Accountable Energy Monitoring for Green Service
Routing in the Cloud

2013

International Conference on Communications and Information Technology (ICCIT’13)

xv

ABSTRACT

Security and Privacy Issues in Content-Centric Networking

By

Cesar Ghali

Doctor of Philosophy in Networked Systems

University of California, Irvine, 2016

Professor Gene Tsudik, Chair

Content-Centric Networking (CCN) is a networking paradigm alternative to today’s IP-based

Internet Architecture. One fundamental goal of CCN is to include security and privacy as

part of its design. CCN adheres to a simple request and response protocol. Consumers issue

interests for named content objects. Routers forward these interests toward content produc-

ers. Once the desired content is located, it is returned to the consumer along the same path,

in reverse, of corresponding interests. CCN routers can unilaterally cache content to reduce

end-to-end latency and bandwidth consumption for future duplicate interests. In this disser-

tation, we study several security and privacy issues introduced by opportunistic caching in

CCN. Specifically, we investigate the influence of caching on consumer and producer privacy,

content poisoning attacks, and accounting. For each issue, we describe its root causes, dis-

cuss potential countermeasures, and present some experimental results. We conclude that,

despite its networking benefits, router caching triggers some important security and privacy

problems.

xvi

Chapter 1

Introduction

In this dissertation, we focus on security and privacy issues in Content-Centric Networking

(CCN) – a prominent instance of the Information-Centric Networking paradigm. We first

overview Internet evolution. Then, we present the motivation and goals of CCN and describe

how it differs from today’s Internet architecture and why it might become a potential re-

placement. Next, we introduce several security and privacy issues in CCN that are prompted

by router caching and propose countermeasures. The contributions are:

• We show attacks on consumer privacy that rely on cached content in routers, and

propose countermeasures based on delaying cache-hit responses to mimic cache-miss

scenarios. My contribution involved implementing cache privacy attacks and proposed

countermeasures as well as running experiments and analyzing results.

• We identify root causes of content poisoning attacks and propose trust management

rules at the network layer to overcome such attacks. My contribution consisted of

identifying content poisoning causes and developing proposed countermeasures.

• We postulate requirements and design a framework for practical and secure accounting

for cache hits and content requests. My role involved studying different accounting

1

types and requirements in CCN as well as implementing proposed countermeasure and

analyzing results.

• We propose a secure cut-through content fragmentation scheme that provides integrity

guarantees and optional authentication. My role involved identifying requirements for

content fragmentation, implementing the proposed fragmentation scheme (FIGOA),

and evaluating results.

• We discuss implications of Negative Acknowledgments (NACKs) and show that sup-

porting secure NACKs at the network-layer opens the door for DoS attacks against

content producers. My activities included studying requirements of securing NACKs

as well as demonstrating, through simulations and experiments, that producer-based

DoS attacks are possible in practice.

1.1 Communication History

Communication is part of natural human behavior that enables transfer of information in

a one-to-one, one-to-many, or many-to-many fashion. Inter-human communication started

with oral messages. This required close physical proximity in order to convey information,

thus potentially necessitating long-distance travel and/or indirect communication (i.e., via

intermediaries). To overcome the limitations of oral communication, pigeons, drums and

smoke signals were used by many civilizations. This defined early stages of telecommunica-

tion.

It was not until early 19th century that electrical telecommunication systems appeared. The

electrical telegraph was a revolutionary invention compared to its electromagnetic counter-

part [49]. It enabled, later in the same century, installation of the first successful transatlantic

cable, making telecommunication between Europe and North America possible.

2

Audio telecommunication became possible when the telephone was invented in late 19th

century by Alexander Graham Bell [81]. This opened the door for the first commercial

audio telecommunication services across the Atlantic. In the longer run, this resulted in the

deployment of telephone networks managed by human operators.

Early research in wireless communication [75] laid the ground for radio systems – the first de-

vices capable of wireless transmission of human voice. This allowed communication systems

to be deployed in more ad-hoc environments such as unpopulated or inhospitable terrains

and in war zones. However, society’s ambition did not stop at simply transmitting human

voices over a wireless channel. In the first half of the 20th century, the invention of television

allowed transmission of images and videos over the same channels.

1.2 The Internet of Today

Circuit-switched networking is based on establishing a dedicated channel between two parties

[107]. This technology was initially used to transmit simple numerical data and is still used

in today’s telephone networks. However, the scalability of circuit-switched networking was

a challenge when it came to transmitting data over the network. In late 1960s and early

1970s, packet-switched networking was, at the time, considered to be more suitable for data

transmission. Data is divided into packets transmitted between computers over a medium

shared with other computers. Table 1.1 summarizes circuit and packet switching.

ARPANET, the Advanced Research Projects Agency Network funded by the Department of

Defense of the United States [42], was the first implementation of packet-switched networking

in late 1960s. In its early stages, ARPANET supported only a few simple applications. The

first was email [198, 162]. Email messages constituted the majority of ARPANET traffic in

early 1970s.

3

Table 1.1: Differences between circuit switching and packet switching [2]

Circuit Switching Packet Switching

Path Dedicated Not dedicated
Setup Per connection Per packet
Delays Setup delays Packet transmission and queuing delays

Overload Block call setup Increase packet delays and loss rate
Overhead No additional headers after setup Each packet has its own header

Throughput Fixed Dynamic

In 1981, two RFCs (Request for Comments), the Internet Protocol v4 (IPv4) [166] and

Transmission Control Protocol (TCP) [165], were published. Together, they represented

the TCP/IP protocol suite that forms the backbone of today’s Internet. The IP protocol

is responsible for routing packets, called datagrams, from source to destination host. (We

use the terms IP packets and IP datagrams interchangeably.) From the IP perspective,

the Internet is viewed as a collection of interconnected networks and Autonomous Systems

(AS-s).

Every network entity, e.g., host or router, is identified by an IP address.1 Each IP address

consists of two parts: (1) the network prefix, and (2) the host identifier. This design allows

the IP addressing scheme to scale with the number of network hosts.

IP datagrams contain source and destination addresses along with other fields that convey

control information. Actual data is carried in a payload field of the datagram. When a

packet is received by a router, the latter searches its forwarding table to identify the next

hop where the packet should be forwarded. Forwarding tables contain a list of destination

network prefixes along with the router’s outgoing interfaces and next hop IP addresses.

This information allows routers to perform longest-prefix-matching on packet destination

addresses to identify next hops. If a packet can not be forwarded, it is dropped and an error

message is generated according to the Internet Control Message Protocol (ICMP) [164].2

1Usually IP addresses are assigned to entity interfaces.
2The ICMP protocol is also used for sending control messages, such as routing redirect for networks and

hosts.

4

One important feature provided by IPv4 is fragmentation. Whenever the size of an IP packet

is larger than the forwarding interface’s Maximum Transmission Unit (MTU) [47], the packet

must be divided into smaller chunks, called fragments. Destination hosts must reassemble

fragments to recover the original packet. Other network entities, such as Network Address

Translation Tables (NAT) [85, 185]3 and in-network firewalls might also assemble fragments.

Since IP’s longevity and popularity were not foreseen, security and privacy were not sup-

ported by design. Therefore, IPsec [177] was designed to provide data-origin authentication,

integrity, and confidentiality of IP datagrams. The first two are attained via Authentica-

tion Header (AH) protocol [99], while Encapsulating Security Payload (ESP) protocol [100]

provides all three security features. IPsec supports two modes of operation:

• Transport mode: provides end-to-end communication, e.g., client-server communica-

tions. Only packet payloads are encrypted and authenticated in transport mode.

Transport and application layers of packets are secured by a hash, thus, they can not

be modified, e.g., using NAT. NAT-Traversal (NAT-T) [101] is developed to overcome

this issue.

• Tunnel mode: is usually used between gateways to provide a secure connection between

networks, e.g., different sites of the same organization. Furthermore, tunnel mode is

also used to provide secure host-to-gateway communications. IP packets (as a whole)

are encrypted and then encapsulated into new IP packets. One application of tunnel

mode is Virtual Private Networks (VPN) [126].

IPv6 [62] is a newer version of IP developed to overcome some limitations of IPv4. IPv6

has 128-bit addresses. This significantly increases its address space. However, IPv6 does not

support in-network fragmentation. A host that wishes to send an IP datagram must first find

3NAT operating on TCP and UDP packets (e.g., fragmented FTP control packets [186]) needs to reassem-
ble IP fragments in order to correctly calculate higher-level checksums and perform the required translation.

5

the smallest MTU on the path to the destination and fragment the said datagram accordingly.

Therefore, a Path MTU Discovery protocol [131] was designed and implemented. Moreover,

the IPv6 design takes into consideration security and privacy by implementing some features

similar to IPsec, such as AH and ESP, as extension headers [7].

TCP complements IP by providing reliable, ordered communication with flow control, con-

gestion control, and error-free delivery. Arbitrary length application data is split into mul-

tiple fixed-sized TCP packets that are encapsulated into IP datagrams. Each TCP packet

includes both the source and destination port numbers. Thus, the combination of source

and destination IP addresses and port numbers identify a unique flow. Moreover, each TCP

packet in a specific flow is assigned a unique sequence number to allow the destination to

(1) sort received packets, in case of out-of-order delivery, and (2) request missing packets

due to network loss. In addition, TCP implements flow control algorithms that maximize

bandwidth utilization and avoid network congestion.

For the rest of this dissertation, we use the term IP to refer to both IPv4 and IPv6, unless

otherwise specified.

1.3 The Internet of the Future

The original Internet intended to support a few thousand connected users, mainly in North

America, accessing shared resources using terminals. Nowadays, the Internet connects over

3 billion users with a variety of applications ranging from simple web browsing to video

conferencing and content distribution. These extreme changes in Internet usage highlighted

limitations of the current IP-based architecture and prompted research into next-generation

architectures.

6

To this end, the National Science Foundation (NSF) launched the Future Internet Architec-

ture (FIA) program [16] in 2010. The FIA program originally included four research efforts

to fulfill the project goals: Named-Data Networking (NDN) [206], MobilityFirst [178], eX-

pressive Internet Architecture (XIA) [86], and Nebula [27].

One of the main goals of the FIA program is to consider security and privacy as part of

the design of any future Internet architecture. In this section, we summarize three of the

above architectures; MobilityFirst, XIA, and Nebula. NDN and its commercial counterpart,

Content-Centric Networking (CCNx) [93, 183, 142], are described in Chapter 2.

1.3.1 MobilityFirst

MobilityFirst architecture aims to overcome the inefficiencies and limitations of today’s In-

ternet. It focuses on scenarios where wireless connections are ubiquitous and pervasive. To

this end, MobilityFirst has been designed around the concepts of mobility and trustworthi-

ness. All endpoints must be able to seamlessly switch network connection, and the network

must be resilient to compromised endpoints and routers.

MobilityFirst treats principals – devices, content, interfaces, services, human end-users, or

a collection of identifiers – as primary addressable network entities. To promote mobility,

the (constant) identity of a principal and its (dynamic) network location are strictly sepa-

rated. This requires a distributed Global Name Service (GNS) to bind principal identities

to network addresses. Furthermore, identity and network address separation (1) facilitates

service implementation and deployment, and (2) supports designing routing protocols that

overcome link fluctuation and disconnections [147].

We now briefly describe MobilityFirst’s network layer and its Global Name Service.

7

Network Layer

Two types of identifiers are used to differentiate between principal identities and their phys-

ical locations.

• Global Unique Identifier (GUID): a flat self-certifying identifier that uniquely

identifies a principal. GUIDs can be generated using multiple methods depending on

the provided service type. For instance, they can be derived from the public key of a

host or a service principal or the hash of a content principal. For the sake of usability,

a human readable name can be assigned to a principal and later resolved (by GNS) to

the corresponding GUID.

• Network Address (NA): a flat address that identifies a network to which a partic-

ular principal (GUID) is connected. MobilityFirst networks are equivalent to AS-s on

today’s Internet. NAs can be used to identify finer-grained networks such as subnets or

organizations. In cases where principals are connected to multiple networks (e.g., using

3G and WiFi simultaneously), multiple NAs can correspond to the same principal.

As a consequence of this addressing scheme, MobilityFirst defines a new packet type called

Packet Data Unit (PDU). PDUs contain source and destination GUIDs, lists of source and

destination NAs, payload, and other control fields.

In order to communicate with a specific GUID, endpoints need to query GNS to obtain the

corresponding NA. The retrieved tuple (GUID, NA) is then carried in the PDU header as a

routable destination identifier. PDUs are first delivered to their corresponding destination

NAs (using inter-domain routing), and then to the destination GUIDs (using intra-domain

routing). In case of delivery failure, the packet is stored inside the network (in routers) and

GNS is periodically queried for a new or updated GUID-NA mapping.

8

Multihoming, anycast, and multicast are supported by multicast GUIDs (MIDs). MID has

the same format as a regular GUID, except its resolution results in a set of NAs (instead of,

at most, one). Technically, GNS associates one MID with several GUIDs (the ones belonging

to the multicast group). Resolving all of them results in one or more elements of the output

NAs set.

MobilityFirst can also support content distribution networks. In this case, GUIDs are com-

posed of two parts:

• Content GUID (CID): uniquely identifies the content and is generated by computing

the hash of the corresponding content.

• Publisher GUID (PID): points to the network entity providing the content. Such an

entity can be the actual content provider, or a third-party content repository.

A router may be equipped with a cache. This opportunistic caching feature facilitates

content distribution at the network layer by reducing end-to-end latency and bandwidth

consumption.

Global Name Service

GNS is an essential part of the MobilityFirst architecture. Its main task is to map endpoint

identifiers (GUIDs or human readable names) to a set of attributes including the endpoint

network address. GNS relies on the following two services:

• Name Certification Service (NCS): is equivalent to a Certificate Authority (CA). Its

purpose is to (1) assign GUIDs to human-readable names and (2) attest this mapping

by generating certificates. MobilityFirst allows multiple NCSs without a global root

of trust. Moreover, if GUID space is large enough, the need for coordination between

different NCSs is eliminated.

9

• Global Name Resolution Service (GNRS): a distributed naming service similar to

Domain Name System (DNS) that stores the mapping between GUIDs and NAs

[143, 118, 194].4 Two GNRS implementations are evaluated: (1) a distributed hash

table maintained among all AS-s of the Internet (DMap [195]), and (2) a number of

replica-controllers that migrate data (GUID-NA mappings) between a variable number

of active replicas (Auspice [179]).

Regardless of its implementation, GNRS clients interact with the service by issuing the

following requests to the GNRS resolver:

• insert: register a new GUID-NA mapping when a principal joins the network.

• update: keep the GUID-NA mapping up-to-date when the corresponding principal

migrates to a new network location.

• query: retrieve the list of NAs associated with a specific GUID.

In [118], a secure version of the above three GNRS request types is proposed. The secure

insert and update requests adopt a two-step approach to check validity of a GUID-NA

mapping. Four network entities are involved in this process: (1) the user issuing the new

GUID-NA mapping, (2) the local router to which the user is connected, (3) the border

gateway router that connects the user’s AS to the rest of the Internet, and (4) the DHCP

server which assigns the user’s address.

The user generates and signs the request containing the GUID-NA mapping. Local and

border routers are in charge of verifying validity of the announced mapping. This is achieved

by verifying that the announced NA is the network connected to the user (and the local

router), and querying the DHCP server to ensure that the returned NA corresponds to the

4GNRS is the actual GNS service that is responsible for maintaining GUID-NA mappings.

10

announced GUID. If the NA matches the one contained in the update or the insert request,

the mapping is accepted and added or updated in the GNRS table.

In the secure query request, the protocol involves three entities: the user, the border gateway,

and GNRS. The user issues an authenticated request and the border router checks its validity.

The router then forwards the request to the appropriate GNRS replica. On receipt, the

GNRS satisfies the request with a signed GUID-NA mapping response.

There are several differences [179] between GNRS and DNS [137]. First, GNRS does not

restrict the structure of the names, while DNS only supports hierarchical names. Second,

scalability of GNRS does not rely on TTL-based caching, which has been proven to be inef-

fective in the presence of high mobility. Third, GNRS does not statically give the authority

to a replicated server for a specific set of names. Active and on-demand replication reduce

reliance on passive caching and ensure that mapping replicas are always accessible close to

clients.

1.3.2 eXpressive Internet Architecture

eXpressive Internet Architecture (XIA) is another research effort aiming to design a new

architecture. XIA is based on three types of principals. Host-centric networking can sup-

port end-to-end communication, such as video conferencing and file sharing. Service-centric

networking allows users to access various network services such as printing and data stor-

age services. Meanwhile, content-centric networking can support Web browsing and content

distribution. However, XIA’s design is extensible in that it can adaptively provide network

evolution and support any new principal type that might emerge in the future.

A core architectural property of XIA is intrinsic security of all principals. Any entity should

be able to authenticate the principal it is communicating with, without trusted third parties.

11

This can be achieved by binding one or more security properties with principal names. For

instance, using the hash of a service (or a host) public key as its name allows entities to

verify that they are communicating with the desired principal. Similarly, binding content

with its name can be achieved using the hash of the content as its name, allowing users to

verify the integrity of a requested content.

XIA defines three main design requirements:

1. All network entities must be capable of clearly expressing their intent. This is achieved

by designing the network to be principal-centric and allowing in-network optimization.

Routers can perform principal-specific operations when receiving, processing, and for-

warding packets.

2. The network must be able to adapt to new types of principals. This is essential to

support network evolution.

3. Principal identifiers must be intrinsically secure. This depends on the principal type,

e.g., authenticating hosts in host-centric networking is different than verifying content

integrity in content-centric networking.

Principal identifiers are denoted as XID, where X defines the type of principle. For instance,

HID identifies a host, SID a service, NID a network, and CID a content.

eXpressive Internet Protocol

In order to comply with the aforementioned requirements, eXpressive Internet Protocol (XIP)

is designed. XIP defines packet format, addressing schemes, and behavior of all nodes while

processing incoming and outgoing packets from/to various principal types. One of the main

features of the XIP addressing scheme is flexibility of defining multiple (fallback) paths to

destinations. This prevents downtime and service interruption, especially while gradually

12

CIDNID NID1 2 1

(a) Shortcut routing

SID

SIDHIDNID

NID1 1

1 11

(b) Binding

HID HID

SIDSIDNID1 21

1 2

(c) Infrastructure evolution

NID NIDSID CIDNIDa 1a 12

(d) Source routing

CIDNID NID

NID NID NID

11 2

3 4 5

(e) Multiple paths

Figure 1.1: XIP addressing styles [86]

deploying new principal types. An XIP address is a directed acyclic graph (DAG) with

several properties:

• Each address is a single connected component.

• Each DAG starts with an untyped entry node and ends with one or multiple “sink”

nodes. Thus, each node in the address graph has a unique XID except for the entry

node.

• Edges define next hops in the path.

• Multiple outgoing edges of a single node are processed in the order they are listed.

• Out-degree of each node is upper bounded to restrict performance overhead.

Using DAGs as a basis for XIP addresses allows applications to build several “styles” of

addresses, such as:

• Shortcut routing – this style, shown in Figure 1.1(a) is best suitable for requesting

content principal. Each node has a direct edge to the destination principal CID1, which

13

Source XID-
Type Classifier

NID processing

HID processing

SID processing

CID processing

Next Dest.
XID-Type
Classifier

NID processing

HID processing

SID processing

CID processing

Route
Success?

Incoming
Interface

Outgoing
Interface

yes

no

Fallback

Source XID-Specific
Processing

Next Dest. XID-Specific
Processing

Figure 1.2: XIA router diagram

enables in-network caching. If a node does not have the content cached, the fallback

path is processed and the packet is forwarded to the next hop.

• Binding – some services require that communication is bound to a specific source or

destination. For instance, a service hosted in multiple geographical locations. Users

can establish a session with the closest host providing this service. Then, all further

communications must be directed to this particular host. Figure 1.1(b) shows an

example of this addressing style. The first packet is destined to SID1, i.e. the closest

host, while the second packet is destined to SID1 provided by a specific host HID1.

• Infrastructure evolution – as mentioned above, XIA supports gradual network evo-

lution for emerging principal types using fallback paths. Figure 1.1(c) shows an ex-

ample of this style. Assume that NID1 is gradually deploying service SID1. All NID1

routers that are not yet updated to recognize and process SID1 use the fallback path

through HID1 and HID2.

• Source routing – Figure 1.1(d) gives an example of this addressing style, in which the

source routes the packet to the destination through a third party domain and service,

NIDa and SIDa, respectively.

• Multiple paths – this supports recovery from link failures. An example of this style

is shown in Figure 1.1(e).

14

Figure 1.2 shows a high level overview of an XIA router. Its modular design allows efficient

multi-principal processing and supports network evolution. Each router contains two main

XID-specific processing modules:

• Source XID-specific processing: necessary for certain XID types. For instance, in

case of a reply to a CID request, the “CID processing” unit can implement in-network

content caching.

• Next Destination XID-specific processing: invoked by the Next Destination

XID-specific Classifier which determines the appropriate forwarding action. Similar

to source processing, this module consists of several units that carry on XID-specific

operations right before forwarding the packet.

If all outgoing DAG edges of a node lead to unrecognizable XIDs, the packet is dropped and

an unreachable destination error is generated. It is the responsibility of user applications

to provide appropriate fallback paths to avoid forwarding failures at any router. Usually

fallback paths are built using well-supported principals, e.g. HID and NID.

Principals

As mentioned above, principals in XIA support emerging communication paradigm on the

current Internet. When introducing a new principal, the following issues arise:

• What does it mean to communicate with a principal of this type?

• How is the principal’s unique XID generated and how does it map to intrinsic security

properties?

• What are the source and next destination XID-specific processing actions that routers

should perform and how can such actions be implemented?

15

We now describe several principal types and discuss their addressing schemes, in-router

processing behaviors, and security properties.

Network and Host. Network and host principal identifiers are denoted as NID and HID,

respectively. They are generated by using the public key hash of the network or the host.

Unlike hosts on current Internet, each XIA host has a unique HID regardless of the interface

it is communicating through. This feature helps support host mobility. In order to support

fallback paths, all XIA routers should implement NID and HID processing modules.

As mentioned above, the fact that the network and host addresses are derived from their

corresponding public keys allows users to verify the identity of entities with whom they

are communicating. Furthermore, this security requirement helps defend against address

spoofing, Denial of Service (DoS), and cache poisoning attacks.

Service. Services in XIA represent applications in today’s Internet. Users communicating

with a service SID can use a destination address of the form NID:HID:SID. In today’s

terminology, this is analogous to sending a packet to a specific host in a specific network and

indicating the associated protocol and port number.

Since different services might require different specialized processing, implementing in-router

source and next destination processing modules is a challenge. Therefore, routers are only

required to perform default processing, routing, and forwarding of SID packets. All other

specialized processing should be handled by end-nodes.

SIDs are generated by computing the hash of the service public key. This inherits security

properties similar to NIDs and HIDs.

16

Content principals. This principal type signifies user’s intent to retrieve content. Packets

carrying content identifiers (CID) as destination addresses will be routed all the way to the

node hosting the content. Routers can use a cached version of the content as a reply to

such packets. As mentioned above, caching is implemented by routers source XID-specific

processing module.

CIDs are generated based on the cryptographic hash of the content they address. This binds

the content to its name, forming a self-certifying name.

1.3.3 NEBULA

NEBULA [27, 28, 29] is an FIA project focused on providing a secure and cloud-oriented

networking infrastructure. Its architecture is composed of three tiers:

• Network core (NCore) is a collection of routers and interconnections that provide

reliable connectivity between routers and data centers. NCore is based on high-

performance core routers and rich interconnected topologies [116].

• NEBULA Virtual and Extensible Networking Techniques (NVENT) represents the con-

trol plane of NEBULA. NVENT helps in establishing trustworthy routes based on

policy routing [33] and service naming [149].

• NEBULA Data Plane (NDP) is responsible for routing packets along the paths es-

tablished by NVENT. To guarantee confidentiality, availability, and integrity, NDP

ensures that packets for a specific communication can only be carried when all parties,

i.e., end nodes and routers in between, have agreed to participate.

NEBULA Network Layer

The original design of NEBULA specifies different candidate network layer stacks for NDP

17

Sender Node 1 Node 2 Receiver

Consent
Server 1

Consent
Server 2

Consent
Server 3

1 1 1

2 3 4

(a) Packet forwarding with ICING.

⨁

⨁

⨁

⨁ ⨁

⨁ ⨁

⨁

2 3

⨁ ⨁ ⨁

⨁ ⨁

⨁

4

(b) ICING packet high-level structure.

Figure 1.3: ICING architecture

[28], e.g., ICING [145], TorIP [117], and Transit-as-a-Service (TaaS) [157]. From this list,

ICING was picked as the most suitable candidate and was included in the Zodiac NEBULA

prototype implementation [29]. We now provide a brief overview of ICING.

ICING provides a new primitive, called Path Verification Mechanism (PVM), which guar-

antees the following two properties:

• Path Consent – every entity in a path between two hosts consents to the use of the

whole path before the communication starts.

• Path Compliance – ability of each node in a path between two hosts to verify that a

received packet (1) follows the approved path and (2) has been “correctly” forwarded

by all the previous nodes on that path, according to a specific pre-established policy.

ICING can be deployed either at the network layer or as an overlay on top of IP. In the

former case, service providers can deploy ICING nodes as ingress gateways to their networks.

However, in the latter case, ICING nodes may become waypoints, interconnected using IP,

providing waypoint-level path guarantees.

To start communication, a sender must first establish a complete path. Such a path can

be provided by DNS with policy enforcement [145]. Figures 1.3(a) and 1.3(b) show how

forwarding works in ICING and a high-level representation of how the ICING header evolves.

18

Once a path is selected, the sender requests a Proof of Consent (PoCj), for each node j on

the path (action 1 in Figure 1.3(a)). PoCs are cryptographic tokens created by each node

transit provider, which attest to the provider’s consent to carry packets along the specified

path. Each PoC certifies that the corresponding network provider consents to (1) the full

path, and (2) a specific policy-based set of local actions (e.g., forwarding) to be performed

on packets traversing the path. PoCs are generated by a consent server, which is owned

by the transit provider or acts on its behalf. Such servers share secret keys with each node

(router) in their corresponding providers. Once all PoCs are received, the path is established

and packet transmission can begin.

A sender builds a packet header as follows:

1. Proof of Provenance (PoP) token, one for each node on the path (action 2 in Figure

1.3(b)), is generated using a PoP key kj shared with the corresponding node j. In

Figure 1.3(b), PoPs are denoted as PoPi,j, where i is the index of the node generating

the PoP and j is the index of the node for which PoP is generated. Specifically, PoP0,j

is computed by node 0 using kj, path P , and message M itself.

2. Authenticator Aj is computed for each node j using PoCj, P and M .

3. Verifiers Vj, one per node, are computed by XORing the corresponding Aj and PoPi,j.

PoP tokens are used by each node on the path to prove that downstream nodes have handled

the received packets based on the established policies. When an intermediate nodeNi receives

a packet, it performs the following actions:

1. Computes the corresponding PoCi.

2. Computes PoPj,i using kj, for each downstream node Nj.

19

3. Verifies that the received PoCi and PoPj,i match the two values computed in the

previous two steps. If this verification fails, Ni drops the packet.

4. Derives a shared PoP key kl, for each upstream node Nl, and computes PoPi,l as

described above.

5. Modifies the verifiers to include the computed PoP, and forwards the packet upstream

(actions 3 and 4 in Figures 1.3(a) and 1.3(b)).

The previous steps allow any node to guarantee that all packets are forwarded by all the

consenting nodes while establishing the path.

NEBULA Resolution Service

Service resolution in NEBULA is provided by NVENT, using declarative networking [120,

121], and allows administrators to provide high-level specifications of their routing policies.

NVENT also involves special interfaces, called service interfaces, that enable service access

and specify the required level of availability. For instance, an emergency service can request

high availability, which can be provided by multi-path interdomain routing. A distributed

resolution service is used for discovery of other NVENT services. This service is populated

by service providers, e.g., NCore data centers [27].

Serval [149] is a means of service resolution in NEBULA. Serval is a control and data plane

that implements service-centric networking [132, 84], which decouples service instances (e.g.,

web or email services) from their physical locations (i.e., IP address and port). Serval

introduces a new layer, the Service Access Layer (SAL), between the (unmodified) network

layer and the transport layer. Figure 1.4 presents Serval’s protocol stack and highlights its

main operations.

With Serval, each service is identified by a serviceID, a unique identifier that applications

use to communicate with the service. In addition, each local traffic flow, representing a

20

bind (serviceID)

resolve (serviceID)
demux (flowID)

forward (IP address)

Application Layer

Serval

Transport Layer

Access Service
Layer (SAL)

Network Layer

Figure 1.4: Serval protocol stack [149]

connection between two hosts, is identified by a unique flowID. The request is handled by

SAL, which uses local control plane policies to map the serviceID to a service instance.

SAL eventually creates a new flowID that identifies the established connection. This flowID

is delivered to the destination host during connection setup, and used by both parties for

connection identification. Finally, SAL routes the packet based on specific control plane

rules contained in its SAL table. For instance, a host application that wants to connect to a

specific service might direct the first request to a default Serval router (using its IP address).

The SAL of the router then might process the request and take further decisions based on

its SAL table (e.g., forward to another router or send directly to a known service instance).

Moreover, Serval does not allow clients to learn serviceIDs. It simply suggests the use of

directory services or search engines [149].

Figure 1.5 presents a view of how all NEBULA components integrate to allow a user to

negotiate a custom end-to-end path to a specific data center and send the desired packets.

First, the user (either the mobile phone or the laptop in the figure) contacts NVENT to

request a path to NCore. NVENT determines a suitable path that complies with each transit

network’s policies and contacts the corresponding consent servers to obtain the necessary

PoCs. Once the path and all PoCs are delivered to the user, the latter generates appropriate

21

packet headers and forwards them, using the NDP forwarders network, to the nearest NCore

router. This router ensures that all header fields are valid (as described above) and verifies

that the negotiated path has actually been traversed. Once verified, the core router forwards

received packets to the correct data center using its NCore links.

NCore router

NDP forwarder

NDP Policy/Consent server

NVENT APIs and virtualization

NVENT Policy-based path discovery

Data
Center

Realm 2 Realm 1

Figure 1.5: High-level view of NEBULA components integration

1.4 Information-Centric Networking

As mentioned above, Internet usage has dramatically shifted in the last decade to new

applications and communication models. It is anticipated that, by 2019, almost two thirds of

Internet traffic [91] will be handled by Content Distribution Networks (CDNs) [112, 158, 148].

Although such networks are deployed as IP overlays, e.g., Akamai [151], content distribution

benefits can not be fully achieved. This is mainly because the network layer is not aware of

packets being transmitted through the overlay network.

Information-Centric Networking (ICN) [26] is a recent paradigm for the future Internet. It

emerged as an alternative to the host-based communication approach of the current IP-

based Internet. While IP traffic consists of packets sent between communicating end-points,

22

ICN traffic is comprised of explicit requests for, and responses to, named content objects.

A request refers to the desired content by name and is forwarded by routers (using content

name) towards the content producer. Such a request is satisfied by either the producer itself

or a cached copy in some router. This independence of data (content) from its location is

what enables ICN routers to opportunistically cache content to satisfy future requests. The

idea of in-network caching is incentivized by end-node mobility and networks with disruptions

and disconnections. In such networks, nodes are not guaranteed to be continuously available.

Therefore, the store-and-forward technique is used to transfer data between end-hosts. When

a packet is received by a node and can not be forward due to the current lack of a route

to the destination, that packet is stored by said node until it can be forwarded. In ICN,

however, responses are cached in routers to satisfy future requests, thus, reducing end-to-end

latency and bandwidth consumption.

Several projects have adopted the ICN paradigm. They include NDN, CCN, the Data-

Oriented (and Beyond) Network Architecture (DONA) [104], and Network of Information

(NetInf) [60]. We now overview DONA and NetInf while postponing CCN/NDN description

to Chapter 2.

1.4.1 Data-Oriented (and Beyond) Network Architecture

DONA is a networking architecture that lives above the IP layer. It separates data and

services from their physical locations. It also provides data persistence, availability, and

authentication. By using principal-based networking, DONA replaces DNS domain names

with flat self-certifying names, and DNS resolution with a name-based routing protocol which

provides support for different types of discovery services, mobility, and data replication.

DONA principal owners can authorize other hosts to serve their own principals. For instance,

data owners could host their own websites or delegate this process to a third party. Even

23

if the hosting location changes, the name of the data remains intact, providing mobility by

design. In addition, data owners might authorize multiple third-party hosts to serve their

data. In this case, DONA’s name-based routing provides access to the closest replica.

Naming

Names follow the format P:L where P is the public key digest of the principal’s provider

and L is a label set by that provider to ensure uniqueness of the name. For instance,

the cryptographic hash of a piece of data can be used as L’s value of its corresponding

principal. To provide data and origin authentication, data principals are digitally signed by

their provider. When users request a specific piece of data with a name P:L, they can verify

that the signature is valid, and data origin is authentic, i.e., P is the digest of the principal

provider’s public key. However, trust management is not supported by DONA’s network

layer and is left to the application.

Routing

DONA uses two primitives for principal reachability, Find(P:L) and Register(P:L), facilitated

by Resolution Handler (RH) nodes. RHs are installed in a hierarchical fashion forming a

tree-like topology. Leaf nodes are directly connected to hosts serving specific principals,

while the root node contains reachability information for all nodes. Each domain should

contain one logical RH that can be implemented using several collaborating physical nodes.

Domain granularity in DONA can vary from AS size to a group of friends forming a small

social network. Moreover, RH’s behavior varies depending on the primitive:

• Find primitive: When an RH receives a Find(P:L) packet, it looks up its registration

table to learn where to forward this packet downstream. If the packet can not be

forwarded, RH sends the packet to its parent RH. This process repeats until the packet

reaches the root RH, where it will be routed correctly down the tree branch towards

its destination. In addition, RH might forward the Find(P:L) packets to peer (not

24

Figure 1.6: Find primitive forwarding in DONA

parent) nodes if doing so provides a shorter path to their destination. For instance,

in Figure 1.6, the user sends a Find(P:L) packet to RH1, its local RH. This packet is

then forwarded towards the closest copy of P:L through RH4, RH5 and RH2. Note that

name matching in DONA is longest-prefix-based, where P:L is a longest prefix for P:*.

Moreover, Find can also be issues for *:L, i.e., Find(*:L). In this case, the user accepts

the data labeled L from any provider.

• Register primitive: If RH receives a Register(P:L) packet, the decision of forwarding it

to parent and peer RHs depends on whether a similar (or a matching longest-prefix,

e.g., P:*) entry exists in its registration table and local policies. The latter makes it

possible to apply policy routing, similar to the Border Gateway Protocol (BGP) [87].

For instance, RHs not wishing to serve as a transport AS for their RH peers drop all

Register packets received from those peers.

RHs can implement local caches. This allows them to respond to Find packets (requesting

popular data) from their cache, reducing end-to-end latency and bandwidth consumption.

Security

Like any other Internet architecture, DONA raises some security concerns. Although packet

25

rate limitation mechanism (as DoS attacks countermeasure) is deferred to the IP layer, RHs

can implement their own methods to rate-limit Find and Register requests.

Moreover, RHs establish trust relationships between users and peer RHs using public cryp-

tography. This authenticates the origin of all received packets, and prevents adversaries

from injecting bogus Find and Register packets. However, malicious RHs can still refuse to

forward legitimate traffic causing denial of service. Fortunately, DONA provides users with

a method of requesting data from further (not the closest) sources in order to evade such

on-path malicious RHs.

Key management is deferred to the application. This subsumes revocation of compromised

or expired keys. Moreover, when connecting to the network or generating new keys, providers

should always ensure that their keys are not already in use. This is achieved by sending a

Find(P:*) packet, expecting no response.5

1.4.2 Network of Information

NetInf is another ICN architecture that considers data, called Named Data Objects (NDOs),

to be the primary network primitive. NetInf is designed to grow to global-scale networks such

as the Internet and data centers, as well as small and infrastructure-less ad hoc networks.

NetInf provides scalability, data persistency and availability, security, and supports mobility

of both clients and servers.

Naming

Each NDO has a unique name called Named Information (NI). NIs identify corresponding

NDOs and contain: the hash function used to calculate the name itself and the output

value of this hash function, e.g., ni:///sha-256;ghO4. . . Lwnj9. The semantics of the hash

value depends on the NDO type. For instance, for static NDOs, the hash of the entire

5A Find(P:*) packets can be satisfied by any data produced by provider P .

26

data can be used, whereas in dynamic NDOs, the hash of the data owner’s public key is

used. Unlike hierarchical naming, NetInf name flatness provides better data persistency

and facilitates mobility since the NDO name remains unchanged even if its owner is moving

across domains. However, this comes at a higher cost of complicating route aggregation to

maintain manageable-size routing tables.

Messages

Data communication is achieved using three types of messages [67]:

• GET: used to express a request for a specific NDO. The name of the requested NDO

must be included in the GET message.

• PUBLISH: used to announce an NDO name to the rest of the network. It can optionally

include a copy (or the metadata) of the NDO itself.

• SEARCH: includes a set of keywords to search for a specific NDO name. A response

might contain one or more possible matching NDO names. SEARCH messages could be

used to translate human-readable keywords into NIs.

Routing

NetInf routing is based on a combination of Name-Based Routing (NBR) and name resolu-

tion. NBR allows routers to forward GET messages based on their names and routing tables.

On the other hand, name resolution enables translation of NDO names into network or host

identifiers (called routing hints).6 Such identifiers are used in making routing decision. For

instance, a Name Resolution Server (NRS) can return the IP address where a specific NDO

is hosted. In this case, said NDO will be requested using the same methodology utilized

in today’s Internet. Routing hints could also indicate a network that serves the requested

NDO. Therefore, the corresponding GET message is forwarded to that network which, in turn,

forwards the message internally.

6Routing hints are included in GET messages as part of the requested NDO names.

27

End-users are not the only network entities that interact with NRSs. When routers receive a

GET message that can not be forwarded further, they can issue a resolution request to NRSs

to receive routing hints. However, this operation is not mandatory and depends on local

policies.

Routing NDOs is different from routing GET messages. This is because the latter do not

contain any source addresses. NetInf does not specify a single NDO routing method. Routers

can keep state of processed GET messages, and later use it to forward NDOs back to their

requesters. Alternatively, labels can be appended to GET messages to serve the same purpose.

Since labels are only used by routers to determine the downstream interface for forwarding

NDOs, their format can be locally significant.

Although name flatness provides seamless global-scale mobility, routing (and possibly name

resolution) information needs to be changed to ensure data availability. However, this only

applies to mobile servers and not clients.

Security

Dannewitz et al. studied in [59] the security properties of NetInf names. Data integrity

is inherently provided due to the format of NDO names. Since static NDO names contain

the hash of the data itself, any network entity can verify the integrity of received NDOs.

Moreover, dynamic NDOs include the public key hash of their owner, therefore, requesters

can verify NDOs origin. However, NetInf does not provide any secure method for retrieving

NDO names. [59] also suggests separating NDO self-certification from owner and NDO

authentication. This is achieved by using two different keys: one is included in dynamic

NDO names to identify the owner, and the other is used for verifying NDO’s authentication,

e.g., via signature.

Owner pseudonymity is also available to protect NDO owner identities. However, full

anonymity can only be achieved if an unlimited number of pseudonyms can be used. NDO

28

owners can use their pseudonyms, instead of names, and gradually build required trust levels

with their clients.

Furthermore, NetInf uses secure communication sessions. This protects against eavesdrop-

ping, packet manipulation, and replay attacks [170]. Also, to prevent the effect of malicious

executable files uploaded by users, NetInf recommends the use of sandboxes to avoid issues

during execution.

Caching

NetInf provides on-path and off-path caching to increase the effectiveness of content distri-

bution and retrieval. Caches allow routers to respond to GET messages with stored copies

of requested NDOs. Routers can redirect GET messages, off their path to the destination,

towards a nearby cached copy. This, requires collaboration between neighboring routers to

exchange NDO names they cache.

NetInf also supports peer-caching. End-devices contain local caches and inform their local

NRS about caching or eviction of NDOs. Neighboring clients can contact the local NRS to

learn the location of peer-cached NDOs. Then, clients send their requests to their neighbors

which are satisfied from the latter caches. However, peer-caching jeopardize clients’ privacy.

This is because end-devices providing peer-caching can learn what other neighboring devices

request.

29

Chapter 2

Content-Centric Networking

CCN [93] is an example of the ICN paradigm. Named content is the main network ab-

straction in CCN. A content name is composed of one or more variable-length components

opaque to the network. Component boundaries are delimited by “/” in the usual URI-like

representation. For instance, the name of a CNBCs news’ homepage for February 5, 2016,

might be: /ccn/cnbc/news/02-05-2016/index.htm. Large content can be split into intuitively

named segments, e.g., chapter 16 of the Netflix movie “Groundhog Day” could be named:

/ccn/netflix/movies/groundhog day.mp4/ch16.

In the rest of this chapter, we overview two instances of CCN: CCNx [142, 3], a project

developed at the Xerox Palo Alto Research Center (PARC), and its academic counterpart

NDN [206]. Unless otherwise specified, we use the term CCN to refer to both CCNx and

NDN.

2.1 CCN Elements

We now overview CCN entities and packet formats.

30

2.1.1 CCN Roles

CCN involves three types of entities:

• Consumers: end-users that request content by sending interest messages.

• Producers: entities that produce (publish) and disseminate content.

• Routers: entities that forward interests and content to/from consumers and producers.

As mentioned above, CCN uses two types of packets: interest messages and content objects.

We now describe packet formats and the differences between CCNx and NDN [141, 13]. Since

both architectures use different names for the same fields, for the rest of the dissertation, we

use the CCNx naming terminology when referring to common header fields.

2.1.2 Content Objects

Content objects, called data packets in NDN, carry the actual application data representing

content. CCN content objects are encoded using the Type-Length-Value (TLV) scheme [167].

Content header includes the following fields (we only list those relevant to our discussion):

• Name: content name that is being requested.

• ContentObjectHash: optional field that might carry hash of the content object. If not

present, the hash is recomputed at every hop for verification purposes.

• Payload: contains an arbitrary length of binary data representing the actual content.

This field is called Content in NDN.

• PayloadType: identifies the type of content, e.g., DATA, KEY, or NACK. This field allows

the content payload to have different semantics, and is called ContentType in NDN.

31

• ExpiryTime: time when the payload of the corresponding content expires. In this case,

such a content should not be used by producers or caches to satisfy interests. This

field is called FreshnessPeriod in NDN.

• Signature: signature generated by the content producer which covers the entire object,

including all explicit components of the name.

• Signature supporting fields: fields containing supporting information for signature

verification, e.g., CCN name of the verifying public key, its digest, or the key itself. This

information is carried in CCNx content header fields: KeyId, PublicKey, Certificate

and KeyName, and a single field in NDN: KeyLocator.

Each content producer must have at least one public key, represented as named content of

PayloadType set to KEY and signed by its issuer, e.g., a Certification Authority (CA).1 The

naming convention for a public key content object is to contain “key” as its last explicit

component, e.g., /ccn/netflix/movies/key. In order for content signature to be valid (not

just verifiable), the name of the public key (used to verify it) without the last explicit

component must form a prefix of the content name. For instance, this holds for content

named /ccn/netflix/movies/groundhog day.mp4/ch16 and the key named as above. However,

the same is not necessarily the case for the key named: /ccn/netflix/movies/key, which could

be verifiable by its issuer’s public key with the name: /ccn/verisign/key.

2.1.3 Interest Messages

CCN interest message headers contain the name of the content being requested in the Name

field. A TTL is also optionally present to specify the interest expiration time. All other

fields have different format and semantics in CCNx and NDN; we present them separately.

1CCN is agnostic as far as trust management, aiming to accommodate peer-based, hierarchical and hybrid
PKI approaches.

32

CCNx Interest

• KeyId: hash of the public key expected to verify the content signature. This field is

optional.

• ContentObjectHash: optional hash of the requested content.

• Payload: optional data “pushed” by consumers to producers along with the interest.

NDN Interest

• MinSuffixComponents and MaxSuffixComponents: minimum and maximum number

of name components, beyond those specified in the name, that are allowed to occur in

matching content.

• Exclude: a list of name components that must not appear in the name of a returned

content. This field can be used to exclude certain content by referring to its hash,

which, as noted above, is considered to be an implicit last component of content name.

• PublisherPublicKeyLocator: either the name or the digest of the public key used to

verify requested content. This field is optional.

• Nonce: a 32-bit random value that, along with the name, uniquely identifies the interest

to allow loop detection.

An older version of CCN interest header specifications suggested the use of the Scope field.

It specifies how far the interest message will be transmitted. Scope can take one of these

values:

- 0 – do not propagate beyond the local CCN forwarder.

- 1 – only propagate to the application layer of the current node.

33

- and 2 – do not propagate beyond the next hop node. This guarantees that the interest

will either be satisfied or dropped by the node that is only one hop away.

2.2 Node Components

All CCN nodes (consumers, routers and producers) maintain the following three components

[93]:

• Content Store (CS): an optional cache. The size of this cache is determined by local

resource availability. Even though content Lifetime field is used to suggest the du-

ration of content to be cached, CCN nodes may unilaterally decide what content to

cache and for how long. From here on, we use the terms CS and cache interchangeably.

• Forwarding Interest Table (FIB): routing table that maps name prefixes to outgoing

interfaces. Unlike IP routing tables, FIB can specify one or more outgoing interfaces

for a specific prefix.

• Pending Interest Table (PIT): a table of not-yet-satisfied (i.e., pending) interests, and,

for each entry, a set of corresponding incoming interfaces. PIT entries might also store

additional metadata.

Upon receiving an interest with name N , a router first checks its cache for a local copy of

a matching content. If no local copy is found and no other interests for names matching to

N are pending in the PIT, the router forwards the interest to the next hop(s) according to

its FIB and forwarding strategy. For each forwarded interest, a router creates a new PIT

entry with state information, including the name and the interface on which the interest

arrived. If an interest with the name N arrives while there is already an entry for the same

name in the PIT, the router collapses the new interest and only stores the interface on which

34

it was received. This process is called interest collapsing. When content is returned, the

router forwards it to all incoming interfaces in the corresponding PIT entry and flushes this

entry. Since no additional information is needed to deliver content, interests do not carry

any source addresses.

2.3 Content Matching

As mentioned above, consumers request content objects by issuing interests containing their

names. Although this operation is the same in both CCNx and NDN, the process of satisfying

interests differs between the two architectures. NDN employs a longest-prefix content name

matching scheme. An interest for /icn/netflix/movies/ groundhog day.mp4/ can be satisfied by

content named /icn/netflix/movies/groundhog day.mp4/ch16. However, the reverse does not

hold. CCNx utilizes an exact-prefix content matching scheme, whereby interests can only

be satisfied by content with the exact same name (or a hash digest).

CCN content can be requested at different granularity.

• Content names only: such interests can be satisfied by any content with a matching

name (depending on the matching scheme used). This content can be published by

any producer and is consider valid as long as its signature is valid.

• Content names and hash of the public key expected to verify the content signature:

consumers limit the number of content objects that can satisfy corresponding interests.

Only a producer possessing the corresponding private key can respond with a matching

content. The public key hash is carried in CCNx’s KeyId or NDN’s KeyLocator field.

• Content names and hash of the requested content object: this combination forms a Self-

Certifying Name (SCN). Such names limit the possible matching content to exactly

35

one. Content hash can be carried in interest headers as: ContentObjectHash in CCNx

or the last component of the name in NDN. We will discuss this in more detail in

Chapter 4.

Neither CCNx nor NDN mandate the use of any of the above methods. The choice is left to

the application.

2.4 Routing and Forwarding

CCN routing differs for content objects and interest messages. The PIT is used to route

content by following the reverse path of its corresponding interest. Interests are routed

similarly to today’s IP packets. The main difference is that they are forwarded based on

content names rather than IP addresses. This has several advantages and drawbacks.

• Address space limitation: Unlike fixed-length IP addresses, CCN names are arbitrary

long sequence of human-readable components. This solves address exhaustion without

using NAT. However, unlimited address space makes maintaining large routing tables

a challenge.

• Mobility support: IP-based networks do not natively support mobility. When hosts

move between networks, their IP addresses must be changed to allow continuous con-

nectivity. In CCN, content names published by mobile producers do not have to be

changed, since names are unique. However, this is problematic if the producer is

moving between domains. Assume a producer P is publishing content C with name

/uci/some content. If P moves to a neighboring domain, e.g., /ucla/, C’s name should

be changed to reflect that (e.g., /ucla/some content) in order to maintain hierarchical

routing. Even if P moves only within the /uci/ domain, internal forwarding tables

must be updated to reflect the change.

36

CCN can take advantage of hierarchical routing protocols used in today’s Internet, replacing

IP prefixes with name prefixes [206, 196].

IP only supports one forwarding strategy, i.e., best route strategy. In contrast, CCN FIBs

can specify multiple outgoing interfaces for the same name prefix, which allows new types

of multicast forwarding strategies.

• Parallel: interest is forwarded on all specified FIB interfaces at the same time and

either the same or various timeout values are set for each interface. Once a matching

content arrives on one of these interfaces, it is used to satisfy the corresponding interest.

• Sequential: interest is forwarded on one interface at a time. In the event of a timeout,

another interface is used. This process is repeated as needed.

2.5 CCN Security and Privacy

According to NSF, one of the guiding principles for a new Internet architecture is security

and privacy by design. Although CCNx and NDN offer many networking benefits, they

trigger various security issues. Below we overview security and privacy features of both

CCNx and NDN as compared to IP and IPsec.

2.5.1 Trust

IPsec defines trust as a one-way relationship between two or more entities (hosts or networks).

This relationship is represented using a Security Association (SA). SAs contain a set of

information that can be considered as a “contract” between the involved entities. Such

information describes security services and contains security information needed by hosts to

protect the communication.

37

Entities involved in secure communication in IPsec establish SAs via the ISAKMP [129]

protocol and exchange necessary cryptographic material using the Internet Key Exchange

(IKE) protocol [97]. Host authentication in ISAKMP and IKE can be achieved via either

digital signatures, or pre-shared keys. Digital signatures require the use of certificates to

bind entity identities to their public keys. This implies the existence of a CA to create, sign,

and properly distribute certificates.

Unlike IP, the notion of trust in CCN is not directly associated with hosts and networks,

but rather with content. Trust in content can be expressed at different levels of granularity,

from a single content to an entire namespace. Recall that a content object is signed by its

producer which allows anyone to verify its origin and authenticity. Origin verification refers to

content producer rather than whoever stores a copy of that content. In order to authenticate

a content and its origin, its signature must be verified. To do so, the verification (public)

key must be retrieved and trusted.2 However, trust management is not specified at the

network layer and is left to applications. We discuss CCN network-layer trust management

in Chapter 4.

2.5.2 Authentication

The IP protocol (IPv4 in particular) does not provide any form of authentication. A sepa-

rate add-on method, IPsec, provides entity authentication via AH and ESP protocols.3 In

transport mode, two hosts securely negotiate a shared secret key. This key is later used

to generate a Message Authentication Code (MAC) [106] for each packet. Successful MAC

verification ensures authenticity of received packets and their origin. In case of gateway-

to-gateway communication, gateways can only verify that the received data originated by

any (not a specific) host connected to the network at the other end of the tunnel. In host-

2Keys in CCN are distributed in content objects with type KEY. Such objects (keys) are signed by their
issuer, e.g., CA.

3Recall that IPv6 implements both AH and ESP as extension headers.

38

to-gateway communication, the gateway can actually verify that the data originated by the

involved host, while the latter can only verify that received data is originated by the network

located behind the gateway. This partial authentication opens the door for insider attacks.

CCN provides origin and data authentication via content signatures. Before consuming

content, consumers are required to verify its signature [206]. However, this operation is

optional for routers because signature verification is an expensive operation at line speed and

comprehensive trust management is not viable at the network layer. Even if we assume that

routers know all possible application trust models, establishing trust in content is complicated

and expensive. For instance, traversing a PKI hierarchy requires routers to fetch and verify

public key certificates until a trusted anchor is reached.

2.5.3 Accounting

Accounting is a means of reporting packet-related statistics. Statistics granularity differs

depending on the application. For instance, a content publisher might only be interested

in learning the number of requests users issue for each content, whereas a medical records

provider might be required, by law, the collect information about the actual users accessing

its records.

IP allows routers and hosts to collect various packet- and communication-related informa-

tion. This is because every IP router has access to source and destination addresses of each

packet. IPsec does not inhibit accounting when used in transport mode since the IP header

is unchanged. However, tunnel mode IPsec does not preserve original source and destination

addresses.

Accounting in CCN can only be done at the level of content. Network entities inspecting

interest and content names can keep track of request frequency and volume. Unfortunately,

39

in-network caching prompts accounting challenges. Since interests can be satisfied by any

router, it is hard for producers to collect accurate and timely information about content

requests and cache hits. This is discussed in Chapter 5.

2.5.4 Data Confidentiality

The natural way to achieve data confidentiality at the network layer is by using encryption.

IP does not provide data confidentiality. This is done by using IPsec. The level of confi-

dentiality depends on the mode of operation. In transport mode, ESP only encrypts the IP

packet payload and data confidentiality is host-to-host. Tunnel mode extends confidentiality

to the entire encapsulated IP packet, including both payload and header. However, data con-

fidentiality can only be achieved in host-to-gateway or gateway-to-gateway scenarios. Also,

ESP confidentiality is not generally effective against active adversaries. It has been demon-

strated that achieving confidentiality without a strong integrity mechanism, or even applying

integrity before encryption, can only protect against passive adversaries [39, 105, 63]. Thus,

even though IPsec provides confidentiality, poor usage practices can negate its benefits.

Data confidentiality in CCN can be attained by encrypting content payload. However, this

is not supported by CCNx and NDN architectures and is left to the application.

2.5.5 Traffic Flow Confidentiality

It is well known that encryption does not protect against statistical traffic analysis – attacks

that monitor traffic in order to extract properties, such as volume and timing [168].

40

IPsec provides some traffic flow confidentiality by padding packet payloads to hide their size

patterns. However, according to IPsec specifications, this is not mandatory and, therefore,

may not be supported in all IPsec implementations.

Both CCNx and NDN are susceptible to traffic analysis. Fortunately, padding can be used

to provide traffic and flow confidentiality.

Another architecture-agnostic alternative is to add artificial delays to communications to

better hinder time-based attacks. This, however, comes at the expense of increasing end-to-

end latency and reducing overall network performance, especially for time-sensitive traffic.

2.5.6 Privacy and Anonymity

IP (with or without IPsec) does not support anonymous communication. This is mainly

because source and destination addresses are in the clear in packet headers. However, partial

anonymity can be achieved using the tunnel mode of IPsec along with ESP. This is because

tunnel mode allows the ESP protocol to encrypt the original IP packet along with the

source and destination addresses, and it encapsulates that packet into a new one with a

new header reflecting gateway addresses. This combination hides end-host identities among

the set of other hosts connected to respective end-networks. However, this is only effective

if the adversary is eavesdropping on the link between the two gateways and is not located

inside one of the end-networks. Furthermore, in case of host-to-gateway tunnel mode, only

anonymity of hosts located behind the gateway is preserved.

Crowds [169] is one of the first proposals to achieve user anonymity. In it, a message is

randomly forwarded between group members before it reaches its destination. Therefore,

none of the group members nor the end recipient learn the actual source of the message.

The Onion Router (TOR) [189] is another method that provides anonymous communication

41

through a “circuit.” Circuits are multi-hop encrypted communication channels established

using at least three TOR nodes. Theoretically, TOR guarantees anonymity with respect to

an adversary controlling, at most, two TOR nodes. However, flawed TOR implementations

can reduce its provided anonymity level [44].

Unlike IP, CCN has some features that facilitate anonymous communication. A PIT allows

interest messages and content objects to only carry the requested content name without any

consumer-related information. However, Compagno et al. show in [53] that adversaries with

enough knowledge of the network can determine consumer’s location. DiBenedetto et al.

proposed ANDāNA [65], a tool that provides a level of anonymity similar to TOR, while

requiring only two intermediate nodes, instead of three.

2.6 Attacks on CCN

Most network-layer attacks on CCN fall into the general domain of DoS or Distributed DoS

(DDoS). Some key CCN features, e.g., caching, trigger new types of DoS/DDoS attacks.

Gasti et al. [77] presented a range of DoS/DDoS attacks in NDN. In this section, we describe

some prominent attack types and discuss some countermeasures proposed in the literature.

2.6.1 Interest Flooding

As mentioned above, a PIT is one of the main router components that enables content

delivering without requiring any form of consumer source addresses. A PIT is also used for

interest collapsing in order to reduce bandwidth due to a burst of closely-spaced interests

for the same content. However, the fact that a PIT is a limited and valuable resource makes

it susceptible to malicious exhaustion. Adversaries can send a large number of interests

attempting to fill the PIT. To avoid collapsing, such interests can refer to nonsensical content.

42

Once the PIT is full, a router can either: (1) drop incoming interests, or (2) remove old PIT

entries to make space for new ones. Both options, however, can adversely impact past or

future interests. This type of attack is called Interest Flooding (IF).

Unfortunately, there is no comprehensive remedy for IF attacks. Although several counter-

measures have been proposed, they are ineffective against smart adversaries and only manage

to lower the volume of IF attacks [54, 22]. One possible remedy for IF attacks is to eliminate

the PIT – its root cause. For this reason, [78] suggests a modified CCN architecture without

router PITs.

2.6.2 Cache Privacy

In-network caching opens the door for side-channel privacy attacks targeting producers,

consumers or both. Measuring the delay to deliver content allows adversaries to determine

whether said content was satisfied by a nearby cache or by its producer. This reveals the

fact that other consumers have recently requested the same content, jeopardizing privacy of

these consumers.

Moreover, the combination of NDN longest-prefix matching on content names, and the

Exclude and the old Scope fields could be abused for the purpose of malicious cache har-

vesting. Suppose that an adversary Adv sends an interest to router R with the name / and

Scope set to 2. This ensures that R will satisfy the interest from its cache with a content ob-

ject C1 with name prefixed /. Since this criteria holds for any cached content, R will always

reply from its cache with some content object. Adv can then send another interest with the

name / and Scope of 2 which excludes C1. This causes R to respond with another content

from its cache C2 6= C1. Adv can easily repeat this process indefinitely to receive all content

in R’s cache and, as a result, harvest that cache without doing any timing measurements.

43

Fortunately, the Scope field is discarded in the newest NDN’s interest header. Therefore, we

do not discuss harvesting further and only focus on time-based attacks in Chapter 3.

2.6.3 Content Poisoning

Since routers may cache content they receive without being forced to verify its authenticity,

so-called content poisoning attacks become possible. In such attacks, adversaries inject fake

content into router caches. This poisoned content can be used to satisfy future interests and

cause a denial of service. We discuss this further in Chapter 4.

2.6.4 Cache Pollution

In cache pollution attacks, adversaries attempt to manipulate reference locality of caches,

causing incorrect decisions by cache eviction strategies. This causes routers to possibly evict

popular content, reducing overall content distribution efficacy.

Conti et al. discuss this attack in [57]. It is shown that with even limited adversarial

resources, a highly effective cache pollution attack can be mounted. In fact, even small

cache locality manipulation can cause a significant content distribution disruption [64]. It is

also shown in [57] that launching pollution attacks on large networks is relatively easy, and

smart adversaries reduce the effectiveness of proposed countermeasures.

44

Chapter 3

Cache Privacy

Despite its obvious benefits, content caching in CCN raises a major privacy issue that we

summarize below and then discuss in more detail in Section 3.1. Suppose an adversary

Adv wants to determine whether a consumer (Alice) recently requested certain content C.

Assume Adv and Alice share a first-hop CCN router R, e.g., they are neighbors served by

the same ISP, and Adv can measure the round-trip time (RTT) to R (Adv ↔ R). Adv

issues an interest for C and measures the corresponding RTT. By comparing the expected

and actual RTTs after retrieving C, Adv can determine whether C was retrieved from R’s

cache.1 Specifically, if the two RTTs are approximately equal, Adv can conclude that C

must have been served by R.

Similarly, suppose that Adv wants to learn whether a content producer (Bob) has been

recently asked for, and subsequently distributed, C. Assuming that Adv and Bob are sep-

arated by at least one router, Adv measures or estimates the RTT between itself and Bob

and then requests C. If the latter RTT is lower than the former, Adv concludes that C

was fetched from some CCN router cache and, therefore, at least one consumer recently

1Clearly, there might be other users besides Alice and Adv. However, this would not change the nature
of the attack.

45

requested it. Furthermore, a combination of these two attacks can be used to learn whether

two parties (Alice and Bob) have been recently, or still are, involved in two-way interactive

communication, e.g., voice communication or SSH.

These attacks do not require Adv to have any special privileges: the interaction between

Adv and routers is normal. It might appear that Adv can learn the same information by

simply eavesdropping on Alice or Bob. However, eavesdropping requires real-time presence

by Adv who must also be physically near the victim (e.g., the same Ethernet segment,

wired or wireless), whereas aforementioned attacks require neither real-time presence nor

proximity. Moreover, using encrypted links between consumers and their first-hop routers

obviates Adv’s need to eavesdrop.

At first glance, CCN seems inherently safe against cache privacy attacks: if k > 1 consumers

share the same router’s cache, Adv can not determine exactly which or how many requested

particular content (if the content does not expose consumer-identifying information). Thus,

consumers seem to benefit from some form of k-anonymity. However, for many types of

traffic, e.g., email, instant messaging, and voice, consumer identities can be determined from

the content or its name. Moreover, k-anonymity may be insufficient if Adv possesses any

auxiliary information about neighboring consumers, or it simply wants to determine whether

any consumer requested a particular piece of content.

Note that content encryption is not sufficient to mitigate these attacks. Encryption conceals

the payload of a content object and, optionally, part of its name. However, content names

can not be fully encrypted, since doing so would prevent content objects from being routed.

Based on the above discussion, there is an inherent conflict between utility of in-network

caching and privacy for consumers and producers. This chapter focuses on the resulting

privacy problem and potential countermeasures. Our contributions are:

46

• Identification of root causes of the cache privacy attack.

• Countermeasures based on routers simulating consumer-to-producer RTT.

• Optimizations to increase private content distribution performance.

3.1 Cache Privacy Attacks

In this section we describe in more detail the aforementioned cache privacy attacks. Our

goal is to show that Adv can learn whether a specific content C was recently requested by

a consumer Cr by probing their shared first-hop router’s (R) cache. To do so, Adv issues

an interest for C and measures the delay τ1 required to retrieve it. It then picks another

(existing) content C ′ and requests it twice in succession. The first time, C ′ might be fetched

from its original producer P or from R’s cache. However, the second time, C ′ is certainly

fetched from R’s cache. Let τ2 denote the retrieval delay for the latter. If τ1 ≈ τ2, Adv

concludes that Cr recently requested C. Otherwise, if τ1 > τ2, Adv decides that C has not

been recently requested by anyone from its side of R.2

To illustrate the ease of carrying out these timing attacks, we ran some experiments using

the topology shown in Figure 3.1. It includes: (1) a consumer Cr, (2) a router R, (3) a

producer P , and (4) an adversary Adv. P is reachable by Cr and Adv only through R. We

also assume that only Cr and Adv are served by R as their fist-hop router, though we will

later relax this assumption. In all of our experiments, P publishes 1000 content objects with

different names. Also, the type and characteristics of the links connecting Cr, Adv, and P

to R differ based on each experiment setup. We describe the detailed setup and experiment

outcomes below.

2Note that τ1 < τ2 is not possible, since we assume that R is the first-hop router for both Cr and Adv.

47

Figure 3.1: Cache privacy attack experimental setup

3.1.1 Consumer Privacy in LAN Environment

In this environment, Cr, Adv and P are all connected to R via Ethernet. Cr starts by

requesting all published content objects, causing them to be cached by R. Then, Adv

requests the same content objects which are promptly fetched from R’s cache. We measure

average delays for retrieving content from P and R. The results, illustrated in Figure 3.4(a),

show the Probability Distribution Function (PDF) for these delays. It is clear that Adv can

determine, with probability over 0.99 whether C is retrieved from R’s cache.

3.1.2 Consumer Privacy in WAN Environment

We also run similar experiments in a WAN topology using the NDN testbed [14]. In this

case, Cr and Adv both connect to the same first-hop router R′ via Ethernet. R′ is 3 hops

away from R via a WAN link. Similarly, P is also 3 hops away from R over WAN. Figure

3.2 shows the setup of this experiment and Figure 3.4(b) shows the results. Clearly, the

presence of additional hops increases delay and introduces some variance. However, Adv can

still determine whether C is retrieved from R’s cache with probability over 0.99.

48

Figure 3.2: Consumer privacy in WAN environment topology

Malicious Application

Honest Applications

CCNd

Producer (P)

NDN Network

Figure 3.3: Consumer privacy in local environment topology

3.1.3 Consumer Privacy in Local Environment

The two attacks described thus far (in LAN and WAN environments) are also applicable

to the local cache of a specific CCN node, e.g., a laptop or Android smartphone [1], which

is shared among several applications, as shown in Figure 3.3. A malicious application can

employ the same probing techniques described above. Figure 3.4(c) summarizes the results

obtained in the localhost settings. The difference between cache hits and cache misses is

even more evident than in previous experiments; Adv easily learns information about cached

content requested by other applications.

3.1.4 Producer Privacy in WAN Environment

We now turn to producer’s privacy. We consider the topology shown in Figure 3.5, where

P is directly connected to R, while Cr and Adv are three hops away over WAN. Adv’s

49

3.3 4.3 5.3 6.3 7.3 8.3 10.312.3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time [msec]

P
D

F

Cache hit

Cache miss

(a) Consumer privacy in LAN environment

4.5 5.5 6.5 7.5 9.5 12.6 15.8 22.1
0

0.005

0.01

0.015

0.02

0.025

0.03

Time [msec]

P
D

F

Cache hit

Cache miss

(b) Consumer privacy in WAN environment

0.4 0.6 0.9 2 3 4 5 7.1 12.1
0

0.05

0.1

0.15

0.2

0.25

Time [msec]

P
D

F

Cache hit

Cache miss

(c) Consumer privacy in local environment

180 190 200 210 220
0

0.005

0.01

0.015

0.02

0.025

0.03

Time [msec]

PD
F

Cache hit
Cache miss

(d) Producer privacy in WAN environment

Figure 3.4: Timing attack results

goal is to determine whether C was recently served by P and, as a result, is cached by R.

Figure 3.4(d) shows that Adv can distinguish whether C is served from R with over 0.59

probability by probing a single content object. However, large content is typically split into

several (smaller) pieces, called segments, and transmitted as multiple content objects. The

correlation between such objects can be exploited to improve Adv’s cache privacy attack

accuracy. Adv only needs to determine whether one of the correlated content objects has

been served by P .

Let success denote the event where Adv successfully determines whether a single content

object is fetched from the cache, and let fail denote failure to do so. Since fail and success

50

Figure 3.5: Producer privacy in WAN environment topology

are independent for all correlated content objects, overall probability of failure (FAIL) can

be expressed as

Pr[FAIL] = (Pr[fail])n

And, similarly,

Pr[success] = 1− (Pr[fail])n

In the above experiment, Pr[success] = 0.59 and Pr[fail] = 0.41. Thus, if a large content is

split into eight content objects, then the probability of a successful cache privacy attack can

be increased to almost 1.

Pr[SUCCESS] = 1− 0.418 ≈ 0.999

3.2 System, Adversary and Privacy Model

In this section we introduce our system, privacy, and adversary models.

3.2.1 System Model

We assume the following system model. Let N and C denote the universes of all names

and content objects, respectively. As before, let R be a router. The internal state of R is

51

represented by a function S : C → Z+ that, for a given content, represents the number of

times it has been forwarded. S(C) = 0 for all C not in R’s cache. We assume that C can

appear in R’s cache only if it has been previously forwarded by R.

We define a cache management algorithm CM that uses R’s internal state to determine what

content forwarded by R needs to be cached. CM also controls how R responds to interests

that correspond to cached content.3 Without loss of generality, we assume that consumers

have access to content only through R, i.e., R is their only choice as a first-hop router. We

make no assumptions about how CM responds to interests that match content in its cache,

e.g., CM is free to ignore the cache altogether for some incoming interests. Finally, we

assume that CM can hide cache hits (e.g., by simply not using its cache) but can not hide

cache misses.

By interacting with R, consumers (and adversaries) are allowed to determine, with some

probability, whether a specific content has been forwarded by R using probing attacks. We

model this by a probabilistic algorithm QS : N→ {0, 1} with access to the router’s internal

state S. QS outputs 1 if cached content C matches the input name. Otherwise, QS outputs

0. After each invocation of QS, S transitions to S ′ such that S ′(C) = S(C) + 1 and, for all

other C ′ 6= C, S ′(C ′) = S(C ′). In other words, S(C) indicates the number of times C has

been served from R’s cache.

3.2.2 Adversary Model

The goal of Adv is to learn information about content forwarded by, and likely still cached

in, R. Since CM is not secret, Adv can use QS to learn private information. In particular,

Adv can test whether C has been recently forwarded by querying QS(n), for any n ∈ N.

3The need for this will become apparent in Section 3.6.

52

In our adversary model, Adv can be any CCN entity that requests and receives content. Adv

is not allowed to compromise any honest (intended victim) consumers or R. Also, Adv can

not eavesdrop on communication between R and honest consumers. This restriction can be

enforced in practice by using an encrypted channel between each consumer and its closest

router.

Note that this model does not assume knowledge of any consumer adjacent to R. However,

Adv’s success in learning what content is cached in R can be used to help identify these

consumers.

3.2.3 Privacy Model

We now turn to privacy definitions. We take advantage of the concept of (ε, δ)-probabilistic

indistinguishability [83, 123] – a standard notion to measure indistinguishability of two dis-

tributions in privacy-oriented applications.

Definition 3.1 ((ε, δ)-probabilistic indistinguishability). Two distributions D1 and D2 are

(ε, δ)-probabilistically indistinguishable, if we can divide the output space Ω = Range(D1) ∪

Range(D2) into Ω1 and Ω2 such that:

• for all O ∈ Ω1, e
−ε ≤ Pr(D1=O)

Pr(D2=O)
≤ eε

• Pr(D1 ∈ Ω2) + Pr(D2 ∈ Ω2) ≤ δ

Two distributions are “close” if both ε and δ are small. This definition is stronger than

the widely used statistical indistinguishability since it requires similar probabilities for each

output in Ω1. Ω2 contains all “bad” outputs with probabilities in D1 and D2 that differ

substantially; their ratios can not be bounded by eε or even e−ε. Intuitively, if D1 and D2

represent output distributions of CM with two different states, then (ε, δ) measures the

53

information that CM leaks about those states. Any output from Ω2 typically leaks “too

much” information, e.g., occurrence of any O ∈ Ω2 such that Pr(QS1(n) = O) > 0 and

Pr(QS2(n) = O) = 0, for the same name n and S1 6= S2, may result in a privacy breach in

practice, as S1 and S2 become distinguishable through CM in that case.

We now define perfect privacy with respect to forwarded content. Informally, CM provides

perfect privacy if the way it responds to QS queries does not yield any information about

the content of R’s cache.

Definition 3.2 (Perfect privacy). For all names ` ∈ N, subset of content M ⊂ C, and pairs

of states S0, S1 such that S0(x) = S1(x) for all x ∈ C \M and S0(y) 6= S1(y) for all y ∈M ,

QS0(n) and QS1(n) are (0, 0)-probabilistically indistinguishable.

The above definition is strong since it implies that no information is revealed about any

content previously forwarded by R if CM offers perfect privacy. We believe that this level

of privacy may not be necessary in practice. For this reason, we use the concept of content

popularity to relax the above definition. Specifically, there is no need to conceal the presence

of popular content objects (e.g., Google’s home page) in router caches since Adv can safely

assume that these objects are cached without probing them. To this end, let k be the

number of requests after which a content is considered popular. We allow the distributions

of Q outputs under two states S0 and S1 to be non-indistinguishable with some probability

that depends on k.

Definition 3.3 ((k, ε, δ)-privacy). For all names n ∈ N, subset of content M ⊂ C, and

pairs of states S0, S1 such that S0(x) = S1(x) for all x ∈ C \M as well as S0(y) = 0 and

0 < S1(y) ≤ k for all y ∈ M (i.e., S0 and S1 only differ on content objects in M); QS0(n)

and QS1(n) are (ε, δ)-probabilistically indistinguishable.

54

3.3 Which Content is Private?

When a content object is considered or requested as private, the network should provide (at

least) (k, ε, δ)-privacy based on Definition 3.3. However, since not all content is private, the

question remains: how does the network determine which content is private? Unfortunately,

there is no universal policy. All three CCN entities (consumers, routers, and producers) must

individually or collectively participate in this decision. In the rest of this section, we present

advantages and drawbacks of individual privacy decisions. We also describe the involvement

of each entity. We then discuss privacy decision techniques that require collaboration between

network entities.

3.3.1 Router-Driven

Since cache management is part of a normal router’s standard operating procedure, it might

seem obvious that this router involvement in protecting cache privacy is required. However,

as we show below, it is possible to achieve privacy without network (router) awareness.

Routers solely deciding what content is private is problematic. This is because routers

do not have the means to differentiate between requested content. Any attempt in doing

so increases overhead and negatively impacts network throughput. Even if routers do not

attempt to differentiate between requested content, achieving cache privacy requires treating

all content as private, hence providing unnecessary perfect privacy as per Definition 3.2.

This adds complexity and overhead to router operations, thus inhibiting efficient content

distribution.

However, consumer-facing routers can provide privacy as a service for consumers. When

consumers connect to the network, they can specify whether their traffic should be treated

as private. For instance, Alice might want all her content requests to be considered private

55

when connecting to a public Wi-Fi access point (AP) in a coffee shop, which might not be

the same policy when connecting to the AP in her home. Although not all consumer traffic

is considered private, all of Alice’s traffic would be treated as such. Unfortunately, this

approach suffers from the “selfish consumer” phenomena, whereby some consumers always

demand privacy by default without regards for the overall network performance.

3.3.2 Consumer-Driven

In this case, consumers are responsible for specifying what content is private. Both consumer

and router involvement is required since the latter performs all cache management operations.

Communicating what content is private between consumers and routers can be done using

one of the following (non-exclusive) methods:

1. Interest messages can carry a NO-Cache flag. When set, routers do not cache corre-

sponding content objects. This clearly protects consumer privacy.

2. Interest messages can carry a Privacy bit. When set, corresponding content objects

are marked accordingly and treated as private when cached by routers. The producer

may or may not honor this Privacy bit, though.

The advantages of consumer-driven privacy decisions are: (1) finer granularity than routers

treating all (or per-consumer) traffic as private, and (2) consumers know in advance whether

requested content is private. However, this technique also suffers from the selfish consumer

phenomena, e.g., consumers might always set Privacy bit in all interests.

56

3.3.3 Producer-Driven

In this case, producers specify which content is private. This approach requires producer and

router involvement. Communicating content privacy to the network can be done using one of

the methods mentioned above, i.e., content object header can include either a NO-Cache flag

or a Privacy bit. A drawback of this technique is that consumers do not know in advance

whether requested content will be treated as private.

One difference between producer-driven and consumer-driven methods is that the former

does not suffer from the “selfish producer” phenomena. Selfish behavior by producers is

nonsensical since it defeats producers’ objective of efficient content delivery.

3.3.4 Collaborative Privacy Decisions

It is possible for both consumers and producers to determine the privacy level of a certain

content. In some cases, the consumer might set the Privacy bit in an interest while the

producer does not set that bit in the corresponding content C. All routers caching this

content should respect the Privacy bit, i.e., C is considered private if it is either requested

or served as such.4

Another alternative is to use unpredictable (secret) names for content. In other words, if C

is private, both consumers and producers refer to it by a name that contains a random and a

hard-to-guess component, ideally derived from some shared secret. One disadvantage of this

approach is that both parties need to be involved and a priori agree on the random name

component. On the other hand, an important advantage of this approach is its opaqueness

since routers need not be involved. As discussed later, this approach is useful, and in fact

recommended, for interactive traffic.

4We will show in Section 3.4.4 that it is possible not to consider C private even if it is requested or served
as such.

57

3.4 Countermeasures

One trivial and effective countermeasure to all aforementioned attacks is to simply disable

router caching altogether. However, this would immediately worsen the performance of

content distribution, one of the key features of CCN. Another alternative would be to provide

perfect privacy per Definition 3.2. Nevertheless, it is clear that this would result in significant

performance degradation, especially since not all content is private. Section 3.3 presented

some possible mechanisms that can be used to mark content as private. They are not

mutually exclusive, e.g., even if C is not marked as private by its producer, it can be requested

as private by a consumer. However, Section 3.3 did not specify any actions that need to

be taken by CCN entities (particularly, routers) upon encountering private content. In the

rest of this section we introduce techniques that inhibit Adv from extracting meaningful

information about private content from router caches. These techniques provide various

trade-offs between privacy and performance.

In designing countermeasures, we consider two types of network traffic: interactive and

content distribution. The first represents synchronous communication between two or more

parties, e.g., voice/video conferencing and remote shell. This type of traffic is characterized

by low-latency and continuous interaction, i.e., communicating parties continuously play the

roles of both producer and consumer. Conversely, multimedia data delivery, live broadcasts,

and delivery of web pages are examples of content distribution traffic. Our rationale for

distinguishing between these two traffic types is discussed below.

3.4.1 Interactive Traffic

While in-network caching mostly benefits content distribution, it also helps mitigate packet

loss in interactive communication [206]. This is because interests re-issued for lost packets

58

can usually be satisfied by content cached closest to the location of the actual loss, thereby

reducing the delay for re-requested content. For this reason, any privacy-enhancing caching

mechanism for this class of traffic should not introduce additional delay.

At the same time, since interactive content tends to be time-sensitive, there are hardly any

benefits from caching it in routers in the longer term. For instance, if several users take part

in a video-conference, cached stale video frames are of no use to any of them after a short

amount of time.

We choose to protect this class of traffic using unpredictable names, as described in Section

3.3.4. Consumers and producers use a random value rand as the last component of the

name of each content they request and serve, respectively. This requires some coordination

between the two (or more) parties involved in the interaction. Without loss of generality, the

parties need to agree on a shared secret for seeding a pseudo-random function (e.g., a keyed

cryptographic hash such as HMAC [106]) used to generate content-name-specific suffix rand.

We take advantage of our previous assumption that Adv can not eavesdrop on consumers or

producers involved in interactive communication or on traffic over R’s incident links (e.g., due

to link encryption or lack of physical access). Unpredictable content names inhibit malicious

probing of R’s cache. However, NDN routers must not respond with content that include

rand as a name component to interests that do not explicitly express it. For example, content

named /alice/skype/0/rand should not be returned to interests for /alice/skype/ even though

it would be a longest-prefix match. This is not an issue in CCNx since the architecture uses

exact content name matching. Moreover, in the event of packet loss, a consumer can re-issue

an interest and still benefit from obtaining requested content from the router closest to the

location of this loss.

59

3.4.2 Content Distribution Traffic

Unlike interactive traffic, content distribution does not require any coordination between

producers and consumers. Also, it benefits a lot more from longer term router caching.

Consequently, an ideal privacy approach for content distribution traffic would retain at least

some benefits of caching beyond simple packet loss recovery.

In this setting, neither the consumers nor the timings of their requests are known in advance

by the producer. Thus, using unpredictable content names, which seems well-suited for inter-

active traffic, is not viable for content distribution. More generally, all techniques described

in Section 3.3.4 are not applicable, leaving only router-, producer-, or consumer-driven means

of marking private traffic. In order to maximize flexibility, we allow any combination thereof.

Based on our discussion thus far, it appears that router involvement in handling private

traffic is unavoidable for content distribution. Since low latency is not usually a primary

requirement for this kind of traffic, routers can hide cache hits by introducing artificial delays

before responding with privacy-sensitive cached content. Although this strategy increases

end-to-end latency, it retains one important benefit of caching: reducing congestion and

better bandwidth utilization. Moreover, if the overall delay introduced by routers is close

to the RTT between Cr and P , the behavior of the network from Cr’s perspective becomes

similar to that of the current IP-based Internet.

We now need to consider which routers should introduce artificial delays. Since the objective

of this countermeasure is to hide cache hits for privacy-sensitive content, it makes sense that

only caching routers should introduce artificial delays. An interest might generate a cache

hit in, at most, one router on the path between the consumer and the producer. Therefore,

responding to interests should be delayed by, at most, one router – the router which satisfies

the interest from its cache.

60

3.4.3 Artificial Delay Properties

Suppose that we introduce a constant delay γ such that, in case of a cache hit, R waits for γ

before returning privacy-sensitive content. This procedure is shown in Algorithm 1. In case

of a cache miss, the artificial delay at R must be the difference between γ and the actual

delay for R to receive the requested content. Note that, in the latter case, the overall delay

between the interest and content arrival times would still be γ.

Algorithm 1 Privacy-Aware-Forwarding

1: Input: Interest for C, privacy bit b
2: if C /∈ CS then
3: Forward interest based on local forwarding strategy
4: else
5: if b = 1 then
6: Wait for some artificial delay based on C
7: end if
8: Forward C to downstream interface
9: end if

This approach is easy to implement and requires very little additional per-cache-entry state.

However, it has a major drawback in that it either penalizes nearby content or sacrifices

privacy for far-away content. The former happens if γ is set too high and content with

nearby (with respect to R) consumers becomes unduly delayed. Whereas, the latter occurs

when requested content is far away (or routed via slow and/or congested links) and the

actual delay at R exceeds γ.

It is unclear how to determine the optimal value of γ that would avoid both problems.

Therefore, we consider two alternatives:

• Content-specific delay: For each privacy-sensitive content C, R stores the original

interest-in→ content-out delay, γC . In other words, γC is the time it took R to obtain

C, from either its producer or some other router’s cache, the first time. If an interest

for it arrives while C is in R’s cache, R delays replying by γC .

61

• Dynamic delay: A router dynamically adjusts artificial delay to mimic current behavior

of in-network caching for popular content. As the number of interests for a given

content grows, so does the likelihood of it being cached at a nearby router. According

to Definition 3.2, artificial delay must not drop below the actual delay for content

located two hops from Adv. We describe this type of delay in Section 3.6.

The former is obviously the safer choice for privacy even though it imposes considerable

delays for popular content that was originally fetched from far-away producers or routers and

then cached at closer locations. Conversely, dynamic delay is more responsive to ephemeral

traffic patterns at the cost of requiring routers to constantly monitor delay and popularity

for all content.

In order for content to be perceived as satisfied by its producer, all routers on the path should

take cache privacy into consideration. Consider the topology in Figure 3.6, which contains

two consumer Cr1 and Cr2, two routers R1 and R2, and a producer P . Assume that both

routers start with empty caches and C is a content object published by P . Propagation

delays of the links in the network are shown in the same figure.

Figure 3.6: Artificial delay length

We have the following three cases:

1. Both routers introduce artificial delays when privacy-sensitive content is requested. If

Cr1 requests C, the latter is cached at both R1 and R2. Both routers also store the

62

RTT to retrieve C from P . R2 stores 2 × µ4, and R1 stores 2 × (µ2 + µ4). If Adv

requests C, R1 delays with already observed RTT = 2 × (µ2 + µ4). In other words,

RTT experienced by Adv would be 2 × (µ1 + µ2 + µ4), which is the RTT to fetch C

from P .

2. Both routers introduce artificial delays. If Cr2 requests C, R2 sets its retrieval RTT as

2× µ4. When Cr1 requests C, R2 adds an artificial delay of 2× µ4 before responding

from its cache. This causes R1 to store C retrieval RTT as 2× (µ2 +µ4) when caching

C. If Adv requests C, R1 delays 2 × (µ2 + µ4) causing Adv to experience RTT of

2× (µ1 + µ2 + µ4), which is also RTT to fetch C from P .

3. Only R1 is concerned about cache privacy, i.e., R2 does not introduce any artificial

delay when cache hits occur. If Cr2 requests C then this content gets cached in R2.

If Cr1 requests C, R1 caches it and stores its retrieval RTT = 2 × µ2. R1 does not

know that the request is satisfied from R2’s cache. Therefore, if Adv requests C, it

experiences RTT of = 2× (µ1 + µ2) due to R1’s introduced delay.

In Cases 1 and 2, all interests issued for C by Adv are perceived to be satisfied by P due

to artificial delay introduced by both routers. However, this is not the case if at least one

router on the path treats all content uniformly, regardless of whether it is privacy-sensitive

or not, e.g., in Case 3. We thus conclude that if a router caches content then it should also

introduce artificial delays. This requirement is stronger for edge routers and can be relaxed

in the core. This is because network core routers serve a large amount of consumers which

significantly increases the size of the anonymity set.

3.4.4 Artificial Delay Exceptions

We now consider how a router should handle all possible combinations of consumer- and

producer-driven content marking. As mentioned above, if C is marked as private by its

63

producer or any consumer, this must be always honored by routers as long as C is cached.

However, this rule has exceptions, especially when specific content is consecutively requested

as private and non-private by different (or even the same) consumers while cached by R.

To demonstrate this, we assume the same topology as in Figure 3.6, both routers are privacy-

aware and start with empty caches.

1. If Cr1 requests C for the first time with the interest privacy bit set, the content will

be delivered from P and cached by R1. Cr1 experiences 2× (µ1 +µ2 +µ4) RTT delay.

If Adv then requests C twice as non-private, it experiences the same (artificial) RTT

delay of 2 × (µ1 + µ2 + µ4) in both previous requests. This reveals the fact that a

consumer previously requested C as private.

2. If Adv requests C as non-private, the content is served by P and cached in R1. First,

after Adv’s request, Cr1 requests the same content as private, triggering R1 to treat

it as such in all subsequent requests. Also, stored delay will be 2 × (µ2 + µ4) since

that was the value recorded by R1 when C was originally requested by Adv. Then,

Adv requests C again as non-private. Adv sees an RTT delay of 2 × (µ1 + µ2 + µ4).

However, since Adv triggered caching C in its first request, this RTT delay is longer

than expected. This again reveals that a consumer might have requested C as private

in between two requests by Adv.

Although the previous two scenarios leak private information, Adv does not know whether

privacy-sensitive content has actually been requested. This is because caching only happens

for a limited time. In either scenario, Adv’s second interest for C might have actually

been satisfied by the producer because C was evicted from R1’s cache. However, with some

additional information about R1’s traffic, i.e., knowledge about caching and eviction patterns

at R1, Adv can increase its success probability. We do not consider this case any further

because it is outside the scope of this chapter.

64

One way to address this information leakage problem is as follows: once an interest for C is

marked as non-private, the content must be treated as non-private as long as it remains in

a router’s cache. Furthermore, the effect of changing the privacy bit (or any other method

of specifying content privacy) via an interest should always take effect after the interest is

served. In particular, an artificial delay should not be introduced in response to the interest

that sets the privacy bit. This delay should only be applied to all subsequent interests for

the same content.

As mentioned in Section 3.3, requesting content as private encourages consumer selfishness.

The general outcome would be detrimental for all consumers, who would experience high

latency even when requested content is cached. However, we claim that consumers have at

least one incentive for requesting content without privacy: reduced delay for re-transmitted

interests in case of packet loss.5 Requesting content with privacy precludes its re-transmission

from router caches (if the original content object is lost) and hence results in higher delays.

Thus, we believe that the rational choice for consumers is to request content with privacy

only when actually needed.

3.5 Handling Distributed Adversaries

Techniques presented in Section 3.4 enable perfect-privacy. However, they incur potentially

severe performance penalties. They are effective for preventing attacks by local adversaries.

However, if an adversary is distributed and connected to (or controls) multiple upstream

routers, artificial delay introduced by the first-hop forwarder can be easily bypassed. This

type of attack and its mitigation are addressed in this section.

5Packet loss rate in today’s Internet hovers around 4% [43].

65

3.5.1 Distributed Timing Attack

Consider a topology in Figure 3.6 where Adv is adjacent to both R1 and R2. We also assume

that both routers honor private content requests and start with empty caches. The following

attack shows how Adv can exploit access to both R1 and R2 to circumvent the artificial

delay countermeasure proposed above.

1. Cr1 asks for C as private.

2. Adv asks for C first from R1 and then from R2 as non-private.

The delay for Cr1’s interest is 2× (µ1 +µ2 +µ3). The RTTs for Adv’s interests are 2× (µ1 +

µ2 + µ3) and 2 × (µ3 + µ4), respectively. The latter is because Cr1’s interest marked the

content as private in R2’s cache. If Cr1 did not ask for this content, then RTTs for both of

Adv’s interests would be 2× (µ1 +µ2 +µ4) and 2×µ3. Since neither Adv interest is private,

the corresponding content is cached in both routers (as a consequence to Adv’s first request)

as non-private.

This attack works because R1 and R2 do not share content-specific privacy status bits. In

other words, regardless of C’s privacy status in R1’s cache, R2 makes a local decision when

receiving requests for C.

3.5.2 Mitigating Distributed Adversaries

We propose a simple technique to deal with this type of attack. Whenever a router makes a

privacy status change for any cached content, it notifies the upstream router through which

that content was received. We do not mandate a specific form of notification, as long as

it contains the name of the content in question and some form of authentication. A router

treats these notifications as a signal to make a local privacy status change for the content in

66

question, if it is still cached. A router then forwards the notification to its upstream peers,

and so on. This goes on until notifications reach the producer or a router where the content

is not cached. We expect that notifications would not travel far since most caching will likely

occurs at the edge of a network [74].

To see how the proposed technique works, consider the distributed attack example described

above. Assume that Cr1 performs step (1) to obtain C from R1 privately. If R1 notifies R2

about its privacy status change for C before replying to Adv, R2 marks its cached copy of

C as non-private. Observed RTTs from Adv’s interests are 2 × (µ1 + µ2 + µ4) and 2 × µ3,

the same as if Cr1 did not ask for C. Therefore, Adv can not use these RTTs to determine

whether Cr1 asked for C.

The rationale behind this approach is as follows. Artificial delay works to prevent timing

attacks because it hides the presence of cached content. If R1 did not have a cache, Adv’s first

interest would be forwarded to R2. In this case, Adv’s timing attack would be unsuccessful.

Thus, the notification supplements artificial delay to emulate this scenario.

Also, using notifications and artificial delay is much more efficient than forwarding interests

without delays, because notifications (as described) only carry a content name and do not

expect a subsequent content response.

3.6 Improving Privacy-Utility Trade-Off

So far we considered techniques where cache hits for private content are always delayed.

Proposed techniques are secure according to Definition 3.2, i.e., perfectly private, for all

privacy-sensitive content. This is a strong security notion which may not be required in

practice. We believe that there are factors, such as content popularity, that allow us to

avoid hiding cache hits for private content without significantly compromising privacy. In

67

this section, we discuss and analyze more practical techniques that relax the perfect privacy

requirement in favor of better performance, i.e., higher utility. In general, such techniques

randomly decide whether to mimic a cache hit or a cache miss for each content request. The

distribution of observed output reflects the (local) popularity of requested content.

3.6.1 A Non-Private Näıve Approach

Let ρC denote the number of requests for particular content C. The algorithm always

generates a cache miss, iff ρC ≤ k, where k denotes the size of the anonymity set. A cache

hit indicates that at least k requests have been generated for C.

This approach has a drawback of Adv being able to determine whether C was previously

requested. To do so, Adv (knowing k) issues requests for C until it determines that the

content is coming from R’s cache. Let ρ′C be the number of such requests. If ρ′C > 0, Adv

learns that exactly k − ρ′C requests have been issued for C.

3.6.2 Random-Cache

Security of the previous scheme depends on Adv’s knowledge of k. Our next scheme –

Random-Cache – selects a random k for each content. Thus, the index of the first cache hit

in the output sequence is random, and should not leak information about the router’s cache.

As shown in Algorithm 2, the scheme works as follows: the router maintains a counter ρC

for each C. The first request for C is always a cache miss, and ρC is initialized to 0. Also,

kC is picked randomly from [0, K) according to a distribution of domain [0, K), described

by a random variable K. Upon receipt of a new request for C, the router increments ρC and

checks whether ρC ≤ kC . If so, it generates a cache miss, and a cache hit otherwise.

68

Algorithm 2 Random-Caching

1: Input: Request for content C, Domain size K, Distribution of K
2: Output: Cache hit or cache miss
3: T := set of received content
4: if C /∈ T then
5: Select kC from [0,K) with probability Pr(K = kC)
6: T := T ∪ {C}
7: ρC := 0
8: Output cache miss
9: else

10: ρC := ρC + 1
11: if ρC ≤ kC then
12: Output cache miss
13: else
14: Output cache hit
15: end if
16: end if

We define utility as the ratio of expected number of cache hits and the total number of

requests for a given content, i.e., it represents the fraction of interests satisfied from the

cache.

Definition 3.4 (Utility). Let H(ρ) denote the random variable describing the distribution

of the number of cache hits depending on the total number of requests ρ (ρ ≥ 1). The utility

function u : N→ R+ of a cache management scheme is defined as: u(ρ) = 1
ρ
E(H(ρ)).

In practice, we derive u using the average number of cache misses, instead of cache hits, which

is easier to compute. Let M(ρ) denote the random variable describing the distribution of

the number of cache misses, based on the total number of requests ρ (ρ ≥ 1). Then,

M(ρ) +H(ρ) = c, and u(ρ) = 1− 1
ρ
E(M(ρ)).

Specifically, for Random-Cache, we have:

E(M(ρ)) =

ρ∑
i=1

i · Pr(K = i− 1) +
K∑

i=ρ+1

ρ · Pr(K = i− 1), if 1 ≤ ρ < K (3.1)

69

K influences both privacy and utility. If cache misses occur with overwhelming probability,

then we obtain (almost) perfect privacy with nearly no utility.

Uniform-Random-Cache

If K is uniform, then we obtain the best privacy among all distributions in terms of ε (which

is 0). Also, as shown below, we can decrease δ (and improve privacy) by increasing K at

the cost of degrading utility. We refer to this instantiation of Random-Cache as Uniform-

Random-Cache.

Formally, let U(0, K) denote a discrete uniform random variable, i.e., Pr(U(0, K) = r) =

1/K, 0 ≤ r < K. Uniform-Random-Cache is an instantiation of Random-Cache (Algorithm

2) with K = U(0, K).

Theorem 3.1 (Privacy). If all cached content is statistically independent, Uniform-Random-

Cache is (k, 0, 2k
K

)-private.

Proof. Slightly abusing the notation, let Q0(C, r) and Q1(C, r) denote the output of Algo-

rithm 2 in states S0 and S1, respectively, with C when kC = r. (Recall that S0(C) = 0 and

S1(C) = x, where 1 ≤ x ≤ k). In addition, Qt
0(C, r) and Qt

1(C, r) denote the sequence of

outputs obtained by executing Algorithm 2 with C consecutively t times, in states S0 and S1,

respectively. Since all content is statistically independent: (1) it does not matter whether S0

and S1 differ in more than one content’s count, and (2) Adv’s best strategy is to request the

same content multiple times in order to infer information about router state. Let Qt0 and Qt1

denote two random variables describing Qt
0(C, r) and Qt

1(C, r) when r is selected uniformly

at random according to Line 5 of Algorithm 2.

We show that, for all content C, Qt0 and Qt1 are (0, 2x
K

)-probabilistically indistinguishable.

This implies that Uniform-Random-Cache is also (0, 2x
K

)–probabilistically indistinguishable

with any C, assuming all content is statistically independent.

70

The output of Qt0 and Qt1 is a sequence with length t consisting of two sub-sequences; the

prefix, which is composed of consecutive cache misses (i.e., sequence of 0’s), and the suffix

with consecutive cache hits (i.e., a sequence of 1’s).

We partition output space Ω = Range(Qt0)∪Range(Qt1) into Ω1, Ω2 and Ω3, for all t and C,

as follows:

• Ω1 = Range(Qt1) \ Range(Qt0): If r ∈ [0, x), then all the t replies are cache hits in

state S1. However, this output can not appear with S0 where the very first answer is

always a cache miss (the router first needs to retrieve the content). Thus, @r′ such that

Qt
1(C, r) = Qt

0(C, r
′).

• Ω2 = Range(Qt0) ∩ Range(Qt1): If r ∈ [x,K − x), then Qt
1(C, r) = Qt

0(C, r − x).

• Ω3 = Range(Qt0) \ Range(Qt1): If r ∈ [K − x,K), then the output with S0 contains

at least K − x + 1 cache misses, which is not possible with S1. Hence, @r′ such that

Qt
0(C, r) = Qt

1(C, r
′).

For output O ∈ Ω, let prefix (O) denote prefix length of O (i.e., # cache misses in O). Since

kC is selected uniformly at random, for all O ∈ Ω2, Pr(Qt0 = O) = Pr(kC = prefix (O)− 1) =

Pr(kC = prefix (O) + x − 1) = Pr(Qt1 = O). Hence, ε = 0. Moreover, if O ∈ Ω1 ∪ Ω3,

Pr(Qt0 = O) + Pr(Qt1 = O) = 1
K

. Since |Ω1 ∪ Ω3| = 2x, we obtain δ = Pr(Qt0 ∈ Ω1 ∪ Ω3) +

Pr(Qt1 ∈ Ω1 ∪ Ω3) = 2x
K
≤ 2k

K
.

This theorem states that the probability that Adv can determine whether a content has been

requested zero or k times is 2k/K. This is because observing any outcome (hit/miss) which

can occur in state S0, but not in S1, (or vice-versa) occurs with probability 2x/K. The

analysis also shows that perfect privacy can not be achieved if a cache hit can be generated,

with non-zero probability.

71

Theorem 3.2 (Utility). For Uniform-Random-Cache, u(ρ) = 1− 1
ρ
E(M(ρ)), where

E(M(ρ)) = ρ

(
1− ρ− 1

2K

)
, if 1 ≤ ρ < K

Proof. The theorem follows from Equation 3.1. If 1 ≤ ρ < K, we have

E(M(ρ)) =

ρ∑
i=1

i · Pr(K = i− 1) +
K∑

i=ρ+1

ρ · Pr(K = i− 1)

=

ρ∑
i=1

i · 1

K
+

K∑
i=ρ+1

ρ · 1

K

=

(
ρ(ρ+ 1)

2

)(
1

K

)
+ (K − ρ)

(
ρ · 1

K

)
=

(
ρ(ρ+ 1)

2K

)
+ ρ−

(
ρ2

K

)
= ρ+

ρ2 + ρ

2K
− 2ρ2

2K

= ρ− ρ2 − ρ
2K

= ρ

(
1− ρ− 1

2K

)

Theorems 3.1 and 3.2 show that, by increasing the size of domain K, resulting privacy

increases at the cost of degraded utility.

Exponential-Random-Cache

One drawback of uniform distribution is that having only one parameter (K) gives limited

flexibility for adjusting the privacy/utility trade-off. Hence, we also consider truncated geo-

metric distribution as a candidate for K. The shape of this truncated geometric distribution

can be calibrated through an extra parameter other than K. Assigning exponentially larger

probability to small values of kC results in fewer cache misses on average, at the cost of

additional privacy loss (ε will increase). The corresponding scheme is called Exponential-

Random-Cache.

72

Consider a random variable G(α) with geometric distribution, i.e., Pr(G(α) = k) = (1−α)·αk,

where k ≥ 0 and 0 < α ≤ 1. Its truncated counterpart denoted by G̃(α, x1, x2) has a

conditional probability distribution defined as: P (G̃(α, x1, x2) = k) = Pr(G(α)=k)∑x2
i=x1

Pr(G(α)=i) if x1 ≤

k ≤ x2 and 0 otherwise, where [x1, x2] is the truncation interval (x1, x2 ∈ N0). Therefore:

Pr(G̃(α, 0, K) = r) =
(1− α) · αr

1− αK+1
(3.2)

Exponential-Random-Cache is an instantiation of Random-Cache (Algorithm 2) with K =

G̃(α, 0, K − 1). Here, α and K are input parameters of the algorithm that can be calibrated

to achieve the desired privacy/utility trade-off:

Theorem 3.3 (Privacy). If all cached content is statistically independent, Exponential-

Random-Cache is (k,−k ln(α), 1−α
k+αK−k−αK
1−αK)-private

Proof. The proof is similar to that of Theorem 3.1. We assume the same annotations and

show that, for all content C, Qt0 and Qt1 are (−k ln(α), 1−α
k+αK−k−αK
1−αK)-probabilistically in-

distinguishable

We identically partition Ω into Ω1, Ω2, Ω3 similar to Theorem 3.1. If O ∈ Ω2,

Pr(Qt0 = O)

Pr(Qt1 = O)
=

Pr(kC = prefix (O)− 1)

Pr(kC = prefix (O) + x− 1)

=
Pr(G̃(α, 0, K − 1) = prefix (O)− 1)

Pr(G̃(α, 0, K − 1) = prefix (O) + x− 1)

=

(1−α)·α(prefix(O)−1)

1−αK
(1−α)·α(prefix(O)+x−1)

1−αK

=
α(prefix(O)−1)

α(prefix(O)+x−1)

= α−x

73

Similarly,
Pr(Qt1=O)

Pr(Qt0=O)
= αx. Since α < 1, we have ε ≤ lnα−k = −k ln(α). In addition,

Pr(Qt1 ∈ Ω1) =
∑x

i=1
(1−α)αi−1

1−αK = 1−αx
1−αK , and Pr(Qt0 ∈ Ω3) =

∑K
i=K−x+1

(1−α)αi−1

1−αK = αK−x−αK
1−αK .

Since Pr(Qt0 ∈ Ω1) = Pr(Qt1 ∈ Ω3) = 0, we get Pr(Qt0 ∈ Ω1 ∪ Ω3) + Pr(Qt1 ∈ Ω1 ∪ Ω3) ≤
1−αk+αK−k−αK

1−αK .

Theorem 3.4 (Utility). For Exponential-Random-Cache, u(ρ) = 1− 1
ρ
E(M(ρ)), where

E(M(ρ)) =
1− αρ − ραK

1− αK
+

α(1− αρ)
(1− αK)(1− α)

, if 1 ≤ ρ < K

Proof. Using the fact that
∑ρ

i=1 iα
i−1 = d

dα

∑ρ
i=1 α

i = 1−(ρ+1)αρ

1−α + α(1−αρ)
(1−α)2 and

∑K
i=ρ+1 α

i−1 =

αρ−αK
1−α the theorem follows from Equation 3.1. If 1 ≤ ρ < K, and using the conditional

probability in Equation 3.2, we have

E(M(ρ)) =

ρ∑
i=1

i · Pr(K = i− 1) +
K∑

i=ρ+1

ρ · Pr(K = i− 1)

=

ρ∑
i=1

i · (1− α) · αi−1

1− αK
+

K∑
i=ρ+1

ρ · (1− α) · αi−1

1− αK

=
1− α

1− αK
·

ρ∑
i=1

iαi−1 +
ρ(1− α)

1− αK
·

K∑
i=ρ+1

αi−1

=

[
1− α

1− αK
·
(

1− (ρ+ 1)αρ

1− α
+
α(1− αρ)
(1− α)2

)]
+

[
ρ(1− α)

1− αK
·
(
αρ − αK

1− α

)]
=

1− (ρ+ 1)αρ

1− αK
+

α(1− αρ)
(1− αK)(1− α)

+
ρ(αρ − αK)

1− αK

=
1− αρ − ραK

1− αK
+

α(1− αρ)
(1− αK)(1− α)

74

3.6.3 Comparison of Proposed Schemes

Increasing α in the Exponential-Random-Cache scheme results in better privacy (smaller

ε). However, δ can not be made arbitrarily small and it is ultimately determined by α. In

particular, δ = 1 − αk when K = ∞, which is the smallest possible δ. In contrast, δ of the

uniform distribution can be arbitrarily decreased by sufficiently increasing K.

We compare the utility of proposed schemes in Figure 3.7. In Figure 3.7(a), we adjust the

same value of δ, that is 0.05, for both schemes, and plot their utility for different values of

k while varying ε. In Figure 3.7(b), we compute the maximum value of ε = − ln(1− δ) for

various combinations of δ and k, and plot the difference between the utility functions of the

two schemes for varying δ. Both figures show that the exponential scheme exhibits up to

12% performance gain over the uniform one. Figure 3.7(a) also shows that both schemes

achieve better utility as the number of requests grows.

3.6.4 Addressing Content Correlation

Random-Cache requires statistically independent content in the cache, which is a very strong

assumption. Multiple content objects may share the same name prefix, and their access

patterns could be strongly correlated. Under this assumption, Random-Cache as described

above becomes insecure since it allows Adv to sample multiple points under different k. By

requesting a large number of related content objects, as soon as Adv receives one without

any delay, it learns that, with overwhelming probability, the whole set of content has been

requested before.

To alleviate this problem, correlated content must be grouped together. Algorithm 2 can

then be applied to these groups rather than to individual content, i.e., using a single counter

ρC and value of kC .

75

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
k = 1

Number of Requests (c)

U
ti
lit

y
 (

u
)

Uniform

ε = 0.04 (Expo)

ε = 0.03 (Expo)

ε = 0.05 (Expo)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
k = 5

Number of Requests (c)

U
ti
lit

y
 (

u
)

Uniform

ε = 0.04 (Expo)

ε = 0.03 (Expo)

ε = 0.05 (Expo)

(a) Utility depending on privacy (δ = 0.05)

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
k = 1

Number of Requests (c)

U
ti
lit

y
 D

if
fe

re
n

c
e

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
k = 5

Number of Requests (c)

U
ti
lit

y
 D

if
fe

re
n

c
e

δ = 0.05

δ = 0.03

δ = 0.01

(b) Maximal utility difference between Uniform-Random-Cache and Exponential-Random-Cache when ε =
− ln(1− δ)

Figure 3.7: Uniform-Random-Cache vs. Exponential-Random-Cache

Even the above extension can not be proven secure against all correlation-based attacks.

In many cases, content correlation is even more subtle (e.g., semantically related content

having different names such as linked webpages). This might be identified with appropriate

background knowledge. As a possible countermeasure, content could be augmented with a

content ID field. Producers would populate such field with identical values for correlated

content. Routers could then determine how to handle such content by observing this field.

However, a thorough analysis of these attacks and of the corresponding countermeasures is

beyond the scope of this dissertation.

76

3.7 Experimental Evaluation

We now evaluate the actual impact of cache privacy techniques through simulations. We do

not include the method that involves notification messages since we believe that caching will

most likely take place at the edge [74]. Thus, notification messages will traverse only one

hop (or few hops) before being dropped by the first non-caching router.

We experiment using HTTP traffic traces collected by IRCache [8], which is part of the

National Laboratory for Advanced Network Research (NLANR) project [12]. Traces were

collected on September 1, 2007 (over a 24-hour period), on a Web proxy located at Research

Triangle Park, North Carolina. These traces reflect activity of 185 users, for approximately

3.2 million requests distributed over various destinations. We randomly divide these re-

quests into two sets: private and non-private. Then, we “replay” them with the following

algorithms:

1. No Privacy. Routers use no privacy-preserving techniques.

2. Always Delay Private Content. For each request of a (cached) private content,

the router always generates a cache miss, while for non-private cached content the

response is always cache hit. This implements the basic protocol in Section 3.4.2.

3. Uniform-Random-Cache/Exponential-Random-Cache. Requests for cached pri-

vate content are handled according to Algorithm 2. Requests for non-private cached

content always result in a cache hit.

A router caches all content and removes elements from its cache (when full) according to

the Least Recently Used (LRU) policy. In case of a cache hit, the corresponding cache entry

becomes “fresh” even if the response is delayed.

77

2000 4000 8000 16000 32000 Inf
10

15

20

25

30

35

40

45

50

Cache Size

C
a
c
h
e
 H

it
s
 R

a
te

 (
%

)

No Privacy

Exponential−Random−Cache

Uniform−Random−Cache

Always Delay Private Content

(a) Comparison of our techniques

2000 4000 8000 16000 32000 Inf
10

15

20

25

30

35

40

45

50

Cache Size

C
a

c
h

e
 H

it
s
 R

a
te

 (
%

)

5% Private

10% Private

20% Private

40% Private

(b) Uniform-Random-Cache varying number of
private requests

2000 4000 8000 16000 32000 Inf
10

15

20

25

30

35

40

45

50

Cache Size

C
a
c
h
e
 H

it
s
 R

a
te

 (
%

)

5% Private

10% Private

20% Private

40% Private

(c) Exponential-Random-Cache varying number of
private requests

Figure 3.8: Cache hit rates: experimental evaluation results

For the algorithms that classify content into private and non-private, each incoming request

is randomly marked as private with probabilities 0.05, 0.1, 0.2, and 0.4. Without loss of

generality, we assume that all content is of the same size. We consider caches of size: 2, 000,

4, 000, 8, 000, 16, 000, and 32, 000 units (content objects). Furthermore, as a baseline, we

also run the same algorithms with a cache of infinite size.

We set k = 5 and ε = 0.005. Results are plotted in Figure 3.8. Random caching algorithms

have little impact on the percentage of cache hit rates. There is, at most, a 5% decrease in

78

hit percentages for nearly all observed cache sizes. Increasing the amount of private interests

also had little effect on the cache hit percentage. There is, at most, a 10% drop in the hit

percentage as the rate of private interests increased from 0.05 to 0.4.

3.8 Bypassing Cache Delays

Thus far, our goal has been perfect privacy which we attempted to attain by introducing

artificial delays in routers when cache hits occur. We also described how to improve upon

this deterministic delay with randomized delay algorithms. However, such strategies are

problematic in certain scenarios:

1. If a consumer needs to resend an interest marked as private due to packet loss or

transmission errors, the upstream router delays responding.

2. If a consumer is co-located with other trusted consumers then there is no reason the

latter should be penalized by artificial delays if all parties request the same content.

This is particularly true for the local application topology in Figure 3.3, where different

applications running on the same consumer device may inherently trust one another

since their common owner trusts all applications. In this scenario, if two applications

request the same content through the local router, neither should be subjected to

artificial delay.

In this section, we modify prior countermeasures so as to allow consumers to bypass the

artificial delay. This does not require any trust relationship between consumers and routers.

The basic idea is that each consumer creates a special cache-bypass token y = H(x) which

is enclosed with each interest, where H is a cryptographic hash function and x is a random

l-bit string generated and stored for each request. The token is placed into a special per-hop

79

header field called Token. When R receives such interest Int for C on interface F with a

non-empty Token field, it performs the following steps:

1. If C is not cached locally, R forwards Int upstream according to its local forwarding

strategy.

2. When C is returned, R stores the value of Token and F in the cache alongside C and

its retrieval RTT.

If a consumer wishes to bypass the artificial delay for C, it must present the token pre-image

x in an interest. The pre-image is also included in the Token field. Upon receipt of such an

interest from the same interface F , R performs the following steps:

1. R computes y′ = H(x).

2. If y′ = y, R responds with C with no delays. Otherwise, R behaves according to the

random cache algorithm described above.

This method does not introduce per-user state and requires no trust relationship between

consumers and routers. However, one drawback is that routers are now required to store

an additional l-bit value for every cached content and perform one hash computation per

interest.

The use of the bypass token is limited to consumers connected to the same local network

(including different applications on the same device). The token can be exchanged between

neighboring consumers using ARP-like request and response queries [161]. This, however,

implies that Adv must not be able to eavesdrop on these messages, which complies with the

adversary model in Section 3.2. However, Adv connecting to an encrypted network, e.g., in

coffee shops with protected public access points, can still eavesdrop on all packets. In this

80

case, there is no need for routers to obscure cache hits from cache misses since Adv learns

what is requested by eavesdropping.

81

Chapter 4

Network-Layer Trust

As mentioned above, efficient content distribution is facilitated by caches. This reduces

overall latency and improves bandwidth utilization for popular content. Despite its benefits,

in-network caching opens the door for several types of Denial-of-Service (DoS) attacks [77].

One such attack is content poisoning, where an adversary injects fake content into router

caches. When such content is used to satisfy subsequent interests, it results in amplified fake

content distribution to other caches and consumers.

CCN mandates that each content must be verifiable using, for instance, a signature generated

by its producer. Consumers are expected to verify content signatures in order to assert:

• Integrity – a valid signature (computed over a content hash) guarantees that signed

content is intact.

• Origin Authentication – since a signature is bound to the public key of the signer,

anyone can verify whether content originates by its claimed producer.

82

• Correctness – since a signature binds content name to its payload, a consumer can

securely determine whether delivered content corresponds to what was actually re-

quested.

However, mandating signature verification by routers involves two additional requirements:

1. A router must be aware of the specific trust model for each content-producing appli-

cation. Given the wide range of possible applications, it is very unlikely that they will

all use the same trust model. Some applications will use trust hierarchies while others

might adopt a flat peer-based trust models or hybrid versions thereof. Furthermore,

the set of CCN applications will change over time, and the trust model of a particular

application might not be static in the long term.

2. Depending on the trust model of an application associated with a particular content, a

router needs access to – and thus might need to fetch – a chain of public key certificates

in order to make a trust decision.1 For instance, if an application uses a hierarchical

PKI, an entire leaf-to-root certificate might have to be traversed and all intermediate

certificates would need to be separately verified. This would also need to include

expiration and revocation checking for each such certificate.

One way to deal with these issues is to make content signature verification by routers optional.

Unfortunately, this leaves CCN vulnerable to the content poisoning attacks. To make matters

worse, CCN does not provide any mechanism for consumers to request genuine content. For

instance, in NDN, a consumer that receives fake content can explicitly exclude it (by referring

to its hash) in subsequent requests. This does not guarantee eventual success, due to the

potentially unbounded number of fake content objects, sharing the same name, that can be

injected into the network.

1The alternative of carrying the entire collection of certificates as part of each content is clearly undesir-
able.

83

This undesirable state-of-affairs serves as the main motivation for this chapter. We first ana-

lyze CCN’s susceptibility to content poisoning attacks. Next, we postulate some requirements

for routers to support trust management and content validation. We then present simple

rules that allow CCN parties (consumers, producers, and routers) to deterministically mit-

igate content poisoning while minimizing trust-related complexity for routers. These rules

require no changes to the fundamentals of the CCN architecture.

As discussed later, proposed rules might not be applicable for some routers. Therefore, we

also propose, in this chapter, a lightweight ranking algorithm for cached content. Its goal is

to assign higher rank values to valid content objects than to fake ones. Although it represents

a probabilistic approach, we show that our ranking algorithm can be effective in mitigating

content poisoning attacks in some attack scenarios.

4.1 Content Poisoning

Since CCN routers are not required to verify signatures, delivered content is not guaranteed

to be authentic. However, consumers are required to verify signatures of all received content

objects, allowing them to detect fake ones. To do so, consumers need to have the application-

specific trust context.

CCN has no means for consumers to ask routers to flush fake content from their caches.

In NDN, consumers detecting fake content can only exclude said content in subsequence

interests by specifying its hash in interest exclusion filters. However, excluding content does

not necessarily imply that it is fake since the same feature is also used to exclude stale

content. Furthermore, even if the exclusion technique were to be used strictly for flagging

poisoned content, the result would be undesirable. The entire notion of consumers (i.e, end-

84

systems or hosts) informing routers about poisoned content is problematic for the following

reasons:

1. Suppose a consumer complains to a router about a specific content. If this is done

without consumer authentication, the router has two choices: (1) immediately flush

referenced content or (2) verify the content signature and flush content only if verifi-

cation fails. The first option (1) is problematic since it opens the door for anyone to

cause easy removal of popular content from router caches – a type of a DoS attack.

Furthermore, as noted in [77], the adversary mounting a content poisoning attack

could continue ad infinitum to feed new invalid content in response to interests that

exclude previously consumer-detected invalid content. The second option (2) is equally

unattractive. Not only content signature verification is costly (which can lead to a DoS

attack by itself), it brings back the problem of routers having to understand various

and potentially complex trust semantics of content-producing applications.

2. Suppose that consumers are required to authenticate themselves when complaining

about poisoned content. This would entail signing the interest that complains about

allegedly fake content. However, signing interests would violate consumer privacy by

exposing their identities to the network, i.e., to routers.2 Also, corresponding verifica-

tion (public) keys would have to be communicated with each complaint message, along

with auxiliary information that routers would need to trust the keys. This approach is

undesirable since it can be abused to mount DoS attacks on routers by flooding them

with invalid complaints, forcing expensive signature verification operations.3 Note that,

even if the router successfully authenticates a consumer complaint, this does not guar-

antee that the accused content is fake. In order to be sure, the router would have to

2Recall that consumer anonymity is a feature of CCN. It is a consequence of interests having no source
or destination addresses.

3The same attack does not work with flooding routers with fake content since content can not be sent
unsolicited. A router would only attempt signature verification of incoming content for which it has an entry
in its PIT.

85

verify the content signature as well. Moreover, authentication of consumers by routers

would require identity management and verification systems at the network layer, thus

adding more complexity and overhead.

Finally, since CCN only recommends, and does not mandate, content caching. It is entirely

normal for a router not to cache some, or all, content that it forwards. If a router does not

cache C, then complaining about C being fake is clearly useless.

4.1.1 Injecting Fake Content

Thus far, we mentioned content poisoning attacks without describing how they take place.

Before going into details, we define the terminology used in the rest of this chapter.

• A fake content is a content object that contains one of the following:

– An invalid signature, i.e., the signature verification algorithm returns an error.

– A valid signature generated with the wrong key, i.e., not the key of the purported

producer.

– A signature field that is somehow malformed, e.g., formatted badly.

• A content object is valid if it contains a valid signature verifiable with the correct

public key. (The meaning of correct key is discussed in Section 2.1.)

• Adversary, Adv, is any CCN entity (or a collaborating group thereof) capable of in-

jecting fake content into the network.

• Content poisoning is an attack whereby Adv injects fake content into router caches.

We consider an Adv that anticipates interests for content C with name n and injects fake

content with the same name into router caches. Fake content can be injected into the network

86

via malicious routers or end-nodes. For example, consider an Adv consisting of a malicious

consumer Crm and a malicious producer Pm that target a specific router Rv. Assume that

Crm and Pm are (directly or indirectly) connected to different interfaces of Rv. When Crm

sends an interest for n, and this interest is received by Rv, the latter adds a new entry to its

PIT. Next, Pm sends a fake content to Rv which is promptly cached and its corresponding

PIT entry is flushed. Consequently, Rv is pre-polluted with fake content, ready for arrival

of genuine interests. To maximize longevity of the attack, Pm sets the ExpiryTime field of

fake content to its maximum value. The same attack can be mounted if Pm is replaced by

a malicious upstream router Rm, i.e., Rm is on the path between Rv and the actual content

producer.

4.1.2 Problem Definition

Based on the above, we conclude that CCN has a major security problem, since it offers: (1)

no way to prevent fake content from being delivered to consumers and cached by routers,

and (2) no way to reliably flush invalid content from router caches. There are two reasons

for this:

1. Ambiguous interests: CCN requires each interest to carry the name of desired

content. However, neither the content digest, nor the KeyId is a required field in an

interest. In other words, an interest for a content name can be satisfied by multiple

content objects, including those with untrusted or unverifiable signatures.

2. No unified trust model: even if routers could verify signatures at line speed, CCN

does not provide a trust model enforceable at the network layer. Although the two

aforementioned selector fields can be used to communicate content-specific trust con-

text to the network layer, the initial design of CCN has no mechanism for a consumer

87

to securely pre-acquire the hash of a given content or the specific public key that should

be used to verify a content signature.

4.1.3 Goals

Before we address the content poisoning problem, it is necessary to state the obvious,

network-layer trust management and content poisoning are inseparably con-

joined. Since content is the basic unit (currency) of network-layer in CCN, trust in content

(and not in its producers or consumers) is the central issue at the network layer. Our main

goal is to minimize or eliminate fake content delivery to benign consumers. This

can be achieved using the following sub-goals:

1. Trust-related complexity (activities, state maintenance, etc.) must be minimized at

the network layer. Specifically, as part of validating content, a router should not

fetch public key certificates, perform expiration and revocation checking of certificates,

maintain its own collection of certificates, or be aware of trust semantics of various

applications.4

2. A router should verify at most one signature per content. This upper-bounds the

heavier part of content-related cryptographic overhead. Ideally, a router would not

perform any signature verification at all. As discussed below, this might be possible for

some, yet not all, content. Also, although verifying a signature given an appropriate

public key is a mechanical operation, a router would still need to support multiple

signature algorithms since uniformity across all applications is improbable.

The above discussion implies that CCN entities other than routers, i.e., producers and con-

sumers, should bear the brunt of trust management of content at the network layer.

4 This is only related to trust management for content and is separate from trust management for routing
protocols.

88

4.2 Interest-Key Binding Rule

Ghodsi et al. [79] informally argue that, for each content, at least two out of the three possible

bindings (producer-key, name-key, producer-name) must be present. The third binding is

transitively inherited from the other two, since, due to the use of human-readable names in

CCN, producer–name binding can be easily inferred.5 Our approach to network-layer trust

adheres to all goals outlined above. It is based on the binding between a name and the

public key used to verify content signature. We call it the Interest-Key Binding (IKB) rule:

IKB: An interest must reflect the public key of the producer.

Recall that CCN interest format (Section 2.1) includes an optional field KeyId in CCNx (or

PublisherPublicKeyLocator in NDN) which serves exactly this purpose. Our approach

makes it mandatory without any substantive changes to the architecture.

As discussed in Section 2.1, CCN public keys are a special type of content. They are dis-

tributed in the form of a certificate signed by their corresponding issuing CA. Each certificate

contains a list of all name prefixes that the associated public key is authorized to sign. As

mentioned in Section 2.1, a content name must share a prefix with the public key used to

verify its signature. However, this is not the case if the content itself is a key (certificate).

Specifically, the name of the key used to verify a certificate (CA public key) and the name

of the key contained in a certificate are not required to have any specific relationship, e.g.,

signed content C can be verified with public key PK, with C and PK having no common

prefix. This is part of CCN’s philosophy of leaving trust management up to the application.

Applications are free to impose all kinds of restrictions as long as routers remain oblivious.

5If we assume that names are clear and unambiguous.

89

4.2.1 IKB Implications for Producers and Routers

We now examine IKB implications for content producers, routers, and consumers.

Producers

For content producers, IKB has very few consequences. In fact, it simplifies content con-

struction by asking the producer to include the public key itself in the PublicKey field of

content. In other words, IKB obviates two other current CCN options: (1) referring to a

verification key by its name, or (2) including it in a form of a certificate. Moreover, produc-

ers should include the digest of the public key expected to verify the content signature in

CCNx’s KeyId field (or NDN’s PublisherPublicKeyLocator). Recall that for a content to

be considered a match, its KeyId field value should match that (if any) of the corresponding

interest.

Routers

For routers, IKB implications are overwhelmingly positive. First, routers do not need to

perform any fetching, storing or parsing of public key certificates, as well as no revocation

or expiration checking. All such activities are left to consumers.

Upon receiving a content and identifying the corresponding PIT entry, a router simply (1)

ensures that KeyId values in both interest and content headers match6, and (2) verifies the

content signature using the key provided in PublicKey field. If either check fails, the content

is discarded. Otherwise, the content is forwarded and optionally cached. One optimization

of PIT lookup for each incoming content is to use both content name and KeyId.

These implications would be even more beneficial for routers with the use of SCNs as dis-

cussed in Section 4.3 below. In this case, inclusion of key information and signature checking

6KeyId values in interests header are stored in corresponding PIT entries.

90

could be avoided for most content objects, thus further reducing both bandwidth and com-

putation overhead.7

We believe that not all routers might support all signature schemes for different key sizes.

For instance, governmental agencies might be using proprietary signature schemes. Behavior

of intermediate routers receiving a content with an unsupported signature depends on local

policies and configurations. A router might either (1) forward the content without caching it,

only if its KeyId value matches that in the corresponding interest, or (2), more strictly, drop

the content. In other words, routers should not cache content without verifying its signature.

This requirement will be relaxed later in this chapter.

Consumers

For consumers, IKB does not increase complexity. It actually prompts us to codify desired

consumer behavior – something that has been left unspecified in the CCN architecture.

The most immediate IKB consequence for a consumer is the need to obtain and validate the

producer’s public key before issuing an interest for any content originated by that producer.

At the first glance, this might appear to be an example of the proverbial “chicken-and-egg”

problem. However, we show below that this is not the case.

A consumer that wants to fetch certain content C is doing so as part of some CCN application,

APPC . We assume that a consumer must have already installed this application. APPC

must have a well-defined trust management architecture that is handled by its consumer-

and producer-side software. However, the remaining question is: how to bootstrap trust and

how to obtain initial public keys?

We consider three non-exclusive alternatives:

7The use of SCNs does not rule out the use of signatures. See Section 4.3 for details.

91

1. APPC client-side software comes with some pre-installed root public key(s), perhaps

contained within self-signed certificates. Without loss of generality, we assume that

there is only one such key – PKroot. Armed with it, a consumer can request lower-level

certificates, by issuing an interest referencing the hash of PKroot in the KeyId field.8

2. A global Key Name Service (KNS) [124], somewhat akin to today’s DNS. In response

to consumer-issued interests referencing public key names and/or name prefixes, KNS

would reply with signed content containing one or more public key certificates (i.e., as

embedded content) corresponding to requested names.

3. A global search-based service, i.e., something resembling today’s Google. A consumer

would issue a search query (via an interest) to the search engine which would reply with

signed content representing a set (e.g., one page at a time) of query results. One or

more of those results would point to content corresponding to the public key certificate

of interest to the consumer.

In cases (2) and (3), consumers would still need to somehow securely obtain the root public

keys for KNS and the search engine, respectively. This can be easily done via (1).

4.2.2 Security Arguments

We now return to the original motivation – mitigation of content poisoning attacks. We need

to show that global adherence to the IKB rule leads to security against content poisoning.

We assume that:

1. Routers and consumers abide by the IKB rule and act as described in Section 4.2.1.

8If APPC comes with several root public keys, the consumer would need to issue multiple simultaneous
interests referencing the hash of each root key in KeyId.

92

2. The consumer is not malicious.

3. Each router one hop away from the consumer is not compromised.

4. The link between a consumer and adjacent router is not compromised.

We argue security by contradiction. Suppose that a consumer issues an interest Int and

receives a fake content Cf from router’s (R) cache. According to IKB, Int must contain

the digest of a public key of producer P in its KeyId field. Let PK denote this public

key. Since R adheres to IKB, it must have checked that: (1) KeyId in Cf matches that

of Int , and (2) the content signature itself is valid, i.e., verified using the public key PK ′

provided in Cf . Also, since R and the consumer are not malicious and all communication

between them is secure, the only remaining possibility is a hash collision. In other words,

H(PK ′) = H(PK) for PK ′ 6= PK.9 Since H(·) is assumed to be a suitable cryptographic

hash function, collisions occur with negligible probability.

This does not yet conclude our security discussion. As noted in [77], content poisoning attacks

can originate with malicious routers. What happens if a malicious router R′ feeds poisoned

(fake) content Cf to its non-malicious next hop neighbor R, towards some consumer(s)?

Since R is honest and adheres to IKB, before forwarding and (optionally) caching Cf , it

verifies, as mentioned above, that Cf is valid, i.e., its signature is successfully verifiable

using PK ′, which matches KeyId in Int . Consequently, R will detect that Cf is fake and

discard it.

We now prove that IKB rule mitigates content poisoning attacks.

Definition 4.1 (Second pre-image resistant hash functions). A hash function H is second

pre-image resistant, if for any given x, no probabilistic polynomial-time (PPT) adversary A

can find a value x′ 6= x such that H(x) = H(x′). In other words, Pr [H(x) = H(x′)] ≤ ε(κ),

where ε(κ) is negligible and κ is the security parameter.

9H(PK ′) is included in KeyId in content header, and H(PK) is included in KeyId in interest header.

93

A formal definition of probabilistic polynomial-time adversaries and negligible functions can

be found in [96].

Definition 4.2 (Unforgeable signature schemes). A signature scheme Π is unforgeable if

for any message m, no PPT adversary A (given a public key PK) can generate a valid

signature without knowing the corresponding private key. We denote the success of A as

Aforge(m) = 1, i.e., if Π is unforgeable, there exists a negligible function ε(κ) such that:

Pr
[
Aforge(m) = 1

]
≤ ε(κ).

Definition 4.3 (CCN cache poisoning experiment). For any interest message Int with

H(PK) (the digest of the verifying public key for the corresponding content) assigned to

the KeyId field, and for any A, the CCN cache poisoning experiment is defined as follows:

Given Int as input to A, it outputs a content object C ′ containing: (1) public key PK ′ in the

PublicKey field, (2) digest H(PK ′) in KeyId, and (3) signature σ′ in the Signature field.

The output of this experiment is 1 if one of the following holds:

• PK 6= PK ′ and H(PK) = H(PK ′).

• PK = PK ′ and σ is valid.

In other words, A can either violate second pre-image resistance of H (we denote this event

as collision which occurs with some probability pc and succeeds with probability Pr [H(x)

= H(x′)]), or forge the content signature (we denote this event as forge which occurs with

some probability pf and succeeds with Pr
[
Aforge(m) = 1

]
). We denote the success of A as

Apois(Int) = 1.

Theorem 4.1 (IKB Security). Given H and Π (as per Definitions 4.1 and 4.2, respectively),

A succeeds in injecting a fake content object C ′ into a network that abides by the IKB rule

with a negligible probability ε(κ), i.e., Pr
[
Apois (Int) = 1

]
≤ ε(κ).

94

Proof. (By contradiction) Assume that A succeeds in injecting C ′ with a non-negligible

probability. Then, we can construct a reduction A′ (another PPT adversary), that uses A

to break second pre-image resistance of H, or unforgeability of Π, as follows.

Adversary A′

• Given a value x.

• Creates Int and sets H(x) as its KeyId.

• Runs A(Int) to obtain C ′.

• Extracts from C ′ and outputs:

– PK ′ as a collision with x, if x 6= PK ′,

– or σ′ as a forged signature for C ′, if x = PK ′.

We now determine the probability of success of A′. Whenever either collision or forge

event occurs, A′ succeeds. Therefore,

Pr [A′ succeeds] = Pr [collision ∪ forge]

= pc · Pr [H(x) = H(PK ′)]

+ pf · Pr
[
A′forge(C ′) = 1

]
> ε(κ)

The last inequality holds because A′ succeeds with the same probability as A, which is non-

negligible. If the result of adding two functions is non-negligible, at least one of them must

be non-negligible [96]. Moreover, since both pc and pf can not be exponential functions,

then either Pr [H(x) = H(PK ′)] > ε(κ) or Pr
[
A′forge(C ′) = 1

]
> ε(κ). This contradicts

Definitions 4.1 and 4.2, which concludes our proof.

95

4.2.3 Optimization

IKB rule implies that routers perform only one signature verification using the public key

provided (by the producer) in the content and specified (by the consumer) using KeyId in

the interest. An alternative to including the public key in the content, is to directly include

it in interests. This, however, requires storing the entire key in the corresponding PIT entry,

to be used later for signature verification. Since cache entries have longer lifetime than PIT

entries, including keys in interests can be beneficial in terms of storage. The main drawback

is that the current interest format would need to be modified to include the requested content

public key.

Also, in high-speed routers, performing even a single signature verification per packet might

incur appreciable overhead. One way to address this issue is to take advantage of the network

structure. The current Internet is composed of Autonomous Systems (AS-s), each represent-

ing an administrative entity. In such an architecture, only border routers of consumer-facing

AS-s could implement IKB rule and verify signatures of all content. Each router inside an

AS might probabilistically verify signatures. Nonetheless, fake content could still be cached

by routers that do not perform (or probabilistically perform) signature verification. How-

ever, since border routers of consumer-facing AS-s adhere to IKB, most fake content can be

detected and discarded before reaching the consumer. The reason why not all fake content

objects can be detected is because some of them can be generated from within the consumer-

facing AS, i.e., between the consumer and the nearest IKB-abiding router. Applying this

optimization in practice is discussed in Section 4.6.

96

4.3 Self-Certifying Names

Another way of handling content trust at the network layer is to use SCNs [80, 73, 130,

77, 38]. According to [199], a content name can only have at most two out of the following

three properties: security, uniqueness, and human-readability. As suggested in [79, 80],

SCNs can be formed by appending to the producer’s public key digest a label that uniquely

identifies the content. While this approach guarantees security and uniqueness, it lacks

human-readability and the means of verifying the binding between the content and its name

[181]. Our approach involves forming SCNs by specifying the hash of the content itself along

with its name.10 This provides name-content, producer-name, producer-key, and name-key

security bindings described in Section 4.2. Although this does not yield fully human-readable

names, it provides required uniqueness and security properties [79].

If a benign consumer uses SCNs in interests, the network guarantees delivery of “valid”

content. The main advantage of using SCNs is that routers are no longer required to verify

signatures. Instead, they only recompute the hash of the received content and check that

it matches that in the corresponding PIT entry. The remaining question is: how can a

consumer obtain the hash of a content beforehand?

For the type of communication where most content is requested using SCNs, we advocate the

use of so-called catalogs. A catalog is basically an authenticated data structure that includes

a set of SCNs. This set can consist of references to content objects containing data, public

keys, or even other catalogs. The structure of catalogs is application-specific and might vary

from a simple list of SCNs, to multiple sets forming a Merkle tree [134] or some similar data

structure. To securely fetch an initial catalog consumers would fall back to the IKB rule as

discussed earlier.

10CCNx provides this hash using the ContentObjectHash field of both interest and content, while NDN
suggests appending the hash as the last component of the content name [92].

97

One obvious corollary of using SCNs in interest messages is that consumers (not just routers)

are no longer required to verify content signatures, as long as the SCN is trusted, i.e., obtained

from a (consumer-verified) catalog. This reduces:

1. publishing overhead, since producers now sign catalogs containing several SCNs rather

than signing the individual content objects referenced by these SCNs,

2. network overhead, since there is no need to add the public key in the content, as

discussed in Section 4.2.11

The only time a signature is required is whenever a content is requested using IKB. Routers

(prior to serving content from cache or forwarding it) and consumers (prior to accepting)

must verify the content signature. We believe that it should be left up to the producer to

decide whether a content should be requested by IBK, SCN, or both.

Using SCNs in conjunction with catalogs brings up the issue of unsigned content objects. In

other words, a content C, which is indirectly signed as part of a catalog, can be fetched by

SCN. This does not rule out C being separately signed by its producer. However, signing

catalog-ed content increases overhead for the producer and content size. A sensible approach

is not to sign catalog-ed content objects at all. This would imply that such objects can only be

fetched via SCN. However, the original design of both CCNx and NDN architectures requires

each content to be individually verifiable. Thus, existence of unsigned objects conflicts with

a basic tenet of CCN. This is not the case for the latest version of CCNx. CCNx 1.0 adopts

secure catalogs (called manifests), and its packet format supports unsigned content objects

[142].

Using SCNs as described above might not be compatible with negative acknowledgement

(NACK), especially Content-NACK (cNACKs) [55]. These are a special type of empty content

11Even if a content is fetched by SCN, it can still be signed.

98

objects sent by producers in response to interests requesting non-existing content. Although

it might sound counterintuitive to request a content object using SCN and receive a cNACK

in return, this can indeed happen. Even if a consumer retrieves the SCN of a specific content

from a legitimate source, e.g., a catalog, the content in question might no longer be available.

For instance, a YouTube video’s catalog can be delivered to consumers from a router’s cache

after YouTube has deleted the video.

If an interest containing an SCN results in a cNACK, this cNACK will be dropped by the

first router. The is because the router expects a content object with a hash value matching

the one indicated in the corresponding SCN. Fortunately, the issue can be dealt with via a

minor modification: interests bearing SCNs should also (as a backup) adhere to IKB, i.e.,

reflect the producer public key, thus allowing routers to verify cNACKs.

4.4 Content Ranking

As mentioned above, some routers might not adhere to IKB. This can result in fake content

being cached.12 As discussed in Section 4.2.3, if border routers of consumer-facing AS-s

always abide by IKB, most fake content will not be delivered to benign consumers. How-

ever, fake content in router caches can still be problematic. Therefore, we explore other

approaches for mitigating content poisoning attacks in routers not adhering to the IKB rule.

We present a lightweight ranking algorithm for cached content objects. Its objectives are:

(1) probabilistically distinguish between valid and fake content objects based on observing

consumers behavior, and (2) prioritize valid content when responding to consumer interests

from the cache. Note that this approach can only be implemented in NDN for reasons that

will become apparent below.

12Assuming that SCNs are not used to request content.

99

Our content ranking approach is premised on the fact that a consumer that detects a fake

content, issues a new interest that excludes that fake content. Our hypothesis is that an-

alyzing exclusion information could allow routers to rank cached content objects such that

valid ones end up ranked higher. We achieve this by assigning each cached content object

a rank and routers selecting the highest-ranked object in response to an interest. The rank

is a numeric value between 0 and 1, where 1 is the highest. All cached content starts with

the rank of 1, and, as time goes by, this value gradually decreases. This gives priority to

newer cached content objects over older ones. In addition, the rank of a specific content

depends on the number of times it was excluded and when. Also, we assign a lower rank

to content with many recent exclusions, over fewer old ones. The reasoning is that few ex-

clusions might always occur normally because even valid content objects might not always

satisfy consumers. Consumers might exclude certain content if it represents a wrong (e.g.,

old/stale) version. Finally, we harshly penalize content which has been excluded by interests

arriving on multiple interfaces, since that would indicate higher likelihood of dissatisfaction.

We use the following equation to model content ranking degradation pattern:

rn|H(C)(t) = e
−t
α (4.1)

where t is the age of content C (t ∈ [0, tto]; tto is content ExpiryTime) in the cache, and α is

a factor determining the degradation speed of the content rate, i.e., how fast can a specific

content rate drops from 1 to 0. n|H(C) represents the full name of the content, including its

hash as the last name component. Note that rn|H(C) ∈ [rn|H(C)(tto), 1]. The larger the value

of α, the faster the content’s rank degrades.

We now define α. Let rto be the rank of cached n|H(C) when it expires (ExpiryTime

time elapsed), provided that n|H(C) is never excluded during its lifetime. rto is a system

parameter that can be determined by the network administrator. For a given freshness value

100

and desired value of rto, the corresponding value of α can be computed using Equation 4.1.

We denote this as αto – the value of α that makes the rank of a non-excluded content object

equal to rto, when it expires. For now, we set α = αto as its initial value.

In the rest of this section, we discuss criteria that affect content ranking degradation. The

proposed algorithm is compatible with the current NDN design – it requires no architectural

modifications or coordination between routers.

4.4.1 Number of Exclusions

This criterion is based on the number of times a certain content object C with name n is

excluded. Different versions of C (including fake ones) have the same name with different

payloads, resulting in different content hash values. To distinguish between these identically-

named content objects, we denote each distinct version as n|H(C). We define the exclusion

rate as the ratio of the number of exclusions for n|H(C), denoted as En|H(C) to the total num-

ber of requests for C, denoted as Qn. Exclusion rate is expressed as Rn|H(C) = En|H(C)/Qn.

We consider the ratio as more meaningful than the sheer number of exclusions. The reason

is that consumers can exclude not only fake, but also incorrect content objects.13 We assume

that fake content objects tend to have much higher exclusion rates.

We want to assign a higher rank to objects excluded less. In other words, the more exclusions

for n|H(C), the sharper its degradation factor. If n|H(C) is never excluded, the rank

degradation pattern is the slowest from 1 to rto.

Therefore, α is negatively affected by Rn|H(C), i.e., α = αto−
(
Rn|H(C) × αto

)
. Thus, Equation

4.1 can be rewritten as:

rn|H(C)(t) = e

−t
αto−(Rn|H(C)×αto) (4.2)

13An incorrect content object is an otherwise valid content object that does not satisfy the consumer.

101

4.4.2 Time Distribution of Exclusions

In order to give more weight to newer exclusions, we factor the time of exclusion into the

ranking algorithm. We define exclusion influence in|H(C) as the variable reflecting the time

that the router should wait before the effect of the latest exclusion attempt for n|H(C) is

assigned the minimal weight. This is computed as:

in|H(C)(te) = 1− e
−te
β (4.3)

where te is time elapsed since the last exclusion and β is a factor determining the influence

pattern. β reflects how soon the latest exclusion attempt is assigned a minimal weight when

computing the content rank. Note that in|H(C)(te) ∈ [0, 1], where in|H(C)(te) = 1 means that

the latest exclusion has minimal effect on ranking.

The larger the value of β, the more time should elapse before minimally weighing the latest

exclusion. This time is denoted as tmw. In other words, if β is large, the latest exclusion has

a strong influence on the content rank. Such strong influence results in a smaller rank value.

Given tmw, which can be set by the network administrator, and setting in|H(C)(te) = 1, the

corresponding β can be computed using Equation 4.3. We denote it as βmw.

We can now modify Equation 4.2 to include the exclusion influence factor:

rn|H(C)(t) = e

−t
in|H(C)(te)×(αto−(Rn|H(C)×αto)) (4.4)

If in|H(C)(te) = 1, the rank of n|H(C) is only affected by Rn|H(C).

102

4.4.3 Excluding Interfaces Ratio

This criterion considers the number of interfaces on which exclusions arrive. A higher number

indicates higher dissatisfaction with a specific content. This can be used to lower the rank

of that content. Given the following notations:

• fn – total number of interfaces of a given router.

• fe ∈ [0, fn] – number of interfaces on which the router received interests excluding

n|H(C).

• fs ∈ [1, fn] – number of interfaces on which the router previously served n|H(C). (Note

that fs can not be zero, since for ranking to exist, the corresponding content must have

been requested and served on at least one interface.)

• en|H(C) – ratio of number of interfaces on which the router served n|H(C) without

receiving any exclusions, to the number of interfaces on which n|H(C) is served.

en|H(C) =

fs−fe
fs

if fs ≥ fe

1 otherwise

(4.5)

en|H(C) ∈ [0, 1] where 1 means that n|H(C) was not excluded at all. However, fe might

actually exceed fs. More generally, it is possible for a router to receive an interest excluding

n|H(C) on an interface where this content has not been served. This could occur for at least

three benign reasons: (1) routing changes, (2) consumer mobility, and (3) cache eviction.

The first two are self-explanatory, whereas (3) refers to the case when content was previously

requested, served, cached, and then flushed, for any reason, including normal aging.

103

Based on the previous definition we can rewrite equation 4.4 as follows:

rn|H(C)(t) = e

−t
en|H(C)×in|H(C)(te)×[αto−(Rn|H(C)×αto)] (4.6)

Substituting en|H(C), in|H(C)(te) and Rn|H(C) values:

rn|H(C)(t) =

if fs ≥ fe e

−t fs−fe
fs

×(1−e
−te
βmw)×

(
αto−

(
En|H(C)

Qn
×αto

))

otherwise e

−t(1−e
−te
βmw)×

(
αto−

(
En|H(C)

Qn
×αto

))

(4.7)

4.4.4 Analysis

Equation 4.7 reflects the rank of each cached content object, based on three criteria: the

number of exclusions, the time distribution of exclusion attempts, and the number of inter-

faces on which exclusions arrived.

We now show a comparison between ranking degradation patterns of five cached content

objects:

– n|H(C1): requested only once and never excluded throughout its entire lifetime in the

cache.

– n|H(C2): requested only once, and at time t = 50 seconds, excluded once.

– n|H(C3), n|H(C4), and n|H(C5): requested once without exclusion and then excluded

every 10 seconds. The difference between these three objects is their excluding inter-

faces ratio.

104

Table 4.1: Content objects parameters

Parameter n|H(C1) n|H(C2) n|H(C3) n|H(C4) n|H(C5)

Content C1 C2 C3 C4 C5

Name n n n n n
Digest H(C1) H(C2) H(C3) H(C4) H(C5)
t [0, 400], one sample every 100 [msec]

freshness 400 400 400 400 400
rto 0.001 0.001 0.001 0.001 0.001

1 when t ∈ [0, 50], and
Qn 1

2 when t ∈ (50, 400]
increased by one every 10 [sec]

0 when t ∈ [0, 50], and
En|H(C) 0

1 when t ∈ (50, 400]
increased by one every 10 [sec]

tmw 400 400 400 400 400
∞ when t ∈ [0, 50], and increased [0, 10], increased by one every

te ∞
by one every 1 [sec] when t > 50 1 [sec], and reset every 10 [sec]

fn 4 4 4 4 4
0 when t ∈ [0, 50]

fe 0
1 when t ∈ (50, 400]

1 2 3

The parameters of Equation 4.7 used in our comparison differ for each object. They are

summarized in Table 4.1.

The intuition for Equation 4.7 is that n|H(C1) should have higher ranking at all times,

followed by n|H(C2), then n|H(C3), n|H(C4), and n|H(C5). Figure 4.1 confirms this by

showing ranking degradation patterns of these content objects. Figure 4.1(a) shows that,

when t <= 50 seconds, both n|H(C1) and n|H(C2) have equal ranking values, which is higher

than the other three excluded content objects. The ranking of n|H(C2) decreases after it is

excluded at t = 50 seconds. Moreover, the repetitive pattern of n|H(C3) is justified because

this content object is excluded every 10 seconds. Once an exclusion occurs, ranking drops to

close to 0, and starts increasing again according to Equation 4.3. On the other hand, Figure

4.1(b) compares between n|H(C3), n|H(C4), and n|H(C5) in a shorter time window of 100

seconds. It demonstrates the effect of varying fe. For instance, n|H(C5) is excluded on 3

different interfaces, while n|H(C3) is excluded on only one. Thus, the former has a lower

ranking value.

105

0 50 100 150 200 250 300 350 400
Age (t) [sec]

0.0

0.2

0.4

0.6

0.8

1.0
Co

nt
en

t O
bj

ec
t R

an
k

n|H(C1)

n|H(C2)

n|H(C3)

(a) n|H(C1): never excluded, n|H(C2): excluded once
when t = 50 seconds, and n|H(C3): excluded every 10
seconds

0 20 40 60 80 100
Age (t) [sec]

0.0

0.2

0.4

0.6

0.8

1.0

Co
nt

en
t O

bj
ec

t R
an

k

n|H(C3)

n|H(C4)

n|H(C5)

(b) n|H(C3): excluded on 1 interface, n|H(C4): ex-
cluded on 2 interface, and n|H(C5): excluded on 3
interface. All three objects are excluded every 10
seconds

Figure 4.1: Content object ranking comparison

Based on prior definitions and the analysis of the content ranking algorithm, we conclude

that newer content objects are ranked higher than old ones. This is an intentional design

feature to give newer content priority in distribution and a chance for timely dissemination.

Moreover, in cases of none or few malicious consumers, newer content objects are less likely to

be fake, since a router always tries to satisfy an interest from its cache. As long as a router’s

cache contains a valid version of content, consumers are served that content and are unlikely

to send another interest excluding valid content. Therefore, the only case when a fake content

can be cached longer than a valid one is when malicious consumers work against the ranking

algorithm by excluding valid content, or, explicitly request fake content. We elaborate on

this in Section 4.5. Our approach is effective even against powerful distributed attackers as

long as benign consumers are not outnumbered by malicious ones.

106

Figure 4.2: Tree-based topology - orange: consumer, blue: router, green: producer, red: Adv

4.5 Experiments and Results

ndnSIM 1.0 [23] is a simplified implementation of NDN architecture as a NS-3 [15] module

for simulation purposes. To verify correctness and practicality of the proposed ranking algo-

rithm, we extend ndnSIM to incorporate content ranking. This section describes simulation

scenarios and experiments, and then discusses the results. We start by introducing some

terminology:

• Benign Consumers: After receiving a fake content, they always exclude it in their

subsequent interests for the same name.14 They stop sending interest messages after

receiving valid content.

• Malicious Consumers: When receiving a fake content, they consider it valid and do

not exclude it. If an interest returns a valid content, they exclude it in all subsequent

interests for the same name. The objective is to change statistics collected about

exclusions to favor fake content.

14In our implementation, the maximum number of hashes of excluded content that can be included in an
interest is 100. When that number is reached, a new hash added to the exclusion list replaces the oldest one.

107

Table 4.2: ndnSIM topologies parameters

Parameter Tree-based DFN AT&T

of consumers 50 80 80 160 160

of routers 6 30 30 132 132

of producers 0 0 0 0 0

Cache replacement policy LRU LRU LRU LRU LRU

Simulation time [sec] 400 400 400 400 400

Pre-populated 80%, 90%, 99%, and 80%, 90%, 99%, and

fale content objects rate
99.9%

99%, and 99.9% 99.9% 99%, and 99.9% 99.9%

Pre-populated

content objects freshness

[sec]

400 400 400 400 400

0%, 2%, 4% 0%, 1%, 3%, 0%, 1%, 3%
Malicious consumer rate

6%, and 10%
0%

5%, and 10%
0%

5%, and 10%

Interest interval

[millisecond]
[100, 300] [100, 300] [100, 300] [100, 300] [100, 300]

We measure how many benign consumers can retrieve a valid content and how fast they

can do so when router caches are poisoned. The simulation starts with router caches pre-

populated with fake versions of the target content. We vary the rate of fake pre-populated

content, as discussed below. Table 4.2 shows the parameters. To assess the performance

of the content ranking algorithm, we consider that all topologies used in our experiments

consist of a single AS. Moreover, cache is disabled at edge network routers to allow better

analysis of content ranking in core network routers only (in this case in core AS routers).

4.5.1 Tree-based Topology

The tree-based topology is illustrated in Figure 4.2. It consists of 5 consumer-facing routers

(each connected to 10 consumers), connected to a single backbone router. The topology also

contains one producer and one adversary15, both connected to the backbone router. This

topology is common in distributing content from a single producer.

15We use the scenarios where the adversary is connected to the same backbone router with the producer
in order to demonstrate how a strategically located adversary can easily distribute fake content into caches.
However, we skip the initial phase of the attack and start with caches pre-populated with fake content.

108

0 5 10 15 20 25 30
Time [seconds]

0

20

40

60

80

100

Pe
rc

ep
ta

ng
e

of
 B

en
ig

n
Co

ns
um

er
s

Re
ce

iv
in

g
Va

lid
 C

on
te

nt

b-NDN, MCP = 0%
m-NDN, MCP = 0%
b-NDN, MCP = 2%
m-NDN, MCP = 2%
b-NDN, MCP = 4%
m-NDN, MCP = 4%
b-NDN, MCP = 6%
m-NDN, MCP = 6%
b-NDN, MCP = 10%
m-NDN, MCP = 10%

Figure 4.3: Tree-based topology with various malicious consumer rates (b-NDN: basic NDN
with LRU cache replacement, m-NDN: modified NDN with routers implementing our ranking
algorithm, MCP: percentage of malicious nodes in consumer population)

We first pre-populate routers with 1000 versions of the same content. Only one of them

is valid, i.e. the pre-populated fake content rate is 99.9%. We also consider different rates

of malicious consumers, 0%, 2%, 4%, 6%, and 10%. Figure 4.3 shows the results. When

ranking is not used, the network can not reach a state where all benign consumers receive

valid content. The reason is that consumers can only exclude up to 100 content objects

in interest messages. When all benign consumers receive valid content, they stop issuing

interests. We call this state full convergence. For all malicious consumer rates simulated,

applying ranking always leads the network to full convergence, even though it takes longer

for higher malicious consumers rates.

4.5.2 DFN Topology

We now proceed to a more complex network topology. The DFN network, Deutsches

ForschungsNetz (German Research Network) [4, 5], is a German network developed and

deployed for research and education purposes. It consists of several connected routers po-

109

Consumer
Edge Router
Core Router

Figure 4.4: DFN topology - each edge router above is connected to 5 NDN consumers

0 10 20 30 40 50 60 70
Time [seconds]

0

20

40

60

80

100

Pe
rc

ep
ta

ng
e

of
 B

en
ig

n
Co

ns
um

er
s

Re
ce

iv
in

g
Va

lid
 C

on
te

nt

b-NDN, FCP = 80%
m-NDN, FCP = 80%
b-NDN, FCP = 90%
m-NDN, FCP = 90%
b-NDN, FCP = 99%
m-NDN, FCP = 99%
b-NDN, FCP = 99.9%
m-NDN, FCP = 99.9%

Figure 4.5: DFN topology results with different rates of pre-populated fake content objects
(b-NDN: basic NDN with LRU cache replacement, m-NDN: modified NDN with routers
implementing our ranking algorithm, FCP: percentage of pre-populated fake content objects)

sitioned in different areas of Germany, as shown in Figure 4.4. Our implementation of the

DFN network consists of 30 routers and 80 consumers.

We ran two sets of experiments.

1. All routers are pre-populated with different rates of fake content objects, 80% (1 valid

and 4 fake content objects), 90% (1 valid and 9 fake objects), 99% (1 valid and 99

fake objects), and 99.9% (1 valid and 999 fake objects). Figure 4.5 shows the results

of this experiment. The network reaches full convergence in all cases (with different

110

0 10 20 30 40 50 60
Time [seconds]

0

20

40

60

80

100
Pe

rc
ep

ta
ng

e
of

 B
en

ig
n

Co
ns

um
er

s
Re

ce
iv

in
g

Va
lid

 C
on

te
nt

b-NDN, MCP = 0%
m-NDN, MCP = 0%
b-NDN, MCP = 1%
m-NDN, MCP = 1%
b-NDN, MCP = 3%
m-NDN, MCP = 3%
b-NDN, MCP = 5%
m-NDN, MCP = 5%
b-NDN, MCP = 10%
m-NDN, MCP = 10%

(a) 99% pre-populated fake content objects (b-NDN:
basic NDN with LRU cache replacement, m-NDN:
modified NDN with routers implementing our rank-
ing algorithm, MCP: percentage of malicious nodes
in consumer population)

0 10 20 30 40 50 60 70
Time [seconds]

0

20

40

60

80

100

Pe
rc

ep
ta

ng
e

of
 B

en
ig

n
Co

ns
um

er
s

Re
ce

iv
in

g
Va

lid
 C

on
te

nt

b-NDN, MCP = 0%
m-NDN, MCP = 0%
b-NDN, MCP = 1%
m-NDN, MCP = 1%
b-NDN, MCP = 3%
m-NDN, MCP = 3%
b-NDN, MCP = 5%
m-NDN, MCP = 5%
b-NDN, MCP = 10%
m-NDN, MCP = 10%

(b) 99.9% pre-populated fake content objects (b-
NDN: basic NDN with LRU cache replacement, m-
NDN: modified NDN with routers implementing our
ranking algorithm, MCP: percentage of malicious
nodes in consumer population)

Figure 4.6: DFN topology results

convergence speed) except when ranking is not applied for pre-populated fake content

rate of 99.9%. This is again because consumers can exclude up to 100 content in

interests. Our implementation of the ranking algorithm using ndnSIM is not fully

optimized, which justifies heavy overhead imposed by the algorithm for 99.9% rate of

pre-populated fake content.

2. We vary malicious consumers rate (0%, 1%, 3%, 5%, and 10%) for two rates of pre-

populated fake content objects, 99% and 99.9%. Figures 4.6(a) and 4.6(b) show the

results. In Figure 4.6(a), the ranking algorithm allows faster full convergence, while

in Figure 4.6(b), full convergence can not be achieved without using the ranking algo-

rithm.

111

C0

C1

C2

C3

C4

C5

C6

C7

C8
C9

C10

C11

C12
C13

C14

C15

R0 R1

R2

R3
R4

R5

R6

R7

R8

R9

R10
R11

R12

R13

R14
R15

R16

R17

R18

R19
R20

R21

R22

R23

R24

R25

R26

R27

R28

R29
R30

R31

R32

R33

R34

R35

R36

R37

R38
R39

R40

R41

R42

R43
R44 R45

R46

R47

R48

R49

R50
R51

R52

R53

R54

R55

R56R57
R58

R59

R60
R61
R62

R63R64

R65

R66

R67
R68

R69

R70 R71

R72

R73 R74

R75

R76
R77

R78

R79

R80

R81
R82

R83

R84

R85
R86

R87
R88

R89

R90

R91

R92

R93
R94

R95

R96
R97

R98
R99

R100

R101

R102

R103

R104 R105

R106

R107
R108

R109
R110R111

R112R113
R114
R115

R116

R117

R118

R119
R120

R121 R122

R123
R124

R125
R126

R127
R128
R129
R130
R131

Figure 4.7: AT&T topology - each consumer above represents 10 NDN consumers

0 5 10 15 20 25 30 35 40
Time [seconds]

0

20

40

60

80

100

Pe
rc

ep
ta

ng
e

of
 B

en
ig

n
Co

ns
um

er
s

Re
ce

iv
in

g
Va

lid
 C

on
te

nt

b-NDN, FCP = 80%
m-NDN, FCP = 80%
b-NDN, FCP = 90%
m-NDN, FCP = 90%
b-NDN, FCP = 99%
m-NDN, FCP = 99%
b-NDN, FCP = 99.9%
m-NDN, FCP = 99.9%

Figure 4.8: AT&T topology results with different rates of pre-populated fake content objects
(b-NDN: basic NDN with LRU cache replacement, m-NDN: modified NDN with routers
implementing our ranking algorithm, FCP: percentage of pre-populated fake content objects)

4.5.3 AT&T Topology

We now assess the performance of the ranking algorithm in a much bigger topology, the

AT&T backbone network [54] shown in Figure 4.7. This network consists of over 130 routers

and 160 consumers.

We conducted two sets of experiments. The analysis is similar to that in Section 4.5.2.

112

0 5 10 15 20 25 30
Time [seconds]

0

20

40

60

80

100
Pe

rc
ep

ta
ng

e
of

 B
en

ig
n

Co
ns

um
er

s
Re

ce
iv

in
g

Va
lid

 C
on

te
nt

b-NDN, MCP = 0%
m-NDN, MCP = 0%
b-NDN, MCP = 1%
m-NDN, MCP = 1%
b-NDN, MCP = 3%
m-NDN, MCP = 3%
b-NDN, MCP = 5%
m-NDN, MCP = 5%
b-NDN, MCP = 10%
m-NDN, MCP = 10%

(a) 99% pre-populated content objects (b-NDN: ba-
sic NDN with LRU cache replacement, m-NDN: mod-
ified NDN with routers implementing our ranking al-
gorithm, MCP: percentage of malicious nodes in con-
sumer population)

0 10 20 30 40 50 60
Time [seconds]

0

20

40

60

80

100

Pe
rc

ep
ta

ng
e

of
 B

en
ig

n
Co

ns
um

er
s

Re
ce

iv
in

g
Va

lid
 C

on
te

nt

b-NDN, MCP = 0%
m-NDN, MCP = 0%
b-NDN, MCP = 1%
m-NDN, MCP = 1%
b-NDN, MCP = 3%
m-NDN, MCP = 3%
b-NDN, MCP = 5%
m-NDN, MCP = 5%
b-NDN, MCP = 10%
m-NDN, MCP = 10%

(b) 99.9% pre-populated content objects (b-NDN:
basic NDN with LRU cache replacement, m-NDN:
modified NDN with routers implementing our rank-
ing algorithm, MCP: percentage of malicious nodes
in consumer population)

Figure 4.9: AT&T topology results

1. We pre-populate routers with various ratios of valid to fake content objects, 80%, 90%,

99%, and 99.9%, and ran experiments with and without ranking. Figure 4.8 shows the

results.

2. All routers are pre-populated with either 99% or 99.9% fake content rates. Figures

4.9(a) and 4.9(b) show the results of this experiment for various malicious consumer

rates (0%, 1%, 3%, 5%, and 10%).

Results from simulations on the AT&T network topology show that the content ranking

algorithm improves quality of service and resilience of the network against content poisoning

attacks, even if caches of all routers in a relatively large topology are poisoned.

4.5.4 Performance Analysis

To facilitate content lookup, cache can be implemented as a hash table with content name,

except the last name component (the digest), serving as the key. Each key points to a priority

113

queue [111] where the first element contains the content with the highest rank. If an interest

does not carry an exclusion filter, content lookup requires O(1) operations. Otherwise, a

lookup takes up to O(k log n) operations (if implemented using maximum heap [35]), where

n is the number of content objects in the priority queue and k is the number of exclusions.

This is because the rank of each excluded content objects needs to be recalculated and the

priority queue needs to be rearranged. In terms of storage, less than 50 extra bytes per cache

entry is required to store parameters needed to calculate the rank according to Equation 4.7.

4.6 Content Trust in Practice

CCN was designed as a candidate next-generation Internet architecture. In order to provide

a smooth and successful transition path, it must contend with application-specific require-

ments, such as trust. In this section, we discuss how our trust architecture might be applied

in practice to mitigate content poisoning attacks. We start by identifying traffic types and

network topologies.

4.6.1 Traffic Types

We anticipate two main types of traffic.

Content Distribution

This corresponds to client-server communication which accounts for well over 90% of cur-

rent Internet traffic [17]. Since most requested content is static, creating secure catalogs is

straightforward. Consumers request catalogs and then use SCNs to request desired content.

We consider two common sub-types of content distribution traffic:

114

• Multimedia (not live) Streaming: A large content split into several segments with

different names (as described in Chapter 2). If a catalog containing SCNs of all seg-

ments is provided, consumers can use these names in subsequent interests to retrieve

all segments.

• Internet Browsing: We anticipate that most HTML files would fit into a single content

object [66]. A typical HTML file contains links to other static and dynamic content,

such as images, audio or other HTML pages (sub-pages). While rendering HTML

files, Internet browsers parse all reference links and download corresponding content.

Therefore, if an HTML file uses SCNs as references, it can be viewed and treated as a

catalog. Note that SCNs can only be used for static content, since the hash of dynamic

(e.g., generated upon request) content can not be known a priori.

Internet browsing provides a good example of content that can be requested by adhering to

IKB rule or using SCNs. Suppose that a web page A contains a reference link to sub-page

B, and this link is expressed using an SCN. Once a consumer requests and obtains page

A, the client browser can request B using the appropriate SCN in A. At the same time,

other consumers might wish to directly request page B. This can be done using the IKB

rule. Note that, for obvious reasons, SCNs can not be used with HTML pages (or any other

content) with circular references, e.g., A ↔ B.

Interactive Traffic

Another major traffic type is interactive communication, where content is generated in real

time, or on demand. Applications such as voice/video conferencing, remote terminal access

and online gaming fall into this category. Such applications generally benefit from network

caching only in cases of packet loss. Re-transmitted interests are likely to be satisfied by

the first hop router. Obviously, the use of large catalogs for interactive real-time traffic is

neither sensible nor feasible. Instead, this traffic should be handled using the IKB rule.

115

Figure 4.10: A simplified diagram of the Internet

4.6.2 Network Topologies

As mentioned in Section 4.2.3, not all CCN routers might be willing, or have the resources,

to adhere to the IKB rule. However, consumer-facing (edge) AS-s should configure their

border routers to use IKB. Figure 4.10 shows four AS-s: AS-1 and AS-4 are stubs while

AS-2 and AS-3 are transit. Stub AS-s can be seen as consumer-facing and transit as core

AS-s. We discuss how each content poisoning mitigation technique should be used in order

to achieve the goals set in Section 4.1.3.

Recall that the content ranking algorithm can only be used in NDN, and not in CCNx due

to the latter’s lack of exclusion filters. However, CCNx does not need to implement content

ranking, or any similar techniques, because it implements a more strict rule for satisfying

interests from the cache. Specifically, routers must not serve cached content objects unless

these objects are authentic, e.g., their signature is verified [142]. In other words, CCNx does

not allow benign routers to reply with fake content objects from their cache.16

16We do not consider the case of malicious routers replying with fake content and leave it as follow-on
work.

116

To minimize the effects of content poisoning attacks, at least AS-1 border router R2, and

AS-4 border router R11 should implement the IKB rule. This, however, does not guarantee

that poisoned content objects are not delivered to consumers if such objects are cached in

(or served through) R1 and R12. The adversary would be located inside AS-1 and AS-4,

e.g., Adv1 and Adv4. Therefore, these two routers should implement the content ranking

algorithm described above.

Moreover, if only R2 and R11 use the IKB rule, fake content can still be cached in routers

R3 → R10. As mentioned in Section 4.4, such content would consume cache storage, and,

bandwidth, before it gets detected and discarded. For instance, a fake content object cached

(and served) by R7, might travel all the way to R2 before being detected. These issues can

be avoided only by verifying content signatures, i.e. implementing IKB.17 If bandwidth is

more important than cache storage, all caching routers should implement content ranking.

Furthermore, attack impact varies based on adversary’s locations:

• Adv1 and Adv4: by continuously poisoning the caches of R1 and R12, adversary can

ensure that fake content is delivered to consumers if the two routers do not implement

any content poisoning mitigation methods.

• Adv2 and Adv3: can only poison (directly or indirectly) caches of R3 to R10, consuming

storage and bandwidth resources. Since caches are limited resources, fake content

objects can cause the eviction of valid ones.

Even though mitigation of content poisoning attacks is not free, IKB and content ranking

allow for a flexible trade-off between computational, storage, and bandwidth overheads at

different locations in the network.

17Even if content is requested using SCNs, malicious consumers can trigger caching fake content. However,
such content will never be delivered to benign consumers, assuming that they always request valid one.

117

Chapter 5

Accounting

As mentioned in Chapter 2, in-network caching reduces end-to-end latency and network

bandwidth utilization. Also, as discussed in Chapters 3 and 4 such benefits result in sig-

nificant privacy and security challenges. In this chapter, we address the specific problem

of accounting for content usage, which is complicated, in large part, by caching. Since an

interest can be satisfied by a router, it might not reach the producer. Consequently, pro-

ducers might only receive a small fraction of all interests for a given piece of content. At

the same time, the number, sources, and timing of interests represent important information

that could be needed by the producer for accounting purposes. Even if the timing and the

number of interests were somehow communicated to the producer, interest sources would

remain unknown since CCN inherently lacks consumer information, e.g., source addresses,

in interests.

Furthermore, if and when CCN is deployed in the real world, router cache space will likely

be treated as a valuable (and even premium) resource. Thus, a mechanism is needed for

reporting cache hits to content producers and router owners in order to inform them about

content usage. To be viable, such a mechanism must incur minimal bandwidth, computation,

118

and storage overhead. It also must be secure in order to prevent false cache usage reporting.

To this end, we design a secure lightweight network-layer accounting mechanism for CCN.

It is applicable to both CCNx and NDN1. Our contribution is three-fold:

• Identification of, and motivation for, features needed for CCN accounting and security

thereof.

• First comprehensive technique for content and cache usage accounting, with varying

levels of consumer, router, and producer involvement.

• Analysis of performance and security trade-offs.

5.1 Accounting in CCN

As mentioned earlier, router caches present a major challenge for accounting in CCN. In

particular, if interests are satisfied by caches, how can a content producer collect information

about the popularity of, or demand for, its content?

In this section, we discuss design elements for accounting in CCN. For the time being, we do

not take into account security or privacy considerations. Assuming benign (well-behaved)

consumers, routers, and producers, our initial goal is to determine the minimal functionality

needed by all CCN entities to facilitate correct accounting. In doing so, we consider three

types of accounting information:

• Individual information is tied directly to a specific consumer. An example might be

the number of times a particular consumer requested a particular content. It pro-

vides linkability between consumers and content they obtain. It also requires revealing

consumer identities, at least to the producer.

1Support for NDN requires minor packet format and protocol changes.

119

• Distinct information is functionally equivalent to individual information except that

consumer identities are not revealed.

• Aggregate information represents collective or combined values over a set of consumers.

For example, it might include the number of times a particular piece of content was

requested from a specific geographic location or from a particular ISP. Aggregate in-

formation enables some degree of consumer privacy.

We believe that these three types correspond to most accounting information needed in any

real-world CCN application and focus on them in the remainder of this chapter. We also

recognize that accounting should not be mandatory for all content. Some producers might

not care about the popularity of any of their content while others might need accounting

information only for some of their content. We refer to content for which producers desire

such information as accountable content.

Another important design dimension is whether accounting information is reported in real

time (online) or offline. In the latter case, a network management protocol can be envisaged

whereby an AS-level accounting server periodically collects cache hit logs from its routers and

reports the results to producers. This kind of accounting seems viable. However, it involves

a potentially significant delay in notifying producers about demand for their content. This

might be unacceptable for content for which real-time demand information is needed. Since

real-time accounting presents a more difficult challenge, we concentrate on it in the rest of

this chapter.

5.1.1 Counting Cache Hits vs. Content Requests

Another variable in supporting CCN accounting is exactly what is being counted: instances

of cache hits or instances of requested content being served to the consumer? A cache hit

120

Figure 5.1: Cache hits vs. content requests

occurs when a router finds requested content in its cache. We assume that accounting for

cache hits is only relevant for routers, i.e., network elements.2 An instance of content being

served occurs when a cache hit takes place and the content is actually delivered to a single

consumer.

It might seem that these two types of events are the same, i.e., a content is served once for

every cache hit and vice-versa. However, this is not the case in CCN. Whenever a router

receives an interest, it may choose to multicast (forward) it out on multiple interfaces. This

behavior is officially allowed since a router’s FIB can express multiple next hops for a given

name prefix. One practical reason for allowing it is to facilitate fast(er) content retrieval.

However, it also complicates accounting. Consider the scenario in Figure 5.1. Suppose that

a consumer’s interest for content C is received by router R1. The latter forwards it to two

upstream routers R2 and R3, based on its FIB. Both R2 and R3 have C in their respective

caches and each replies to R1 with its cached version. Assuming that R2’s copy of C is the

first to reach R1, the latter forwards C downstream and flushes the appropriate PIT entry.

When R3’s copy of C arrives, R1 discards it since it does not refer to an existing PIT entry.

If both R2 and R3 inform C’s producer P about a cache hit, P would incorrectly assume

that C was requested twice. Even though C is served twice by two distinct routers, a single

consumer received one copy of C.

2Accounting for cache hits in content stores or at producers themselves is out of scope.

121

In general, the number of cache hits might not match that of content requests. This occurs

because there is no way to distinguish among multiple interests issued for the same content.3

In other words, if consumers Cr1 and Cr2 issue interests for C at different times, their

interests would be identical. Moreover, even if C is not cached, i.e., interests for it reach P ,

and if Cr1 and Cr2 issue interests for C at roughly the same time, P would be unable to

distinguish between this case – when two consumers ask for C – and the case in the scenario

above – when one consumer asking for C and R1 decides to multicast the interest upstream.

Note that the number of cache hits is two in both cases, while the number of content objects

served is two and one, respectively.

The reason for supporting both types of accounting is intuitive: a producer might need

to know the exact demand for its content, whether on aggregate, distinct, or individual

basis. Separately, a producer might need to know which routers experience cache hits for its

content. The latter could be used to reconcile billing by the producer for cache usage.

Finally, even though accounting for cache hits and content requests is not the same thing,

we naturally would like to use the same mechanism as much as possible to provide both.

Therefore, in the rest of this chapter, and unless otherwise mentioned, we use the term

accounting to refer to both accounting for cache hits and content requests.

5.1.2 Accounting via Content Access Control

One potential accounting approach is to use encryption-based access control for content.

Suppose that producers encrypt all accountable content, and decryption keys – which, in

CCN, are represented as content objects with well-defined names – are configured not to be

cached (i.e., their ExpiryTime values are 0). Even if interests requesting such content are

satisfied from router caches, consumers would need to separately issue interests requesting

3NDN interests carry a random nonce used for interest loop detection, which can be helpful in this
distinction. However, CCNx interests do not carry nonces.

122

decryption key(s). Such interests would bypass router caches and reach the producers,

thereby enabling per-request accounting.

With content encryption, the desired type of accounting might dictate how key-requesting

interests should be generated. For example, in case of individual accounting, consumers can

include some kind of consumer-specific data in interests when keys are requested. Such data

allows producers to link these interests to specific consumers. However, if only aggregate

accounting is required, interests requesting keys do not have to carry any consumer-specific

data. Such interests need to carry some kind of a nonce so that the producer can distinguish

between the cases of (1) receiving two interests from two different consumers, and (2) re-

ceiving duplicates that stemmed from a single interest (issued by one consumer) which was

multicasted by some downstream router.

Accounting via content encryption has two primary advantages: (1) it is transparent to the

network and (2) it does not require any new features or message types. However, despite

its apparent simplicity, it is inefficient. All accountable content needs to be encrypted, and

keys need to be requested and distributed separately. Thus, content is obtained by issuing

at least two interests – one for the content and one for the key(s).

We believe that an ideal accounting mechanism should efficiently work for all accountable

content. That is, it should not require a consumer to issue more than a single interest for

accountable content. Also, content accounting should be distinct from content access control.

5.1.3 Accounting via Push Interests

The accounting approach proposed in this chapter is based on real-time reporting. The key

element is a new message type called a push interest, denoted as pInt. Its main purpose

is to inform the producer that its content has been requested, and a cache hit occurred.

123

Structurally, a pInt carries a name similar to a regular interest. However, the most important

distinguishing feature of a pInt is that, unlike a regular interest, it does not leave behind any

state in routers. A pInt referencing C is forwarded until it reaches the producer P , and no

information about pInt is retained by any intervening router. A router forwards a pInt just

as it forwards a regular interest with the exception that pInt messages are not multicast.

This restriction is necessary to prevent producers from receiving duplicate copies of the same

pInt.

A router R generates a pInt in two cases:

1. A regular interest for C is satisfied from R’s cache. R generates a pInt referencing C

and forwards it upstream towards P .

2. R receives a content C corresponding to a PIT entry. R forwards it on all downstream

interfaces listed in that PIT entry. However, before flushing the entry, R generates a

pInt that aggregates all collapsed interests. (These aggregation details are discussed in

Section 5.1.4.) Note that collapsed refers only to those interests that were not originally

forwarded upstream. This is because the interest forwarded upstream presumably

already reached P , or triggered its own pInt via case 1 above.4

In summary,

A pInt is generated when a (cached) content is used

to satisfy an incoming or a collapsed interest.

The above is summarized in Algorithm 3. In order for P to inform routers about what content

requires accounting, we also introduce a new content header flag ACCT, which reflects one of

the following:

4For example, suppose that R receives an interest for C on interfaces: 2, 3, 5, and 6. Regularly, only
the first one is forwarded, say, on interface 9. Others are collapsed into the same PIT entry. Now, when C
arrives on interface 9, it is forwarded on all 4 incoming interfaces. However, R generates a pInt that reflects
only three interfaces: 3, 5 and 6.

124

Algorithm 3 pInt-Generation

1: Input: C[N, ACCT], Int [N,PL], Rid
2: pInt.Name := C.N
3: pInt.Type := C.ACCT
4: pInt.Origin := Rid
5: if C from local cache then
6: pInt.Cdata := Int .PL
7: pInt.Count := 1
8: else
9: e = FindPITEntry(C.N)

10: for each i in e/{Int} do
11: pInt.Cdata := pInt.Cdata || i.PL
12: pInt.Count := pInt.Count + 1
13: end for
14: end if
15: Forward pInt according to the FIB

1. NONE: (default) no accounting information.

2. AGGREGATE: aggregate accounting information.

3. DISTINCT: distinct accounting information.

4. INDIVIDUAL: individual interest-level accounting.

Whenever a cache hit occurs, routers behave the same in cases 2, 3, and 4. The only difference

is when a content arrives and a router has a number of previously collapsed interests for that

content. In case 2, a router generates a pInt with the count of collapsed interests for a given

content. In cases 3 and 4, a router reports the actual interests, which can optionally be

bundled into a single pInt.

5.1.4 pInt Format and Features

We now describe pInt messages format which is very similar to CCNx interests described in

Section 2.1:

125

• Name: copied entirely from Name field in the interest (or PIT entry) that triggers a pInt.

• Type: indicates whether this pInt is for aggregate, distinct, or individual accounting.

• Origin: identifies the router that generates the pInt, e.g., the router’s prefix (if avail-

able) or public key digest.

• Count: set to 1 in the case of a cache hit, or the number of interfaces minus one on

which the content object was forwarded downstream, if interest collapsing occurred.

• Cdata: a random nonce or consumer-specific data used by producer for different pur-

poses based on the accounting type required (i.e., distinct or individual). If Count> 1,

Cdata is a sequence of Count consumer-specific data values culled from corresponding

interests. Such data can be carried in CCNx interest Payload field.

Semantics of the Cdata field depend on the type of required accounting information. We

discuss below consumer-specific data requirements for each accounting type. As stated above,

aggregate accounting for cache hits does not require Cdata to be present.

Aggregate

The problem in this type of accounting is that producers do not have the means to distin-

guish between the cases where received interests (or pInt messages) with the same name

are multicast by routers or generated by several distinct consumers. However, if consumers

include random nonces and timestamps as consumer-specific data, this distinction can be

achieved.

Distinct

Cdata needs to reflect the uniqueness of interests. This can be achieved via consumer-

provided nonce and timestamp combination. The nonce format is application-specific and

can range from a random number to the hash of the content name and the timestamp. Note

that the same knowledge provided to the producer in the distinct accounting case can also

126

be attained using aggregate accounting type if Cdata reflects the uniqueness of interests.

However, we keep the distinction between these two types for ease of classification.

Individual

Cdata needs to reflect identities of consumers that issued interests. This can take the form

of:

1. Consumer public keys (or prefixes) or their digests. This form reveals consumer iden-

tities to all network entities – not only to producers.

2. Group public keys or their digests. A group can be an organization, autonomous system

(AS), or a geographical region. In this case, the group identity is revealed rather than

that of individual consumers.

3. Unique consumer identifiers (i.e., pseudonyms). Although this does not violate con-

sumer anonymity, such identifiers need to be assigned to consumers by producers or

a trusted third party before any interests are issued. This form of Cdata also allows

interest linkability.5

4. Consumer identity (using any of the three previous forms) with nonces and timestamps.

This form of Cdata allows producers to know which consumers request what content,

as well as how many times such requests are made.

Each of the above incurs different overhead for consumers and producers. However, router

overhead is only slightly affected. This is because routers simply populate Cdata of generated

pInt messages using information contained in the Payload field of the corresponding interests,

regardless of how consumer-specific data is generated. In other words, routers are oblivious

to the accounting type used. Also, note that the choice of which form to use is an application-

specific issue. We do not mandate one technique.

5Interest linkability is defined as the ability of an eavesdropper (observer or adversary) to learn whether
two captured interests are issued by the same consumer.

127

5.1.5 Accounting Correctness

We define accounting correctness as follows.

Definition 5.1 (Correctness). An accounting technique is correct if it accurately reports

cache hit and content request information to the producer, assuming that all participants

faithfully follow the rules (i.e., no malicious behavior) and there are no transmission errors,

no packet loss, and no node failures that affect accounting-relevant traffic.

We also define probabilistically correct accounting as follows.

Definition 5.2 (Probabilistic correctness). An accounting technique is probabilistically cor-

rect if it is correct with a negligible probability of error, i.e., inaccurate or false information

is reported.

We now informally demonstrate correctness of each proposed accounting technique (individ-

ual, distinct, and aggregate) for the two cache hit and content request cases.

Cache Hit

A router R generates a pInt for every cache hit on accountable content objects. Since all

routers (including R) on the path to producer P forward pInt messages according to their

FIB entries, all such messages are guaranteed to be delivered to P . This provides accurate

cache hit counts for accountable content objects. This argument holds for all three types

of accounting. The only difference is that Cdata fields of pInt must contain appropriate

consumer-specific data in some accounting types.

Content Request

Although pInt messages provide correct individual, distinct, and aggregate accounting for

cache hits, they only offer probabilistically correct accounting for content requests. As stated

above, consumers can include nonces and timestamps in interest Payload. This informa-

tion would allow producers to distinguish between cases where received interests (or pInt

128

messages) with the same name are multicast by routers or generated by several distinct

consumers.

5.2 Security Considerations

Thus far, we assumed that all entities involved in accounting are benign. However, this

assumption is clearly unrealistic in practice. In this section, we identify requirements for

secure accounting in CCN. We also demonstrate that some attacks can not be prevented or

even detected without additional and non-negligible cryptographic overhead. Furthermore,

secure accounting involves a trade-off between security and overhead for consumers and

producers. As we show in this section, routers are unaffected.

5.2.1 Adversary Model

The anticipated adversary Adv is a malicious router generating pInt messages for bogus in-

terests when individual accounting is required. In other words, Adv tries to inflate individual

accounting information for both cache hits and content requests. For now, we assume that

consumers behave honestly. We consider malicious consumers later in Section 5.3.

For completeness, we identify certain other attacks and justify their exclusion from the

discussion below.

• A router that (1) does not generate pInt messages when necessary, or (2) generates

pInt messages without forwarding content downstream. Both cases can be reduced to

packet loss. We do not address these attacks since this kind of misbehavior is very

difficult to detect.

129

• A consumer that continuously generates interests to inflate accounting information.

If aggregate or distinct accounting is required, the producer would be unable to de-

tect such malicious behavior. On the other hand, if individual accounting is required,

consumer-specific data can be used to detect continuous requests. However, this sce-

nario can be reduced to Interest Flooding attacks [77], which is outside the scope of

this chapter. A similar argument applies to distinct accounting information.

• An external attacker controlling the network can eavesdrop on, drop, or replay packets,

including pInt messages. This attack is largely irrelevant if links are encrypted, which

is a realistic assumption for adjacent routers. Also, in most cases, consumers and

producers communicate to edge routers over secure link-layer channels.

• An adversary tries to inflate aggregate or distinct accounting information. This can

not be prevented deterministically due to the likely usage of multicast forwarding

strategies.

Based on these adversarial features, we only consider security of individual accounting in-

formation. We now define a secure accounting technique as follows.

Definition 5.3 (Correctness with adversary). An accounting technique is secure with respect

to Adv if it is correct and all Adv malicious behavior can be detected.

Strategies and requirements to combat this adversary are discussed in the following section.

5.2.2 Mitigating Forgeries and Replay Attacks

Section 5.1.3 mentioned several options for generating consumer-specific data. However, in

order to prevent inflation attacks, such data must be unforgeable and resistant to replay

attacks. We define secure consumer-specific data as follows.

130

Definition 5.4 (Secure consumer-specific data). Consumer specific data is secure if it can be

authenticated by at least the producer, and is neither forgeable nor subject to replay attacks.

Providing replay resistance can be accomplished if consumer-specific data carries a nonce

r and a timestamp t. Thus, secure consumer-specific data Sec-CrSD assumes the following

format:

Sec-CrSD =
[

CrSD||r||t, fk (CrSD||r||t||Int .N)
]

(5.1)

where CrSD is consumer-specific data formatted as described in Section 5.1.46, fk(·) is a

function that computes an authenticated integrity check using a key k. The interest name in

the fk(·) computation binds Sec-CrSD to the interest to which it is appended. This prevents

Adv from using the same Sec-CrSD for generating multiple pInt messages with different

names. fk(·) can be realized as a Message Authentication Code such as HMAC [106] (if

consumers share keys with producers), or a digital signature function. Each alternative has

well-known advantages and drawbacks. In addition to verifying fk(·), producers need to

maintain a list of all received nonces within the current time window, for each accountable

content.

Based on this discussion, we conclude that unforgeability and replay resistance can not be

achieved unless secure consumer-specific data is used. This is not possible with aggregate

or distinct accounting since consumer-specific data is not provided. One way to fix it is

to include Sec-CrSD in all interests regardless of accounting type required. However, this

introduces unnecessary overhead for both consumers and producers.

6Note that CrSD and Cdata are different. The former is generated by consumers and assigned to Payload

field of the interest, while the latter is a field in a pInt and may contain none or many CrSD values.

131

5.2.3 Consumer Anonymity

We now consider privacy issues. Ideally, Sec-CrSD needs to be opaque to all network entities,

except producers. Digital signatures, by their very nature, reveal the consumer’s identity

and MAC-s allow multiple interests to be linked since a key label must accompany a MAC

value in order for producer to identify the key to verify a MAC. Both cases are detrimental

to privacy.

We start by defining consumer-specific data indistinguishability, which is necessary to main-

tain anonymity among an arbitrary set of consumers.

Definition 5.5 (Consumer-specific data indistinguishability). Let Cra and Crb be consumers

who each generate an interest for the same C and let CrSDa and CrSDb be consumer-specific

data values for their respective interests. Let Adv be an eavesdropper (except C’s producer)

not directly connected to either Cra or Crb. Let the event of Adv learning the source of

CrSDa and CrSDb be denoted as: Advrev
(
CrSDa,CrSDb

)
= 1. These two interests are in-

distinguishable if the probability of Advrev
(
CrSDa,CrSDb

)
= 1 is no better than a random

guess. That is,

Pr
[
Advrev

(
CrSDa,CrSDb

)
= 1
]
≤ 1

2
+ ε(n),

for any negligible function ε and security parameter n.

We also assume that consumers know the producer’s public key pk before requesting content

(see Section 5.3). Let A-CrSD denote an anonymous consumer-specific data: A-CrSD =

Encpk (Sec-CrSD), where Encpk(·) is a public key encryption function using pk, and Sec-CrSD

is formed as defined in Section 5.2.2.

To prevent Adv from learning that multiple interests are generated by the same consumer,

their A-CrSD values should be indistinguishable. This can only be achieved if Encpk(·) is a

132

CPA-secure public key encryption scheme, i.e., secure against Chosen Plaintext attacks [96].

In some encryption schemes, this is done by mixing in a random number (nonce) with every

plaintext before encryption.

Theorem 5.1. Assuming a CPA-secure public key encryption scheme Encpk(·), A-CrSD for-

mat shown in Equation (1) guarantees indistinguishability of consumer-specific data with

overwhelming probability.

Proof. The proof of consumer-specific data indistinguishability follows from the proof of

CPA-secure public key encryption scheme [96]. We only prove that A-CrSD generation guar-

antees negligible probability of nonce collision.

We assume individual accounting, and that f is the frequency in which consumers send inter-

ests to a specific producer during a specific time window w, where each consumer generates

appropriate A-CrSD values in the interests. Let the number of interests sent be s = f × w.

We claim that the probability of any two A-CrSD-s in the set {A-CrSD1, . . . ,A-CrSDs} being

derived from colliding nonces is negligible in N , the length of the nonce in bits. Let this col-

lision event be denoted as Col(A-CrSDi,A-CrSDj) for i 6= j and 1 ≤ i, j ≤ s. The probability

of this event occurring can be computed according to the birthday paradox:

Pr
[

Col(A-CrSDi,A-CrSDj) = 1 ; i 6= j , 1 ≤ i, j ≤ r
]

= 1−
(

2N

2N
× 2N − 1

2N
× · · · × 2N − s+ 1

2N

)
= 1− 2N !

(2N)s (2N − s)!

= 1−
s! ·
(
2N

s

)
(2N)s

(5.2)

Note that Equation 5.2 assumes that s < 2N ; otherwise, the collision probability is equal to

1 according to the Pigeonhole Principle.

133

Since public key operations are relatively expensive, symmetric cryptography is the natu-

ral alternative, albeit, with its own problems. A-CrSD can be formed as: enck(Sec-CrSD),

where enck(·) is a CPA-secure symmetric encryption function and k is a consumer-producer

shared key. This would require additional operations for managing such keys. In order

for producers to quickly determine the key that correctly decrypts a given A-CrSD-s field,

consumers should include a cleartext key identifier (e.g., a key label), which clearly violates

interest indistinguishability. One way to avoid this exposure is for multiple consumers to

share the same key with the producer, e.g., based on location or time. An extreme option is

to maintain unique per-consumer keys without labelling and require the server to discover

the correct key by “brute force”. This poses some obvious issues, e.g., new and exciting DoS

opportunities.

5.3 Individual Accounting in Practice

So far, we made some assumptions in the context of individual accounting:

1. Consumers know what accounting information is needed in order to issue an interest

for a desired content object.

2. Consumers know the producer’s public key pk used to encrypt Sec-CrSD.

3. Consumers behave honestly, i.e., for content that requires individual accounting infor-

mation in CrSD, they supply correct required information.

The first assumption seems to be particularly problematic, especially, if a consumer has no

prior relationship with a producer. However, there are at least two ways for consumers to

learn what a producer expects in an interest. First, recall that CCN network-layer trust man-

agement, Chapter 4, requires the consumer to know the public key of the producer before

134

requesting content. This, in turn, means that the consumer must pre-fetch the producer’s

public key. It is easy to extend the producer’s public key certificate pk to include accounting

requirements for constructing interests for that producer’s namespace. In addition, catalogs

(or manifest [142]) can be extended similarly to contain accounting requirements. An al-

ternative is for a consumer to “blindly” issue a trial interest for some random content in

the namespace of a given producer. This interest would likely not adhere to the producer’s

accounting rules. In this case, the producer simply replies with a public key certificate that

includes its accounting requirements.

Without such techniques, a consumer can not be expected to provide specific information in

an interest. We, therefore, conclude that individual accounting necessitates an initial phase

whereby consumers learn producer’s CrSD requirements and pk for generating Sec-CrSD or

A-CrSD values in interests. This initial phase would address assumptions (1) and (2) above.

However, a misbehaving consumer can just ignore producer’s requirements and pull content

from router caches without providing correct accounting information to the producer, thus

bypassing the accounting mechanism.

The main problem is that routers have no means to validate Sec-CrSD fields that arrive

in interests referencing cached content. Allowing routers to do so is undesirable, because:

(1) at least one cryptographic operation per interest would be needed, and (2) producers

would need to inform routers about key(s) needed to validate Sec-CrSD, for each individually

accountable content. The former is a new expense and a DoS attack opportunity, while the

latter is a key management nightmare. Also, replay prevention would add further complexity.

We, therefore, conclude that assumption (3) is unrealistic in the presence of dishonest con-

sumers. Consequently, individual accounting should be handled at the application layer.

135

5.3.1 Recommendations

Based on the above discussion, we now present some recommendations for CCN accounting.

First, if individual accounting information is needed, producers must simply set all content

cache time to zero (0). This will force all interests to be routed to the producer. If an interest

for content that requires individual accounting is received and the required accounting in-

formation is missing, producers should reply with a NACK [55] indicating consumer-specific

data requirements for obtaining that content. The consumer can then re-issue an interest

with the correct information. Since producers process all interests before responding with

content, they can determine if a given interest for individual accountable content is valid

and thus detect consumer misbehavior.

For aggregate and distinct accountable content, consumers should always include a random

nonce in CrSD. If a router caches some content for which ACCT flag is AGGREGATE, CrSD can be

simply dropped when pInt messages are generated. Otherwise, if ACCT flag is DISTINCT, the

nonce must be copied into the pInt. This is a simple modification to the router pInt generation

procedure described in Algorithm 3 which yields insignificant overhead for consumers and

routers.

This simple policy can be extended to all interests. Since consumers are not generally

expected to know what type of accounting information is required, they can blindly generate

a nonce for each interest they issue. Routers would correctly propagate these nonces in pInt

messages to the producer according to the rule above. As previously noted, NDN already

supports default nonce generation in interests (for the purpose of interest loop detection).

CCNx, however, needs to be extended to satisfy this requirement.

136

5.4 Analysis and Experimental Assessment

In Section 5.1, we proposed two fundamental techniques for propagating accounting infor-

mation to producers: encryption-based and pInt-based approaches. The former technique

is attractive because it is entirely transparent to routers. Conversely, accounting based on

pInt messages requires routers to generate these messages and also forward them towards

producers using the same data plane logic as normal interest messages.

Consider a scenario with k consumers Cr1, . . . , Crk and a single producer P . Let [Cri, R1, . . . ,

Rl, P] be the path traversed by interests issued by Cri for accountable content C. Let Rc,

1 ≤ c ≤ l be the router nearest to Cri where C is cached. Let pl be the number of messages

traversing R1 − Rc path in one direction, and let pr be the number of messages traversing

the Rc − P path in one direction. Finally, let γ be the number of interests issued by all

Cri, i = 1, . . . , k, along the R1 − P path. Recall that encryption-based accounting requires

consumers to issue at least two interests: one for the content itself, and (at least) one for

decryption keys. The former traverses the R1−Rc path and the latter traverses the R1−P

path. Thus, pl = 4γ and pr = 2γ. In the pInt-based approach, a single interest is issued for

C on Cr − Rc path, then a pInt is generated at Rc and forwarded along Rc − P path. In

this case, pl = 2γ and pr = γ. Note that Rc = P is identical to the scenario where there are

no router caches and thus no pInt messages. This case performs worse than the pInt-based

variant since pl = 2γ and pr = 2γ; a single RTT from the Cri to P for C.

The differences in pl occur because, unlike interests, pInt messages elicit no response from the

producer. In fact, network overhead, in terms of the number of messages, of the encryption-

based accounting approach is at least twice that of the pInt-based approach. Meanwhile,

network overhead of the cacheless variant (which obviates the need for pInt messages and

accounting information) is more than in the pInt-based approach as well. Furthermore,

producers and consumers incur additional overhead due to encryption and decryption op-

137

1KB 2KB 4KB 8KB
Content data size

0

2

4

6

8

10

12

Ne
tw

or
k

ov
er

he
ad

 (%
)

3 nodes
4 nodes
5 nodes

Figure 5.2: Network overhead imposed by forwarding pInt messages

erations. Therefore, in the following experimental assessment, we focus on the pInt-based

accounting approach, since it is (a) more efficient and (b) proportional to the overhead

incurred by network entities in the encryption-based scenario. We assume that the pInt gen-

eration procedure can be performed in constant time by routers. We also assume that any

symmetric key management protocols are done offline and are therefore not part of real-time

communication.

If interests are satisfied from Rc’s cache, all upstream routers on the consumer-to-producer

path incur the overhead of forwarding pInt messages to the producer. Figure 5.2 shows this

overhead as a function of corresponding content size and the number of links between the

router generating the pInt message and the producer. This overhead is computed as the

ratio of extra bytes (due to forwarded pInt messages) traversing each link over the size of

the corresponding content object. The x-axis represents content data size, without including

the header. Also, we calculate the overhead in three line topologies with 3, 4, and 5 nodes,

thus, forming 2, 3, and 4 links, respectively. The first node is the consumer Cr and the last

node is P . For the purpose of this exercise, we assume the following:

138

• Any content requested by Cr can be satisfied by the first hop (consumer facing) router’s

(R) cache, i.e., cache hit rate at R is 100%. This accounts for the highest network

overhead since pInt must traverse all links (except one) connecting Cr with R.

• Router FIBs is pre-configured to forward all interests and pInt messages towards P .

• Interest, pInt, and content object headers only contain a name of length 40 bytes.7

Results show that as the size of content objects grows, the bandwidth overhead of pInt

messages decreases. This overhead would increase in complex topologies, e.g., k-ary trees

rooted at P . However, network overhead would incur a similar decline as the content object

size increases.

5.4.1 Message Count Overhead

To further understand the performance impact of pInt-based accounting in different topolo-

gies, we study the overhead incurred by each entity – consumer, router, and producer – as a

function of the distance from the producer. To do this, we implement a custom discrete-time

event-driven simulator that models a variety of path and binary tree CCN topologies. Con-

sumers are configured to issue interests for a single producer at a Poisson rate with mean A.

Names of each interest are uniformly sampled from a pool of M names. Each router invokes

the pInt-Generation procedure (shown in Algorithm 3) upon every cache hit. We place no

restriction on cache sizes since the set of possible content objects is small enough to fit within

any reasonably-sized cache. In addition, producers respond to interests with content objects

carrying fixed payload of 1MB.

We argue that the number of messages is indicative of bandwidth overhead incurred by pInt

messages. This is because the size of pInt messages is proportional to the size of interests,

7The average URL length in IRCache HTTP traces [8] is around 40 characters.

139

0 1 2 3
Hops from producer

0

500

1000

1500

2000
To

ta
l n

um
be

r o
f m

es
sa

ge
s

re
ce

iv
ed

Content Objects
Interests
Push Interests

(a) Path topology with 5 nodes (1 consumer, 3
routers, and 1 producer), A = 500 and M = 1000

0 1 2 3
Hops from producer

0

500

1000

1500

2000

To
ta

l n
um

be
r o

f m
es

sa
ge

s
re

ce
iv

ed

Content Objects
Interests
Push Interests

(b) Path topology with 5 nodes (1 consumer, 3
routers, and 1 producer), A = 500 and M = 10

Figure 5.3: pInt-based accounting overhead in networks with path topologies

even using secure consumer-specific data. Therefore, it is not the size of these messages that

is important, it is their quantity.

We study this overhead in networks with line and tree topologies. For simplicity, we restrict

our analysis to 5-hop lines and binary trees of height 5. By varying A and M , we show

how many messages of each type are processed by each entity as a function of the distance

from the producer. Figures 5.3 and 5.4 illustrate the results. The y-axis represents the total

number of received messages (content objects, interests, and pInt messages) as a function of

the number of hops from the producer. The node with hop distance 0 (the producer itself)

does not receive any content. Also, the node with hop distance 3 in line topology and 4 in

tree topology (the consumer facing router) does not receive any pInt. Also, as M decreases,

the likelihood of cache hits increases. This results in a clear increase in pInt processing at

each entity upstream from the cache hit location. For instance, when M = 10, approximately

99% of all messages processed by routers upstream of cache locations are pInt messages, in

both line and tree topologies.

140

0 1 2 3 4
Hops from producer

0

5000

10000

15000

20000

25000

30000

35000
To

ta
l n

um
be

r o
f m

es
sa

ge
s

re
ce

iv
ed

Content Objects
Interests
Push Interests

(a) Binary tree of height 5 (32 consumers, 30 routers,
and 1 producer), A = 500 and M = 1000

0 1 2 3 4
Hops from producer

0

5000

10000

15000

20000

25000

30000

35000

To
ta

l n
um

be
r o

f m
es

sa
ge

s
re

ce
iv

ed

Content Objects
Interests
Push Interests

(b) Binary tree of height 5 (32 consumers, 30 routers,
and 1 producer), A = 500 and M = 10

Figure 5.4: pInt-based accounting overhead in networks with tree topologies

The interest request rate is highly dependent on the type of application. High request rates

for popular content, which is likely to be cached, will lead to a proportionally high number

of pInt messages propagating towards the producer. If interests are issued for unpopular

or uncached content, then approximately the same number of interests will be propagated

upstream. In other words, from the producer’s perspective, the sum of interests and pInt

messages will equal the total number of content requests from all consumers, i.e. the producer

overhead is linear in the number of content requests. The difference in these two cases is

that pInt messages are typically smaller in size than interests.

5.4.2 Router Overhead

To measure router overhead due to generating and forwarding pInt messages we extended

ndnSIM 2.0 [127] – an implementation of NDN architecture as an NS-3 [15] module for

simulation purposes – to support pInt messages. Using this modified architecture we ran

two sets of experiments using the DFN and AT&T topologies presented in Chapter 4.

141

0 200 400 600 800 1000

Simulation Time (sec)

0.0

0.5

1.0

1.5

2.0

2.5
R

ou
te

rs
pI

nt
G

en
er

at
io

n
an

d
Fo

rw
ar

di
ng

D
el

ay
(m

se
c)

No pInt, Cr = 80

pInt, Cr = 80

No pInt, Cr = 160

pInt, Cr = 160

No pInt, Cr = 320

pInt, Cr = 320

No pInt, Cr = 640

pInt, Cr = 640

(a) DFN topology

0 200 400 600 800 1000

Simulation Time (sec)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

R
ou

te
rs

pI
nt

G
en

er
at

io
n

an
d

Fo
rw

ar
di

ng
D

el
ay

(m
se

c)

No pInt, Cr = 160

pInt, Cr = 160

No pInt, Cr = 320

pInt, Cr = 320

No pInt, Cr = 640

pInt, Cr = 640

No pInt, Cr = 1280

pInt, Cr = 1280

(b) AT&T topology

Figure 5.5: pInt messages generation overhead at routers

In all experiments, consumers issue interests at a rate of 10/sec for the same content with

the name /prefix/A/00. To capture the worst-case scenario, with the maximum number of

pInt messages, we disable interest collapsing and set the ExpiryTime to the simulation time

to ensure that this content is cached at routers for the duration of the simulation. This

forces routers to generate one pInt for every cache hit, resulting in the maximum number of

pInt messages.

We measure router overhead compared to the baseline case where pInt messages are not

generated. Figure 5.5(a) shows this overhead in the DFN topology parameterized by the

number of consumers connected to edge routers: 80, 160, 320, and 640. Even with 640

consumers, the overhead for an average router is negligible. Figure 5.5(b) shows the same

overhead in the AT&T topology. In case of 1, 280 consumers, routers incur 15% overhead,

which we consider to be tolerably low.

142

Chapter 6

Secure Fragmentation

One issue that straddles networking (specifically, packet forwarding) and security is frag-

mentation of large packets. Originally present in IPv4, intermediate fragmentation was

deprecated in IPv6 for a number of reasons, many of which were identified in [98], e.g.,

router overhead and code complexity. Also, there have been attacks that took advantage

of IPv4 reassembly [208]. Thus, eschewing fragmentation made sense for IPv6. However,

the same might not hold for all network architectures. We show in Section 6.2 that, for

some different types of networks, such as CCN, fragmentation is sometimes unavoidable and

might even be beneficial. Furthermore, in-network caching complicates fragmentation and

reassembly of content objects. Routers should ensure the authenticity and integrity of all

passing fragments before caching them, separately or as a whole. This is not an issue in

IPv4-based networks since fragments reassembly is deferred to end-hosts.

This chapter constructs a secure fragmentation scheme which addresses several important

security and efficiency issues. Its contribution is two-fold:

First, we discuss, in detail, numerous issues related to fragmentation of both interest mes-

sages and content objects in CCN and arrive at the following conclusions:

143

• Interest fragmentation is unavoidable: if encountered, hop-by-hop reassembly is re-

quired.

• Content fragmentation is similarly unavoidable.

• Path Maximum Transmission Unit (MTU) discovery helps, but does not obviate the

need for fragmentation.

• Intermediate reassembly is viable but buffering can be costly and latency is problem-

atic.

• Intermediate re-fragmentation is also unavoidable for content fetched from router

caches.

• Reconciling cut-through forwarding of fragments (no intermediate reassembly) with

content authentication is possible in an efficient manner.

Second, we construct a secure fragmentation and reassembly method for CCN, called Frag-

mentation with Integrity Guarantees and Optional Authentication (FIGOA). It supports

fragmentation of content packets at the network layer and cut-through switching in routers

by avoiding hop-by-hop fragmentation and reassembly, thus lowering end-to-end delay.

FIGOA is fundamentally compatible with the CCN’s tenet of not securing the channel but

rather the content flowing through it. As its basis, FIGOA employs a delayed authentication

method similar to [192], which allows routers to efficiently verify signed content based on (out-

of-order) arriving fragments. In the event that a given content ultimately fails either integrity

or authenticity checks, reassembly and eventual delivery of corrupt content to consumers is

prevented.

However, even though cut-through switching reduces latency, it allows fragments to be tem-

porarily stored in routers awaiting verification by FIGOA. This might result in exhausting

144

router resources if fragment-drop rate increases. Therefore, routers adaptively set timeouts

for temporarily stored fragments. This issue is not discussed further, as it is outside the

scope of this chapter.

6.1 Fragmentation Synopsis

We define fragmentation as a means of splitting large packets into smaller ones, at the

network layer, independent of the producer and without changing any actual content. This

is in contrast with segmentation, where a producer splits a large content object into smaller

ones, signing and naming each separately. TCP/IP has an analogous dichotomy: TCP

segments a byte stream into IP packets, whereas, IPv4 fragments IP packets into smaller

packets that fit into a link MTU.

Since the late 1980s, network-layer fragmentation has been widely considered to be a headache

and something to be avoided, based primarily on the IPv4 experience [98]. We briefly discuss

pertinent IPv4 fragmentation concepts below.

Packet fragmentation is not a singular concept; it can be divided into two types: source-based

and network-based. Source-based fragmentation is performed exclusively by the sender and

is relatively simple. Assuming knowledge of the MTU for a given path to the destination,

the source can fragment a packet with almost no fear that further fragmentation might be

encountered along the path.1 Knowledge of the MTU does not come for free; an MTU discov-

ery protocol is needed, e.g., [128]. Also, the entire premise of source-based fragmentation is

questionable: Why should the source fragment a large IP packet instead of simply “segment-

ing” it into a sequence of separate IP packets [109]? Source-based segmentation often allows

for more efficient use of smaller datagrams; for example, segmented TCP datagrams can be

1Dynamic routing in IP may cause successive packets to take different paths, affecting the source’s per-
ceived MTU.

145

individually acknowledged, whereas a larger TCP segment split using IP fragmentation can

only be processed as a whole by TCP.

Network-based fragmentation requires routers to support extra functionality (i.e., additional

code) which entails appreciable processing overhead [98]. Having to fragment a packet takes

a router off its critical path and can thus cause congestion; this can also be exploited as a DoS

attack. Nevertheless, at a conceptual level, it can be claimed that intermediate fragmentation

offers better bandwidth utilization than its source based counterpart, or no fragmentation

at all.

Further issues are prompted by reassembly of fragments. In IPv4, reassembly takes place

only at the destination. Each IP packet is allocated a buffer that stores fragments that have

arrived thus far (possibly out-of-order). Once all fragments are received, the packet is phys-

ically reassembled and passed on to the upper layer. This seemingly simple procedure has

been a source of many attacks and exploits [208]. Reassembly by intermediate hops/routers

is not viable in IP since fragments of the same packet are not guaranteed to follow the same

path.

6.2 Fragmentation in CCN

Both CCNx and NDN do not provide explicit support for cut-through fragmentation. In

fact, NDN only provides hop-by-hop fragmentation with reassembly [24]. However, the

current NDN implementation, which runs as part of the NDN testbed [14], is implemented

as an overlay on top of TCP or UDP. In this setup, fragmentation is handled by either (1)

transport layer protocols, e.g., TCP segmentation, or by (2) network layer protocols, e.g., IP

fragmentation. Moreover, if NDN is running directly over the link layer, protocols such as

146

Table 6.1: Fragmentation terminology

Term Description

MTU Largest unit (packet) size for network-layer transmission
over a given link between two adjacent nodes.

Content fragment (CF) A unit of CCN network layer transmission; content fragment
is the same as content object if the latter fits within the MTU
of a link between two adjacent routers.

Segmentation A process of partitioning large content into separate content
objects by explicitly naming and signing each one. Can be
performed only by a producer of content.

Fragmentation A process of splitting an (already signed and named) content
object into multiple content fragments. It can be performed
by a producer, a router or any other CCN entity that pro-
duces, stores or caches content.

Re-fragmentation A process of splitting a fragment of a content object into
multiple fragments. Sometimes it is referred to as inter-
network fragmentation [98]. Re-fragmentation can be per-
formed by a router.

Reassembly A process of re-composing a content object from its frag-
ments. It can be performed by a consumer or a router (in
case of intermediate reassembly).

Fragment Buffering A process of maintaining a stash of fragments until complete
packet reassembly becomes possible.

Cut-Through Switching A process of forwarding of individual content fragments
without reassembly.

NDNLP [180] can be used to handle fragmentation. Regardless of all their claimed benefits,

the main drawback of these methods is that they all require reassembly at every hop.

The rest of this section discusses certain factors motivating fragmentation in CCN. Using

the terminology presented in Table 6.1, fragmentation is considered in the context of interest

messages and content objects, respectively.

6.2.1 Fragmentation of Interests

As discussed above, an interest message carries the name of content requested by the con-

sumer. CCN does not mandate any confidentiality, integrity or authenticity for interest

147

packets. Due to no limitations on the length of content names, it is quite possible that an

interest packet carrying a very long name might not fit into a network-layer MTU, thus

prompting the need for source-based and/or intermediate fragmentation. Fortunately, this

does not pose any real challenges, since the “design space” of interest fragmentation is very

confined. Specifically, we claim the following:

If interest packets are fragmented and, possibly re-fragmented, hop-by-hop (intermediate)

reassembly of fragmented interest packets is unavoidable.

The intuition behind this claim is obvious: each router that receives an interest must search

its PIT, cache, and/or FIB using the name carried in said interest. If the name itself spans

multiple fragments which are processed independently without reassembly, such lookups are

infeasible.

Furthermore, since the consumer issuing an interest has no a priori knowledge of the smallest

MTU on the path to the closest copy of requested content, it can not pre-fragment an interest

in order to avoid further fragmentation by intermediate routers, unless there is a well-defined

and globally-accepted minimum MTU for CCN interests.

For the remainder of this chapter, we assume intermediate fragmentation coupled with in-

termediate reassembly for interests. The remaining discussion of fragmentation is limited to

CCN content objects.

6.2.2 Fragmentation of Content

Recall that CCN mandates each content to be signed by its producer. This means that,

in principle, any CCN entity, whether router or consumer can check content integrity and

148

authenticity using the producer’s public key.2 The public key can be either referred to by

name in the content header, or embedded within the content.

Consequently, in order to abide by CCN tenets, fragmentation must not preclude routers

from verifying signatures, i.e., checking authenticity and integrity of content. This speaks in

favor of either: (1) no intermediate fragmentation at all, or (2) hop-by-hop (intermediate)

reassembly.

Producer-based Fragmentation or Segmentation

At a first glance, there seems to be no reason for a content producer to fragment large

content. Instead, it can simply segment it into individually named and separately signed

content objects. This segmentation approach is sensible for content meant to be pushed

(e.g., email) or generated dynamically, e.g., in response to a database query. The segment

size can be determined from an MTU discovery protocol (as described below). This would

ensure no intermediate fragmentation.

However, for content that is meant to be pulled (distributed), a producer may benefit from

signing and naming it once and not worrying about repeating a (possibly expensive) segmen-

tation procedure each time it receives an interest for the same content. In this case, when an

interest arrives, the producer may choose to fragment a previously produced content object.

This entails no real-time cryptographic overhead. Alternatively, a producer could choose

to segment content using the smallest MTU of all of its interfaces, thus incurring even less

processing at interest arrival time.

An important issue is content header overhead incurred when generating small-size segments.

Segmenting a large object into many MTU-sized segments requires each to have its own

header, dominated by the Signature and related fields.

2Content signature verification is mandatory for consumers and optional for routers as discussed in Chap-
ter 4.

149

8KB 32KB 128KB 512KB 2048KB
Size of initial object before segmentation

125

130

135

140

145

150

155

Pe
rc

en
ta

ge
 o

ve
rh

ea
d

du
e

to
 s

eg
m

en
ta

tio
n

RSA-1536
RSA-2048

Figure 6.1: Byte count overhead for small signed segments

Without getting into details of CCN signature format, Figure 6.1 shows the overhead of

segmenting larger objects down to MTU size. We use a standard 1, 500-byte link MTU and

SHA-256 as the hash algorithm. We considered both RSA-1536 and RSA-2048 signatures.

The Signature field contains 12 bytes of fixed overhead (headers) and the actual signature

bits (192 bytes for RSA-1536, 256 bytes for RSA-2048). However, estimating the exact size

of the signature-related fields is more complex. This is because the KeyName field, can be

of an arbitrary size. Moreover, if the content carries the actual public key or a certificate

(using the PublicKey and Certificate fields respectively), its size can be very large. For

now, we assume a small 20-byte KeyName. Figure 6.1 shows that there is a definite penalty

for segmenting at the producer. Even in the most favorable case (8KB data objects and

RSA-1536), over 30% of the bits are wasted on redundant information. As we move to larger

objects, this overhead can grow to 50%.

Whither Intermediate Fragmentation

Regardless of whether a producer segments or fragments content, intermediate fragmentation

can not be avoided or ruled out, since CCN does not mandate a global minimum MTU. Even

if it existed, segmenting content to adhere to this MTU might be very wasteful. This is due

to poor bandwidth utilization on links that have higher MTUs and increased overhead due to

150

Figure 6.2: Intermediate re-fragmentation simple topology

the costs of signature generation by producers and verification by consumers and, optionally,

by routers.

Another possibility is to introduce an MTU discovery method, whereby, an interest traveling

towards requested content would carry a new field reflecting the smallest MTU (µMTU)

discovered thus far on its path.3 This is a viable and lightweight approach, particularly

because a content must traverse, in reverse, the very same path taken by an interest for that

content. Hence, when the first entity that stores, caches, or produces content receives an

interest, it can use µMTU to fragment the replied content (or segment it, if this entity is

the producer). Note that “entity” could encompass: (1) an application-level repository that

only stores content, (2) a router that caches content, or (3) a producer that generates its

own content. This way, fragmentation would occur only once per interest.

Unfortunately, fragmentation via interest-based µMTU discovery does not eliminate the need

for re-fragmentation. Consider the topology in Figure 6.2, with two consumers, one router,

one producer publishing content C, and the MTU values shown.

1. Consumer Cr1 sends interest Int1 for C to router R.

2. R receives and marks Int1 with µMTU = MTU(R→Cr1) (MTU corresponding to the

R− Cr1 link). It then creates a PIT entry for Int1.

3. R forwards Int1 to the corresponding producer P .

3This is actually the MTU of the opposite link direction from the direction the interest traveled since
links may have asymmetric MTUs.

151

4. Since MTU(P→R) > µMTU(R→Cr1), P does not change µMTU in Int1.

5. P immediately satisfies Int1, fragmenting C according to µMTU.

6. Meanwhile, between Step 3 and now, consumer Cr2 issues interest Int2 and forwards

it to R.

7. R receives Int2 and marks it with MTU(R→Cr2) where MTU(R→Cr2) < µMTU. Then, R

collapses Int2 into the existing PIT entry for Int1. At this time R is buffering fragments

which have arrived from P (not all fragments of C might have arrived).

8. R partially satisfies Int2 using fragments available in the buffer, and previously for-

warded to Cr1. These fragments have to be re-fragmented with MTU(R→Cr2). Any fur-

ther fragments which arrive from P should also be re-fragmented byR using MTU(R→Cr2)

and sent to Cr2.

Despite the fact that µMTU discovery does not eliminate re-fragmentation, it is practically

free in terms of extra processing and bandwidth overhead. More importantly, it results in

less re-fragmentation, since it assures that re-fragmentation occurs at most once for each

collapsed interest at each intermediate router. This can be particularly advantageous in the

case of monotonically decreasing MTUs where re-fragmentation must occur at each hop.

With µMTU, this is curtailed at the source of content, which is either the producer or some

intermediate router, due to pre-fragmentation.

6.2.3 Considering Intermediate Reassembly

We now discuss intermediate reassembly, motivated by at least two factors. First, we con-

sider the case of increasing MTUs on links that compose the reverse path taken by content

fragments on the way to the consumer. If MTUs increase monotonically, it might make

sense to reassemble fragments (at least partially) to obtain better bandwidth utilization.

152

However, this benefit is arguably outweighed by reassembly costs, i.e., processing, memory,

and code complexity in routers. The second factor is security. If a fragment does not carry

the content producer’s signature, how can a router check its authenticity? As mentioned

earlier, CCN stipulates that routers, though not required to do so, must be able to verify

content signatures.

Hop-by-hop reassembly of content fragments would clearly solve the problem and address

both factors mentioned above. With it, a router would receive fragments in arbitrary order

and neither cache nor forward them until all fragments arrive. It would then reassemble

them and verify the signature (see Section 6.3.5 for more details).

The main problem with hop-by-hop reassembly is the significant increase in end-to-end

latency, resulting in lower throughput for adaptive algorithms such as TCP. Latency accu-

mulates at each hop, since all fragments need to be reassembled and then re-fragmented for

transmission. The alternative is cut-through fragment forwarding, where each fragment is

forwarded upon arrival.

If multiple flows are passing through the router, the fairest distribution of latency overhead

is to interleave fragments, as in Multi-PPP Link Fragmentation and Interleaving (MLPPP

LFI) [119]. This interleaving causes significant latency between consecutive fragments of an

object, which grows with the number of simultaneous flows. Latency accumulates at each

hop, since all fragments need to be reassembled and then re-fragmented for transmission.

We attempt to evaluate the benefits of cut-through fragment forwarding by considering a

simple topology with a linear 8-hop path with 100 Mb/s links. Each link accumulates 10ms

of latency, ignoring intra-hop and queuing delays. We assume 8, 400-byte content objects

split into 7 fragments of 1, 300 bytes each.

Table 6.2 shows the slowdown caused by intermediate reassembly as each node waits for all

fragments of an object, for varying numbers of parallel flows (which controls the amount of

153

Table 6.2: Latency due to per-hop content reassembly

Number of flows
5 10 20 30 50 100

Inter-fragment gap (ms) 0.52 1.04 2.08 3.12 5.20 10.4

First-to-last fragment gap (ms) 3.22 6.34 12.58 18.82 31.30 62.50

E2E latency: reassembly (ms) 105.79 130.75 180.67 230.59 330.43 580.03

E2E latency: cut-through (ms) 83.22 86.34 92.58 98.82 111.30 142.50

Reassembly slowdown %-age 127.12 151.43 195.14 233.34 296.87 407.03

interleaving). The inter-fragment gap is the time elapsed between consecutive fragments of

an object, caused by fragments of other objects being interleaved. The first-to-last fragment

gap is the time elapsed between the arrival of the beginning of the first fragment and the

end of the last fragment. E2E latency: reassembly is the total latency for each content

object, with intermediate reassembly. E2E latency: cut-through is the total latency in case

of content fragmented at the first hop and all fragments cut-through forwarded with no re-

fragmentation or reassembly in route. Finally, Reassembly Slowdown shows the extra cost of

reassembling and re-fragmenting at every hop, as compared with cut-through forwarding.

Figure 6.3 shows the evolution of increased latency for various object sizes and fragment

counts. Using the aforementioned 8-hop topology, we vary the number of flows on each link.

Two links (close to the ends) have 10 flows across them, two links have 20 flows, two links

have 50 flows, and the two core links have 100 flows. The graph shows that even a small

number of fragments can significantly increase latency over commonly seen path lengths and

flow counts. It takes only 6 fragments per object to double end-to-end latency of hop-by-hop

reassembly when compared to cut-through forwarding of fragments. This clearly shows that

any fragmentation scheme that requires hop-by-hop reassembly of every content object (as is

the case today with CCNx [142] and NDNLP [180]) incurs severe penalties. We believe that

fragments must be forwarded in a cut-through fashion; consequently, our scheme implements

this feature.

154

1 2 3 4 5 6 7 8 9 10
50

100

150

200

250

300

350

400

450

Number of fragments per object

E
n
d
-t
o
-e
n
d
la
te
n
cy

(m
s)

Hop-by-hop reassembly
Cut-through fragment forwarding

Figure 6.3: Latency with varying fragment counts per object

At this point, it is worth asking: should routers perform reassembly and verify signatures?

We believe that it does not make much sense for backbone routers to do so since potential

attacks are not likely to originate in the backbone, but rather at the edges of the Internet.

As described in Chapter 4, signature verification at stub AS (ingress) routers is more appro-

priate, e.g., because of policy dictating that no fraudulent content must reach consumers.4

Also, stub AS egress routers might reassemble fragments and verify signatures if there is a

policy disallowing any fraudulent content to exit the AS, e.g., for reasons of liability.

The above discussion yields a trivial observation that reassembly implies the ability to verify

signatures. However, it is unclear whether signature verification implies the need for reassem-

bly. This triggers the following challenge which we attempt to address in the remainder of

this chapter:

If content objects are fragmented (and, possibly re-fragmented), and intermediate reassembly

is not viable, can routers still check content authenticity?

In other words, if verifying integrity/authenticity is the main reason for intermediate re-

assembly, is there a way to obtain the former while avoiding the latter?

4Even though CCN stipulates consumer-based signature verification.

155

6.2.4 Fragment Delivery Order

One important issue relevant to intermediate reassembly is whether fragments are always

delivered in order of transmission between any two adjacent CCN routers.

Clearly, reassembly is easier if ordered delivery can be guaranteed. In a hypothetical network

setting where CCN is universally deployed directly on top of the MAC layer, ordered delivery

of content fragments might be a reasonable assumption.5 However, certain connectivity and

communication choices make ordered delivery hard to guarantee. For instance, if adjacent

routers support multiple/parallel physical links with variable data transfer rates, it is possible

that an earlier-transmitted fragment is received after a later-transmitted one. Also, an error

on one of the links might cause the same situation even if link speeds are comparable. Even

without multiple links, if pipelined data-link layer transmission is used, especially over a

wireless channel, one fragment could be corrupted and discarded and the next one could be

received intact, resulting in the latter being received first.

In case where CCN is deployed as an overlay on top of IP, and not directly on top of the

MAC layer, out-of-order fragments delivery is also possible. This is because two adjacent

CCN routers might have multiple IP routers between them. Since IP does not guarantee

ordered delivery of packets, it is possible for two adjacent CCN routers to receive fragments

out of order.

6.2.5 Incremental or Deferred Fragment Caching?

Recall that router-based content caching is not, strictly speaking, a hard requirement. How-

ever, it is expected that each CCN router will maintain a cache of a certain size.

5All content fragments traverse, in reverse, the very same path taken by an interest.

156

A router that employs intermediate reassembly can defer the decision to cache content until

it receives all fragments and, optionally, verifies overall content integrity and/or authenticity.

Whereas a router that employs cut-through switching of individual fragments has a choice

to either: (1) cache fragments incrementally as they arrive, or (2) defer caching (i.e., buffer

fragments) until all fragments arrive and their overall content integrity and/or authenticity

is verified. Assuming that most content is authentic, the former optimizes the common case

of quickly caching the last fragment once optional security checks are performed. On the

other hand, incremental caching may complicate matters, since it might, depending on the

specific cache architecture, involve non-contiguous caching of related fragments.

If deferred caching is used, another fragmentation- and caching-related issue arises: how

to store fragments. One possibility is to store them in the same form they arrive. This

might work if no re-fragmentation is performed locally. Otherwise, it might make sense to

store fragments in the form they are forwarded. This becomes more complicated in case of

collapsed interests, i.e., when content needs to be forwarded out on multiple interfaces with

different MTUs. Another approach would be to proactively re-fragment cached fragments for

all possible link MTUs on the router. Pre-fragmentation would reduced delay at the cost of

additional cache storage space. We believe this technical issue deserves further consideration,

which is beyond this scope of this chapter.

6.3 Secure Fragmentation

This section describes a scheme called FIGOA: Fragmentation with Integrity Guarantees and

Optional Authentication. It supports arbitrary intermediate fragmentation [98] of content

while preserving security and not requiring intermediate reassembly before forwarding all

fragments.6 FIGOA does not rely on in-order arrival of fragments, nor does it mandate

6A variant of FIGOA can be used in conjunction with intermediate reassembly, with the key advantage
of faster cryptographic processing.

157

any type of fragment caching strategy. It is primarily geared for routers that support cut-

through switching and maintain dedicated storage for buffering content fragments, distinct

from the cache. While cut-through fragment switching is generally beneficial, it complicates

signature verification, as discussed in Section 6.2.3. We address this problem by using delayed

authentication (DA). In addition, FIGOA allows free mixing of routers that do not perform

intermediate reassembly with those that do.

6.3.1 Delayed Authentication

Delayed authentication was first introduced in [192]. Its goal was to “reconcile fragmenta-

tion and dynamic routing with network-level authentication in IP gateways.” The essence

of delayed authentication is that a given packet’s authenticity can be obtained from the

authenticity of its fragments. Packet authentication is computed incrementally as individ-

ual fragments are received (possibly out of order), processed and forwarded by a router.

This requires a queue for each partially received packet that maintains the current state of

partial verification. For every fragment, incremental verification is performed, queue state

is updated, and the fragment is forwarded. Upon receipt of the final fragment (called a

“hostage”), the router completes verification. If it succeeds, this fragment is forwarded.

Otherwise, it is discarded along with the entire queue. The end-result is that the destination

receives the packet in its entirety only if it is verified by the router.7

The main differences between delayed authentication in its original IPv4 context [192] and

the proposed use in CCN are as follows:

• Symmetric routing: unlike IP, where fragments of the same IP packet might travel

via different paths, fragments of the same CCN content are guaranteed to traverse the

7Recall that, in IPv4, the destination must flush all fragments of a packet that it can not reassemble,
either due to a timeout or other errors.

158

same set of CCN routers. This results in much higher probability of ordered fragment

delivery and faster timeouts in cases of lost or corrupted fragments. Note that it is the

responsibility of consumers to re-request the entire content in case of lost or corrupted

fragments.

• Not just ingress routers: delayed authentication was initially designed for ingress

routers (i.e., border routers of the destination AS). In CCN, any intermediate router

can unilaterally choose to perform delayed authentication.

• Possible intermediate reassembly: in IP, only the destination reassembles frag-

ments, whereas, any intervening router can decide to reassemble whether or not it

decides to do cut-through forwarding.

• Signatures instead of MACs: delayed authentication was initially proposed for

authenticating IP packet traffic flowing between two hosts (in two stub AS-s) that share

a symmetric key. Message Authentication Codes (MACs) were used for incremental

fragment authentication. In CCN, signatures are used to ascertain content authenticity.

6.3.2 Hash Functions

The last item above – the use of signatures – is what most distinguishes delayed authentica-

tion in CCN from its IP counterpart. CCN routers do not use symmetric cryptography for

packet authentication. Even if they did, assuming a key shared among (possibly all) routers

that forward a given content is unrealistic. The only realistic means of authenticating con-

tent in routers is by verifying signatures. This prompts the question: how does one reconcile

delayed authentication (of fragments) with signatures?

We approach this issue by observing that a signature is computed over a fixed-size hash

(digest) of content, i.e., using the so-called “hash-and-sign” paradigm. A hash provides

159

integrity while a signature of a hash provides authenticity or origin authentication. The

underlying cryptographic hash function H(·) must satisfy a set of standard properties [133].

Unlike a MAC or a HMAC, a hash function requires no secret key and can be computed by

anyone.

Most modern hash functions operate on input of practically any size.8 They typically use an

iterative model, also known as the Merkle-Damg̊ard construction, whereby input is broken

into a number of fixed-size blocks and processed one block at a time by an internal com-

pression function h(·). The latter forms the core of the hash function. After processing each

block, h(·) produces an intermediate value – internal state that we call IS – that is usually

of the same size as the final hash output. In case of the first block, the intermediate state

is fixed and referred as the Initialization Vector (IV). The last block is typically padded

with zeros followed by the total input size in bits. For example, the well-known SHA-256

hash algorithm [19] operates on 512-bit blocks, maintains 256-bit internal state and yields a

256-bit hash.

In constructing FIGOA, we take advantage of internal state produced by the underlying

compression function h(·). The main idea is to include, in each fragment, the internal state

of the hash function up to, but not including, that fragment. This allows incremental hashing

of each fragment without having received either preceding or subsequent fragment(s).

We assume that the absolute minimum MTU of any link or interface that takes advantage

of FIGOA is equal to at least one block of data: one block of internal state and whatever

size is needed to accommodate a content fragment header (i.e., content name, flags, etc.).

More precisely, we assume that any fragment must carry at least a header, internal state

and some blocks of data. All data must be aligned on block boundaries.

8We consider 264 or 2128 bits as “practically any”.

160

Table 6.3: Fragmentation notation

Term Description

β block size of h(·)
Cn Raw (unsigned) content of total size n bits.

Sig(Cn) Producer’s signature on Cn.

C
N

Signed version of Cn of size N = n+ |Sig(Cn)| bits.

bv,s Contiguous component of C
N

where 0 ≤ v < N , i.e., bv,s
represents s bits, starting with offset v and ending with offset
v + s− 1, inclusive. s and v are multiples of β.

CFNv,s Fragment of C
N

that carries bv,s.

ISv Internal state of h(·) after processing v bits of input. v is a
multiple of β

oMTU MTU of router’s outgoing interface.

aoMTU oMTU adjusted for each fragment header size i.e.,
aoMTU = oMTU − |fragment header|

F Set of content fragments.

B Temporary buffer storing all fragments received so far.

6.3.3 FIGOA Description

From here on, we use additional notation presented in Table 6.3. The proposed scheme

includes three main tasks, described separately below.

Content Fragmentation

This task, shown in Algorithm 4, is triggered whenever a CCN node (router or producer)

needs to forward a content object larger than oMTU. Each resulting fragment CFN
v,s includes:

(1) s bits of original content – bv,s, (2) starting offset v, and (3) ISv – intermediate state, i.e.,

output of h(·) on inputs of IV and b0,v−1 (ISv = h(IV, b0,v−1)).
9 To simplify presentation,

Algorithm 4 makes two assumptions: (1) aoMTU is a multiple of β, i.e., aoMTU = s ∗ β

and (2) N (signed content size) is a multiple of aoMTU, i.e., N = k ∗ aoMTU , which makes

all fragments of equal size.

Re-fragmentation

This task, illustrated in Algorithm 5 is very similar to the initial fragmentation task, except

9In the very first fragment, v = 0 and ISv = IV .

161

Algorithm 4 Fragment-Content

1: Input: C
N

= b0,N−1, aoMTU, IV , h(·)
2: Output: F
3: F := ∅, v = 0, ISv = IV
4: s = aoMTU

β , k = N
s

5: for i = 0, i < k, i+ + do
6: CFNv,s := 〈v, bv,s, ISv〉
7: F := F ∪ CFNv,s
8: ISv := h(ISv, bv,s)
9: v = v + s

10: end for
11: Output F

Algorithm 5 Refragment-Fragment

1: Input: CFNv,s = 〈v, bv,s, ISv〉, oMTU, h(·)
2: Output: F
3: F := Fragment-Content(bv,s, oMTU, ISv, h(·))
4: Output F

that it is performed only by CCN routers, and on content fragments, instead of content

objects.

Content Verification

As mentioned earlier, FIGOA provides integrity/authenticity for fragments received in any

order. Recall that a router or a consumer can unilaterally decide whether to either: (1)

incrementally verify integrity of each fragment as it is received or (2) defer overall verification

until all fragments are received. Regardless of the choice, a router should forward each

fragment in a cut-through fashion, i.e., without waiting for others to arrive. Moreover, a

node receiving fragments should store them in a buffer until the last fragment arrives and

(final or overall) verification is performed. (See Section 6.3.5.)

When a router performing incremental fragment verification receives CFN
v,s, one of the fol-

lowing cases occurs:

1. CFN
v,s is the very first received fragment. A new buffer B is created to store CFN

v,s.

IS∗w = h(ISv, bv,s) is computed and stored.

162

2. Neither previous CFN
u,s (for v = u + s) nor next CFN

w,s (for w = v + s) fragment is

in the buffer, i.e., received. CFN
v,s is placed in B. IS∗w = h(ISv, bv,s) is computed and

stored.

3. CFN
u,s is in the buffer (along with IS∗v) while CFN

w,s is not. IS∗v must match ISv in

CFN
v,s. IS

∗
w = h(ISv, bv,s) is computed and stored.

4. CFN
w,s is in the buffer while CFN

u,s is not. ISv should be stored and IS∗w = h(ISv, bv,s)

is computed and must match ISw from CFN
w,s.

5. Both CFN
u,s and CFN

w,s are in the buffer. IS∗v must match ISv in CFN
v,s, and IS∗w =

h(ISv, bv,s) is computed and must match ISw from CFN
w,s

Once the last fragment is received, authenticity of the entire content can be finally verified. If

verification fails, the last fragment is dropped, the PIT entry is flushed, and nothing is cached.

The same applies for any failed check in the 5 cases above. This process is illustrated in more

detail in Algorithm 6. We assume that routers perform incremental verification of fragments

and verify the reassembled content signature. If signature verification is not possible, routers

must verify that the reassembled content hash matches the original content hash included

in every fragment (see Section 6.4 for details.)

6.3.4 Examples

We now describe FIGOA via two operational examples. In the first example, consider a

situation where CN has two fragments: CFN
0,s and CFN

s,s, i.e. N = 2× s. A router R receives

CFN
0,s. First, R invokes h(·) iteratively and computes IS∗s = h(IV, b0,s). Then, it forwards

CF n
0,s out on the interface(s) reflected in the corresponding PIT entry. R creates a buffer

for C
N

where it records the fact that it received the first s bits of content, along with the

computed IS∗s . Now, R receives CFN
s,s. It compares the stored IS∗s value with ISs carried in

163

Algorithm 6 Verify-Fragment

1: Input: CFNv,s, associated PIT entry e, h(·)
2: Output: no output
3: if Is-First(CFNv,s) then
4: B := Get-New-Buffer();
5: end if
6: Insert CFNv,s in B
7: Store IS∗w = h(ISv, bv,s)
8: if CFNu,s ∈ B and IS∗v 6= ISv in CFNv,s then
9: goto CleanUp

10: end if
11: if CFNw,s ∈ B and IS∗w 6= ISw of CFNw,s then
12: goto CleanUp
13: end if
14: if Is-Not-Last(CFNv,s) then

15: Forward CFNv,s according to e
16: end if
17: if Content-Complete() then

18: C
N

:= Assemble(B)

19: if Verify-Signature(C
N

) then
20: Forward CFNv,s according to e

21: Cache C
N

22: return
23: end if
24: end if
25: CleanUp: Flush B and e

CFN
s,s. If they do not match, R discards the buffer and flushes the corresponding PIT entry.

Otherwise, it invokes h(·) iteratively and computes IS∗N = h(ISs, bs,s). In the end, before the

content is cached and the last fragment is forwarded, R extracts Sig(Cn) from the received

content, and computes a putative hash H ′ of the entire reassembled Cn. Finally, R verifies

whether Sig(Cn) is the producer’s signature on H ′. If so, CFN
s,s is forwarded; otherwise, it is

discarded along with the buffer and the PIT entry.

A similar process takes place if CFN
0,s and CFN

s,s arrive out of order. R first receives CFN
s,s.

Using ISs carried in this fragment, R invokes h(·) iteratively on each block of data and

terminates with IS∗N . Next, R forwards CFN
s,s. Then, R creates a buffer for C

N
where it

records the fact that it received the last N − s bits (which is, in fact, the last s bits) of

164

...

...

Figure 6.4: Implementing Merkle-Damg̊ard construction to generate content fragments

content, along with ISs and IS∗N . Now, R receives CFN
0,s. It invokes h(·) iteratively and

computes IS∗s = h(IV, b0,s) which should match ISs received earlier as part of CFN
s,s. If they

do not match, R discards the buffer and the PIT entry. Otherwise, R computes a putative

hash H ′ of entire reassembled Cn, extracts Sig(Cn) and verifies whether it is the producer’s

signature on H ′. If so, CFN
0,s is forwarded, otherwise, it is discarded along with the buffer

and the PIT entry.

The second operational example involves R receiving a fragment CFN
x,s of content C

N
.

The total size of this fragment is (s+ |fragment header|) bits. Suppose that, after processing

this fragment as in the first example, R needs to forward it out on an interface with oMTU

smaller than the total size of CFN
x,s, e.g., R needs to re-fragment it into two sub-fragments.

R creates CFN
x,s′ with ISx and CFN

y,s′ with ISy, where (1) s′ < s, (2) y = x + s′, (3) ISx is

simply copied from CFN
x,s, and (4) ISy = h(ISx, bx,s′). This example aims to show that R

can easily re-fragment already-fragmented content while preserving overall content integrity.

Figure 6.4 demonstrates how to use any hash function based on the Merkle-Damg̊ard con-

struction to generate content fragments. The hash function used in Figure 6.4 is SHA-256,

and the length of input is discarded at the end of construction to simplify the demonstration.

165

6.3.5 Content Authentication

Although trust and key management are out of the scope of this chapter, we can not ignore

the fact that authenticating a content object requires presence of a signature, as well as

availability of a public key which must be trusted, as described in Chapter 4. CCN stipulates

that public keys are encapsulated in named and signed content objects, i.e., a form of a

certificate. Also, CCN allows the public key to be either: (1) referred to by name within a

content object header, using the KeyName field, or (2) enclosed with the content object itself,

using the PublicKey field. In the former case, unless the referred public key is already cached,

the router presumably must fetch it by name, i.e., issue an interest for it. As mentioned in

Chapter 4, this is a burdensome task that routers should not perform, for obvious reasons.

Fortunately, techniques proposed in Chapter 4 can be employed even if content is fragmented.

For instance, if the IKB rule is universally adopted, the KeyId and PublicKey are used to

verify the content signature. However, implementing FIGOA with SCNs is more challenging.

This is because the hash used to form the last component of an SCN is computed over the

entire content object (including its signature). In contrast, FIGOA’s hash is computed over

the content object without its signature field. We defer supporting SCNs in FIGOA to

follow-on work.

6.3.6 Security Analysis

Security of FIGOA is based on that of delayed authentication (DA). We say that H(·) is

constructed using the Merkle-Damg̊ard construction with h(·) as the building block. If h(·)

is collision-resistant, then so is H(·).

166

A function F has strong collision resistance if it is “computationally infeasible” to find

inputs x 6= y such that F (x) = F (y). See [133] for information regarding Merkle-Damg̊ard

construction and hash-and-sign paradigm.

A signature computed via hash-and-sign over an unfragmented content object is considered

secure. Whereas, with DA, a content object is fragmented and we arrive at the final hash

by incrementally hashing its fragments.

To subvert DA we consider an adversary given a valid C
N

with signature Sig(Cn). The goal

is to send to some router R a sequence of fragments, CF ′N
′

x0=0,s, CF
′N ′
x1,s

, . . . , CF ′N
′

xk,s
(xi+1 =

xi + s, 0 ≤ i ≤ k − 1) corresponding to C ′
N ′ 6= C

N
with H(C ′xk+1) = H(Cn). Recall

that CFN
v,s embodies intermediate state ISv of the hash function computed up to, but not

including, v bits of content.

First, consider fragments arriving in order. R receives CF ′N
′

0,s , initializes h(·) with IV , and

computes and retains IS ′∗x1 = h(IV, b0,s). Now, when R receives subsequent fragments

CF ′N
′

xi,s
, i = 1, . . . , k, it compares the current (computed) IS ′∗x1 with IS ′x1 contained in

CF ′N
′

x1,s
. If they match, R invokes h(·) iteratively over each block of CF ′N

′
xi,s

using IS ′xi as the

starting intermediate state, and compares IS ′∗xi+1
with IS ′xi+1

in CF ′N
′

xi+1,s
. This process is

exactly the same as computing H(·) over the entire C ′
N ′

. If C ′
N ′ 6= C

N
, the adversary must

have found a collision for H(·), which violates our collision-resistance assumption.

Now, assume that fragments arrive out-of-order. R receives CF ′N
′

xi,s
. It can readily compute

IS ′∗xi+1
by invoking h(·) over the blocks starting with IS ′xi . R retains IS ′xi as part of its

state until IS ′∗xi is computed (using all previous fragments) and matched. If IS ′∗xi has been

already computed, then R must have invoked h(·) over the data in CF ′N
′

xi−1,s
using IS ′xi−1

. If

R computes the final hash and its state contains only IS ′∗N ′ , then R has compared IS ′∗xi

with IS ′xi for i = 1, . . . , k such that each match was successful. In other words, all fragments

have arrived and i = 1, . . . , k, IS ′∗xi = IS ′xi . We observe that the set of equations that must

167

be satisfied here is exactly the same as that in the in-order-arrival case. Therefore, the same

argument applies.

6.4 Implementation

Our implementation is consistent and compatible with the CCNx 0.8.2 code base, with no

changes to the architecture except to support fragmentation. Due to lack of support for

signature verification and key management at the network layer in CCNx 0.8.2, we do not

support signature verification of content objects processed by routers. However, it can be

easily extended.

Our implementation only requires modification of the CCNx forwarder code. Its design limits

fragmentation, reassembly, and cut-through switching for outgoing interfaces. Moreover, a

(consumer) forwarder must reassemble fragments prior to forwarding the content to the

application.

To implement fragmentation, we introduce a new type of CCN packet, content fragment.

It is used for both initial fragmentation of content and re-fragmentation of fragments. The

format is:

• Name: identical to content name.

• ContentObjectSize: size of the original content object before fragmentation.

• InternalState: internal state of SHA-256 computation up to PayloadOffset of the

content.

• PayloadOffset: where fragmented data begins with respect to the unsigned content

object.

168

• PayloadSize: size of fragment payload – a multiple of 512-bits, except for the last

fragment.

• ContentObjectHash: digest of the original content object.

• Payload: actual content fragment data.

As mentioned in Section 2.1, ContentObjectHash is an optional field in CCNx content object

headers. (Recall that it is the last component of the content name in NDN.) However, we

mandate this field in all FIGOA fragments. Every node (producer or router) that fragments

content must compute and include ContentObjectHash field in all fragments. If this hash

is already present in the original content object, it is simply copied into all fragments.

Once all fragments are received and content is reassembled, the router caches it if its integrity

is verified.

The above format lends itself to natural re-fragmentation. If a fragment requires further

fragmentation, only InternalState, PayloadOffset, PayloadSize, and Payload need to be

adjusted to reflect new fragments. This prevents nested fragments and simplifies reassembly,

which increases router performance and reduces end-to-end latency.

To evaluate the implementation, we compared its performance to an unmodified version of

CCNx 0.8.2. This version runs as an overlay atop TCP or UDP (similar to the current

NDN testbed). With TCP, content larger than the negotiated MTU (at connection setup) is

segmented by TCP. This reduces the chance of IP fragmentation, unless the MTU is smaller

at an intermediate router. In case of UDP, IP is responsible for content fragmentation

and reassembly. In this case, every CCNx node receives the whole content from a UDP

socket after reassembly is performed by IP. We use UDP as a transport layer protocol in the

experiments.

169

6.5 Evaluation

We employ a server with 8-core Intel i7-3770 CPU at 3.40GHz and 16GB of RAM, and

running Ubuntu 12.10 with KVM hypervisor [9]. We construct a testbed by provisioning

virtual machines to act as CCNx nodes interconnected on the same LAN and NAT-ed by

the host server. Each node is connected to a virtual Ethernet interface at 100Mbps, with

MTU set to 1, 500 bytes.

Experiments are run on a 3-, 4-, and 5-node linear topology. The first hop acts as consumer

sending interests for specific content published by the last hop – the producer. For each

topology, the consumer requests content of size: 1, 2, 4, 8, 16, and 32 KB. We chose linear

topology since content objects and fragments thereof always traverse the same path, in

reverse, of preceding interests.

To capture the worst case scenario, we ensure that all nodes have an empty cache at the

beginning of each experiment. Results in Figure 6.5 demonstrate average consumer end-to-

end latency measured from repeated experiments. For all settings, IP performs consistently

better than the FIGOA cut-through approach. The bottleneck of FIGOA is that routers

need to perform additional processing to compute the hash of every fragment. Since all

computation is currently performed in software, these results make sense. However, we

believe that if CCN is deployed as a network layer, hash computation would be performed

in hardware, with much better performance.

We run another 3-node experiment that involves re-fragmenting fragments. We measure

end-to-end latency at the consumer for different values of intermediate router’s MTU: 1, 500,

1, 100, and 700 bytes. The consumer requests content of size 4KB. In case of MTU = 1, 500,

content is fragmented at the producer into 4 fragments. Each fragment, except the last one,

contains 1, 152 bytes of payload plus fragment header length. Note that 1, 152 is a multiple of

SHA-256 block size, which is 64 bytes. However, when MTU drops to 1, 100, payload length

170

1KB 2KB 4KB 8KB 16KB 32KB
Size of initial object before segmentation

0

100

200

300

400

500

600

700

800
En

d-
to

-e
nd

 la
te

nc
y

(m
s)

0%
45% 39%

140%

155%

152%IP
FIGOA

(a) 3 nodes

1KB 2KB 4KB 8KB 16KB 32KB
Size of initial object before segmentation

0

200

400

600

800

1000

En
d-

to
-e

nd
 la

te
nc

y
(m

s)

0% 29% 33%

135%

166%

160%IP
FIGOA

(b) 4 nodes

1KB 2KB 4KB 8KB 16KB 32KB
Size of initial object before segmentation

0

200

400

600

800

1000

1200

En
d-

to
-e

nd
 la

te
nc

y
(m

s)

0%
42% 53%

150%

164%

169%IP
FIGOA

(c) 5 nodes

Figure 6.5: End-to-end latency for retrieval of various sizes of content. IP represents the
unmodified version of CCNx, while FIGOA represents modified version of CCNx. Values
above bars represent the increased overhead of FIGOA fragmentation as compared to IP
fragmentation

1,500 1,100 700
MTU of the intermediate router (bytes)

0

20

40

60

80

100

120

140

160

180

En
d-

to
-e

nd
 la

te
nc

y
(m

s)

38%

43%

47%IP
FIGOA

Figure 6.6: End-to-end latency of various MTU values at intermediate routers for content of
size 4KB. IP represents the unmodified version of CCNx, while FIGOA represents modified
version of CCNx. Values above bars represent the increased overhead of FIGOA fragmenta-
tion as compared to IP fragmentation

of each outgoing fragment drops to 768 bytes, leading to re-fragmentation of each fragment

into 2 smaller ones. Similarly, each fragment is re-fragmented into 3 smaller fragments when

MTU drops to 700.

Results in Figure 6.6 indicate that, as MTU decreases, end-to-end latency increases for

fixed content size. This makes sense since smaller MTU leads to more processing due to

re-fragmentation. Although re-fragmentation using FIGOA requires additional hash com-

putations at each hop after where re-fragmentation occurs, FIGOA end-to-end latency does

not increase dramatically as compared to IP. This is because the CCNx implementation we

171

are using runs the CCN protocol as an application on top of UDP (and IP), i.e., all CCN

operations are handled at the application layer in each router. In this case, if a content object

(encapsulated in a UDP datagram) is fragmented by IP, it must be reassembled at every hop

before getting delivered to CCNx application layer (which is responsible for forwarding the

content to the next CCNx hop). Since the same does not hold for FIGOA, IP reassembly

adds more end-to-end latency that compensates for additional hash computation overhead

imposed by FIGOA.10

10Refer to Section 6.2.3 for more details about delay imposed by IP reassembly at each hop.

172

Chapter 7

Negative Acknowledgments

In communication protocols, there are two ways to confirm whether a packet has been

received: acknowledgments (ACKs) or negative acknowledgments (NACKs). In ACK-based

protocols, a receiver informs the sender about all successfully received packets. In NACK-

based protocols, a receiver informs the sender whenever it believes that a received packet is

unrecognized, non-sensical, or corrupted [190]. However, NACKs might be issued for other

reasons. Assume a user receives the first and third packets in a transmission. Considering

the second one as lost and immediately (or even after a timeout) issuing a NACK for it is not

necessarily the right decision. This is because that packet might arrive later due to network

delays. We do not discuss this any further since such case is handled differently by various

protocols, and there is no guaranteed way for the receiver to know that the second packet is

missing or simply delayed.

Since NDN’s initial release, producers simply drop interests they can not satisfy. Also,

routers behavior is unclear in cases when interests can not be forwarded along, e.g., due

to unknown next hop. Even though [203] suggested network-layer NACKs for notifying

downstream routers about forwarding failures, the proposed scheme is not adopted in NDN.

173

However, recent discussions [11] indicate that network-layer NACKs might be adopted by

NDN.

CCNx implemented end-to-end network-layer NACKs until version 0.8.2. In the latest re-

lease, this functionality was removed from the network-layer. Instead, a new type of CCNx

message, InterestReturn [142], was introduced. This message is a one-hop notification to

the downstream node indicating interest forwarding errors due to no route to destination,

congestion, malformed interest, etc. Downstream nodes, however, have the option of ignoring

InterestReturn messages.

The use of NACKs as an alternative to simply dropping unsatisfiable interests has some

advantages. First, NACKs can quickly notify consumers about non-existing content instead

of waiting for issued interests to time out. Second, NACKs allow consumers to differentiate

between non-existing content and packet (interest) loss. In the latter case, consumers have

to wait until an issued interest expires before attempting retransmission. Third, the use

of NACKs can help mitigate the effects of Interest Flooding (IF) attacks [77, 54, 22] (see

Section 7.1 for details). Finally, NACKs can be useful for notifying downstream routers that

received interests can not be forwarded further. Routers can thus pursue alternative paths.

Below, we consider network-layer NACKs from a security perspective. In particular, we

discuss two types of NACK messages relevant to CCN: Content-NACKs (cNACKs) and

Forwarding-NACKs (fNACKs) (which are similar to InterestReturn messages). For each

type, we present its benefits for network entities (consumers, producers, and routers) and

specify its security requirements. Then, we show that – even with these requirements met

– introducing cNACKs has negative security implications for producers, while fNACKs are

generally beneficial. Intended contributions of this chapter are:

• Discussion of benefits and scenarios that justify the use of network-layer NACKs.

• Discussion of security requirements for implementing NACKs.

174

• Showing that näıve security for NACKs can facilitate DoS attacks against producers.

• Demonstrating the effects of NACK-based DoS attacks.

7.1 Content-NACKs

A cNACK is generated by a producer: it indicates that a content – with the name reflected

in a received interest – does not exist, i.e., has not been produced or published. A cNACK is

realized as a special kind of a content object, of type CNACK (set in the PayloadType field).

One intuitive analogy (though at a higher layer) is the well-known “HTTP 404 not found”

message [70].

cNACK generation can involve different layers depending on the application and the type of

traffic:

• Application-layer: the application is the sole decision maker on generating cNACK

messages. Such cNACKs are transparent to the network-layer.

• Application- and network-layer: cNACKs are generated, i.e. formed and signed (since

they are content objects), at the network layer, though the decision is made at the ap-

plication layer. For every received interest, the network layer needs to consult with the

application whether a cNACK should be generated. This approach is clearly inefficient.

• Network-layer: cNACK generation takes place at the network layer without consulting

corresponding applications. However, the latter should provide the network-layer with

a list of published content names, which can be done a priori. Moreover, network-layer

cNACKs are only possible for static content. For dynamic content, applications must

provide the network layer with the list of prefixes under which content is published.

175

The network layer should generate fNACKs when receiving interests that can not be

forwarded – see Section 7.2 for details.

For the rest of this section, we focus on network-layer cNACKs.

7.1.1 Benefits

cNACKs offer several benefits. On the consumer side, they help applications to: (1) distin-

guish between packet loss and content not found, and (2) reduce waiting time for consumers,

i.e., inform consumers faster than interest timeouts. For routers and producers, cNACKs can

reduce the effects of Interest Flooding (IF) attacks. Recall that a router creates a PIT entry

for each distinct interest that it forwards.1 A PIT entry is not purged until content arrives

(from upstream) and gets forwarded downstream. However, if an interest requests some non-

existing content and the producer simply drops such interest, corresponding PIT entries at all

intervening routers (and at the consumer) remain until they expire. A producer-generated

cNACK traverses, in reverse, the path of the corresponding interest and allows routers to

purge PIT entries and free resources. Even though this strategy does not fully mitigate the

impact of IF attacks, it may reduce their effects.

A router that receives a new interest (i.e., there is no PIT or cache hit) might determine,

based on its local FIB, that multiple outgoing interfaces can be used for forwarding. If

so, a router either: (1) forwards the interest on multiple interfaces at the same time, or (2)

forwards the interest on one interface; in case of a timeout, it tries the next possible interface,

and so on.2 In the latter case (2), a router might incur considerable delay by sequentially

trying (and timing out on) every viable interface. However, since cNACKs are generated by

the producer to indicate non-existing content, if a router receives a genuine cNACK, trying

1Clearly, this excludes collapsed interests.
2Other forwarding strategies are possible. However, we do not consider them here.

176

other possible interfaces would be useless. This early detection of non-existent content is

another advantage of cNACKs. Finally, since a cNACK is a type of content and is thus cached,

subsequent interests for the same name are satisfied accordingly.

7.1.2 Security Issues

Despite aforementioned benefits, cNACK security implications should be carefully examined.

Support for insecure cNACKs opens the door for simple content-focused DoS attacks. Assume

that Adv controls a network link and can inject cNACKs for interests traversing that link.

In this case, Adv can prevent consumers from obtaining legitimate content. Even if there

are multiple paths to the producer, Adv only needs to inject cNACKs on just one path to

succeed.3 This attack can be trivially exploited to enforce censorship over content considered

subversive or simply undesirable.

More generally, an unsecured cNACK can be abused to essentially poison router caches as

described in Chapter 4. Recall that content poisoning attacks can occur in either reactive

or proactive mode [77]. The former corresponds to the adversarial scenario above. The

latter involves Adv that, anticipating demand for certain content, issues one or more bogus

interests (perhaps from strategically placed zombie consumers), ahead of genuine interests

being issued. Adv, then, replies with fake content. Thus pre-poisoning the caches of victim

routers. Section 4.1 describes this attack in detail.

One variation of proactive content poisoning attack is even simpler. Again, predicting the

name of content that has not yet been produced, Adv issues an interest for such content

and receives a legitimate cNACK from the genuine producer. Routers on the path cache this

cNACK. Even if the actual content is published soon thereafter, subsequent interests for that

3Even if adjacent routers use pairwise secure channels, Adv can be a malicious router.

177

content will be satisfied with a cached cNACK, thus resulting in denial of service for that

content.

The above clearly motivates securing cNACKs, which intuitively translates into two require-

ments: (1) authenticating cNACK origin and integrity, and (2) checking cNACK freshness,

i.e., detect replays. We discuss these issues in the next section.

7.1.3 Securing cNACKs

Authentication of cNACK origin and integrity seems easy, since one of the basic tenets of

CCN is that all content must be signed by its producer. Universal adoption of the IKB

rule (introduced in Chapter 4), would prevent cNACKs from being modified or generated by

entities other than legitimate producers.

A complementary means of preventing content poisoning is via SCNs. Using SCNs, a con-

sumer specifies, in the interest packet, the hash of expected content. Routers only need to

verify that the hash of a received content matches the value specified in the interest. A key

advantage of this approach is that a content matched in this manner does not need to be

signed.

However, cNACKs cause a problem for routers when consumers use SCNs. Suppose that

a benign consumer requests a content using SCN in an interest. Even though a consumer

might have pre-obtained the hash of currently requested content from a legitimate source

(e.g., a catalog that it previously obtained using IKB), the content in question could be no

longer available from its producer, for various reasons. In that case, the producer would

respond to the interest with a cNACK. However, the hash of the latter would certainly not

match the content hash reflected in the SCN in the interest. Therefore, such a cNACK would

be dropped by routers as an invalid content. Fortunately, this problem can be solved by

178

a minor modification to network-layer trust rules proposed in Chapter 4: interests bearing

SCNs should also (as a backup) adhere to IKB, i.e., reflect the producer’s public key, in

order to handle (via signed cNACKs) expired or simply no-longer-available content.

Although the motivation for producer-signed cNACKs is not surprising, why this process

should take place at run-time might not be obvious. First and foremost, producers can not

create and pre-sign cNACKs for all possible non-existing content. This is because content

names can have arbitrary suffixes, resulting in an infinite number of possible names. In other

words, a producer responsible for a name prefix /ccn/x/y/z, should be ready to respond to (in

particular, by generating a signed cNACK) an interest requesting any (non-existing) content

name starting with that prefix.

To prevent replay attacks, signed cNACKs must include a challenge by the consumer, and/or

a timestamp set by producers. However, both approaches have drawbacks:

• If each interest contains a unique consumer-selected challenge, then caching a signed

cNACK that also includes the challenge response is useless for other consumers who

issue interests for the same content at, or near, the same time. Caching such a cNACK

is beneficial only in the case of packet error or loss and retransmission. Moreover, PIT

interest collapsing becomes a problem, since each interest to-be-collapsed would have

a different challenge. Thus, we conclude that consumer challenges are problematic in

cNACKs context.

• If each cNACK contains a producer-set timestamp, a time window ω needs to be defined

to allow for transmission and caching delays. The selection of ω poses a problem. If it

is too large, cNACK objects can be replayed for a longer time. On the other hand, if ω is

too small, the probability of successful replay attacks decreases, while the probability of

cNACKs wrongly considered invalid increases. One viable alternative is to use producer-

specified expirations for signed and time-stamped cNACKs. This would address cNACK

179

replay attacks. Nonetheless, we note that timestamps require a global synchronization

protocols, e.g., a secure version of NTP [136].

As mentioned above, cNACKs are treated similar to content objects, thus, they might be

cached by routers. Although challenge-based cNACKs only benefit from the cache in case of

retransmission, timestamp-based cNACKs can be cached and used to satisfy future interests.

However, there are some considerations regarding the latter’s ExpiryTime value. Producers

must not set this value to be larger than ω. If a cached cNACK is served after ω elapsed, it

should be considered invalid and dropped by receiving consumers.

Based on the above discussion, we summarize the requirements for securing cNACKs:

1. Signature: a cNACK must be signed by its producer, similar to any other content.

2. Timestamps: a cNACK should be generated, not per interest, but per time interval.

3. Expiration: a cNACK for plausible content (e.g., not yet published) should include

expiration time.

7.1.4 Secure cNACKs: a Blessing or a Curse?

Unfortunately, secure cNACKs that satisfy our three requirements (which are themselves

motivated in part by DoS prevention) facilitate producer-focused DoS attacks. Such attacks

occur when Adv sends a large number of closely-spaced interests requesting non-existing (and

possibly non-sensical) content. A producer that receives a barrage of these interests generates

a cNACK for each one, which requires generating a signature. The resultant computational

load on the producer could be overwhelming. Furthermore, large numbers of useless cNACKs

would pollute router caches.

180

Note that generating one cNACK for all interests arriving within a certain time interval is

not effective against this DoS attack. This is because a smart Adv, instead of issuing in-

terests for the same (non-existent) name, would issue many interests, each for a distinct

name composed of a common prefix (registered to the victim producer) and a random suf-

fix, e.g., /ccn/bbc/news/world/$&F(?%. One simple countermeasure is to allow producers to

issue cNACKs for prefixes. For example, a cNACK for /ccn/bbc/news/world/, once cached

in routers, would throttle all interests with that prefix, including non-sensical ones. How-

ever, the very same cNACK would result in DoS for legitimate interests, e.g., referring to

/ccn/bbs/news/world/usa.

The discussion above leads us to a logical conclusion that secure cNACKs should be imple-

mented carefully. Specifically, a producer must first decide whether an incoming interest is

plausible or non-sensical. An interest is plausible if the producer believes that the referenced

content name might have existed in the past or might exist in the future. In contrast, an

interest is non-sensical if it refers to implausible (or unlikely to ever exist) content name.

There is no guaranteed way of distinguishing between these two types of interests. This task

is perhaps best left up to individual applications. As far as producer’s strategy, we believe

that it should have the option of replying with a secure cNACK in response to a plausible

interest. However, a producer should not reply at all to a non-sensical interest. This prompts

another requirement for securing cNACKs:

4. Plausibility: a cNACK should be generated only for a plausible interest.

7.1.5 Experimenting with Secure cNACKs

To assess the efficacy of producer-focused DoS attacks, we performed several experiments, us-

ing ndnSIM 2.0 [127], to demonstrate additional overhead imposed by generating a network-

layer cNACK per interest. Although, as discussed above, secure cNACKs should be generated

181

Benign
consumers

Malicious
consumers

ProducerRouter

.

.

.

.

.

.

Figure 7.1: cNACK simulation topology

only as a response to plausible interests, a smart Adv can still generate many names that a

producer application can consider to be plausible. This can be caused by poorly implemented

applications, or by the difficulty of distinguishing plausible from non-sensical names.

In the experiments, we use the simple network topology in Figure 7.1. We let benign and

malicious consumers issue a large number of interests to a single producer at different rates:

benign send 10 interests per second; while malicious send 100 non-sensical interests per

second. We implement two consumer modes:

1. Basic: consumers request sequential content under a specific name space, e.g., /ccn/a/1,

/ccn/a/2, etc.

2. Advanced: content requested by consumers adheres to a Zipf distribution. This reflects

applications where some content is more popular than another.

The main difference between these two modes is that basic consumers do not trigger interest

collapsing in routers. Therefore, this mode is suitable for malicious behavior since more non-

sensical interests reach the producer, forcing the later to generate and sign more cNACKs.

Figure 7.2(a) shows the delay increment in serving existing content, for both basic and

advanced benign consumers. In the base case all consumers are benign. The results show

additional overhead imposed on the producer to serve existing content, as compared to the

base case, for different malicious consumers population (MCP) rates (10%, 20%, and 30%).

182

10% 20% 30%
Malicious Consumer Population Rate

0

2

4

6

8

10

12
Se

rv
in

g
Ex

is
tin

g
Co

nt
en

t D
el

ay
 In

cr
em

en
t (

%
)

Basic Consumers
Advanced Consumers

(a) Serving existing content delay increment com-
pared to the base case for varying MCP rates

0 200 400 600 800 1000
Simulation Time (sec)

100

105

110

115

120

125

Se
rv

in
g

Ex
is

tin
g

Co
nt

en
t D

el
ay

 (µ
se

c)

Increasing Benign Consumers
Increasing Malicious Consumers

(b) Serving existing content delay for gradually in-
creasing number of consumers

Figure 7.2: cNACKs experiment results

As expected, increasing the number of malicious consumers increases producer overhead

when serving existing content. The overhead is even higher for advanced consumers. The

reason is that collapsing of interests requesting existing content reduces the number of these

interests on the link between the router and the producer. Therefore, the router forwards

more non-sensical interests to the producer.

We also explore the delay in serving existing content, as the number of consumers increases.

We start the simulation with 200 benign consumers and consider two scenarios: (1) adding

one benign consumer per second; (2) adding a malicious consumer per second. In both

cases, we stop adding new nodes after 500 seconds and measure the delay in serving content

until the 1000th second. The result is illustrated in Figure 7.2(b). Increasing the number

of benign consumers does not significantly affect the producer performance, while increasing

the number of malicious consumers does (e.g., after 500 seconds, the delay is 10% higher

than in the case with only benign consumers).

183

7.2 Forwarding-NACKs

An fNACK is generated by a router at the network layer. Its purpose is to inform downstream

routers that an interest can not be forwarded due to congestion or unknown next hop [203].

Since edge routers are usually configured with a default route to an upstream peer, fNACKs

generated due to unknown next hop are most likely to occur at the network core. A good

analogy to an fNACK is an ICMP destination unreachable message [164].

We distinguish between the cases of a router generating and forwarding fNACKs. There are

two reasons for a router to generate an fNACK: (1) FIB lookup failure, i.e., an entry indicating

the next-hop of the received interest does not exist, or (2) all FIB-specified outgoing interfaces

are congested. A router that generates an fNACK, sends it out on each interest incoming

interface in the appropriate PIT entry. It then flushes that PIT entry.

Since a FIB might specify multiple interfaces on which interests can be forwarded, a router

can forward these interests in parallel or in sequence. A router must forward fNACKs on all

downstream interfaces (on which interests were received) if it receives an fNACK on every

upstream interface specified in the FIB, regardless whether parallel or sequential forwarding

is used. Conversely, if an fNACK is not received on at least one upstream interface (i.e., at

least one timeout occurs) a router must not forward fNACKs downstream. This is because

a timeout does not imply producer unreachability. A producer might have actually received

the interest and decided to drop or ignore it. Figure 7.3 shows two state diagrams (for

parallel and sequential forwarding) for generating and forwarding fNACKs.

184

(a) fNACK parallel interest forwarding strategy (b) fNACK sequential interest forwarding strategy

Figure 7.3: fNACK generation and forwarding state diagrams (red/upper case: events,
green/lower case: actions)

7.2.1 Securing fNACKs

Similar to cNACKs, insecure fNACKs trigger content-focused DoS attacks. Adv controlling

a link can inject fake fNACKs in response to interests on that link. This would prevent

consumers from obtaining requested content.

Securing fNACKs seems similar to cNACKs, i.e., via origin authentication and replay preven-

tion. However, we can not use the same methods from Section 7.1. If we require each fNACK

to be signed, Adv can easily generate many spurious interests that can not be forwarded by

a particular router. That victim router would then be forced to sign one fNACK for each

spurious interest. Since signing is often appreciably more expensive than verification (e.g., in

RSA), computational overhead for the victim router would easily translate into a full-blown

DoS attack.4

Furthermore, signing fNACK would trigger the need for a routing PKI since verifying fNACK

signatures can not be done mechanically: public key certificates must be fetched, verified

and revocation-checked. This represents another challenge for supporting signed fNACKs.

Note that the IKB rule can not facilitate signature verification in fNACKs. Recall that, in

4Note that some digital signature techniques flip this balance, e.g., in DSA, verification is more expensive
than signing. However, the DoS attack would then be even worse since multiple downstream routers would
verify the fNACK signatures.

185

0 200 400 600 800 1000
Simulation Time (sec)

23.0

23.5

24.0

24.5

25.0

25.5

26.0

26.5

27.0

27.5
Ro

ut
er

 F
or

w
ar

di
ng

 D
el

ay
 (µ

se
c)

MCP = 0%
MCP = 10%
MCP = 20%
MCP = 30%

(a) Router forwarding performance for different
MCP rates

0 200 400 600 800 1000
Simulation Time (sec)

23.0

23.5

24.0

24.5

25.0

25.5

26.0

26.5

27.0

27.5

Ro
ut

er
 F

or
w

ar
di

ng
 D

el
ay

 (µ
se

c)

Increasing Benign Consumers
Increasing Malicious Consumers

(b) Router forwarding delay for gradually increasing
number of consumers

Figure 7.4: fNACKs experiment results

IKB, a consumer must specify the public key of the producer expected to sign the content.

Since fNACKs are signed by upstream routers, downstream peers can not accept them as a

legitimate response. This is because their public keys do not match the ones specified in the

corresponding interests. Since consumers can not know in advance whether an fNACK will

be generated and by what router, they can not include the correct key digest in interests.

One way to mitigate this is for consumers to specify the public keys of all routers on the

path to the producer. This approach is impractical because it requires a path discovery-

like protocol, as well as increases the size of interests, complexity of interest collapsing, and

router overhead.

If we assume that long-term trust relationships can be established between neighboring

routers, fNACK authentication can be easily achieved. In this case, fNACKs can be sent down-

stream over a sequence of pair-wise secure channels between neighboring routers. Therefore,

one trivial way of securing fNACKs hop-by-hop is by using a keyed hash, e.g., HMAC [106].

Replay prevention can be achieved via timestamps, considering that adjacent routers are

likely to maintain closely synchronized clocks.

186

7.2.2 Experimenting with Secure fNACKs

We ran several experiments using ndnSIM 2.0 to demonstrate negligible impact of secure

fNACKs. We use the same topology as in Figure 7.1. Benign consumers request 10 content

per second, while malicious consumers request 100, which can not be forwarded by the router.

Our evaluation metric is processing time for the router to forward an interest towards the

producer. All consumers (benign and malicious) implement the basic mode.

We implement two scenarios. In the first, we compare router forwarding performance for

different rates of MCP (0%, 10%, 20% and 30%). The total number of consumers in this

scenario is 200. Figure 7.4(a) shows that even with 30% MCP rate, router forwarding

performance is not affected. In the second scenario, the number of consumers increases

gradually. Initially, there are 200 benign consumers. We then either: (1) increase the

number of benign consumers (one every second) until reaching 700, or (2) introduce 500

malicious consumers (one every second). Figure 7.4(b) illustrates the results: for up to 300

malicious consumers, router performance is similar to the case where the network contains

only benign consumers. Even if the number of malicious consumers exceeds 300, router

performance decreases only by an average of 4%.

7.3 Mitigating Producer-Focused DoS Attacks

As discussed earlier, securing cNACKs comes at a price of possible DoS attacks on content

producers. We now discuss some ways to mitigate such attacks.

In doing so, we separate content-serving and cNACK-generation activities. Producers can

set up special-purpose gateways that distinguish between interests requesting existing and

non-existing content. The former are forwarded to the actual content repository that serves

requested content, while the latter are forwarded to a special server that generates and

187

signs cNACKs. However, this only works for static content because producers need to keep

gateways updated with all published content. This is not applicable for dynamic content

generated upon request.

By redirecting the attack towards the cNACK generation server, producers can still contin-

uously serve content. However, the network needs to deal with attack traffic, which might

consume a lot of bandwidth. Moreover, routers have to create PIT entries for all interests

since they can not differentiate between interests requesting existing and non-existing con-

tent. If routers could differentiate, DoS attacks would be preventable closer to their sources.

One mitigation approach is to let a producer relay all its published content names to routers.

A producer can use these names to construct a Bloom filter [45] and disseminate it to routers

processing interests for this producer. Dissemination depends on producer’s policies. For

instance, a producer can fall back on Bloom filters when its load of generating and signing

cNACKs reaches a certain threshold.

Bloom filters are created by producers periodically, or whenever new content objects are

published. They can be represented as content objects of a special type, e.g., BLM-FLTR.

However, Bloom filters, if cached, should not be used to satisfy future interests. Moreover,

caching duration depends on the ExpiryTime value included in their headers. Producers

need to carefully set this value to be compatible with the frequency at which new content is

being published, e.g.,

ExpiryTime =
1

avg(f)|τ
(7.1)

where the denominator represents the average value of content publishing frequency over a

specific period of time τ .

188

The size of a Bloom filter depends on the number of elements (content names) it contains.

Large content objects can be divided into smaller segments, each with a unique name. The

size of each Bloom filter should be upper bounded by the maximum size of a content segment.

This avoids the case where a Bloom filter is split across multiple segments, thus requiring

multiple interests to request the whole filter. Since producers disseminate Bloom filters as a

reply to a single interest, they should fit in a single content segment.

On the other hand, Bloom filter’s false positive probability (illustrated in Figure 7.5) depends

on its size m (in bits), the number of elements n in the set S, which are included in the

filter5, and the number of hash functions k. This probability increases as n and k increase

and decreases as m increases. Assuming that hash functions (h1, . . . , hk) map each element

of S into a random value uniformly distributed over [1, . . . ,m], the false positive probability

can be expressed as in Equation 7.2 [48].

Pr [false positive] =

(
1−

(
1− 1

m

)kn)k

≈
(

1− e−
kn
m

)k
(7.2)

Figure 7.5(a) illustrates it for varying m, n, and k. However, for a given m and n, k can be

optimized. In this case, the false positive probability can be computed using Equation 7.3

[48].

Pr [false positive] = (0.6185)
m
n (7.3)

5In this case, S is the set of published content names.

189

0 200 400 600 800 1000
Number of elements (n)

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

P
r[

fa
ls

e
 p

o
si

ti
v
e
]

m = 2KB, k = 1
m = 2KB, k = 2
m = 2KB, k = 3
m = 3KB, k = 1
m = 3KB, k = 2
m = 3KB, k = 3
m = 4KB, k = 1
m = 4KB, k = 2
m = 4KB, k = 3

(a) Variable filter size, number of elements in the set
S, and number of hash functions used

200 300 400 500 600 700 800 900 1000
Number of elements (n)

10-35

10-32

10-29

10-26

10-23

10-20

10-17

10-14

10-11

10-8

10-5

P
r[

fa
ls

e
 p

o
si

ti
v
e
]

m = 2KB
m = 3KB
m = 4KB

(b) Variable filter size and number of elements in the
set S, and optimized number of hash functions used

Figure 7.5: Bloom filter false positive probability

In practice, producers can optimize k in order to achieve lower false positive probability.

However, an upper bound for k can be set to limit the hashing overhead for routers. Figure

7.5(b) demonstrates the Bloom filter’s false positive probability when varying m and n, and

optimizing k.

Based on the plots in Figure 7.5, including all published content names in a single Bloom

filter (the size of which is upper bounded by the maximum size of a single content fragment),

might not lead to desired false positive probability. However, producers can create a separate

Bloom filter for each namespace (or sub-namespace) they publish. Therefore, achieving

desired false positive probability requires an upper bound on the number of content objects

published under each namespace. It might also require redesigning the namespace hierarchy

of producers. We do not discuss this optimization problem any further since it is out of the

scope of this chapter. Moreover, the number of interests requesting non-existing content (that

forwarded to producers due to the probabilistic nature of Bloom filters) can be minimized

with proper configuration of filters parameters.

Although Bloom filters are content objects that follow the same path, in reverse, of their

corresponding interests, they should not be delivered to consumers. This is because malicious

190

consumers might benefit from these filters. Adv can pre-compute a list of content names that

pass verification and use it to launch a distributed DoS attack against the target producer.6

Such attacks can be circumvented if edge ISPs do not forward Bloom filters towards their

customers, or filters are re-created periodically with different parameters.

6We do not consider the case where malicious routers deliver Bloom filters to malicious consumers using
side channels.

191

Chapter 8

Related Work

In this chapter, we provide a detailed overview of prior work related to this dissertation. We

start by reviewing the security and privacy features of other FIA projects: MobilityFirst,

XIA, and NEBULA. We then discuss related work on: cache privacy, network-layer trust,

accounting, secure fragmentation, and negative acknowledgment.

8.1 Security and Privacy of FIA Projects

In this section, we discuss different security and privacy features of the FIA projects.

8.1.1 Trust

NEBULA’s ICING-based network layer defines trust in a way that is orthogonal to IPSec.

Trust is defined between a host and all nodes forwarding its packets. As described in Chapter

1, a host agrees on a “contract” with the network providers carrying the data (i.e., the path

negotiated using NVENT) to specify the operation executed at each hop. Such contracts

192

are cryptographically enforced. ICING assumes mutual trust between forwarding nodes and

their consent servers, i.e., servers responsible for creating PoC tokens. Therefore, this notion

of trust does not require any PKI [145]. However, ICING does not provide an end-to-end

definition of trust, which can be added by adopting an IPsec-like approach.

MobilityFirst places trust in principals. Depending on their type, trust may be established

with (1) hosts, similar to IPsec, (2) content, similar to CCN, or (3) centralized or distributed

services. Trust semantics in XIA also vary depending on principal types. However, the

intrinsic security feature of these principals (described in Chapter 1) increases trustworthiness

of end-to-end communication and content retrieval. For instance, ensuring that a content

hash matches its identifier allows receivers (and caching routers) to trust that content.

As shown in Chapter 1, an XIA address consists of a DAG containing a (partial) path to

the destination. To provide trusted path selection for host-to-host communication, SCION

is integrated with XIA [146]. SCION [207] is an architecture that provides control and isola-

tion for secure and highly available end-to-end communication. The network is divided into

multiple trust domains consisting of several Autonomous Systems (AS-s) that trust each

other. Each domain has a trusted root AS responsible for relaying packets to and from other

domains. Roots initiate path establishment to all hosts in their domains based on local poli-

cies and available bandwidth. This process results in constructing a path between each host

and its domain root. Whenever two XIA hosts, in different domains, want to communicate,

the two half paths (from each host to its domain root) are combined to establish a complete

end-to-end path. Such path is trusted since it is created by the trusted roots of each domain.

8.1.2 Authentication and Integrity

NEBULA’s ICING-based network layer does not directly provide data origin authentication.

Instead, it is delegated to applications. ICING allows a sender to authenticate entities

193

issuing cryptographic tokens, i.e., PoCs. However, the design does not specify how PoCs are

retrieved or authenticated [145].

Similarly, MobilityFirst and XIA do not provide any data origin and entity authentication

at the network layer. However, their usage of self-certifying identities as principal identifiers

facilitates entity authentication. Recall that for host, network, and service principals, identi-

fiers are generated by computing the hash of the public key associated with these principals.

Therefore, entity authentication can be achieved by ensuring that such principal identifiers

match their keys. Peer authentication for content principals can be achieved similar to CCN

since such principals are self-authenticating. Neither MobilityFirst nor XIA provides a secure

mechanism for securely retrieving content identifiers.

As for data integrity, each packet in NEBULA carries a sequence of cryptographic verifiers Vj,

one for each hop on the path. The packet hash is used as part of Vj’s calculation. Therefore,

ICING guarantees that neither the packet nor the path can be modified. Also, ICING is

recommended only at domain gateways [145]. Thus, integrity can only be guaranteed by

border routers. Within domains, such guarantees are deferred to either the network-layer

protocol or the application.

In both MobilityFirst and XIA, integrity is only available for content principal types. This

is again due to the fact that such a principal identifier is generated based on the content

hash itself. Whenever a content is received, its hash is compared with its identifier to ensure

content integrity. For other principal types, MobilityFirst and XIA defer integrity guarantees

to the application.

194

8.1.3 Authorization and Access Control

In NEBULA, paths must be established before communication begins, i.e., clients must

obtain required PoC tokens. Therefore, access control can be implemented by the consent

server granting or denying PoC requests. Traffic sent without valid PoC tokens can be easily

detected and dropped.

Since MobilityFirst and XIA can support different principal types, they facilitate the com-

bination of both CCN- and IP-based access control schemes. For content principals, access

control is done at the content granularity, similar to CCN, i.e., content is encrypted using

keys disseminated to only authorized users. For all other principal types, ACLs can restrict

access to hosts and other network services.

8.1.4 Privacy and Anonymity

Hosts anonymity is not provided by ICING-based NEBULA. By inspecting packet headers,

eavesdroppers can easily determine a packet’s source, as well as the path it traversed. How-

ever, host anonymity can be achieved by replacing ICING with TorIP [117], thus resulting

in a level of anonymity similar to that provided by TOR in Today’s Internet.

MobilityFirst and XIA suffer from the same privacy and anonymity problems as IP. Packets

contain both source and destination GUIDs (or principal identifiers), thus revealing the hosts

involved. To make the matter worse, XIA packets path can be revealed by inspecting their

destination DAG addresses. This is because such addresses might include (part of) the path

to the destination, as described in Chapter 1. Due to the communication model similarity

of these two architectures to IP, approaches developed to preserve users anonymity in IP

networks can be adopted. For instance, TOR can be used to protect MobilityFirst and XIA

195

host principals’ anonymity. Preserving content principals’ anonymity can be achieved using

a protocol similar to ANDāNA in NDN [65].

8.2 DoS and DDoS Attacks on FIA Projects

We now present some DoS and DDoS attacks that apply to the current as well as the future

Internet architectures discussed above. We also discuss new types of attacks made possible

by FIA architectures.

8.2.1 Bandwidth Depletion Attacks

The current Internet architecture is susceptible to bandwidth depletion attacks [184]. Their

goal is to exhaust bandwidth of a specific link. These attacks can be mounted in two ways:

(1) distributed – with packets sent at low rate by each attacking node, or (2) centralized

– a single powerful adversary flooding the target link at high rate. Due to today’s high

bandwidth and redundancy, centralized bandwidth depletion attacks are harder to mount.

Several mitigation and prevention techniques have been proposed and implemented in the

current Internet. Some examples are: (1) tracing back traffic to the source of the attack

[40, 182, 175], (2) distinguishing between legitimate and malicious traffic [30, 201], (3) using

puzzles to increase the cost for adversaries trying to consume bandwidth [61, 95], and (4)

using rate-limiting mechanisms for traffic that causes congestion [187, 125]. However, none

can effectively defeat this attack.

Bandwidth depletion in the data plane is harder to mount in NEBULA, because senders

(adversaries) must obtain consent of all nodes on the path before sending packets. Thus,

unauthorized packets will be dropped by adversary-facing routers. Unfortunately, this only

196

shifts the attack from the network layer to the consent servers and causes negative effects on

the network. The reason is because a single consent server might be responsible for a large

number of routers in its domain. Thus, lowering its ability of issuing PoCs can disable all

routers in that domain.

Since MobilityFirst and XIA use a communication model similar to IP, they both are sus-

ceptible to bandwidth depletion attacks. Similar countermeasures applied in IP networks

can be adopted. However, they can only reduce the effect of these attacks.

Nugraha et al. [150] suggested integrating STRIDE with XIA to protect against DoS attacks.

STRIDE [88] is an architecture resilient to bandwidth depletion (D)DoS attacks. It mod-

ifies SCION path establishment to perform a tree-based bandwidth allocation. Whenever

a trusted domain root initiates the path establishment process, bandwidth is allocated as

the path is branching out as a tree from that root. This guarantees the required bandwidth

for benign flows. STRIDE also supports long-term static paths to provide high available

connectivity.

8.2.2 Routers Resource Exhaustion

Exhausting storage resources of routers is another target for adversaries. As mentioned in

Chapter 1, NAT-enabled router might assemble fragments in some scenarios. Reassembly

buffers in these routers can be exploited as follows. Each fragment includes a 16-bit field to

indicate the size of the original packet. Adversaries can send a single fragment with a large

original packet size and never send the rest of the fragments. This forces assembling routers

to allocate a buffer and wait for the rest of the packet to arrive. To make the matter worse,

adversaries can set the original packet size to its maximum value, 64KB, thus allocating

maximum buffers.

197

Computation resources of routers is another victim of exhaustion. Since ICING’s design

requires the extensive use of cryptographic operations, adversaries can send a large number

of packets to routers forcing them to perform all verification operations described in Chapter

1. Such attacks have very low cost on adversaries since the latter can flood victim routers

with packets carrying invalid (e.g., randomly generated) PoC and PoP values.

8.2.3 Cache-Related Attacks

As discussed earlier caching opens the door for new types of DoS attacks, such as content

poisoning (Chapter 4). This attack occurs when adversaries inject fake content into router

caches. A fake content is not generated by a benign producer and, consequently, does not

satisfy user requests. If such content is cached in routers, it is used to reply to future benign

user requests.

Due to the use of network caching in MobilityFirst and XIA, both are susceptible to content

poisoning attacks, because forcing routers to verify data authenticity before caching might

incur undesirable overhead. Fortunately, using SCNs can limit the effect of these attacks.

Since MobilityFirst and XIA use the hash of content principals to compute their identifiers,

content poisoning attacks are obviated. As mentioned above, MobilityFirst and XIA do not

support secure retrieval of content principal identifiers.

Cache Pollution is another type of (D)DoS attacks against router caches. Both Mobility-

First, and XIA are susceptible to this attack (see Section 2.6 for more details about cache

pollution).

198

8.3 CCN Cache Privacy

There is a large body of work on using side channels to extract information about other

users’ (or applications’) behavior. Techniques proposed in [71, 82] allow malicious websites

to learn whether a user visited a specific web page. The attacker sends a Java applet to the

victim and detects cache hits with respect to the user’s browsing cache.

Similarly, Felten et al. [69] show how a malicious website can determine whether a web page

has been downloaded by its victim. The attack uses a Java applet or Javascript code and

timing information to determine the content of the browser’s cache.

Baron [36] proposes a countermeasure for attacks in [71, 82], based on completely hiding

one’s browsing history: rendering behavior of the browser (e.g., link colors, output of CSS

functions) with respect to previously visited web pages is identical to that with new pages.

However, this technique does not work for interactive attacks. In particular, Weinberg et al.

[197] conducted experiments to show that interactive and timing attacks can still be used to

disclose user’s previous visited sites.

Bortz et al. [46] show two types of timing attacks that allow the adversary to learn the

content of the browser’s cache. The first, called direct timing attack, reveals whether one or

more public websites have been visited by the victim. The second, cross-site timing attack, is

more dangerous as it can reveal information about private sections of websites. For instance,

it can determine whether a user is logged in to a specific service.

Another side-channel exploit is the timing attack on SIP VoIP networks. A tool described

in [205] can be used to reveal the “calling history” of a SIP domain by observing which

“recipient digital certificates” are stored in the local cache.

Several countermeasures to cache attacks have been developed. [94] proposes a server-side

approach that prevents users from leaking the content of their cache. The idea is to randomize

199

and personalize the links in web pages. Thus, a malicious site can not guess them when it

tries to discover whether they have been visited.

Schinzel [176] discusses three techniques for mitigating timing-based side channel attacks in

web applications. The first delays all responses such that the total delay of each response

is identical. While this does not leak any information, it introduces considerable delay

and affects user experience. The second approach entails adding a random delay to each

response (the responses to identical requests are independently randomized). However, by

requesting the same content sufficiently many times, the adversary can remove this random

noise. The third approach is similar to the second. However, instead of randomizing the

delay per response, a single random delay is selected per destination in order to prevent the

aforementioned attack.

Lauinger [110] considers several NDN-related security issues, identifies the problem of cache

privacy and overviews several countermeasures, including some approaches similar to those in

Chapter 3. Crosby et al. [58] investigate how network latency deteriorates due to time-based

side channel attacks, and design filters to reduce the effects of jitter.

Finally, Mohaisen et al. [139, 140] study cache privacy in ICN (NDN) and propose coun-

termeasures similar to ours, discussed in Chapter 3. However, this work only considers

privacy-preserving delays at edge routers. Proposed methods require keeping per-user state

in routers, in order to enable fast re-transmission of replies without artificial delays. How-

ever, per-user state makes such techniques more complex, while privacy information in our

approach is distilled in a single bit and timestamp per content (and request). Also, [139, 140]

does not consider advanced distributed adversaries described in Chapter 3.

200

8.4 CCN Network-Layer Trust

Content poisoning was identified in [77], where some tentative countermeasures were pro-

posed. To the best of our knowledge, Chapter 4 presents the first comprehensive study of

content poisoning attacks in CCN.

Some prior research efforts discussed naming in content-oriented networks and its relationship

to security. Notably, [79] proposes establishing bindings between three ICN entities: (1)

identity coupled with the producer of each content object, (2) name, and (3) public key used

to verify the content signature. Only two of the three possible bindings (identity–name,

name–key and identity–key) are required, while the third can be transitively derived.

Self-certifying naming was discussed in [79, 80, 68, 104]. Names are of the form P :L where P

is the digest (hash) of the producer’s public key, and L is a label set by the producer. It is the

latter’s responsibility to make sure that names of this form are unique. This guarantees the

name–key binding and sacrifices human readability of names for strong security properties.

Although, CCN uses human-readable names, name-key binding is achievable by adding the

KeyID field to interest messages and content objects. Also, hierarchical names in CCN

facilitate interest forwarding based on longest-prefix matching of their names. In contrast,

using the P :L scheme would result in very large routing tables.

Trust and trust management are well studied in the literature, especially, in distributed

environments, such as MANETs and wireless sensor networks (WSNs). [52] surveys the state

of the art in trust management systems for MANETs. It emphasizes the need to combine

the notions of “social trust” with “quality-of-service (QoS) trust”. A similar survey is [153].

[122] presents an extensive review of trust management systems in WSNs. [204] discusses

security challenges in designing WSNs. It distinguishes between the definitions of trust and

security and shows that cryptography is not always the solution for trust management.

201

Since a single trust metric might not suffice to express trustworthiness of nodes, a multi-

dimensional trust management framework is suggested in [113]. Three metrics are used: (1)

node collaboration while performing tasks, e.g., packet forwarding, (2) node behavior, e.g.,

flagging nodes that flood the network, and (3) correctness of node-disseminated information,

e.g., routing updates.

[56] proposes a framework for calculating a network entity’s reputation score based on pre-

vious interactions feedback. Each service can apply its own reputation scoring functions. It

also supports caching of trust evaluations to reduce network overhead and provides APIs for

reporting feedback and calculating reputation scores.

All aforementioned techniques involve keeping track of other nodes’ behavior in order to

decide whether they are trusted. However, this general strategy is a poor match for CCN

because routers need an efficient mechanism to trust content, and not other entities. Since

content can be served from any node, it is impractical for routers to trust many other routers.

8.4.1 Cache Poisoning

Cache poisoning has been extensively studied in different contexts. Whenever an architecture

involves a cache, this attack type is possible. Address Resolution Protocol (ARP) (that

resolves the mapping between MAC/IP addresses [76]) is susceptible to cache poisoning

attacks by design. Each node that runs this protocol has an ARP cache. The original design

of ARP did not consider malicious behavior. Adversaries can reply with bogus MAC/IP

mappings that will be cached by other nodes. ARP cache poisoning is a preparatory step for

many network attacks such as DoS, Man-In-The-Middle (MITM), and host impersonation.

There are several countermeasures to ARP poisoning. arpwatch [10] is a tool that observes

ARP protocol messages and keeps track of “potentially” valid MAC/IP mappings. Whenever

202

an anomaly is detected, arpwatch notifies the network administrator. Snort [18], an Intrusion

Detection System (IDS), follows a similar procedure in detecting ARP poisoning. However,

administrator incompetence and high false positives might raise performance inefficiencies.

Nam et al. [144] proposed a voting-based resolution for mitigating ARP poisoning attack.

When a new node boots up in a LAN environment, all other nodes send it their MAC/IP

mapping of the network gateway. This allows the new node to detect any malicious mapping

advertisements for that gateway. Trabelsi et al. [191] proposed the use of a stateful cache

and applied a fuzzy logic approach to detect MAC/IP mapping anomalies. In this model,

nodes share trust information about all other nodes. Unlike the current design, when an

ARP request is sent, the sender waits to receive all replies and then selects (based on trust

information) the most trustworthy. However, this increases end-to-end latency.

Another type of cache poisoning attacks is DNS spoofing. It is also the first step in mounting

MITM attacks. Klein [102] identifies several vulnerabilities in DNS daemons that can be

exploited by adversaries to modify valid DNS entries. This results in redirecting legitimate

users to false destinations.

DNSSEC [32] solves the DNS cache poisoning attacks by ensuring the authenticity of DNS

responses using signatures. A response is trusted only if the signature is successfully verified.

Moreover, current DNS [138] provides a built-in mechanism for lower-level DNS server public

keys distribution. End-users only need to trust the root servers which provide the key of the

next DNS server in the certification hierarchy.

Some attempts were made to improve DNSSEC’s performance. Sun et al. [188] proposed

a new DNS client that queries multiple DNS resolvers instead of only one. Bassil et al.

presented S-DNS [37], a secure and backward compatible protocol that provides lower com-

putation and communication overhead, by replacing the traditional PKI with identity-based

encryption. Perdisci et al. [156] proposed WSEC DNS that exploits wildcard domain names

203

and the fact that all DNS responses must copy the information in the corresponding re-

quests. Using widecards increases entropy of DNS requests and greatly complicates guessing

the response. WSEC DNS is easily deployable due to its fully backward compatibility with

DNS.

8.5 Accounting in CCN

Network-layer accounting in CCN and other interest-based ICN architectures remains an

open topic [200]. However, certain economic aspects, such as how to set and enforce prices,

has been discussed in [31, 159], which imply an application-layer strategy wherein payment

(not usage) information is willingly sent on behalf of the consumer. This conflicts with the

approach advocated by Agyapong et al. [25], wherein only ISP-related entities are involved in

payment coordination. [25] considers payment as an application layer concern. Accounting

techniques presented in Chapter 5 facilitate a blend between these two schemes in which

usage and payment information is sent autonomously by the network layer. ISP entities and

producers are informed of usage information for billing purposes, and can follow up with

payment collection.

Patané et al. [155] study a similar problem in the context of IP networking, focusing on

Content Distribution Networks (CDNs) and transit networks that channel traffic between

ISPs. Payment policies proposed in [155] are identical to each other, though. All parties

pay for resources used to deliver their content. [155] does not describe how this payment

and usage information can be propagated. Similar to [159], Kocak et al. [103] discuss how

content providers can coordinate price information and contracts between ISPs. They also

opt for an open, unfederated approach, which fits with the proposed model of autonomous

accounting information propagation described in Chapter 5.

204

[193] proposes the Secure E-Commerce Transactions for Multicast Services (SETMS) frame-

work. It is an overlay functionality on top of the core network and supports significantly

more functionality than the proposed accounting scheme, e.g., dynamic subscription to con-

tent, secure e-payments, and authentication. Our approach is more low-level in that it can

serve as a building block for such a framework. However, it does not replace it.

In the context of multicast communication, [172] presents a distributed management ar-

chitecture for IP multicast services. Agents (e.g., routers) individually collate information

about multicast groups traffic that is later used for billing purposes. This information is not

propagated to producers in real-time.

Another important element of Chapter 5 is the generation of secure consumer-specific data

in pInt messages. There is on-going work on the topic of packet-level authentication in the

current Internet [108]. However, digital signatures and symmetric-key MACs require some

unrealistic assumptions, such as shared keys amongst all pairs of routers, and trusted third

parties responsible for key generation and management. Public-key algorithms based on

elliptic curves offer better signature efficiency (e.g., DNSCurve [6, 41]). However, the sheer

volume of interests in CCN would likely be substantially higher than DNS queries in IP

networks, leading to only modest performance gains.

8.6 Secure Fragmentation in CCN

8.6.1 Secure Fragmentation

The first attempt to address security implications of IP fragmentation is [192] which inves-

tigated how to efficiently authenticate IP packet fragments in egress/ingress routers of stub

AS-s. A source host is assumed to share a key with appropriate router(s). Two techniques are

205

proposed: The first one is delayed authentication (DA) [192] where an authenticating router

verifies a packet MAC incrementally from its fragments. To prevent reassembly of a corrupted

packet at the destination, an authenticating router holds one small fragment “hostage” until

authenticity of the entire packet authenticity is confirmed. The second scheme is an MTU

probe mechanism that a source host can use to pre-segment a large packet into smaller au-

thentic packets sized to the smallest MTU on the (current) path. Some extensions to [192]

were later proposed in [163]: extended delayed authentication (EDA) requires fragments to

always traverse the same path. [163] also provides a detailed comparison of several secure

fragmentation techniques.

A secure fragmentation scheme for Delay-Tolerant Networks (DTN) [51] is presented in

[154]. This scheme is referred to as “toilet-paper” approach. The basic idea is that, prior

to bundling, data is check-pointed into fragments with a cryptographic hash at specified

intervals. Hashes are included in a bundle and authenticated with a signature. Gateways

forward a fragment only if its hash and signature are valid. A variation supports variable

increments of authentic fragments, allowing routers greater flexibility to choose fragment

size, thus potentially saving link resources.

An enhancement to the “toilet-paper” approach is presented in [34]. After fragmentation,

the sender constructs a Merkle Hash Tree (MHT) [135] where each fragment is placed in

a leaf, and signs the root. Fragment verification requires knowledge of this signature and

log(n) hashes (where n is the number of fragments). To authenticate all fragments, a verifier

computes n log(n) hashes and a single signature verification. However, these approaches are

not applicable in CCN since they lack support for in-network fragmentation. Moreover, in

FIGOA, verifying all fragments requires only n hashes and one signature verification.

Most current networks employ IPsec [72] for network-level authentication in IP networks.

It is compatible with both IPv4 and IPv6. IPsec operates in transport and tunnel mode.

Transport mode is used by two hosts to establish a security association to authenticate and

206

encrypt IP packet payloads. Tunnel mode facilitates Virtual Private Networks (VPN) which

are composed of IPsec-enabled gateways that share bilateral security associations. Gateways

encrypt IP datagrams and encapsulate them into new ones.

Regardless of the mode, fragmentation between IPsec-enabled hosts (gateways) occurs at

the IP layer. Since IPsec authenticated/encrypted packets reflect the destination address

of another IPsec-capable host (or gateway), they must undergo packet-level scrutiny which

requires reassembly. Hop-by-hop reassembly at IPsec adjacent hosts ensures security.

8.6.2 Fragmentation in ICN

NDN currently supports TCP/UDP tunnels to interconnect its forwarders. Fragmentation

is relegated to IP, limiting maximum packet size to that of IP. Hop-by-hop reassembly allows

routers to authenticate content (although this is not presently supported in the forwarder

implementation) at the increased cost of reassembly.

NDN Link Protocol (NDNLP) [180] alleviates this issue while operating over both link-layer

and virtual transports, such as Ethernet and TCP/UDP. Fragmentation occurs for both

interest and content packets. NDNLP supports intermediate reassembly which makes it

compatible with NDN security requirement. However, it uses a packet format incompatible

with NDN. NDNLP also supports reliable transmission of fragments.

The CCN-lite project [50] aims to provide a “level-0” forwarder for CCN. It is compatible

with the CCNx protocol and provides a rudimentary implementation of the forwarder with

simple data structures for PIT, FIB, and CS. Native fragmentation and reassembly are sup-

ported over Ethernet and TCP/UDP. Fragments are identified by a sequence number without

any addressing scheme on per-fragment basis, which implies that cut-through fragmentation

207

is not supported. This fragmentation scheme also allows for reliable re-transmission of indi-

vidual fragments

ICN Transport Protocol (ICTP) [173] is a scheme, which implements TCP native to ICN.

Similar to TCP, ICTP segments data to avoid further fragmentation. This provides cut-

through delivery of fragments. Akin to TCP, this scheme does not prevent fragmentation

from occurring at a lower layer. Unlike FIGOA, ICTP does not address content authentica-

tion at intermediate routers.

The NetInf project [67] is another emerging ICN architecture which supports location-

independent Named Data Objects (NDO) (similar to content objects in CCN). NDOs are

signed and cacheable units. NetInf does not perform segmentation and relies on a “con-

vergence layer” (CL) to synthesize necessary services for heterogeneous transports used to

connect NetInf gateways. CL is tasked with fragmentation and reassembly of NDOs. With no

native cut-through fragmentation scheme, NetInf appears to rely on hop-by-hop reassembly

for verification of NDO authenticity.

8.7 Negative Acknowledgments in CCN

In the current Internet, negative acknowledgments are used as error notifications in control

protocols. For instance, in TCP, Automatic-Repeat-Request (ARQ) implements error control

using Go-Back-N and Selective Repeat [114]. In Go-Back-N, receivers detecting a lost packet

send a notification indicating the missing packet. The sender, then, re-transmits everything,

starting from the lost packet. In Selective Repeat, receivers use notifications to report packet

loss. In this case, the sender only resend that specific packet.

In broadcast communication, NACKs are preferred over ACKs due to lower congestion and

fewer packet collisions [160]. This is because using selective NACKs allows lowering the

208

number of packets sent by receivers, hence reducing the probability of packet collision closer

to the sender. This, however, is prone to NACK implosion. In case of packet loss, the

sender receives many NACKs from all receivers. Stran et al. [174] propose a time-based

mechanism to reduce NACK implosion. Every receiver detecting a packet loss initiates a

random timer. The receiver having the shortest random interval unicasts a NACK to the

sender, which immediately multicasts the NACK to the other receivers. All receivers having

the same missing packet suppress their own NACKs. Yamamoto et al. [202] demonstrate

that the delay incurred by a NACK-suppression mechanism does not affect the performance

of NACK multicast control flow.

In wireless networks, selective NACKs can be used in RTS/CTS handshake mechanism in

order to reduce congestion and packet collision rates [90, 171]. In [115], NACKs at the

data-link layer are combined with NACKs at the transport layer in order to improve video

streaming performance over 3G cellular networks. In case of frame loss, a mobile device

sends a selective data-link NACK to the base station. If the lost frame is not recovered

after several successive NACKs, a transport-layer NACK is issued to the sender requesting

re-transmission of the entire packet.

At the transport layer, NACKs are used for reliable communications [21, 20, 89, 152]. [21, 20]

describes the NACK-Oriented Reliable Multicast (NORM) Transport Protocol. NORM

operates between one or more senders and a group of receivers over an IP multicast network.

Receivers use selective NACKs to notify senders about lost packets. In a similar approach

[89], NACKs are used as a packet loss detection mechanism in satellite communication. A

NACK is generated by sending a signal. Senders detect NACKs by monitoring the total

electrical power in the frequency band used for the uplink. This enables several receivers to

share a low-speed uplink circuit simultaneously, which prevents NACK collisions. Obraczka

[152] surveys multicast transport protocols, including NACK-based protocols, ACK-based

protocols and other hybrid approaches.

209

Chapter 9

Conclusions and Follow-On Work

This dissertation addressed several issues that stem from in-network caching in Content-

Centric Networking (CCN).

Chapter 3 explored cache privacy in CCN, identified several important privacy threats, and

introduced some plausible and effective countermeasures. We suggested that consumers

and producers should indicate which content is privacy-sensitive. We also proposed several

techniques that provide certain trade-offs between privacy and latency. These techniques

were assessed with respect to local and distributed adversaries with varying capabilities. We

also introduced a formal model to quantify the degree of privacy offered by various caching

algorithms. We believe that proposed techniques are general and may be of interest beyond

caching. Follow-on topics include: (1) analyzing different possible artificial delay periods

added by edge routers and studying their effect on content distribution performance, and

(2) introducing techniques for consumers and producers to link distinct private content in

order to prevent correlation attacks.

NDN is one of several prominent candidates for the next-generation Internet architecture. It

is susceptible to some new threats, such as content poisoning, whereby adversaries inject fake

210

content into router caches. To mitigate these attacks, we postulated the intuitive trust man-

agement goals needed to support content validation, in both CCNx and NDN routers, and

presented a simple rule (IKB) that makes it practical. This rule is compatible with the tenets

of both architectures. We also suggested several optimization techniques for the proposed

rule. Given computational overhead of signature verification, we proposed a lightweight

probabilistic content ranking algorithm. It ranks content based on consumer acceptance.

In case of multiple cached content objects matching an interest, the highest ranked one is

returned. Experimental results supported our assertion that this ranking algorithm detects

and mitigates content poisoning attacks. The two complementary approaches described in

Chapter 4 are the first practical countermeasure to mitigate content poising attacks in CCNx

and NDN. We note that both IKB rule and catalogs are implemented as part of the current

CCNx standardization draft [142].

Chapter 5 studied the effect of in-network caching on accounting in CCN. Since content

can be served by any router, producers do not have the means to learn about the number

of cache hits and content requests. We presented a simple and lightweight network-layer

accounting technique and showed how to securely extend it to the application-layer. We

assessed performance of this technique and demonstrated that accounting in CCN is both

possible and practical.

In Chapter 6, we argued that secure fragmentation is an important issue in CCN. It is

complicated by the rule that each content object must be signed by its producer. Thus

far, fragmentation of content objects has been considered incompatible with CCN since it

precludes authentication of individual fragments by routers. We showed that secure and

efficient content fragmentation is both possible and advantageous in CCN and similar archi-

tectures that involve signed content. We demonstrated a concrete technique (FIGOA) that

facilitates efficient and secure content fragmentation in CCN, discussed its security features,

211

and assessed its performance. We also described a prototype implementation and presented

some preliminary results.

Finally, we provided a comprehensive analysis of network-layer NACKs in both NDN and

CCNx. NACKs are an important feature of both architectures and their adoption has been

debated. As shown in Chapter 7, NACKs can be beneficial in mitigating the impact of

Interest Flooding attacks. Despite their benefits, we also showed that NACKs have certain

challenging security implications. We identified two types of NACKs (cNACKs and fNACKs)

and explored their security requirements. We then described how secure cNACKs can trigger

producer-focused flooding attacks and discussed some potential countermeasure.

Many security and privacy issues in both CCNx and NDN must still be addressed before

either architecture can be considered as a replacement for IP. Even if implemented as an

overlay on top of IP, all CCN security issues should be resolved a priori. Some issues studied

in this dissertation deserve more attention. Our work in Chapter 4 can be extended to take

into account an on-path adversary (e.g., a router) injecting fake content as a response for all

or some received interests. In Chapter 7, we proposed a countermeasure to mitigate producer-

focused DoS attacks stemming from securing cNACKs. This countermeasure requires further

investigation in order to assess its validity and suitability. Moreover, Interest Flooding

attacks (although not discussed in this dissertation) remain a major threat in CCN. There

are no deterministic countermeasures to Interest Flooding attacks.

212

Bibliography

[1] CCN now supports android. http://blogs.parc.com/blog/2010/11/

ccn-now-supports-android/. Accessed: February 12, 2016.

[2] Circuit switching (CS) vs packet switching (PS) networks — difference between circuit
switching and packet switching. http://www.rfwireless-world.com/Terminology/
circuit-switching-vs-packet-switching.html. Accessed: March 4, 2016.

[3] Content centric networking (CCNx) project. http://www.ccnx.org. Accessed: Febru-
ary 12, 2016.

[4] DFN-Verein. http://www.dfn.de/. Accessed: February 18, 2016.

[5] DFN-Verein: DFN-NOC. http://www.dfn.de/dienstleistungen/dfninternet/

noc/. Accessed: February 18, 2016.

[6] DNSCurve: Usable security for DNS. https://dnscurve.org/. Accessed: March 22,
2016.

[7] IPv6 extension headers review and considerations. https://www.cisco.com/en/US/

technologies/tk648/tk872/technologies_white_paper0900aecd8054d37d.html.
Accessed: May 26, 2016.

[8] IRCache project. http://www.ircache.net/. Accessed: July 27, 2012.

[9] Kernel virtual machine (KVM). http://www.linux-kvm.org. Accessed: March 2,
2016.

[10] LBNL’s Network Research Group arpwatch, the ethernet monitor program; for keeping
track of Ethernet/IP address pairings. ftp://ftp.ee.lbl.gov/arpwatch.tar.gz.
Accessed: March 18, 2016.

[11] NACKs in ndnSIM2.0? http://www.lists.cs.ucla.edu/pipermail/ndnsim/

2015-February/thread.html. Accessed: March 9, 2016.

[12] The national laboratory for advanced network research project. http://www.caida.

org/projects/nlanr/. Accessed: February 12, 2016.

[13] NDN packet format specification. http://named-data.net/doc/ndn-tlv/. Accessed:
January 30, 2016.

213

http://blogs.parc.com/blog/2010/11/ccn-now-supports-android/
http://blogs.parc.com/blog/2010/11/ccn-now-supports-android/
http://www.rfwireless-world.com/Terminology/circuit-switching-vs-packet-switching.html
http://www.rfwireless-world.com/Terminology/circuit-switching-vs-packet-switching.html
http://www.ccnx.org
http://www.dfn.de/
http://www.dfn.de/dienstleistungen/dfninternet/noc/
http://www.dfn.de/dienstleistungen/dfninternet/noc/
https://dnscurve.org/
https://www.cisco.com/en/US/technologies/tk648/tk872/technologies_white_paper0900aecd8054d37d.html
https://www.cisco.com/en/US/technologies/tk648/tk872/technologies_white_paper0900aecd8054d37d.html
http://www.ircache.net/
http://www.linux-kvm.org
ftp://ftp.ee.lbl.gov/arpwatch.tar.gz
http://www.lists.cs.ucla.edu/pipermail/ndnsim/2015-February/thread.html
http://www.lists.cs.ucla.edu/pipermail/ndnsim/2015-February/thread.html
http://www.caida.org/projects/nlanr/
http://www.caida.org/projects/nlanr/
http://named-data.net/doc/ndn-tlv/

[14] NDN testbed. http://named-data.net/ndn-testbed/. Accessed: February 12, 2016.

[15] Network simulator 3 (NS-3). http://www.nsnam.org/. Accessed: February 18, 2016.

[16] NSF future internet architecture project. http://www.nets-fia.net/. Accessed:
January 25, 2016.

[17] Sandvine global internet phenomena report. https://www.sandvine.com/trends/

global-internet-phenomena/. Accessed: February 18, 2016.

[18] Snort project, the snort: The open source network intrusion detection system. http:

//www.snort.org. Accessed: March 18, 2016.

[19] Secure hash standard. http://csrc.nist.gov/publications/fips/fips180-2/

fips180-2.pdf, 2002. Accessed: March 1, 2016.

[20] B. Adamson and C. Bormann. RFC 5401: Multicast negative-acknowledgment
(NACK) building blocks, 2008.

[21] B. Adamson, C. Bormann, M. Handley, and J. Macker. RFC 5740: NACK-oriented
reliable multicast (norm) transport protocol, 2009.

[22] A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and L. Zhang. Interest flooding
attack and countermeasures in named data networking. In IFIP Networking Confer-
ence, 2013.

[23] A. Afanasyev, I. Moiseenko, and L. Zhang. ndnSIM: NDN simulator for NS-3. Technical
report, University of California, Los Angeles, 2012.

[24] A. Afanasyev, J. Shi, L. Wang, B. Zhang, and L. Zhang. Packet fragmentation in
NDN: why NDN uses hop-by-hop fragmentation. Technical report, NDN-0032, rev. 1,
2015.

[25] P. K. Agyapong and M. Sirbu. Economic incentives in information-centric networking:
implications for protocol design and public policy. IEEE Communications Magazine,
50(12), 2012.

[26] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman. A survey of
information-centric networking. Communications Magazine, IEEE, 50(7), 2012.

[27] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer, C. Cotton, M. Freedman,
A. Haeberlen, Z. Ives, A. Krishnamurthy, et al. Nebula-a future internet that supports
trustworthy cloud computing. White Paper, 2010.

[28] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer, C. Cotton, M. J. Freed-
man, A. Haeberlen, Z. G. Ives, A. Krishnamurthy, et al. The nebula future internet
architecture. Springer, 2013.

214

http://named-data.net/ndn-testbed/
http://www.nsnam.org/
http://www.nets-fia.net/
https://www.sandvine.com/trends/global-internet-phenomena/
https://www.sandvine.com/trends/global-internet-phenomena/
http://www.snort.org
http://www.snort.org
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[29] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer, C. Cotton, M. J. Freed-
man, A. Haeberlen, Z. G. Ives, A. Krishnamurthy, et al. A brief overview of the
NEBULA future internet architecture. ACM SIGCOMM Computer Communication
Review, 44(3), 2014.

[30] T. Anderson, T. Roscoe, and D. Wetherall. Preventing internet denial-of-service with
capabilities. ACM SIGCOMM Computer Communication Review, 34(1), 2004.

[31] A. Araldo, D. Rossi, and F. Martignon. Design and evaluation of cost-aware informa-
tion centric routers. In Proceedings of the 1st international conference on Information-
centric networking, 2014.

[32] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. RFC 4033: DNS security
introduction and requirements, 2005.

[33] M. Arye, R. Kiefer, K. Super, E. Nordström, M. J. Freedman, E. Keller, T. Rondeau,
and J. M. Smith. Increasing network resilience through edge diversity in NEBULA.
ACM SIGMOBILE Mobile Computing and Communications Review, 16(3), 2012.

[34] N. Asokan, K. Kostiainen, P. Ginzboorg, J. Ott, and C. Luo. Towards securing
disruption-tolerant networking. Technical report, NRC-TR-2007-007, Nokia Research
Center, 2007.

[35] M. D. Atkinson, J.-R. Sack, N. Santoro, and T. Strothotte. Min-max heaps and
generalized priority queues. Communications of the ACM, 29(10), 1986.

[36] L. D. Baron. Preventing attacks on a users history through CSS: Visited selectors.
http://dbaron.org/mozilla/visited-privacy, 2010. Accessed: March 16, 2016.

[37] R. Bassil, R. Hobeica, W. Itani, C. Ghali, A. Kayssi, and A. Chehab. Security analysis
and solution for thwarting cache poisoning attacks in the domain name system. In
19th International Conference on Telecommunications (ICT), 2012.

[38] M. Baugher, B. Davie, A. Narayanan, and D. Oran. Self-verifying names for read-only
named data. In INFOCOM Workshops, 2012.

[39] S. M. Bellovin. Problem areas for the ip security protocols. In USENIX Security, 1996.

[40] S. M. Bellovin, M. Leech, and T. Taylor. ICMP traceback messages. IETF Draft,
AT&T Labs Research, 2003.

[41] D. J. Bernstein, T. Lange, and P. Schwabe. The security impact of a new cryptographic
library. In Progress in Cryptology (LATINCRYPT), 2012.

[42] H. Bidgoli. The internet encyclopedia, volume 3. John Wiley & Sons, 2004.

[43] R. Birke, M. Mellia, M. Petracca, and D. Rossi. Experiences of VoIP traffic monitoring
in a commercial ISP. International Journal of Network Management, 20(5), 2010.

215

http://dbaron.org/mozilla/visited-privacy

[44] A. Biryukov, I. Pustogarov, and R. Weinmann. Trawling for tor hidden services: De-
tection, measurement, deanonymization. In IEEE Symposium on Security and Privacy
(SP), 2013.

[45] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communi-
cations of the ACM, 13(7), 1970.

[46] A. Bortz and D. Boneh. Exposing private information by timing web applications. In
Proceedings of the 16th international conference on World Wide Web, 2007.

[47] R. Braden. RF 1122: Requirements for internet hosts-communication layers, 1989.

[48] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey.
Internet mathematics, 1(4), 2004.

[49] J. Calvert. The electromagnetic telegraph. http://mysite.du.edu/~jcalvert/tel/
telhom.htm, 2008.

[50] CCN-Lite. http://ccn-lite.net/.

[51] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, and H. Weiss.
RFC 4838: Delay-tolerant networking architecture, 2007.

[52] J.-H. Cho, A. Swami, and I.-R. Chen. A survey on trust management for mobile ad
hoc networks. IEEE Communications Surveys & Tutorials, 13(4), 2011.

[53] A. Compagno, M. Conti, P. Gasti, L. V. Mancini, and G. Tsudik. Violating consumer
anonymity: Geo-locating nodes in named data networking. In Applied Cryptography
and Network Security, 2015.

[54] A. Compagno, M. Conti, P. Gasti, and G. Tsudik. Poseidon: Mitigating interest
flooding ddos attacks in named data networking. In 38th Conference on Local Computer
Networks (LCN), 2013.

[55] A. Compagno, M. Conti, C. Ghali, and G. Tsudik. To NACK or not to NACK? neg-
ative acknowledgments in information-centric networking. In The 24th International
Conference on Computer Communications and Networks (ICCCN), 2015.

[56] W. Conner, A. Iyengar, T. Mikalsen, I. Rouvellou, and K. Nahrstedt. A trust man-
agement framework for service-oriented environments. In Proceedings of the 18th in-
ternational conference on World wide web, 2009.

[57] M. Conti, P. Gasti, and M. Teoli. A lightweight mechanism for detection of cache
pollution attacks in named data networking. Computer Networks, 57(16), 2013.

[58] S. A. Crosby, D. S. Wallach, and R. H. Riedi. Opportunities and limits of remote
timing attacks. ACM Transactions on Information and System Security (TISSEC),
12(3), 2009.

216

http://mysite.du.edu/~jcalvert/tel/telhom.htm
http://mysite.du.edu/~jcalvert/tel/telhom.htm
http://ccn-lite.net/

[59] C. Dannewitz, J. Golić, B. Ohlman, and B. Ahlgren. Secure naming for a network of
information. In INFOCOM IEEE Conference on Computer Communications Work-
shops, 2010.

[60] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, and H. Karl. Network of
information (NetInf)–an information-centric networking architecture. Computer Com-
munications, 36(7), 2013.

[61] D. Dean and A. Stubblefield. Using client puzzles to protect tls. In USENIX Security
Symposium, 2001.

[62] S. E. Deering. RFC 2460: Internet protocol, version 6 (IPv6) specification, 1998.

[63] J. P. Degabriele and K. G. Paterson. Attacking the ipsec standards in encryption-only
configurations. In IEEE Symposium on Security and Privacy (SP), 2007.

[64] L. Deng, Y. Gao, Y. Chen, and A. Kuzmanovic. Pollution attacks and defenses for
internet caching systems. Computer Networks, 52(5), 2008.

[65] S. DiBenedetto, P. Gasti, G. Tsudik, and E. Uzun. ANDaNA: Anonymous named data
networking application. In Symposium of Network and Distributed System Security
(NDSS), 2011.

[66] T. Everts. The average web page has almost doubled in size since 2010. http://www.
webperformancetoday.com/2013/06/05/web-page-growth-2010-2013/. Accessed:
February 18, 2016.

[67] S. Farrell, E. Davies, and D. Kutscher. The NetInf protocol. IRTF Draft, Trinity
College Dublin, 2013.

[68] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen, B. Maggs, K. Ng,
V. Sekar, and S. Shenker. Less pain, most of the gain: Incrementally deployable ICN.
ACM SIGCOMM Computer Communication Review, 43(4), 2013.

[69] E. W. Felten and M. A. Schneider. Timing attacks on web privacy. In Proceedings of
the 7th ACM conference on Computer and communications security, 2000.

[70] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
RFC 2616: Hypertext transfer protocol–HTTP/1.1, 1999.

[71] R. Focardi, R. Gorrieri, R. Lanotte, A. Maggiolo-Schettini, F. Martinelli, S. Tini, and
E. Tronci. Formal models of timing attacks on web privacy. ENTCS, 62, 2002.

[72] S. Frankel and S. Krishnan. RFC 6071: Ip security (ipsec) and internet key exchange
(ike) document roadmap, 2011.

[73] K. Fu, M. F. Kaashoek, and D. Mazieres. Fast and secure distributed read-only file
system. In Proceedings of the 4th conference on Symposium on Operating System
Design & Implementation-Volume 4, 2000.

217

http://www.webperformancetoday.com/2013/06/05/web-page-growth-2010-2013/
http://www.webperformancetoday.com/2013/06/05/web-page-growth-2010-2013/

[74] J. Garcia-Luna-Aceves, A. Dabirmoghaddam, and M. Mirzazad-Barijoug. Understand-
ing optimal caching and opportunistic caching at” the edge” of information-centric
networks. In Proceedings of the 1st international conference on Information-centric
networking, 2014.

[75] R. Garner. Forerunner in wireless telegraphy. Journal of the Institution of Electrical
Engineers, 4(48), 1958.

[76] J. Garrett, J. Hagan, and J. Wong. RFC 1433: Directed ARP, 1993.

[77] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang. DoS and DDoS in named data network-
ing. In 22nd International Conference on Computer Communications and Networks
(ICCCN), 2013.

[78] C. Ghali, G. Tsudik, E. Uzun, and C. A. Wood. Living in a PIT-less world:
A case against stateful forwarding in content-centric networking. arXiv preprint
arXiv:1512.07755, 2015.

[79] A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and S. Shenker. Naming in
content-oriented architectures. In Proceedings of the ACM SIGCOMM workshop on
Information-centric networking, 2011.

[80] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J. Wilcox.
Information-centric networking: seeing the forest for the trees. In Proceedings of the
10th ACM Workshop on Hot Topics in Networks, 2011.

[81] M. E. Gorman. Alexander graham bell. Encyclopedia of Creativity, Two-Volume Set,
1999.

[82] R. Gorrieri, R. Lanotte, A. Maggiolo-Schettini, F. Martinelli, S. Tini, and E. Tronci.
Automated analysis of timed security: A aase study on web privacy. International
Journal of Information Security, 2(3), 2004.

[83] M. Götz, A. Machanavajjhala, G. Wang, X. Xiao, and J. Gehrke. Publishing search
logsa comparative study of privacy guarantees. IEEE Transactions on Knowledge and
Data Engineering, 24(3), 2012.

[84] D. Griffin, M. Rio, P. Simoens, P. Smet, F. Vandeputte, L. Vermoesen, D. Bursz-
tynowski, F. Schamel, and M. Franke. Service-centric networking. Handbook of Re-
search on Redesigning the Future of Internet Architectures, 2015.

[85] T. Hain. RFC 2993: Architectural implications of NAT, 2000.

[86] D. Han, A. Anand, F. R. Dogar, B. Li, H. Lim, M. Machado, A. Mukundan, W. Wu,
A. Akella, D. G. Andersen, et al. XIA: Efficient support for evolvable internetworking.
In the 9th USENIX Symposium on Networked Systems Design and Implementation,
2012.

218

[87] S. Hares, Y. Rekhter, and T. Li. RFC 4271: A border gateway protocol 4 (BGP-4),
2006.

[88] H.-C. Hsiao, T. H.-J. Kim, S. Yoo, X. Zhang, S. B. Lee, V. Gligor, and A. Perrig.
STRIDE: sanctuary trail–refuge from internet DDoS entrapment. In Proceedings of the
8th ACM SIGSAC symposium on Information, computer and communications security,
2013.

[89] E. Ichihara, K. Kikuchi, T. Tsuchida, K. Kawazoe, and H. Kazama. Reliable IP-
multicast protocol. In 21st International Communications Satellite Systems Conference
and Exhibit, 2003.

[90] M. Impett, M. S. Corson, and V. Park. A receiver-oriented approach to reliable broad-
cast in ad hoc networks. In IEEE Wireless Communications and Networking Confernce,
volume 1, 2000.

[91] C. V. N. Index. Forecast and methodology, 2014-2019 white paper. Technical report,
Cisco, 2015.

[92] V. Jacobson, J. Burke, D. Estrin, L. Zhang, B. Zhang, G. Tsudik, K. Claffy, D. Kri-
oukov, D. Massey, C. Papadopoulos, et al. Named data networking (NDN) project
2012-2013 annual report. http://named-data.net/wp-content/uploads/2013/10/

ndn-annualreport2012-2013.pdf, 2014. Accessed: February 18, 2016.

[93] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L.
Braynard. Networking named content. In Proceedings of the 5th International Confer-
ence on Emerging networking experiments and technologies, 2009.

[94] M. Jakobsson and S. Stamm. Web camouflage: Protecting your clients from browser-
sniffing attacks. IEEE Security & Privacy, 5(6), 2007.

[95] A. Juels and J. G. Brainard. Client puzzles: A cryptographic countermeasure against
connection depletion attacks. In Symposium Network and Distributed System Security
(NDSS), 1999.

[96] J. Katz and Y. Lindell. Introduction to modern cryptography: principles and protocols.
CRC press, 2007.

[97] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen. RFC 7296: Internet key
exchange protocol version 2 (IKEv2), 2014.

[98] C. A. Kent and J. C. Mogul. Fragmentation considered harmful. Digital Equipment
Corporation Western Research Laboratory [WRL], 1987.

[99] S. Kent. RFC 4302: IP authentication header, 2005.

[100] S. Kent. RFC 4303: IP encapsulating security payload (ESP), 2005.

[101] T. Kivinen, B. Swander, A. Huttunen, and V. Volpe. RFC 3947: Negotiation of NAT-
Traversal in the IKE, 2005.

219

http://named-data.net/wp-content/uploads/2013/10/ndn-annualreport2012-2013.pdf
http://named-data.net/wp-content/uploads/2013/10/ndn-annualreport2012-2013.pdf

[102] A. Klein. BIND 8 DNS cache poisoning. http://packetstorm.foofus.com/papers/
attack/BIND_8_DNS_Cache_Poisoning.pdf, 2007. Accessed: March 18, 2016.

[103] F. Kocak, G. Kesidis, T.-M. Pham, and S. Fdida. The effect of caching on a model of
content and access provider revenues in information-centric networks. In International
Conference on Social Computing (SocialCom), 2013.

[104] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and
I. Stoica. A data-oriented (and beyond) network architecture. ACM SIGCOMM Com-
puter Communication Review, 37(4), 2007.

[105] H. Krawczyk. The order of encryption and authentication for protecting communica-
tions (or: How secure is SSL?). In Advances in Cryptology (CRYPTO), 2001.

[106] H. Krawczyk, R. Canetti, and M. Bellare. RFC 2104: HMAC: Keyed-hashing for
message authentication, 1997.

[107] J. F. Kurose. Computer Networking: A Top-Down Approach Featuring the Internet,
3/E. Pearson Education India, 2005.

[108] D. Lagutin. Redesigning internet-the packet level authentication architecture. Licen-
tiates Thesis-Helsinki University of Technology, 2008.

[109] K. Lahey. RFC 2923: TCP problems with path MTU discovery, 2000.

[110] T. Lauinger. Security & scalability of content-centric networking. PhD thesis, TU
Darmstadt, 2010.

[111] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen. Introduction to algorithms.
The MIT press, 2001.

[112] K. Leung and Y. Lee. RFC 7337: Content distribution network interconnection (CDNI)
requirements, 2012.

[113] W. Li, A. Joshi, and T. Finin. Coping with node misbehaviors in ad hoc networks: A
multi-dimensional trust management approach. In Mobile Data Management (MDM),
2010 Eleventh International Conference on, 2010.

[114] S. Lin, D. Costello, and M. Miller. Automatic-repeat-request error-control schemes.
Communications Magazine, IEEE, 22(12), 1984.

[115] H. Liu, W. Zhang, S. Yu, and J. Cai. A client-driven scalable cross-layer retransmission
scheme for 3G video streaming. In IEEE International Conference on Multimedia and
Expo (ICME), 2005.

[116] V. Liu, D. Halperin, A. Krishnamurthy, and T. E. Anderson. F10: A fault-tolerant
engineered network. In the 10th USENIX Symposium on Networked Systems Design
and Implementation, 2013.

220

http://packetstorm.foofus.com/papers/attack/BIND_8_DNS_Cache_Poisoning.pdf
http://packetstorm.foofus.com/papers/attack/BIND_8_DNS_Cache_Poisoning.pdf

[117] V. Liu, S. Han, A. Krishnamurthy, and T. Anderson. Tor instead of IP. In Proceedings
of the 10th ACM Workshop on Hot Topics in Networks, 2011.

[118] X. Liu, W. Trappe, and Y. Zhang. Secure name resolution for identifier-to-locator
mappings in the global internet. In 22nd International Conference on Computer Com-
munications and Networks (ICCCN), 2013.

[119] B. Lloyd, D. Carr, G. McGregor, and K. Sklower. RFC 1990: The PPP multilink
protocol (mp), 1994.

[120] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis, R. Ra-
makrishnan, T. Roscoe, and I. Stoica. Declarative networking: language, execution
and optimization. In Proceedings of the 2006 ACM SIGMOD international conference
on Management of data, 2006.

[121] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis,
R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative networking. Communications
of the ACM, 52(11), 2009.

[122] J. Lopez, R. Roman, I. Agudo, and C. Fernandez-Gago. Trust management systems
for wireless sensor networks: Best practices. Computer Communications, 33(9), 2010.

[123] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber. Privacy: Theory
meets practice on the map. In 24th International Conference on Data Engineering
(ICDE), 2008.

[124] P. Mahadevan, E. Uzun, S. Sevilla, and J. Garcia-Luna-Aceves. CCN-KRS: a key
resolution service for CCN. In Proceedings of the 1st international conference on
Information-centric networking, 2014.

[125] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker. Con-
trolling high bandwidth aggregates in the network. ACM SIGCOMM Computer Com-
munication Review, 32(3), 2002.

[126] A. Mason. CCSP Self-Study: Cisco Secure Virtual Private Networks (CSVPN). Pear-
son Higher Education, 2004.

[127] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang. ndnSIM 2.0: A new version
of the NDN simulator for NS-3. Technical report, NDN-0028, 2015.

[128] M. Mathis and J. Heffner. RFC 4821: Packetization layer path MTU discovery, 2007.

[129] D. Maughan and M. Schneider. RFC 2408: Internet security association and key
management protocol (ISAKMP), 1998.

[130] D. Mazieres, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating key man-
agement from file system security. ACM SIGOPS Operating Systems Review, 33(5),
1999.

221

[131] J. McCann, J. Mogul, and S. E. Deering. RFC 1981: Path MTU discovery for IP
version 6, 1996.

[132] R. McKinney, W. A. Montgomery, H. Ouibrahim, P. Sijben, and J. J. Stanaway.
Service-centric networks. Bell Labs Technical Journal, 3(3), 1998.

[133] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of applied cryptog-
raphy. CRC press, 1996.

[134] R. C. Merkle. Method of providing digital signatures, 1982. US Patent 4,309,569.

[135] R. C. Merkle. A digital signature based on a conventional encryption function. In
Advances in Cryptology (CRYPTO), 1987.

[136] D. Mills, J. Martin, J. Burbank, and W. Kasch. RFC 5905: Network time protocol
version 4: Protocol and algorithms specification, 2010.

[137] P. Mockapetris. RFC 1035: Domain names - implementation and specification, 1987.

[138] P. Mockapetris. RFC 1035: Domain names: implementation and specification, 1987.

[139] A. Mohaisen, H. Mekky, X. Zhang, H. Xie, and Y. Kim. Timing attacks on access
privacy in information centric networks and countermeasures. IEEE Transactions on
Dependable and Secure Computing, 12(6), 2015.

[140] A. Mohaisen, X. Zhang, M. Schuchard, H. Xie, and Y. Kim. Protecting access privacy
of cached contents in information centric networks. In Proceedings of the 8th ACM
SIGSAC symposium on Information, computer and communications security, 2013.

[141] M. Mosko and I. Solis. CCNx messages in tlv format. IRTF Draft, Palo Alto Research
Center, Inc, 2016.

[142] M. Mosko, I. Solis, and C. Wood. CCNx semantics. IRTF Draft, Palo Alto Research
Center, Inc, 2016.

[143] S. Mukherjee, A. Baid, I. Seskar, and D. Raychaudhuri. Network-assisted multihoming
in the mobilityfirst future internet architecture. Technical report, Rutgers University,
2013.

[144] S. Y. Nam, D. Kim, and J. Kim. Enhanced ARP: preventing ARP poisoning-based
man-in-the-middle attacks. IEEE Communications Letters, 14(2), 2010.

[145] J. Naous, M. Walfish, A. Nicolosi, D. Mazières, M. Miller, and A. Seehra. Verifying
and enforcing network paths with ICING. In Proceedings of the 7th Conference on
emerging Networking EXperiments and Technologies, 2011.

[146] D. Naylor, M. K. Mukerjee, P. Agyapong, R. Grandl, R. Kang, M. Machado, S. Brown,
C. Doucette, H.-C. Hsiao, D. Han, et al. XIA: architecting a more trustworthy and
evolvable internet. ACM SIGCOMM Computer Communication Review, 44(3), 2014.

222

[147] S. C. Nelson, G. Bhanage, and D. Raychaudhuri. GSTAR: generalized storage-aware
routing for mobilityfirst in the future mobile internet. In Proceedings of the 6th inter-
national workshop on MobiArch, 2011.

[148] B. Niven-Jenkins, F. L. Faucheur, and N. Bitar. RFC 6707: Content distribution
network interconnection (CDNI) problem statement, 2012.

[149] E. Nordström, D. Shue, P. Gopalan, R. Kiefer, M. Arye, S. Y. Ko, J. Rexford, and M. J.
Freedman. Serval: An end-host stack for service-centric networking. In Proceedings of
the 9th USENIX conference on Networked Systems Design and Implementation, 2012.

[150] B. Nugraha, R. Khondoker, R. Marx, and K. Bayarou. A mutual key agreement pro-
tocol to mitigate replaying attack in expressive internet architecture (XIA). In Pro-
ceedings of the ITU Kaleidoscope Academic Conference: Living in a converged world-
Impossible without standards?, 2014.

[151] E. Nygren, R. K. Sitaraman, and J. Sun. The akamai network: a platform for high-
performance internet applications. ACM SIGOPS Operating Systems Review, 44(3),
2010.

[152] K. Obraczka. Multicast transport protocols: a survey and taxonomy. IEEE Commu-
nications Magazine, 36(1), 1998.

[153] M. Omar, Y. Challal, and A. Bouabdallah. Certification-based trust models in mo-
bile ad hoc networks: A survey and taxonomy. Journal of Network and Computer
Applications, 35(1), 2012.

[154] C. Partridge. Authentication for fragments. In Proceedings of the ACM SIGCOMM
HotNets-IV workshop, 2005.

[155] R. Patané and J. Remond. Economics of information-centric networks. Internet Eco-
nomics VIII, 2014.

[156] R. Perdisci, M. Antonakakis, X. Luo, and W. Lee. WSEC DNS: Protecting recursive
DNS resolvers from poisoning attacks. In IEEE/IFIP International Conference on
Dependable Systems & Networks, 2009.

[157] S. Peter, U. Javed, Q. Zhang, D. Woos, T. Anderson, and A. Krishnamurthy. One
tunnel is (often) enough. In Proceedings of the 2014 ACM conference on SIGCOMM,
2014.

[158] L. Peterson, B. Davie, and R. van Brandenburg. RFC 7336: Framework for content
distribution network interconnection (CDNI), 2014.

[159] T.-M. Pham, S. Fdida, and P. Antoniadis. Pricing in information-centric network
interconnection. In IFIP Networking Conference, 2013.

[160] S. Pingali, D. Towsley, and J. F. Kurose. A comparison of sender-initiated and receiver-
initiated reliable multicast protocols. ACM SIGMETRICS Performance Evaluation
Review, 22(1), 1994.

223

[161] D. Plummer. RFC 826: Ethernet address resolution protocol: Or converting network
protocol addresses to 48. bit ethernet address for transmission on ethernet hardware,
1982.

[162] K. Pogran, R. Tomlinson, J. White, and A. Bhushan. RFC 561: Standardizing network
mail headers, 1973.

[163] R. L. Popp. Implications of internet fragmentation and transit network authentication.
In Local area network interconnection. Springer, 1993.

[164] J. Postel. RFC 792: Internet control message protocol, 1981.

[165] J. Postel. RFC 793: Transmission control protocol, 1981.

[166] J. Postel et al. RFC 791: Internet protocol, 1981.

[167] T. Przygienda. RFC 3359: Reserved type, length and value (tlv) codepoints in inter-
mediate system to intermediate system, 2002.

[168] J.-F. Raymond. Traffic analysis: Protocols, attacks, design issues, and open problems.
In Designing Privacy Enhancing Technologies, 2001.

[169] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for web transactions. ACM
Transactions on Information and System Security (TISSEC), 1(1), 1998.

[170] E. Renault, A. Ahmad, and M. Abid. Toward a security model for the future net-
work of information. In Proceedings of the 4th International Conference on Ubiquitous
Information Technologies & Applications (ICUT), 2009.

[171] N. M. Sabah and A. Hocanin. The use of negative acknowledgement control packets
(NACKs) to improve throughput and delay in IEEE 802.11 networks. In 2nd Interna-
tional Conference on Computer Technology and Development (ICCTD), 2010.

[172] H. Sallay and O. Festor. A highly distributed dynamic ip multicast accounting and
management framework. In Integrated Network Management VIII. Springer, 2003.

[173] S. Salsano, A. Detti, M. Cancellieri, M. Pomposini, and N. Blefari-Melazzi. Transport-
layer issues in information centric networks. In Proceedings of the second edition of the
ICN workshop on Information-centric networking, 2012.

[174] J. Satran, G. Gershinsky, and B. Rochwerger. Nack suppression for multicast protocols
in mostly one-way networks, 2004. US Patent 6,807,578.

[175] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Network support for IP traceback.
IEEE/ACM Transactions on Networking (TON), 9(3), 2001.

[176] S. Schinzel. An efficient mitigation method for timing side channels on the web. In
2nd International Workshop on Constructive Side-Channel Analysis and Secure Design
(COSADE), 2011.

224

[177] K. Seo and S. Kent. RFC 4301: Security architecture for the internet protocol, 2005.

[178] I. Seskar, K. Nagaraja, S. Nelson, and D. Raychaudhuri. Mobilityfirst future internet
architecture project. In Proceedings of the 7th Asian Internet Engineering Conference,
2011.

[179] A. Sharma, X. Tie, H. Uppal, A. Venkataramani, D. Westbrook, and A. Yadav. A
global name service for a highly mobile internetwork. In Proceedings of the ACM
conference on SIGCOMM, 2014.

[180] J. Shi and B. Zhang. NDNLP: A link protocol for NDN. Technical report, NDN-0006,
2012.

[181] D. Smetters and V. Jacobson. Securing network content. Technical report, Citeseer,
2009.

[182] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio, S. T. Kent,
and W. T. Strayer. Hash-based IP traceback. ACM SIGCOMM Computer Communi-
cation Review, 31(4), 2001.

[183] N. Solis, G. Scott, and G. Edens. Ccn 1.0. In Proceedings of the 1st international
conference on Information-centric networking, 2014.

[184] S. M. Specht and R. B. Lee. Distributed denial of service: Taxonomies of attacks, tools,
and countermeasures. In ISCA International Conference on Parallel and Distributed
Computing (and Communications) Systems, 2004.

[185] P. Srisuresh and K. B. Egevang. RFC 3022: Traditional IP network address translator
(traditional NAT), 2001.

[186] P. Srisuresh and M. Holdrege. RFC 2663: IP network address translator (NAT) ter-
minology and considerations, 1999.

[187] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing: a scalable architec-
ture to approximate fair bandwidth allocations in high-speed networks. IEEE/ACM
Transactions on Networking (TON), 11(1), 2003.

[188] H.-M. Sun, W.-H. Chang, S.-Y. Chang, and Y.-H. Lin. DepenDNS: Dependable mech-
anism against DNS cache poisoning. In Cryptology and Network Security, 2009.

[189] P. Syverson, R. Dingledine, and N. Mathewson. Tor: the second-generation onion
router. In Usenix Security, 2004.

[190] A. Tanenbaum and W. David. Computer Networks, 5th Edition. Prentice Hall, 2010.

[191] Z. Trabelsi and W. El-Hajj. Preventing ARP attacks using a fuzzy-based stateful ARP
cache. In IEEE International Conference on Communications, 2007.

225

[192] G. Tsudik. Datagram authentication in internet gateways: implications of fragmenta-
tion and dynamic routing. IEEE Journal on Selected Areas in Communications, 7(4),
1989.

[193] A. K. Venkataiahgari, J. W. Atwood, and M. Debbabi. Secure e-commerce transactions
for multicast services. In The 8th IEEE International Conference on and Enterprise
Computing, E-Commerce, and E-Services, 2006.

[194] A. Venkataramani, A. Sharma, X. Tie, H. Uppal, D. Westbrook, J. Kurose, and D. Ray-
chaudhuri. Design requirements of a global name service for a mobility-centric, trust-
worthy internetwork. In 5th International Conference on Communication Systems and
Networks (COMSNETS), 2013.

[195] T. Vu, A. Baid, Y. Zhang, T. D. Nguyen, J. Fukuyama, R. P. Martin, and D. Raychaud-
huri. Dmap: A shared hosting scheme for dynamic identifier to locator mappings in
the global internet. In IEEE 32nd International Conference on Distributed Computing
Systems (ICDCS), 2012.

[196] L. Wang, A. Hoque, C. Yi, A. Alyyan, and B. Zhang. OSPFN: An OSPF based
routing protocol for named data networking. Technical report, University of Memphis
and University of Arizona, 2012.

[197] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C. Jackson. I still know what you
visited last summer: Leaking browsing history via user interaction and side channel
attacks. In IEEE Symposium on Security and Privacy (SP), 2011.

[198] J. White. RFC 524: Proposed mail protocol, 1973.

[199] Z. Wilcox-OHearn. Names: Decentralized, secure, human-meaningful: Choose two,
2003.

[200] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos, X. Vasilakos,
K. V. Katsaros, and G. C. Polyzos. A survey of information-centric networking re-
search. IEEE Communications Surveys & Tutorials, 16(2), 2014.

[201] A. Yaar, A. Perrig, and D. Song. SIFF: A stateless internet flow filter to mitigate ddos
flooding attacks. In Proceedings of the IEEE Symposium on Security and Privacy,
2004.

[202] K. Yamamoto, Y. Sawa, M. Yamamoto, and H. Ikeda. Performance evaluation of
ACK-based and NAK-based flow control schemes for reliable multicast. In Proceedings
of TENCON 2000, volume 1, 2000.

[203] C. Yi, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang. Adaptive forwarding in named
data networking. ACM SIGCOMM computer communication review, 42(3), 2012.

[204] T. Zahariadis, H. C. Leligou, P. Trakadas, and S. Voliotis. Trust management in
wireless sensor networks. European Transactions on Telecommunications, 21(4), 2010.

226

[205] G. Zhang, S. Fischer-Hübner, L. A. Martucci, and S. Ehlert. Revealing the calling
history of SIP VoIP systems by timing attacks. In International Conference on Avail-
ability, Reliability and Security, 2009.

[206] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smetters, B. Zhang,
G. Tsudik, D. Massey, C. Papadopoulos, et al. Named data networking (NDN) project.
Technical report, NDN-0001, Xerox Palo Alto Research Center-PARC, 2010.

[207] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and D. G. Andersen. SCION:
Scalability, control, and isolation on next-generation networks. In IEEE Symposium
on Security and Privacy (SP), 2011.

[208] G. Ziemba, P. Traina, and D. Reed. RFC 1858: Security considerations for IP fragment
filtering, 1995.

227

Glossary

acknowledgment A message sent by packet receivers to indicate the successful reception

of a packet. 173

address translation tables A method of translating an entire network IP addresses into

a single IP address. 5

adversary model A model describing an adversary or a set of adversaries assumed in a

study. 53, 229

arpanet The first implementation of packet-switched networking in late 1960s. 3

authentication header An IPsec protocol that guarantees integrity and data origin au-

thentication. 5

cache A temporary storage of data (content) to be use to respond to future requests. 9, 34,

45, 82, 118, 144, 228

cache pollution An attack in CCN where adversaries attempt to manipulate reference

locality of caches, causing incorrect decisions by cache eviction strategies. 44, 198

circuit-switched A communication model where a dedicated channel is established between

two devices before transmission begins. 3

consumer An end-user that requests content by sending interest messages. 31, 229, 230

228

content A CCN piece of data addressed using a unique name. 30, 228–230

content distribution A method for delivering content to end-users with high availability

and performance. 58, 60

content poisoning An attack in CCN where adversaries inject fake content in the network

to be cached by routers and used to satisfy future interests issued by benign consumers.

44, 82, 85

countermeasure An algorithm, a protocol, or a scheme used to prevent (protect against)

one or more attacks under a well pre-defined adversary model. 1, 42, 58, 181, 197

datagram An IP packet containing IP addresses of source and destination nodes. 4, 230

encapsulating security payload An IPsec protocol that guarantees integrity and data

origin authentication and confidentiality. 5

fake content A content object that contains an invalid signature or a valid signature gen-

erated with the wrong key. 44, 82, 84, 229

forwarding interest table The CCN routing table containing name prefixes and outgoing

interfaces leading to corresponding producers. 34

fragmentation A process that divides large packets into fragments with sizes smaller than

a specific link’s Maximum Transmission Unit. 5, 143, 145

hash function A function that compresses an arbitrary length input to a fixed size output.

26, 79, 93, 160, 189

interactive communication A type of communication that requires all involved parties

to actively send packets. 58

interest A message sent by CCN consumers to request content. 31, 228–230

229

interest collapsing A process where CCN routers only forward the first out of many closely

timed interests and collapsed the others in the PIT. 35, 42, 126, 142, 179

interest flooding An attack in CCN where adversaries sends a large number of non-sensical

interests in order to fill up router PITs. 43, 130, 174, 212

maximum transmission unit The maximum datagram size that can be transferred over

a specific link in the network. 5, 229

negative acknowledgment A message sent by packet receivers to indicate the failure of

receiving a packet, e.g., packet is considered lost or corrupted. 173

packet-switched A communication model where data is divided into packets that are trans-

mitted over a medium shared among many devices and not only the ones involved in

the communication. 3

pending interest table A CCN router’s component containing pending interests metadata

(including name) and a list of interfaces on which they arrived. 34

principal A network entity that can be a device, content, interface, service, human end-user,

or a collection of identifiers. 7, 14, 193

producer An entity that produce (publish) and disseminate content. 31, 229, 230

replay attack A network attacks where adversaries replay legitimate and valid packets in

order to gain access to restricted resources or leak private information. 130, 179

router An entity that forward interests and content to/from consumers and producers. 31,

229, 230

segmentation A process where CCN producers split a large content object into smaller

individually signed and named pieces called segments. 145, 147, 149

230

system model A model describing a system (including all its properties and characteristics)

under which a study is performed. 51

timing attack A type of side channel attack in which adversaries attempt to compromise

a system or reveal some secret information by measuring the time required to perform

a specific normal network (or cryptographic) task. 47, 67

transmission control protocol A transport-layer protocol that enables host-to-host com-

munication and provides reliability, connection establishment, and flow and congestion

control. 4

231

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Communication History
	The Internet of Today
	The Internet of the Future
	MobilityFirst
	eXpressive Internet Architecture
	NEBULA

	Information-Centric Networking
	Data-Oriented (and Beyond) Network Architecture
	Network of Information

	Content-Centric Networking
	CCN Elements
	CCN Roles
	Content Objects
	Interest Messages

	Node Components
	Content Matching
	Routing and Forwarding
	CCN Security and Privacy
	Trust
	Authentication
	Accounting
	Data Confidentiality
	Traffic Flow Confidentiality
	Privacy and Anonymity

	Attacks on CCN
	Interest Flooding
	Cache Privacy
	Content Poisoning
	Cache Pollution

	Cache Privacy
	Cache Privacy Attacks
	Consumer Privacy in LAN Environment
	Consumer Privacy in WAN Environment
	Consumer Privacy in Local Environment
	Producer Privacy in WAN Environment

	System, Adversary and Privacy Model
	System Model
	Adversary Model
	Privacy Model

	Which Content is Private?
	Router-Driven
	Consumer-Driven
	Producer-Driven
	Collaborative Privacy Decisions

	Countermeasures
	Interactive Traffic
	Content Distribution Traffic
	Artificial Delay Properties
	Artificial Delay Exceptions

	Handling Distributed Adversaries
	Distributed Timing Attack
	Mitigating Distributed Adversaries

	Improving Privacy-Utility Trade-Off
	A Non-Private Naïve Approach
	Random-Cache
	Comparison of Proposed Schemes
	Addressing Content Correlation

	Experimental Evaluation
	Bypassing Cache Delays

	Network-Layer Trust
	Content Poisoning
	Injecting Fake Content
	Problem Definition
	Goals

	Interest-Key Binding Rule
	IKB Implications for Producers and Routers
	Security Arguments
	Optimization

	Self-Certifying Names
	Content Ranking
	Number of Exclusions
	Time Distribution of Exclusions
	Excluding Interfaces Ratio
	Analysis

	Experiments and Results
	Tree-based Topology
	DFN Topology
	AT&T Topology
	Performance Analysis

	Content Trust in Practice
	Traffic Types
	Network Topologies

	Accounting
	Accounting in CCN
	Counting Cache Hits vs. Content Requests
	Accounting via Content Access Control
	Accounting via Push Interests
	pInt Format and Features
	Accounting Correctness

	Security Considerations
	Adversary Model
	Mitigating Forgeries and Replay Attacks
	Consumer Anonymity

	Individual Accounting in Practice
	Recommendations

	Analysis and Experimental Assessment
	Message Count Overhead
	Router Overhead

	Secure Fragmentation
	Fragmentation Synopsis
	Fragmentation in CCN
	Fragmentation of Interests
	Fragmentation of Content
	Considering Intermediate Reassembly
	Fragment Delivery Order
	Incremental or Deferred Fragment Caching?

	Secure Fragmentation
	Delayed Authentication
	Hash Functions
	FIGOA Description
	Examples
	Content Authentication
	Security Analysis

	Implementation
	Evaluation

	Negative Acknowledgments
	Content-NACKs
	Benefits
	Security Issues
	Securing cNACKs
	Secure cNACKs: a Blessing or a Curse?
	Experimenting with Secure cNACKs

	Forwarding-NACKs
	Securing fNACKs
	Experimenting with Secure fNACKs

	Mitigating Producer-Focused DoS Attacks

	Related Work
	Security and Privacy of FIA Projects
	Trust
	Authentication and Integrity
	Authorization and Access Control
	Privacy and Anonymity

	DoS and DDoS Attacks on FIA Projects
	Bandwidth Depletion Attacks
	Routers Resource Exhaustion
	Cache-Related Attacks

	CCN Cache Privacy
	CCN Network-Layer Trust
	Cache Poisoning

	Accounting in CCN
	Secure Fragmentation in CCN
	Secure Fragmentation
	Fragmentation in ICN

	Negative Acknowledgments in CCN

	Conclusions and Follow-On Work
	Bibliography
	Glossary

