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ABSTRACT OF THE DISSERTATION

Essays on estimation and inference in high-dimensional models with
applications to finance and economics

by

Yinchu Zhu

Doctor of Philosophy in Management

University of California, San Diego, 2017

Professor Allan Timmermann, Chair

Economic modeling in a data-rich environment is often challenging. To allow

for enough flexibility and to model heterogeneity, models might have parameters

with dimensionality growing with (or even much larger than) the sample size of

the data. Learning these high-dimensional parameters requires new methodologies

and theories. We consider three important high-dimensional models and propose

novel methods for estimation and inference. Empirical applications in economics

and finance are also studied.

In Chapter 1, we consider high-dimensional panel data models (large cross

sections and long time horizons) with interactive fixed effects and allow the covari-

ate/slope coefficients to vary over time without any restrictions. The parameter

xiii



of interest is the vector that contains all the covariate effects across time. This

vector has dimensionality tending to infinity, potentially much faster than the

cross-sectional sample size. We develop methods for the estimation and inference

of this high-dimensional vector, i.e., the entire trajectory of time variation in

covariate effects. We show that both the consistency of our estimator and the

asymptotic accuracy of the proposed inference procedure hold uniformly in time.

Our methodology can be applied to several important issues in econometrics, such

as constructing confidence bands for the entire path of covariate coefficients across

time, testing the time-invariance of slope coefficients and estimation and inference

of patterns of time variations, including structural breaks and regime switching.

An important feature of our method is that it provides inference procedures for the

time variation in pre-specified components of slope coefficients while allowing for

arbitrary time variation in other components. Computationally, our procedures do

not require any numerical optimization and are very simple to implement. Monte

Carlo simulations demonstrate favorable properties of our methods in finite samples.

We illustrate our methods through empirical applications in finance and economics.

In Chapter 2, we consider large factor models with unobserved factors. We

formalize the notion of common factors between different groups of variables and

propose to use it as a general approach to study the structure of factors, i.e., which

factors drive which variables. The spanning hypothesis, which states that factors

driving one group are spanned by those driving another group, can be studied

as a special case under our framework. We develop a statistical procedure for

testing the number of common factors. Our inference procedure is built upon

recent results on high-dimensional bootstrap and is shown to be valid under the

asymptotic framework of large n and large T . In Monte Carlo simulations, our

procedure performs well in finite samples. As an empirical application, we construct

confidence sets for the number of common factors between the macroeconomy and

the financial markets.

Chapter 3 is joint work with Jelena Bradic. We propose a methodology

for testing linear hypothesis in high-dimensional linear models. The proposed test

does not impose any restriction on the size of the model, i.e. model sparsity or

xiv



the loading vector representing the hypothesis. Providing asymptotically valid

methods for testing general linear functions of the regression parameters in high-

dimensions is extremely challenging – especially without making restrictive or

unverifiable assumptions on the number of non-zero elements. We propose to

test the moment conditions related to the newly designed restructured regression,

where the inputs are transformed and augmented features. These new features

incorporate the structure of the null hypothesis directly. The test statistics are

constructed in such a way that lack of sparsity in the original model parameter

does not present a problem for the theoretical justification of our procedures. We

establish asymptotically exact control on Type I error without imposing any sparsity

assumptions on model parameter or the vector representing the linear hypothesis.

Our method is also shown to achieve certain optimality in detecting deviations

from the null hypothesis. We demonstrate the favorable finite-sample performance

of the proposed methods, via a number of numerical and a real data example.

xv



Chapter 1

High-dimensional panel data with

time heterogeneity: estimation and

inference

1.1 Introduction

How heterogeneity is modeled plays a key role in many empirical studies in

economics and finance. Although linear panel data models have been extensively

employed to account for cross-sectional and temporal heterogeneity, such hetero-

geneity is usually restricted to the error terms by various specifications of fixed

effects and random effects. In contrast, slope coefficients are typically assumed to

be homogeneous in cross sections and over time.

Allowing for heterogeneity in both error terms and slope coefficients can

be very important in applied research. For example, consider the literature on

predictability of stock returns. Most work applies linear regressions of stock returns

against predictors such as the lagged dividend yield.1 Suppose that we have a

panel dataset containing observations of returns and dividend yields for a large

number of stocks over a long time horizon. Heterogeneity in the error terms

may arise as different stocks have different sensitivities to common shocks (e.g.,

1See Campbell and Shiller (1988b), Keim and Stambaugh (1986), Campbell and Thompson
(2008), Goyal and Welch (2003, 2008) and Rapach, Strauss, and Zhou (2010).

1
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macroeconomic activity and market-wide shocks) and firm-specific components (e.g.,

firm fixed effects). Meanwhile, it is also reasonable to expect time heterogeneity

in the relationship between expected stock returns and the dividend yield since

the instability of this relationship is well documented in the finance literature.2

Researchers are often interested in whether return predictability from the dividend

yield is stable across time, how such predictability evolves and whether the state of

the macro economy affects such predictability. For example, an important question

is how macroeconomic and/or financial turmoil, such as the Great Recession, affects

the predictability of stock returns. Does the Great Recession only amount to shocks

in the error terms or does it fundamentally change the relationship between stock

returns and dividend yields?

The main contribution of this paper is to address these types of questions

using a linear panel data model with general time-heterogeneous covariate effects.

Suppose that for i = 1, . . . , n and t = 1, . . . , T , we observe dependent variables

yi,t ∈ R and covariates/regressors xi,t ∈ Rk from the following model

yi,t = x′i,tβt + αi,t + ui,t, (1.1.1)

where βt ∈ Rk is the vector containing unobserved covariate effects at time t, αi,t is

unobserved fixed effects of individual i at time t and ui,t is an idiosyncratic error

with Eui,t = 0 and Exi,tui,t = 0. We consider the interactive fixed effects for αi,t
and impose a factor structure on the regressors (similar to Pesaran (2006)); see

Section 1.2 for details. We allow for dynamic structures since components of xi,s
can be correlated with ui,t for s 6= t.

The most important feature of our model (1.1.1) is that the covariate effects

{βt}Tt=1 are allowed to vary across time without any restrictions. The sequence

{βt}Tt=1 can be viewed as either a deterministic sequence or a stochastic process with

arbitrary correlation with observed variables.3 Throughout the paper, we assume

that k is fixed and both n and T tend to infinity. Let β denote the high-dimensional

2See Paye and Timmermann (2006), Ang and Bekaert (2007), Pettenuzzo and Timmermann
(2011) and Lettau and Van Nieuwerburgh (2008).

3See Remark 1.3.3 for more discussion.
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vector representing the trajectory of βt over time

β := (β′1, . . . , β
′
T )′ ∈ RkT .

We treat the high-dimensional vector β as the model parameter of interest and

develop procedures for its estimation and inference. In particular, we propose a new

methodology that can be used to construct confidence sets for β and simultaneously

test multiple (or many) linear hypotheses of β.

Our general model eliminates the risk of misspecification in time-varying

pattern of {βt}Tt=1. Time variation in model parameters has been recognized in

many areas of applied research, such as macroeconomic forecasting (Stock and

Watson 1996, 2007; Giacomini and Rossi 2006, 2009, 2010; Rossi 2013). Most

empirical work that addresses the issue of time-varying parameters uses a random

coefficient approach and assumes that parameters evolve according to a particular

stochastic process.4 However, imposing parametric or non-parametric structures

introduces the risk of misspecification, which might deliver misleading or even

spurious results.5 Our proposed methodology does not require any restriction on

the time variation in the slope coefficients.

Moreover, the flexibility in our setup provides a natural framework of

estimating parametric specifications for the time variation in βt and testing the

validity of these specifications. For example, one of the most popular models

accounting for time-varying parameters is the structural break model in which βt
is assumed to have a piecewise constant pattern across t. If the true underlying

trajectory of {βt}Tt=1 indeed follows such a pattern, then our method can be used to

estimate the number and locations of structural breaks. Testing the validity of the

structural break model is also straight-forward. Under the null hypothesis of correct

specification, estimates of the break points are consistent and thus the stability of

βt between two breaks can be rewritten as multiple linear hypotheses of β, which

4Popular specifications either impose parametric models, such as piecewise constant parameters
(structural breaks), Markov chains, Bernoulli distributions, random walks, autoregressive models,
or assume non-parametric time variation with smooth paths.

5Even the flexible non-parametric specification that assumes only smoothness in time variation
can fail to capture brief temporary changes, which may be due to momentary shocks in the
economy and weather.
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can be tested using the proposed methodology. Similarly, our methodology can

be used to estimate regime-switching models and test their specifications. If βt is

regime-dependent, then the proposed procedures can consistently recover the time

series of regime membership and thus the hypothesis of homogeneity within each

regime can be again formulated as multiple linear hypotheses on β. In addition,

since our regime estimator does not assume any structure on the time variation of

regimes, the time series of estimated regime membership can be used to test the

validity of candidate specifications, e.g., whether the regimes evolve as a Markov

chain (Hamilton 1989) or a Bernoulli process.

A distinct feature of the proposed method is that our results can be used

for sub-vector (partial) inference allowing for flexible structures in the nuisance

parameter. In practice, applied researchers are often interested in only a subset

of the slope coefficients. For example, suppose βt = (β1,t, β2,t)
′, where β1,t is of

empirical interest and β2,t corresponds to a control variable. Our method can be

used to test specifications of {β1,t}Tt=1 without imposing any restrictions on the time

variation of the nuisance parameter {β2,t}Tt=1. Many existing specification tests,

such as the popular test by Bai and Perron (1998) for structural breaks, can only

handle the null hypothesis that specify the time variation in the entire k× 1 vector

βt. In our example, a typical existing test for lack of structural breaks has the

null hypothesis that both {β1,t}Tt=1 and {β2,t}Tt=1 are constant across time. Hence,

our methodology provides specification tests that are robust to misspecifications of

nuisance parameters.

Our results offer an intuitive setup to study and explain the time variation

in the slope coefficients. For example, suppose that the researcher is interested in

testing whether the slope coefficients vary with the business cycle. This question

can be formulated in terms of the average value of βt in economic recessions

and expansions and thus can be phrased as inference of linear hypothesis of β.

Alternatively, a regression-based approach can be applied. Since our methodology

deliver consistent estimators for the entire path {βt}Tt=1, we can fit the estimated

βt in a time series regression against other explanatory variables.

Our paper contributes to econometric theories in several ways. First, we
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propose a new strategy for identification and estimation, overcoming difficulties due

to flexibility in fixed effects and the general specification of β. Since the fixed effects

in (1.1.1) is potentially correlated with the regressors, running the ordinary least

square (OLS) estimation for each t does not guarantee consistent estimation of βt.

Even under strict exogeneity of the regressors, potential cross-sectional dependence

in error terms could render traditional methods invalid; see e.g., Phillips and Sul

(2003), Andrews (2005) and Pesaran and Tosetti (2011). This problem is illustrated

in Appendix A.1.

Second, our methodology can be used for inference on the high-dimensional

vector β. To the best of our knowledge, our work is the first in the literature on panel

data models to address the inference problem of the entire path of unrestricted time

variation in coefficients. Although model (1.2.1) with time or individual-specific

covariate effects has been studied by authors such as Pesaran (2006)6, inference

results are only available for low-dimensional components of β (e.g., βt for a fixed

t). In contrast, our results deal with inference on the entire vector β by capitalizing

on recent advances in high-dimensional statistics and probability. In existing work,

inference on individual βt’s is based on the classical central limit theorem (CLT).

Since T tends to infinity, β ∈ RkT is a high-dimensional object and thus the

classical CLT is not suitable for our purposes. One might attempt to construct a

confidence set for the whole trajectory of βt over time from confidence sets for each

βt. However, constructing confidence bands for the whole trajectory of βt amounts

to approximating the distribution of the maximal estimation error of βt over all

t = 1, . . . , T . This is not straight-forward when T tends to infinity.7 Building

upon the recent results by Chernozhukov, Chetverikov, and Kato (2013, 2014),

we develop a multiplier bootstrap procedure, which is shown to be asymptotically

6In fact, Pesaran (2006) considers panel data models with individual-specific covariate coeffi-
cients, but his method can be applied to models with time-heterogeneity by swapping the time
and individual indices.

7To illustrate these issues, suppose that k = 1 and that for each t, there is an estimator
β̂t such that

√
n(β̂t − βt) →d N(0, 1). Constructing a confidence band for all βt’s amounts to

finding c > 0 such that P(max1≤t≤T
√
n|β̂t − βt| > c) ≈ η for some pre-specified η ∈ (0, 1). For

large T , the difficulties of conducting inference based on existing methods arise as the validity of
approximating

√
n(β̂t − βt) with Gaussian distributions might not be uniform in t and it is not

straight-forward to account for the interdependence across t.
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exact in terms of size control.8

Finally, the estimation procedures proposed in this paper are computation-

ally simple. For high-dimensional models, computational burden is often a key

concern as naively extending algorithms designed for low-dimensional problems

might not be computationally feasible. As will be introduced in Section 1.2, the fixed

effect assumes a factor structure αi,t = L′α,iFα,t. Then the least squared estimator

minimizes
∑n

i=1

∑T
t=1(yi,t− x′i,tβt−L′α,iFα,t)2 over {βt}Tt=1, {Lα,i}ni=1 and {Fα,t}Tt=1.

This estimator has been applied intensively for low-dimensional problems (i.e.,

time-homogeneous βt); see Bai (2009) and Moon and Weidner (2015). Since there

is no closed-end solution to this optimization problem and the objective function is

not jointly convex in {βt}Tt=1, {Lα,i}ni=1 and {Fα,t}Tt=1, most numerical algorithms

are not guaranteed to return the global maximizer. The usual remedy of trying

many starting points is virtually infeasible since β is high-dimensional. We develop

alternative identification and estimation strategies and derive procedures that only

involve matrix multiplications and singular value decompositions, thereby consider-

ably reducing the computational burden. Moreover, unlike most nonparametric

methods, the methodology proposed in this paper does not require choosing any

tuning parameters, except for the number of factors, which can also be consistently

estimated in a manner free of tuning parameters. Our theoretical results still hold

when the true number of factors are replaced by consistent estimators.

We demonstrate the advantage of the proposed methodology via three

empirical studies in finance and economics. The first study is concerned with

the predictability of stock returns using the lagged dividend yield and volatility

as predictors. We find that the predictive power of both the dividend yield and

volatility exhibits very different patterns of time variation; in particular, return

predictability is linked to the macroeconomy but in different manners. We also

find seasonality patterns in predictability, which is different from seasonality in the

error term, often referred to as calendar effects. The second empirical study uses

8One may address the issue of inter-temporal dependence from the perspective of multiple
testing problems and use the Bonferroni method to control the family-wise error rate. Unfor-
tunately, this approach usually results in a great loss of power and leads to conservative tests,
especially in our case where the number of tests (in the multiple testing problem) can be much
larger than the sample size.
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panel data on firms and focuses on the effects of several variables on firms’ capital

structure. We find that the patterns of time variation in the slope coefficients can

be quite different from what is generated by simply applying time-homogeneous

models to subsamples of the data. The third empirical application studies the

effect of investment on economic growth. Using a multi-country panel dataset,

we find strong evidence of time variation in this effect. Our methodology also

finds group patterns in the fixed effects, suggesting that developing and developed

countries have different trends that are likely to be driven by the same factor but

with different factor loadings. In all these studies, we find that time heterogeneity

in the slope coefficients exists and displays complicated patterns that are difficult

to capture by parametric models. Since no restrictions are imposed on the time

heterogeneity in βt, our findings are not subject to the misspecification risk in this

regard.

Related literature

Our work builds upon the literature on large dynamic panel data models

with fixed effects. The asymptotic framework in this literature allows both n

and T to tend to infinity. The most common specification for the fixed effects

is time-invariant individual-specific fixed effects (sometimes plus a time-specific

component), e.g., see Phillips and Moon (1999), Hahn and Kuersteiner (2002),

Alvarez and Arellano (2003) and Hahn and Moon (2006). Bonhomme and Manresa

(2015) propose a structure under which individuals are classified into several groups

and the fixed effects are allowed to have unconstrained time variations but are

homogeneous among individuals in the same group. Factor structures in fixed

effects have also been considered, e.g., Andrews (2005), Bai (2009), Ahn, Lee, and

Schmidt (2013), Su, Jin, and Zhang (2015) and Moon and Weidner (2015).

Although most empirical work that uses panel data models assumes homoge-

neous covariate effects, numerous authors, such as Phillips and Sul (2003), Pesaran

and Yamagata (2008) and Su and Chen (2013), have developed tests for assessing

the reasonableness of this popular specification. In addition, the literature has seen

work that directly considers models with heterogeneous slope coefficients. Just
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as the heterogeneity in the error terms can be treated as fixed or random effects,

counterparts of these two approaches are also found in the study of heterogeneity

in covariate effects. Under one approach, slope coefficients for different i and/or t

are viewed as fixed parameters to be estimated, see e.g., Pesaran (2006), Zaffaroni

(2009) and Lin and Ng (2012); under the other approach, the slope coefficients

are assumed to be random variables generated from parametric models and the

focus is the estimation and inference of these parametric models, see e.g., Swamy

(1970), Rosenberg (1972) and Hsiao, Appelbe, and Dineen (1993). Beyond the usual

parametric/linear specification, several authors study nonparametric estimation

and inference for heterogeneous covariate effects; see Qian and Wang (2012), Chen,

Gao, and Li (2013) and Boneva, Linton, and Vogt (2015). An excellent survey for

heterogeneous parameters in panel data models can be found in Chapter 6 of Hsiao

(2014). Existing results on estimation and inference mainly focus on the average

(across i or t) covariate effects and pointwise covariate effects (for given i or t).

An interesting paper by Freyberger (2012) considers heterogeneous non-

parametric panel data models with interactive fixed effects. He treats the factor

loadings as random variables and exploits their distributional properties to achieve

nonparametric identification; the estimation strategy relies on the assumption that

distribution of observables are identical in the cross section. In contrast, our result

focuses on the linear models but can deal with non-random factor loadings and

heterogeneous distributions across units.

Our specification of β falls into the category of high-dimensional models

. Our theoretical results are based on the recent advances by Chernozhukov,

Chetverikov, and Kato (2013, 2014) on high-dimensional central limit theorems and

bootstrap. To handle the high-dimensional nuisance parameter (fixed effects), we

borrow tools from random matrix theory, see Vershynin (2010), and the literature

on large factor models, see e.g., Forni, Hallin, Lippi, and Reichlin (2000), Stock

and Watson (2002b), Bai and Ng (2002) and Bai (2003).
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Organization of the paper and notations

The rest of the paper is organized as follows. The formal setup of our model

is introduced in Section 1.2. We provide the details of the main results in Section

1.3. In Section 1.4, we discuss several related econometric problems. Finite-sample

properties of our procedures are demonstrated via Monte Carlo simulations in

Section 1.5. We apply our methods to several empirical studies in Section 1.6. The

appendix contains the proofs of theoretical results.

For any vector x = (x1, . . . , xn1)
′ ∈ Rn1 , ‖x‖ = (

∑n
i=1 x

2
i )

1/2 =
√
x′x,

‖x‖1 =
∑n

i=1 |xi|, ‖x‖∞ = max1≤i≤n1 |xi| and ‖x‖0 denotes the number of nonzero

entries in x. For any matrix A ∈ Rn1×n2 , ‖A‖ denotes the spectral norm of A and

we say that A = UASAV
′
A is a singular value decomposition (SVD) if UA ∈ Rn1×n1

and VA ∈ Rn2×n2 are both orthogonal matrices and SA ∈ Rn1×n2 is a (rectangular)

diagonal matrix with singular values of A on the diagonal in the non-increasing

order. We also introduce the low rank approximation operator: for a non-negative

integer r, define Tr(A) := UAS̄rV
′
A, where A = UASAV

′
A is an SVD and S̄r is equal

to SA with all the diagonal entries of SA set to zero except the first r diagonal

entries. sj(A) denotes the jth largest singular value of A, counting multiplicity.

For two positive sequences an and bn, we use an � bn to denote the condition that

there exist constant c1, c2 > 0 such that c1an ≤ bn ≤ c2an. We use σ(·) to denote

the σ-algebra generated by random variables.

1.2 Model Setup and Assumptions

Suppose that for i = 1, . . . , n and t = 1, . . . , T , we observe dependent

variables yi,t ∈ R and covariates/regressors xi,t ∈ Rk from the following model

yi,t = x′i,tβt + αi,t + ui,t with αi,t = F ′α,tLα,i, (1.2.1)

where βt ∈ Rk is the vector containing unobserved covariate effects at time t, αi,t is

unobserved fixed effects of individual i at time t with Fα,t ∈ Rrα and Lα,i ∈ Rrα

being the unobserved factor and its loading, and ui,t is an idiosyncratic error with
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Eui,t = 0 and Exi,tui,t = 0. We assume that k, rα and rQ are fixed and T = Tn →∞
as n→∞.

To achieve identification in this general model, we introduce assumptions

on the regressors. Similar to Pesaran (2006), we assume a factor structure

xi,t = Qi,t + vi,t with Qi,t = F ′Q,tLQ,i, (1.2.2)

where FQ,t ∈ RrQ×k and LQ,i ∈ RrQ are unobserved factors and their loadings, rQ
is fixed and vi,t ∈ Rk is the idiosyncratic errors. Arbitrary correlations between

{FQ,t}Tt=1 and {Fα,t}Tt=1 are permitted. The model (1.2.2) can be justified in

many applications. Factor structures have been motivated on both theoretical and

empirical grounds and have been widely used to model financial and macroeconomic

data9, to account for unobserved abilities (e.g., Lord, Novick, and Birnbaum (1968),

Hansen, Heckman, and Mullen (2004)) and to study consumer theory (e.g., Gorman

(1981) and Lewbel (1991)).

The factor structure in αi,t, often referred to as interactive fixed effects,

allows for a rich class of unobserved common effects and nests popular fixed effects

models as special cases, see Bai (2009). The interactive fixed effects also allow

for flexible cross-sectional and inter-temporal dependence among the regression

residuals αi,t + ui,t, see e.g., Andrews (2005) and Pesaran (2006).

The goal of this paper is to build a confidence set for β ∈ RkT (a confidence

band for βt that is uniformly valid over t) and test hypotheses of the form

H0 : Jβ = a, (1.2.3)

where J ∈ RmJ×kT and a ∈ RmJ are nonrandom and mJ can be as large as O(nl)

for some constant 0 ≤ l <∞.

We introduce the following definition, which is satisfied by a large class of

random variables including polynomials of sub-Gaussian random variables as well

as finite mixtures of random variables with thin-tailed distributions.

9See e.g., Ross (1976), Campbell, Lo, and MacKinlay (1997), Fama and French (1992, 2016),
Ludvigson and Ng (2007), Forni and Lippi (1997), Stock and Watson (1998, 2002b, 2006)
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Definition 1.2.1. A random variable Z is said to have an exponential-type tail

with parameter (b, γ) if ∀z > 0, P(|Z| > z) ≤ exp [1− (z/b)γ].

We impose the following conditions for model (1.2.1) and (1.2.2).

Assumption 1. Assume that the following hold:

(i) There exist constants b∗, γ∗ > 0 such that ∀(i, t) ∈ {1, . . . , n} × {1, . . . , T},
each entry of Fα,t, Lα,i, FQ,t, LQ,i, ui,t and vi,t has an exponential-type tail

with parameter (b∗, γ∗).

(ii) There exist constants c∗, γ∗∗ > 0 such that αmixing(t) ≤ c∗ exp(−tγ∗∗) ∀t ≥ 1,

where

αmixing(t) := sup
{
|P(A)P(B)− P(A

⋂
B)| :

A ∈ σ ({(FQ,s, Fα,s, vs, us) : s ≤ τ}) ,

B ∈ σ ({(FQ,s, Fα,s, vs, us) : s ≥ τ + t}) and τ ∈ Z
}
.

(iii) There exist constants κ1, κ2 > 0 and ξ ∈ (6/7, 2) such that κ1n
ξ ≤ T ≤ κ2n

ξ.

(iv) There exist constants C1, C2 > 0 such that, with probability approaching one,

all the eigenvalues of n−1L′QLQ , T−1F ′QFQ, n−1L′αLα and T−1F ′αFα lie in

[C1, C2].

(v) {(vi, ui)}ni=1 is independent across i, where vi = (vi,1, . . . , vi,T )′ ∈ RT×k and

ui = (ui,1, . . . , ui,T )′ ∈ RT .

(vi) {u, v} is independent of {LQ, FQ, Lα, Fα} and ∀i, t, Evi,tui,t = 0.

(vii) There exists a constant C5 > 0 such that min1≤t≤T sk
(
n−1

∑n
i=1 Evi,tv′i,t

)
>

C5.

Assumption 1(i) and (ii) enable us to apply large deviation theory, which

is convenient in deriving bounds for the maximum of a large number of sums

of random variables. Assumption 1(i) allows for thicker tails than the Gaussian

and exponential distribution, although it rules out fat-tailed distributions such as



12

student t distribution or the stationary distribution of GARCH processes. However,

in Monte Carlo simulations, our procedure performs well with these fat-tailed

distributions. With more careful arguments, it is possible that we can invoke the

moderate deviation theory for self-normalized sums, such as Chen, Shao, and Wu

(2016), and replace the exponential-type tails in Assumption 1(i) with bounded

moment conditions. Assumption 1(ii) allows weak dependence across t and is

satisfied in many situations.10 Assumption 1(i) and (ii) are also imposed by

Bonhomme and Manresa (2015) in their Assumption 2.

Assumption 1(iii) specifies the relative magnitude between n and T . Recent

literature on dynamic panel data models considers three cases of sample size:

n/T → 0, T/n → 0 and n � T ; see Hahn and Kuersteiner (2002), Moon and

Phillips (2004), Arellano and Hahn (2007) and Bai (2009) among many others.

We allow for all these three cases, which correspond to ξ < 1, ξ > 1 and ξ = 0,

respectively. Assumption 1(iv) assumes strong factors in α and Q and is a standard

condition in the large factor model literature; see Bai and Ng (2002), Bai (2003,

2009) and Moon and Weidner (2015).

Assumption 1(v) and (vi) say that the idiosyncratic terms are independent

across i and are independent of the factors and their loadings. Similar conditions

are routinely imposed in the literature on large factor models, e.g., see Bai (2003)

and Bai and Ng (2006a). Notice that Assumption 1(v) and (vi) still allow for

arbitrary dependence across i for Lα,i and LQ,i, as well as serial dependence within

u, v, Fα and FQ. Contemporaneous exogeneity of vi,t in Assumption 1(vi) is

required for the identification of βt. Heteroskedasticity is also allowed in vi,t and ui,t
under Assumption 1. Finally, Assumption 1(vii) rules out asymptotically vanishing

variances in the idiosyncratic terms of the regressors.

We now demonstrate Assumption 1 with a concrete example.

Example 1.2.1 (Time-heterogeneous dynamic panel data model). Let yi,t =

L′α,i(
∑∞

j=0 γt,jFα,t−j)+
∑∞

j=0 γt,jui,t−j , where γt,j is defined as the following: γt,0 = 1,

γt,j = Πj
l=1βt−l+1 for j > 0 and γt,j = 0 for j < 0. For simplicity, let ui,t, Fα,t, Lα,i ∼

10For linear processes and GARCH processes, see Gorodetskii (1978) and Carrasco and Chen
(2002). For Markov processes, one can actually show geometric decay of β-mixing coefficients
using the so-called V-ergodicity property; see Meyn and Tweedie (2012).
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i.i.d N(0, 1) and assume that supt≥0 |βt| ≤ c for some constant c ∈ (0, 1). Then

one can easily verify that yi,t defined above satisfies

yi,t = L′α,iFα,t + βtyi,t−1 + ui,t.

Thus, in the notations of (1.2.1) and (1.2.2), xi,t = yi,t−1, LQ,i = Lα,i, FQ,t =∑∞
j=0 γt−1,jFα,t−1−j and vi,t =

∑∞
j=0 γt−1,jui,t−1−j. Assumption 1(i) holds by the

Gaussianity and Assumptions 1(iii)-(vii) obviously hold. In Lemma A.2.16 of

Appendix A.2.4, we show that Assumption 1(ii) also holds.

1.3 Main Results

In this section, we present the main results for estimation and inference of

{βt}Tt=1. In Section 1.3.1, we discuss the key idea behind our identification strategy.

Sections 1.3.2 and 1.3.3 develop the main methodology for estimation and inference

and establish theoretical properties of the proposed procedures. Section 1.3.4 deals

with the issue of determining the number of factors.

1.3.1 Identification strategy

Given the model (1.2.1) and (1.2.2), our estimation strategy is based on the

following observation:

yi,t = x′i,tβt + αi,t + ui,t = v′i,tβt +
(
Q′i,tβt + αi,t + ui,t

)
.

We shall assume that vi,t is uncorrelated with Qi,t, αi,t and ui,t. Therefore,

at time t, we can view Q′i,tβt + αi,t + ui,t as the error term and simply use the

cross-sectional variation to identify βt:

βt =

(
n∑
i=1

Evi,tv′i,t

)−1( n∑
i=1

Evi,tyi,t

)
.

In other words, for each t, we run a cross-sectional regression of yi,t against
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vi,t. Notice that vi,t is unobserved. To make this approach feasible, we exploit the

factor structure (1.2.2) again and employ the technique of principal component

analysis (PCA) to identify vi,t.

Remark 1.3.1. Pesaran (2006) proposes the common correlated effect estimator

(CCE), which can be adapted to our model. The strategy is the following. If

LQ := (LQ,1, . . . , LQ,n)′ ∈ Rn×rQ were observed, then vi,t could be estimated as the

residuals from projecting columns Xt = (x1,t, . . . , xn,t)
′ ∈ Rn×k onto LQ; since we

do not observe LQ, we need to replace it with an observed matrix L̃. Therefore,

the plan is (1) to construct L̃ whose columns span a space that approximately

contains columns of LQ and (2) to take as estimates of {vi,t}ni=1 the residuals

of projecting columns of Xt onto L̃. To illustrate the idea of CCE, consider

L̃ = (x̄(1), . . . , x̄(n))
′ ∈ Rn×k with x̄(i) = T−1

∑T
t=1 xi,t. Notice that under the

specification (1.2.2), if we assume that the law of large numbers (LLN) applies across

t, then x̄(i) = ATLQ,i+T
−1
∑T

t=1 vi,t ≈ ATLQ,i, where AT = T−1
∑T

t=1 F
′
Q,t ∈ Rk×rQ .

Ignoring the approximation error due to LLN, we have L̃ = LQA
′
T . Then columns

of L̃ span a space that contains columns of LQ if and only if rankAT = rQ, which,

in Pesaran (2006), is referred to as the rank condition. A necessary condition for

the rank condition is k ≥ rQ, which may or may not hold in practice. In contrast,

our method uses PCA and does not require this rank condition.

We now introduce some notations that will be used in the rest of the paper:

Y = [Y1, . . . , YT ] ∈ Rn×T , X = [X1, . . . , XT ] ∈ Rn×kT , α = [α1, . . . , αT ] ∈ Rn×T ,

u = [u1, . . . , uT ] ∈ Rn×T , v = [v1, . . . , vT ] ∈ Rn×kT , Q = [Q1, . . . , QT ] ∈
Rn×kT , Fα = [Fα,1, . . . , Fα,T ]′ ∈ RT×rα , FQ = [FQ,1, . . . , FQ,T ]′ ∈ RkT×rQ

LQ = (LQ,1, . . . , LQ,n)′ ∈ Rn×rQ and Lα = (Lα,1, . . . , Lα,n)′ ∈ Rn×rα , where

yt = (y1,t, . . . , yn,t)
′ ∈ Rn, Xt = (x1,t, . . . , xn,t)

′ ∈ Rn×k, αt = (α1,t, . . . , αn,t)
′ ∈ Rn,

ut = (u1,t, . . . , un,t)
′ ∈ Rn, vt = (v1,t, . . . , vn,t)

′ ∈ Rn×k and Qt = (Q1,t, . . . , Qn,t)
′ ∈

Rn×k. Notice that Q = LQF
′
Q and α = LαF

′
α.

1.3.2 Estimation of β

For now, we assume that the values of rQ and rα are known and we will

provide consistent estimators for rQ and rα later in Section 1.3.4. Since vt is
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unknown, we first estimate it and use the estimated vt to obtain an initial estimator

for βt. We define

β̂t = (v̂′tv̂t)
−1v̂′tYt, (1.3.1)

where Q̂ = [Q̂1, . . . , Q̂T ] = TrQ(X) and v̂ = [v̂1, . . . , v̂T ] = X − Q̂. The following

result establishes the theoretical properties of the above estimator.

Theorem 1.3.1 (Uniform estimation of β). Under Assumption 1, we have

‖β̂ − β‖∞ = OP

([
n−1/2 + n1/2−ξ] logc0 n

)
,

where c0 > 0 is a constant and β̂ := (β̂′1, . . . , β̂
′
T )′ ∈ RkT with β̂t defined in (1.3.1).

This result says that β̂t is a consistent estimator for βt uniformly over t and

the rate of convergence depends on the relative size of n and T . If ξ ≥ 1 (n/T =

O(1)), then the convergence rate is the parametric rate up to a logarithm factor,

n−1/2 logc0 n. The logarithm factor is the price we pay for the high dimensionality

of β and is common in the literature on high-dimensional statistics.11 The exact

value of c0 is not important for our purposes. If ξ < 1 (n much larger than T ), then

the rate of convergence is strictly slower than n−1/2 logc0 n.

It turns out that the non-standard rate of convergence of β̂ is due to the bias

in the estimator; we now show that once the bias is removed, the rate of convergence

in `∞-norm is
√
n−1 log n. Notice that by the properties of SVD, Q̂′tv̂t = 0. Thus,

it is not hard to see that

√
n(β̂t − βt) = (n−1v̂′tv̂t)

−1n−1/2v̂′t(αt + ut). (1.3.2)

Our strategy is to remove the effect of n−1/2v̂′tαt by subtracting (v̂′tv̂t)
−1v̂′tα̂t

from β̂t, where α̂t is an estimator for αt such that n−1/2 max1≤t≤T ‖v̂′tαt − v̂′tα̂t‖ =

oP (1). As we shall show, this is can be done in an intuitive manner. Since β̂t is

a consistent estimator for βt, yt − Xtβ̂t = αt + ut + Xt(βt − β̂t) is a consistent

11For example, see Bickel, Ritov, and Tsybakov (2009), Bühlmann and Van De Geer (2011)
and Belloni and Chernozhukov (2011).
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estimator for αt + ut. Heuristically speaking, we have a consistent estimator for

α + u and can simply apply PCA again to obtain an estimator for α.

Algorithm 1. Implement the following steps:

1. Compute [α̂1, . . . , α̂T ] = Trα([y1 −X1β̂1, . . . , yT −XT β̂T ]), where β̂t is defined

in (1.3.1).

2. Compute β̃t = β̂t − (v̂′tv̂t)
−1v̂′tα̂t.

The following result establishes the rate of convergence for the estimator in

Algorithm 1.

Theorem 1.3.2. Under Assumption 1, we have

‖β̃ − β‖∞ = OP

(√
n−1 log n

)
,

where c0 > 0 is a constant and β̃ := (β̃′1, . . . , β̃
′
T )′ ∈ RkT with β̃t defined in Algorithm

1.

A comparison between Theorems 1.3.1 and 1.3.2 demonstrates the advantage

of bias correction. When ξ < 1 (i.e., n/T → ∞), β̃ is a strictly better estimator

than β̂ in terms of the rate of convergence in the `∞-norm; when ξ ≥ 1 (i.e.,

n = O(T )), β̃ and β̂ have the same rates of convergence up to logarithm factors.

1.3.3 Inference on β

Now we turn to the problem of testing high-dimensional linear combina-

tions of β in the form (3.1.2). The idea is to approximate β̃t with an average

of independent high-dimensional vectors. Let Gi = (G′i,1, ..., G
′
i,T )′ ∈ RkT with

Gi,t = Σ−1
t vi,tui,t and Σt = n−1

∑n
i=1Evi,tv

′
i,t. We show, in the appendix, that∥∥∥∥∥Jβ̃ − Jβ − n−1

n∑
i=1

JGi

∥∥∥∥∥
∞

= OP (n−1/2−c)

for some constant c > 0, where β̃ = (β̃′1, . . . , β̃
′
T )′. The above display suggests the

“obvious” strategy of approximating the distribution of
√
n‖Jβ̃ − Jβ‖∞ by that of
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‖N(0,Ω)‖∞, where Ω = n−1
∑n

i=1E(JGiG
′
iJ
′). Since Ω is unknown, we replace it

with a plug-in estimator. We will show that this intuitive approach can be justified

even if the dimension of Ω is much larger than n and T .

To simplify the presentation, we introduce the following notation. For a

random vector Z ∼ N(0,Σ), we define Φ(z,Σ) = P(‖Z‖∞ ≤ z) and denote by

Φ−1(·,Σ) the inverse of Φ(z,Σ) as a function of z. For a given Σ, the function

Φ−1(·,Σ) can be easily computed by simulation. Our inference procedure for testing

H0 in (3.1.2) can be formally summarized as follows.

Algorithm 2. For a test for H0 (3.1.2) with nominal size η ∈ (0, 1), implement

the following steps:

1. Compute ût = yt − Xtβ̂t − α̂t, where β̂t and α̂t are defined in (1.3.1) and

Algorithm 1, respectively.

2. Comupute Ĝi = (Ĝ′i,1, . . . , Ĝ
′
i,T )′ ∈ RkT , where Ĝi,t = ˆ̄vi,tûi,t, ˆ̄vi,t = Σ̂−1

t v̂i,t

and Σ̂t = n−1v̂′tv̂t with v̂t defined in (1.3.1).

3. Generate {ζi}ni=1 i.i.d N(0, 1) independent of the sample and compute

n−1/2
∑n

i=1 JĜiζi.

4. Repeat the previous step as many times as computationally convenient to

compute Φ−1(1− η, Ω̂), where Ω̂ = n−1
∑n

i=1 JĜiĜ
′
iJ
′.

5. Reject H0 in (3.1.2) if and only if ‖Jβ̃ − a‖∞ > Φ−1(1 − η, Ω̂), where β̃ =

(β̃′1, . . . , β̃
′
T )′ and β̃t is defined in Algorithm 1.

Although the parameter of interest β is high-dimensional, we establish

the validity of such procedures for our problem using recent tools developed by

Chernozhukov, Chetverikov, and Kato (2013). Even in light of their results, we

still need to deal with the technical challenges arising due to the facts that β̃ is

not exactly the mean of independent vectors and that the large-sample behavior

of β̃ depends on the residuals, such as ui,t, which are not observed and need to

be replaced with estimates for the bootstrap procedure to be feasible. To justify

Algorithm 2, we need some restrictions on J .
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Assumption 2. Assume that the following conditions hold for J in (3.1.2):

(i) mJ = O(nl) for some constant 0 ≤ l <∞.

(ii) There exists a constant A1 > 0 such that max1≤j≤mJ ‖Jj‖1 ≤ A1, where Jj is

the transpose of the jth row of J .

(iii) There exists a constant b1 > 0 such that J ′j (n−1
∑n

i=1 EGiG
′
i) Jj ≥ b1 ∀j ∈

{1, . . . ,mJ}, where Gi = (G′i,1, . . . , G
′
i,T )′ ∈ RkT , Gi,t = v̄i,tui,t, v̄i,t = Σ−1

t vt,i

and Σt = n−1
∑n

i=1 Evi,tv′i,t.

Assumption 2(i) allows us to test mJ linear transformations of β, where

mJ can be fixed or grow polynomially fast in n. Notice that this allows for

mJ � max{n, T}. Building a confidence set for all the entries of β implies that

mJ = kT = O(n); inference on the individual βt or on the average of βt over t

corresponds to a fixed mJ . Assumption 2(ii) can be viewed as a “near-sparsity”

assumption on the rows of J , while it still allows ‖Jj‖0 = kT ∀1 ≤ j ≤ mJ . This

is needed to control the bias of Jβ̃: although the maximal bias of all β̃t’s can be

shown to be small, the bias of each row of Jβ̃ is a linear combination of all the

biases of β̃t’s. Assumption 2(ii) allows us to control the bias of Jβ̃ via Holder’s

inequality. Assumption 2(iii) rules out “degenerate” linear combinations of Gi. This

is needed for the theory of high-dimensional bootstrap.

The following theorem is our main theoretical result and establishes the

validity of Algorithm 2.

Theorem 1.3.3 (High-dimensional inference). Under Assumptions 1 and 2, we

have

lim sup
n→∞

sup
η∈(0,1)

∣∣∣P(√n‖Jβ̃ − Jβ‖∞ > Φ−1(1− η, Ω̂)
)
− η
∣∣∣ = 0,

where β̃ and Φ−1(1− η, Ω̂) are defined in Algorithm 2.

As our main result for inference, Theorem 1.3.3 says that Algorithm 2 can

be used to test hypotheses that involve mJ linear combinations of a kT -dimensional

vector, where both mJ and T can grow polynomial fast with n. We can easily

invert the test to obtain confidence sets for Jβ.
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Corollary 1.3.1. Let Assumptions 1 and 2 hold. For any fixed η ∈ (0, 1), let

Φ−1(1− η, Ω̂) and β̃ be defined as in Algorithm 2. Then

lim
n→∞

P (Jβ ∈ C1−η(J)) = 1− η,

where C1−η(J) =
{
Jβ̃ + v

∣∣∣v ∈ RmJ and ‖v‖∞ ≤ Φ−1(1− η, Ω̂)}/
√
n
}
.

In the following result, we show that the width of the above confidence set

is OP

(√
n−1 log n

)
.

Theorem 1.3.4. Suppose that Assumptions 1 and 2 hold. Then there exists a

constant M > 0 such that, ∀η ∈ (0, 1), P
(

Φ−1(1− η, Ω̂) ≤M
√

log n
)
→ 1.

When the entries of n−1/2
∑n

i=1 JGi have no correlation among each other,

it can be shown that there exists a constant M0 > 0 such that P(Φ−1(1− η, Ω̂) ≥
M0

√
log n)→ 1. This highlights the nonstandard nature of the problem as

√
n‖Jβ̃−

Jβ‖∞ might not have a well-defined limiting distribution. Under certain conditions

that guarantee weak dependence among entries of JGi, one can employ tools from

the extreme value theory and obtain a well-defined asymptotic distribution for a

properly scaled version of ‖Jβ̃−Jβ||∞, such as n‖Jβ̃−Jβ‖2
∞+A1 log n+A2 log log n

with constants A1, A2 ∈ R; see Cai and Jiang (2011). Although this alternative

approach can provide a procedure with analytical critical values, it might require

additional assumptions as well as very different theoretical techniques; we shall

leave this possibility to future research.

Remark 1.3.2. Notice that the confidence set C1−η(J) defined in Corollary 1.3.1 is a

rectangle in RmJ , similar in spirit to a Kolmogorov-Smirnov-type test. One might

wonder whether it is possible to build Cramer-von-Mises-type tests by considering

‖Jβ̃ − Jβ‖2. Unfortunately, this is technically challenging since the tools from

probability theories still appear inadequate in handling the `2-norm of the sum of

independent high-dimensional vectors. To the best of our knowledge, existing tools

can only handle the problems in which the dimensionality is much smaller than the

sample size, e.g., T = o(n1/4); see Peng and Schick (2012) and Pouzo (2015).
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Remark 1.3.3. Our results are easy to understand when we treat {βt}Tt=1 as a

deterministic sequence. However, it is worth pointing out that all the theoretical

results so far still hold even if {βt}Tt=1 is stochastic process that is allowed to

have arbitrary correlation with the observed variables Y and X. To see how this

flexibility is possible, notice that deriving (1.3.2) the estimation error of the original

estimator β̂ is merely algebraic computations and does not require any knowledge

of randomness in the data. Moreover, subsequent analysis used to derive Theorems

1.3.1, 1.3.2, 1.3.3 and 1.3.4 only involves properties of the factors, factor loadings

and the idiosyncratic terms. Therefore, the estimation error of β̃ still decays at the

rate OP (
√
n−1 log n) in `∞-norm and C1−η(J) still contains the (random) vector

Jβ with probability approaching 1− η. When β is random, the object of interest

is typically parameters governing the randomness of β. In Sections 1.4.5 and 1.4.7,

we illustrate how our results can be used for this purpose.

Sometimes, an applied researcher might be interested in the fixed effects. For

example, when the fixed effects are assumed to be group-specific, see Bonhomme and

Manresa (2015), consistent estimators for the fixed effects can be used to determine

the group membership via k-means clustering (Forgy 1965; Lloyd 1982). The

following result says that the fixed effects can be consistently estimated uniformly

over i and t.

Theorem 1.3.5 (Uniform estimation of fixed effects). Under Assumption 1, for

α̂i,t defined in Algorithm 1, we have that for some constant c0 > 0,

max
1≤i≤n, 1≤t≤T

|α̂i,t − αi,t| = OP

([
nξ/2−1 + n2−5ξ/2

]
logc0 n

)
.

Similar to Theorem 1.3.1, Theorem 1.3.5 says that the rate of convergence

for the fixed effect depends on the relative size of n and T . If n and T have the

same order of magnitude, then the convergence rate is n−1/2 logc0 n; if ξ 6= 1, then

the rate would be strictly slower.
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1.3.4 Determining the number of factors rα and rQ

So far, all the results are derived with the knowledge of the true values of

rQ and rα for PCA. In practice, these values are often unknown. Now we derive

two consistent estimators for these values. Although existing methods, such as Bai

and Ng (2002), Onatski (2009) and Ahn and Horenstein (2013), can be used for

estimating rQ, these methods cannot be directly applied for the estimation of rα
due to the estimation errors in β̂t. We invoke results from random matrix theory

and construct two simple estimators that are consistent under Assumption 1.

Theorem 1.3.6 (Information criterion). Let Assumption 1 hold. Define r̂Q :=

max {r | sr(X) ≥ µn} and r̂α := max
{
r | sr

(
[y1 −X1β̂1, . . . , yT −XT β̂T ]

)
≥ µ̃n

}
,

where µn, µ̃n →∞. Then

(1) If µn/ (
√
n logp n) → ∞ for any constant p > 0 and µn/

√
nT → 0, then

P (r̂Q = rQ)→ 1.

(2) If µ̃n/
(

[
√
T + n/

√
T ] logp n

)
→∞ for any constant p > 0 and µ̃n/

√
nT → 0,

then P (r̂α = rα)→ 1.

The above estimator for rQ and rα is based on information criteria. Similar

estimators are proposed by Bai and Ng (2002). One needs to choose a sequence of

tuning parameters that satisfy certain rate conditions; however, it might not always

be clear how to choose these tuning parameters in finite samples. For this reason,

we also provide the following alternative estimators based on the ratio of singular

values. These estimators are similar to the ones studied in Ahn and Horenstein

(2013) and the only input is an upper bound on rα and rQ. In many situations,

economic theories can shed some light on these upper bounds. For rmax ≥ 1, we

define

r̂SVQ := arg max
1≤r≤rmax

sr(X)

sr+1(X)

r̂SVα := arg max
1≤r≤rmax

sr

(
[y1 −X1β̂1, . . . , yT −XT β̂T ]

)
sr+1

(
[y1 −X1β̂1, . . . , yT −XT β̂T ]

)
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Theorem 1.3.7 (Singular value ratio estimator). Let Assumption 1 hold. Suppose

that 1 ≤ rQ ≤ rmax and 1 ≤ rQ ≤ rmax. Then P(r̂SVQ = rQ) → 1 and P(r̂SVα =

rα)→ 1.

Remark 1.3.4. In practice, researchers might need to take additional care in applying

the above results. For datasets that contain variables with very different scales,

standardization is recommended, similar to the empirical applications in Stock and

Watson (2002b) and Boivin and Ng (2006).

1.4 Some Important Inference Problems

In this section, we discuss how several problems often encountered in applied

research can be addressed using the methodology proposed in Section 1.3. It

turns out that solving these problems reduces to finding the appropriate matrix

J in Algorithm 2. Since empirical work typically focuses on single entries of βt
corresponding to variables of interest, we shall mainly discuss this case. Suppose

that we are interested in inference on {βj0,t}Tt=1, the trajectory of the j0-th entry of

βt ∈ Rk across time. For k 6= 1, the inference problems only concern part of the

parameter {βt}Tt=1 and shall be referred to as partial inference problems.

1.4.1 Uniform (over t) inference on βj0,t

In empirical research, the goal is often to find out whether some slope

coefficient is zero (or some other pre-specified value of interest). When the slope

coefficients are allowed to vary over time, the question often becomes whether the

slope coefficient β(j0) = (βj0,1, . . . , βj0,T )′ ∈ RT is zero in all the time periods.

Notice that this is very different from the problem of testing simple hypothe-

ses on β. Simple hypotheses completely specify the value for all the entries in β;

as a result, one can plug-in the hypothesized value of β and test certain moment

conditions, such as the orthogonality between yi,t − x′i,tβt and xi,t. However, we are

dealing with the more difficult problem of testing composite hypotheses on β. For

example, consider the problem of testing β(j0) = 0. Since {βj,t}Tt=1 with j 6= j0 are

still allowed to take any values, the null hypothesis here does not determine the
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vector β and thus the aforementioned approach for testing simple hypotheses does

not apply.

We now demonstrate how our method can be used to solve this inference

problem. Let J = IT ⊗ τ ′j0,k and τj0,k denote the j0-th column of Ik. Then

we have β(j0) = Jβ. Notice that Assumption 2(i)-(ii) hold as mJ = T and

max1≤j≤mJ ‖Jj‖1 = 1. Under the above notations, βj0,t = 0 ∀1 ≤ t ≤ T if and only

if Jβ = 0. Hence, we only need to implement Algorithm 2 with a = 0. The problem

of building confidence bands for {βj0,t}Tt=1 reduces to constructing a rectangular

confidence set for β(j0) and can be easily solved using Corollary 1.3.1.

1.4.2 Inference on temporal difference in βj0,t

One of the simplest ways of studying time variation in parameters is to

compare βj0,t in different time periods. To formalize the idea, let A,B ⊂ {1, . . . , T}
be disjoint sets A

⋂
B = ∅. We construct confidence intervals for the difference in

average parameter values between these two groups of time periods, i.e.,

d(A,B) =

∑T
t=1 βj0,t1{t ∈ A}∑T
t=1 1{t ∈ A}

−
∑T

t=1 βj0,t1{t ∈ B}∑T
t=1 1{t ∈ B}

. (1.4.1)

As convention, we define d(A, ∅) =
[∑T

t=1 βt1{t ∈ A}
]
/
[∑T

t=1 1{t ∈ A}
]
,

which is the average parameter value for time periods in the set A. For example, A

and B can denote the sets of time periods of economic recessions and expansions,

respectively, and d(A,B) is a measure of how the parameters differ across different

stages of the business cycle.

We now phrase the problem as inference on a linear combination of β. Let

M denote the 1× T row vector whose s-th entry is equal to 1{s ∈ A}/|A| − 1{s ∈
B}/|B|, where |A| and |B| denote the cardinality of the set A and B, respectively.

Then it is not hard to see that d(A,B) = Jβ, where J = M ⊗ τ ′j0,k. Therefore,

a confidence interval can be used by implementing Algorithm 2 and computing

C1−η(J) defined in Corollary 1.3.1.
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1.4.3 Estimation and inference of partial parameter insta-

bility

The estimate and the confidence set for β(j0) ∈ RT give some indication on

whether the slope coefficient is time-varying. We shall refer to changes in parameter

values from one period to the next as parameter instability. Define the set of time

periods of parameter instability as B = {t | 2 ≤ t ≤ T and βj0,t 6= βj0,t−1}. Our

method can be used for the estimation and inference on B.
This problem can be easily formulated into our framework. Notice that

βj0,2 − βj0,1
βj0,3 − βj0,2

...

βj0,T − βj0,T−1

 = Jβ with J
(T−1)×kT

=


1 −1 0 . . . 0

0 1 −1 . . . 0
...

... . . . . . . ...

0 0 0 . . . −1


︸ ︷︷ ︸

(T−1)×T

⊗ τ ′j0,k.

(1.4.2)

Clearly, the hypothesis of lack of parameter instability can be stated as

Jβ = 0. Since Assumption 2(i)-(ii) are satisfied (due to mJ = T − 1 and

max1≤j≤mJ ‖Jj‖1 = 2), Theorem 1.3.3 says that the hypothesis of absence of

parameter instability can be tested by applying Algorithm 2 with a = 0.

Remark 1.4.1. As explained in Section 1.1, a major advantage of our approach

is that no assumptions are placed on the time variation in parameters not under

testing, i.e., {βj,t}Tt=1 for j 6= j0. Hence, the common approach of imposing the null

hypothesis of βj0,1 = . . . = βj0,T , such as Su and Chen (2013), does not apply to

the partial inference problem here.

Algorithm 2 also provides a natural estimate for the set B. For η ∈ (0, 1),

consider

B̂(1− η) =
{
t
∣∣∣2 ≤ t ≤ T and |β̃j0,t − β̃j0,t−1| > Φ−1(1− η, Ω̂)/

√
n
}
,

where β̃j0,t denotes the j0-th entry of β̃t (defined in Algorithm 2). By Theorem
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1.3.3, it follows that

lim inf
n→∞

P
(
B̂(1− η) ⊆ B

)
≥ 1− η.

This means that, B̂(1 − η), as an estimate for the set of instability periods, has

asymptotic control on the false discovery rates: the probability of B̂(1−η) containing

points that are not in B is asymptotically at most η.

Under additional assumptions, B̂ can also serve as an estimator for B. By
Theorem 1.3.4, Φ−1(1 − η, Ω̂) = OP (

√
log n). Therefore, if we assume that the

structural breaks are not too small12 (i.e., mint∈B |βj0,t − βj0,t−1|
√
n/ log n→∞),

then P(B ⊆ B̂(1 − η)) → 1 and thus P(B = B̂(1 − η)) is asymptotically at least

1− η.

Remark 1.4.2. To achieve consistent estimation of B, we propose to replace B̂(1−η)

with B̂ = {2 ≤ t ≤ T : |β̃j0,t − β̃j0,t−1| > zn/
√
n}, where zn is a sequence such

that ∀η ∈ (0, 1), Φ−1(1 − η, Ω̂) ≤ zn for large n and zn �
√

log n. The above

analysis implies that lim inf P(B = B̂) ≥ 1 − η for any η ∈ (0, 1) and therefore

limP(B = B̂) = 1. Now we propose a simple choice of zn. By Lemma 2 in

Chapter 7 of Feller (1968) and the union bound, we can easily show that ∀x > 0,

1− Φ(x, Ω̂) ≤ 2k(T − 1)x−1‖Ω̂‖1/2
∞ φ(x−1‖Ω̂‖1/2

∞ ), where φ(·) is the p.d.f of N(0, 1).

Hence, it is straight-forward to show that ∀η ∈ (0, 1), we have that for large enough

n, Φ−1(1 − η, Ω̂) ≤
√

2‖Ω̂‖∞ log[k(T − 1)] almost surely. Therefore, a natural

choice is zn =

√
2‖Ω̂‖∞ log[k(T − 1)].

Remark 1.4.3. We note that power properties of tests for time-invariance in our

panel setup might not follow existing results that deal with models for single time

series. For example, consider the problem of testing β1 = . . . = βT versus β1 6= 0

and β2 = . . . = βT = 0. When the sample consists of one time series, it is quite

hard to detect the deviation that only occurs in one time period, regardless of how

large T is. However, in our panel data setting, βt is identified by the cross-sectional

variations across n units and thus can be expected to estimated accurately for large

12In a sense, estimation of the set B is similar to the problem of model selection and thus
requires similar regularity conditions, such as the so-called beta-min condition in high-dimensional
models; see Bühlmann and Van De Geer (2011).
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n.

1.4.4 Partial inference on structural breaks

Sporadic changes in parameter values, often referred to as structural breaks,

can be viewed as piecewise constant patterns of {βj0,t}Tt=1. Unlike the setup

considered in Section 1.4.3, structural breaks are viewed as infrequent jumps in

parameter values, which remain stable for extended periods of time, say at least

2q periods. Inference on structural breaks for the full vector βt has been widely

studied, e.g., Andrews (1993), Bai and Perron (1998, 2003) and Qu and Perron

(2007) among others. However, the partial inference problem of testing for structural

breaks in {βj0,t}Tt=1 without imposing any restrictions on {βj,t}Tt=1 for j 6= j0 is

rarely discussed.

Suppose that there are m structural breaks, which occur in periods B1 <

. . . < Bm:

βj0,1 = . . . = βj0,B1

βj0,B1+1 = . . . = βj0,B2 and βj0,B1 6= βj0,B1+1 (1.4.3)
...

βj0,Bm+1 = . . . = βj0,T and βj0,Bm 6= βj0,Bm+1.

We follow the convention in the literature by setting B0 = 1 and Bm+1 = T .

We consider the problem of testing the hypothesis that there are no structural

breaks. Although we can simply use the test discussed in Section 1.4.3, we might

obtain a more powerful test by taking into account the block structure of structural

breaks. We consider a block average scheme under which, for any pair of two

adjacent blocks of time periods, the average parameter values in these two blocks

are compared.

Consider two adjacent blocks of time periods of length q and compute the
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difference in the block average of parameter values (DBA), i.e.,

DBA(t; β, q) :=
1

q

t∑
s=t−q+1

βj0,s −
1

q

t+q∑
s=t+1

βj0,s =
(
B′(t,q) ⊗ τ ′j0,k

)
β,

where the s-th entry of the vector B(t,q) ∈ RT is defined as

B(t,q),s =
1

q

[
1{t− q + 1 ≤ s ≤ t} − 1{t+ 1 ≤ s ≤ t+ q}

]
.

The hypothesis of lack of structural breaks can be restated as DBA(t; β, q) =

0, ∀2q ≤ t ≤ T − 2q, which corresponds to Jβ = 0, where the rows of J are

B′(t,q)⊗ τ ′j0,k for all t ∈ {2q, . . . , T − 2q}. Notice that Assumption 2(i)-(ii) hold since

mJ = T − 4q < T and max1≤j≤mJ ‖Jj‖1 = 1. By Theorem 1.3.3, we can test the

hypothesis of lack of structural breaks by implementing Algorithm 2 with a = 0.

Under the alternative that {βj0,t}Tt=1 has a piecewise constant structure as

in (1.4.3), DBA(Bj; β, q) = βj0,Bj+1 − βj0,Bj ; on the other hand, it is natural to

expect DBA(Bj; β, q) to be better estimated than βj0,Bj+1 − βj0,Bj simply because

the former is the difference between two averages, especially for large q. Hence, we

expect that for large q, the test proposed in this subsection be more powerful in

detecting structural breaks than the test discussed in Section 1.4.3.

Our block average setup also yields a natural estimator. The basic idea

is the following. Suppose that we observe the true sequence {βj0,t}Tt=1. Then

DBA(t; β, q) 6= 0 if and only if Bj−q ≤ t ≤ Bj+q−1 for some j ∈ {1, . . . ,m}. Also
notice that t 7→ |DBA(t; β, q)| reaches the maximum (over {Bj − q, . . . , Bj + q− 1})
at t = Bj. This suggests a recursive strategy. Suppose that we already found

Bj−1. Let sj denote the smallest number s such that s ≥ Bj−1 + 2q − 1 and

|DBA(s; β, q)| > 0. Then Bj = arg max{|DBA(t; β, q)| | sj ≤ t ≤ sj + 2q − 1}.
Since ‖β̃ − β‖∞ = OP (

√
n−1 log n), we consider a similar strategy with

β replaced by β̃. Let δn = Φ−1(Ω̂, 1 − η)/
√
n, where Φ−1(Ω̂, 1 − η) is defined

in Algorithm 2 using J described above. Starting with B̂0 = 1, we compute B̂j
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recursively:

ŝj = min
{
s | s ≥ B̂j−1 + 2q − 1 and |DBA(s; β̃, q)| > δn

}
and

B̂j = arg max
ŝj≤t≤ŝj+2q−1

∣∣∣DBA(t; β̃, q)
∣∣∣ .

The iteration continues until j = m̂, where |DBA(s; β̃, q)| ≤ δn, ∀s ≥ m̂+ 2q − 1.

When the true {βj0,t}Tt=1 follows the structural break pattern in (1.4.3) and the

breaks are pronounced enough (
√
n/ log nmin1≤l≤m |βj0,Bl − βj0,Bl+1| → ∞), then

Theorems 1.3.3 and 1.3.4 imply that both P(m̂ = m) and P({B̂1, . . . , B̂m̂} =

{B1, . . . , Bm}) are asymptotically at least 1− η. For these probabilities to tend to

one, we can simply choose δn =

√
2n−1‖Ω̂‖∞ logmJ , see Remark 1.4.2.

1.4.5 Estimating partial regime-dependence

Popular models for the time variation in parameter values often specify a

pattern in which parameters take values in a small set, whose elements are often

referred to as regimes. For example, models with structural breaks have parameters

staying in one regime between breaks; Markov switching models, such as Hamilton

(1989), often assume that the parameters follow Markov chain with a few states.

Due to the flexibility of our setup, if the underlying parameters indeed follow such

regime patterns and these regimes are different enough (from each other), then our

results can be used to estimate the membership of these regimes, i.e., which regime

contains which time periods. Notice that {βj0,t}Tt=1 is allowed to be random here;

see Remark 1.3.3.

Suppose that there m regimes for βj0,t, which can take value in {a1, . . . , am}.
Since βj0,t is a scalar, we assume, without loss of generality, that a1 < a2 < . . . < am.

For 1 ≤ r ≤ m, define the set of time periods corresponding to the r-th regime:

Q(r) = {t | 1 ≤ t ≤ T and βj0,t = ar}. The goal is to estimate m as well as Q(r)

for each 1 ≤ r ≤ m.

Due to the monotonicity of {ar}mr=1, we consider a simple sorting strategy.

The basic idea is quite simple. If we could sort the true values {βj0,t}Tt=1, then we
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would obtain a piecewise constant and non-decreasing path and different regimes

are separated by jumps in the sorted sequence, leading to a structural break pattern

in the sorted sequence. Hence, we could simply apply the techniques outlined in

Section 1.4.4 to the sorted sequence. Since the true values {βj0,t}Tt=1 are unknown,

we simply implement this idea with {β̃j0,t}Tt=1.

Formally, let π : {1, . . . , T} 7→ {1, . . . , T} be a permutation (bijective

mapping) such that β̃j0,π(1) ≤ . . . ≤ β̃j0,π(T ). Suppose that each regime contains at

least 2q time periods. Discussions in Section 1.4.4 allow us to identify µ̂ breaks

in the sequence {β̃j0,π(s)}Ts=1, say ς1, . . . , ςµ̂. Then our estimate for m is µ̂+ 1. We

define

Q̂(r) =


{t | π(t) ≥ ςµ̂} r = µ̂+ 1

{t | ςr−1 ≤ π(t) < ςr} 2 ≤ r ≤ µ̂

{t | π(t) < ς1} r = 1

(1.4.4)

If min2≤j≤m(aj − aj−1)
√
n/ log n→∞, then it follows, by Theorems 1.3.3

and 1.3.4, that P(µ̂+ 1 = m)→ 1 and P(
⋂m
r=1{Q̂(r) = Q(r)})→ 1. In other words,

when the regimes are different enough (min2≤j≤m(aj − aj−1) not too small), Q̂(r)

can recover the regime pattern and thus be used to assess the specification of the

time variation of parameters. For example, structural breaks should correspond to

large blocks of time periods in which βj0,t takes the same value, implying that, for

each 1 ≤ r ≤ m, Q(r) should contain consecutive time periods; regime switching

patterns would imply the opposite for Q(r). We can conduct specifications tests.

Consider, as an example, the problem of testing whether the switching pattern

follows an i.i.d Bernoulli process or a first-order Markov chain. This problem

reduces to testing the restrictions on transition probabilities using a sample of

observed Markov chains.

1.4.6 Detecting general patterns of partial time-variation

In practice, big sudden shifts are not the only pattern of time variation.

For example, changes in the parameters might be small at each point in time but

accumulate to a large value over a long time horizon. In this case, the test discussed
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in previous subsections might not reveal evidence of structural breaks, but this does

not mean that we should conclude that slope coefficients are time-invariant. Again,

this is a partial inference problem in that the null hypothesis of time invariance

only concerns β(j0) and allows arbitrary time variation in {βj,t}Tt=1 for j 6= j0.

To test for general patterns of time variation, we consider the maximal time

variation. Notice that time invariance means that βj0,t1 = βj0,t2 , ∀1 ≤ t1 < t2 ≤ T .

Hence, we can consider |βj0,t1 − βj0,t2| all combinations of t1, t2 ∈ {1, . . . , T} with
t1 < t2. We define ιt1,t2 ∈ RT as a vector of zeros, except that the t1-th entry is 1

and the t2-th entry is −1. Clearly, there are T (T − 1)/2 vectors of this form and

we form the matrix J as follows: the row Tt1 + t2 of J is ι′t1,t2 ⊗ τ
′
j0,k

. Under this

notation, the null hypothesis of time invariance becomes Jβ = 0. Since Assumption

2(i)-(ii) hold with mJ = T (T − 1)/2 and max1≤j≤mJ ‖Jj‖1 = 2, Theorem 1.3.3

guarantees the validity of testing for time invariance using Algorithm 2 with a = 0.

Notice that the test statistics ‖Jβ̃‖∞ is equal to max1≤t1<t2≤T |β̃j0,t1− β̃j0,t2 |,
which is an estimate for max1≤t1<t2≤T |βj0,t1 − βj0,t2|, the distance between the peak

and trough in β̃j,t. Therefore, it follows, by Theorem 1.3.4, that this test can detect

any time variation resulting in a parameter trajectory that cannot be contained in

a band of constant width of O(
√
n−1 log n). For this reason, this procedure can

be used as a test for time invariance whenever the alternative does not specify a

particular pattern of parameter changes.

1.4.7 Explaining time variations in the slope coefficients

One common method of explaining variations is to use regression analysis.

Here, we treat {βj0,t}Tt=1 as a stochastic process; see Remark 1.3.3. For example,

applied researchers can analyze the randomness of {βj0,t}Tt=1 using linear regressions:

βj0,t = z′t θ
m×1

+ εt, (1.4.5)

where zt ∈ Rm is the vector of observed explanatory variables with fixed m and εt
is the error term. The goal is to conduct inference on θ. Notice that we still allow

{βj,t}Tt=1 with j 6= j0 to have completely different time variation patterns. Therefore,
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we cannot state the model (1.2.1) in terms of the low-dimensional parameter θ by

imposing (1.4.5).

Were the process {βj0,t}Tt=1 observed, one could simply estimate θ by the

ordinary least squared estimator

θ̂ =

(
T∑
t=1

ztz
′
t

)−1( T∑
t=1

ztβj0,t

)
.

However, in practice, the process {βj0,t}Tt=1 is not observed and thus the

estimator θ̂ is not feasible. Since Algorithm 2 delivers the estimated process

{β̃j0,t}Tt=1, we can consider the following estimator

θ̃ =

(
T∑
t=1

ztz
′
t

)−1( T∑
t=1

ztβ̃j0,t

)
.

The following result says that, under certain conditions, θ̃ and θ̂ are asymp-

totically equivalent.

Theorem 1.4.1. Let Assumptions 1 and 2 hold with J = IkT and ξ < 3/2.

Suppose that {zt}Tt=1 is independent of v and u. If (T−1
∑T

t=1 ztz
′
t)
−1 = OP (1) and

max1≤t≤T E‖zt‖2 = O(1). Then

√
T (θ̃ − θ̂) = oP (1).

For inference of θ under the above linear regression framework, Theorem

1.4.1 says that it suffices to derive the limiting distribution of
√
T (θ̂ − θ) since

√
T (θ̃− θ) and

√
T (θ̂− θ) differ by oP (1). Therefore, the estimation error in β̃ does

not contribute to the asymptotic distribution of the estimator θ̃.

Remark 1.4.4. The key condition of Theorem 1.4.1 is the independence between

{zt}∞t=1 and (v, u). Notice that we do not impose any assumption on the error term

εt in (1.4.5). Our assumption here is similar in spirit to Assumption E in Bai and

Ng (2006a), who consider a related problem: factors are first estimated from a

large panel dataset and then used as covariates in a separate regression. However,

their conclusion is quite different from ours. Bai and Ng (2006a) show that the
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estimation errors of the factors would in general influence the asymptotics in the

latter regression, while Theorem 1.4.1 says that the estimation error in β̃t does not

contribute to the limiting distribution of
√
T (θ̃− θ). This is because the estimation

errors of β̃ are noise in the dependent variable in regression (1.4.5), whereas in Bai

and Ng (2006a), the estimation errors of the factors affect the covariates in the

regression of interest. In the regression setup, measurement errors in regressors

cause a bigger problem than those in the response variable.

1.5 Monte Carlo Simulations

We consider both static (STA) and dynamic (DYN) models, which are

specified as follows. The static model reads

yi,t = F ′α,tLα,i + β1,tx1,i,t + β2,tx2,i,t + ui,t, (STA)

where xi,t = (x1,i,t, x2,i,t)
′ = F ′Q,tLQ,i + vi,t. Columns of Fα, FQ and rows of v

and u are generated as independent stochastic processes, which can take three

specifications, denoted by GAUSS, STU-T and ARMA (specified later). We generate

entries of Lα,i and LQ,i from i.i.d. N(0, 1/2) and set the first column of FQ,t equal

the first column of Fα,t. β1,t and β2,t are drawn from i.i.d uniform distribution on

[−1, 1].

The dynamic model reads

yi,t = F ′α,tLα,i + β1,tyi,t−1 + β2,tx̃i,t + ui,t, (DYN)

where x̃i,t = F ′
Q̃,t
LQ̃,i + ṽi,t with FQ̃,t ∈ RrQ−rα . Thus, the number of factors

in the regressors are rQ (from both Fα,t and FQ̃,t)
13. As before, columns of Fα,

FQ̃ = (FQ̃,1, . . . , FQ̃,T )′, {ṽi,t}Tt=1 and rows of u are independent stochastic processes,

which can take three specifications, denoted by GAUSS, STU-T and GARCH. We

generate entries of Lα,i and LQ̃,i from i.i.d. N(0, 1) and draw β1,t and β2,t from i.i.d

13Notice that when lagged yi,t is included as the regressors, we always have rQ ≥ rα. Since rα
factors drive yi,t and thus drive lagged yi,t, which is only part of the regressors, the total number
of factors driving the regressors is at least rα.
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uniform distribution on [−0.7, 0.7].

Here, GAUSS denotes the process of i.i.d N(0, 1); STU-T denotes the process

of i.i.d Student’s t-distribution with 6 degrees of freedom normalized to have variance

one. ARMA denotes the ARMA(1,1) zero-mean process with autoregressive and

moving average coefficient being 0.924 and 0.592 (calibrated to quarterly data

of real U.S. GDP growth), where the innovations are i.i.d zero-mean Gaussian

with variance chosen such that the long-run variance of the ARMA process is one.

GARCH denotes the GARCH(1,1) zero-mean process with ARCH and GARCH

parameters being 0.12 and 0.85 (calibrated to monthly returns of the S&P500 index),

where the standardized innovations are i.i.d zero-mean Gaussian with variance

chosen such that the long-run mean variance of the GARCH process is one.

In all of our simulations, rQ and rα are estimated using r̂SVQ and r̂SVα as

discussed in Theorem 1.3.7. In all the tables and figures, the coverage probabilities

of confidence bands and the rejection probabilities of tests are based on 2000 random

samples.

For each simulated sample, we construct a 95% confidence band for the

trajectory of the first entry of βt; see Corollary 1.3.1 and Section 1.4.1. The results

are reported in Table 1.1. As we can see, these results demonstrate decent finite-

sample performance of the proposed confidence bands. The 95% confidence bands

has empirical coverage probabilities around the nominal level, even for a sample

size as small as n = T = 60. Strictly speaking, STU-T and GARCH processes do

not satisfy the condition of exponential-type tails, but our procedures still perform

quite well. For dynamic models, certain under coverage could occur for large n

and relatively small T ; this is only a finite sample problem since in our unreported

results with larger sample sizes (e.g., n = 900 and T = 200), we find the coverage

probability of the confidence bands close to their nominal levels.

We also consider the test for structural breaks. We keep the same specifica-

tions STA and DYN, except that β1,t is generated as

β1,1 = . . . = β1,bλT c = w and β1,bλT c+1 = . . . = β1,T = w + δ,

where λ ∈ (0, 1) is a fixed parameter and bλT c denotes the largest integer not
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exceeding λT . For STA and DYN specifications, w is from the uniform distribution

on [−1, 1] and on [−0.7, 0.7], respectively. The null hypothesis of β1 = . . . = βT

corresponds to δ = 0. The deviation from the null hypothesis is measured in δ.

Notice that this we only have structural breaks in {β1,t}Tt=1 since {β2,t}Tt=1 is still

drawn from i.i.d uniform distributions as in STA and DYN.

We consider the test discussed in Section 1.4.3. The size properties of a 5%

test are reported in Table 1.2. For static models, our test has decent size control

in finite samples; for dynamic models, slight over-rejection could occur for large n

and small T . In Figures 1.1 and 1.2, we plot the power curves of 5% tests under

the STA-GAUSS and DYN-GAUSS specifications, respectively. As expected, the

power increases with the sample size and the magnitude of δ. Interestingly, the

power function is not sensitive to λ, the location of the structural break. Since we

identify β1,t through cross-sectional units, rather than the time dimension, we do

not need many time periods for each regime (i.e., before and after the break), a

similar situation as discussed in Remark 1.4.3.

1.6 Empirical Applications

In this section, we illustrate the proposed methodology via three empirical

problems: (1) stock return predictability, (2) firms’ capital structure and (3) the

effect of investment on economic growth.

1.6.1 Stock return predictability

A question of fundamental interest in finance is whether the equity risk

premium is time-varying and, if so, can be predicted ahead of time as suggested by

studies such as Campbell and Cochrane (1999) and Bansal and Yaron (2004). Two

of the most popular predictors are the dividend yield14 and volatility15. Here, we

14See e.g., Campbell and Shiller (1988b, 1988a), Fama and French (1988), Hodrick (1992) and
Koijen and Van Nieuwerburgh (2011)

15See e.g., Goyal and Santa-Clara (2003), Bakshi and Kapadia (2003), Ang, Hodrick, Xing,
and Zhang (2006) and Bollerslev, Gibson, and Zhou (2011).
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study the following regression using panel data

ri,t = L′α,iFα,t + θtdi,t−1 + γtVOLi,t−1 + ui,t, (1.6.1)

where ri,t is the log excess return in period t on asset i, di,t−1 is the dividend yield

in period t− 1 for asset i and VOLi,t−1 denotes the variance of asset i in period t

conditional on the information in period t− 1.

We interpret θt (and γt) as capturing predictability in stock returns by means

of time-variation in the dividend yield or conditional variance. In the specification

in (1.6.1), we use a factor structure to model potential cross-sectional dependence

among the error terms. These common factors include financial and macroeconomic

shocks that drive the returns of all stocks, as well as time-specific and asset-specific

fixed effects.16 Due to the presence of these factors, methods based on OLS, such

as the Fama-MacBeth regression, might provide inconsistent estimators even under

strict exogeneity; see Appendix A.1 for a simple example.

We use annual data on 100 equity portfolios sorted by size and book-to-

market ratio and compute the dividend yield from the cum-dividend and ex-dividend

return series.17 The conditional volatility is computed by fitting on AR(1) model

with annual realized volatility. We specify the sampling period to run from 1960 to

2015 (T = 56 years) and retain the observations of n = 89 portfolios after removing

11 portfolios with missing data. We apply the methodology proposed in Sections

1.3 and 1.4. The estimate of β = (β1, . . . , βT )′ ∈ R2T with βt = (θt, γt)
′ and the

95% uniform confidence band are displayed in Figure 1.3.

The two plots in Figure 1.3 suggest quite different patterns of time variation

for {θt}Tt=1 and {γt}Tt=1. Since the red horizontal line in Panel A of Figure 1.3

representing the vector of zeros does not lie in the confidence band, we reject the

hypothesis that θ1 = . . . = θT = 0. Time variation in θt is quite evident in Figure

1.3. Sporadic spikes in θt occur in the late 1960’s and around 2000. This pattern

16Well-known factors include the Fama-French factors (Fama and French (1992, 2016)) and
macroeconomic factors in the large factor model literature, e.g., Stock and Watson (1998, 2002b,
2006).

17The data is obtained from the website of Kenneth French.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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indicates parameter instability, which is also documented in existing work18; the

p-value of testing θ1 = . . . = θT using the framework discussed in Section 1.4.3 is

0.001. Panel B of Figure 1.3 displays the path of time variation in the predictive

power of conditional volatility. Such predictive power is mainly concentrated in the

1960’s and 1970’s and seems to have disappeared after 1980. We also cluster slope

coefficients using structural break models; in particular, we assume that there are

at least four years between breaks and apply the methodology outlined in Section

1.4.4. The results are reported in Table 1.3 and Figure 1.3. We find that the

only structural break in θt occurred in the late 1990’s and that there are three

structural breaks in γt, which occurred in the late 1960’s, late 1970’s and early

1990’s, respectively. However, we also reject the hypothesis that the parameter

values are stable between the estimated structural breaks; this suggests that models

with structural breaks in parameters might not be flexible enough to reveal all the

features in return predictability.

Our method separates shocks in the error terms from those in the return

predictability. Figure 1.4 plots the time series of the average noise level n−1
∑n

i=1 û
2
i,t,

where ûi,t is defined in Algorithm 2. We compare Figures 1.3 and 1.4. During

the recent Great Recession, the return predictability from the dividend yield and

the conditional volatility was quite stable whereas large spikes are found in the

average noise level. This indicates that the Great Recession only contributed to the

noise in the error terms and did not change the relationship between stock returns

and predictors, such as the dividend yield and conditional volatility. However, the

collapse of the dot-com bubble appears to be a different kind of shock; we find large

spikes in θt and the average noise level but not in γt. It is perhaps not surprising

to see changes in the relationship between stock returns and the dividend yield

as companies in the information technology sector, known for low dividends and

realized profits, saw their stock prices soar and then plummet.

To study any seasonality in return predictability as well as its link to the

macroeconomy, we also estimate model (1.6.1) using quarterly data over the same

time periods (T = 224 quarters)19. Switching to quarterly data makes it more

18See Paye and Timmermann (2006), Lettau and Van Nieuwerburgh (2008), and Viceira (1997).
19The conditional volatility is obtained by fitting the quarterly realized volatility to AR(4)
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convenient to explore time variation related to macroeconomic variables, many

of which are observed on a quarterly basis. We apply the framework outlined in

Section 1.4.2. In Table 1.4, we construct confidence intervals for d(A,B) (defined

in (1.4.1)), where A and B are sets containing different time periods; average

predictability corresponds to A = {1, . . . , T} and B = ∅. From Table 1.4, the

average (across time) of return predictability from the dividend yield is estimated

to be 0.49 and is not statistically significant from zero, while the average predictive

power of volatility is negative and statistically significant, findings consistent with

existing literature, see e.g., Glosten, Jaganathan, and Runkle (1993) and Goyal

and Welch (2008).

Table 1.4 includes other intriguing findings. First, return predictability

coefficients exhibit strong seasonality. A large literature has documented the

presence of calendar effects in stock returns, i.e., different patterns of stock returns

on certain days of the week, months of the year, etc.20 Typically, these calendar

effects are not conditional on other variables and thus should correspond to part

of the fixed effects in (1.6.1). Our specification allows for both interactive fixed

effects and time-heterogeneous slope coefficients and is thus flexible enough to

distinguish seasonality in the error terms from seasonal changes in θt and γt. Table

1.4 and Figure 1.5 say that, on average, predictability using the dividend yield

is particularly profound in the third quarter of the year and is not statistically

different from zero in the other three quarters; on average, volatility has predictive

power only in the second and third quarters. Our finding suggests that the calendar

effects are present not only in the error terms but also in the slope coefficients.

Second, return predictability is related to the state of the macroeconomy.

Numerous studies have found that stock returns are predictable only in certain

stage of the business cycle, see e.g., Fama and French (1989), Rapach and Wohar

(2006), Rapach, Strauss, and Zhou (2010) and Dangl and Halling (2012). Table 1.4

suggests that the dividend yield is informative only in economic recessions (defined

by the NBER recession indicators); similar results hold if we treat as recessions

model.
20See e.g., Jones, Pearce, and Wilson (1987), Keim and Stambaugh (1986), Haugen and

Lakonishok (1988) and Kramer (1994).
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periods in which the real GDP growth is smaller than its median. The predictive

power of volatility is strong in NBER expansions, but not in recessions; on the other

hand, this predictive power is only significant in periods with slow GDP growth.

Unlike most work in the literature, we do not fit a two-regime parameter model to

the data and thus our findings are not driven by specific model assumptions on the

time variation in return predictability.

1.6.2 Firms’ choice of capital structure

The study of firms’ capital structure decisions is of fundamental interest in

corporate finance. A large body of theoretical and empirical work has emerged

to explain how corporations make decisions on the use of debt, see Titman and

Wessels (1988), Harris and Raviv (1991), Rajan and Zingales (1995), Graham and

Harvey (2001) and Welch (2004) among many others. In a survey paper, Frank and

Goyal (2009) investigate numerous variables that can affect firms’ capital structure.

Following this literature, we consider the following regression:

LVi,t+1 = L′α,iFα,t+1 + x′i,tβt + ui,t+1,

where LVi,t+1 is the leverage ratio of firm i at time t + 1 and xi,t contains 11

covariates observed at time t for firm i.21 We use the same data as Frank and

Goyal (2009) and take the variables from Table II therein. We drop from xi,t

variables that are either only time-specific (e.g. macroeconomic variables) or only

firm-specific (e.g. whether the industry of the firm is regulated) since the effects of

these variables are captured by the fixed effects. After removing missing data, we

have a balanced panel with annual observations of n = 167 firms from 1963 to 2003

(T = 41).

We shall revisit the following conclusions of Frank and Goyal (2009):

(a) Firms with higher market-to-book ratios tend to have less leverage

21These 11 variables are profitability, book assets, market-to-book ratio, change in assets,
capital expenditure, median industry leverage, median industry growth, tangible assets, R&D
expense, uniqueness and SGA (selling, general and administration) expense. See Appendix B of
Frank and Goyal (2009) for detailed definitions.



39

(b) Firms with more tangible assets tend to have more leverage

(c) Firms with more profits tend to have less leverage

(d) Firms with more book assets tend to have more leverage

These conclusions are statements on the components of βt corresponding to the

following four regressors: profitability, book assets, market-to-book ratio and

tangible assets. In this exercise, we focus on (1) estimates for β = (β′1, . . . , βT )′

and its 95% confidence sets, (2) testing for time-invariance of βt and (3) inference

on the average effect, i.e., T−1
∑T

t=1 βt. We consider two measures of the leverage

ratio: the ratio of total debt to market assets (DM) and the ratio of total debt

to book assets (DB). In Figures 1.6 and 1.7, we report the confidence bands for

DM and DB, respectively. In Table 1.5, we report inference results for the average

effects and time-invariance.

We find clear evidence of time variation in βt. This is visually discernible in

Figures 1.6 and 1.7. We also notice that the time variations are mostly slow changes

in βt rather than sudden abrupt changes. Applying the test for time invariance

described in Section 1.4.6, we conclude, at the 5% significance level, that time

variations are present in βt for assets, profit and tangible assets; time invariance for

the effects of market-to-book is also rejected at the 5% significance level when we

use DM as the leverage ratio.

From Figures 1.6 and 1.7, we can reject the hypothesis that βj,1 = . . . =

βj,T = 0 at the 5% significance level, for tangible assets, profits and book assets.

From Table 1.5, we also reject, at the 5% level, that the average effect is zero for all

the four variables of interest. Interestingly, the average effects of market-to-book

ratio have different signs, depending on whether we use DM or DB as the leverage

ratio, a finding consistent with Table V of Frank and Goyal (2009).

Overall, we confirm the findings in Frank and Goyal (2009), but our results

also suggest quite different patterns of time variation. For example, Figures 1.6

and 1.7 show that the effects of the tangible assets change considerably and might

have declined to zero or even switched signs at some point, whereas Table V of

Frank and Goyal (2009) shows that the corresponding component of βt has stayed
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away from zero in each decade and is relatively stable. Moreover, Frank and Goyal

(2009) conclude that, for leverage measured by DM, the importance of profits has

declined significantly since the 1950’s and that of book assets has increased during

that period, see Table V therein. From Figure 1.6, we see that the importance of

profits has stayed stable if not increased. It is true that its importance might have

temporarily dropped in the late 1980’s, but quickly recovered in the early 1990’s.

Figure 1.6 also shows that the effect of book assets increased from zero to its peak

in the late 1980’s before it dropped to a level close to zero.

The above difference might suggest the benefit of our method, compared

to the simple practice of dividing the sample into subsamples. In a sense, the

approach adopted by Frank and Goyal (2009) amounts to specifying structural

breaks that could occur only at the end of each decade for all the parameters.

However, estimates from our model in Figures 1.6 and 1.7 indicate smooth and

gradual changes for at least some of the parameters, such as book assets. We also

see that certain trends in parameter values can reverse within one decade. These

findings can serve as evidence supporting that a structural break model might not

be a suitable specification for the parameters. Since different parameters can have

completely different patterns of time variation, such as profits and book assets in

Figure 1.6, it is advantageous to apply our flexible setup, which allows for any

pattern of time variation in parameters.

1.6.3 Investment and economic growth

Our third application is related to the long-running debate on whether

investment causes economic growth. Despite the obvious importance of this question,

it appears that a consensus has yet to emerge. The literature contains studies that

support such causality and perhaps equally many papers that conclude otherwise;

see e.g., DeLong and Summers (1991), Mankiw, Romer, and Weil (1992), Islam

(1995), Jones (1995), Blomström, Lipsey, and Zejan (1996) and Bond, Leblebicioglu,

and Schiantarelli (2010).

To address this issue, we present a panel data analysis that allows for

interactive fixed effects and unrestricted time-heterogeneous slope coefficients. Since
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the fixed effects can account for the endogeneity of investment, our setup could

help shed light on any (time-varying) effect of investment on economic growth. We

consider the following regression equation similar to the one studied in Blomström,

Lipsey, and Zejan (1996):

gi,t = L′α,iFα,t + θtINVi,t−1 + γtgi,t−1 + ui,t, (1.6.2)

where gi,t is the growth of real GDP per capita in country i in year t and INVi,t−1

is the ratio of gross capital formation to GDP of country i in year t− 1. The data

is obtained from Penn World Table 9.0. After removing missing values, we have a

balanced panel consisting of n = 74 countries over T = 53 years from 1962 to 2014.

In Table 1.6, we conduct inference regarding the average θt across time and

test the time-invariance of θt. Figure 1.8 plots estimates for {θt}Tt=1 and its 95%

confidence bands.

We find that the average value of θt across time is close to zero but that

θt is not always zero. In Table 1.6, we see that the average θt across time is not

statistically different from zero; however, time-invariance of θt is strongly rejected.

From Figure 1.8, we see that the 95% confidence band for {θt}Tt=1 does not contain

the red line representing the zero vector and does not contain any horizontal lines,

implying time variation in {θt}Tt=1.

We also find that the average effect of investment on economic growth

increased after the early 1990’s. The methodology outlined in Section 1.4.4 is

applied to the estimated {θt}Tt=1 in order to identify structural breaks. As shown

in Figure 1.8, our method suggests that there is only one structural break, which

occurred in the early 1990’s. According to Table 1.6, the average effect of investment

is not significantly different from zero in the pre-break periods and is significantly

positive in the post-break periods. One explanation is related to advances in

technology in the early 1990’s. Several studies, such as Litan and Rivlin (2001)

and Freund and Weinhold (2004), have found that the Internet has positive effects

on productivity, management efficiency and international trade. Our findings are

consistent with the possibility that the adoption of the Internet in the early 1990’s

increases the effect of investment on the economy. Moreover, in both pre-break and
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post-break periods, we reject time homogeneity in θt. This suggests that the usual

structural break model might not be sufficient to describe the time-varying pattern

in θt, highlighting the advantage of the proposed methodology.

We also consider the grouped fixed effects (GFE) discussed by Bonhomme

and Manresa (2015). GFE assumes that the cross-sectional units can be categorized

into a small number of groups and the time variation of the fixed effects is the

same among nations in the same group. Since this specification can be viewed as a

special case of the interactive fixed effects, Theorem 1.3.5 implies that the estimator

α̂i,t from Algorithm 2 is a consistent estimator for GFE. Similar to Bonhomme

and Manresa (2015), we estimate the group membership by applying the k-means

clustering algorithm (Forgy 1965; Lloyd 1982) to α̂i,t.

We comment on two findings under the GFE specification. First, we find

a separation that roughly divides the countries in the sample into developed and

developing nations. The result is reported in Figure 1.9. The red group in Figure

1.9 contains mostly developed countries, such as nations in North America, Western

Europe, Australia, Japan and South Korea; the blue group in Figure 1.9 contains

primarily developing countries, such as China, India, nations in Africa and South

America.

Second, the estimated number of factors in the fixed effects is one and

we find evidence supporting that the two groups are driven by this factor but

with different sensitivities. In Figure 1.10, we plot the estimated trajectories of

fixed effects in the two groups. The two paths of fixed effects display substantial

co-movement but possess different volatilities: the red group has a more volatile

path in the fixed effects. This suggests that the fixed effects in the two groups are

driven by the same factor but the factor loading of the red group (mainly developed

countries) is larger in magnitude than that of the blue group (mainly developing

countries). One explanation is that developed nations, compared to developing

nations, are more involved in international economic/political activities and are

thus more sensitive to world-wide economic/political shocks. This also explains

why the red group contains some countries that are usually classified as developing

countries. For example, since the economy of Iran and Venezuela heavily relies
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on exporting petroleum-related products, which are closely connected to global

economic trends, it is perhaps not surprising that these two countries are highly

susceptible to international economic forces.

These results illustrate the benefit of our methodology. The patterns that

admit economic interpretations, such as the group membership, are not results of a

priori specifications that are explicitly imposed. In particular, we do not impose any

restrictions on the group membership or on the co-movement of fixed effects between

the two groups. Moreover, our results are robust to arbitrary time-heterogeneity in

the slope coefficients. This is important since we find strong evidence of such time

heterogeneity.

1.7 Conclusion

We consider panel data models with interactive fixed effects and time-

heterogeneous slope coefficients. These models do not restrict the time-variation in

the slope coefficients, while allowing for both cross-sectional and inter-temporal

dependence in the error terms. As the data consists of a large number of cross-

sectional observations over many time periods, the vector β containing all the slope

coefficients across time has dimensionality tending to infinity.

We propose methods for estimating and conducting inference on β and

establish their asymptotic properties. We treat the entire vector β as a high-

dimensional parameter and provide tools for inference on the trajectory of the

time-variation of slope coefficients. In particular, our results can be used to

construct confidence bands for this trajectory of slope coefficients, to test for time-

invariance and to conduct inference on specific patterns of time variations, including

structural breaks and regime switching. Our methods are simple to implement and

computationally convenient.

An interesting extension of our work is to allow covariate effects to be

heterogeneous both across cross-sectional units and across time. Such a flexible

framework could be quite natural in empirical applications. For example, certain

treatments might have different effects on different individuals in different time
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periods; applied researchers might be interested in questions such as how the average

(across individuals) treatment effects vary over time, whether certain (groups of)

individuals are always more responsive to the treatment and whether time variation

in the treatment effects is synchronized across individuals. Estimation and inference

of these models would probably require certain structures on the heterogeneity in

slope coefficients. To this end, one might borrow from popular specifications of

fixed effects, although formal analysis is likely to encounter additional technical

challenges and is left for future research.
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Tables and Figures

Table 1.1: Coverage probability of 95% confidence bands for {β1,t}Tt=1

Panel A: static model (STA)
rQ = rα = 1

GAUSS STU-T ARMA
n \ T 60 120 180 60 120 180 60 120 180
60 0.973 0.984 0.988 0.969 0.984 0.989 0.944 0.979 0.982
120 0.954 0.969 0.971 0.966 0.982 0.981 0.952 0.969 0.974
180 0.949 0.965 0.963 0.963 0.977 0.982 0.945 0.960 0.966

rQ = rα = 2
n \ T 60 120 180 60 120 180 60 120 180
60 0.962 0.982 0.987 0.956 0.984 0.988 0.953 0.982 0.990
120 0.951 0.965 0.977 0.956 0.976 0.984 0.941 0.967 0.977
180 0.947 0.964 0.963 0.956 0.980 0.979 0.932 0.959 0.960

rQ = rα = 3
n \ T 60 120 180 60 120 180 60 120 180
60 0.968 0.980 0.992 0.942 0.973 0.982 0.962 0.981 0.992
120 0.950 0.974 0.980 0.945 0.978 0.982 0.948 0.970 0.980
180 0.940 0.966 0.969 0.942 0.970 0.983 0.931 0.959 0.972

Panel B: dynamic model (DYN)
rα = 1 and rQ = 1

GAUSS STU-T GARCH
n \ T 60 120 180 60 120 180 60 120 180
60 0.929 0.962 0.964 0.929 0.960 0.980 0.923 0.957 0.969
120 0.903 0.945 0.954 0.900 0.957 0.966 0.942 0.968 0.977
180 0.881 0.942 0.947 0.865 0.946 0.959 0.942 0.970 0.982

rα = 1 and rQ = 2
n \ T 60 120 180 60 120 180 60 120 180
60 0.941 0.963 0.970 0.941 0.972 0.975 0.919 0.955 0.968
120 0.904 0.942 0.958 0.893 0.960 0.965 0.944 0.972 0.974
180 0.860 0.948 0.955 0.845 0.943 0.962 0.941 0.970 0.984

rα = 1 and rQ = 3
n \ T 60 120 180 60 120 180 60 120 180
60 0.944 0.967 0.969 0.942 0.977 0.975 0.909 0.939 0.962
120 0.916 0.957 0.962 0.911 0.953 0.975 0.927 0.961 0.967
180 0.868 0.933 0.947 0.855 0.947 0.965 0.914 0.966 0.978
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Table 1.2: Rejection probability under the null hypothesis that β1,1 = . . . = β1,T

We report the rejection probabilities of tests for structural breaks with nominal
size 5% under the null hypothesis that β1,1 = . . . = β1,T .

Panel A: static model (STA)
rQ = rα = 1

GAUSS STU-T ARMA
n \ T 60 120 180 60 120 180 60 120 180
60 0.054 0.042 0.024 0.038 0.028 0.019 0.046 0.022 0.019
120 0.052 0.043 0.040 0.044 0.033 0.024 0.044 0.036 0.034
180 0.055 0.041 0.038 0.055 0.034 0.032 0.053 0.037 0.038

rQ = rα = 2
n \ T 60 120 180 60 120 180 60 120 180
60 0.044 0.023 0.019 0.059 0.026 0.019 0.044 0.014 0.012
120 0.057 0.039 0.031 0.056 0.030 0.020 0.048 0.030 0.033
180 0.055 0.048 0.037 0.056 0.046 0.035 0.061 0.033 0.032

rQ = rα = 3
n \ T 60 120 180 60 120 180 60 120 180
60 0.042 0.020 0.015 0.063 0.027 0.019 0.033 0.017 0.007
120 0.070 0.040 0.029 0.066 0.029 0.022 0.047 0.023 0.015
180 0.072 0.047 0.040 0.057 0.033 0.031 0.050 0.027 0.024

Panel B: dynamic model (DYN)
rα = 1 and rQ = 1

GAUSS STU-T GARCH
n \ T 60 120 180 60 120 180 60 120 180
60 0.078 0.049 0.041 0.055 0.032 0.031 0.073 0.056 0.047
120 0.072 0.054 0.048 0.070 0.042 0.038 0.046 0.039 0.033
180 0.084 0.062 0.056 0.086 0.051 0.040 0.047 0.028 0.027

rα = 1 and rQ = 2
n \ T 60 120 180 60 120 180 60 120 180
60 0.057 0.048 0.041 0.046 0.038 0.023 0.067 0.052 0.046
120 0.070 0.057 0.056 0.077 0.043 0.025 0.053 0.034 0.029
180 0.091 0.051 0.048 0.105 0.042 0.041 0.050 0.029 0.020

rα = 1 and rQ = 3
n \ T 60 120 180 60 120 180 60 120 180
60 0.058 0.035 0.039 0.039 0.028 0.022 0.107 0.060 0.045
120 0.059 0.055 0.041 0.060 0.042 0.030 0.074 0.051 0.036
180 0.082 0.049 0.050 0.091 0.044 0.032 0.069 0.041 0.028
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Table 1.3: Forecasting stock returns (annual data).

Structural break points are estimated using the methodology outlined in Section
1.4.4 and assuming that there are at least four years between structural breaks.
For {θt}Tt=1, we find one break point denoted by Tθ,1; for {γt}Tt=1, we find three
break points, denoted by Tγ,1, Tγ,2 and Tγ,3, respectively. See Figure 1.3 for plots
for these breaks.

Estimate t-stat Conf interval P-value
(Time variation)

Panel A: return predictability from the dividend yield {θt}Tt=1

T−1
∑T

t=1 θt -0.79 -1.44 -1.87 0.28 0.00
T−1
θ,1

∑Tθ,1
t=1 θt 1.05 5.09 0.64 1.45 0.00

(T − Tθ,1)−1∑T
t=Tθ,1+1 θt -0.79 -1.44 -1.87 0.28 0.00

Panel B: return predictability from the conditional variance {γt}Tt=1

T−1
∑T

t=1 γt -0.27 -0.71 -1.01 0.47 0.00
T−1
γ,1

∑Tγ,1
t=1 γt 5.28 3.33 2.17 8.38 0.00

(Tγ,2 − Tγ,1)−1
∑Tγ,2

t=Tγ,1+1 γt -6.02 -5.09 -8.33 -3.70 0.00
(Tγ,3 − Tγ,2)−1

∑Tγ,3
t=Tγ,2+1 γt 0.60 0.71 -1.05 2.24 0.00

(T − Tγ,3)−1
∑T

t=Tγ,3+1 γt -0.46 -0.96 -1.41 0.48 0.00
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Table 1.4: Forecasting stock returns (quarterly data): difference in predictability

For disjoint sets A,B ⊂ {1, . . . , T}, we consider the difference in average predictabil-
ity, i.e., d(A,B) defined in (1.4.1). We report the estimates and 95% confidence
intervals for d(A,B), as well as the t-stat for testing d(A,B) = 0. The sets used in
the table are defined as follows.

• For j ∈ {1, 2, 3, 4}, Qj = {t | 1 ≤ t ≤ T and time t is quarter j of some year}.
The results are also plotted in Figure 1.5.

• RNBER = {t | 1 ≤ t ≤ T and NBERt = 1} and ENBER = {t | 1 ≤ t ≤
T and NBERt = 0}, where NBERt is the NBER indicator for economic
recessions, which takes value one if the economy is in recession and takes
value zero otherwise. Monthly data of the NBER indicators is obtained from
the website of St. Louis Fed and the value of the indicator of the last month
in a quarter is used as the value of that quarter.

• LGDP = {t | 1 ≤ t ≤ T and GDPt < median(GDP )} and HGDP = {t | 1 ≤
t ≤ T and GDPt > median(GDP )}, where GDPt denotes the real U.S. GDP
growth in time period t and median(GDP ) denotes the sample median of
real GDP growth. We obtain the data from the website of St. Louis Fed.

θt (dividend yield) γt (conditional volatility)

Set A Set B Est t-stat Conf Interval Est t-stat Conf Interval

{1, . . . , T} ∅ 0.49 1.45 -0.17 1.15 -1.66 -3.29 -2.65 -0.67
Q1 ∅ 0.20 0.33 -0.99 1.38 0.90 0.64 -1.84 3.63
Q2 ∅ -0.10 -0.14 -1.51 1.30 -2.76 -3.55 -4.29 -1.23
Q3 ∅ 2.18 4.19 1.16 3.19 -4.79 -6.91 -6.14 -3.43
Q4 ∅ -0.31 -0.59 -1.35 0.73 0.00 0.00 -1.79 1.78
Q1 Q2 0.30 0.38 -1.26 1.86 3.66 2.99 1.26 6.05
Q2 Q3 -2.28 -2.49 -4.07 -0.48 2.03 1.86 -0.10 4.16
Q3 Q4 2.49 3.54 1.11 3.86 -4.78 -5.61 -6.45 -3.11
RNBER ∅ 2.20 2.56 0.52 3.89 1.22 1.37 -0.53 2.96
ENBER ∅ 0.22 0.62 -0.48 0.93 -2.11 -3.70 -3.23 -0.99
RNBER ENBER 1.98 2.16 0.18 3.77 3.33 3.12 1.23 5.42
LGDP ∅ 1.48 2.67 0.39 2.56 -4.10 -5.75 -5.50 -2.70
HGDP ∅ -0.50 -1.52 -1.14 0.14 0.77 1.43 -0.29 1.83
LGDP HGDP 1.98 3.24 0.78 3.17 -4.87 -6.40 -6.36 -3.38
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Table 1.5: Determinants of firms’ capital structures

βProfit,t, βAssets,t, βMktbk,t and βTang,t represent the components of βt ∈ R11 corre-
sponding to profitability, assets, market-to-book ratio and tangibility, respectively.
The above table reports the point estimate, t-statistic and confidence interval for
the average βt, as well as p-value of the test for lack of parameter instability of βt
described in Section 1.4.3.

Estimate t-stat Conf interval P-value
(Time variation)

Panel A: LV measured as DM
T−1

∑T
t=1 βProfit,t -0.72 -10.80 -0.84 -0.59 0.01

T−1
∑T

t=1 βAssets,t 0.06 6.65 0.04 0.08 0.01
T−1

∑T
t=1 βMktbk,t -0.03 -5.22 -0.05 -0.02 0.02

T−1
∑T

t=1 βTang,t 0.19 6.96 0.13 0.24 0.02

Panel B: LV measured as DB
T−1

∑T
t=1 βProfit,t -0.50 -6.87 -0.64 -0.35 0.00

T−1
∑T

t=1 βAssets,t 0.04 4.70 0.02 0.05 0.01
T−1

∑T
t=1 βMktbk,t 0.02 2.79 0.00 0.03 0.25

T−1
∑T

t=1 βTang,t 0.18 7.67 0.13 0.23 0.00
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Table 1.6: Fixed investment and economic growth

We consider the regression equation (1.6.2). In the above table, columns 1, 2 and 3
report the point estimate, t-statistic and confidence interval for T−1

∑T
t=1 θt. The

last column reports the p-value of the test for lack of parameter instability of θt
described in Section 1.4.3. T0 is the structural break point estimated using the
methodology outlined in Section 1.4.4; see Figure 1.8.

Estimate t-stat Conf interval P-value
(Time variation)

T−1
∑T

t=1 θt 0.023 0.987 -0.022 0.067 0.000
T−1

0

∑T0
t=1 θt -0.055 -1.708 -0.117 0.008 0.000

(T − T0)−1
∑T

t=T0+1 θt 0.114 2.982 0.039 0.188 0.000
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rα = rQ = 1 rα = rQ = 2
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Figure 1.1: Power curves for testing structural breaks in {β1,t}Tt=1 (STA)

We generate β1,1 = . . . = β1,bλT c and β1,bλT c+1 = . . . = β1,T with δ = β1,bλT c+1 −
β1,bλT c. In the above plots, we report the probability of rejecting β1,1 = . . . = β1,T

as a function of δ, for various values of (n, T ) and λ.
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rα = rQ = 1 rα = 1 and rQ = 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
λ=0.05

(n,T)=(60,60)
(n,T)=(120,120)
(n,T)=(180,180)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
λ=0.05

(n,T)=(60,60)
(n,T)=(120,120)
(n,T)=(180,180)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
λ=0.2

(n,T)=(60,60)
(n,T)=(120,120)
(n,T)=(180,180)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
λ=0.2

(n,T)=(60,60)
(n,T)=(120,120)
(n,T)=(180,180)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
λ=0.5

(n,T)=(60,60)
(n,T)=(120,120)
(n,T)=(180,180)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
λ=0.5

(n,T)=(60,60)
(n,T)=(120,120)
(n,T)=(180,180)

Figure 1.2: Power curves for testing structural breaks in {β1,t}Tt=1 (DYN)

We generate β1,1 = . . . = β1,bλT c and β1,bλT c+1 = . . . = β1,T with δ = β1,bλT c+1 −
β1,bλT c. In the above plots, we report the probability of rejecting β1,1 = . . . = β1,T

as a function of δ, for various values of (n, T ) and λ.
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Panel A: Estimate and 95% confidence band for {θt}Tt=1 (predictive power of the
dividend yield)

Time (Year)
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
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Panel B: Estimate and 95% confidence band for {γt}Tt=1 (predictive power of
volatility)
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Figure 1.3: Predictability of stock returns (annual data)
The blue line represents the estimate for {θt}Tt=1 (or {γt}Tt=1) and the shaded area
is the 95% confidence band. The red dashed vertical lines are the structural break
points estimated using the methodology outlined in Section 1.4.4 and assuming
that there are at least four years between structural breaks.
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Figure 1.4: Predictability of stock returns (annual data): average noise level in
error terms

We plot the average noise level in error terms {ˆ̄σu,t}Tt=1 defined by ˆ̄σ2
u,t =

n−1
∑n

i=1 û
2
i,t, where ûi,t is defined in Algorithm 2.
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Panel A: Average θt in each quarter of the year (predictive power of the dividend
yield)

Quarter
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Panel B: Average γt in each quarter of the year (predictive power of volatility)
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Figure 1.5: Seasonality of return predictability (quarterly data)

The black line represents the average θt (or γt) with one quarter of all the years
and the red lines denote the 95% confidence interval of this average.
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Figure 1.6: Firms’ capital structure decisions (leverage ratio defined as DM)

We consider the components of βt corresponding to market-to-book ratio, tangible
assets, book assets and profits. The blue lines are estimates for β. The shaded area
is the 95% confidence set for β.
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Figure 1.7: Firms’ capital structure decisions (leverage ratio defined as DB)

We consider the components of βt corresponding to market-to-book ratio, tangible
assets, book assets and profits. The blue lines are estimates for β. The shaded area
is the 95% confidence set for β.
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Time (Year)
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Figure 1.8: Fixed investment and economic growth

We consider the regression (1.6.2). The blue lines represent the estimate for {θt}Tt=1

and the shaded area is the 95% confidence band. The red dashed vertical line is
the structural break point estimated using the methodology outlined in Section
1.4.4 and assuming that there are at least two years between structural breaks.
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Figure 1.9: Fixed investment and economic growth: grouped pattern of fixed
effects

We apply the the k-means clustering algorithm (Forgy 1965; Lloyd 1982) to the
estimated fixed effects α̂i,t obtained in Algorithm 2. The estimated fixed effects are
clustered into two groups, labeled by the red and blue colors.
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Figure 1.10: Fixed investment and economic growth: trajectories of grouped
pattern of fixed effects

We apply the the k-means clustering algorithm (Forgy 1965; Lloyd 1982) to the
estimated fixed effects α̂i,t obtained in Algorithm 2. The estimated fixed effects
are clustered into two groups, labeled by the red and blue colors. Here, we plot
trajectories of the average fixed effects in the two groups under the same color label
as in Figure 1.9. For example, the red color represents the same group in both this
figure and Figure 1.9.



Chapter 2

Testing for common factors in large

factor models

2.1 Introduction

In economics and finance, large factor models are very popular due to their

well-documented success in forecasting. A small number of factors can explain a

large fraction of the variations in a large number of variables and also have high

predicting power for economic and financial variables; see Stock and Watson (2002a,

2002b, 2015), Bernanke and Boivin (2003), Bernanke, Boivin, and Eliasz (2005),

Ludvigson and Ng (2007, 2009), Foerster, Sarte, and Watson (2011) and McCracken

and Ng (2015). To explain the predictive power of factor models and to interpret

structural models, it is essential to determine the economic nature of the factors.

Studying the interpretation of factors often involves the question of which

factors drive which variables. Consider, for example, a large dataset consisting of

several groups of macroeconomic variables, such as in Stock and Watson (2002b)

and McCracken and Ng (2015). To determine the nature of the factors, one would

like to know (1) whether the same factors drive both labor market variables and

output variables and (2) if not, how many factors drive both groups of variables

and how many factors are unique to labor market variables. If one factor were all

that drives both groups, then it might not make much sense to label one factor as

61
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labor and another as output.

In the asset pricing literature, factor models are popular in explaining returns

of a large number of financial assets. The factors are usually interpreted as risks

that are priced in these assets in the sense of Ross (1976)’s arbitrage pricing theory.

For factor-based asset allocation strategies (see Ang (2014)), a key ingredient is to

maintain the desired level of exposure to certain risk factors. Hence, questions of

both empirical interest and practical importance include which risks are priced in

which assets. As a simple example, in order to understand what risks these factors

represent, one would be interested in (1) whether equities and fixed income assets

have any risk factors in common and (2) how many risk factors are peculiar to

equities.

In this paper, we first formalize the notion of common factors given two

groups of variables. We then propose a statistical test for the null hypothesis that

the number of common factors in these two groups is equal to a given number.

The problem we study here cannot be addressed by the popular prediction-

based method used by Stock and Watson (2002b) and McCracken and Ng (2015).

Under this prediction-based method, one extracts as factors the principal compo-

nents (PCs) from a large dataset and then assigns names to these PCs according to

their predictive power for certain economic or financial variables. For example, if the

first PC has very high predictive power for labor market variables and the second

PC explains a large portion of variations in output variables, then these two PCs

would be labeled as labor and output factors, respectively. The prediction-based

method imposes a particular normalization for the PCs and studies the predictive

power of these PCs for different groups of variables. In contrast, we aim to test

hypotheses regarding the underlying factor, which may differ from PCs, and ask

the question whether a certain number of the underlying factors driving one group

of variables coincide (possibly after rotation) with some of those driving another

group of variables. Since the imposed normalization might not take into account the

potential correlation among the true underlying factors, using only the predictive

ability of the PCs satisfying this normalization might not yield satisfactory answers

to the questions we consider in this paper. We illustrate this point through the
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following example.

Example 2.1.1. There are six groups of random variables denoted by price, output,

labor, consumption, money and inventory. These groups are driven by three factors,

denoted by F1, F2 and F3. The variables in “price” group only load on F1, output

variables only on the F2, labor variables only on F2 and F3, consumption variables

on F1 and F2, money variables on F1 and F3 and inventory variables load on all

three factors. The non-zero loadings are generated as independent N(0, 1) random

variables; we generate serially uncorrelated factors from N(0,ΣF ) with ΣF ∈ R3×3

having ones on the diagonal and ρ = 0.6 on the off diagonal entries. Idiosyncratic

terms are zero.

Since there are no error terms, extracted PCs are exactly a rotated version

of the true factors. We compute the R2 of regressing each variable on each PC and

average these R2 values in each group. The means of these averaged R2 values are

reported in Table 2.1.

Table 2.1: Mean of the average R2 for each PC in Example 2.1.1

These results are based on 5000 simulated samples. Each group has n = 100 variables and
the time horizon is T = 100 periods. The jth entry in each row is computed as follows.
In each simulated sample and for each group, we compute R2 of regressing every variable
in that group against the jth PC and take the average of these R2’s across variables in
the group. Then we report the mean (across 5000 random samples) of this average in the
jth entry of the row corresponding to the group.

Group (actual factors) \ PC PC1 PC2 PC3
Price (F1) 0.756 0.173 0.071
Output (F2) 0.757 0.174 0.069
Labor (F2 and F3) 0.599 0.177 0.225
Consumption (F1 and F2) 0.634 0.274 0.092
Money (F1 and F3) 0.599 0.175 0.226
Inventory (F1, F2 and F3) 0.572 0.231 0.197

From Table 2.1, the first PC explains over 70% of the variations in variables

in “price” and “output” groups.1 The prediction-based approach might name the
1In practice, it is not uncommon for the researcher to attribute the unexplained variation to

idiosyncratic errors, which are pervasive in real data.
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first PC as price-output factor, which appears to be shared by these two groups.

However, these two groups are actually driven by two different (although correlated)

factors. Also notice that PCs have very similar predictive power for “money” and

“labor” groups. The prediction-based approach might conclude that they have

similar factor loadings, but they actually share only one factor. In contrast, the

procedure proposed in this paper aim to reveal the underlying structure of the

factors. For instance, in Example 2.1.1, the proposed procedure would conclude

(1) that the factors in “price” group are different from those in the “output” group

and (2) that “price” group and “money” group share exactly one factor. Based

on only correlation between variables and PCs (as displayed in Table 2.1), the

prediction-based method seems unlikely to yield such findings.

Our paper contributes to the literature on large factor models in several ways.

First, we formalize the notion of common factors among subsets/subgroups in a

large dataset and propose to use it as a general tool to study the structure of factors.

The number of common factors sheds light on the nature of factors by providing

information on whether or not a factor is specific to a certain subgroup of variables.

We apply the proposed method to a large dataset consisting of many macroeconomic

and financial variables used by Jurado, Ludvigson, and Ng (2015) and find (1) that

there are at most three common factors driving both the macroeconomy and the

financial markets, (2) that there are at least 2 factors that drive the macroeconomy

but not the financial markets and (3) that there are at least 4 factors peculiar to

the financial markets; see Section 2.5 for details.

Second, other hypotheses of economic interest can be phrased in terms of

common factors. Consider the spanning hypothesis, which states that the factors

driving one group of variables are linear combinations of those driving another

group of variables. Testing the spanning hypothesis is equivalent to testing whether

the number of common factors is equal to the number of factors in the former

group.

Third, to the best of our knowledge, this paper provides the first statistical

inference result regarding the number of common factors. Instead of using the usual

tools, such as the classical central limit theorems (CLTs) or the random matrix
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theory, we construct the procedure as a test for a high-dimensional parameter

and build upon recent results by Chernozhukov, Chetverikov, and Kato (2014) on

high-dimensional bootstrap. Our method can also be used to test the number of

factors in models with n and T having the same order of magnitude; see Remark

2.3.5 for details.

Our work is related to several strands of the literature on large factor models.

Early work focuses on estimation; see Bai and Ng (2002) and Stock and Watson

(2002a). More recent work deals with the inference of large factor models. Bai

(2003) provides pointwise2 results on the inference of factors and factor loadings.

Bai and Ng (2006a, 2008a) consider the inference problem of using estimated

factors in regressions. Bai and Ng (2006b) and Chen (2012) propose tests on the

relationship between the factors and observed variables. Tests for the number of

factors are developed by Onatski (2009) and Kapetanios (2010). In this paper, we

only consider the so-called “static” factor models; see, among many others, Forni,

Hallin, Lippi, and Reichlin (2000, 2004, 2012), Amengual and Watson (2007), Bai

and Ng (2012) and Doz, Giannone, and Reichlin (2012) for results on “dynamic”

factor models. Excellent survey of the large factor model literature can be found in

Bai and Ng (2008b), Bai and Wang (2016) and Stock and Watson (2015). Some

recent work also applies high-dimensional statistical tools to large factor models.

For example, Cheng, Liao, and Schorfheide (2016) proposed a method for detecting

breaks in factors and/or their loadings using a shrinkage approach that combines

the group Lasso (Yuan and Lin (2006)) and the adaptive Lasso (Zou (2006)). Bai

and Liao (2012) developed a regularized estimation procedure that exploits sparsity

in the covariance matrix of the idiosyncratic terms.

The rest of this paper is organized as follows. In Section 2.2, we introduce

the concept of common factors and develop the testing methodology. In Section

2.3, we establish theoretical properties of the proposed method. Finite sample

performance is assessed through Monte Carlo simulations in Section 2.4. In Section

2.5, we apply the proposed method to a real dataset and study common factors

between macroeconomic and financial variables. Appendices B.1-B.3 contain the

2Here, the term “pointwise” means that the asymptotic distribution is established for estimators
of factors at each time period or factor loadings of each individual/variable.
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proofs of the theoretical results as well as technical tools used in the proofs.

Notation. We introduce some notations that will be used in the rest of the paper.

For a positive integer q, [q] = {1, · · · , q}; for q ≤ 0, the convention is [q] = ∅. Iq
denotes the q × q identity matrix. For a vector v = (v1, · · · , vq)′ ∈ Rq, Diag(v)

denotes the q × q diagonal matrix whose ith entry on the diagonal is vi. For

a matrix A ∈ Rq1×q2, ‖A‖∞ = ‖vec(A)‖∞ and ‖A‖ denotes the spectral norm

(largest singular value), where vec(·) denotes column-wise vectorization. We say

that A = UASAV
′
A is a singular value decomposition (SVD) if UA ∈ Rq1×q1 and

VA ∈ Rq2×q2 are both orthogonal matrices and SA ∈ Rq1×q2 is a (rectangular)

diagonal matrix with singular values of A on the diagonal in the non-increasing

order. For a matrix A ∈ Rq1×q2 of full column rank, let ΠA = A(A′A)−1A′ and

MA = Iq1 − ΠA. For two matrices A1 and A2, Blockdiag(A1, A2) denotes the block

diagonal matrix with A1 and A2 on the diagonal. For a, b ∈ R, a∨b and a∧b denote
max{a, b} and min{a, b}, respectively. Let σ(·) denote the σ-algebra generated by

random variables.

2.2 Methodology

Consider the observed data Y and W generated from the following model:

Y
nY ×T

= L
nY ×pY

F ′
pY ×T

+ e
nY ×T

(2.2.1)

and

W
nW×T

= R
nW×pW

X ′
pW×T

+ u
nW×T

, (2.2.2)

where L and R are factor loadings, F and X are factors and e and u are idiosyncratic

terms. In this paper, nY , nW and T tend to infinity. We assume that the factors

are not redundant: rankL = rankF = pY and rankR = rankX = pW . We assume

that pY and pW are known or can be consistently estimated using methods such as

those proposed in Bai and Ng (2002) and Ahn and Horenstein (2013). We introduce

the following definition.
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Definition 2.2.1 (Common factors). Under the model (2.2.1)-(2.2.2), the number

of common factors between Y and W , denoted by pC , is the largest number in the

set CF,X , where

CF,X = {j | ∃R1 ∈ RpY ×j, R2 ∈ RpW×j satisfying

FR1 = XR2 and rankR1 = rankR2 = j}.

Remark 2.2.1. Notice that CF,X always contains zero. If CF,X = {0}, then F and

X do not have any common components in the sense that, under any rotation,

no column in F coincides with one column in X. If pC , the maximal element in

CF,X 6= {0}, is not zero, then we can rotate F and X such that pC columns of

F match exactly pC columns of X; we refer to these pC columns as the common

factors. Under this rotation, there are pY − pC factors specific to Y and there are

pW − pC factors that drive W but not Y .

The goal of this paper is to test

H0 : pC = k0 (2.2.3)

versus

H1 : pC < k0 (2.2.4)

Consider the combined dataset:

χ
n×T

= Λ
n×r

Z ′
r×T

+ v
n×T

, (2.2.5)

where χ = [Y ′,W ′]′, n = nY + nW , r = rank([F,X]), v = [e′, u′]′ and Λ and Z

satisfy ΛZ ′ = Blockdiag(L,R)[F,X]′. We exploit the following equivalence relation

in constructing our test.

Lemma 2.2.1. Consider the model (2.2.1)-(2.2.2). Then, pC, the number of

common factors between Y and W is equal to j if and only if r = pY + pW − j and

MZ [F,X] = 0.

The proof of Lemma 2.2.1 is provided in Appendix B.2. Roughly speaking,
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our proposed methodology for testing H0 is to estimate MZ [F,X] imposing r = r0

and to check whether this estimate is close enough to zero, where r0 = pY +pW −k0.

Applying principal component analysis (PCA) to Y and W , we obtain F̂ and X̂,

estimators of a rotated version of F and X, respectively. To estimate Z, we apply

PCA to the combined dataset imposing r = r0 and obtain Ẑ.

The idea of our test is the following. Suppose that F̂ , X̂ and Ẑ are reasonably

good estimates of (a rotated version of) F , X and Z. Under H0, Lemma 2.2.1

implies that all the entries in MẐ [F̂ , X̂] should be close to zero; if H1 holds, then

Lemma 2.2.1 implies that r = pY +pW −pC > r0. Therefore, under H1, Ẑ estimated

with r = r0 does not contain all the factors in the combined dataset and thus

cannot span [F,X]. Therefore, under H1, at least some entries in MẐ [F̂ , X̂] do not

converge to zero, leading to power against H1.

We consider ‖
√
nMẐ [F̂ , X̂]‖∞ as the test statistic. Under H0,

‖
√
nMẐ [F̂ , X̂]‖∞ is the maximal (scaled) estimation error of entries in MZ [F,X].

Since MZ [F,X] is (pY + pW )T -dimensional with T tending to infinity, the usual

tools for low-dimensional problems, such as the classical CLT, cannot be used

to obtain an asymptotic distribution for our test statistic. Instead, we exploit

recent results on high-dimensional multiplier bootstrap proposed by Chernozhukov,

Chetverikov, and Kato (2013, 2014).

To see the intuition behind our bootstrap scheme, we need some notations.

For the matrices in (2.2.1), (2.2.2) and (2.2.5), the tth rows of F , X and Z are

denoted by F ′t , X ′t and Z ′t, respectively. The ith rows in L, R, Λ and v are

denoted by L′i, R′i, Λ′i and v′i, respectively. We define ΣF = F ′F/T , ΣX = X ′X/T ,

ΣL = L′L/nY and ΣR = R′R/nW . We also define ζ = [F,X] and Σζ = T−1ζ ′ζ.

PCA is used to estimate Z, F and X:
Λ̂ =
√
nÛχ,(r), Ẑ = χ′Λ̂/n and v̂ = χ− Λ̂Ẑ ′

L̂ =
√
nY ÛY,(k), F̂ = Y ′L̂/nY and Q̂F = (Ẑ ′Ẑ)−1(Ẑ ′F̂ )

R̂ =
√
nW ÛW,(p), X̂ = W ′R̂/nW and Q̂X = (Ẑ ′Ẑ)−1(Ẑ ′X̂)

(2.2.6)

where χ = ÛχŜχV̂
′
χ, Y = ÛY ŜY V̂

′
Y and W = ÛW ŜW V̂

′
W are SVDs, Ûχ,(r) the first
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r = pY + pW − pC columns of Ûχ, ÛY,(k) ∈ Rn×k the first pY columns of ÛY and

ÛW,(p) ∈ Rn×p the first pW columns of ÛW .

The critical value is obtained from a bootstrap procedure based on the

following idea. As shown in Appendix B.1, underH0, the T×pmatrix n1/2MẐ [F̂ , X̂]

(up to sign changes in its columns) can be approximated in ‖ · ‖∞-norm by

n−1/2

n∑
i=1

viΓ̂
′
i, (2.2.7)

where Γ̂′i is the ith row of the matrix Γ̂ = −Λ̂[Q̂F , Q̂X ] + Blockdiag(n−1
Y nL̂, n−1

W nR̂).

This means that the test statistic can be approximated by the ‖ · ‖∞-norm of

the sum of n nearly independent terms, where each term has dimension T (pY +

pW ). This motivates a multiplier bootstrap scheme similar to the ones studied by

Chernozhukov, Chetverikov, and Kato (2013, 2014). Our proposed procedure is

summarized below.

Algorithm 3. The test for H0 in (2.2.3) of nominal size α is implemented as

follows:

1. Compute Λ̂, Ẑ, L̂, F̂ , R̂, X̂, v̂, Q̂F and Q̂X as in (2.2.6), as well as Γ̂ =

−Λ̂[Q̂F , Q̂X ] + Blockdiag(n−1
Y nL̂, n−1

W nR̂).

2. Compute the test statistic Sn = ‖n1/2MẐ [F̂ , X̂]‖∞.

3. Generate vectors ξ(n) ∼ N(0, In) independent of the data and compute SBSn =

‖n−1/2v̂′Diag(ξ(n))Γ̂ − (n−1/21′nξ
(n))v̂′Γ̂‖∞, where 1n ∈ Rn is the vector of

ones.

4. For a test of nominal size α, repeat the previous step as many times as

computationally convenient and compute Q
(
1− α, SBSn

)
= inf{x ∈ R |

P
(
SBSn > x | W,Y

)
≤ α}.

5. Reject H0 in (2.2.3) if and only if Sn > Q
(
1− α, SBSn

)
.

This procedure is computationally simple and fast since it only involves

performing SVDs and repeatedly generating standard normal random variables.
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Remark 2.2.2. Equivalently, one can also implement the test whose output is the

p-value. In Step 4, we can compute (by simulation) the empirical distribution

function of SBSn : FBS
n (x) = P(SBSn ≤ x | W,Y ). Then the p-value of the test is

Un = 1− FBS
n (Sn) and the test is to reject H0 if and only if Un ≤ α.

Remark 2.2.3. In Step 3, we can also use SBSn = ‖n−1/2v̂′Diag(ξ(n))Γ̂‖∞ without

significantly changing the proofs. The rationale of the expression stated in Step

3 is to bootstrap recentered quantities: n−1/2v̂′Diag(ξ(n))Γ̂ − (n−1/21′nξ
(n))v̂′Γ̂ =

n−1/2
∑n

i=1(v̂iΓ̂
′
i−vΓ)ξ

(n)
i , where ξ(n)

i is the ith entry of ξ(n) and vΓ = n−1
∑n

i=1 v̂iΓ̂
′
i.

Remark 2.2.4. As mentioned in Section 2.1, if pY ≤ pW and k0 = pY , then

Algorithm 3 becomes a test for the spanning hypothesis that columns of F are

linear combinations of columns in X.

Remark 2.2.5. Since the triple (pY , pW , pC) tells us the number of common factors

as well as the number of factors unique to each group, we can view (pY , pW , pC)

as the structure of the factors. Notice that we can construct confidence sets for

(pY , pW , pC) by inverting the test summarized in Algorithm 3. This approach is

particular useful when reasonably good estimates for pY and pW are not available.

We apply this approach in Section 2.5.

2.3 Theoretical results

Before describing our assumptions, we introduce the following concept.

Definition 2.3.1 (Exponential-type tails). A random variable M is said to

have an exponential-type tail with parameter (b, h) if ∀z > 0, P(|M | > z) ≤
exp

[
1− (z/b)h

]
.

Remark 2.3.1. Random variables with exponential-type tails include polynomials

of Gaussian random vectors. Finite mixtures of random variables with exponential-

type tails also have exponential-type tails.

We impose the following regularity conditions.

Assumption 3. For some constants β, γ, κ, ρ ∈ (0,∞), the following conditions

hold:
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(i) Each entry of X, R, L, F , u and e has an exponential-type tail with parameter

(β, γ).

(ii) With probability approaching one, (κ−1, κ) contains nY /T , nW/T and all the

eigenvalues of ΣL, ΣR, ΣF and ΣX , as well as the first r eigenvalues of Σζ.

(iii) v is independent of (L, F,X,R) and {vi}ni=1 is a sequence of n independent

vectors in RT with mean zero.

(iv) max(i,s)∈[n]×[T ]

∑T
t=1 |Evi,tvi,s| = O(logκ n) and maxi∈[n] ‖Eviv′i‖ ≤ κ.

(v) 3ρ−1 + γ−1 > 1 and αmixing(t) ≤ exp(−ρtρ) ∀t ≥ 1, where

αmixing(t) := sup
{∣∣∣P(A)P(B)− P(A

⋂
B)
∣∣∣ :

A ∈ σ ({(Xs, Fs, es, us, R, L) | s ≤ l}) ,

B ∈ σ ({(Xs, Fs, es, us, R, L) | s ≥ l + t}) and l ∈ Z
}
.

(vi) min(i,t)∈[n]×[T ] Ev2
i,t ≥ ρ

(vii) both ΣFΣL and ΣXΣR converge to (possibly different) matrices with distinct

eigenvalues.

Remark 2.3.2. Assumption 3(i) imposes exponential-type tails. This allow us to

apply large deviation theory, which provides finite-sample exponential bounds

for sums of random variables. These inequalities are useful in bounding the

maximum of a large number of sums of random variables and play an essential

role in obtaining the approximation in (2.2.7). Although Assumption 3(i) rules out

fat-tailed distributions such as student t distributions, our procedure works well

under these fat-tailed distributions in Monte Carlo simulations in Section 2.4.

Remark 2.3.3. In Assumption 3(ii)-(iii), we require the factors to be strong and

rule out cross-sectional dependence in the idiosyncratic terms. Assumption 3(iv)

and (v) allow for weak dependence in the time dimension. These assumptions still

allow for heteroskedasticity in the data. Similar conditions are commonly imposed

in the literature of large factor models; see Stock and Watson (2002a) and Bai and

Ng (2002, 2006a).

Remark 2.3.4. In Assumption 3(vi), asymptotically degenerate idiosyncratic errors

are ruled out. This is needed by the anti-concentration inequalities of Gaussian
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vectors that we use in the proof. Similar to some results in Bai (2003), Assumption

3(vii) imposes distinct singular values of ΣFΣL and ΣXΣR. Notice that L̂ and R̂

are estimating the first pY left singular vectors of LF ′ and the first pW left singular

vectors of RX ′, respectively. Distinct eigenvalues guarantee that these singular

vectors be identified up to a sign change. In our experience, even if this condition

is violated, we do not find any evidence of failure of our method. Notice that we do

not require the distinct singular value condition for ΣZΣΛ. This is because the test

statistic involves MẐ and MZ is identified regardless of whether or not individual

singular vectors of ΛZ ′ are identified.

Theorem 2.3.1. Let Assumption 3 hold. Then, under H0 in (2.2.3),

lim sup
n→∞

sup
α∈(0,1)

∣∣P (Sn > Q (1− α, SBSn ))
− α

∣∣ = 0.

Theorem 2.3.1 establishes the validity of Algorithm 3. Theorems 2.3.1 and

2.3.2 below are proved in Appendix B.2. The proof of Theorem 2.3.1 is still non-

trivial despite the remarkable results by Chernozhukov, Chetverikov, and Kato

(2014) on the validity of high-dimensional multiplier bootstrap. Besides deriving

the uniform approximation of
√
nMẐ [F̂ , X̂] by the expression in (2.2.7), we need to

deal with two complications in order to establish bootstrap validity. First, although

v is assumed to be independent of (L, F,R,X), v is not independent of Γ̂ defined

in (2.2.7) due to the estimation errors. Second, existing high-dimensional bootstrap

schemes require direct observations of the variables in the summation, but these

variables involve the unobservable v. We also derive the power properties of our

procedures.

Theorem 2.3.2. Let Assumption 3 hold. Then under H1 in (2.2.4),

P
[
Sn > Q

(
1− η, SBSn

)]
→ 1.

Remark 2.3.5. Algorithm 3 can also be used to test the number of factors. Suppose

that we are interested in testing whether the number of factors is p0. We split

the data into two subgroups and use them as W and Y in Algorithm 3 with
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pY = pW = pC = p0. If the number of factors is correctly specified, then the two

subgroup of variables would have p0 common factors and, by Theorem 2.3.1, the

probability of rejecting H0 in (2.2.3) converges to the nominal size of the test.

Here, the data splitting needs to be done in a way that each subgroup is driven

by all the factors. A natural way of doing this is to randomly split the data. The

arbitrariness in splitting the sample can be dealt with using techniques similar

to those in Meinshausen, Meier, and Bühlmann (2012). Inference on the number

of factors is addressed by Onatski (2009) and Kapetanios (2010). Onatski (2009)

requires n/T = o(1), while Kapetanios (2010)’s subsampling method requires an

abstract condition on the limiting distribution on the eigenvalues of large random

matrices. In contrast, our test handles the more realistic case of n and T having the

same order of magnitude and only imposes weak conditions listed in Assumption

3.

Remark 2.3.6. One might attempt to recast the problem of testing H0 as inference

on low-dimensional parameters. These methodologies might involve nonstandard

situations where theoretical properties are much harder to obtain. We illustrate the

difficulty through one example in Appendix B.4, where the test statistic is based

on an estimator of Σζ . In that example, due to the bias and the singularity of the

asymptotic variance of this estimator, one needs to use higher order Edgeworth

expansions with weakly dependent data. Another “side effect” of the singularity

in the asymptotic variance is that it is unclear how many terms in the Edgeworth

expansion and/or Taylor’s expansion we need to consider. For these reasons, our

bootstrap procedure seems theoretically more elegant. Moreover, the limiting distri-

bution of the test statistic in example in Appendix B.4 is likely to be nonstandard

and also involve unknown quantities that requires further estimation.

2.4 Monte Carlo simulations

In this section, we demonstrate the finite-sample performance of our proce-

dures. All the columns of X, the last pY − pC columns of F and rows of e and u are

generated as independent AR(1) processes whose AR coefficient is generated from
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the uniform distribution on [−0.9, 0.9] and whose residuals are generated from a

student t distribution with 6 degrees of freedom normalized to have variance equal

to one. The first pC columns of F are equal to XQ(pC), where Q(pC) is the first pC
columns of Q and Q is simulated independently from from the uniform distribution

(Haar measure) on the set of pW × pW orthogonal matrices. Rows of L and R are

generated as i.i.d N(0, 4IpY ) and N(0, 4IpW ), respectively.

To remove the impact of estimation errors in pY and pW , we assume that

their values are known. In Table 2.2, we report the rejection frequencies of tests for

H0 with nominal size 5% under different data-generating processes (DGPs). The

rejection frequencies are computed using 500 random samples and Algorithm 3 is

implemented using 200 bootstrap samples.

As we can see from Table 2.2, our test has decent size control; we also

have good power against overstatements of pC but not understatements. This is

consistent with our theory in Section 2.3.
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Table 2.2: Rejection frequency of H0

Panel A: size properties
H0 : pC = 0 under the DGP (pY , pW , pC) = (3, 3, 0)

T = 100 T = 150 T = 200

nW \nY 50 100 150 50 100 150 50 100 150
50 0.016 0.042 0.070 0.008 0.018 0.044 0.002 0.022 0.028
100 0.046 0.032 0.070 0.022 0.024 0.040 0.022 0.008 0.032
150 0.074 0.064 0.056 0.044 0.046 0.040 0.032 0.030 0.038

H0 : pC = 1 under the DGP (pY , pW , pC) = (3, 3, 1)

50 0.032 0.020 0.022 0.036 0.036 0.030 0.030 0.030 0.022
100 0.028 0.030 0.038 0.024 0.058 0.050 0.040 0.038 0.026
150 0.030 0.026 0.036 0.024 0.032 0.064 0.026 0.026 0.048

H0 : pC = 2 under the DGP (pY , pW , pC) = (3, 3, 2)

50 0.032 0.042 0.010 0.018 0.002 0.010 0.008 0.012 0.008
100 0.020 0.026 0.038 0.022 0.026 0.040 0.030 0.018 0.052
150 0.024 0.042 0.044 0.014 0.022 0.032 0.028 0.032 0.026

H0 : pC = 3 under the DGP (pY , pW , pC) = (3, 3, 3)

50 0.018 0.014 0.008 0.016 0.008 0.008 0.006 0.012 0.008
100 0.024 0.030 0.028 0.018 0.030 0.014 0.004 0.020 0.024
150 0.020 0.022 0.036 0.014 0.024 0.034 0.014 0.022 0.020

Panel B: power properties
H0 : pC = 0 under the DGP (pY , pW , pC) = (3, 3, 1)

T = 100 T = 150 T = 200

nW \nY 50 100 150 50 100 150 50 100 150
50 0.042 0.024 0.042 0.044 0.048 0.030 0.032 0.028 0.018
100 0.036 0.050 0.050 0.034 0.034 0.034 0.038 0.030 0.032
150 0.026 0.054 0.050 0.024 0.030 0.040 0.020 0.036 0.040

H0 : pC = 2 under the DGP (pY , pW , pC) = (3, 3, 1)

50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

H0 : pC = 1 under the DGP (pY , pW , pC) = (3, 3, 2)

50 0.026 0.012 0.024 0.038 0.018 0.024 0.026 0.012 0.022
100 0.026 0.026 0.038 0.022 0.036 0.026 0.018 0.040 0.040
150 0.020 0.048 0.048 0.014 0.026 0.040 0.014 0.042 0.044

H0 : pC = 3 under the DGP (pY , pW , pC) = (3, 3, 2)

50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000



76

2.5 Empirical applications

2.5.1 Common factors between the macroeconomy and fi-

nancial markets

Jurado, Ludvigson, and Ng (2015) propose an approach of measuring uncer-

tainty using factors extracted from a large number of macroeconomic and financial

variables. In this section, we investigate the structure of these factors. In particular,

we are interested in whether the macroeconomy and the financial markets are driven

by exactly the same factors and how many factors they share in common.

We obtain the data used in Jurado, Ludvigson, and Ng (2015) from the AEA

website3. Of the 279 variables used in that paper, let Y denote the group of the

132 macroeconomic variables and W the group of the 147 financial variables. Here,

pY and pW (the numbers of factors driving the macroeconomy and the financial

markets, respectively) are unknown and different estimators can give quite different

results. Due to this difficulty in estimating pY and pW , we implement Algorithm 3

with various choice of pY and pW and interpret our results as tests for the triple

(pY , pW , pC); see Remark 2.2.5.

We report the p-values for testing H0 : pC = k0 for different values of

k0. The results for k0 ∈ {0, 1} and k0 ∈ {2, 3} are reported in Tables 2.3 and

2.4, respectively. P-values above 0.05 are highlighted in bold red font. Since the

p-values for k0 > 3 are always smaller than 0.05 for any values of (pY , pW ), we

do not list them here. With these results, we invert the test in Algorithm 3 and

construct a 95% confidence set for (pY , pW , pC). Since the number of factors in

these 279 variables is estimated, by Jurado, Ludvigson, and Ng (2015), to be 12

and should equal pY + pW − pC , we set the parameter space for (pY , pW , pC) to be

Π = {(pY , pW , pC) | pY + pW − pC ≤ 12, pC ≤ pY and pC ≤ pW}. (2.5.1)

The constraint of pC ≤ pY is natural because the number of common factors

between Y and W cannot exceed the number of factors in Y . A similar constraint

3https://www.aeaweb.org/articles?id=10.1257/aer.20131193
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of pC ≤ pY is imposed in the parameter space.

We test each element in Π and report, in Table 2.5, the ones that are not

rejected at 5% significance level. Table 2.5 allows us to conduct inference for any

given function of (pY , pW , pC). For example, 95% confidence sets for pY , pW and

pC are {2, · · · , 7}, {6, 7} and {0, 1, 2, 3}, respectively. Hence, the macroeconomy

and the financial markets share at most 3 common factors. The number of factors

driving the financial markets is found to be either 6 or 7, which suggests more

factors than what popular asset pricing models find, e.g., 3-factor model (Fama

and French (1992)) or 5-factor model (Fama and French (2015)).4 Onatski (2009)

found that the number of factors in the macroeconomic dataset used in Stock and

Watson (2002b) is no more than 2. Here, we conclude that there are 2 to 7 factors

driving the macroeconomy.

We also conduct inference on the number of factors specific to each group.

Notice that there are pY − pC factors peculiar to the macroeconomy and pW − pC
factors unique to the financial markets. From Table 2.5, 95% confidence sets for

pY − pC and pW − pC are {2, · · · , 6} and {4, 5, 6, 7}, respectively. Therefore, there
are at least 2 factors unique to the macroeconomy and 4 factors specific to the

financial markets. This also means that the factors in the macroeconomy and the

financial markets do not span each other.

2.5.2 Structure of macroeconomic factors

We now focus on the macroeconomic factors and study which factors drive

which macroeconomic variables. In Jurado, Ludvigson, and Ng (2015), intuitive

“labels” are given to the principal components (PCs). For example, the first three

PCs are interpreted as “stock market”, “manufacturing production, employment,

total production and employment, and capcacity utilization” and “bond market”.

The last two labels are related to the macroeconomic dataset, of which the 132

4Some of these 147 financial variables are not tradable assets so the number of factors in
these financial variables might exceed the number of factors in assets’ returns. Moreover, factors
in returns of financial assets could include aspects that might not count as risks. For example,
Goyal, Pérignon, and Villa (2008) even find that the name of the stock exchange (whether it is
NYSE or Nasdaq) could drive stocks’ returns as a “factor”.
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variables are categorized into 8 groups detailed in the online appendix5.

We apply the proposed methodology to the macro variables alone and

study the structure of these macroeconomic factors. We classify the 8 groups of

macroeconomic variables into two classes. Class Y contains 71 variables, consisting

of, in terms of the classification in Jurado, Ludvigson, and Ng (2015), Groups 1

(output and income), 2 (labor market) and 6 (bond and exchange rates). Class W

contains the other 5 groups with 61 macro variables. The number of factors in Y

and W are still denoted by pY and pW , respectively, while pC denotes the number

of common factors. Recalling from the previous results that there are 2 to 7 factors

driving the macroeconomy, we define the “parameter” space for (pY , pW , pC) as

ΠMacro = {(pY , pW , pC) | pY + pW − pC ≤ 7, pC ≤ pY and pC ≤ pW}. (2.5.2)

As before, we invert the proposed test by applying it to all the elements in

Πmacro. The resulting 95%-confidence set for (pY , pW , pC) is

{(5, 1, 0), (5, 1, 1), (5, 2, 0)}.

This indicates a “concentrated” structure in the macro factors: Y , which

comprises 3 groups (as categorized in Jurado, Ludvigson, and Ng (2015)) of variables,

contain 5 factors while W , which comprises the other 5 groups of variables, contain

at most two factors. This finding has at least two implications regarding how to

label the factors. First, since there are 5 factors in 3 groups, we have do not have

enough labels if we name these 5 factors after the groups. Second, if we name more

than 2 factors after the 5 groups of variables in W , then some labels are “spurious”

in that some named factors might not really exist. In light of these findings,

the methods based on correlation or preditive power might produce misleading

interpretations.

5https://www.aeaweb.org/aer/app/10503/20131193_app.pdf
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Table 2.3: Testing that the macroeconomy and financial markets have k0

common factors

Y contains the 132 macroeconomic variables and W contains the 147 financial
variables used in Jurado, Ludvigson, and Ng (2015). We report the p-values of
testing H0 : Y and W have k0 common factors for various values of (pY , pW ) using
Algorithm 3. The p-values exceeding 0.05 are reported in bold red font.

Panel A: k0 = 0

pY \pW 1 2 3 4 5 6 7 8 9 10 11 12
1 0.007 0.000 0.000 0.000 0.000 0.000 0.011 0.012 0.012 0.018 0.016 0.011
2 0.000 0.000 0.000 0.000 0.000 0.096 0.012 0.011 0.016 0.026 0.016 0.013
3 0.000 0.000 0.000 0.000 0.013 0.094 0.017 0.022 0.019 0.011 0.006 0.002
4 0.000 0.000 0.000 0.000 0.007 0.111 0.046 0.024 0.007 0.013 0.001 0.001
5 0.000 0.000 0.000 0.000 0.027 0.092 0.052 0.006 0.008 0.005 0.000 0.007
6 0.000 0.000 0.000 0.000 0.009 0.104 0.033 0.005 0.001 0.000 0.000 0.002
7 0.000 0.000 0.000 0.006 0.005 0.071 0.023 0.002 0.001 0.000 0.003 0.000
8 0.005 0.000 0.000 0.010 0.054 0.080 0.006 0.000 0.000 0.003 0.001 0.001
9 0.003 0.000 0.002 0.023 0.052 0.058 0.001 0.000 0.000 0.000 0.002 0.000
10 0.000 0.000 0.005 0.007 0.067 0.025 0.001 0.000 0.000 0.000 0.001 0.000
11 0.000 0.007 0.001 0.007 0.039 0.029 0.013 0.000 0.000 0.000 0.003 0.004
12 0.001 0.000 0.002 0.011 0.036 0.029 0.006 0.000 0.000 0.004 0.003 0.000

Panel B: k0 = 1

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.007 0.008 0.015 0.021
2 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.010 0.010 0.020 0.016 0.012
3 0.001 0.000 0.000 0.000 0.000 0.077 0.021 0.009 0.015 0.015 0.011 0.011
4 0.000 0.000 0.000 0.000 0.010 0.074 0.014 0.015 0.016 0.009 0.009 0.005
5 0.000 0.000 0.000 0.000 0.006 0.107 0.045 0.019 0.009 0.007 0.000 0.003
6 0.000 0.000 0.000 0.000 0.000 0.091 0.056 0.007 0.007 0.002 0.001 0.000
7 0.000 0.000 0.000 0.000 0.009 0.045 0.019 0.009 0.007 0.000 0.003 0.001
8 0.001 0.003 0.001 0.000 0.005 0.060 0.028 0.004 0.000 0.001 0.001 0.002
9 0.006 0.006 0.000 0.005 0.046 0.067 0.006 0.000 0.000 0.001 0.001 0.001
10 0.008 0.000 0.000 0.008 0.047 0.056 0.002 0.000 0.000 0.000 0.001 0.003
11 0.000 0.000 0.006 0.002 0.070 0.023 0.003 0.001 0.000 0.001 0.002 0.003
12 0.000 0.001 0.000 0.004 0.007 0.041 0.004 0.001 0.000 0.002 0.004 0.005
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Table 2.4: Testing that the macroeconomy and financial markets have k0

common factors

Y contains the 132 macroeconomic variables and W contains the 147 financial
variables used in Jurado, Ludvigson, and Ng (2015). We report the p-values of
testing H0 : Y and W have k0 common factors for various values of (pY , pW ) using
Algorithm 3. The p-values exceeding 0.05 are reported in bold red font. We only
report the results where min{pY , pW} ≥ k0 because the number of common factors
cannot be larger than the number of total factors in each group.

Panel A: k0 = 2

pY \pW 2 3 4 5 6 7 8 9 10 11 12
2 0.000 0.000 0.000 0.000 0.000 0.001 0.015 0.009 0.007 0.011 0.017
3 0.000 0.000 0.000 0.000 0.000 0.013 0.015 0.008 0.02 0.025 0.008
4 0.000 0.000 0.000 0.000 0.098 0.013 0.004 0.012 0.016 0.011 0.01
5 0.000 0.000 0.000 0.000 0.089 0.018 0.009 0.019 0.008 0.011 0.006
6 0.000 0.000 0.000 0.000 0.055 0.053 0.012 0.007 0.006 0.005 0.001
7 0.000 0.000 0.000 0.000 0.043 0.051 0.008 0.004 0.003 0.000 0.001
8 0.004 0.000 0.000 0.000 0.065 0.029 0.006 0.002 0.003 0.001 0.002
9 0.005 0.003 0.000 0.005 0.074 0.027 0.001 0.001 0.003 0.001 0.001
10 0.005 0.000 0.000 0.006 0.060 0.01 0.000 0.001 0.000 0.001 0.000
11 0.000 0.000 0.005 0.003 0.076 0.002 0.001 0.001 0.000 0.000 0.002
12 0.000 0.001 0.000 0.001 0.013 0.003 0.000 0.001 0.000 0.002 0.001

Panel B: k0 = 3

3 0.000 0.000 0.000 0.000 0.000 0.005 0.013 0.008 0.021 0.011
4 0.000 0.000 0.000 0.000 0.032 0.008 0.008 0.012 0.004 0.014
5 0.000 0.000 0.000 0.029 0.012 0.01 0.015 0.011 0.004 0.008
6 0.000 0.000 0.000 0.003 0.011 0.013 0.017 0.01 0.007 0.006
7 0.000 0.000 0.000 0.000 0.054 0.017 0.005 0.007 0.004 0.001
8 0.006 0.004 0.001 0.000 0.049 0.009 0.011 0.003 0.002 0.002
9 0.003 0.005 0.000 0.048 0.023 0.009 0.003 0.002 0.001 0.002
10 0.008 0.000 0.000 0.032 0.030 0.004 0.002 0.000 0.000 0.000
11 0.000 0.000 0.005 0.01 0.008 0.002 0.000 0.001 0.000 0.001
12 0.001 0.007 0.000 0.01 0.006 0.000 0.000 0.000 0.001 0.001
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Table 2.5: 95% confidence set for (pY , pW , pC) in the combined dataset (both
macro and financial variables)

Each element (triple) in the confidence set is represented by one row in the above matrix.
Only elements in Π defined in (2.5.1) are considered.

pY pW pC
2 6 0
3 6 0
4 6 0
5 6 0
5 7 0
6 6 0
3 6 1
4 6 1
5 6 1
6 6 1
6 7 1
7 6 1
4 6 2
5 6 2
6 6 2
6 7 2
7 7 2
7 7 3



Chapter 3

Linear Hypothesis Testing in Dense

High-Dimensional Linear Models

3.1 Introduction

A high-dimensional inference is a fundamental topic of interest in modern

scientific problems that are widely recognized to be of high-dimensional nature, i.e.,

that require estimation of parameters with dimensionality exceeding the number of

observations. Applications span a wide variety of scientific fields, such as biology,

medicine, genetics, neuroscience, economics, and finance. Minimizing a suitably

regularized (quasi-)likelihood function was developed (Tibshirani 1996; Fan and

Li 2001) as a suitable approach for the estimation in such models. In particular,

high-dimensional linear models have been studied extensively in recent years and

take the following form

yi = x>i β∗ + εi, i = 1, 2, . . . , n (3.1.1)

for a response yi ∈ R, a feature vector xi ∈ Rp and the noise εi ∈ R, such that

E[εi] = 0 and E[ε2
i ] = σ2

ε with 0 < σ2
ε < ∞. The vector β∗ ∈ Rp is the unknown

model parameter and we allow for p� n. We consider a random design setting with

the feature vectors satisfying Exi = 0 and E[xix
>
i ] = ΣX . Under certain regularity

conditions on the design matrix X = (x1, x2, . . . , xn)>, regularized methods with a

82
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suitable choice of the tuning parameter have been shown to achieve the optimal

rate of estimation as long as the vector β∗ is sparse in that ‖β∗‖0 = o(n/ log p).

The goal of the present article is to address the testing problem for linear

hypotheses of the form

H0 : a>β∗ = g0, (3.1.2)

where the loading vector a ∈ Rp is pre-specified and g0 ∈ R is given, and design an

asymptotically valid test statistic that does not rely on sparsity assumptions. Some

central challenges have hindered the systematic development of tools for statistical

inference in such settings. The non-sparse nature of the model parameter β∗ poses

serious challenges to consistent estimation; moreover, the size and structure of the

loading vector a introduce additional difficulty for the inference. However, in this

article we consider potentially dense vectors β∗ with 0 ≤ ‖β∗‖0 ≤ p. We also allow

for the non-sparse loadings with 1 ≤ ‖a‖0 ≤ p. The inference problem for the

mean of the response yi conditional on xi = a, is a prototypical case for the general

functional a>β∗ and is a representative case for dense loading a.

We develop the principles of restructured regression, where a hypothesis-

driven feature synthetization is introduced. The feature augmentation is done

in such a way to separate useful inferential information from the useless one, by

“projecting” the original feature space to the space spanned by the vector a and

the space orthogonal to a. This orthogonal projection is introduced to achieve

the above separation and avoid the curse of dimensionality. Then, an appropriate

moment condition is invoked on the restricted regression and a suitable test statistic

constructed. The structure of the moment condition and its test depend on whether

or not the covariance of the features ΣX is known. When prior knowledge of ΣX is

available, the synthesized features can be created in such a way that the resulting

moment condition and testing procedure do not depend on β∗; thus, estimation

of β∗ is completely avoided. As a result, no assumption on the sparsity of β∗ is

required. We establish theoretical guarantees for Type I error control and show that

the test can detect the deviation from the null hypothesis of the order O(‖a‖2/
√
n).

To the best of our knowledge, our approach provides the first result on testing

general linear hypothesis (3.1.2) in high-dimensional linear models with potentially
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non-sparse (dense) parameters.

When prior knowledge of ΣX is unavailable, the orthogonalization and perfect

separation is not achievable due to the unknown projection matrix. We design an

estimator of the projection matrix and further condition the new and augmented

features in such a way that their correlations are estimable and yet the format of

the restructured regression remains unchanged. The developed hypothesis-driven

feature separation diminishes the impact of the inaccuracy of an estimator of a

transformation of β∗. Consequently, we can establish asymptotically exact control

of Type I error. We believe there is currently no result on testing a>β∗ in the case

where ΣX is unknown, and both β∗ and a are allowed to be dense. Moreover, when

sparsity assumptions hold, our procedure is shown to achieve optimality guarantees;

hence, it does not loose efficiency.

Since we do not assume sparsity in β∗, our work does not directly compare

to the existing results, which are only valid for sparse β∗. However, in some cases,

our work generalizes existing results to the non-sparse models. For example, Cai

and Guo (2015) show that when ΣX is known, the minimax length of the confidence

interval for a>β∗ is of the order O(‖a‖2/
√
n) if ‖β∗‖0 = O(n/ log p). As confidence

sets for a>β∗ can be easily constructed by inverting the proposed tests, our results

indicate that their conclusion continues to hold for non-sparse models, where ‖β∗‖0

can be as large as p. For the case of dense a, we do not impose any constraint on

a. However, existing work, such as Cai and Guo (2015), imposes a lower bound

(in terms of ‖a‖∞) on the minimal non-zero coordinate of a – a condition that

is seldom satisfied for inference of conditional mean, when a is typically drawn

from a continuous distribution (e.g. a is drawn from the same distribution as the

distribution of the xi’s).

3.1.1 Relation to existing literature

Confidence intervals and hypothesis testing play a fundamental role in

statistical theory and applications. However, compared to the point estimation there

is still much work to be done for statistical inference of high-dimensional models.

Existing work on the inference problems predominantly focuses on individual
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coordinates of β∗. Early work typically imposes conditions that guarantee consistent

variable selection (see Fan and Li (2001), Zou (2006), and Zhao and Yu (2006)) or

develops methods that lead to conservative inferential guarantees (e.g. Bühlmann

(2013)). However, recent work focusses on asymptotically accurate inference without

relying on the variable selection consistency. Current advances in this domain are,

however, restricted to the ultra-sparse case, where ‖β∗‖0 = o(
√
n/ log p); see Zhang

and Zhang (2014), Belloni, Chernozhukov, and Hansen (2014), Geer, Bühlmann,

Ritov, and Dezeure (2014), Javanmard and Montanari (2014a), Ning and Liu

(2014), Javanmard and Montanari (2015), Mitra and Zhang (2014), Bühlmann and

Geer (2015), Belloni, Chernozhukov, and Kato (2015), and Chernozhukov, Hansen,

and Spindler (2015). Under such sparsity condition, the expected length of the

confidence intervals for individual coordinates is of the order O(1/
√
n) (van de Geer

and Jankova 2016). Cai and Guo (2015) study the length of the confidence intervals

allowing for ‖β∗‖0 = o(n/ log p) and discover that lack of explicit knowledge of

‖β∗‖0 can fundamentally limit the efficiency of confidence intervals.

However, there is little reason to believe that the sparsity of β∗ needs to hold

in practice (Hall, Jin, and Miller 2014; Ward 2009; Jin and Ke 2014; Pritchard 2001).

Unfortunately, there is almost no work on estimating or testing the true sparsity

level of the underlying parameter. Hence, the theory of hypothesis testing under

general sparsity structures is still a very challenging and important open problem. In

particular, progress is very much required when ‖β∗‖0 is allowed to grow faster than

n/ log p and perhaps even larger than the sample size n. There are several articles

showing that the regularized procedures have non-vanishing estimation errors in

such settings (Donoho and Johnstone 1994; Raskutti, Wainwright, and Yu 2011;

Cai and Guo 2016). However, is it still possible to develop a general methodology

for testing β∗ in this case? Can one construct valid inference procedures that do

not require knowledge of ‖β∗‖0?

In the proposed inference procedure, we handle the high-dimensional, possi-

bly non-sparse model parameters and/or non-sparse loadings, by developing a new

methodology for testing. The proposed methodology is centered around a construc-

tion of augmented and synthesized features that are driven by a specific form of
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the null hypothesis. Compared with the previous approaches of de-biasing (Zhang

and Zhang 2014; Javanmard and Montanari 2014a; Geer, Bühlmann, Ritov, and

Dezeure 2014; Mitra and Zhang 2014), scoring (Ning and Liu 2014; Chernozhukov,

Hansen, and Spindler 2015), double-selection (Belloni, Chernozhukov, and Hansen

2014; Belloni, Chernozhukov, and Kato 2015), our new approach has two major

distinctive features:

• We do not rely on a l1norm consistent estimation of the unknown model

parameters. In high-dimensional models with the lack of sparsity in the

parameters, this may no longer be possible. Instead, we propose to reformulate

the original parametric null hypothesis into a moment condition that can

be successfully estimated even without sparsity in the model. This moment

condition is different from the score equations employed for estimation as

those are not estimable in non-sparse high-dimensional models.

• We advocate for a study and exploration of the correlation between feature

vectors (and not the model parameters); this proves to be a valuable tool that

overcomes the limit of estimation. Namely, we propose that the features be

split and projected onto the loading vector a of the hypothesis (3.1.2), thereby

fully utilizing the null hypothesis structure. This “decoupling” scheme allows

for a successful estimation of the moment condition even without sparsity

assumption. As a result the developed method provides a rich alternative to

the classical Wald or Score principles.

3.1.2 Notation and organization of the article

We briefly describe notations used in the article. We use →d to denote

convergence in distribution and N (0, 1) to denote the standard normal distribution

with its cumulative distribution function denoted by Φ(·). The (multivariate)

normal distribution with mean (vector) µ and variance (matrix) Σ is denoted by

N (µ,Σ). We use > to denote the transpose of (a vector or matrix) and denote

by Ip the p× p identity matrix. For a vector a = (a1, · · · , ap)> ∈ Rp, its l0 norm

is the cardinality of supp(a) = {i | ai 6= 0} and ‖a‖∞ = max{|a1|, · · · , |ap|}; ‖a‖1
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and ‖a‖2 denote the l1 and l2 norm of a, respectively. In this case, a−i denotes the

vector a with its ith coordinate removed. For two sequences of positive constants

an and bn, we use an � bn to denote that an/bn = O(1) and bn/an = O(1). For two

real numbers a1 and a2, a1 ∨ a2 and a1 ∧ a2 denote max{a1, a2} and min{a1, a2},
respectively.

The rest of this article is organized as follows. Section 3.2 introduces

the main methodology under known ΣX and establishes theoretical properties of

the proposed test. Section 3.3 extends the proposed methodology to the case of

the unknown ΣX and provides theoretical results. Section 3.4 contains examples

illustrating new methods that the proposed methodology brings to the literature

on high-dimensional inference. Section 3.5 contains detailed numerical experiments

on a number of dense high-dimensional linear models, including sparse and dense

loadings a. In Section 3.5.1, we demonstrate the excellent finite-sample performance

of the proposed methods through Monte Carlo simulations; in Section 3.5.2, we

illustrate our method via a real data study. Appendix C contains complete details

of the theoretical derivations.

3.2 Testing H0 : a>β∗ = g0 with prior knowledge

of ΣX

In this section we promote a unified approach to a wide class of decision

problems. Our main building block (which we believe is important in its own right)

is a construction, named restructured regression allowing, under weak assumptions,

to build tests for hypotheses on a>β∗, where β∗ and/or a can be non-sparse.

Considering the potential failure of sparsity in many practical problems, we strongly

believe that our approach permits a diverse spectrum of applications. In this section

our focus is to introduce the method with known ΣX (an assumption relaxed in

the next section).

Throughout the paper, we denote ΩX = Σ−1
X . In the sequel, given the feature
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vector xi ∈ Rp and loading vector a ∈ Rp, we consider the following decomposition

xi = azi + wi, (3.2.1)

with a scalar

zi =

(
ΩXa

a>ΩXa

)>
xi

and a p-dimensional vector

wi =

[
Ip −

aa>ΩX

a>ΩXa

]
xi.

Observe that azi can be viewed as the projection of xi onto the vector a – taking

into account ΩX , hence extracting information in xi regarding the null hypothesis.

Notice that the model (3.1.1) and decomposition (3.2.1) imply

yi = zi · (a>β∗) + w>i β∗ + εi, (3.2.2)

referred to as restructured regression. The proposed construction gives rise to the

method of feature customization. Given covariate vector xi and the loading vector a

representing the structure of the null hypothesis, we create the synthesized features

x̃i := (zi, w
>
i )> so that the regression coefficient for zi in the restructured regression

(3.2.2) is the quantity under testing.

Remark 3.2.1. The synthesized features are not only an artifact of our new method-

ology but also admit intuitive interpretations. Consider the case where ΣX is known

to be Ip. The synthesized features zi and wi represent the relevant and the irrelevant

information with respect to the null, respectively. To see this, suppose that the

true distribution of the data is known. With the population expectations, we can

identify the parameters in the restructured regression (3.2.2): E(ziyi) = Ez2
i (a
>β∗)

and Ewiyi = Ewiw
>
i β∗. Notice that the latter equation contains no information

regarding a>β∗ because it can be shown that a is orthogonal to columns in Ewiw>i .

In other words, knowing Ewiw>i β∗ does not lead to knowing a>β∗. Therefore, a>β∗
is identified with the distribution of (yi, zi) and wi does not contain information

about the null hypothesis.
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It is not hard to verify that, by the construction of the trans-

formed features, E[wizi] = 0. It follows that E [zi(yi − zig0)] =

E
[
zi
(
εi + w>i β∗ + zi(a

>β∗ − g0)
)]

= E
[
z2
i (a
>β∗ − g0)

]
. Observe that the last ex-

pression is 0 if and only if the null hypothesis (3.1.2) holds. As a result, testing H0

in (3.1.2) is equivalent to testing the following moment condition:

H0 : E [z1(y1 − z1g0)] = 0. (3.2.3)

To test the above condition, we propose a studentized test statistic, Tn(g0), taking

the form

Tn(g0) :=
n−1/2

∑n
i=1 li(g0)√

n−1
∑n

i=1 li(g0)2
, (3.2.4)

with li(g0) = zi(yi − zig0). For a test of H0 with nominal size α ∈ (0, 1), we reject

H0 if

|Tn(g0)| > Φ(1− α/2).

The methodology proposed above is novel in a number of aspects. Unlike

Wald or Score or Likelihood principles, centered around a consistent estimator of β∗,

our methodology allows for extremely fast implementation and does not estimate

the unknown parameter β∗. The novel methodology consists of two-stages. At the

first stage, our procedure establishes a data-driven feature decomposition based on

the structure of the null hypothesis directly. At the second stage, only “a moment

condition” of the restructured regression is tested. It is critical to observe that

restructured regression by itself is not sufficient to guarantee valid inference. The

novel properties of the proposed method are based on the built-in, i.e., designed

orthogonality of the synthesized features zi and wi. As such it enables us to

construct a test statistic that does not contain the unknown parameter β∗, thereby

allowing our methodology to handle dense (and thus possibly non-estimable) β∗.

Moreover, no assumption is imposed on the loadings a either. As we will see in

the next section, these properties under known ΣX propagate to the case of the

unknown ΣX and underline all further developments.

Assumption 4. Let the following hold: (i) there exists a positive constant C such
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that E|ziσ−1
z |8 ≤ C, Eε8

i ≤ C and E|w>i β∗|8 < C with C <∞. Moreover, (ii) there

exists a constant c ∈ (0,∞), such that σε ≥ c. Lastly, (iii) there exist constants

D1, D2 > 0 such that the eigenvalues of ΣX lie in [D1, D2].

The stated conditions in Assumption 4 are very weak and intuitive. As-

sumption 4(i) requires components in the restructured regression (3.2.2) to have

bounded eighth moments. Assumption 4(ii) rules out the noiseless regression setting

in the original model (3.1.1). Assumption 4(iii) is very weak in that it only imposes

well-designed covariance matrix of the features xi (see Bickel, Ritov, and Tsybakov

(2009)).

Notice that Assumption 4 does not require any condition regarding the

sparsity of β∗. Even in the case of sparse a, existing work, such as the debias-

ing method, heavily relies on the sparsity of β∗. Results regarding dense a are

very limited even for sparse β∗. Cai and Guo (2015) impose the condition of

maxj∈supp(a) |aj|/minj∈supp(a) |aj| = O(1); however, such a condition is quite hard

to satisfy if a is drawn from a continuous distribution whose support contains zero.

In contrast, our results do not require any condition on a and, hence, bridge the

gap in the existing literature on high-dimensional inference.

Theorem 3.2.1. Consider the model in (3.1.1) and the definition of zi and wi as

in (3.2.1). Suppose that Assumption 4 holds. Under H0 in (3.1.2), we have that (1)

the test statistic Tn, (3.2.4), satisfies Tn(g0)→d N (0, 1) as n, p→∞ and that (2)

lim
n,p→∞

P
(
|Tn(g0)| > Φ−1(1− α/2)

)
= α.

Theorem 3.2.1 gives an asymptotic approximation for the null distribution

of the test statistic Tn(g0) under general sparsity structure. The result of Theorem

3.2.1 has two striking features. The first is that it holds, no matter the size or

sparsity of the loading vector a. The second is that the proposed test guarantees

Type I error control when p ≥ n and p, n → ∞ no matter of the sparsity of β∗
and without the knowledge of the noise level σε; in particular, it allows ‖β∗‖0 = p.

Therefore, our test is fully adaptive, in the sense that its validity does not depend

on in the sparse/dense level of either the model parameter β∗ or the hypothesis
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loading a. We also show that our test can detect deviations from the null that are

larger than O(‖a‖2/
√
n) while allowing β∗ to be non-sparse and p ≥ n.

Theorem 3.2.2. Under the conditions of Theorem 3.2.1, suppose that a>β∗ =

g0 + hn and
√
n|hn|/‖a‖2 →∞. Then, for any α ∈ (0, 1).

lim
n,p→∞

P
(
|Tn(g0)| > Φ−1(1− α/2)

)
= 1.

Remark 3.2.2. Theorem 3.2.2 also suggests that we can expect the length of the

confidence interval for a>β∗ (obtained by inverting the proposed test) to be of

the order of O(‖a‖2/
√
n) regardless of the sparsity of β∗ or a. To the best of our

knowledge, it is the first result to explicitly allow non-sparse and simultaneously

high-dimensional parameters β∗ or vector loadings a. It is also closely connected

with the existing results for the case of sparse parameters β∗. Cai and Guo (2015),

state that under Gaussianity and sparsity in both β∗ and a together with known

ΣX and σε, the optimal expected length of confidence intervals for a>β∗ is of the

order O(‖a‖2/
√
n) (see Theorem 7 therein). Observe that our procedure achieves

the same optimality without the knowledge of σε and allowing dense vectors β∗.

We do not formally claim that this is the optimal rate for dense β∗, but we

can consider an obvious benchmark. Let β̄ be an estimator that attains an efficiency

similar to (ordinary least square) OLS in low dimensions, i.e., β̄ is distributed as

N (β∗,ΩXσ
2
ε/n). Then a>β̄ follows N (a>β∗, a

>ΩXaσ
2
ε/n) distribution. Since ΩX

has eigenvalues bounded away from infinity, the standard deviation of a>β̄ is of

the order ‖a‖2/
√
n. Such an estimator might not be feasible in practice, but could

serve as a benchmark for dense β∗. A rigorous study of the efficiency issue is likely

to yield results that are quite different from current literature since existing results,

e.g., Cai and Guo (2015), do not naturally extend to dense problems. For example,

consider the case of ‖a‖0 = ‖β∗‖0 = p, naively extending Theorem 8 of Cai and Guo

(2015) would conclude that the minimax expected length of a confidence interval

for a>β∗ is of the order ‖a‖∞p
√

(log p)/n; however, this rate is larger than the rate

‖a‖2/
√
n, which is bounded above by ‖a‖∞

√
p/n. Lastly, according to Theorem

3.2.2 our proposed test achieves the same rate at the benchmark β̄.
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3.3 Testing H0 : a>β∗ = g0 without prior knowl-

edge of ΣX

The approach proposed in this section tackles the high-dimensional inference

problem in a very general setting. The focus is the more realistic scenario in

which the covariance matrix ΣX and the variance of the model (3.1.1) are both

unknown. We synthesize new features, create a new reference model and explore

the correlations therein in order to design a suitable inferential procedure that is

stable without sparsity assumption.

3.3.1 Feature synthetization and restructured regression

In order to design inference when ΣX unknown, we take on a new perspective

and build upon the methodology of Section 3.2. Consider feature synthetization of

Section 3.2 where ΣX is naively treated as Ip,

zi =
( a

a>a

)>
xi ∈ R and wi =

(
Ip − aa>/(a>a)

)
xi ∈ Rp. (3.3.1)

Although the decomposition xi = azi + wi still holds, features zi and wi might be

correlated (because ΣX 6= Ip). If such correlation is estimated successfully, we can

use certain decoupling method to eliminate the impact of dense parameters while

allowing exponentially growing dimensions.

The first challenge is that directly estimating the correlation between zi and

wi (as defined) is not achievable (as the restricted eigenvalue (RE) condition Bickel,

Ritov, and Tsybakov (2009) on W = (w1, · · · , wn)> is violated). To address this

problem, we propose to stabilize the feature vector wi and define stabilized features

w̃i. We stabilize the features in such a way that the RE condition on the stabilized

design W̃ = (w̃1, · · · , w̃n)> is satisfied with high probability. Since Ip − aa>/(a>a)

is a projection matrix, we can find Ua ∈ Rp×(p−1) an orthogonal matrix such that

U>a Ua = Ip−1 and Ip − aa>/(a>a) = UaU
>
a .
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Then

Wβ∗ = X(Ip − aa>/(a>a))β∗ = XUaU
>
a β∗ = W̃π∗,

where

W̃ = WUa and π∗ = U>a β∗.

Since yi = zi · (a>β∗) + w>i β∗ + εi, we have the stabilized model

yi = zi · (a>β∗) + w̃>i π∗ + εi. (3.3.2)

The model is balanced in the sense that EW̃>W̃/n = U>a ΣXUa ∈ R(p−1)×(p−1) with

eigenvalues bounded away from zero and infinity. Therefore, RE condition on W̃

holds under weak conditions; see Rudelson and Zhou (2013).

Remark 3.3.1. The synthesized feature wi ∈ Rp is consolidated into w̃i ∈ Rp−1, in

that w̃i has a smaller dimensionality and can be used to recover wi via wi = Uaw̃i.

In this sense, w̃i contains all the information in wi. As an example, consider the

case with a being the first column of Ip. In this case, it is not hard to verify

that zi = xi,1, wi = (0, xi,2, · · · , xi,p)> ∈ Rp, Ua = (0, Ip−1)
> ∈ Rp×(p−1) and thus

w̃i = U>a wi = (xi,2, · · · , xi,p)> ∈ Rp−1.

We now introduce an additional model to account for the dependence

between the synthesized feature zi and the stabilized feature w̃i:

zi = w̃>i γ∗ + ui, (3.3.3)

where γ∗ ∈ Rp−1 is an unknown parameter and ui is independent of w̃i with Eui = 0

and Eu2
i = σ2

u.

In this article, we will assume that γ∗ is sparse, in order to decouple the

dependence between zi and w̃i with the unknown ΣX . In fact, sparse γ∗ is a general-

ization of the sparsity condition on the precision matrix ΩX , a regularity condition

typically imposed in the literature; see Geer, Bühlmann, Ritov, and Dezeure (2014),

Belloni, Chernozhukov, and Hansen (2014) and Belloni, Chernozhukov, and Kato

(2015) and Ning and Liu (2014). Recall the example in Remark 3.3.1. Since

xi,1 = zi = w̃>i γ∗ + ui = x>i,−1γ∗ + ui, it is not hard to show that the first row of
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ΩX is (σ−2
u ,−σ−2

u γ>∗ ). Hence, the sparsity of γ∗ is equivalent to the sparsity in the

first row of ΩX . The sparsity of γ∗ can be justified for dense a as well. Consider

the case of ΣX = cIp for some c > 0; a prototypical model in compressive sensing

corresponds to c = 1 (Nickl and Geer 2013). In this case, one can easily show

that zi and w̃i are uncorrelated, meaning that γ∗ = 0 for any a. The synthesized

features also admit intuitive interpretations in this case: the feature zi contains

useful information in testing the null hypothesis a>β∗ = g0, while the consolidated

w̃i contain information not useful for inference.

Now, we are ready to construct the moment condition of interest. Observe

that under H0 in (3.1.2), yi− zig0− w̃>i π∗ = εi is uncorrelated with zi− w̃>i γ∗ = ui.

If H0 is false, then yi−zig0−w̃>i π∗ = εi+zi(θ∗−g0) = εi+w̃
>
i γ∗(θ∗−g0)+ui(θ∗−g0)

has non-zero correlation with ui = zi − w̃>i γ∗. Hence, the initial null hypothesis,

(3.1.2) is equivalent to the following null hypothesis

H0 : E
[(
z1 − w̃>1 γ∗

) (
y1 − z1g0 − w̃>1 π∗

) ]
= 0. (3.3.4)

Directly testing this moment condition is not feasible, due to the unknown values

of parameters γ∗ and π∗. As a result, we first provide estimates for these unknown

parameters and consider the test statistic given by the studentized statistics.

We make a few remarks about the above proposed methodology. As men-

tioned above, the existing literature on high-dimensional inference adopts the

approach of relying on an (almost) unbiased estimate of the model parameter to

distinguish the null and alternative hypotheses. The existing methods largely differ

by the means of constructing the unbiased estimate and/or its asymptotic variance.

Many use an approximation of a one-step Newton method (Zhang and Zhang 2014;

Geer, Bühlmann, Ritov, and Dezeure 2014; Javanmard and Montanari 2014a) to

achieve consistency in estimation of possibly all p parameters. In order to test a>β∗
in this framework, one need to show that the debiased estimator for β∗ can be used

to construct an asymptotically unbiased and normal estimator for a>β∗; to the best

of our knowledge, a formal theoretical justification is yet to be established even

under sparse β∗. Other than the debiasing technique, some proposals center around

Neyman’s score orthogonalization ideas (Belloni, Chernozhukov, and Hansen 2014;
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Belloni, Chernozhukov, and Kato 2015; Chernozhukov, Hansen, and Spindler 2015;

Ning and Liu 2014). It is worth pointing out that such a method requires a clear

separation of parameter under testing and the nuisance parameter. In the original

problem, the model parameter is β∗ and the quantity under testing is a>β∗; hence,

it is not clear how to define the nuisance parameter since the a>β∗ is not just one

entry (or a subset) of the parameter vector β∗. Lastly, the work of Cai and Guo

(2015) propose a minimax optimal test that allows for dense loadings vector a,

however in the dense case it provides a conservative error bounds and requires the

knowledge of the sparsity size s.

However, our proposal deviates from the above methodologies in a few

aspects. Firstly, we design a test statistic irrespective of a consistency of high-

dimensional estimators for the model parameter; hence, any refitting or one-step

approximations are unnecessary. Secondly, we aim to orthogonalize design features

(rather than model parameters) by directly taking into account the structure of the

null hypothesis (represented by a and g0). In this way we achieve full adaptivity

to the hypothesis testing problem of interest. Thirdly, we reformulate the original

parametric hypothesis into a moment condition of which we provide adaptive

estimators. The moment condition itself is not a simple first-order optimality

identification (related to Z-estimators), but rather a moment that utilizes the

special feature orthogonalization and fusion. Hence, even in setting where the

existing work applies, our proposed method provides an alternative. However, apart

from existing work, our proposed method applies much more broadly.

3.3.2 Adaptive estimation of the unknown quantities

In this subsection, we start with a brief introduction of the Dantzig selector,

which is the basis of our estimators. Then we introduce the intuition and steps of

our estimator as well as implementation details.

Dantzig selector review

Numerous studies have been conducted in regards to the consistent estima-

tion of high-dimensional parameters in linear models. The canonical examples of
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successful estimators represent Lasso and Dantzig selector, defined as β̂l and β̂d
below,

β̂l = arg min
β∈Rp

{
‖Y −Xβ‖2

2 + λl‖β‖1

}
,

β̂d = arg min
β∈Rp

‖β‖1

s.t
∥∥n−1X>(Y −Xβ)

∥∥
∞ ≤ λd.

(3.3.5)

Although Lasso and Dantzig selector are defined in different times, Bickel, Ritov,

and Tsybakov (2009) established equivalence between the two estimators under the

conditions of moderate design correlations and model sparsity, ‖β∗‖0 � n. Between

these two estimator, the Dantzig selector, β̂d, offers easy implementation through

linear programming techniques. Moreover, the constraint in the Dantzig selector can

be interpreted as a relaxation of the least squares normal equations, X>Y = X>Xβ.

However, the performance of both estimators is tightly connected to the choice

of their respective tuning parameters λl and λd, i.e. the size of such relaxation.

Several empirical and theoretical studies emphasized that tuning parameters should

be chosen proportionally to the noise standard deviation σε, i.e. λd = λd(σε) =

σε
√

(log p)/n. In such settings one can guarantee ‖β̂l−β∗‖1 = O(‖β∗‖0

√
(log p)/n).

Unfortunately, in most applications, the variance of the noise is unavailable. It is

therefore vital to design statistical procedures that estimate unknown parameters

together with the size of model variance in a joint fashion. This topic received

special attention, cf. Giraud, Huet, and Verzelen (2012) and the references therein.

Most popular σ-adaptive procedures, the square-root Lasso (Belloni, Chernozhukov,

and Wang 2011), the scaled Lasso (Sun and Zhang 2012) and the self-tuned Dantzig

selector (Gautier and Tsybakov 2013; Belloni, Chernozhukov, and Hansen 2016)

can be seen as maximum a posteriori estimators with a particular choice of prior

distribution. However they do not provide estimates that are reasonable in non-

sparse and high-dimensional models – after all in such settings it is impossible

to consistently estimate the model parameters (see for more details Cai and Guo

(2016) and Raskutti, Wainwright, and Yu (2011)). The aim of the present section is

to present an alternative to these methods, which are closely related, but presents

some advantages in terms of implementation and a more transparent theoretical
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analysis in not necessarily sparse models; the main benefit is that our estimates are

well controlled in certain sense.

Modified Dantzig selector: adaptive to signal-to-noise ratio

We start with the estimator for π∗, a parameter that is high-dimensional

and yet not necessarily sparse. We extend the Dantzig selector above to conform

to the testing problem that we have to perform. We begin by splitting the tuning

parameter into a constant independent of the variance of the noise and introduce

a parameter ρ, a square root of the noise to response ratio as an unknown in

the optimization problem. At the population level, ρ is intended to represent

σε/
√
E(y1 − z1g0)2 and ρ0 is a lower bound for this ratio. One might attempt to

use scaled Lasso by Sun and Zhang (2012) or self-tuning dantzig selector proposed

by Gautier and Tsybakov (2013), but for non-sparse π∗, these methods cannot

ensure that the estimated noise variance is bounded away from zero whenever the

vector π∗ is a dense vector (a case of special interest here).

For Z = (z1, · · · , zn)> and Y = (y1, · · · , yn)> defined in (3.3.1), we introduce

the following version of Dantzig selector of π∗

(π̂, ρ̂) = arg min
(π,ρ)∈Rp−1×R

‖π‖1

s.t
∥∥∥W̃>(Y − Zg0 − W̃π)

∥∥∥
∞
≤ η ρ

√
n‖Y − Zg0‖2

(Y − Zg0)>
(
Y − Zg0 − W̃π

)
≥ ρ0 ρ ‖Y − Zg0‖2

2/2

ρ ∈ [ρ0, 1],

(3.3.6)

where η �
√
n−1 log p and ρ0 ∈ (0, 1) are scale-free tuning parameters.

The estimator (3.3.6) is different from (3.3.5) in two ways. First, the

estimator (3.3.6) simultaneously estimates π∗ and ρ. We introduce a ρ0 the lower

bound for ρ as a tuning parameter. Second, the estimator (3.3.6) has an additional

constraint, which essentially serves as an upper bound for ρ. The intuition of this

bound is the following. When π is replaced by the true π∗ and the null hypothesis

holds, this constraint (scaled by 1/n) becomes π>∗ W̃>ε/n + ε>ε/n ≥ ρ0ρ‖W̃π∗ +

ε‖2
2/n. By the law of large numbers, this means that oP (1) +σ2

ε ≥ ρ0ρE(y1− z1g0)2,
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which is satisfied if ρ = σε/
√
E(y1 − z1g0)2 and ρ > ρ0.

The vector ε = Y − Zg0 − W̃π∗ is a residual vector of the stabilized model

(3.3.2) under the null hypothesis H0. The first constraint on the residual vector

imposes that for each i, much like the Dantzig selector, β̂l, maximal correlation

‖W̃>ε/n‖∞ is not larger than the noise level ησε. Yet, in contrast to β̂l, our

estimator treats ρ as an unknown quantity and estimates it simultaneously with

π∗. Moreover, we introduce the second constraint to stabilize estimation of the

moment of interest (3.3.4) in the presence of non-sparse vectors π∗. Under the

null hypothesis, this constraint prevents choice of ρ that is too large; namely, it

constraints ρ ≤ C (Y − Zg0)> ε/ ‖Y − Zg0‖2
2 for a finite constant C > 0. In sparse

settings, this additional constraint is redundant, so we remove it from our estimator

of γ∗ defined below (a vector that is assumed to be sparse). Hence, we consider the

following estimator,γ̂

γ̂ = arg min
γ∈Rp−1

‖γ‖1

s.t
∥∥∥n−1W̃>(Z − W̃γ)

∥∥∥
∞
≤ λn−1/2‖Z‖2

(3.3.7)

where λ �
√
n−1 log p is a scale-free tuning parameter and n−1/2‖Z‖2 serves as

an upper bound of the unknown σu in the model (3.3.3). It is worth pointing

out that the defined estimators change with a change in the hypothesis testing

problem (3.1.2) through the new, synthesized and stabilized feature vectors W̃ and

Z together with g0. We present a few examples in Section 4.

Implementation

The optimization problem in (3.3.6), a generalization of the Dantzig selector

(Candes and Tao 2007), can be recast as a linear program; the computational

burden of our method is comparable to the Dantzig selector. Define scalars

d1 = ρ0‖Y − Zg0‖2
2/2, d2 = ‖Y − Zg0‖2

2, vectors D1 = W̃>(Y − Zg0) ∈ Rp−1 and

D2 =
√
nη‖Y − Zg0‖21p−1 and matrix D3 = W̃>W̃ ∈ R(p−1)×(p−1).
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Then, (3.3.6) is equivalent to the following linear program

min(c,π,ρ)∈Rp−1×Rp−1×R 1>p−1c

s.t. −c ≤ π ≤ c

ρ0 ≤ ρ ≤ 1

d1ρ+D>1 π ≤ d2

−D2ρ ≤ D1 −D3π ≤ D2ρ,

(3.3.8)

where the optimization variables are c ∈ Rp−1, π ∈ Rp−1 and ρ ∈ R. For application
purposes we propose to choose the following choices of the tuning parameters:

ρ0 = 0.01 and η =
√

2 log(p)/n. They are universal choices and we show in

simulations that they provide good results.

3.3.3 Test Statistic

With defined estimators of γ∗ and π∗, we are ready to define a sample analog

of the moment condition 3.3.4. Under our proposed method, a test of nominal size

α ∈ (0, 1) rejects H0 in (3.1.2) if |Sn| > Φ−1(1− α/2), where

Sn =
√
n

(Z − W̃ γ̂)>(Y − Zg0 − W̃ π̂)

‖Z − W̃ γ̂‖2‖Y − Zg0 − W̃ π̂‖2

. (3.3.9)

Other estimators of the first moment (3.3.4) are certainly possible, however we focus

and analyze the natural case above; we leave future efficiency studies for future

work since it is not apparent that any other choice is preferred. Moreover, the

self-normalizing statistic above is directly dependent on the hypothesis of interest

and is a function of synthesized features. Compared with the existing approaches

where the normalization factor is a consistent estimator of the asymptotic variance,

our self-normalized approach adopts an inconsistent estimator as the normalization

factor, which in a sense corresponds to “inefficient Studentizing” (cf. Shao (2010)).

However, we establish that the asymptotic distribution of the resulting statistic is

pivotal and its percentiles can be obtained from the normal distribution.

In constructing estimates of γ∗ and π∗, we do not impose any assumption

regarding the sparsity of π∗ or β∗. Notice that, except for the case of sparse a, it is
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in general unreasonable to expect sparsity in π∗, even if β∗ is sparse. Although we

use estimates for both γ∗ and π∗ denoted by γ̂ and π̂, respectively, we only require

l1 consistency properties for γ̂; in fact, π̂ only serves to satisfy our decoupling

argument in the proof and does not need to be consistent. We now briefly explain

this point. The constraints imposed in the estimator (3.3.6) guarantee that for the

test statistic Sn, the term n−1/2(Z − W̃ γ̂)>(Y − Zg0 − W̃ π̂) can be approximated

by a product of two independent terms, i.e. n−1/2(Z − W̃γ∗)
>(Y − Zg0 − W̃ π̂).

Then, the only requirement needed is to guarantee that the second term in the last

expression does not grow to fast (it does not need to converge to zero) which in

turn is provided by the constraints of the optimization problem (3.3.6).

3.3.4 Theoretical properties

In deriving the theoretical properties of our test, we impose the following

assumption.

Assumption 5. Let (i) xi and εi have Gaussian distributions, N (0,ΣX) and

N (0, σ2
ε), respectively. Moreover, assume (ii) that there exist constants c1, c2 > 0,

such that σε and the eigenvalues of ΣX lie in [c1, c2]. Lastly, let (iii) there exist

constants c3, c4 ∈ (0, 1), such that σ2
u/σ

2
z ≥ c3 and σ2

ε/σ
2
y ≥ c4.

Assumption 5(i) is only imposed to simplify the proof. In high-dimensional

literature Gaussian design is a very common assumption (e.g. Javanmard and

Montanari (2014b) and Cai and Guo (2015)). The same results, at the expense

of more complicated proofs, can be derived for sub-Gaussian designs and errors.

Assumption 5(ii) is very standard in high-dimensional literature (see Bickel, Ritov,

and Tsybakov 2009; Ning and Liu 2014; Geer, Bühlmann, Ritov, and Dezeure 2014

for more details).

Assumption 5(iii) imposes nondegeneracy of signal-to-noise ratios for models

(3.1.1) and (3.3.3). Since ‖a‖2 is allowed to tend to infinity, σ2
z = a>ΣXa/(a

>a)2 can

tend to zero and thus it is too restrictive to assume that σu is bounded away from

zero. Hence, Assumption 5(iii) is a relaxation, as it only rules out the uninteresting

case of asymptotic noiselessness.



101

Remark 3.3.2. The sparsity condition is imposed on neither a nor β∗. Theorem 3.3.1

below says that we can conduct valid inference of a non-sparse linear combination

of a non-sparse high-dimensional parameter without knowing ΣX . To the best of

our knowledge, this is the first result that allows for such generality.

Theorem 3.3.1. Let Assumption 5 hold. Consider estimators (3.3.6) and (3.4.2)

with suitable choice of tuning parameters: η, λ �
√
n−1 log p, ρ−1

0 = O(1) and

ρ0 ≤ [1 + c2c
−1
1 (c−1

3 − 1)]−1/2. Suppose that ‖γ∗‖0 = o(
√
n/ log p). Then, under H0

in (3.1.2), optimization problems (3.3.6) and (3.4.2) are feasible with probability

approaching one and

lim
n,p→∞

P
(
|Sn| > Φ−1(1− α/2)

)
= α ∀α ∈ (0, 1),

where Sn is defined in Equation (3.3.9).

Theorem 3.3.1 establishes that the proposed test is asymptotically exact

regardless of how sparse the model parameter or the loading vector are. In that

sense, the result is unique in the existing literature as it covers cases of β sparse

and a sparse (SS), β sparse and a dense (SD) , β dense and a sparse (DS) and

especially β dense and a dense (DD). The (SS) case appears in a number of existing

works (see Belloni, Chernozhukov, and Hansen (2014), Geer, Bühlmann, Ritov,

and Dezeure (2014), Javanmard and Montanari (2014b), and Ning and Liu (2014)),

case (SD) appears in Cai and Guo (2015). Whenever (SS) case holds, our result

above matches the above mentioned work see Theorem 3.3.2. In the special setting

of (SD) our result generalizes the one of Cai and Guo (2015) as Theorem 3.3.1 does

not impose any restriction on the size of the loading vector a. The last two cases of

(DS) and (DD) present an extremely challenging cases in which inference based on

estimation (much like Wald or Rao or Likelihood principles) fails due to the inherit

limit of detection – work of Cai and Guo (2016) provides details of impossibility of

estimation in such settings. However, despite these challenges our method is able

to provide asymptotically valid inference as we have developed inference based on

a specifically designed moment condition (and not a parameter estimation alone).

The result in Theorem 3.3.1 is based on the assumption that π̂∗ is a possibly
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inconsistent estimator of the parameter vector π∗, i.e. the full model is dense with

all non-zero entries. In the following, we will show that if the model is a sparse

model, the proposed test (3.3.9) maintains strong power properties. To facilitate

the mathematical derivations, we consider the local alternatives of the form

H1,n : a>β∗ = g0 + n−1/2(a>ΩXa)1/2σεd, (3.3.10)

where d ∈ R is a fixed constant. The following result shows that the proposed test

achieves certain optimality in detecting alternatives H1,n.

Theorem 3.3.2. Consider zi and wi defined in (3.3.1). Let Assumption 5 hold

and consider the choice of tuning parameters, as in Theorem 3.3.1. Suppose that

‖γ∗‖0 ∨ ‖β∗‖0 ∨ ‖a‖0 = o(
√
n/ log p). Then, under H1,n in (3.3.10), optimization

problems (3.3.6) and (3.4.2) are feasible with probability approaching one and

lim
n,p→∞

P
(
|Sn| > Φ−1(1− α/2)

)
= Ψα(d) ∀α ∈ (0, 1),

where Ψα(d) := Φ (−Φ−1(1− α/2) + d) + Φ (−Φ−1(1− α/2)− d).

To better understand the optimality of the result above, consider the estima-

tor (possibly infeasible) discussed at the end of Section 3.2: let β̄ denote an estimator

satisfying
√
n(β̄ − β∗) ∼ N (0,ΩXσ

2
ε). Notice that, for the low-dimensional compo-

nents of β∗, β̄ achieves semi-parametric efficiency; see Robinson (1988). Therefore,

for sparse a, a>β̄ is a semi-parametrically efficient estimator for a>β∗. Notice that
√
n(a>β̄ − a>β∗) ∼ N (0, a>ΩXaσ

2
ε). Based on such efficient estimator, one might

consider an “oracle” test: for a test of nominal size α, reject the null H0 : a>β∗ = g0

if and only if √
n|a>β̄ − g0|

(a>ΩXa)1/2σε
> Φ−1(1− α/2).

It is easy to verify that the power of this “oracle” test of nominal size α against

the local alternatives H1,n (3.3.10) is asymptotically equal to Ψα(d). Therefore,

Theorem 3.3.2 says that our test asymptotically achieves the same power as the

“oracle” test under sparse a and β∗, i.e. it is as efficient as the “oracle” test.

Moreover, in light of recent inferential results in the high-dimensional sparse
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models, the rate of Theorem 4 can also be shown to be optimal. As existing

results apply only to the case of a = ej for a coordinate vector ej, 1 ≤ j ≤ p, we

discuss the relations of our work in this specific settings. We note that the tests

based on VBRD and BCH are asymptotically equivalent to this “oracle” test and

hence have the same asymptotic local power; the power of Wald or Score inferential

methods (see Theorem 2.2 in Geer, Bühlmann, Ritov, and Dezeure (2014), Theorem

1 in Belloni, Chernozhukov, and Hansen (2014) or Theorem 4.7 in Ning and Liu

(2014)) and that of Javanmard and Montanari (2014b) (see Theorem 2.3 therein) is

asymptotically equal to and converges to Ψα(d), respectively. This in turn, implies

that the proposed method is semi- parametrically efficient and asymptotically

minimax. For vectors a that have more than one non-zero coordinate, we can only

compare our work with that of Cai and Guo (2015), where we observe that the

result of Theorems 1 and 3 therein matches those of Theorem 4 covering the case of

extremely sparse beta and potentially dense vectors a. However, observe that the

confidence intervals developed therein require specific knowledge of the sparsity of

the parameter β∗, ‖β∗‖0, a quantity rarely known in practice. Unlike their method,

our method can be directly implemented without the knowledge of the sparsity of

β∗ and yet achieves the same optimality guarantees.

3.4 Applications to non-sparse high-dimensional

models

This section is devoted to three concrete applications of the general method-

ological results developed in Sections 3.2 and 3.3 – hence, showcasing the wide

impact of the developed theories.

3.4.1 Testing pairwise homogeneity

The previous section deals with situations in which each coordinate of the

parameters is allowed to vary independently and any subset of the coordinates can

be non-zero simultaneously. This condition will not be satisfied if we are interested
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in testing pairwise homogeneity in the linear model (group effect), that is, if we are

interested in testing the hypothesis

H0 : β∗,k = β∗,j

for k, j ∈ {1, 2, . . . , p} while also allowing β to be a dense and high-dimensional

vector. To the best of our knowledge, such tests were not designed in the existing

literature. The proposed methodology easily extends to this case, where the loading

vector a takes the form a = (0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)>, with the location of

the 1’s at the j-th and k-th coordinate, respectively. Without loss of generality, we

assume that k = 1 and j = 2. Then it is not hard to show that zi = (xi,1 − xi,2)/2

and w̃i = ((xi,1 + xi,2)/
√

2, xi,3, · · · , xi,p)> ∈ Rp−1. The proposed methodology for

this problem simplifies, then, to finding π̂ and ρ̂ that satisfy

(π̂, ρ̂) = arg min
(π,ρ)∈Rp−1×R+

‖π‖1

s.t W̃ = [(X1 +X2)/
√

2, X3, · · · , Xp]

‖W̃>(Y − W̃π)‖∞ ≤ ηρ
√
n‖Y ‖2

Y >
(
Y − W̃π

)
≥ ρ0 ρ ‖Y ‖2

2/2

ρ ∈ [ρ0, 1]

(3.4.1)

and γ̂ that satisfies

γ̂ = arg min
γ∈Rp−1

‖γ‖1

s.t W̃ = [(X1 +X2)/
√

2, X3, · · · , Xp]

‖W̃>(X1 −X2 − 2W̃γ)‖∞ ≤ λ
√
n‖X1 −X2‖2 ,

(3.4.2)

for λ, η �
√
n−1 log p .

Consequently, we reject H0 : β∗,1 = β∗,2 if |Sn| > Φ−1(1− α/2), where

Sn =
√
n

(
X1 −X2 − 2W̃ γ̂

)> (
Y − W̃ π̂

)
∥∥∥X1 −X2 − 2W̃ γ̂

∥∥∥
2

∥∥∥Y − W̃ π̂
∥∥∥

2

. (3.4.3)
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3.4.2 Inference of conditional mean

Our methodology can also be used for the inference regarding the average

value of the response i.e. regarding the conditional mean of the regression model.

Suppose that the object of interest is E(yi | ζi), where yi ∈ R and ζi ∈ Rk. For a

given value d ∈ Rk and g0 ∈ R, the focus is to test

H0 : E(yi | ζi = d) = g0.

Assuming that for some given dictionary of transformations of {φj(·)}pj=1, the

conditional mean function admits the representation: E(yi | ζi) =
∑p

j=1 β∗,jφj(ζi)

for some vector β∗ = (β∗,1, · · · , β∗,k)> ∈ Rp. Then the conditional mean model can

be written as

yi = x>i β∗ + εi, (3.4.4)

where xi = (φ1(ζi), · · · , φp(ζi))> ∈ Rp and E(εi | xi) = 0. In turn, the confidence

intervals for the regression mean can be designed simply by inverting the test

statistics

Sn =
√
n

(Z − W̃ γ̂)>(Y − Zg0 − W̃ π̂)

‖Z − W̃ γ̂‖2‖Y − Zg0 − W̃ π̂‖2

designed for the inference problem

H0 : a>β∗ = g0,

where a = (φ1(d), · · · , φp(d))> ∈ Rp and UaU>a =
(
Ip − aa>/

∑p
j=1 φ

2
j(d)

)
with

zi =

∑p
j=1 φj(d)φj(ζi)∑p

j=1 φ
2
j(d)

, and w̃ij =

p∑
l=1

{Ua}ljφl(ζi), 1 ≤ j ≤ p− 1.

Notice that we do not assume that the vector β∗ is sparse and we allow for p� n.

Therefore, representing the conditional mean function in terms of a large number

of transformations of ζi, while simultaneously allowing all to be non-zero, does not

lose much in generality. Additionally, it is worth mentioning that inference for such

models has not been addressed in the existing literature: most of the existing work
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is strictly focused around sparse or sparse additive models. With the general model

considered here, one can consider tests regarding treatment effects (when viewed

as the conditional mean) and allow for fully dense models and loading vectors, i.e.

the treatment being a dense combination of many variables. Existing work, such

as Belloni, Chernozhukov, and Hansen (2014), only allows the treatment to be a

single variable.

3.4.3 Decomposition of conditional mean

In practice, the researcher might be interested in how much a certain group

of features contribute to the conditional mean. Let G ⊆ {1, ..., p}. The goal is

to conduct inference on linear functionals of {β∗,j}j∈G, i.e.,
∑

j∈G cjβ∗,j for some

known {cj}j∈G.
For example, consider the notations from Section 3.4.2. Let ζi =

(ζi,1, ..., ζi,k)
> and suppose that one is interested in the impact of ζi,1 on the condi-

tional mean for ζ = d. This is equivalent to quantifying
∑

j∈G1 φj(d)β∗,j , where the

set contains all the indexes j such that the first entry of ζi has non-zero effect on

φj(ζi), i.e., G1 = {j : φj(ζ) is not constant in ζ1}. If φj(·)’s are transformations of

individual entries of {ζi,j}kj=1, then G1 corresponds to transformations of ζi,1. For

another example, suppose that all the p features are genes. The domain scientist

(biologist, doctor, geneticist, etc) might be interested in how much a group of genes

contributes to the expected value of the response variable.

Without loss of generality, we assume that G = {1, ..., H} and

c = (c1, ..., cH)> ∈ RH . Let Uc ∈ RH×(H−1) satisfy IH −
cc>/(c>c) = UcU

>
c and U>c Uc = IH−1. Then the synthesized

features can be constructed by zi = ‖c‖−2
2

∑H
j=1 cjxi,j and w̃i =(∑H

l=1(Uc)l,1xi,l, · · · ,
∑H

l=1(Uc)l,H−1xi,l, xi,H , · · · , xi,p
)>
∈ Rp−1, where (Uc)l,j de-

notes the (l, j) entry of the matrix Uc. For example, whenever H = 3 and cj = 1

for all j = 1, 2, 3, then

Uc =


−
√

3/2 −1/
√

2

0
√

2√
3/2 −1/

√
2


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and the procedure for testing β∗,1 + β∗,2 + β∗,3 = g0 would be as follows. We define

(π̂, ρ̂) = arg min
(π,ρ)∈Rp−1×R+

‖π‖1

s.t W̃ =
[√

3
2
(X3 −X1), − 1√

2
(X1 − 2X2 +X3), X4, · · · , Xp

]
‖W̃>[Y − (X1 +X2 +X3)g0/3− W̃π]‖∞
≤ ηρ

√
n‖Y − (X1 +X2 +X3)g0/3‖2

(Y − (X1 +X2 +X3)g0/3)>
(
Y − (X1 +X2 +X3)g0/3− W̃π

)
≥ ρ0 ρ ‖Y − (X1 +X2 +X3)g0/3‖2

2/2

ρ ∈ [ρ0, 1]

(3.4.5)

and γ̂ that satisfies

γ̂ = arg min
γ∈Rp−1

‖γ‖1

s.t W̃ =
[√

3
2
(X3 −X1), − 1√

2
(X1 − 2X2 +X3), X4, · · · , Xp

]
‖W̃>

(
(X1 +X2 +X3)g0 − 3W̃γ

)
‖∞ ≤ λ

√
ng0‖X1 +X2 +X3‖2 ,

(3.4.6)

for λ, η �
√
n−1 log p .

For a test of nominal size α, we reject H0 : β∗,1 + β∗,2 + β∗,3 = g0 if

|Sn| > Φ−1(1− α/2), where

Sn =
√
n

(
(X1 +X2 +X3)g0 − 3W̃ γ̂

)> (
Y − (X1 +X2 +X3)g0/3− W̃ π̂

)
∥∥∥(X1 +X2 +X3)g0 − 3W̃ γ̂

∥∥∥
2

∥∥∥Y − (X1 +X2 +X3)g0/3− W̃ π̂
∥∥∥

2

.

(3.4.7)

3.5 Numerical results

In this section we study the finite sample performance of the proposed

methodology for both known ΣX and unknown ΣX . We explicitly consider dense

loadings a and dense parameter vectors β∗ as well as more common sparse settings.
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3.5.1 Monte Carlo experiments

Consider the model (3.1.1) with the model error following standard normal

distribution. In all the simulations, we set n = 100 and p = 500 and the nominal

size of all the tests is 5%. The rejection probabilities are based on 500 repetitions.

The null hypothesis we test is H0 : a>β∗ = g0, where g0 = a>β∗ + h and h is

allowed to vary in order to capture both Type I and Type II error rates.

Setup

We consider in total four regimes on the structure of the model and the null

hypothesis – sparse and dense regimes for β∗ as well as sparse and dense regimes

for the loading vector a.

(i) In the Sparse parameter regime we consider the parameter structure with

β∗ = (0.8, 0.8, 0, ..., 0)>.

(ii) In the Dense parameter regime we consider the parameter structure with

β∗ = 3√
p
(1, 1, ..., 1)>.

(iii) In the Sparse loading regime we consider the loading vector a = (0, 1, 0, ..., 0)>.

(iv) In the Dense loading regime we consider the loading vector a = (1, 1, ..., 1)>.

Observe that (iii) is an extreme sparse-loading case. We consider this special case

in order to compare existing inferential methods, like VBRD and BCH. However,

our method can be implement for various number of non-zero elements, whereas

the existing one cannot.

We present results for three different designs settings including sparse, dense,

Gaussian and non-Gaussian settings.

Example 1. Here we consider the standard Toeplitz design where the rows ofX

are drawn as an i.i.d random draws from a multivariate Gaussian distribution

N (0,ΣX), with covariance matrix (ΣX)i,j = 0.4|i−j|.

Example 2. In this case we consider a non-sparse design matrix with equal

correlations among the features. Namely, rows of X are i.i.d draws from the
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multivariate Gaussian distribution N (0,ΣX), where (ΣX)i,j is 1 for i = j and

is 0.4 for i 6= j. Observe that this case is particularly hard for most inferential

methods as all features are interdependent and ΩX is not sparse.

Example 3. In this example we consider a highly non-Gaussian design that

also has strong dependence structure. We consider the setting of Fan and

Song (2010). We repeat the details here for the convenience of the reader. Let

x be a typical row of X. For j ∈ {1, ..., 15}, xj = (ξ + cξj)/
√

1 + c2, where ξ

and {ξj}15
j=1 are i.i.d N (0, 1) and c is chosen such that corr(x1, x2) = 0.4. For

j ∈ {16, ..., [p/3]}, xj is i.i.d N (0, 1). For j ∈ {[p/3] + 1, ..., [2p/3]}, xj is i.i.d
from a double exponential distributions with location parameter zero and

scale parameter one. For j ∈ {[2p/3] + 1, ..., p}, xj is i.i.d from the half-half

mixture of N (−1, 1) and N (1, 0.5). Observe that in this case 2/3 of the

features follow non-Gaussian distributions. Thus, in this case it is extremely

difficult to even obtain consistent estimation of the model parameters.

Implementation details

We compare the proposed tests with VBRD and BCH; methods proposed

in Cai and Guo (2015) contain constants whose values could be very conservative

in finite samples. Our tests with known and unknown ΣX are implemented as

discussed in Sections 3.2 and 3.3, respectively.

The VBRD method is implemented for both dense and sparse loadings as

follows. We first compute the debiased estimator β̂debias and the nodewise Lasso

estimator Ω̂Lasso for the precision matrix ΣX as in VBRD. Then test is to reject H0

if and only if

√
n|a>β̂debias − g0|/

√
a>Ω̂LassoΣ̂XΩ̂>Lassoaσ

2
ε > Φ−1(1− 0.05/2).

The BCH method is only implemented for the sparse loadings. We compute

the generic post-double-selection estimator for the second entry of β as in Equation

(2.8) of BCH and compute the standard error as in Theorem 2 therein. Then a

usual t-test is conducted. It is not clear how BCH can be extended to handle any
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loading vector a different from an extremely sparse case (see (iii) above): first, for

any other loading structure it is not defined how to gather selected features of what

would be multiple simultaneous equations; second, naively extending the original

BCH to the problem of dense a (‖a‖0 = p) means running an OLS regression of

the response against all the features, which is not feasible for p > n.

Results

We start with the size properties of competing tests. For this purpose,

we examine the distributions of the test statistics under the null hypothesis by

comparing empirical distributions of the tests with the theoretical benchmark of

standard normal random variable. For simplicity of presentation, we only consider

the Toeplitz design. For the testing problem with sparse β∗ and sparse a, our tests,

VBRD and BCH exihibit the validity guaranteed by the theory; in Figure 3.1,

the histograms of the test statistics are close to N (0, 1) with large p-values of the

Kolmogorov-Smirnov (KS) tests. For all the other problems, our tests outperform

existing methods. As shown in Figure 3.2, the histogram of VBRD test visually is

still close to the standard normal distribution but the KS test suggests discernible

discrepancies between the two distributions. In Figure 3.3, we see that lack of

sparsity in β∗ causes serious problems in Type I error for both VBRD and BCH.

Inference under dense β∗ and dense a turns out to be the most challenging problem

for existing methods; in Figure 3.4, we see quite noticeable difference between the

histogram of VBRD test and N (0, 1). In contrast, the distribution of the test

statistics of the proposed methods closely match N (0, 1) in all the scenarios, as

established in Theorems 3.2.1 and 3.3.1. The Type I errors, reported in Table 3.1,

confirm the above findings: existing methods can suffer greatly from lack of sparsity

in β∗ and/or a in terms of validity – observed Type I error of BCH or VBRD can

easily reach 40%.

We also contrast the power properties of the proposed tests with respect

to the existing methods. Results are collected in Figures 3.5, 3.6 and 3.7, where

we plot the power curves of competing methods for design Examples 1, 2 and 3

described above with hypothesis setting of (i)-(iv). The overall message is clear from
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Figure 3.1: Distribution of the test statistics under the null hypothesis
H0 : β∗,2 = 0.8 (in blue) and the standard normal distribution N (0, 1) (in red)
with n = 100 and p = 500. In this example we consider sparse β and sparse a
setting and compare the distribution under the null of our tests (with and without
known variance) in the top row and two competing methods VBRD and BCH in
the bottom row. We report p-values of the Kolmogorov-Smirnov test statistics in
the subtitles.

Note that tuning parameters for all the methods are chosen according to their
“oracle” theoretical values. Error and design are normally distributed with Toeplitz
correlation structure with ρ = 0.4. The histograms are computed based on 500
simulation runs.
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Figure 3.2: Distribution of the test statistics under the null hypothesis
H0 :

∑p
j=1 ajβ∗,j = 1.6 (in blue) and the standard normal distribution N (0, 1) (in

red) with n = 100 and p = 500. In this example we consider sparse β and dense a
setting and compare the distribution under the null of our tests (with and without
known variance) in the top row and two competing methods VBRD and BCH in
the bottom row. We report p-values of the Kolmogorov-Smirnov test statistics in
the subtitles.

Note that tuning parameters for all the methods are chosen according to their
“oracle” theoretical values. Error and design are normally distributed with Toeplitz
correlation structure with ρ = 0.4. The histograms are computed based on 500
simulation runs.
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Figure 3.3: Distribution of the test statistics under the null hypothesis
H0 : β∗,2 = 3/

√
p (in blue) and the standard normal distribution N (0, 1) (in red)

with n = 100 and p = 500. In this example we consider dense β and sparse a
setting and compare the distribution under the null of our tests (with and without
known variance) in the top row and two competing methods VBRD and BCH in
the bottom row. We report p-values of the Kolmogorov-Smirnov test statistics in
the subtitles.

Note that tuning parameters for all the methods are chosen according to their
“oracle” theoretical values. Error and design are normally distributed with Toeplitz
correlation structure with ρ = 0.4. The histograms are computed based on 500
simulation runs.
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Figure 3.4: Distribution of the test statistics under the null hypothesis
H0 :

∑p
j=1 β∗,j = 3

√
p (in blue) and the standard normal distribution N (0, 1) (in

red) with n = 100 and p = 500. In this example we consider dense β and dense a
setting and compare the distribution under the null of our tests (with and without
known variance) in the top row and two competing methods VBRD and BCH in
the bottom row. We report p-values of the Kolmogorov-Smirnov test statistics in
the subtitles.

Note that tuning parameters for all the methods are chosen according to their
“oracle” theoretical values. Error and design are normally distributed with Toeplitz
correlation structure with ρ = 0.4. The histograms are computed based on 500
simulation runs.
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Table 3.1: Type I errors over 500 repetitions of the 5% level proposed tests
together with VBRD and BCH. In the table, NA symbol indicates that the
method cannot be implemented “as is”.

Type I Error
Hypothesis Setting Unknown ΣX Known ΣX VBRD BCH

Sparse β and Sparse a 7.4% 5.6% 8.2% 6.6%
Sparse β and Dense a 4.4% 4.8% 7.4% NA
Dense β and Sparse a 3.6% 4.4% 33.4% 27.2%
Dense β and Dense a 5.6% 3.0% 67.2% NA

these figures: our tests and existing methods are quite similar for sparse β∗ and

sparse a, whereas our tests behave nominally for other problems with preserving

both low Type I error rates and Type II error rates. The biggest advantages

are seen for dense vectors β∗ with other methods behaving in a manner close to

random guessing. In addition to the advantages in Type I error, our methods

also display certain power advantages. In the case of equal-correlation setting we

observe that our methods consistently reach faster power than BCH method even

in the case of all sparse setting. Observe that the precision matrix in this setting

is not sparse and our methods are still well-behaved. In the case of dense models,

VBRD method completely breaks down with Type I or Type II error being close

to 1. For non-Gaussian design we see that VBRD may not be a nominal test any

more regardless of the model sparsity. BCH behaves more stably in this case but

fails to apply for the hypothesis settings (ii) and (iv) as described at the beginning

of the Section. In conclusion, we observe that our methods are stable across vastly

different designs and model setting whereas existing methods fail to control either

Type I error rate or Type II error rate. Hence the proposed methodology offers a

robust and more widely applicable alternative to the existing inferential procedures,

achieving better error control in difficult setting and not loosing much in the simples

cases.
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Figure 3.5: Power curves of competing methods across different hypothesis
a>β∗ = g0 settings.

Design settings follows Example 1 with n = 100 and p = 500. The alternative
hypothesis takes the form of a>β∗ = g0 + h with h presented on the x-axes. The y-
axes contains the average rejection probability over 500 repetition. Therefore, h = 0
corresponds to Type-I error and the remaining ones the Type II error. “Known
variance” denotes the method as is introduced in Section 2 whereas, “unknown
variance” denotes the method introduced in Section 3. VBRD and BCH refer to
the methods proposed in Geer, Bühlmann, Ritov, and Dezeure (2014) and Belloni,
Chernozhukov, and Hansen (2014), respectively. Note that tuning parameters for all
the methods are chosen according to their “oracle” theoretical values. If a method
could not be implemented as is proposed in its respective paper it wasn’t included
in the graph.
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Figure 3.6: Power curves of competing methods across different hypothesis
a>β∗ = g0 settings. Design settings follows Example 2 with n = 100 and p = 500.
The alternative hypothesis takes the form of a>β∗ = g0 + h with h presented on
the x-axes. The y-axes contains the average rejection probability over 500
repetition. Therefore, h = 0 corresponds to Type-I error and the remaining ones
the Type II error. “Known variance” denotes the method as is introduced in
Section 2 whereas, “unknown variance” denotes the method introduced in Section
3. VBRD and BCH refer to the methods proposed in Geer, Bühlmann, Ritov, and
Dezeure (2014) and Belloni, Chernozhukov, and Hansen (2014), respectively.

Note that tuning parameters for all the methods are chosen according to their
“oracle” theoretical values. If a method could not be implemented as is proposed in
its respective paper it wasn’t included in the graph.
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Figure 3.7: Power curves of competing methods across different hypothesis
a>β∗ = g0 settings. Design settings follows Example 3 with n = 100 and p = 500.
The alternative hypothesis takes the form of a>β∗ = g0 + h with h presented on
the x-axes. The y-axes contains the average rejection probability over 500
repetition. Therefore, h = 0 corresponds to Type-I error and the remaining ones
the Type II error. “Known variance” denotes the method as is introduced in
Section 2 whereas, “unknown variance” denotes the method introduced in Section
3. VBRD and BCH refer to the methods proposed in Geer, Bühlmann, Ritov, and
Dezeure (2014) and Belloni, Chernozhukov, and Hansen (2014), respectively.

Note that tuning parameters for all the methods are chosen according to their
“oracle” theoretical values. If a method could not be implemented as is proposed in
its respective paper it wasn’t included in the graph.
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3.5.2 Real data example: equity risk premia

We apply the methods developed in Section 3.3 to inference of equity risk

premia during different states of the economy. Some studies have found that the

risk premia of stock market returns have different predictability, depending on

whether the macroeconomy is in recession or expansion; see Rapach, Strauss, and

Zhou (2010), Henkel, Martin, and Nardari (2011) and Dangl and Halling (2012).

One common explanation for this is time variation in risk premia; see Henkel,

Martin, and Nardari (2011). It is plausible that the stock market is riskier in

recessions than in expansions and thus a higher expected return is demanded by

investors, implying that the expected stock returns can be predicted by the state of

the macroeconomy. In this section, we revisit this argument by directly conducting

inference on the expected return of the stock market conditional on a large number

of macroeconomic variables.

Let yt be the excess return of the U.S stock market observed at time t and

xt−1 ∈ Rp be a large number of macroeconomic variables observed at time t−1. Let

st ∈ {0, 1} denote the NBER recession indicator; st = 1 means that the economy is

in recession at time t. We would like to conduct inference on E(yt | xt−1) for the two

different values of st−1. Formally, we wish to construct confidence intervals for the

following quantities: (a) E[E(yt | xt−1) | st−1 = 1], (b) E[E(yt | xt−1) | st−1 = 0]

and (c) E[E(yt | xt−1) | st−1 = 1]− E[E(yt | xt−1) | st−1 = 0].

We impose a linear model on the risk premia: E(yt | xt−1) = x>t−1β∗ for

some unknown β∗ ∈ Rp. Hence, the quantities of interest are: a>1 β∗, a>0 β∗ and

(a1 − a0)>β∗, where aj = E(xt−1 | st−1 = j). The macroeconomic variables we use

are from the dataset constructed by McCracken and Ng (2015). We also include

the squared, cubed and fourth power of these variables, leading to p = 440 (after

removing variables with more than 30 missing observations). It is possible that

β∗ ∈ Rp is not a sparse vector because many macroeconomic variables might be

relevant and each might only explain a tiny fraction of the equity risk premia.

Therefore, the methods proposed in this article are particularly useful because they

do not assume the sparsity of β∗.

Remark 3.5.1. There have been numerous attempts to include information from
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Table 3.2: 95% confidence intervals for equity risk premia

The values are reported in annualized percentage, i.e., 2.79 means 2.79%.

Lower bound Upper bound
Risk premia in expansion a>0 β∗: 2.79 10.94
Risk premia in recession a>1 β∗: 6.32 36.92
Risk premia difference (a1 − a0)>β∗: 5.13 38.30

many macroeconomic variables in estimating the equity risk premium. Rapach,

Strauss, and Zhou (2010) use the model combination approach by taking the

simple average of 14 univariate linear models. Although this approach manages to

reduce the variance in the predictions, it only produces a single point prediction

and does not deliver a confidence interval. Moreover, under the specification of

E(yt | xt−1) = x>t−1β∗, we should not expect the simple average of predictions by

individual components of xt−1 to be close to x>t−1β∗, especially with highly correlated

regressors. Another popular approach is to use factor models. This method is

widely used in macroeconomics for predictions; see Stock and Watson (2002a),

Stock and Watson (2002b) and McCracken and Ng (2015). The idea is to extract

a few principal components (PC’s) from xt and to predict yt using these PC’s.

Although the PC’s account for a large variation in xt−1, they are not hard-wired

to have high predictive power for yt unless we assume that the PC’s capture the

factors that drive yt. In some sense, this factor approach only uses information in

xt−1 that is relevant for predicting variations among different components of xt−1;

by contrast, the methodology we propose in this article allows us to use all the

information in xt−1.

Our dataset has 659 monthly observations starting from 1960. We use the

first 20 years (n = 240) to train the data and the last 659− n months to compute

aj =
∑659

t=n+1 xt1{st = j}/
∑659

t=n+1 1{st = j}. In other words, we investigate the

equity risk premia between 1980 and 2014. We conduct inference on the average

equity risk premia in different states of the macroeconomy. The 95% confidence

intervals for a>1 β∗, a>0 β∗ and (a1 − a0)>β∗ are reported in Table 3.2.

The confidence intervals in Table 3.2 are very informative for our purpose.
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Figure 3.8: 95% confidence interval for the risk premia at each time period (the
blue band) with the grey shades representing the NBER recession periods.

The results presented in Table 3.2, imply that the risk premia in recessions are

higher than in expansions and that the magnitude of difference is economically

meaningful. These results are consistent with existing literature; see Table 1 of

Henkel, Martin, and Nardari (2011). Figure 3.8 plots the confidence intervals for

E(yt | xt−1) at each t. This figure is consistent with the hypothesis that, during

the Recessions (e.g., in the early 80’s or around 2008), the risk premia went up

substantially.

3.6 Discussions

In this article, we develop new methodology for testing hypotheses on a>β∗,

where a is given and β∗ is the regression parameter of a high-dimensional linear

model. Under the proposed methodology, a new restructured regression and with

features that are synthesized and augmented, is constructed based on a and is used

to obtain moment conditions that are equivalent to the null hypothesis. Estimators

proposed are tailored to the problem at hand and solve constrained high-dimensional

optimization problems. The two proposed methods deal with the scenario with
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known ΣX and the scenario with unknown ΣX , respectively. The first can be

used when a prior information about correlation among the features exists; a

case of independent features, whereas the second applies more broadly to many

scientific examples where feature correlations need to be estimated. To solve a

high-dimensional inference problem, there exists at least one competing choice. It

is based on the “debiasing” principles of Zhang and Zhang (2014). However, the

principles laid out therein only apply to strictly sparse linear models. Therefore,

we fulfill an important gap in the existing literature by developing methodology

that allows fully non-sparse linear models.

Restructuring the model according to the hypothesis under testing allows

for the high-dimensional a and β∗ that are not necessarily sparse. The synthe-

sized features are customized based on the null hypothesis and are close to being

orthogonal. We note that this customization is the key, since the orthogonality

per se is not useful. Techniques that only induce feature orthogonality, such as

pre-conditioning by Jia and Rohe (2012) and DECO by Wang, Dunson, and Leng

(2016), still cannot be used to test H0 : a>β∗ = g0 when a and β∗ are dense.

Observe that we have proposed two different inferential methods. However,

it is not necessarily true that the method proposed in Section 2 dominates the one

proposed in Section 3 in terms of power. The main difference between the method is

in the definition of the moment condition. The method assuming knowledge of ΣX

avoids estimation of β∗ and hence is extremely easy to implement; however, when

β∗ is sparse (and thus easy to estimate), not using information on β∗ can cause

some loss of power. The method proposed in Section 2 essentially treats w>i β∗ as

the error term. In contrast, the method proposed in Section 3 computes an estimate

for w̃>i π∗ (which in spirit corresponds to w>i β∗); when the model turns out to be

sparse, the method without knowledge of ΣX can essentially “remove” w>i β∗ from

the error term, thereby achieving better power. For dense models, this reasoning

does not apply and thus it is not clear which one should be more powerful.

To conclude the article, we would like to discuss here valuable topics for

future research. The proposed methodology can be used to conduct inference of

conditional distributions of the response, whenever the distribution function of ε,
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Q(·) is known or is consistently estimated. Specific example includes construction

of prediction intervals for high-dimensional linear models – a topic of extreme

importance. For FY |X(y, x) = P (yn+1 ≤ y | xn+1 = x) FY |X can be parametrized as

FY |X(y, x; β∗, Q) = Q(y − x>β∗). For a given x, we can obtain a confidence set for

x>β∗ : Î(1− α, x) such that P (x>β∗ ∈ Î(1− α, x))→ 1− α, by inverting the tests

proposed in this article. This leads to a natural confidence set for the FY |X(y, x):

P (FY |X(·, x) ∈ Ŝ(1− α, x))→ 1− α, where

Ŝ(1− α, x) = {Q(· − c) | c ∈ Î(1− α, x)}.

If we restrict the model parameters to be sparse, then we can consistently estimate εi
(and thus Q(·)) and consequently form valid prediction intervals – a topic of specific

importance for practitioners. However, when the model is allowed to be non-sparse

and high-dimensional, the question of construction of prediction intervals hasn’t

been answered and needs special considerations. Additionally, under this setup,

the proposed methods also lead to an inference method for (possibly nonlinear)

functionals of the conditional distribution of yn+1 given xn+1. For example, suppose

that one is interested in H(u, x) = inf{y ∈ R | FY |X(y, x) ≥ u}. Following the

above proposal, we can simply take

Ĥ(u, x, α) = {inf{y ∈ R | Q(y − c) ≥ u} | c ∈ Î(1− α, x)}

as a confidence set for H(u, x).
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Appendix A

Proofs and examples for Chapter 1

In Appendix A.1, we provide a simple example illustrating the difficulties

arising from the cross-sectional dependence in the error terms. The rest of the

appendix contains proofs for the technical results in the main text. The theoretical

results in the main text are proved in Appendix A.2. In Appendix A.3, we provide

useful technical tools that are used in Appendix A.2.

We introduce some notations that will be used extensively for the rest of

the paper. We denote max{a, b} and min{a, b} by a ∨ b and a ∧ b, respectively.
For a matrix A, we define ‖A‖∞ = ‖vecA‖∞. For a positive integer q, we define

[q] = {1, . . . , q}. For a set A, |A| denotes the cardinality (number of elements) of

A. We will repeatedly use the notation OP (logO(1) n) to denote a term of order

OP ((log n)r) for some constant 0 < r < ∞. Finally, “wpa1” denotes the phrase

“with probability approaching one”.

A.1 An example of difficulties due to cross-

sectional dependence

Suppose that yi,t = x′i,tβt + εi,t with εi,t = ui,t +L′iFt. Assume that, for each

t, {(Li, xi,t)}ni=1 is independent of {(Ft, ui,t)}ni=1, EFt = 0 and Eui,t = 0. Therefore,

strict exogeneity holds: E(εi,t | {xi,t}ni=1) = 0.

However, the OLS estimator for each t might not be consistent for βt. To

124
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see this, let β̂OLS,t = (
∑n

i=1 xi,tx
′
i,t)
−1(
∑n

i=1 xi,tyi,t). The estimation error takes the

form

β̂OLS,t − βt =

[
n−1

n∑
i=1

xi,tx
′
i,t

]−1 [
n−1

n∑
i=1

xi,tui,t +

(
n−1

n∑
i=1

xi,tL
′
i

)
Ft

]

The problem is that n−1
∑n

i=1 xi,tL
′
i need not be close to zero since the

sequence {Lα,idi,t−1}ni=1 might not have weak dependence across i and Exi,tL′i could
be non-zero.

A.2 Proofs of theoretical results in the main text

We provide the proof of Theorem 1.3.1 in Appendix A.2.1. Appendix A.2.2

contains proofs of Theorems 1.3.3, 1.3.4 and 1.3.5, as well as Theorem 1.3.2 and

Corollary 1.3.1. Other results, including Theorems 1.3.6, 1.3.7 and 1.4.1, are proved

in Appendix A.2.3. In Appendix A.2.4, we show Lemma A.2.16, which establishes

strong mixing properties for the process described in Example 1.2.1. We recall

some definitions used in the main text as well as introducing some new definitions
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that will be used in the rest of this section:

Σt = n−1
∑n

i=1 Evt,iv′t,i

v̄i,t = Σ−1
t vt,i

Gi,t = v̄i,tui,t

Σ̂t = n−1v̂′tv̂t = n−1
∑n

i=1 v̂i,tv̂
′
i,t

ˆ̄vi,t = Σ̂−1
t v̂i,t

Ĝi,t = ˆ̄vi,tûi,t

Gi = (G′i,1, . . . , G
′
i,T )′

Ĝi = (Ĝ′i,1, . . . , Ĝ
′
i,T )′

Ω = n−1
∑n

i=1 EJGiG
′
iJ
′

Ω̂ = n−1
∑n

i=1 JĜiĜ
′
iJ
′

ut = (u1,t, . . . , un,t)
′ ∈ Rn

vt = (v1,t, . . . , vn,t)
′ ∈ Rn×k

v̂t = (v̂1,t, . . . , v̂n,t)
′ ∈ Rn×k

αt = (α1,t, . . . , αn,t)
′ ∈ Rn with αi,t = L′α,iFα,t

α̂t = L̂αF̂α,t

ût = yt −Xtβ̂t − α̂t

Dn,t = n−1/2Σ̂−1
t v̂′t(αt − α̂t) + n−1/2

(
Σ̂−1
t v̂′t − Σ−1

t v′t

)
ut

Dn = (D′n,1, . . . , D
′
n,T )′

(A.2.1)

A.2.1 Proof of Theorem 1.3.1

Lemma A.2.1. Under Assumption 1, the following hold:

(1) ‖LQ‖∞, ‖Lα‖∞, ‖FQ‖∞, ‖Fα‖∞, ‖u‖∞, ‖v‖∞, max(i,t)∈[n]×[T ] ‖v̄i,t‖,
maxi,t ‖v̄i,tui,t‖, and max(i,t)∈[n]×[T ] ‖xi,t‖ are OP (logO(1) n).

(2) both ‖u‖ and ‖v‖ are OP (
√
n log n).

Proof. Proof of part (1). The first six claims hold by Lemma A.3.7 and the
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exponential-type tails in Assumption 1.

To bound maxi,t ‖v̄i,t‖, notice that the ‖·‖1-norm of rows of Σ−1
t are bounded

by some constants due to Assumption 1. Therefore, by Lemma A.3.3(1), en-

tries of v̄i,t have exponential-type tails with parameters that depend only on the

constants in Assumption 1. Thus, Lemma A.3.7 implies max(i,t)∈[n]×[T ] ‖v̄i,t‖ ≤√
kmax(i,t)∈[n]×[T ] ‖v̄i,t‖∞ =

√
kOP (logO(1) |[n]× [T ]|) = OP (logO(1) n).

To see the bound for maxi,t ‖v̄i,tui,t‖, notice that Lemma A.3.3(3) implies

the exponential-type tail for entries of v̄i,tui,t. Then the bound follows by Lemma

A.3.7.

To see the last claim of part (1), notice that xi,t = L′Q,iFQ,t + vi,t. Since

entries of LQ,i, FQ,t and vi,t have exponential-type tails, it follows, by Lemma

A.3.3, that entries of xi,t also have exponential-type tails with parameters that only

depend on the constants in Assumption 1. Thus, the bound for max(i,t)∈[n]×[T ] ‖xi,t‖
follows by Lemma A.3.7. We have proved part (1).

Proof of part (2). We apply the random matrix theory. By Theorem 5.48

and Remark 5.49 in Vershynin (2010),

E‖u‖ ≤ C1/2n1/2 + C̄
√
m log (n ∧ T ), (A.2.2)

where C̄ is an absolute constant and m := Emaxi ‖ui‖2, where ui =

(ui,1, . . . , ui,T )′ ∈ RT . Let s2
i = E‖ui‖2.

By Lemma A.3.3(3)-(4), there exists a constant b∗ > 0 such that u2
i,t − Eu2

i,t

has an exponential-type tail with parameter (b∗, γ1), where γ1 = γ∗/2. Let γ2 =

min{γ∗∗, 1/2}. Then αn(t) ≤ b2 exp(−tγ2) and γ2 < 1. Hence, γ = (γ−1
1 + γ−1

2 )−1 <

γ2 < 1. By Theorem 1 in Merlevède, Peligrad, and Rio (2011), there exist positive

constants C1, . . . , C5 > 0 depending only on b∗, b2, γ and γ2 such that ∀x > 0, we

have

P
(∣∣‖ui‖2 − s2

i

∣∣ > anx
)

= P

(∣∣∣∣∣
T∑
t=1

(
u2
i,t − Eu2

i,t

)∣∣∣∣∣ > anx

)
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≤ T exp (−C1a
γ
nx

γ) + exp

(
− C2a

2
nx

2

1 + C3T

)
+ exp

[
−C4a

2
nx

2

T
exp

(
C5(anx)γ/(1−γ)(log anx)−γ

)]
,

where an = d∗
√
T log n and d∗ is a constant to be determined. The union bound

implies that ∀x > 0,

P
(

max
i

∣∣‖ui‖2 − s2
i

∣∣ > anx
)

≤
n∑
i=1

P
(∣∣‖ui‖2 − s2

i

∣∣ > anx
)

≤ nT exp (−C1a
γ
nx

γ) + n exp

(
− C2a

2
nx

2

1 + C3T

)
+ n exp

[
−C4a

2
nx

2

T
exp

(
C5(anx)γ/(1−γ)(log anx)−γ

)]
.

Thus, by elementary computations, we can choose large constants a∗, b∗, d∗ > 0

such that ∀x ≥ a∗

P
(

max
i

∣∣‖ui‖2 − s2
i

∣∣ /(d∗√T log n
)
> x

)
= P

(
max
i

∣∣‖ui‖2 − s2
i

∣∣ > anx
)

≤ b∗ exp (−xγ) . (A.2.3)

Therefore,

Emax
i

∣∣‖ui‖2 − s2
i

∣∣ /(d∗√T log n
)

(i)
=

ˆ ∞
0

P
(

max
i

∣∣‖ui‖2 − s2
i

∣∣ /(d∗√n log n
)
> x

)
dx

≤ a∗ +

ˆ ∞
a∗

P
(

max
i

∣∣‖ui‖2 − s2
i

∣∣ /(d∗√n log n
)
> x

)
dx

(ii)

≤ a∗ + b∗

ˆ ∞
a∗

exp (−xγ) dx

= O(1),

where (i) follows by the identity EX =
´∞

0
P(X > x)dx for any non-negative
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random variable X and (ii) holds by (A.2.3). The above display implies that

m := Emax
i
‖ui‖2 ≤ Emax

i

∣∣‖ui‖2 − s2
i

∣∣+ max
i
s2
i =

√
T log nO(1) + Cn

= O(n ∨
√
T log n)

(i)
= O(n),

where (i) holds by T � nξ with ξ ∈ (6/7, 2). The above display and (A.2.2)

implies that E‖u‖ = O(
√
n log n) and thus ‖u‖ = OP (

√
n log n). This proves part

(2) for ‖u‖. The result for ‖v‖ follows by an analogous argument. The proof is

complete.

Lemma A.2.2. Let Assumption 1 hold. Then the following hold:

(1) max(i,j,t)∈[n]×[k]×[T ]

∑T
s=1 |E(vi,t,jui,s)| = O(1);

(2) max(i,t,j1,j2)∈[n]×[T ]×[k]×[k]

∑T
s=1 |E(vi,t,j1vi,s,j2)| = O(1);

(3) max(i,s)

∑T
t=1 |E(G′i,tGi,s)| = O(1).

Proof. We first show part (1). By the exponential-type tails, Lemma A.3.3(2)

implies that there exists a constant C > 0 such that maxi,t,j E|vi,t,j|4 ≤ C and

maxi,s E|ui,s|4 ≤ C. By Corollary 16.2.4 of Athreya and Lahiri (2006), we have

that, ∀i, t, j, s, |E(vi,t,jui,s)| ≤ 4 [2αmixing(|t− s|)]1/2C2. Therefore,

max
i,j,t

T∑
s=1

|E(vi,t,jui,s)| ≤ 4
√

2C2 max
t

T∑
s=1

√
αmixing(|t− s|)

(i)

≤ 4
√

2C2c∗max
t

T∑
s=1

exp[−|t− s|γ∗∗ ] ≤ 8
√

2C2c∗

∞∑
τ=1

exp[−τ γ∗∗ ],

where (i) holds by Assumption 1. Since
∑∞

τ=1 exp[−τ γ∗∗ ] <∞, the part (1) follows.

Notice that for i, t, s, j1, j2, Corollary 16.2.4 of Athreya and Lahiri (2006)

still implies that |E(vi,t,j1vi,s,j2)| ≤ 4 [2αmixing(|t− s|)]1/2C2. Part (2) follows by

the same argument.

To see part (3), let v̄i,t,j denote the j-th component of v̄i,t (defined in

(A.2.1)). Since each row of Σ−1
t is bounded in ‖ · ‖1-norm and entries of vi,t have

exponential-type tails, it follows, by Lemma A.3.3(1), that v̄i,t,j has an exponential-

type tail. Using Lemma A.3.3(3), we have that v̄i,t,jui,t has an exponential-type
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tail. Then by the same argument as in the proof of part (1), we have that

max(i,s,j)∈[n]×[T ]×[k]

∑T
t=1 |Ev̄i,t,jui,tv̄i,s,jui,s| = O(1). Since k is fixed, part (3) follows

by G′i,tGi,s =
∑k

j=1 v̄i,t,jui,tv̄i,s,jui,s. The proof is complete.

Lemma A.2.3. Under Assumption 1, the following hold:

(1) maxi∈[n] ‖
∑T

t=1 v
′
i,tF

′
Q,t‖ = OP (T 1/2 logO(1) n).

(2) maxi∈[n] ‖
∑T

t=1 ui,tF
′
α,t‖ = OP (T 1/2 logO(1) n).

(3) maxt∈[T ] ‖L′Qvt‖ = OP (n1/2 logO(1) n).

(4) maxt∈[T ] ‖L′αvt‖ = OP (n1/2 logO(1) n).

(5) maxt ‖L′Qut‖ = OP (n1/2 logO(1) n).

(6) maxt ‖L′αut‖ = OP (n1/2 logO(1) n).

(7) maxt∈[T ] ‖v′tut‖ = OP (n1/2 logO(1) n).

(8) maxt∈[T ] ‖n−1v′tvt − Σt‖ = OP (n−1/2 logO(1) n).

(9) maxs,t∈[T ] ‖
∑n

i=1(vi,tx
′
i,s − Evi,tx′i,s)‖ = OP (n1/2 logO(1) n).

(10) maxt∈[T ] ‖v′tαt‖ = OP (n1/2 logO(1) n).

(11) maxt∈[T ] ‖v′tuFα‖ = OP

(
[
√
nT + n] logO(1) n

)
.

(12) maxt∈[T ] ‖u′tvFQ‖ = OP

(
[
√
nT + n] logO(1) n

)
.

Proof. Proof of part (1). Let j = (j1, j2) ∈ J := [n] × [rQ] and Fn the σ-

algebra generated by FQ. Since ‖FQ‖∞ = OP (logO(1) n) (Lemma A.2.1), there

exists a constant c0 > 0 such that P(An) → 1, where An = {‖FQ‖∞ ≤ hn} with
hn = logc0 n.

Define et,j = v′j1,tF
′
Q,tτj2h

−1
n 1{‖FQ,t‖∞ ≤ hn}, where τj2 is the j2th column

of IrQ . Notice that |et,j| ≤ |vj1,t|. By Assumption 1, ∀z > 0, P(|et,j| > z | Fn) ≤
P(|vj1,t| > z | Fn) ≤ exp[1 − (z/b∗)

γ∗ ] a.s. Since {(et,j)j∈J}Tt=1 is strong mixing

with mixing coefficient αmixing(·) defined in Assumption 1 and v is independent

of Fn, {(et,j)j∈J}Tt=1 is strong mixing in the sense of Lemma A.3.8. It follows, by

Lemma A.3.8, that there exist constants c, r > 0 depending only on the constants

in Assumption 1 such that

P

(∣∣∣T−1/2

T∑
t=1

et,j

∣∣∣ > z

∣∣∣∣∣Fn
)
≤ exp[1− (z/c)r] a.s. ∀j ∈ J, ∀z > 0.

This exponential-type tail condition and Lemma A.3.7 imply that
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maxj∈J |T−1/2
∑T

t=1 et,j| = OP (logO(1) n). Therefore,

max
i∈[n]

∥∥∥∥∥
n∑
t=1

v′i,tF
′
Q,t

∥∥∥∥∥1An ≤ hnr
1/2
Q T 1/2 max

j∈J

∣∣∣∣∣T−1/2

T∑
t=1

et,j

∣∣∣∣∣ (i)
= OP (T 1/2 logO(1) n),

where (i) holds by hn = O(logO(1) n). Since P(An)→ 1, part (1) follows.

Parts (2)-(7) follow by analogous arguments.

Proof of part (8). Notice that n−1v′tvt − Σt = n−1
∑n

i=1[vi,tv
′
i,t − Evi,tv′i,t].

By Lemma A.3.3(3), there exist constants c, r > 0 such that each entry of vi,tv′i,t
has an exponential-type tail with parameter (c, r) for all i, t. Then part (8) follows

by Lemma A.3.6.

Part (9) follows by an analogous argument.

Part (10) follows by maxt∈[T ] ‖v′tαt‖ ≤ maxt∈[T ] ‖v′tLα‖maxt∈[T ] ‖Fα,t‖,
together with part (4) and Lemma A.2.1.

Proof of part (11). Let j = (j1, j2) ∈ J := [k]× [rα]. Let Fn be σ-algebra

generated by Fα. As before, since ‖Fα‖∞ = OP (logO(1) n) (Lemma A.2.1), there

exists a constant c0 > 0 such that P(An) → 1, where An = {‖Fα‖∞ ≤ hn} with
hn = logc0 n.

For i ∈ [n] and j = (j1, j2) ∈ J , define di,j2 =

T−1/2
∑T

s=1 ui,sFα,s,j2h
−1
n 1{|Fα,s,j2| ≤ hn}. Notice that [v′tuFα]j1,j21An =

T 1/2hn
∑n

i=1 vi,t,j1di,j2 . Notice that ∀z > 0,

P(|ui,sFα,s,j2h−1
n 1{|Fα,s,j2| ≤ hn}| > z | Fn) ≤ P(|ui,s| > z | Fn) ≤ exp[−(z/b∗)

γ∗ ].

Since u and Fα are independent, the sequence {ui,sFα,s,j2h−1
n 1{|Fα,s,j2|}Ts=1

is strong mixing conditional on Fn in the sense of Lemma A.3.8. It follows, by

Lemma A.3.8, that there exist constants c1, r1 > 0 such that P(|di,j2| > z | Fn) ≤
exp[−(z/c1)r1 ], ∀z > 0 for all i, j2.

Since vt is independent of Fn, it follows, by the exponential-type tails of

entries in vt and Lemma A.3.3(3), that there exist constants c2, r2 > 0 such that

P(|vi,t,j1di,j2 | > z | Fn) ≤ exp[−(z/c2)r2 ] ∀z > 0. Thus, Lemma A.3.6 implies that
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max
(t,j)∈[T ]×J

∣∣∣∣∣
n∑
i=1

[vi,t,j1di,j2 − E(vi,t,j1di,j2)]

∣∣∣∣∣
= OP (

√
n log |[T ]× J |) = OP (

√
n log n). (A.2.4)

Therefore,

max
t
‖u′tvFQ‖1An

(i)

≤ T 1/2
√
krαhn max

j,t

∣∣∣∣∣
n∑
i=1

vi,t,j1di,j2

∣∣∣∣∣
≤ T 1/2

√
krαhn

(
max
j,t

∣∣∣∣∣
n∑
i=1

[vi,t,j1di,j2 − E(vi,t,j1di,j2)]

∣∣∣∣∣+ max
j,t

n∑
i=1

|E(vi,t,j1di,j2)|

)
(ii)
= T 1/2OP (logO(1) n)

(
OP (

√
n log n) + max

j,t

n∑
i=1

|E(vi,t,j1di,j2)|

)
, (A.2.5)

where (i) follows by [v′tuFα]j1,j21An = T 1/2hn
∑n

i=1 vi,t,j1di,j2 , (ii) follows by (A.2.4)

and hn = OP (logO(1) n). Notice that

max
j,t

n∑
i=1

|E(vi,t,j1di,j2)|

≤ max
j,t

n∑
i=1

E|E(vi,t,j1di,j2 | Fn)|

(i)

≤ max
j,t

T−1/2

n∑
i=1

E

{
T∑
s=1

|E(vi,t,j1ui,s)| · |Fα,s,j2|h−1
n 1{|Fα,s,j2| ≤ hn}

}

≤ nT−1/2 max
j,t,i

T∑
s=1

|E(ui,t,j1ui,s)|

(ii)
= O(nT−1/2),

where (i) holds by the definition of di,j2 and the independence between Fn and

vi,t,j1ui,s and (ii) holds by Lemma A.2.2. The above display and (A.2.5) imply

that maxt ‖u′tvFQ‖1An = OP

(
[
√
nT + n] logO(1) n

)
. Since P(An) → 1, part (11)

follows.

Part (12) follows by an analogous argument as part (11). The proof
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is complete.

Lemma A.2.4. Under Assumption 1,

max
1≤i≤n,1≤t≤T

‖v̂i,t − vi,t‖ = OP

([
n−1/2 + n1/2−ξ] logO(1) n

)
.

Proof. First notice that ‖v̂i,t−vi,t‖ = ‖L̂′Q,iF̂Q,t−L′Q,iFQ,t‖ = ‖τ ′i(L̂QF̂Q,t−LQFQ,t)‖.
We apply Lemma A.3.11 with L = LQ, F = FQ, e = v and a = τi, where τi is the ith

column of In. By Lemmas A.2.1 and A.2.3(4), we have maxt ‖FQ,t‖ = OP (logO(1) n),

‖v‖ = OP (
√
n logO(1) n) and maxt ‖L′Qvt‖ = OP (

√
n logO(1) n). Therefore, Lemma

A.3.11(4) and T � nξ imply that

max
i,t
‖τ ′i(L̂QF̂Q,t − LQFQ,t)‖ ≤ OP (n−ξ logO(1) n) max

t

∥∥∥∥∥
T∑
t=1

v′i,tF
′
Q,t

∥∥∥∥∥
+OP

(
[n−ξ/2 + n−1/2] logO(1) n

)
max
i
‖LQ,i‖

+OP

(
[n1/2−ξ + n−ξ/2] logO(1) n

)
max
i
‖τi‖.

Notice that maxi ‖τi‖ = 1 and maxi ‖LQ,i‖ ≤
√
rQ‖LQ‖∞ = OP (logO(1) n)

(due to Lemma A.2.1). Thus, by the above display and Lemma A.2.3(1), we have

max
i,t
‖τ ′i(L̂QF̂Q,t − LQFQ,t)‖ = OP

([
n−1/2 + n1/2−ξ + n−ξ/2

]
logO(1) n

)
.

Since max
{
n−1/2, n1/2−ξ, n−ξ/2

}
≤ 2n−1/2 + 2n1/2−ξ, the desired result

follows.

Lemma A.2.5. Under Assumption 1, both maxt ‖Σ̂t−Σt‖ and maxt ‖Σ̂−1
t −Σ−1

t ‖
are OP

([
n−1/2 + n1/2−ξ] logO(1) n

)
.

Proof. First notice that

max
t
‖Σ̂t − Σt‖

≤ max
t
‖n−1(v̂′tv̂t − v′tvt)‖+ max

t
‖n−1v′tvt − Σt‖

(i)

≤ max
t
‖n−1(v̂t − vt)′v̂t‖+ max

t
‖n−1v′t(v̂t − vt)‖+OP (n−1/2 logO(1) n)
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≤ n−1 max
t
‖v̂t − vt‖max

t
‖v̂t‖+ n−1 max

t
‖vt‖max

t
‖v̂t − vt‖

+OP (n−1/2 logO(1) n), (A.2.6)

where (i) holds by Lemma A.2.3(8). By Lemma A.2.4, we have that

max
t
‖v̂t − vt‖ ≤ n1/2 max

i,t
‖v̂i,t − vi,t‖ = OP

([
1 + n1−ξ] logO(1) n

)
. (A.2.7)

By Lemma A.2.1(2), maxt ‖vt‖ ≤ ‖v‖ = OP (n1/2 logO(1) n). Since ξ > 1/2

(Assumption 1), it follows that

max
t
‖v̂t‖ ≤ max

t
‖vt‖+ max

t
‖v̂t − vt‖ = OP

(
n1/2 logO(1) n

)
. (A.2.8)

Now we combine (A.2.6) with (A.2.7) and (A.2.8) and obtain

max
t
‖Σ̂t − Σt‖ = OP

([
n−1/2 + n1/2−ξ] logO(1) n

)
= oP (1).

Notice that ‖Σ̂−1
t −Σ−1

t ‖ = ‖Σ̂−1
t (Σt − Σ̂t)Σ

−1
t ‖ ≤ ‖Σ̂−1

t ‖‖Σt − Σ̂t‖‖Σ−1
t ‖ =

‖Σt − Σ̂t‖/(smin(Σ̂t)smin(Σt)). By Lemma A.3.10(1), sk(Σ̂t) + s1(Σt − Σ̂t) ≥ sk(Σt).

It follows that

max
t
‖Σ̂−1

t − Σ−1
t ‖

≤ maxt ‖Σ̂t − Σt‖

mint smin(Σt)
(

mint smin(Σt)−maxt ‖Σ̂t − Σt‖
) = OP (1) max

t
‖Σ̂t − Σt‖.

The proof is complete.

Proof of Theorem 1.3.1. Let X = UXSXV
′
X be an SVD, where UX ∈ Rn×n

and VX ∈ RkT×kT are orthogonal matrices and SX =

[
SX,1 0

0 SX,2

]
∈ Rn×kT with

SX,1 ∈ RrQ×rQ . By the definition of Q̂ and v̂, we have

Q̂ = UX

[
SX,1 0

0 0

]
V ′X and v̂ = UX

[
0 0

0 SX,2

]
V ′X .
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Therefore, v̂′Q̂ = 0. This means that v̂′tQ̂t = 0 ∀1 ≤ t ≤ T . Since

Yt = αt +Xtβt + ut and Xt = Q̂t + v̂t, it follows that

β̂t − βt = (v̂′tv̂t)
−1v̂′tYt − βt = (v̂′tv̂t)

−1v̂′t(αt + ut) + (v̂′tv̂t)
−1v̂′tQ̂t

(i)
= (v̂′tv̂t)

−1v̂′t(αt + ut) = n−1Σ̂−1
t v̂′t(αt + ut), (A.2.9)

where (i) holds by v̂′tQ̂t = 0. By Lemma A.2.3(7) and (10), maxt ‖v′tut‖ =

OP (n1/2 logO(1) n) and maxt ‖v′tαt‖ = OP (n1/2 logO(1) n). Hence,

max
t
‖v′t(αt + ut)‖ ≤ max

t
‖v′tαt‖+ max

t
‖v′tut‖ = OP (n1/2 logO(1) n). (A.2.10)

Notice that

max
t
‖(v̂t − vt)′(αt + ut)‖ ≤ max

t
‖v̂t − vt‖max

t
‖αt + ut‖

≤ n1/2 max
i,t
‖v̂i,t − vi,t‖max

t
‖αt + ut‖

≤ n1/2 max
i,t
‖v̂i,t − vi,t‖

[
max
t
‖LαFα,t‖+ max

t
‖ut‖

]
(i)

≤ n1/2 max
i,t
‖v̂i,t − vi,t‖OP (

√
n logO(1) n)

(ii)
= n1/2OP

([
n−1/2 + n1/2−ξ] logO(1) n

)
OP (
√
n logO(1) n)

= OP

([√
n+ n3/2−ξ] logO(1) n

)
, (A.2.11)

where (i) follows by maxt ‖LαFα,t‖ ≤
√
nrα‖Lα‖∞‖Fα‖∞ = OP (

√
n logO(1) n) (due

to Lemma A.2.1) and maxt ‖ut‖ ≤ ‖u‖ = OP (
√
n logO(1) n) (due to Lemma A.2.1(2))

and (ii) follows by Lemma A.2.4. Therefore, we obtain that

max
t
‖β̂t − βt‖

(i)
= n−1 max

t

∥∥∥Σ̂−1
t [v′t(αt + ut) + (v̂t − vt)′(αt + ut)]

∥∥∥
≤ n−1 max

t
‖Σ̂−1

t ‖
(

max
t
‖v′t(αt + ut)‖+ max

t
‖(v̂t − vt)′(αt + ut)‖

)
≤ n−1

(
max
t
‖Σ−1

t ‖+ max
t
‖Σ̂−1

t − Σ−1
t ‖
)
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×
(

max
t
‖v′t(αt + ut)‖+ max

t
‖(v̂t − vt)′(αt + ut)‖

)
(ii)
= OP

([
n−1/2 + n1/2−ξ] logO(1) n

)
,

where (i) holds by (A.2.9) and (ii) holds by (A.2.10), (A.2.11) and Lemma A.2.5.

The desired result follows by maxt ‖β̂t − βt‖∞ ≤ maxt ‖β̂t − βt‖.

A.2.2 Proofs for Theorems 1.3.3, 1.3.4 and 1.3.5 and Corol-

lary 1.3.1

Lemma A.2.6. Let ũ = (ũ1, . . . , ũT ) ∈ Rn×T with ũt = (ũ1,t, . . . , ũn,t)
′ and ũi,t =

ui,t + x′i.t(βt − β̂t). Under Assumption 1, we have

(1) maxt ‖Xt(β̂t − βt)‖ = OP

([
1 + n1−ξ] logO(1) n

)
and ‖ũ‖ =

OP

(
[nξ/2 + n1−ξ/2] logO(1) n

)
.

(2) maxt ‖v′t(ũ− u)Fα‖ = OP

(
[n+ nξ] logO(1) n

)
.

(3) maxt ‖u′t(v̂t − vt)‖ = OP

(
[1 + n1−ξ] logO(1) n

)
.

Proof. Proof for part (1). Notice that

max
t
‖Xt(β̂t − βt)‖ ≤

√
nmax

i,t
|x′i,t(β̂t − βt)|

≤
√
nmax

i,t
‖xi,t‖max

t
‖β̂t − βt‖

(i)
= OP

([
1 + n1−ξ] logO(1) n

)
, (A.2.12)

where (i) holds by Lemma A.2.1 and Theorem 1.3.1. The definition of ũ implies

that

‖ũ‖ ≤ ‖ũ− u‖+ ‖u‖ ≤
√
T max

t
‖Xt(β̂t − βt)‖+ ‖u‖

(i)
= OP

(
[nξ/2 + n1−ξ/2 + n1/2] logO(1) n

)
,

where (i) follows by (A.2.12), Lemma A.2.1(2) and T � nξ.

Notice that nξ/2 + n1−ξ/2 ≥ 2
√
nξ/2n1−ξ/2 = 2n1/2 > n1/2. Thus,
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max{nξ/2, n1−ξ/2, n1/2} ≤ nξ/2 + n1−ξ/2. Thus, the stated bound for ‖ũ‖ fol-

lows.

Proof for part (2). The definition of ũ implies that

max
t
‖v′t(ũ− u)Fα‖ (A.2.13)

= max
t

∥∥∥∥∥
T∑
s=1

(
n∑
i=1

vi,tx
′
i,s)(β̂s − βs)F ′α,s

∥∥∥∥∥
≤ max

t

T∑
s=1

∥∥∥∥∥(
n∑
i=1

vi,tx
′
i,s)(β̂s − βs)F ′α,s

∥∥∥∥∥
≤

[
max
t

T∑
s=1

∥∥∥∥∥
n∑
i=1

vi,tx
′
i,s

∥∥∥∥∥
]

max
s

∥∥∥(β̂s − βs)F ′α,s
∥∥∥

≤

[
max
t

T∑
s=1

∥∥∥∥∥
n∑
i=1

(vi,tx
′
i,s − Evi,tx′i,s)

∥∥∥∥∥+ max
t

T∑
s=1

∥∥∥∥∥
n∑
i=1

Evi,tx′i,s

∥∥∥∥∥
]

×max
s

∥∥∥(β̂s − βs)F ′α,s
∥∥∥ .

By Lemma A.3.3(3) and (4) (applied entry-wise), there exist constants b, γ > 0

such that ∀i, t, s, each entry of vi,tx′i,s − Evi,tx′i,s has an exponential-type tail with

parameter (b, γ). Hence,

max
t

T∑
s=1

∥∥∥∥∥
n∑
i=1

(vi,tx
′
i,s − Evi,tx′i,s)

∥∥∥∥∥ ≤ T max
s,t

∥∥∥∥∥
n∑
i=1

(vi,tx
′
i,s − Evi,tx′i,s)

∥∥∥∥∥
(i)
= OP (n1/2+ξ logO(1) n), (A.2.14)

where (i) follows by Lemma A.2.3(9) and T � nξ. Notice that

max
t

T∑
s=1

∥∥∥∥∥
n∑
i=1

Evi,tx′i,s

∥∥∥∥∥ ≤ max
t

n∑
i=1

T∑
s=1

∥∥Evi,tx′i,s∥∥
(i)

≤ max
t

n∑
i=1

T∑
s=1

∥∥Evi,tv′i,s∥∥+ max
t

n∑
i=1

T∑
s=1

∥∥Evi,tQ′i,s∥∥
≤ max

i,t
n

T∑
s=1

∥∥Evi,tv′i,s∥∥+ max
i,t

n
T∑
s=1

∥∥Evi,tQ′i,s∥∥
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(ii)
= O(n), (A.2.15)

where (i) holds by xi,s = Qi,s + vi,s and (ii) follows by maxi,t
∑T

s=1 ‖Evi,tv′i,s‖ ≤√
kmaxi,t

∑T
s=1 ‖Evi,tv′i,s‖∞ = O(1) (due to Lemma A.2.2) and Evi,tQ′i,s = 0 (by

the independence between vi,t and Qi,s). Also observe that

max
s

∥∥∥(β̂s − βs)F ′α,s
∥∥∥ ≤ √rα‖Fα‖∞max

s
‖β̂s−βs‖

(i)

≤ OP

(
[n−1/2 + n1/2−ξ] logO(1) n

)
,

(A.2.16)

where (i) holds by Theorem 1.3.1 and Lemma A.2.1.

Combining (A.2.13) with (A.2.14), (A.2.15) and (A.2.16), we obtain

maxt ‖v′t(ũ − u)Fα‖ = OP ([nξ + n + n3/2−ξ] logO(1) n). Since 3/2 − ξ < 1 (as

ξ > 6/7), part (2) follows.

Proof of part (3). Notice that maxt ‖u′t(v̂t − vt)‖ = maxt ‖u′t(L̂QF̂Q,t −
LQFQ,t)‖. We apply Lemma A.3.11(4) with L = LQ, F = FQ and e = v

(as well as a = ut in Lemma A.3.11(4)). By Lemmas A.2.1 and A.2.3(3), we

have ‖v‖ = OP (
√
n logO(1) n), maxt ‖FQ,t‖ = OP (logO(1) n) and maxt ‖L′Qvt‖ =

OP (n1/2 logO(1) n). Therefore, Lemma A.3.11(4) and T � nξ imply that

max
t
‖u′t(L̂QF̂Q,t − LQFQ,t)‖ ≤ OP (n−ξ logO(1) n) max

t
‖F ′Qv′ut‖

+OP

(
[n−ξ/2 + n−1/2] logO(1) n

)
max
t
‖L′Qut‖

+OP

(
[n1/2−ξ + n−ξ/2] logO(1) n

)
max
t
‖ut‖.

By Lemmas A.2.3(5) and (9), maxt ‖L′Qut‖ = OP (n1/2 logO(1) n) and

maxt ‖u′tvFQ‖ = OP (n logO(1) n). Since maxt ‖ut‖ ≤ ‖u‖ = OP (n1/2 logO(1) n) (due

to Lemma A.2.1(2)), we have

max
t
‖u′t(L̂QF̂Q,t − LQFQ,t)‖ = OP

(
[1 + n1−ξ + n(1−ξ)/2] logO(1) n

)
.

Since 1 + n1−ξ ≥ 2
√

1 · n1−ξ = 2n(1−ξ)/2 > n(1−ξ)/2, we have

max{1, n1−ξ, n(1−ξ)/2} ≤ 1 + n1−ξ and thus part (3) follows.

Lemma A.2.7. Under Assumption 1,
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(1) maxt ‖v′t(α̂t − αt)‖ = OP

([
n5(1−ξ)/2 + n(ξ−1)/2

]
logO(1) n

)
.

(2) maxi,t |α̂i,t − αi,t| = OP

(
[nξ/2−1 + n2−5ξ/2] logO(1) n

)
.

Proof. Proof for part (1). Notice that maxt ‖v′t(α̂t − αt)‖ = maxt ‖v′t(L̂αF̂α,t −
LαFα,t)‖. Recall that yi,t − x′i,tβ̂t = αi,t + ũi,t, where ũi,t is defined in Lemma

A.2.6. We apply Lemma A.3.11(4) with L = Lα, F = Fα and e = ũ (as well as

a = vt for Lemma A.3.11(4)). By Lemmas A.2.6(1) and A.2.1, we have ‖ũ‖ =

OP ([nξ/2 +n1−ξ/2] logO(1) n) and maxt ‖Fα,t‖ = OP (logO(1) n). It follows, by Lemma

A.3.11(4), T � nξ and straight-forward computations, that

max
t
‖v′t(L̂αF̂α,t − LαFα,t)‖

≤ OP

(
n−ξ logO(1) n

)
max
t
‖F ′αũ′vt‖

+OP (logO(1) n)
[
n−1M + n−1/2 + n1/2−ξ + nξ/2−1 + n1−3ξ/2

]
max
t
‖L′αvt‖

+OP (logO(1) n)
[
n1−3ξ/2 + nξ/2−1 + n2−5ξ/2 + (n−1 + n−ξ)M

]
max
t
‖vt‖,(A.2.17)

where M = maxt ‖L′αũt‖. Since ũt − ut = Xt(βt − β̂t), we have that

M ≤ max
t
‖L′αut‖+ ‖Lα‖max

t
‖Xt(β̂t − βt)‖

(i)

≤ OP

(
[n1/2 + n3/2−ξ] logO(1) n

)
,

(A.2.18)

where (i) holds by ‖Lα‖ ≤
√
nrα‖Lα‖∞ and Lemmas A.2.3(6), A.2.1(1) and A.2.6(1).

Notice that

max
t
‖F ′αũ′vt‖ ≤ max

t
‖F ′αu′vt‖+ max

t
‖F ′α(ũ− u)′vt‖

(i)
= OP

(
[n+ nξ] logO(1) n

)
,

(A.2.19)

where (i) holds by Lemmas A.2.3(11) and A.2.6(2), together with T � nξ and

n(1+ξ)/2 ≤ n+ nξ.

Now we combine (A.2.17) with (A.2.18), (A.2.19), maxt ‖L′αvt‖ =

OP (
√
n logO(1) n) (Lemma A.2.3(4)) and maxt ‖vt‖ ≤ ‖v‖ = OP (

√
n logO(1) n)

(Lemma A.2.1(2)). After some tedious computations, this yields

max
t
‖v′t(L̂αF̂α,t − LαFα,t)‖ = OP

(
[1 + a−1/2

n + an + a3/2
n + a2

n + a5/2
n ] logO(1) n

)
,
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where an = n1−ξ. By Lemma A.3.9, 1+a
−1/2
n +an+a

3/2
n +a2

n+a
5/2
n ≤ 6(a

−1/2
n +a

5/2
n )

for an > 0. Thus, part (1) follows.

Proof for part (2). The argument is similar to the one in part (1). We

apply Lemma A.3.11(4) with L = Lα, F = Fα and e = ũ (as well as a = τi in

Lemma A.3.11(4)), where τi is the ith column of In. Recall, from the proof of

part (1), that ‖ũ‖ = OP ([nξ/2 + n1−ξ/2] logO(1) n) and maxt ‖Fα,t‖ = OP (logO(1) n).

Notice that maxi ‖τi‖ = 1 and maxi ‖L′ατi‖ = OP (logO(1) n) (due to A.2.1). Thus,

Lemma A.3.11(4) and T � nξ imply that

max
i,t
|α̂i,t − αi,t|

= max
i,t
|τ ′i(L̂αF̂t − LαFt)|

≤ OP (n−ξ logO(1) n) max
i
‖F ′αũ′τi‖

+OP (logO(1) n)
[
n−1M + n−1/2 + n1/2−ξ + nξ/2−1 + n1−3ξ/2

]
+OP (logO(1) n)

[
n1−3ξ/2 + nξ/2−1 + n2−5ξ/2 + (n−1 + n−ξ)M

]
. (A.2.20)

Notice that

max
i
‖τ ′i ũFα‖ ≤ max

i
‖τ ′iuFα‖+ max

i
‖τ ′i(ũ− u)Fα‖

(i)
= OP (T 1/2 logO(1) n) + max

i

∥∥∥∥∥
T∑
t=1

x′i,t(β̂t − βt)F ′α,t

∥∥∥∥∥
≤ OP (T 1/2 logO(1) n) + T max

i,t
‖xi,t‖ ·max

t
‖β̂t − βt‖ ·

√
rα‖Fα‖∞

(ii)
= OP

(
[nξ/2 + n1/2 + nξ−1/2] logO(1) n

)
, (A.2.21)

where (i) follows by Lemma A.2.3(2) and (ii) follows by T � nξ, Lemma A.2.1(1)

and Theorem 1.3.1. Hence, We combine (A.2.20) with (A.2.21) and (A.2.18). After

straight-forward (but tedious) computations, this yields

max
i,t
|α̂i,t − αi,t| = OP

(
n−1/2[1 + a−1/2

n + a1/2
n + an + a3/2

n + a2
n + a5/2

n ] logO(1) n
)
,

where an = n1−ξ. By Lemma A.3.9, 1 + a
−1/2
n + a

1/2
n + an + a

3/2
n + a2

n + a
5/2
n ≤
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7(a
−1/2
n + a

5/2
n ) for an > 0. Thus, part (2) follows. The proof is complete.

Lemma A.2.8. Let ˆ̄vi,t, v̄i,t and Dn,t be defined in (A.2.1). Suppose that Assump-

tion 1 holds. Then

(1) maxt ‖Σ̂−1
t ‖ = OP (1) and maxi,t ‖ˆ̄vi,t − v̄i,t‖ = OP

(
[n−1/2 + n1/2−ξ] logO(1) n

)
,

(2) ‖Dn‖∞ = maxt ‖Dn,t‖∞ = OP

(
[nξ/2−1 + n3−7ξ/2] logO(1) n

)
.

Proof. Proof for part (1). By Lemma A.2.5,

max
t
‖Σ̂−1

t ‖ ≤ max
t
‖Σt‖+ max

t
‖Σ̂−1

t − Σ−1
t ‖

= O(1) +OP

([
n−1/2 + n1/2−ξ] logO(1) n

)
(i)
= OP (1), (A.2.22)

where (i) holds by ξ > 1/2. Notice that

max
i,t
‖Σ̂−1

t v̂i,t − Σ−1
t vi,t‖

≤ max
i,t
‖Σ̂−1

t (v̂i,t − vi,t)‖+ max
i,t
‖(Σ̂−1

t − Σ−1
t )vi,t‖

≤ max
t
‖Σ̂−1

t ‖max
i,t
‖v̂i,t − vi,t‖+ max

t
‖Σ̂−1

t − Σ−1
t ‖max

i,t
‖vi,t‖

(i)
= OP

(
[n−1/2 + n1/2−ξ] logO(1) n

)
,

where (i) holds by the bounds for maxi,t ‖v̂i,t − vi,t‖ and for maxt ‖Σ̂−1
t − Σ−1

t ‖
(Lemmas A.2.4 and A.2.5), together with maxi,t ‖vi,t‖ ≤

√
k‖v‖∞ = OP (logO(1) n)

(Lemma A.2.1). This proves part (1).

Proof for part (2). By the definition of Dn,t in (A.2.1), we have the

following decomposition

Dn,t = n−1/2
(

Σ̂−1
t v̂′t − Σ−1

t v′t

)
ut+n

−1/2Σ̂−1
t v′t(αt−α̂t)+n−1/2Σ̂−1

t (v̂t−vt)′(αt−α̂t).
(A.2.23)

Now we derive bounds for each of these three terms. Let an = n1−ξ. For the first

term, notice that

max
t

∥∥∥n−1/2
(

Σ̂−1
t v̂′t − Σ−1

t v′t

)
ut

∥∥∥
= max

t

∥∥∥n−1/2Σ̂−1
t (v̂t − vt)′ut

∥∥∥+ max
t

∥∥∥n−1/2
(

Σ̂−1
t − Σ−1

t

)
v′tut

∥∥∥
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≤ max
t

∥∥∥n−1/2Σ̂−1
t

∥∥∥max
t
‖(v̂t − vt)′ut‖+ max

t

∥∥∥n−1/2
(

Σ̂−1
t − Σ−1

t

)
v′tut

∥∥∥
(i)
= OP

(
n−1/2[1 + an] logO(1) n

)
+ max

t

∥∥∥n−1/2
(

Σ̂−1
t − Σ−1

t

)
v′tut

∥∥∥ , (A.2.24)

where (i) follows by (A.2.22) and Lemma A.2.6(3). Also notice that

max
t

∥∥∥n−1/2
(

Σ̂−1
t − Σ−1

t

)
v′tut

∥∥∥ ≤ n−1/2 max
t

∥∥∥Σ̂−1
t − Σ−1

t

∥∥∥max
t
‖v′tut‖

(i)
= OP

(
n−1/2[1 + an] logO(1) n

)
, (A.2.25)

where (i) follows by Lemmas A.2.3(7) and A.2.5. We combine (A.2.24) and (A.2.25)

and obtain that

max
t

∥∥∥n−1/2
(

Σ̂−1
t v̂′t − Σ−1

t v′t

)
ut

∥∥∥ = OP

(
n−1/2[1 + an] logO(1) n

)
. (A.2.26)

To bound the second term in (A.2.23), observe that

max
t
‖n−1/2Σ̂−1

t v′t(αt − α̂t)‖ ≤ n−1/2 max
t
‖Σ̂−1

t ‖max
t
‖v′t(α̂t − αt)‖

(i)
= OP

(
[n2−5ξ/2 + nξ/2−1] logO(1) n

)
= OP

(
n−1/2[a5/2

n + a−1/2
n ] logO(1) n

)
, (A.2.27)

where (i) holds by (A.2.22) and Lemma A.2.7. To bound the third term in (A.2.23),

we have that

max
t
‖n−1/2Σ̂−1

t (v̂t − vt)′(αt − α̂t)‖

≤ n−1/2 max
t
‖Σ̂−1

t ‖max
t
‖v̂t − vt‖max

t
‖α̂t − αt‖

≤ n−1/2 max
t
‖Σ̂−1

t ‖n1/2 max
i,t
‖v̂i,t − vi,t‖n1/2 max

i,t
|α̂i,t − αi,t|

(i)
= OP

(
n−1/2[a−1/2

n + a1/2
n + a5/2

n + a7/2
n ] logO(1) n

)
, (A.2.28)

where (i) holds by (A.2.22) and Lemmas A.2.4 and A.2.7(2), together with an =

n1−ξ.
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Now we combine (A.2.23) with (A.2.26), (A.2.27) and (A.2.28) and obtain

max
t
‖Dn,t‖∞ = OP

(
n−1/2[1 + a−1/2

n + an + a1/2
n + a5/2

n + a7/2
n ] logO(1) n

)
.

By Lemma A.3.9, 1 + a
−1/2
n + an + a

1/2
n + a

5/2
n + a

7/2
n ≤ 6(a

−1/2
n + a

7/2
n ). Part

(2) follows.

Lemma A.2.9. Recall ûi,t defined in Algorithm 2 and ˆ̄vi,t and v̄i,t de-

fined in (A.2.1). Under Assumption 1, max1≤i≤n,1≤t≤T ‖ˆ̄vi,tûi,t − v̄i,tui,t‖ =

OP

(
[n2−5ξ/2 + nξ/2−1] logO(1) n

)
.

Proof. Let an = n1−ξ. Notice that

max
i,t
|ûi,t − ui,t| = max

i,t
|yi,t − x′i,tβ̂t − α̂i,t − ui,t|

(i)
= max

i,t
|αi,t + ũi,t − α̂i,t − ui,t|

≤ max
i,t
|ũi,t − ui,t|+ max

i,t
|α̂i,t − αi,t|

≤ max
i,t
‖xi,t‖max ‖β̂t − βt‖+ max

i,t
|α̂i,t − αi,t|

(ii)
= OP

(
n−1/2[1 + an + a−1/2

n + a5/2
n ] logO(1) n

)
(iii)
= OP

(
n−1/2[a−1/2

n + a5/2
n ] logO(1) n

)
, (A.2.29)

where (i) holds by yi,t = αi,t + x′i,tβt + ui,t and the definition of ũi,t in Lemma A.2.6,

(ii) holds by Lemma A.2.1, Theorem 1.3.1 and Lemma A.2.7(2) and (iii) holds by

noticing that 1 + an + a
−1/2
n + a

5/2
n ≤ 4(a

−1/2
n + a

5/2
n ) (due to Lemma A.3.9). Notice

that

max
i,t
‖ˆ̄vi,tûi,t − v̄i,tui,t‖

≤max
i,t
‖ˆ̄vi,t − v̄i,t‖max

i,t
|ûi,t|+ max

i,t
‖v̄i,t‖max

i,t
|ûi,t − ui,t|

≤max
i,t
‖ˆ̄vi,t − v̄i,t‖

(
‖u‖∞ + max

i,t
|ûi,t − ui,t|

)
+ max

i,t
‖v̄i,t‖max

i,t
|ûi,t − ui,t|

(i)
=OP

({
n−1/2[1 + an + a5/2

n + a−1/2
n ] + n−1[a−1/2

n + a1/2
n + a5/2

n + a7/2
n ]
}

logO(1) n
)

(ii)
=OP

({
n−1/2[a5/2

n + a−1/2
n ] + n−1[a−1/2

n + a7/2
n ]
}

logO(1) n
)
,
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where (i) follows by (A.2.29) and Lemmas A.2.8(1) and A.2.1 and (ii) follows by

1+an+a
5/2
n +a

−1/2
n ≤ 4(a

−1/2
n +a

5/2
n ) and a−1/2

n +a
1/2
n +a

5/2
n +a

7/2
n ≤ 4(a

−1/2
n +a

7/2
n )

(due to Lemma A.3.9). Plugging in an = n1−ξ, we obtain

max
i,t
‖ˆ̄vi,tûi,t − v̄i,tui,t‖ = OP

(
[n2−5ξ/2 + nξ/2−1 + nξ/2−3/2 + n5/2−7ξ/2] logO(1) n

)
(i)
= OP

(
[n2−5ξ/2 + nξ/2−1] logO(1) n

)
,

where (i) holds by nξ/2−3/2 = o(nξ/2−1/2) and n5/2−7ξ/2 = o(n2−5ξ/2) (since ξ ∈
(6/7, 2)).

Lemma A.2.10. Recall Ω and Ω̂ defined in (A.2.1). Let Assumptions 1 and 2

hold. Then

sup
x∈R

∣∣∣Φ(x, Ω̂)− Φ(x,Ω)
∣∣∣ = oP (1).

Proof. Step 1: derive the exponential-type tails for (J ′jGi)(J
′
kGi). By As-

sumption 1, there is a constant M > 0 such that ∀t ∈ [T ], each row of Σ−1
t

is bounded (in ‖ · ‖1) by M . It follows, by Lemma A.3.3(1) and Assumption

1, that there exist constants b > 0 depending only on M , k and γ∗ such that

∀(i, t) ∈ [n] × [T ], each entry of v̄i,t has an exponential-type tail with parameter

(b, γ∗). By Lemma A.3.3(3), there exists bG > 0 such that ∀(i, t) ∈ [n]× [T ], each

entry of Gi,t = v̄i,tui,t has an exponential-type tails with parameters (bG, γ∗/2).

By Assumption 2 and Lemma A.3.3(1), J ′jGi has an exponential-type tail

with parameter (cn, γ∗/2), where cn = bGA1 log2/γ∗(mJ + 2). Then Lemma A.3.3(3)

implies that for j, k ∈ [mJ ], (J ′jGi)(J
′
kGi) has an exponential-type tail with param-

eter (Cn, γ∗/4), where Cn = 24/γ∗c2
n. Hence, (J ′jGi)(J

′
kGi)C

−1
n has an exponential-

type tail with parameter (1, γ∗/4).

Step 2: show the desired result by bounding ‖Ω̂ − Ω‖∞. Since

{(J ′jGi)(J
′
kGi)}ni=1 is independent across i, it follows, by Lemma A.3.6, that

max
1≤j,k≤mJ

∣∣∣∣∣n−1

n∑
i=1

[
(J ′jGi)(J

′
kGi)− E(J ′jGi)(J

′
kGi)

]
/Cn

∣∣∣∣∣ = OP

(√
n−1 log(m2

J)

)
.
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Let Ω̃ = n−1
∑n

i=1GiG
′
i. The above display implies that

‖Ω̃− Ω‖∞ = max
1≤j,k≤mJ

∣∣∣∣∣n−1

n∑
i=1

[
(J ′jGi)(J

′
kGi)− E(J ′jGi)(J

′
kGi)

]∣∣∣∣∣
= CnOP

(√
n−1 log(m2

J)

)
(i)
= OP

(
n−1/2 logO(1) n

)
, (A.2.30)

where (i) holds by the definition of Cn. Notice that∥∥∥∥∥n−1

n∑
i=1

(ĜiĜi −GiG
′
i)

∥∥∥∥∥
∞

≤ max
i
‖ĜiĜ

′
i −GiG

′
i‖∞

≤ max
i

(
‖Ĝi‖∞‖Ĝi −Gi‖∞ + ‖Gi‖∞‖Ĝi −Gi‖∞

)
(i)

≤ max
i

(
2‖Gi‖∞‖Ĝi −Gi‖∞ + ‖Ĝi −Gi‖2

∞

)
≤

(
2 max

i,t
‖v̄i,tui,t‖max

i,t
‖ˆ̄vi,tûi,t − v̄i,tui,t‖∞ + max

i,t
‖ˆ̄vi,tûi,t − v̄i,tui,t‖2

∞

)
(ii)

≤ OP

(
[n2−5ξ/2 + nξ/2−1] logO(1) n

)
, (A.2.31)

where (i) holds by ‖Ĝi‖∞ ≤ ‖Gi‖∞ + ‖Ĝi − Gi‖∞ and (ii) follows by Lemmas

A.2.1(1) and A.2.9. Therefore,

‖Ω̂− Ω̃‖∞ = max
1≤j,k≤mJ

∣∣∣∣∣J ′j
[
n−1

n∑
i=1

(ĜiĜi −GiG
′
i)

]
Jk

∣∣∣∣∣
(i)

≤ max
1≤j≤mJ

‖Jj‖2
1

∥∥∥∥∥n−1

n∑
i=1

(ĜiĜi −GiG
′
i)

∥∥∥∥∥
∞

(ii)
= OP

(
[n2−5ξ/2 + nξ/2−1] logO(1) n

)
,

(A.2.32)

where (i) follows by Holder’s inequality and (ii) follows by max1≤j≤mJ ‖Jj‖2
1 ≤ A1

and (A.2.31). We combine (A.2.30) and (A.2.32) and obtain

‖Ω̂− Ω‖∞ = OP

(
[n2−5ξ/2 + nξ/2−1 + n−1/2] logO(1) n

)
. (A.2.33)

By Assumption 2, the diagonal entries of Ω are bounded away from zero
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and infinity. Therefore, Lemma A.3.5 implies that

sup
x∈R

∣∣∣Φ(x, Ω̂)− Φ(x,Ω)
∣∣∣ ≤M∆1/3 (1 ∨ log(2mJ/∆))2/3 , (A.2.34)

where M > 0 is a constant and ∆ = ‖Ω̂ − Ω‖∞. The desired result follows by

(A.2.34), together with (A.2.33) and T � nξ with ξ ∈ (6/7, 2).

Lemma A.2.11. Recall Ω defined in (A.2.1). Let Assumptions 1 and 2 hold. Then

lim sup
n→∞

sup
x∈R

∣∣∣∣∣P
(∥∥∥∥∥n−1/2

n∑
i=1

JGi

∥∥∥∥∥
∞

≤ x

)
− Φ(x,Ω)

∣∣∣∣∣ = 0.

Proof. For j ∈ [mJ ] and i ∈ [n], define Wi,j = J ′jGi and denote Wi = JGi =

(Wi,1, . . . ,Wi,mJ )′ ∈ RmJ . By Assumption 2, min1≤j≤mR n
−1
∑n

i=1 EW 2
i,j ≥ c1.

As argued at the beginning of the proof of Lemma A.2.10, Wi,j has an

exponential-type tail with parameter (dn, γ1), where dn = c0A1 log1/γ1(mJ + 2),

γ1 = γ∗/2 and c0 > 0 is a constant. Define Bn = C1n
l/qdn, where q = 4(l + 1) and

C1 > 0 is a constant to be chosen later. Then by Lemma A.3.3(2), we have
n−1

∑n
i=1 E|Wi,j|3/Bn ≤ Cγ1,3d

3
nB
−1
n = O

(
n−l/(4l+4) logO(1) n

)
= o(1)

n−1
∑n

i=1 EW 4
i,j/B

2
n ≤ Cγ1,4d

4
nB
−2
n = O

(
n−l/(2l+2) logO(1) n

)
= o(1)

max1≤i≤n Emax1≤j≤mJ |Wi,j/Bn|q ≤ Cγ1,qmJd
q
nB
−q
n = O(1),

where Cγ1,3, Cγ1,4 and Cγ1,q are constants depending only on γ1 and q. Therefore,

we can choose a constant C1 > 0 such that
n−1

∑n
i=1 E|Wi,j|3 ≤ Bn ∀1 ≤ j ≤ mJ

n−1
∑n

i=1 EW 4
i,j ≤ B2

n ∀1 ≤ j ≤ mJ

Emax1≤j≤mJ |Wi,j/Bn|q ≤ 2 ∀1 ≤ i ≤ n.

Notice that {z ∈ RmJ | ‖z‖∞ ≤ x} is a rectangle in RmJ . It follows,

by Proposition 2.1 of Chernozhukov, Chetverikov, and Kato (2014) (applied to
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{Wi}ni=1), that there exists a constant C > 0 depending only on c1 and q such that

sup
x∈R

∣∣∣∣∣P
(∥∥∥∥∥n−1/2

n∑
i=1

JGi

∥∥∥∥∥
∞

≤ x

)
− Φ(x,Ω)

∣∣∣∣∣
≤ C

{(
n−1B2

n log7(mJn)
)1/6

+
(
n2/q−1B2

n log3(mJn)
)1/3
}

(i)
= O

([
n−

l+2
12(l+1) + n−

1
6(l+1)

]
logO(1) n

)
= o(1),

where (i) holds by the definition of Bn. The proof is complete.

Proof of Theorem 1.3.3. Since β̃t = β̂t − (v̂′tv̂t)
−1v̂′t(αt + ut), we have that

β̃t − βt = β̂t − βt − (v̂′tv̂t)
−1v̂′tα̂t

(i)
= (v̂′tv̂t)

−1v̂′t(αt − α̂t) + (v̂′tv̂t)
−1v̂′tut

(ii)
= n−1/2Dn,t + n−1

n∑
i=1

Gi,t,

where (i) follows by (A.2.9) in the proof of Theorem 1.3.1 and (ii) follows by the

definition of Dn,t and Gi,t in (A.2.1). For the rest of the proof, recall Gi, Dn, Ω

and Ω̂ defined in (A.2.1). The above display means that

√
nJ(β̃ − β) = JDn + SJGn , (A.2.35)

where SJGn = n−1/2
∑n

i=1 JGi. Define

ε = n−κ∗/2 with κ∗ = min

{
1− ξ

2
,

7ξ

2
− 3

}
. (A.2.36)

Notice that

sup
x∈R

∣∣∣P(∥∥∥√nJ(β̃ − β)
∥∥∥
∞
≤ x

)
− Φ(x,Ω)

∣∣∣
≤ sup

x∈R

∣∣∣P(∥∥∥√nJ(β̃ − β)
∥∥∥
∞
≤ x

)
− P

(∥∥SJGn ∥∥∞ ≤ x
)∣∣∣

+ sup
x∈R

∣∣P (∥∥SJGn ∥∥∞ ≤ x
)
− Φ(x,Ω)

∣∣
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(i)

≤P (‖JDn‖∞ > ε) + sup
x∈R

P
(∥∥SJGn ∥∥∞ ∈ (x− ε, x+ ε]

)
+ sup

x∈R

∣∣P (∥∥SJGn ∥∥∞ ≤ x
)
− Φ(x,Ω)

∣∣ , (A.2.37)

where (i) follows by (A.2.35) and Lemma A.3.1. Also notice that

sup
x∈R

∣∣P (∥∥SJGn ∥∥∞ ∈ (x− ε, x+ ε]
)
− [Φ(x+ ε,Ω)− Φ(x− ε,Ω)]

∣∣
=
∣∣[P (∥∥SJGn ∥∥∞ ≤ x+ ε

)
− Φ(x+ ε,Ω)

]
−
[
P
(∥∥SJGn ∥∥∞ ≤ x− ε

)
− Φ(x− ε,Ω)

]∣∣
≤2 sup

t∈R

∣∣P (∥∥SJGn ∥∥∞ ≤ t
)
− Φ(t,Ω)

∣∣ . (A.2.38)

Therefore, we have

sup
x∈R

∣∣∣P(∥∥∥√nJ(β̃ − β)
∥∥∥
∞
≤ x

)
− Φ(x,Ω)

∣∣∣
(i)

≤P (‖JDn‖∞ > ε) + sup
x∈R

[Φ(x+ ε,Ω)− Φ(x− ε,Ω)]

+ 3 sup
x∈R

∣∣P (∥∥SJGn ∥∥∞ ≤ x
)
− Φ(x,Ω)

∣∣
(ii)
=P (‖JDn‖∞ > ε) + sup

x∈R
[Φ(x+ ε,Ω)− Φ(x− ε,Ω)] + o(1)

(iii)

≤ P (‖JDn‖∞ > ε) + C0ε
√

logmJ + o(1)

(iv)

≤ P(A1‖Dn‖∞ > ε) + C0ε
√

logmJ + o(1), (A.2.39)

where C0 > 0 is a constant depending only on the constants in Assumption 2; in the

above display, (i) follows by (A.2.37) and (A.2.38), (ii) follows by Lemma A.2.11,

(iii) holds by Lemma A.3.4 and (iv) follows by Holder’s inequality ‖JDn‖∞ ≤
max1≤j≤mJ ‖Jj‖1‖Dn‖∞ and Assumption 2.

By Lemma A.2.8 and T � nξ with ξ ∈ (6/7, 2) (Assumption 1), we have

‖Dn‖∞ = OP (n−κ∗) and κ∗ > 0. Therefore, (A.2.39) and (A.2.36) imply that

sup
x∈R

∣∣∣P(∥∥∥√nJ(β̃ − β)
∥∥∥
∞
≤ x

)
− Φ(x,Ω)

∣∣∣
≤ P

(
A1OP (n−κ∗) > n−κ∗/2

)
+ C0n

−κ∗/2
√

logmJ + o(1) = o(1).
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By Lemma A.2.10, supx∈R |Φ(x, Ω̂) − Φ(x,Ω)| = oP (1). Hence, the above

display implies that

sup
x∈R

∣∣∣P(∥∥∥√nJ(β̃ − β)
∥∥∥
∞
≤ x

)
− Φ(x, Ω̂)

∣∣∣ = oP (1). (A.2.40)

Fix an arbitrary constant δ > 0. Then Lemma A.3.2 and (A.2.40) imply

that

lim sup
n→∞

sup
η∈(0,1)

∣∣∣P(∥∥∥√nJ(β̃ − β)
∥∥∥
∞
> Φ−1(1− η, Ω̂)

)
− η
∣∣∣

≤ δ + lim sup
n→∞

P
{

sup
x∈R

∣∣∣P(∥∥∥√nJ(β̃ − β)
∥∥∥
∞
≤ x

)
− Φ(x, Ω̂)

∣∣∣ > δ

}
= δ.

Since δ > 0 is arbitrary, the desired result follows.

Proof of Corollary 1.3.1. Notice that Jβ ∈ C1−η(J) if and only if
√
n‖J(β̃ −

β)‖∞ ≤ Φ−1(1− η, Ω̂). It follows, by Theorem 1.3.3, that

P
(√

n‖J(β̃ − β)‖∞ ≤ Φ−1(1− η, Ω̂)
)

= 1− P
(√

n‖J(β̃ − β)‖∞ > Φ−1(1− η, Ω̂)
)
→ 1− η.

The proof is complete.

Proof of Theorem 1.3.4. If l = 0, the result clearly holds since Φ−1(1− η, Ω̂) =

OP (1) for mJ = O(1). Now we assume l > 1 and thus mJ →∞. Let ζ ∼ N(0,Ω)

with ζ = (ζ1, . . . , ζmJ )′ ∈ RmJ . At the beginning of the proof of Lemma A.2.10, we

have showed that the entries of Gi,t have exponential-type tails. Thus, ‖ΣG‖∞ ≤ K1

for some constant K1, where ΣG = n−1
∑n

i=1 EGiG
′
i. Since Ωj,j = J ′jΣGJj and

‖Jj‖1 ≤ A1, Holder’s inequality implies that Ωj,j ≤ ‖Jj‖2
1‖ΣG‖∞ ≤ A2

1K1.

Since ζj ∼ N(0,Ωj,j), there exists a constant K2 > 0 such that ζj has an

exponential-type tail with parameter (K2, 2). Then,

Φ
(

2K2

√
logmJ ,Ω

)
= 1− P

(
‖ζ‖∞ > 2K2

√
logmJ

)
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≥ 1−
mJ∑
j=1

P
(
|ζj| > 2K2

√
logmJ

)
(i)

≥ 1−mJ exp
[
1− (2K2

√
logmJ/K2)2

]
= 1− e/mJ → 1.

where (i) holds by the exponential-type tails of ζj. By Lemma A.2.10,

Φ
(

2K2

√
logmJ , Ω̂

)
= 1 + oP (1) and thus 2K2

√
logmJ = Φ−1(1 + oP (1), Ω̂). Since

Φ−1(1 + oP (1), Ω̂) ≥ Φ−1(1− η, Ω̂) with probability approaching one, we have that

P
(

Φ−1(1− η, Ω̂) ≤ 2K2

√
logmJ

)
→ 1.

Since mJ = O(nl) (which means that logmJ = O(log n), the desired result

follows.

Proof of Theorem 1.3.5. This is Lemma A.2.7(2).

Proof of Theorem 1.3.2. The result follows by combining Theorems 1.3.3 and

1.3.4 using J = IkT .

A.2.3 Proof of Theorems 1.3.6, 1.3.7 and 1.4.1

The following result is useful for proving Theorem 1.3.6.

Lemma A.2.12. Consider matrices W, e ∈ Rn1×n2. Suppose that sr+1(W ) = 0 for

some r ≥ 1. Let µ > 0 and define r̂ = max{j | sj(W + e) ≥ µ}. Then r̂ 6= r implies

that either sr(W ) < 2µ or s1(e) ≥ µ.

Proof. We proceed by contradiction. Suppose that r̂ 6= r, sr(W ) ≥ 2µ and

s1(e) < µ. We discuss two cases separately: case (A) with r̂ > r and case (B) with

r̂ < r.

We first consider case (A). By definition, sr̂(W + e) ≥ µ. Since r̂ > r,

we have r̂ ≥ r + 1 and thus sr+1(W + e) ≥ µ. By Lemma A.3.10(1), we have

sr+1(W ) + s1(e) ≥ sr+1(W + e) and thus sr+1(W ) + s1(e) ≥ µ. Therefore, the

assumption of sr+1(W ) = 0 implies that s1(e) ≥ µ, contradicting s1(e) < µ.

We now consider case (B). By definition sr̂+1(W + e) < µ. Since r̂ < r,

we have r̂ + 1 ≤ r and thus sr(W + e) < µ. Hence, Lemma A.3.10(1) implies
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that sr(W ) ≤ sr(W + e) + s1(−e) < µ + s1(e). Since s1(e) < µ, we have that

sr(W ) < 2µ, contradicting sr(W ) ≥ 2µ.

Therefore, it is impossible that these three conditions hold simultaneously:

r̂ 6= r, sr(W ) ≥ 2µ and s1(e) < µ. Hence, r̂ 6= r implies that at least one of the

other two conditions does not hold.

Proof of Theorem 1.3.6. Proof of part (1). Since X = LQF
′
Q + v, Lemma

A.2.12 implies that it suffices to verify

(1a) P[srQ(LQF
′
Q) < 2µn]→ 0;

(1b) P[‖v‖ ≥ µn]→ 0.

Notice that (1b) follows by Lemma A.2.1 and
√
n logO(1) n = o(µn). By As-

sumption 1, both s1(FQ/
√
T ) and srQ(LQ/

√
n) are bounded away from zero.

It follows, by Lemma A.3.10(2), that there exists a constant b0 > 0 such that

P[srQ(LQF
′
Q/
√
nT ) > b0] → 1. Since

√
nT/µn → ∞, condition (1a) follows. We

have proved part (1).

Proof of part (2). Recall ũt = ut +Xt(βt − β̂t) (defined in Lemma A.2.6).

Then yt −Xtβ̂t = αt + ũt. By Lemma A.2.12, it suffices to verify

(2a) P[srα(LαF
′
α) < 2µ̃n]→ 0;

(2b) P (‖ũ‖ ≥ µ̃n)→ 0.

The same argument as in showing (1a) (with (LQ, FQ, rQ) replaced by (Lα, Fα, rα))

proves (2a). Lemma A.2.6(1) and T � nξimply that ‖ũ‖ = OP ([
√
T +

n/
√
T ] logO(1) n). Since [

√
T + n/

√
T ] logO(1) n = o(µ̃n), condition (2b) follows.

We have proved part (2).

The following results are useful for proving Theorem 1.3.7.

Lemma A.2.13. Let Assumption 1 hold. Then for any fixed positive integer r,

there exists a constant c > 0 such that P (sr(u) >
√
nc)→ 1. Moreover, P(sr(ũ) >

√
nc/2)→ 1, where ũ is defined in Lemma A.2.6.
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Proof. Notice that there exist a constant c1 > 0 and a sequence {tj}rj=1 ⊂ [T ]

such that t1 < t2 < . . . < tr and dn ≥ c1T , where dn = min1≤j≤r−1(tj+1 − tj).

Let A ∈ Rn×r be defined as Ai,j = ui,tj for (i, j) ∈ [n] × [r]. Since A is a matrix

consisting of r columns of u, Lemma A.3.10(4) implies

sr(u) ≥ sr(A). (A.2.41)

Let ΣA = n−1EA′A ∈ Rr×r. We only need to show the lower bound for

sr(A). We proceed in two steps. First, we show that singular values of ΣA are

bounded below; then we show the desired result. Finally, we shall show the result

for sr(ũ).

Step 1: derive lower bound for sr(ΣA). Fix arbitrary j1, j2 ∈ [r] with

j1 6= j2. Notice that ΣA,j1,j2 = n−1
∑n

i=1 Eui,tj1ui,tj2 . By Lemma A.3.3(2) and the

exponential-type tails of ui,t’s, there exists a constant c1 > 0 such that E|ui,t|4 ≤ c1.

It follows, by Corollary 16.2.4 of Athreya and Lahiri (2006), that

|ΣA,j1,j2| ≤ max
i
|E(ui,tj1ui,tj2 )| ≤ 4c2

1

√
2αmixing(|tj1 − tj2|)

≤ 4c2
1

√
c∗ exp[−|tj1 − tj2|γ∗∗/2] ≤ 4c2

1

√
c∗ exp[−dγ∗∗n /2] = o(1).

Let Σ̃A ∈ Rr×r be the diagonal matrix such that Σ̃A,j,j = ΣA,j,j for j ∈ [r].

Then the above display implies that ‖Σ̃A − ΣA‖ = o(1).

For j ∈ [r], Σ̃A,j,j = ΣA,j,j = n−1
∑n

i=1 Eu2
i,tj

. By Assumption 1, there exists

a constant c2 > 0 with Σ̃A,j,j ≥ c2 for j ∈ [r]. It follows, by Lemma A.3.10(1), that

sr(ΣA) + s1(Σ̃A − ΣA) ≥ sr(Σ̃A) ≥ c2. Since ‖Σ̃A − ΣA‖ = o(1), we have

sr(ΣA) ≥ c2/2. (A.2.42)

Step 2: show the desired result for sr(u). By the law of large numbers,

we have that for any j1, j2 ∈ [r], n−1
∑n

i=1

(
ui,tj1ui,tj2 − Eui,tj1ui,tj2

)
= oP (1). Since

r is fixed, this means that ‖n−1A′A−ΣA‖ = oP (1). By Lemma A.3.10(1), we have

sr(n
−1A′A) + s1(ΣA − n−1A′A) ≥ sr(ΣA)

(i)

≥ c2/2,
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where (i) holds by (A.2.42). Since ‖ΣA − n−1A′A‖ = oP (1), we have that

sr(n
−1A′A) ≥ c2/2 − oP (1). By sr(A) =

√
sr(A′A) and (A.2.41), the desired

result for sr(u) holds with c = c2/3.

Step 3: show the desired result for sr(ũ). Let B ∈ Rn×r with Bi,j =

ũi,tj − ui,j. By the definition of ũi,t,

max
i,t
|ũi,t−ui,t| ≤ max

i,t
‖xi,t‖max

t
‖β̂t−βt‖

(i)
= OP

(
[n−1/2 + n1/2−ξ] logO(1) n

)
= oP (1),

where (i) holds by Lemma A.2.1(1) and Theorem 1.3.1, together with ξ > 6/7.

Since ‖B‖ ≤
√
nrmaxi,t |ũi,t − ui,t|, we have that ‖B‖ = oP (

√
n).

Notice that A+B is a matrix consisting of r columns of ũ. Hence, Lemma

A.3.10(4) implies sr(ũ) ≥ sr(A+B). By Lemma A.3.10(1), sr(A+B) + s1(−B) ≥
sr(A). It follows, by ‖B‖ = oP (

√
n), that sr(A + B)/

√
n ≥ sr(A)/

√
n − oP (1).

Since sr(A)/
√
n ≥

√
c2/3 with probability approaching one (due to Step 2), the

desired result for sr(ũ) follows.

Lemma A.2.14. Let Assumption 1 hold. Then for any fixed positive integer r,

there exists a constant c > 0 such that P (sr(v) >
√
nc)→ 1.

Proof. The proof is the same as that of Lemma A.2.13 with u replaced by v.

Proof of Theorem 1.3.7. Step 1: show consistency of r̂SVQ . It suffices to

show the following:

(1a) maxrQ+1≤r≤rmax [sr(X)/sr+1(X)] = OP (
√

log n);

(1b) max1≤r≤rQ−1 [sr(X)/sr+1(X)] = OP (1);

(1c) P(srQ(X)/srQ+1(X) > T 1/3)→ 1.

We first show condition (1a). Lemma A.3.10(1) implies that, for r > rQ,

sr(X) = sr(LQF
′
Q + v) ≤ sr(LQF

′
Q) + s1(v)

(i)
= 0 + ‖v‖, (A.2.43)

where (i) holds by rankLQ = rQ. Lemma A.3.10(1) also implies that, for r > rQ,

sr+1(X) + s1(−LQF ′Q) ≥ sr+1(X − LQF ′Q) = sr+1(v). (A.2.44)
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By (A.2.43) and (A.2.44), we have

max
rQ+1≤r≤rmax

sr(X)

sr+1(X)
≤ ‖v‖
srmax+1(v)

(i)
= OP (

√
log n),

where (i) holds by Lemmas A.2.1(2) and A.2.14. This proves condition (1a).

Since ‖v‖ = OP (
√
n log n) (Lemma A.2.1(2)), ‖X − LQF

′
Q‖/
√
nT =

‖v‖/
√
nT = oP (1). By Assumption 1, the largest rQ singular values of LQF ′Q/

√
nT

are bounded away from zero and infinity. Therefore, there exist constants c1, c2 > 0

such that the largest rQ singular values of X/
√
nT lie in [c1, c2] with probability

approaching one. This proves condition (1b).

Since P[srQ(X)/
√
nT ≥ c1] → 1 and srQ+1(X) ≤ ‖v‖ = OP (

√
n log n)

(due to (A.2.43) and Lemma A.2.1(2)), we have that P[srQ(X)/srQ+1(X) ≥
c3

√
T/ log n] → 1 for some constant c3 > 0. Condition (1c) follows. We have

proved the consistency of r̂SVQ .

Step 2: show consistency of r̂SVα . The argument is similar to Step 1.

Notice that yt −Xtβ̂t = αt + ũt, where ũ is defined in Lemma A.2.6. Recall that

α = LαF
′
α with rankα = rα. We shall verify the following conditions:

(2a) maxrα+1≤r≤rmax [sr(α + ũ)/sr+1(α + ũ)] = OP

(
[n(ξ−1)/2 + n(1−ξ)/2] logO(1) n

)
;

(2b) max1≤r≤rα−1 [sr(α + ũ)/sr+1(α + ũ)] = OP (1);

(2c) P
[
srα(α + ũ)/srα+1(α + ũ) > M1n

(1+ξ)/2[nξ/2 + n1−ξ/2]−1/ logM2 n
]
→ 1 for

constants M1,M2 > 0.

Notice that the above three conditions imply the desired result because for ξ ∈
(6/7, 2),

n(1+ξ)/2[nξ/2 + n1−ξ/2]−1/ logM2 n

[n(ξ−1)/2 + n(1−ξ)/2] logO(1) n
→∞ and [n(ξ−1)/2+n(1−ξ)/2] logO(1) n→∞.

Similar to (A.2.43) and (A.2.44), we have that, for r > rα, sr(α + ũ) ≤ ‖ũ‖
and sr+1(α + ũ) ≥ sr+1(ũ). Therefore,

max
rα+1≤r≤rmax

sr(α + ũ)

sr+1(α + ũ)
≤ ‖ũ‖
srmax+1(ũ)

(i)
= OP

(
[n(ξ−1)/2 + n(1−ξ)/2] logO(1) n

)
,
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where (i) holds by Lemmas A.2.6(1) and A.2.13. This proves condition (2a).

Since ‖ũ‖/
√
nT = oP (1) (due to Lemma A.2.6(1) and T � nξ), condition

(2b) follows from the same argument as the proof of condition (1b), except that

(LQ, FQ, rQ) is replaced with (Lα, Fα, rα).

Similar to the proof of condition (1c), we notice that P[srα(α + ũ)/
√
nT ≥

c3] → 1 for some constant c3 > 0 and srα+1(α + ũ) ≤ ‖ũ‖ (i)
= OP ([nξ/2 +

n1−ξ/2] logO(1) n) (with (i) due to Lemma A.2.6(1)). Hence, condition (2c) fol-

lows by T � nξ. We have proved the consistency of r̂SVα .

Proof of Theorem 1.4.1. To avoid complicated notations involving j0, we prove

the result for the full vector βt (rather than βj0,t), i.e.,

√
T (Θ̃− Θ̂) = oP (1), (A.2.45)

where Θ̂ = (
∑T

t=1 βtz
′
t)(
∑T

t=1 ztz
′
t)
−1 and Θ̃ = (

∑T
t=1 β̃tz

′
t)(
∑T

t=1 ztz
′
t)
−1. The result

stated in Theorem 1.4.1 corresponds to the j0-th row of the above display.

By (A.2.35) in the proof of Theorem 1.3.3 (with J = IkT ), we have β̃t−βt =

n−1/2Dn,t + n−1/2δt, where δt = n−1/2
∑n

i=1Gi,t and Dn,t and Gi,t are defined in

(A.2.1). Thus, the definitions of Θ̃ and Θ̂ imply that

√
T (Θ̃− Θ̂) =

(
T−1/2

T∑
t=1

(β̃t − βt)z′t

)(
T−1

T∑
t=1

ztz
′
t

)−1

(i)
=

(
1√
nT

T∑
t=1

Dn,tz
′
t

)
OP (1) +

(
1√
nT

T∑
t=1

δtz
′
t

)
OP (1), (A.2.46)

where (i) holds by (T−1
∑T

t=1 ztz
′
t)
−1 = OP (1). The rest of the proof proceeds in

two steps in which we bound the two terms in (A.2.46).

Step 1: show 1√
nT

∑T
t=1Dn,tz

′
t = oP (1). Notice that

∥∥∥∥∥ 1√
nT

T∑
t=1

Dn,tz
′
t

∥∥∥∥∥ ≤ 1√
nT

T∑
t=1

‖Dn,t‖‖zt‖

(i)

≤ ‖Dn‖∞

√
k

nT

T∑
t=1

‖zt‖
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(ii)
= ‖Dn‖∞

√
Tk

n
OP (1)

(iii)
= OP

(
[nξ/2−1 + n3−7ξ/2] logO(1) n

)√
nξ−1OP (1)

(iv)
= oP (1),

(A.2.47)

where (i) follows by Holder’s inequality and ‖Dn,t‖ ≤
√
k‖Dn‖∞, (ii) follows

by T−1
∑T

t=1 ‖zt‖ = OP (1) (due to T−1
∑T

t=1 E‖zt‖ ≤ maxt E‖zt‖ = O(1)), (iii)

follows by T � nξ and Lemma A.2.8 and (iv) holds by 6/7 < ξ < 3/2.

Step 2: show 1√
nT

∑T
t=1 δtz

′
t = oP (1). Therefore, by Lemma A.3.6 (applied

with Fn being the trivial σ-algebra), max1≤t≤T ‖δt‖∞ = OP (
√

log(kT )). Let rn =∑T
t=1 zt ⊗ δt. Then

E‖rn‖2 =
T∑

s,t=1

E [(z′t ⊗ δ′t)(zs ⊗ δs)] =
T∑

s,t=1

E [(z′tzs)(δ
′
tδs)]

(i)
=

T∑
s,t=1

E(z′tzs)E(δ′tδs)

≤ T max
s,t
|E(z′tzs)|max

s

T∑
t=1

|E(δ′tδs)|
(ii)
= O(T ) max

s

T∑
t=1

|E(δ′tδs)|, (A.2.48)

where (i) holds by the independence between {zt}Tt=1 and (u, v) and (ii) holds by

maxs,t |E(z′tzs)| ≤ maxt E‖zt‖2 = O(1). Notice that

max
s

T∑
t=1

|E(δ′tδs)| = max
s

T∑
t=1

∣∣∣∣∣n−1

n∑
i,j=1

EG′i,tGj,s

∣∣∣∣∣ (i)
= max

s

T∑
t=1

∣∣∣∣∣n−1

n∑
i=1

EG′i,tGi,s

∣∣∣∣∣
≤ max

s
n−1

n∑
i=1

T∑
t=1

|EG′i,tGi,s| ≤ max
(i,s)∈[n]×[s]

T∑
t=1

|EG′i,tGi,s|
(ii)
= O(1), (A.2.49)

where (i) follows by the independence of {(Gi,s, Gi,t)}ni=1 across i and (ii) holds by

Lemma A.2.2(3). It follows, by (A.2.48) and (A.2.49), that E‖rn‖2 = O(T ) and

thus

vec

(
1√
nT

T∑
t=1

δtz
′
t

)
=

1√
nT

rn =
1√
nT

OP (
√
T ) = oP (1). (A.2.50)

Hence, we obtain (A.2.45) by combining (A.2.46) with (A.2.47) and (A.2.50).

The proof is complete.
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The following lemma is needed to prove Lemma A.2.16.

A.2.4 Strong mixing with geometric decay for Example

1.2.1

Lemma A.2.15. Let ϕ(x, y; r) be the p.d.f of N

(
0,

[
1 r

r 1

])
for |r| <

1. Suppose that ∀t, s ≥ 0, σt, σs ≥ 1 and |rt,s| ≤ C exp(−|t − s|) for

some constant C > 0. Then there exist constants τ,M > 0 such that

supt,s,|t−s|>τ
∑∞

i=0

∑∞
j=0

´ 1

0
ϕ(i/σt, j/σs;hrt,s/(σtσs))dh ≤M .

Proof. Using the formula for the p.d.f of bivariate Gaussian random vectors, we

have that

ϕ(x, y; r) =
1

2π
√

1− r2
exp

[
−x

2 − 2rxy + y2

2(1− r2)

]
.

Choose τ > 0 such that |rt,s|/(σtσs) ≤ 1/2 for |t − s| ≥ τ . Hence, for

0 ≤ h ≤ 1,

ϕ (x, y;hrt,s/(σtσs)) ≤
1

2π
√

3/4
exp

[
−x

2 − xy + y2

3/2

]
≤ 1√

3π
exp

[
−2

3

(
(x2 + y2)/2 + (x2 + y2 − xy)/2

)]
≤ 1√

3π
exp

[
−1

3

(
x2 + y2

)]
.

It follows that for |t− s| ≥ τ ,

∞∑
i=0

∞∑
j=0

ˆ 1

0

ϕ(i/σt, j/σs;hrt,s/(σtσs))dh ≤
1√
3π

∞∑
i=0

∞∑
j=0

exp

[
−1

3

(
i2 + j2

)]

<
1√
3π

∞∑
i=0

∞∑
j=0

exp

[
−1

3
(i+ j)

]

=
1√
3π

(
∞∑
i=0

exp (−i/3)

)2

<∞.

Therefore, the desired result holds with M = (
∑∞

i=0 exp (−i/3))
2
/
(√

3π
)
.
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Lemma A.2.16. Under the setup of Example 1.2.1, there exist a constant M > 0

such that ∀t ≥ 1, αmixing(t) ≤Mct.

Proof. Recall the notations in Example 1.2.1. By Theorem 2.2 of Piterbarg (2012),

it suffices to verify that

(i) For some constants τ0, K1 > 0, we have that ∀τ ≥ τ0

sup
t,s,|t−s|>τ

∞∑
i=0

∞∑
j=0

ˆ 1

0

ϕ (i/σt, j/σs;hr(t, s)/(σtσs)) dh ≤ K1

(ii) For some constant K2 ∈ (0, 1), we have that ∀τ ≥ τ0

sup
v

∞∑
t=v+τ

v∑
s=0

|r(t, s)|
σtσs

≤ K
|t−s|
2 .

Notice that σ2
t =

∑∞
j=0 γ

2
t−1,j ≥ γ2

t−1,0 = 1. For t > s,

|r(t, s)| =

∣∣∣∣∣
∞∑
j1=0

∞∑
j2=0

γt−1,j1γs−1,j2Eut−1−j1us−1−j2

∣∣∣∣∣ (i)
=

∣∣∣∣∣
∞∑
j=0

γt−1,j+t−sγs−1,j

∣∣∣∣∣
≤

∞∑
j=0

c2j+t−s = Dct−s for D =
1

1− c2
, (A.2.51)

where (i) follows by ut being i.i.d N(0, 1). Hence, claim (i) holds by Lemma A.2.15.

By (A.2.51), we have that for any v ≥ 0,

∞∑
t=v+τ

v∑
s=0

|r(t, s)|
σtσs

≤ D
∞∑

t=v+τ

v∑
s=0

ct−s =
D

1− c

∞∑
t=v+τ

ct−v(1− cv+1)
(i)

≤ D

1− c

∞∑
t=v+τ

ct−v =
D

(1− c)2
cτ ,

where (i) holds by c ∈ (0, 1). Claim (ii) follows. The proof is complete.
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A.3 Useful technical tools

A.3.1 Useful results on probability theory

Lemma A.3.1. Let X and Y be two random vectors. Then ∀t, ε > 0, we have

|P (‖X‖∞ ≤ t)− P (‖Y ‖∞ ≤ t)| ≤ P (‖X − Y ‖∞ > ε) + P (‖Y ‖∞ ∈ (t− ε, t+ ε]) .

Proof. By the triangular inequality,

P (‖X‖∞ > t) ≤P (‖X − Y ‖∞ > ε) + P (‖Y ‖∞ > t− ε)

=P (‖X − Y ‖∞ > ε) + P (‖Y ‖∞ > t) + P (‖Y ‖∞ ∈ (t− ε, t]) .
(A.3.1)

On the other hand, also by the triangular inequality,

P (‖X‖∞ > t) ≥P (‖Y ‖∞ > t+ ε)− P (‖X − Y ‖∞ > ε)

=P (‖Y ‖∞ > t)− P (‖Y ‖∞ ∈ (t, t+ ε])− P (‖X − Y ‖∞ > ε) .

(A.3.2)

It follows, by (A.3.1) and (A.3.2), that

|P (‖X‖∞ > t)− P (‖Y ‖∞ > t)| ≤ P (‖X − Y ‖∞ > ε) + P (‖Y ‖∞ ∈ (t− ε, t+ ε]) .

The desired result follows by |P (‖X‖∞ > t)− P (‖Y ‖∞ > t)| =

|P (‖X‖∞ ≤ t)− P (‖Y ‖∞ ≤ t)|.

Lemma A.3.2. Let X and Y be two random vectors. Define FX(x) =

P (‖X‖∞ ≤ x) and FY (x) = P (‖Y ‖∞ ≤ x). Then ∀ε > 0,

sup
α∈(0,1)

∣∣P (‖X‖∞ > F−1
Y (1− α)

)
− α

∣∣ ≤ ε+ P
(

sup
x∈R
|FX(x)− FY (x)| > ε

)
.

Proof. Fix α ∈ (0, 1) and notice that

P
(
‖X‖∞ > F−1

Y (1− α)
)
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=P
(
‖X‖∞ > F−1

Y (1− α) and sup
x∈R
|FX(x)− FY (x)| ≤ ε

)
+ P

(
‖X‖∞ > F−1

Y (1− α) and sup
x∈R
|FX(x)− FY (x)| > ε

)
(i)

≤P
(
‖X‖∞ > F−1

Y (1− α) and sup
x∈R
|FX(x)− FY (x)| ≤ ε

)
+ P

(
sup
x∈R
|FX(x)− FY (x)| > ε

)
≤P
(
‖X‖∞ > F−1

X (1− α− ε)
)

+ P
(

sup
x∈R
|FX(x)− FY (x)| > ε

)
(ii)
=α + ε+ P

(
sup
x∈R
|FX(x)− FY (x)| > ε

)
, (A.3.3)

where (i) follows from Lemma A.1(ii) in Romano and Shaikh (2012) (if

supx∈R[FY (x)− FX(x)] ≤ ε then F−1
X (1− α− ε) ≤ F−1

Y (1− α)) and (ii) follows by

the definition of FX(·). Also notice that

P
(
‖X‖∞ > F−1

Y (1− α)
)

≥ P
(
‖X‖∞ > F−1

Y (1− α) and sup
x∈R
|FX(x)− FY (x)| ≤ ε

)
(i)

≥ P
(
‖X‖∞ > F−1

X (1− α + ε) and sup
x∈R
|FX(x)− FY (x)| ≤ ε

)
(ii)

≥ P
(
‖X‖∞ > F−1

X (1− α + ε)
)
− P

(
sup
x∈R
|FX(x)− FY (x)| > ε

)
(iii)
= α− ε− P

(
sup
x∈R
|FX(x)− FY (x)| > ε

)
(A.3.4)

where (i) follows from Lemma A.1(ii) in Romano and Shaikh (2012) (if

supx∈R[FX(x) − FY (x)] ≤ ε then F−1
Y (1 − α) ≤ F−1

X (1 − α + ε)), (ii) follows

by the elementary inequality that for any two events A and B, P(A
⋂
B) +P(Bc) ≥

P(A
⋂
B) + P(A

⋂
Bc) = P(A) or equivalently P(A

⋂
B) ≥ P(A) − P(Bc), and

(iii) follows by the definition of FX(·). The desired result follows by (A.3.3) and

(A.3.4).

Lemma A.3.3. The following hold.

(1) Let Z ∈ RmZ be a random vector whose jth entry is denoted by Zj. Suppose
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that there exist constants b, γ > 0 such that ∀j ∈ [mZ ], Zj has an exponential-

type tail with parameter (b, γ). Then for any nonrandom vector a ∈ RmZ , a′Z

has an exponential-type tail with parameter
(
b‖a‖1 log1/γ(‖a‖0 + 2), γ

)
.

(2) Let {Zj}mZj=1 be a sequence of random variables. Suppose that constants b, γ > 0

satisfy that ∀j ∈ [mZ ], Zj has an exponential-type tail with parameter (b, γ).

Let q > 0 be any nonrandom number. Then there exists a constant Cγ,q > 0

depending only on γ and q such that Emax1≤j≤mZ |Zj|q ≤ Cγ,qmZb
q and

E|Zj|q ≤ Cγ,qb
q ∀j ∈ [mZ ].

(3) Let Z1 and Z2 be two random variables having exponential-type tails with

parameters (b1, γ1) and (b2, γ2), respectively. Then ∀γ ∈ (0, γ1γ2(γ1 + γ2)−1),

Z1Z2 has an exponential-type tail with parameter
(
21/γ0b1b2, γ0

)
, where γ0 =

γ1γ2(γ1 + γ2)−1

(4) Let X have an exponential-type tail with parameter (bX , γX). Then ∀a ∈ R,
X − a has an exponential-type tail with parameter (bX + |a|, γX).

Proof. Proof of part (1). Let A0 := {i | ai 6= 0}. Then by Holder’s in-

equality and the union bound, P(|a′Z| > x) ≤ P(‖a‖1 maxi∈A0 |Zi| > x) ≤∑
i∈A0

P(‖a‖1|Zi| > x) ≤ ‖a‖0 exp
[
1− (xb−1‖a‖−1

1 )γ
]
. If ‖a‖0 = 1, then the result

follows by b‖a‖1 < b‖a‖1 log1/γ(3). For ‖a‖0 > 1, we let c = b‖a‖1 log1/γ ‖a‖0 <

b‖a‖1 log1/γ(‖a‖0 + 2). For x ≤ c, P(|a′Z| > x) ≤ 1 ≤ exp(1 − (x/c)γ).

Since P(|a′Z| > x) ≤ ‖a‖0 exp
[
1− (xb−1‖a‖−1

1 )γ
]
, it suffices to show that

∀x > c, log ‖a‖0 − (xb−1‖a‖−1
1 )γ ≤ 1 − (xc−1)γ. This is to say that xγ ≥

(log ‖a‖0 − 1)/((b‖a‖1)
−γ − c−γ) ∀x > c. By simple computations, one can show

that cγ = (log ‖a‖0 − 1)/((b‖a‖1)−γ − c−γ). Part (1) follows.
Proof of part (2). Notice that, by the union bound, P(max1≤j≤mZ |Zj| >

x) ≤
∑mZ

j=1 P(|Zj| > x) ≤ mZ exp [1− (x/b)γ]. Then

E max
1≤j≤mZ

|Zj|q
(i)
=

ˆ ∞
0

P
(

max
1≤j≤mZ

|Zj|q > x

)
dx =

ˆ ∞
0

P
(

max
1≤j≤mZ

|Zj| > x1/q

)
dx

(ii)

≤ mZ

ˆ ∞
0

exp
[
1−

(
x1/q/b

)γ]
dx
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(iii)
= mZb

q

(
qγ−1

ˆ ∞
0

e1−zzq/γ−1dz

)
,

where (i) follows by the identity EX =
´∞

0
P(X > x)dx for any non-negative random

variable X, (ii) follows by P(max1≤j≤mZ |Zj| > x) ≤ mZ exp [1− (x/b)γ] and (iii)

follows by a change of variable z =
(
x1/q/b

)γ. The bound for Emax1≤j≤mZ |Zj|q

follows with Cγ,q = qγ−1
´∞

0
e1−zzq/γ−1dz. The bound for E|Zj|q follows by the

same reasoning with max1≤j≤mZ |Zj| replaced by |Zj|. This completes the proof for

part (2).

Proof of part (3). The proof of Lemma A.2 of Fan, Liao, and Mincheva

(2011) implies that ∀γ ∈ (0, γ0), Z1Z2 has an exponential-type tail with parameter

(b3, γ) ∀b3 > b0 max{(γ/γ0)1/γ0 , (1 + log 2)1/γ0}, where b0 = b1b2. Let b∗ = 21/γ0b1b2.

It is easy to check that b∗ > b0 max{(γ/γ0)1/γ0 , (1 + log 2)1/γ0}. Thus, Z1Z2 has an

exponential-type tail with parameter (b∗, γ) ∀γ ∈ (0, γ0). In other words, for any

x > 0, P(|Z1Z2| > x) ≤ exp[−(x/b∗)
γ] ∀γ ∈ (0, γ0). We take the infimum of the

right-hand side over γ and obtain for any x > 0, P(|Z1Z2| > x) ≤ exp[−(x/b∗)
γ0 ].

Part (3) follows.

Proof of part (4). Let c = bX + |a|. Notice that P(|X − a| > t) ≤ P(|X|+
|a| > t) = P(|X| > t− |a|). For t ∈ (0, c], P(|X| > t− |a|) ≤ 1 ≤ exp [1− (t/c)γX ].

For t > c, t − |a| > 0 and P(|X| > t − |a|) ≤ exp [1− ((t− |a|)/bx)γX ]. It is easy

to check that (t− |a|)/bx ≥ t/c ∀t > c. Part (4) follows.

Lemma A.3.4. Let Σ ∈ Rp×p be a positive-semi-definite matrix. Suppose that

there exists a constant b > 0 such that min1≤j≤p Σj,j ≥ b. Then there exists a

constant Cb > 0 depending only on b such that ∀ε > 0,

sup
x∈R
|Φ(x− ε,Σ)− Φ(x+ ε,Σ)| ≤ Cbε

√
log p.

Proof. Let Y ∼ N(0,Σ) with its jth component denoted by Yj. By Nazarov’s

anti-concentration inequality (Lemma A.1 in Chernozhukov, Chetverikov, and Kato

(2014)), there exists a constant C ′b > 0 depending only on b such that

sup
x∈R

P
(

max
1≤j≤p

Yj ∈ (x− ε, x+ ε]

)
≤ 2C ′bε

√
log p
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sup
x∈R

P
(

max
1≤j≤p

(−Yj) ∈ (x− ε, x+ ε]

)
≤ 2C ′bε

√
log p.

Therefore,

sup
x∈R
|Φ(x− ε,Σ)− Φ(x+ ε,Σ)| = sup

x∈R
P (‖Y ‖∞ ∈ (x− ε, x+ ε])

(i)

≤ sup
x∈R

P
(

max
1≤j≤p

Yj ∈ (x− ε, x+ ε]

)
+ sup

x∈R
P
(

max
1≤j≤p

(−Yj) ∈ (x− ε, x+ ε]

)
≤ 4C ′bε

√
log p,

where (i) holds by ‖Y ‖∞ ∈ {max1≤j≤p Yj, max1≤j≤p (−Yj)}. The proof is complete.

Lemma A.3.5. Let ΣA and ΣB be p× p positive semi-definite matrices. Define

∆ = max1≤j,k≤p |ΣA,j,k − ΣB,j,k|. Suppose that there exist constants c, C > 0 such

that c ≤ ΣA,j,j ≤ C for 1 ≤ j ≤ p. Then there exists a constant K > 0 depending

only on c and C such that

sup
x∈R
|Φ(x,ΣA)− Φ(x,ΣB)| ≤ C∆1/3 (1 ∨ log(2p/∆))2/3 .

Proof. Consider random vectors X ∼ N(0,ΣA) and Y ∼ N(0,ΣB). Define X̄ =

(X ′,−X ′)′ and Ȳ = (Y ′,−Y ′)′. Notice that X̄ ∼ N(0, Σ̄A) and Ȳ ∼ N(0, Σ̄B),

where Σ̄A = D ⊗ ΣA, Σ̄B = D ⊗ ΣB and D =

(
1 −1

−1 1

)
.

The definition of Σ̄A and Σ̄B also implies that (1) max1≤j,k≤2p |Σ̄A,j,k −
Σ̄B,j,k| = max1≤j,k≤p |ΣA,j,k − ΣB,j,k| = ∆ and (2) the diagonal entries of Σ̄A lie in

[c, C]. It follows, by Lemma 3.1 of Chernozhukov, Chetverikov, and Kato (2013),

that there exists a constant M > 0 depending only on c and C such that

sup
x∈R

∣∣∣∣P( max
1≤j≤2p

X̄j ≤ x

)
− P

(
max

1≤j≤2p
Ȳj ≤ x

)∣∣∣∣ ≤M∆1/3 (1 ∨ log(2p/∆))2/3 .

We obtain the desired result by noticing that ‖X‖∞ = max1≤j≤2p X̄j and
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‖Y ‖∞ = max1≤j≤2p Ȳj.

Lemma A.3.6. Let {ui,j}(i,j)∈[n]×J be an array of random variables and Fn be a

σ-algebra. Suppose the following hold:

(i) Condition on Fn, ui is independent across i, where ui = {ui,j | j ∈ J}.
(ii) There exist constants b, γ > 0 such that ∀(i, j) ∈ [n]× J and ∀x > 0, P(|ui,j| >
x | Fn) ≤ exp (1− (x/b)γ) a.s.

(iii) ∀0 < c <∞, n−c log |J | → 0, where |J | denotes the cardinality of J .

Then

max
j∈J

∣∣∣∣∣
n∑
i=1

[ui,j − E(ui,j | Fn)]

∣∣∣∣∣ = OP (
√
n log |J |).

Proof. Let ũi,j = ui,j − E(ui,j | Fn). By Lemma A.3.3(2) and (4) applied to the

conditional probability measure P(· | Fn), we have that there exists a constant

b1 > 0 depending only on b and γ such that ∀z > 0 ∀(i, j) ∈ [n] × J , P(|ũi,j| >
x | Fn) ≤ exp (1− (x/b1)γ) a.s. Due to the conditional independence, the strong

mixing coefficients are always zero.

Then by Theorem 1 in Merlevède, Peligrad, and Rio (2011) (applied to the

conditional probability measure P(· | Fn)), there exist positive constants C1, C2,

C3, C4, C5 and r depending only on bMε and γ such that r < 1 and ∀z > 0,

P

(∣∣∣∣∣
n∑
i=1

ũi,j

∣∣∣∣∣ > z
√
n log |J | | Fn

)

≤ n exp
[
−C1

(
z
√
n log |J |

)r]
+ exp

[
−C2nz

2 log |J |
1 + nC3

]
+ exp

{
−C4z

2 log |J | exp

[
C5 log−r

(
z
√
n log |J |

)(
z
√
n log |J |

)r/(1−r)]}
a.s.

Then, by the union bound, we have that

P

(
max
j∈J

∣∣∣∣∣
n∑
i=1

ũi,j

∣∣∣∣∣ > z
√
n log |J | | Fn

)

≤
∑
j∈J

P

(
max
j∈J

∣∣∣∣∣
n∑
i=1

ũi,j

∣∣∣∣∣ > z
√
n log |J | | Fn

)

≤ |J |n exp
[
−C1

(
z
√
n log |J |

)r]
+ |J | exp

[
−C2nz

2 log |J |
1 + nC3

]
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+ |J | exp

{
−C4z

2 log |J | exp

[
C5 log−r

(
z
√
n log |J |

)(
z
√
n log |J |

)r/(1−r)]}
a.s.

By assumption (iv), the first and third terms in the above display go to zero for

any z > 0. Hence, ∀ε > 0, we can choose a large constant z∗ > 0 such that

P

(
max
j∈J

∣∣∣∣∣
n∑
i=1

ũi,j

∣∣∣∣∣ > z∗
√
n log |J | | Fn

)
≤ ε a.s. (A.3.5)

Hence, we have proved the result since, for an arbitrary ε > 0, we can find z∗ > 0

such that the above equation holds. The result follows by the law of iterated

expectations.

Lemma A.3.7. Let {Wj}j∈J be random variables. If there exist constant b, γ > 0

such that ∀j ∈ J , Wj has an exponential-type tail with parameter (b, γ), then

maxj∈J |Wj| = OP (log1/γ |J |), where |J | is the cardinality of J .

Proof. By the union bound, we have

P
(

max
j∈J
|Wj| > (log |J |)1/γ x

)
≤

∑
j∈J

P
(
|Wj| > (log |J |)1/γ x

)
≤ |J | exp

[
1−

(
(log |J |)1/γ x/b

)γ]
= exp [1 + (1− (x/b)γ) log |J |] .

Hence, for any ε > 0, one can choose large enough x such that the right-hand side

of the above display is smaller than ε. The result follows.

Lemma A.3.8. Let Fn be a σ-algebra and {Wt}Tt=1 be random variables with

E(Wt | Fn) = 0. Suppose that the following hold:

(i) There exist constants γ1, b1 > 0 such that ∀t ∈ [T ] and ∀z > 0, P(|Wt| > z |
Fn) ≤ exp[1− (z/b1)γ1 ] a.s.

(ii) There exist constants γ2, b2 > 0 such that αn(t | Fn) ≤ b2 exp(−tγ2) a.s, where

αn(t | Fn) := sup
{∣∣∣P(A | Fn)P(B | Fn)− P(A

⋂
B | Fn)

∣∣∣ :

A ∈ σ ({(Ws, . . . ,Ws) | s ≤ τ}) , B ∈ σ ({(Ws, . . . ,Ws) | s ≥ τ + t}) and τ ∈ Z
}
.
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Then ∀z > 0, P(|T−1/2
∑T

t=1 Wt| > z | Fn) ≤ exp[1 − (z/b)γ] a.s., where b, γ > 0

are constants depending only on γ1, γ2, b1 and b2.

Proof. Let γ3 = min{γ2, 1/2}. Notice that αn(t | Fn) ≤ b2 exp(−tγ3) and γ3 < 1.

Thus, γ := (γ−1
1 + γ−1

3 )−1 < 1. Hence, by Theorem 1 in Merlevède, Peligrad,

and Rio (2011) (applied to the conditional probability measure P(· | Fn)), there

exist constants C1, C2, C3, C4, C5 > 0 depending only on γ, γ3, b1 and b2, such that

∀z > 0,

P

(∣∣∣∣∣
T∑
t=1

Wt

∣∣∣∣∣ > zT 1/2 | Fn

)
≤ T exp

(
−C1T

γ/2zγ
)︸ ︷︷ ︸

J1,T (z)

+ exp

(
− C2z

2T

1 + C3T

)
︸ ︷︷ ︸

J2,T (z)

+ exp

[
−C4z

2 exp

(
C5

(T 1/2z)γ/(1−γ)

[log(T 1/2z)]
γ

)]
︸ ︷︷ ︸

J3,T (z)

a.s.

It is not hard to see that one can choose a large enough constant K > 0 such that

∀z ≥ K, J1,T (z) ≤ exp(−C1z
γ), J3,T (z) ≤ J1,T (z) and J2,T (z) ≤ exp(−C6z

2), where

C6 = C2/(1 + C3). Hence, ∀z ≥ K, J1,T (z) + J2,T (z) + J3,T (z) ≤ 2 exp(−C1z
γ) +

exp(−C6z
2). Since γ < 1, we have that ∀z ≥ K,

P

(
T−1/2

∣∣∣∣∣
T∑
t=1

Wt

∣∣∣∣∣ > z | Fn

)
≤ 3 exp (−C7z

γ) a.s, (A.3.6)

where C7 = min{C1, C6}. Let b := max
{
K, (C−1

7 log 3)1/γ
}
.

For z ∈ (0, b], exp[1− (z/b)γ ] ≥ 1 ≥ P(T−1/2|
∑T

t=1 Wt| > z | Fn). It is easy

to verify that, ∀z > b, 3 exp(−C7z
γ) ≤ exp[1− (z/b)γ ]. It follows, by (A.3.6), that

∀z > b, P(T−1/2|
∑T

t=1Wt| > z | Fn) ≤ exp[1− (z/b)γ ]. The proof is complete.

Lemma A.3.9. Let x > 0 and {bj}qj=1 ⊂ R. Then
∑q

j=1 x
bj ≤ q(xbmin + xbmax),

where bmin = min1≤j≤q bj and bmax = max1≤j≤q bj.

Proof. We discuss two cases: (A) x ∈ (0, 1] and (B) x > 1. In Case (A), xbmin ≥ xbj

for 1 ≤ j ≤ q and thus
∑q

j=1 x
bj ≤ qxbmin ≤ q(xbmin + xbmax). In Case (B),

xbmax ≥ xbj for 1 ≤ j ≤ q and thus
∑q

j=1 x
bj ≤ qxbmax ≤ q(xbmin + xbmax). The proof

is complete.
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A.3.2 Useful results on PCA

Lemma A.3.10. The following hold.

(1) Let A,B ∈ Rn1×n2 be two matrices. If i + j − 1 ≤ min{n1, n2}, then

si+j−1(A+B) ≤ si(A) + sj(B), where sj(·) denotes the jth largest singular value.

(2) Let A ∈ Rn1×n0 and B ∈ Rn0×n2. If 1 ≤ i ≤ n0, then si(AB) ≥ si(A)sn0−i+1(B).

(3) Let A,B ∈ Rn1×n2 be two matrices. If rankB ≤ r and 1 ≤ j ≤ min{n1, n2} − r,
then sj(A) ≥ sj+r(A+B) ≥ s2r+j(A).

(4) Let A ∈ Rn1×n2. Let B ∈ Rn1×m be the matrix consisting of the first m columns

of A with m ≤ n2. Then for j ∈ [m ∧ n1], sj(B) ≤ sj(A).

Proof. Part (1) and (4) are Fact 6(b) and Fact 3, respectively, in Chapter 17.4

of Hogben (2006). Part (2) follows by Lemma 3 of Wang and Xi (1997). Part

(3) follows by applying part (1): sj(A) = sj(A) + sr+1(B) ≥ sj+r(A + B) and

sj+r(A+B) = sj+r(A+B) + sr+1(−B) ≥ s2r+j(A).

Lemma A.3.11. Let W = LF ′+ e with L ∈ Rn×r and F ∈ RT×r. Let W = ÛΣ̂V̂ ′

be an SVD and Û1 ∈ Rn×r the first r columns of Û . Define L̂ =
√
nÛ1 and

F̂t = n−1L̂′Wt, where W = (W1, . . . ,WT ), e = (e1, . . . , eT ) and F = (F1, . . . , FT )′.

Suppose that the following hold:

(i) ‖e‖ = oP (
√
nT ) and T � nκ for a constant κ > 0

(ii) There exist 0 < m1 ≤ m2 <∞ such that all the eigenvalues of ΣF := T−1F ′F

and ΣL := n−1L′L belong to [m1,m2] wpa1.

Then the following hold:

(1) L̂F̂t − LFt = (n−1L̂L̂′ − I)LFt + n−1L̂L̂′et.

(2) L̂ − LH = ∆L, where H = F ′FL′L̂Ω̂−2
1 (nT )−1, ∆L = (nT )−1(LF ′e′ +

eW ′)L̂Ω̂−2
1 and Ω̂1 = Σ̂1(nT )−1/2 and Σ̂1 is the upper-left r × r submatrix of

Σ̂.

(3) ‖Ω̂−2
1 ‖ = OP (1), ‖∆L‖ = OP (‖e‖/

√
T ), ‖H‖ = OP (1) and ‖HH ′ − Σ−1

L ‖ =

OP (‖e‖/
√
nT ).
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(4) There exists a random variable A∗ = OP (1) that does not depend on t such

that, with probability one, ∀a ∈ Rn,

∣∣∣a′(L̂F̂t − LFt)∣∣∣ ≤ n−κM1‖F ′e′a‖A∗

+
[
n−(1+κ)/2‖e‖M1 + n−1M2 + n−1−κ/2‖e‖2

]
A∗‖L′a‖

+
[
n−1/2−κ‖e‖2M1 + n−(1+κ)‖e‖3 + n−1−κ/2‖e‖M2

]
A∗‖a‖,

where M1 = ‖F‖∞ and M2 = maxt ‖L′et‖.

Proof. Proof for part (1). Since F̂t = n−1L̂′Wt = n−1L̂′(LFt + et), we have

L̂F̂t = n−1L̂L̂′(LFt + et) and thus L̂F̂t − LFt = (n−1L̂L̂′ − I)LFt + n−1L̂L̂′et. Part

(1) follows.

Proof for part (2). By the definition of L̂, we have WW ′L̂ = L̂Σ̂2
1 and

thus L̂ = WW ′L̂Σ̂−2
1 . We obtain part (2) by noticing that

WW ′L̂Σ̂−2
1 = (LF ′ + e)W ′L̂Σ̂−2

1 = LF ′W ′L̂Σ̂−2
1 + eW ′L̂Σ̂−2

1

= LF ′(FL′ + e′)L̂Σ̂−2
1 + eW ′L̂Σ̂−2

1 = LH + (LF ′e′ + eW ′)L̂Σ̂−2
1 .

Proof for part (3). Notice that by Lemma A.3.10(2), sr(LF ′) ≥
s1(L)sr(F ). Thus, by assumption (ii), it follows that there exists b > 0 such

that P
(
(nT )−1/2sr(LF

′) > b
)
→ 1. By Lemma A.3.10(1), sr(W ) + ‖e‖ =

sr(LF
′ + e) + s1(−e) ≥ sr(LF

′). Thus,

P
(
(nT )−1/2sr(W ) + (nT )−1/2‖e‖ ≥ b

)
= P

(
sr(W ) + ‖e‖ >

√
nTb

)
≥ P

(
sr(LF

′) >
√
nTb

)
→ 1.

Since ‖e‖/
√
nT = oP (1), P

(
sr(W )/

√
nT > b/2

)
→ 1. Notice that

‖Ω̂−2
1 ‖ = nTs−2

r (W ). Therefore, ‖Ω̂−2
1 ‖ is bounded above by 4/b2 with proba-

bility approaching one. In other words, ‖Ω̂−2
1 ‖ = OP (1).

The definition of ∆L (in part (2)) implies that

‖∆L‖ ≤ (nT )−1
[
‖L‖‖F‖‖e‖+ ‖e‖‖LF ′ + e‖

]
‖L̂‖‖Ω̂−2

1 ‖
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≤ (nT )−1
[
2‖L‖‖F‖‖e‖+ ‖e‖2

]
‖L̂‖‖Ω̂−2

1 ‖
(i)
= OP (T−1/2‖e‖),

where (i) follows by ‖L‖ = OP (n1/2), ‖F‖ = OP (T 1/2), ‖L̂‖ = n1/2, ‖Ω̂−2
1 ‖ = OP (1)

and ‖e‖/
√
nT = oP (1). Notice that

‖H‖ = ‖F ′F‖‖L‖‖L̂‖‖Ω̂−2
1 ‖/(nT ) = OP (T )OP (n1/2)n1/2OP (1)/(nT ) = OP (1).

Observe that

Ir = n−1L̂′L̂ = n−1(LH + ∆L)′(LH + ∆L)

= H ′ΣLH + n−1H ′L′∆L + n−1∆′LLH + n−1∆′L∆L. (A.3.7)

Also observe that‖H ′L′∆L‖ ≤ ‖H‖ · ‖L‖ · ‖∆L‖ = OP (‖e‖
√
n/T )

‖∆′L∆L‖ ≤ ‖∆L‖2 = OP (‖e‖2/T )
(i)
= oP (‖e‖

√
n/T ),

(A.3.8)

where (i) holds by ‖e‖ = oP (
√
nT ). Then (A.3.7) and (A.3.8) imply H ′ΣLH +

OP (‖e‖/
√
nT ) = Ir. By OP (‖e‖/

√
nT ) = oP (1), it follows that Ir − (H ′ΣLH)−1 =

OP (‖e‖/
√
nT ) and thus

‖HH ′ − Σ−1
L ‖ = ‖H(Ir − (H ′ΣLH)−1)H ′‖

≤ ‖H‖ · ‖Ir − (H ′ΣLH)−1‖ · ‖H‖ = OP (‖e‖/
√
nT ).

Proof for part (4). Let An,1 = ‖n−1L′L‖‖(HH ′ − Σ−1
L )‖, An,2 =

n−1‖L‖‖∆L‖2, An,3 = n−1‖L‖‖∆L‖‖H‖, An,4 = ‖n−1L′L‖‖H‖, An,5 =

(nT )−1‖Ω̂−2
1 ‖‖L̂‖, An,6 = An,1 +An,3 +An,4An,5‖e‖‖F‖, An,7 = An,2 +An,4An,5‖e‖2

and An,8 = An,4An,5‖L‖. Notice that

|a′(L̂F̂t − LFt)|
(i)

≤ ‖L′(n−1L̂L̂′ − I)a‖‖Ft‖+ n−1‖L̂′a‖‖L̂′et‖, (A.3.9)
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where (i) holds by part (1). Also notice that

‖L′(n−1L̂L̂′ − I)a‖

= ‖n−1L′(L̂L̂′ − LΣ−1
L L′)a‖

(i)
= ‖n−1L′

(
L(HH ′ − Σ−1

L )L′ + ∆L∆′L + ∆LH
′L′ + LH∆′L

)
a‖

(ii)

≤ An,1‖L′a‖+ An,2‖a‖+ An,3‖L′a‖+ An,4‖∆′La‖
(iii)

≤ (An,1 + An,3)‖L′a‖+ An,2‖a‖+ An,4An,5 (‖We′a‖+ ‖e‖‖F‖‖L′a‖)
(iv)

≤ (An,1 + An,3)‖L′a‖+ An,2‖a‖

+ An,4An,5
(
‖L‖‖F ′e′a‖+ ‖e‖2‖a‖+ ‖e‖‖F‖‖L′a‖

)
= An,6‖L′a‖+ An,7‖a‖+ An,8‖F ′e′a‖, (A.3.10)

where (i) follows by L̂ = LH + ∆L, (ii) follows by the triangular inequality and

the submultiplicativity of ‖ · ‖, (iii) follows by the definition of ∆L (part (2)) and

(iv) follows by W = LF ′ + e. Then,

|a′(L̂F̂t − LFt)|
(i)

≤
√
r
[
An,6‖L′a‖+ An,7‖a‖+ An,8‖F ′e′a‖

]
M1 + n−1‖L̂′a‖‖L̂′et‖

(ii)

≤
√
r
[
An,6‖L′a‖+ An,7‖a‖+ An,8‖F ′e′a‖

]
M1

+ n−1 (‖H‖‖L′a‖+ ‖∆L‖‖a‖) (‖H‖M2 + ‖∆L‖‖et‖)
(iii)

≤
√
rAn,8︸ ︷︷ ︸
J1

‖F ′e′a‖M1 +
[√

rAn,6M1 + n−1‖H‖2M2 + n−1‖H‖‖∆L‖‖e‖
]

︸ ︷︷ ︸
J2

‖L′a‖

+
[√

rAn,7M1 + n−1‖∆L‖2‖e‖+ n−1‖H‖‖∆L‖M2

]
︸ ︷︷ ︸

J3

‖a‖, (A.3.11)

where (i) is due to (A.3.9), (A.3.10) and ‖Ft‖ ≤
√
rM1, (ii) follows by L̂ = LH+∆L

and (iii) follows by ‖et‖ ≤ ‖e‖.
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By simple computations using part (3) and T � nκ, we have that
J1 = OP (n−κ)

J2 = OP

(
n−(1+κ)/2‖e‖M1 + n−1M2 + n−1−κ/2‖e‖2

)
J3 = OP

(
n−1/2−κ‖e‖2M1 + n−(1+κ)‖e‖3 + n−1−κ/2‖e‖M2

)
.

(A.3.12)

Notice that J1, J2 and J3 do not depend on a. Therefore, part (4) follows

by (A.3.11) and (A.3.12). The proof is complete.



Appendix B

Proofs and examples for Chapter 2

B.1 Approximate bootstrap

In this section, we present the key theoretical tool we use, whose proof is

presented after the auxiliary lemmas. The proofs for results in Sections 2.2 and 2.3

are contained in Appendix B.2. Appendix B.3 contains technical tools used in the

proof.

Proposition B.1.1. Let Fn be a σ-algebra and {Υi}ni=1 a sequence of zero-mean

random vectors in Rp such that Υi, conditional on Fn, is independent across i. Let

Ŝn and Υ̂i be random vectors in Rp. Suppose that the following hold:

(i) There exist constants q1, q2 > 0 such that ‖Ŝn − SΥ
n ‖∞ = OP(n−q1) and

max1≤j≤p n
−1
∑n

i=1(Υ̂i,j −Υi,j)
2 = OP(n−q2), where SΥ

n = n−1/2
∑n

i=1 Υi and

Υ̂i,j and Υi denote the jth component of Υ̂i and Υi, respectively.

(ii) There exist a constant r > 2 and an Fn-measurable positive random

variable Bn such that, almost surely, n−1
∑n

i=1 E(|Υi,j|3 | Fn) ≤ Bn,

n−1
∑n

i=1 E(|Υi,j|4 | Fn) ≤ B2
n and E(max1≤j≤p |Υi,j|r | Fn) ≤ 2Br

n.

(iii) There exists a constant b > 0 such that

P
(
min1≤j≤p n

−1
∑n

i=1 E(Υ2
i,j | Fn) > b

)
→ 1, max1≤j≤p |n−1

∑n
i=1[Υ

2
i,j −

E(Υ2
i,j | Fn)]| = oP(1) and max1≤j≤p |n−1

∑n
i=1 Υi,j| = oP(1).

172
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(iv) n2/r−1B2
n log3(p∨n) = oP(1), n−1B2

n log7(p∨n) = oP(1), nq2/ log4 p→∞ and

n2q1/ log p→∞.

Then

lim sup
n→∞

sup
η∈(0,1)

∣∣∣P [‖Ŝn‖∞ > Q
(

1− η, ‖S̃Υ̂
n ‖∞

)]
− η
∣∣∣ = 0,

where Gn is the σ-algebra generated by Fn, {Υi}ni=1 and {Υ̂i}ni=1,

Q
(

1− η, ‖S̃Υ̂
n ‖∞

)
= inf

{
x ∈ R | P

(
‖S̃Υ̂

n ‖∞ > x | Gn
)
≤ α

}
, S̃Υ̂

n =

n−1/2
∑n

i=1(Υ̂i − ¯̂
Υ)ξi,

¯̂
Υ = n−1

∑n
i=1 Υ̂i ∈ Rp and {ξi}ni=1 is a sequence of

independent N(0, 1) random variables independent of Gn.

Lemma B.1.1 (Chernozhukov, Chetverikov, and Kato (2014)). Consider the setup

in the statement of Proposition B.1.1. Let the assumptions of Proposition B.1.1

hold. Then

sup
x∈R

∣∣∣P (‖SΥ
n ‖∞ ≤ x | Fn

)
− P

(
‖S̃Υ

n ‖∞ ≤ x | Gn
)∣∣∣ = oP(1).

where S̃Υ
n = n−1/2

∑n
i=1(Υi− Ῡ)ξi with {ξi}ni=1 and Ῡ = (Ῡ1, · · · , Ῡp)

′ ∈ Rp defined

in the statement of Proposition B.1.1.

Proof. For notational simplicity, we denote P(· | Fn) and P(· | Gn) by P|Fn(·) and

P|Gn(·), respectively. Let {Φi}ni=1 be a sequence of random elements in Rp such that

conditional on Fn, {Φi}ni=1 is independent across i and Φi | Fn is Gaussian with mean

zero and variance E(ΥiΥ
′
i | Fn). Notice that for any x ∈ R, {a ∈ Rp | ‖a‖∞ ≤ x}

is a rectangle in Rp. By Proposition 2.1 of Chernozhukov, Chetverikov, and Kato

(2014) applied to the conditional probability measure P|Fn(·), we have

sup
x∈R

∣∣P|Fn (‖SΥ
n ‖∞ ≤ x

)
− P|Fn

(
‖SΦ

n ‖∞ ≤ x
)∣∣ ≤ C1(Dn,1 +Dn,2) a.s, (B.1.1)

where C1 > 0 is a constant depending only on b, SΦ
n = n−1/2

∑n
i=1 Φi, Dn,1 =

(n−1B2
n log7(pn))1/6 and Dn,2 = (n2r−1−1B2

n log3(pn))1/3.

Applying Corollary 4.2 of Chernozhukov, Chetverikov, and Kato (2014)

to the conditional probability measure P(· | Fn), we obtain that, for αn =
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min{exp(−1), n1/r−1/2Bn log3/2(pn)},

P|Fn
[
sup
x∈R

∣∣∣P|Fn (‖SΦ
n ‖∞ ≤ x

)
− P|Gn

(
‖S̃Υ

n ‖∞ ≤ x
)∣∣∣ > C2(D̃n,1 + D̃n,2)

]
≤ αn a.s,

(B.1.2)

where C2 > 0 is a constant depending only on b, D̃n,1 =

(n−1B2
n log5(pn) log2(α−1

n ))1/6 and D̃n,2 = (α−2
n n2/q−1B2

n log3(pn))1/3. Straight-

forward computations show that αn, D̃n,1, D̃n,2, Dn,1 and Dn,2 are oP(1). Thus, by

(B.1.1) and (B.1.2), we havesupx∈R
∣∣P|Fn (‖SΥ

n ‖∞ ≤ x
)
− P|Fn

(
‖SΦ

n ‖∞ ≤ x
)∣∣ = oP(1)

supx∈R

∣∣∣P|Fn (‖SΦ
n ‖∞ ≤ x

)
− P|Gn

(
‖S̃Υ

n ‖∞ ≤ x
)∣∣∣ = oP(1).

The desired result follows.

Lemma B.1.2. Let the assumptions of Proposition B.1.1 hold. Then

sup
x∈R

∣∣∣P(‖S̃Υ
n ‖∞ ≤ x | Gn

)
− P

(
‖S̃Υ̂

n ‖∞ ≤ x | Gn
)∣∣∣ = oP(1),

where S̃Υ
n is defined in Lemma B.1.1.

Proof. For notational simplicity, we denote P(· | Gn) by P|Gn(·). Define εn =

n−q2/4 log−1/2 p. Let b > 0 be a constant such that P(min1≤j≤p n
−1
∑n

i=1 E(Υ2
i,j |

Fn) > b) → 1. Since both max1≤j≤p |n−1
∑n

i=1[Υ
2
i,j − E(Υ2

i,j | Fn)]|
and max1≤j≤p |n−1

∑n
i=1 Υi,j| are oP(1), we have P(Jn) → 1, where Jn =

{minj∈J n
−1
∑n

i=1(Υi,j − Ῡj)
2 > b/2} and Ῡj = n−1

∑n
i=1 Υi,j. By Lemma B.3.2,

sup
x∈R

∣∣∣P|Gn (‖S̃Υ
n ‖∞ > x

)
− P|Gn

(
‖S̃Υ̂

n ‖∞ > x
)∣∣∣

≤ P|Gn
(
‖S̃Υ

n − S̃Υ̂
n ‖∞ > εn

)
+ sup

x∈R
P|Gn

(
‖S̃Υ

n ‖∞ ∈ (x− εn, x+ εn]
)
. (B.1.3)

Notice that conditional on Gn, S̃Υ
n is a zero-mean Gaussian vector whose jth

entry has variance of n−1
∑n

i=1(Υi,j − Ῡj)
2. Hence, by Lemma B.3.4, there exists a
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constant Cb > 0 depending only on b such that

sup
x∈R

P|Gn
(
‖S̃Υ

n ‖∞ ∈ (x− εn, x+ εn]
)
≤ Cbεn

√
log p+ 1J cn . (B.1.4)

Also notice that conditional on Gn, S̃Υ
n − S̃Υ̂

n is a zero-mean Gaussian vector

whose jth entry has variance equal to

n−1

n∑
i=1

[
(Υ̂i,j − ¯̂

Υj)− (Υi,j − Ῡj)
]2

= n−1

n∑
i=1

(Υ̂i,j −Υi,j)
2 − (

¯̂
Υj − Ῡj)

2

≤ n−1

n∑
i=1

(Υ̂i,j −Υi,j)
2.

Observe that for any Gaussian random variable Z ∼ N(0, σ2) and x > 0,

P(|Z| > x) ≤ C exp(−Cσ−2x2) for some universal constant C > 0. This elementary

fact implies that

P|Gn(‖S̃Υ
n − S̃Υ̂

n ‖∞ > εn) ≤
p∑
j=1

P|Gn(|S̃Υ
n,j − S̃Υ̂

n,j| > εn) ≤ pC exp(−Cε2
nσ
−2
n,∗),

(B.1.5)

where σ2
n,∗ = max1≤j≤p n

−1
∑n

i=1(Υ̂i,j − Υi,j)
2. Combining (B.1.3), (B.1.4) and

(B.1.5), we have

sup
x∈R

∣∣∣P|Gn (‖S̃Υ
n ‖∞ > x

)
− P|Gn

(
‖S̃Υ̂

n ‖∞ > x
)∣∣∣

≤ Cbεn
√

log p+ pC exp(−Cε2
nσ
−2
n,∗) + 1J cn .

By assumption, σ2
n,∗ = OP(n−q2). Thus, ε2

nσ
−2
n,∗/ log p = nq2/2/ log2 p → ∞

and p exp(−Cε2
nσ
−2
n,∗) = oP(1). Notice that εn

√
log p = n−q2/4 = o(1). The desired

result follows from the above display, together with these observations and P(J )→
1.

Proof of Proposition B.1.1. We use the notations in the statement of Lem-

mas B.1.1 and B.1.2. For x ∈ R, let Qn(x) = P
(
‖SΥ

n ‖∞ > x | Fn
)
,

Q̃n(x) = P
(
‖S̃Υ

n ‖∞ > x | Gn
)
and Q̂n(x) = P

(
‖S̃Υ̂

n ‖∞ > x | Gn
)
. Define an,1 =
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supx∈R |Qn(x) − Q̃n(x)| and an,2 = supx∈R |Q̃n(x) − Q̂n(x)|. Let b > 0 be a

constant such that P(min1≤j≤p n
−1
∑n

i=1 E(Υ2
i,j | Fn) > b) → 1. As argued

at the beginning of the proof of Lemma B.1.2, P(Jn) → 1, where Jn :=

{minj∈J n
−1
∑n

i=1(Υi,j − Ῡj)
2 ≥ b/2} and Ῡj = n−1

∑n
i=1 Υi,j.

Define the event Jn := {minj∈J n
−1
∑n

i=1(Υi,j − Ῡn,j)
2 ≥ b}, where b > 0 is

a constant satisfying P(Jn)→ 1. Define sn = n−q1/2 log−1/4 p. Notice that, ∀x ∈ R,

∣∣∣P (‖SΥ
n ‖∞ ∈ (x− sn, x+ sn] | Fn

)
− P

(
‖S̃Υ

n ‖∞ ∈ (x− sn, x+ sn] | Gn
)∣∣∣

=
∣∣∣[Qn(x− sn)−Qn(x+ sn)]−

[
Q̃n(x− sn)− Q̃n(x+ sn)

]∣∣∣
≤

∣∣∣Qn(x− sn)− Q̃n(x− sn)
∣∣∣+
∣∣∣Qn(x+ sn)− Q̃n(x+ sn)

∣∣∣ ≤ 2an,1. (B.1.6)

Let ∆n = Ŝn − SΥ
n . We have

∣∣∣P(‖Ŝn‖∞ > x | Fn
)
− Q̃n(x)

∣∣∣
≤
∣∣∣P(‖Ŝn‖∞ > x | Fn

)
−Qn(x)

∣∣∣+ an,1

(i)

≤ P (‖∆n‖∞ > sn | Fn) + P
(
‖SΥ

n ‖∞ ∈ (x− sn, x+ sn] | Fn
)

+ an,1

(ii)

≤ P (‖∆n‖∞ > sn | Fn) + P
(
‖S̃Υ

n ‖∞ ∈ (x− sn, x+ sn] | Gn
)

+ 3an,1, (B.1.7)

where (i) follows by Lemma B.3.2 and (ii) follows by (B.1.6). Notice that conditional

on Gn, S̃Υ
n is a zero-mean Gaussian vector in Rp whose jth component has variance

equal to n−1
∑n

i=1(Υi,j − Ῡj)
2. By Lemma B.3.4, there exists a constant Cb > 0

depending only on b such that

sup
x∈R

P
(
‖S̃Υ

n ‖∞ ∈ (x− sn, x+ sn] | Gn
)
≤ snCb

√
log p+ 1J cn a.s. (B.1.8)

Therefore,

sup
x∈R

∣∣∣P(‖Ŝn‖∞ > x | Fn
)
− Q̂n(x)

∣∣∣
≤ sup

x∈R

∣∣∣P(‖Ŝn‖∞ > x | Fn
)
− Q̃n(x)

∣∣∣+ sup
x∈R
|Q̃n(x)− Q̂n(x)|

(i)

≤ P (‖∆n‖∞ > sn | Fn) + snCb
√

log p+ 1J cn + 3an,1 + an,2
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(ii)
= P

(
s−1
n ‖∆n‖∞ > 1 | Fn

)
+ snCb

√
log p+ oP(1)

(iii)
= oP(1), (B.1.9)

where (i) follows by (B.1.7) and (B.1.8) and the definition of an,2, (ii) follows by

P(J c
n) = o(1), an,1 = oP(1) (by Lemma B.1.1) and an,2 = oP(1) (by Lemma B.1.2)

and (iii) holds by the assumptions: ‖∆n‖∞ = OP(n−q1), snnq1 = (nq1 log−1/2)1/2 →
∞ and sn

√
log p = (nq1 log−1/2)−1/2 = o(1). Notice that ∀δ > 0,

E

[
sup
η∈(0,1)

∣∣∣P(‖Ŝn‖∞ > Q
(

1− η, ‖S̃Υ̂
n ‖∞

)
| Fn

)
− η
∣∣∣]

= E

[
sup
η∈(0,1)

∣∣∣P(‖Ŝn‖∞ > Q̂−1
n (η) | Fn

)
− η
∣∣∣]

(i)

≤ E
[
δ + P

(
sup
x∈R

∣∣∣P(‖Ŝn‖∞ > x | Fn
)
− Q̂n(x)

∣∣∣ > δ

∣∣∣∣Fn)]
= δ + P

(
sup
x∈R

∣∣∣P(‖Ŝn‖∞ > x | Fn
)
− Q̂n(x)

∣∣∣ > δ

)
(ii)

≤ δ + o(1) (B.1.10)

where (i) follows by Lemma B.3.3 and (ii) follows by (B.1.9). Since δ is arbitrary,

(B.1.10) implies

E

[
sup
η∈(0,1)

∣∣∣P(‖Ŝn‖∞ > Q
(

1− η, ‖S̃Υ̂
n ‖∞

)
| Fn

)
− η
∣∣∣] = o(1).

The desired result follows by noticing that supη |E(Zn(η))| ≤ E supη |Zn(η)|,
where Zn(η) = P

(
‖Ŝn‖∞ > Q

(
1− η, ‖S̃Υ̂

n ‖∞
)
| Fn

)
− η.

B.2 Proof of results in Sections 2.2 and 2.3

B.2.1 Proof of Lemma 2.2.1.

Proof of Lemma 2.2.1. We first show that r+pC = pY +pW , which is equivalent

to the following claims:

(i) r + pC ≥ pY + pW .

(ii) r + pC ≤ pY + pW .
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To see Claim (i), recall that X and F are both assumed to have full column rank.

Hence, r = rank[F,X] = rank[MXF,X] = pW + rankMXF . Thus, rankMXF =

r − pW . It follows, by the rank-nullity theorem, that there exist a matrix Q1 ∈
RpY ×(pY −(r−pW )) such thatMXFQ1 = 0 and rankQ1 = pY − (r−pW ) = pY +pW −r.
Since MXFQ1 = [I − X(X ′X)−1X ′]FQ1, we have FQ1 = XQ2, where Q2 =

(X ′X)−1X ′FQ1. Since F has full column rank, rankFQ1 = rankQ1. Similarly,

rankXQ2 = rankQ2. It follows, by FQ1 = XQ2, that pY + pW − r = rankQ1 =

rankFQ1 = rankXQ2 = rankQ2. By Definition 2.2.1, pY + pW − r ∈ CF,X . Hence,
pY + pW − r ≤ pC = maxk∈CF,X k. This proves Claim (i).

To see Claim (ii), notice that, by Definition 2.2.1, there exists matri-

ces R1 ∈ RpY ×pC and R2 ∈ RpW×pC such that rankR1 = rankR2 = pC and

FR1 = XR2. Let R1,C ∈ RpY ×(pY −k) and R2,C ∈ RpW×(pW−k) such that

matrices R̄1 = [R1, R1,C ] ∈ RpY ×pY and R̄2 = [R2, R2,C ] ∈ RpW×pW satisfy

that rankR̄1 = pY and rankR̄2 = pW . Since Blockdiag(R̄1, R̄2) has full row

rank of pW + pY , r = rank[F,X] = rank([F,X]Blockdiag(R̄1, R̄2)). Notice

that [F,X]Blockdiag(R̄1, R̄2) = [FR1, FR1,C , XR2, XR2,C ]. Since removing the

redudant columns FR1 = XR2, we have r = rank[FR1,C , XR2, XR2,C ] ∈
RT×(pY +pW−pC). Since the rank of a matrix cannot exceed the number of columns,

r ≤ pY + pW − pC . This proves Claim (ii).

Combing Claims (i) and (ii) yields r+pC = pY +pW . The “if” part in Lemma

2.2.1 follows. To see the “only if” part, it remains to show that MZ [F,X] = 0. Since

MZ represents projection onto the space orthogonal to those spanned by columns

in Z. Since columns in Z and those in [F,X] span the same space. We have

MZ = M[F,X]. Thus, MZ [F,X] = M[F,X][F,X] = 0. The proof is complete.

In the rest of this section, we prove Theorems 2.3.1 and 2.3.2. The proof of

these theorems is presented in Appendix B.2.3 after we derive auxiliary results in

Appendix B.2.2. We adopt the following notations.

Recall the quantities defined in (2.2.6). Let ΩY,(k) = SY,(k)/
√
nT , where

SY,(k) is the upper-left k×k matrix of SY and LF ′ = UY SY V
′
Y is an SVD. Similarly,

let ΩW,(p) = ΣW,(k)/
√
nT , where SW,(p) is the upper-left p × p matrix of ΣW and

RX ′ = UWΣWV
′
W is an SVD. Recall the SVD’s in Algorithm 3: Y = ÛY ŜY V̂

′
Y and
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W = ÛW ŜW V̂
′
W . Let Ω̂Y,(k) = ŜY,(k)/

√
nT and Ω̂W,(k) = ŜW,(k)/

√
nT , where ŜY,(k)

and ŜW,(k) are the upper-left k × k matrix of ŜY and the upper-left p× p matrix of

ŜW , respectively. Also define L̃ =
√
nUY,(k) ∈ Rn×k and H̃L = (L′L)−1L′L̃.

Let sj(·) denote the jth largest singular value counting multiplicity. For any

j ∈ [q], ιj,q denotes the jth column of Iq; when there is no ambiguity, we write ιj
instead of ιj,q. We also use the notation logO(1) n to denote a term O(logc n) for

some constant c ∈ (0,∞).

We define Ξ(b, r) to be the set of random variables with exponential-type

tails with parameter (b, r); Ξ(b, r, p1, p2) denotes the set of p1× p2 random matrices

whose entries belong to Ξ(b, r). We also introduce similar notations for random

variables whose conditional distributions have exponential-type tails. For constants

b, r > 0 and a σ-algebra, we define Ξ(b, r,F) = {ζ | ∀d > 0 P(|ζ| > d | F) ≤
exp[1− (d/b)γ] a.s}. Unless stated otherwise, all the constants in the rest of the

paper depend only on β, γ, κ and ρ in Assumption 3.

B.2.2 Preliminary results for Theorems 2.3.1 and 2.3.2

Lemma B.2.1. Let A and B be matrices of dimension k1 × k2 and k2 × k3,

respectively. Then

(1) ‖AB‖∞ ≤
√
k2‖A‖∞‖B‖ and ‖AB‖∞ ≤

√
k2‖B‖∞‖A‖.

(2) ‖AB‖∞ ≤ k2‖A‖∞‖B‖∞.

Proof. For part (1), let A = (a1, · · · , ak1)′ with ai ∈ Rk2 . Then ‖AB‖∞ =

max1≤i≤k1 ‖B′ai‖∞ ≤ max1≤i≤k1 ‖ai‖‖B‖ ≤
√
k2‖A‖∞‖B‖. The proof for

‖AB‖∞ ≤
√
k2‖B‖∞‖A‖ is analogous. For part (2), let B = (b1, · · · , bk3) with

bi ∈ Rk2 . Then ‖AB‖∞ = max1≤i≤k1,1≤j≤k3 |a′ibj| ≤ max1≤i≤k1,1≤j≤k3 ‖ai‖‖bi‖ ≤
k2 max1≤i≤k1,1≤j≤k3 ‖ai‖∞‖bi‖∞ ≤ k2‖A‖∞‖B‖∞.

Lemma B.2.2. Let Assumption 3 hold. Then the following hold. (1) ‖Z‖∞, ‖F‖∞,
‖L‖∞, ‖Λ‖∞, ‖e‖∞ and ‖v‖∞ are OP(logO(1) n). (2) ‖Z‖, ‖F‖, ‖L‖, ‖Λ‖, ‖L̂‖,
‖Λ̂‖ and ‖L̃‖ are OP(n1/2). (3) ‖e‖ = OP(

√
n log n) and ‖v‖ = OP(

√
n log n).

Proof. Part (1) follows by the exponential-type tail condition together with Lemma

B.3.6. Part (2) follows by Assumption 3 and definitions of L̂, Λ̂ and L̃. Now we
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prove part (3). By Theorem 5.48 and Remark 5.49 in Vershynin (2010), there exists

a universal constant C̄ > 0 such that

E‖e‖ ≤
√
nY max

i∈[nY ]
s2
i + C̄

√
Emax

i
‖ei‖2 log(nY ∧ T ), (B.2.1)

where s2
i = E‖ei‖2 =

∑T
t=1 Ee2

i,t. By Assumption 3 and Lemma B.3.5, maxi∈[nY ] s
2
i =

O(n).

By Lemma B.3.5(3)-(4), there exists a constant b > 0 such that e2
i,t−Ee2

i,t ∈
Ξ(b, γ1/3). Let an = c∗

√
n log n, where c∗ > 0 is a constant to be determined. By

Theorem 1 in Merlevède, Peligrad, and Rio (2011), there exists a constant C > 0

such that ∀x > 0,

P
(

max
i∈[nY ]

∣∣‖ei‖2 − s2
i

∣∣ > anx

)
≤

nY∑
i=1

P
(∣∣‖ei‖2 − s2

i

∣∣ > anx
)

=

nY∑
i=1

P

(∣∣∣∣∣
T∑
t=1

(
e2
i,t − Ee2

i,t

)∣∣∣∣∣ > anx

)

≤ nY T exp (−Caγnxγ) + nY exp

(
− Ca2

nx
2

1 + CT

)
+ nY exp

[
−Ca

2
nx

2

T
exp

(
C(anx)γ/(1−γ)(log anx)−γ

)]
.

Thus, by elementary computations, we can choose large constants c∗, a∗ > 0 and

small constants b∗ > 0 such that ∀x ≥ a∗

P
(

max
i

∣∣‖ei‖2 − s2
i

∣∣ /(c∗√n log n
)
> x

)
≤ exp

(
−b∗x2

)
. (B.2.2)

By (B.2.2) and the identity E|ζ| =
´∞

0
P(|ζ| > z)dz for any random variable ζ, we

have

Emax
i

∣∣‖ei‖2 − s2
i

∣∣ /(c∗√nY log nY

)
=

ˆ ∞
0

P
(

max
i

∣∣‖ei‖2 − s2
i

∣∣ /(c∗√nY log nY

)
> x

)
dx

≤ a∗ +

ˆ ∞
a∗

P
(

max
i

∣∣‖ei‖2 − s2
i

∣∣ /(c∗√n log n
)
> x

)
dx
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≤ a∗ +

ˆ ∞
a∗

exp
(
−b∗x2

)
dx = O(1).

It follows that Emaxi ‖ei‖2 ≤ Emaxi |‖ei‖2 − s2
i |+maxi s

2
i = O(

√
n log n)+O(n) =

O(n). Thus, by (B.2.1) and Markov’s inequality, ‖e‖ = OP(
√
n log n). An analogous

argument yields ‖v‖ = OP(
√
n log n).

Lemma B.2.3. Let Assumption 3 hold. Then

(1) ‖e′L‖∞ = OP(n1/2 logO(1) n) and ‖v′Λ‖∞ = OP(n1/2 logO(1) n)

(2) ‖F ′e′L‖∞, ‖Z ′e′L‖∞ and ‖Z ′v′Λ‖∞ are OP(n logO(1) n).

(3) ‖e′eF‖∞ = OP(n logO(1) n)

(4) ‖eF‖∞ = OP(n1/2 logO(1) n) and ‖vΛ‖∞ = OP(n1/2 logO(1) n).

Proof. We show these results by repeatedly applying Lemmas B.3.8 and B.3.7.

Proof of part (1). For j = (j1, j2) ∈ J = [T ] × [pY ], we define µi,j =

ei,j1Li,j2 , where ei,j1 is the j1th entry of ei and Li,j2 is the j2th entry of Li. Let

ζn = ‖L‖∞ and Fn be the σ-algebra generated by L. Since ei,j1 ∈ Ξ(β, γ) (by

Assumption 3), we have µi,j/ζn ∈ Ξ(β, γ,Fn). Notice that |J | = pY T = O(n).

Hence, by Lemmas B.2.2 and B.3.8, we have ‖e′L‖∞ = ζn maxj∈J |
∑nY

i=1 µi,j/ζn| =
OP(n1/2 logO(1) n). The result for ‖v′Λ‖∞ follows by an analogous argument.

Proof of part (2). For j = (j1, j2) ∈ J = [pY ] × [pY ], we define µi,j =

di,j1Li,j2‖L‖−1
∞ and di,j1 = T−1/2

∑T
t=1 hi,t,j1 with hi,t,j1 = ei,tFt,j1‖F‖−1

∞ , where Ft,j1
is the j1th entry of Ft. Let Fn be the σ-algebra generated by F and L.

By Assumption 3, hi,t,j1 ∈ Ξ(β, γ,Fn). By the independence between ei,t and

(F,L), the mixing condition in Assumption 3 implies the mixing condition in the

statement of Lemma B.3.7, by which it follows that there exist constants b1, r1 > 0

such that di,j1 ∈ Ξ(b1, r1,Fn). Since |µi,j| ≤ |di,j1|, µi,j ∈ Ξ(b1, r1,Fn). Since

µi,j is, conditional on Fn, independent across i, we can apply Lemma B.3.8 and

obtain that maxj∈J |
∑nY

i=1 µi,j| = OP(n). This, together with Lemma B.2.2, implies

‖F ′e′L‖∞ ≤ T 1/2 maxj∈J |
∑nY

i=1 µi,j|‖F‖∞‖L‖∞ = OP(n logO(1) n). The results for

‖Z ′e′L‖∞ and ‖Z ′v′Λ‖∞ follow by analogous arguments.

Proof of part (3). For j = (j1, j2) ∈ J = [T ] × [pY ], we define µi,j =

ei,j1di,j2 and di,j2 = T−1/2
∑T

t=1 ei,tFt,j2‖F‖−1
∞ . Let Fn be the σ-algebra generated

by F .
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Similar to previous arguments, we have ei,tFt,j2‖F‖−1
∞ ∈ Ξ(b2, r2,Fn) for

some constants b2, r2 > 0. By Lemma B.3.7, di,j2 ∈ Ξ(b3, r3,Fn) for some constants

b3, r3 > 0. By Lemma B.3.5 (applied to the conditional probability measure

P(· | Fn)), it follows that µi,j ∈ Ξ(b3, r3,Fn), where b4, r4 > 0 are constants.

By Lemma B.3.8, T−1/2‖F‖−1
∞ ‖e′eF − E(e′e)F‖∞ = maxj∈J |

∑nY
i=1[µi,j − E(µi,j |

Fn)]| = OP(n log1/2 n). By Lemma B.2.2, ‖e′eF − E(e′e)F‖∞ = OP(n−1 logO(1) n).

By Holder’s inequality,

‖E(e′e)F‖∞ = max
j∈J

∥∥∥∥∥
nY∑
i=1

T∑
s=1

(Eei,j1ei,s)Fs,j2

∥∥∥∥∥
∞

≤ ‖F‖∞max
j∈J

T∑
s=1

nY∑
i=1

|Eei,j1ei,s|

≤ ‖F‖∞ max
(i,t)∈[nY ]×[T ]

nY

T∑
s=1

|Eei,tei,s|
(i)
= OP(n logO(1) n),

where (i) follows by Assumption 3 and Lemma B.2.2. Hence, ‖e′eF‖∞ =

OP(n logO(1) n).

Proof of part (4). By the law of iterated expectations and the proof of

part (3), we have that T−1/2
∑T

t=1 ei,tFt,j1‖F‖−1
∞ ∈ Ξ(b1, r1), where b3, r3 > 0 are

constants defined in the proof of part (3). Then by Lemmas B.2.2 and B.3.6,

‖eF‖∞ = T 1/2‖F‖∞ max
1≤i≤nY

∣∣∣∣∣T−1/2

T∑
t=1

ei,tFt,j1‖F‖−1
∞

∣∣∣∣∣
= T 1/2‖F‖∞OP(logO(1) n) = OP(n1/2 logO(1) n).

The result for ‖vΛ‖∞ follows by an analogous argument. The proof is complete.

Lemma B.2.4. Under Assumption 3, the following hold:

(1) L̂ = LHL + ∆L, where HL = F ′FL′L̂Ω̂−2
1 (nY T )−1 and ∆L = (nY T )−1(LF ′e′ +

eY ′)L̂Ω̂−2
1 .

(2) F̂ = FHF + ∆F , where HF = L′L̂/nY and ∆F = n−1
Y e′L̂.

(3) ‖Ω1‖ = OP(1), ‖Ω−1
1 ‖ = OP(1) and ‖Ω̂1 − Ω1‖ = OP(n−1/2 logO(1) n)

(4) ‖∆L‖ = OP(logO(1) n), ‖HL‖ = OP(1), ‖HLH
′
L − Σ−1

L ‖ = OP(n−1/2 logO(1) n),
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‖H−1
F ‖ = OP(1) and ‖∆F‖ = OP(logO(1) n).

Proof. By the definition of L̂, we have Y Y ′L̂ = L̂Σ̂2
1 and thus L̂ = Y Y ′L̂Σ̂−2

1 .

Notice that

Y Y ′L̂Σ̂−2
1 = (LF ′ + e)Y ′L̂Σ̂−2

1 = LF ′Y ′L̂Σ̂−2
1 + eY ′L̂Σ̂−2

1

= LF ′(FL′ + e′)L̂Σ̂−2
1 + eY ′L̂Σ̂−2

1

= LHL + (LF ′e′ + eY ′)L̂Σ̂−2
1 .

Part (1) follows. Part (2) follows by F̂ = Y ′L̂/nY = (FL′ + e′)L̂/nY .

Notice that ‖Ω1‖ = (nY T )−1/2‖FL′‖ ≤ (nY T )−1/2‖F‖‖L‖ = OP(1). Notice

that by Lemma B.3.1(2),
√
nY TΩ1,k = sk(FL

′) ≥ s1(F )sk(L), where Ω1,i is the ith

entry on the diagonal of Ω1. Thus, by Assumption 3, it follows that there exists

b > 0 such that P (Ω1,k > b)→ 1. Hence, ‖Ω−1
1 ‖ = OP(1).

For any 1 ≤ j ≤ k,
√
n−1
Y TΩ1,j + ‖e‖ = sj(FL

′) + s1(e) ≥ sj(FL
′ + e) =

Ω̂1,j

√
nY T , where Ω̂1,j denote the jth entry on the diagonal of Ω̂1. By Lemma

B.2.2, Ω1,j + OP(n−1/2 logO(1) n) ≥ Ω̂1,j. Similarly, we use sj(Y ) + s1(−e) ≥
sj(Y − e) to obtain that Ω̂1,j + OP(n−1/2 logO(1) n) ≥ Ω1,j. Hence, ‖Ω̂1 − Ω1‖ =

OP(n−1/2 logO(1) n). Part (3) follows.

It remains to show part (4). Notice that

‖∆L‖ ≤ (nY T )−1 [‖L‖‖F‖‖e‖+ ‖e‖ (‖LF ′ + e‖)] ‖L̂‖‖Ω̂−2
1 ‖ = OP(logO(1) n),

where the equality follows by Lemma B.2.2 and ‖Ω̂−2
1 ‖ = OP(1). Notice that

‖HL‖ = ‖F ′F‖‖L‖‖L̂‖‖Ω̂−2
1 ‖/(n−1

Y T ) = OP(T )OP(n
1/2
Y )n

1/2
Y OP(1)/(nY T ) = OP(1).

Notice that

I = n−1
Y L̂′L̂ = n−1

Y (LHL + ∆L)′(LHL + ∆L)
(i)
= H ′LΣLHL +OP(n−1/2 logO(1) n),

where (i) follows by ‖HL‖ = OP(1), ‖∆L‖ = OP(logO(1) n) and ‖e‖ =

OP(n1/2 logO(1) n). Use singular value inequalities to say that the singular val-

ues of HL is bounded away from zero and thus ‖H−1
F ‖ = OP(1). Hence,
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I − (H ′LΣLHL)−1 = OP(n−1/2 logO(1) n) and

‖HLH
′
L − Σ−1

L ‖ = ‖HL(I − (H ′LΣLHL)−1)H ′L‖

≤ ‖HL‖ · ‖I − (H ′LΣLHL)−1‖ · ‖HL‖ = OP(n−1/2 logO(1) n).

This, together with HF = ΣLHL + L′∆L/nY = ΣLHL + oP(1), implies that

‖H−1
F ‖ = OP(1). By Lemma B.2.2, ‖∆F‖ ≤ n−1

Y ‖e‖‖L̂‖ = OP(logO(1) n). Part (4)

follows.

Lemma B.2.5. Under Assumption 3, there exists a diagonal (possibly ran-

dom) matrix Dn,F whose diagonal entries take values in {−1, 1} such that

HL = (H̃ ′LΣL)−1Dn,F + OP(n−1 logO(1) n). Moreover, HFDn,F − (H̃ ′L)−1 =

OP(n−1/2 logO(1) n).

Proof. We proceed in two steps. In the first step, we show that n−1
Y L̂′L̃ is approxi-

mately a diagonal matrix. In the second step, the square of this diagonal matrix is

shown to be Ik.

Step 1: show that n−1
Y L̂′L̃ is approximately diagonal. Notice that

by definition, we have LF ′FL′L̃ = n−1
Y TL̃Ω2

1 and L̂′Y Y ′ = n−1
Y T Ω̂2

1L̂
′. Thus, (a)

L̂′LF ′FL′L̃ = n−1
Y TL̂′L̃Ω2

1 and (b) L̂′Y Y ′L̃ = n−1
Y T Ω̂2

1L̂
′L̃. Plugging Y = FL′ + e

into (b) and using (a), we obtain

Ω̂2
1L̂
′L̃n−1

Y − n
−1
Y L̂′L̃Ω2

1 = n−2
Y TL̂′(eFL′ + LF ′e′ + ee′)L̃ = OP(n−1/2 logO(1) n),

where the last equality follows by Lemma B.2.2. Thus, since Ω̂2
1 = Ω2

1 +

OP(n−1/2 logO(1) n) (Lemma B.2.4), we have

n−1
Y L̂′L̃Ω2

1 +OP(n−1/2 logO(1) n) = n−1
Y Ω2

1L̂
′L̃.

Let A = n−1
Y L̂′L̃ with its (i, j) entry denoted by Ai,j. Also let Ω2

1,j denote

the jth entry on the diagonal of Ω2
1. Then the above equation implies that

∀(i, j) ∈ [k] × [k] with i 6= j, Ai,j(Ω2
1,j − Ω2

1,i) = OP(n−1/2 logO(1) n). By the

distinctive singular value assumption, it follows that Ai,j = OP(n−1/2 logO(1) n) for
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i 6= j. Hence, there exists a diagonal matrix D̃ = diag(D̃1, · · · , D̃k) such that

n−1
Y L̂′L̃ = D̃ +OP(n−1/2 logO(1) n). (B.2.3)

Step 2: show the square of the diagonal matrix is approximate

IpY . Observe

n−1
Y H ′LL

′L̃ = n−1
Y L̂′L̃− n−1

Y ∆′LL̃ = D̃ +OP(n−1/2 logO(1) n),

where both equalities follow by Lemma B.2.4 since LHL = L̂−∆L and ‖∆′LL̃‖ ≤
‖∆L‖ · ‖L̃‖. Hence, (n−1

Y H ′LL
′L̃)′(n−1

Y H ′LL
′L̃) = D̃2 +OP(n−1/2 logO(1) n).

On the other hand, by Lemma B.2.4(3),

(n−1
Y H ′LL

′L̃)′(n−1
Y H ′LL

′L̃) = (n−1
Y L̃′L)(HLH

′
L)(n−1

Y L′L̃)

= (n−1
Y L̃′L)Σ−1

L (n−1
Y L′L̃) +OP(n−1/2 logO(1) n).

Thus,

n−1
Y L̃′(n−1

Y LΣ−1
L L′)L̃ = D̃2 +OP(n−1/2 logO(1) n) (B.2.4)

Let ML = InY − L(L′L)−1L′. Since MLL = 0 and L̃ = LH̃L, we have

L̃′MLL̃ = 0. By the definition of ML, we have L̃′L̃ = n−1
Y L̃′LΣ−1

L L′L̃ and thus

n−1
Y L̃′(n−1

Y LΣ−1
L L′)L̃ = Ik. By (B.2.4), D̃2 = Ik + OP(n−1/2 logO(1) n). Then there

exists a diagonal matrix Dn,F such that

D2
n,F = IpY and D̃ = Dn,F +OP(n−1/2 logO(1) n). (B.2.5)

Step 3: show the desired result. It follows, by (B.2.3) and (B.2.5),

that n−1
Y L̂′L̃ = Dn,F + OP(n−1/2 logO(1) n). Using L̂ = LHL + ∆L and ‖∆L‖ =

OP(logO(1) n) from Lemma B.2.4, we have H ′LΣLH̃L − Dn,F = n−1
Y ∆′LL̃ =

OP(n−1/2 logO(1) n). In other words, HL = (H̃ ′LΣL)−1Dn,F + OP(n−1/2 logO(1) n).

Notice that the diagonal entries of Dn,F are either -1 or 1 (since D2
n,F = IpY ). The

first claim follows.
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It follows, by Lemma B.2.4, that

HFDn,F − (H̃ ′L)−1 = n−1
Y L′L̂Dn,F − (H̃ ′L)−1

= n−1
Y L′(LHL + ∆L)Dn,F − (H̃ ′L)−1

= ΣLHLDn,F − (H̃ ′L)−1 + n−1
Y L′∆LDn,F

(i)
= OP(n−1/2 logO(1) n),

where (i) holds by n−1
Y ‖L′∆LDn,F‖ ≤ n−1

Y ‖L‖ · ‖∆L‖ · ‖Dn,F‖ = OP(n−1/2 logO(1) n)

(Lemma B.2.4) and the first claim: ΣLHLDn,F = (H̃ ′L)−1D2
n,F +OP(n−1/2 logO(1) n)

with D2
n,F = IpY . This proves the second claim.

Lemma B.2.6. Let Assumption 3 hold. Then (1) ‖∆L‖∞ = OP(n−1/2 logO(1) n)

and (2) ‖e′∆L‖∞ = OP(logO(1) n), where ∆L is defined in Lemma B.2.4(1).

Proof. To see part (1), notice that by the definition of ∆L and Y = LF ′ + e, we

have

‖∆L‖∞ ≤ (nY T )−1
[
‖LF ′e′L̂Ω̂−2

1 ‖∞ + ‖eFL′L̂Ω̂−2
1 ‖∞ + ‖ee′L̂Ω̂−2

1 ‖∞
]

(i)

≤ (nY T )−1
[
‖LF ′e′LHLΩ̂−2

1 ‖∞ + ‖LF ′e′∆LΩ̂−2
1 ‖∞ + ‖eFL′L̂Ω̂−2

1 ‖∞

+ ‖ee′L̂Ω̂−2
1 ‖∞

]
(ii)

≤ (nY T )−1
[
p2
Y ‖L‖∞‖F ′e′L‖∞‖HLΩ̂−2

1 ‖∞ + ‖LF ′e′∆LΩ̂−2
1 ‖

+
√
pY ‖eF‖∞‖L′L̂Ω̂−2

1 ‖+ ‖ee′L̂Ω̂−2
1 ‖
]

(iii)

≤ (nY T )−1
[
p2
Y ‖L‖∞‖F ′e′L‖∞‖HLΩ̂−2

1 ‖∞ + ‖L‖‖F‖‖e‖‖∆L‖‖Ω̂−2
1 ‖

+
√
pY ‖eF‖∞‖L‖ · ‖L̂‖ · ‖Ω̂−2

1 ‖+ ‖e‖2‖L̂‖ · ‖Ω̂−2
1 ‖
]

(iv)
= OP(n−1/2 logO(1) n),

where (i) and (ii) follow by and the elementary inequality ‖A‖∞ ≤ ‖A‖, Lemmas

B.2.4 and B.2.1; (iii) follows by the sub-multiplicity of the spectral norm; finally,

(iv) follows by Lemmas B.2.2, B.2.4 and B.2.3. We have proved part (1).

The argument for part (2) is similar. By the definition of ∆L and Y = LF ′+e,
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we have

‖e′∆L‖∞ = ‖(nY T )−1e′(LF ′e′ + eFL′ + ee′)L̂Ω̂−2
1 ‖∞

≤ (nY T )−1
[
‖e′LF ′e′L̂Ω̂−2

1 ‖∞ + ‖e′eFL′L̂Ω̂−2
1 ‖∞ + ‖e′ee′L̂Ω̂−2

1 ‖∞
]

(i)

≤ (nY T )−1
[√

pY ‖e′L‖∞‖F ′e′L̂Ω̂−2
1 ‖+

√
pY ‖e′eF‖∞‖L′L̂Ω̂−2

1 ‖

+ ‖e′ee′L̂Ω̂−2
1 ‖
]

(ii)

≤ (nY T )−1
[√

pY ‖e′L‖∞‖F‖ · ‖e‖ · ‖L̂‖ · ‖Ω̂−2
1 ‖

+
√
pY ‖e′eF‖∞‖L‖ · ‖L̂‖ · ‖Ω̂−2

1 ‖+ ‖e‖3‖L̂‖ · ‖Ω̂−2
1 ‖
]

(iii)
= OP(logO(1) n),

where (i) follows by Lemma B.2.1 and the elementary inequality ‖A‖∞ ≤ ‖A‖, (ii)

holds by the sub-multiplicity of the spectral norm and (iii) follows by Lemmas

B.2.2, B.2.4 and B.2.3. This proves part (2). The proof is complete.

Lemma B.2.7. Under Assumption 3, the following hold:

(1) Λ̂ = ΛHΛ + ∆Λ, where ‖HΛ‖ = OP(1), ‖∆Λ‖ = OP(logO(1) n), ‖∆Λ‖∞ =

OP(n−1/2 logO(1) n) and ‖v′∆Λ‖∞ = OP(logO(1) n)

(2) Ẑ = ZHZ + ∆Z and ‖H−1
Z ‖ = OP(1), where HZ = Λ′Λ̂/n and ∆Z = n−1v′Λ̂.

(3) Z̄ = Z + ∆̄Z, where Z̄ = ZH−1
Z and ∆̄Z = ∆ZH

−1
Z .

(4) ‖∆̄Z − n−1v′ΛΣ−1
Λ ‖∞ ≤ OP(n−1 logO(1) n), ‖∆̄Z‖∞ = OP(n−1/2 logO(1) n),

‖∆̄Z‖ = OP(logO(1) n), ‖Z ′∆̄Z‖∞ = OP(logO(1) n), Σ̄Z − ΣZ = OP(n−1 logO(1) n),

where Σ̄Z = Z̄ ′Z̄/T .

Proof. Part (1) and part (2) follow by the same argument as in Lemmas B.2.4 and

B.2.6, except that (L, F, e, pY ) is replaced by (Λ, Z, v, r). Part (3) follows by part

(2).

It remains to show part (4). By Lemma B.2.1,

‖∆̄Z − n−1v′ΛΣ−1
Λ ‖∞

≤ ‖∆Z − n−1v′ΛΣ−1
Λ HZ‖∞‖H−1

Z ‖∞r
(i)
= ‖n−1v′Λ̂− n−1v′ΛΣ−1

Λ HZ‖∞‖H−1
Z ‖∞r
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(ii)
= ‖n−1v′∆Λ − n−2v′ΛΣ−1

Λ Λ′∆Λ‖∞‖H−1
Z ‖∞r

≤
(
n−1‖v′∆Λ‖∞ + n−2r2‖v′Λ‖∞‖Σ−1

Λ ‖∞‖Λ‖‖∆Λ‖
)
‖H−1

Z ‖∞r
(iii)
= OP(n−1 logO(1) n),

where (i) and (ii) follow by the expressions for Λ̂, HZ and ∆Z from parts (1)-(2)

and (iii) follows by parts (1)-(2), together with Lemmas B.2.2 and B.2.3.

By Lemmas B.2.1 and B.2.3, ‖n−1v′ΛΣ−1
Λ ‖∞ ≤

√
r‖n−1v′Λ‖∞‖Σ−1

Λ ‖ =

OP(n−1/2 logO(1) n), we have ‖∆̄Z‖∞ = OP(n−1/2 logO(1) n). Notice that ‖∆̄Z‖ ≤√
Tr‖∆̄Z‖∞ = OP(logO(1) n). By parts (1)-(2) and Lemma B.2.1, we have

‖Z ′∆̄Z‖∞ = ‖n−1Z ′v′(ΛHΛ + ∆Λ)‖∞

≤ ‖n−1Z ′v′ΛHΛ‖∞ + ‖n−1Z ′v′∆Λ‖

≤ n−1‖Z ′v′Λ‖∞‖HΛ‖
√
r + n−1‖Z‖ · ‖v‖ · ‖∆Λ‖

(i)
= OP(logO(1) n),

where (i) holds by part (1) and Lemmas B.2.2 and B.2.3. Notice that

Σ̄Z−ΣZ = T−1(Z+∆̄Z)′(Z+∆̄Z)−T−1Z ′Z = T−1Z ′∆̄Z +T−1∆̄′ZZ+T−1∆̄′Z∆̄Z .

Since ‖∆̄′ZZ‖∞ = OP(logO(1) n) and ‖∆̄Z‖ ≤
√
rT‖∆̄Z‖∞ = OP(logO(1) n),

it follows that Σ̄Z − ΣZ = OP(n−1 logO(1) n). We have proved all the claims in part

(4).

Lemma B.2.8. Let Assumption 3 hold. Then ‖(ΠẐ − ΠZ)Z − n−1v′ΛΣ−1
Λ ‖∞ =

OP(n−1 logO(1) n).

Proof. We adopt all the notations introduced in Lemma B.2.7. Notice that ΠẐ = ΠZ̄

and

‖(ΠZ̄ − ΠZ)Z − n−1v′ΛΣ−1
Λ ‖∞

=
∥∥T−1

(
Z̄Σ̄−1

Z Z̄ ′ − ZΣ−1
Z Z ′

)
Z − n−1v′ΛΣ−1

Λ

∥∥
∞

= ‖T−1Z̄Σ̄−1
Z Z̄ ′Z − Z − n−1v′ΛΣ−1

Λ ‖∞
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≤ ‖T−1Z̄Σ̄−1
Z Z̄ ′Z − Z − ∆̄Z‖∞ + ‖∆̄Z − n−1v′ΛΣ−1

Λ ‖∞
(i)
= ‖T−1Z̄Σ̄−1

Z Z̄ ′Z − Z̄‖∞ +OP(n−1 logO(1) n), (B.2.6)

where (i) holds by Lemma B.2.7(4) and Z̄ = Z + ∆̄Z (Lemma B.2.7(3)). Thus,

‖T−1Z̄Σ̄−1
Z Z̄ ′Z − Z̄‖∞ = ‖T−1Z̄Σ̄−1

Z Z̄ ′(Z̄ − ∆̄Z)− Z̄‖∞ (B.2.7)

= ‖T−1Z̄Σ̄−1
Z Z̄ ′∆̄Z‖∞

(i)

≤ T−1‖Z̄‖∞‖Σ̄−1
Z ‖∞‖Z̄

′∆̄Z‖∞r2

≤ T−1
(
‖Z‖∞ + ‖∆̄Z‖∞

)
‖Σ̄−1

Z ‖∞‖Z̄
′∆̄Z‖∞r2

(ii)
= OP(n−1 logO(1) n)‖Z̄ ′∆̄Z‖∞
(iii)

≤ OP(n−1 logO(1) n)
(
‖Z ′∆̄Z‖∞ + ‖∆̄′Z∆̄Z‖∞

)
(iv)

≤ OP(n−1 logO(1) n)
(
‖Z ′∆̄Z‖∞ + T‖∆̄Z‖2

∞
)

(v)
= OP(n−1 logO(1) n),

where (i) holds by Lemma B.2.1, (ii) holds by Lemmas B.2.2 and B.2.7(4), (iii)

holds by Z̄ = Z + ∆̄Z , (iv) holds by Lemma B.2.1 and finally (v) follows by Lemma

B.2.7(4). The desired result follows by (B.2.6) and (B.2.7).

Lemma B.2.9. Let Assumption 3 hold. Then ‖(ΠẐ − ΠZ)∆F‖∞ =

OP(n−1 logO(1) n), where ∆F is defined in Lemma B.2.4.

Proof. We adopt all the notations introduced in Lemma B.2.7. Notice that ΠẐ = ΠZ̄

and

(ΠZ̄ − ΠZ)∆F = T−1∆̄ZΣ̄−1
Z Z̄ ′∆F︸ ︷︷ ︸

J1

+ T−1Z[Σ̄−1
Z − Σ−1

Z ]Z̄ ′∆F︸ ︷︷ ︸
J2

+ T−1ZΣ−1
Z ∆̄′Z∆F︸ ︷︷ ︸
J3

.

(B.2.8)

By Lemmas B.2.1, B.2.2 and B.2.4(4), that

‖J3‖∞ ≤ T−1‖Z‖∞‖Σ−1
Z ∆̄′Z∆F‖

√
r ≤ T−1‖Z‖∞‖Σ−1

Z ‖ · ‖∆̄Z‖ · ‖∆F‖
√
r

= OP(n−1 logO(1) n).
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Similarly, by Lemmas B.2.1, B.2.2, B.2.4 and B.2.7, we have

‖J2‖∞ ≤ T−1‖Z‖∞‖Σ̄−1
Z − Σ−1

Z ‖ · ‖Z̄‖ · ‖∆F‖
√
r

(i)
= OP(n−3/2 logO(1) n),

where in (i), we invoke ‖Z̄‖∞ ≤ ‖Z‖∞ + ‖∆̄Z‖∞ and Σ̄−1
Z − Σ−1

Z = −Σ̄−1
Z (Σ̄Z −

ΣZ)Σ−1
Z , together with bounds in Lemma B.2.7. Similar argument also yields

‖J1‖∞ ≤ T−1‖∆̄Z‖∞‖Σ̄−1
Z ‖ · ‖Z̄‖ · ‖∆F‖

√
r = OP(n−1 logO(1) n).

The result follows by (B.2.8) together with the bounds for ‖J1‖∞, ‖J2‖∞
and ‖J3‖∞.

Lemma B.2.10. Under Assumption 3, ‖ê − e‖∞ = OP(n−1 logO(1) n) and ‖v̂ −
v‖∞ = OP(n−1 logO(1) n).

Proof. First notice that

‖L̂L̂′ − LΣ−1
L L′‖∞

(i)
=
∥∥(LHL + ∆L)(H ′LL

′ + ∆′L)− LΣ−1
L L′

∥∥
∞

≤
∥∥L(HLH

′
L − Σ−1

L )L′
∥∥
∞ + 2 ‖LHL∆′L‖∞ + ‖∆L∆′L‖∞

(ii)

≤ pY ‖L‖∞‖HLH
′
L − Σ−1

L ‖‖L‖∞ + 2pY ‖L‖∞‖HL‖‖∆L‖∞ + pY ‖∆L‖2
∞

(iii)
= OP(n−1/2 logO(1) n), (B.2.9)

where (i) follows by Lemma B.2.4, (ii) follows by Lemma B.2.1 and (iii) follows by

Lemmas B.2.4(4), B.2.6 and B.2.2. Moreover,

‖ê− e‖

= ‖L̂F̂ ′ − LF ′‖∞
(i)
= ‖(n−1

Y L̂L̂′ − InY )LF ′ + n−1
Y L̂L̂′e‖∞

(ii)

≤ ‖n−1
Y (L̂L̂′ − LΣ−1

L L′)LF ′‖∞ + ‖n−1
Y (L̂L̂′ − LΣ−1

L L′)e‖∞ + ‖n−1
Y LΣ−1

L L′e‖∞
(iii)

≤ n−1
Y ‖L̂L̂

′ − LΣ−1
L L′‖∞‖L‖∞‖F‖∞nY pY + n−1

Y ‖L̂L̂
′ − LΣ−1

L L′‖∞nY ‖e‖∞

+ n−1
Y ‖L‖∞‖Σ

−1
L ‖ · ‖L

′e‖∞pY
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(iv)

≤ OP(n−1/2 logO(1) n),

where (i) follows by the definition in (2.2.6) F̂ = Y ′L̂/nY = (LF ′ + e)′L̂/nY , (ii)

follows by the triangular inequality, (iii) follows by Lemma B.2.1 and (iv) follows

by (B.2.9) and Lemmas B.2.2 and B.2.3(1). We have proved the result for ‖ê−e‖∞.
The result for ‖v̂−v‖∞ follows by the same arguments (including in auxiliary

lemmas), except that (F,L, e, pY ) is replaced by (Z,Λ, v, r).

B.2.3 Proof of Theorems 2.3.1 and 2.3.2

We introduce/recall the following definitions, which will be used in the rest

of this section.

n =nY + nW (B.2.10)

Fn =σ−algebra generated by L, F, X, R, Λ and Z

Gn =σ−algebra generated by L, F, X, R, Λ, Z and v

{ξi}ni=1 =an i.i.d sequence of N(0, 1) independent of Gn

QF =(Z ′Z)−1Z ′F

QX =(Z ′Z)−1Z ′X

Q̂F =(Ẑ ′Ẑ)−1(Ẑ ′F̂ )

Q̂X =(Ẑ ′Ẑ)−1(Ẑ ′X̂)

Ψ(F ),i =

vi
[
(n−1

Y n)L′iΣ
−1
L (H̃ ′L)−1 − Λ′iΣ

−1
Λ QF (H̃ ′L)−1

]
for 1 ≤ i ≤ nY

−viΛ′iΣ−1
Λ QF (H̃ ′L)−1 for nY + 1 ≤ i ≤ n

Ψ(X),i =

vi
[
(n−1

W n)R′iΣ
−1
R (H̃ ′R)−1 − Λ′iΣ

−1
Λ QX(H̃ ′R)−1

]
for 1 ≤ i ≤ nW

−viΛ′iΣ−1
Λ QX(H̃ ′R)−1 for nW + 1 ≤ i ≤ n

Ψi =
[
Ψ(F ),i Ψ(X),i

]
∈ RT×(pY +pW )

Ψ̂′(F ),i =

v̂i
[
(n−1

Y n)L̂′i − Λ̂′iQ̂F

]
for 1 ≤ i ≤ nY

−v̂iΛ̂′iQ̂F for nY + 1 ≤ i ≤ n
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Ψ̂′(X),i =

−v̂iΛ̂
′
iQ̂X for 1 ≤ i ≤ nW

v̂i

[
(n−1

W n)R̂′i − Λ̂′iQ̂X

]
for nW + 1 ≤ i ≤ n

S
Ψ(F )
n =n−1/2

n∑
i=1

Ψ(F ),i

S
Ψ(X)
n =n−1/2r

n∑
i=1

Ψ(X),i

Ψ̂i =
[
Ψ̂(F ),i Ψ̂(X),i

]
∈ RT×(pY +pW )

SΨ
n =

[
S

Ψ(F )
n S

Ψ(X)
n

]
S̃Ψ
n =n−1/2

n∑
i=1

(Ψi − Ψ̄)ξi with Ψ̄ = n−1

n∑
i=1

Ψi

S̃Ψ̂
n =n−1/2

n∑
i=1

(Ψ̂i − ¯̂
Ψ)ξi with

¯̂
Ψ = n−1

n∑
i=1

Ψ̂i

We also use the following partitions :

S̃Ψ
n =

[
S̃

Ψ(F )
n S̃

Ψ(X)
n

]
with S̃

Ψ(F )
n ∈ RT×pY and S̃

Ψ(X)
n ∈ RT×pW

S̃Ψ̂
n =

[
S̃

Ψ̂(F )
n S̃

Ψ̂(X)
n

]
with S̃

Ψ̂(F )
n ∈ RT×pY and S̃

Ψ̂(X)
n ∈ RT×pW

J =[T ]× [pY + pW ]

Ψi,j =ι′j1,TΨiιj2,k for j = (j1, j2) ∈ J

Ψ̂i,j =ι′j1,T Ψ̂iιj2,k for j = (j1, j2) ∈ J

SΨ
n,j =ι′j1,TS

Ψ
n,jιj2,k for j = (j1, j2) ∈ J

Lemma B.2.11. Consider the notations in (B.2.10). Let Assumption 3 and H0

hold. Then ∥∥∥√nMẐF̂Dn,F − S
Ψ(F )
n

∥∥∥
∞

= OP(n−1/2 logO(1) n),

where Dn,F is defined in Lemma B.2.5.

Proof. First notice that SΨ(F )
n = e′LΣ−1

L (H̃ ′L)−1
√
n/nY −v′ΛΣ−1

Λ QF (H̃ ′L)−1/
√
n. By

Lemma B.2.4, we have

√
nMẐF̂Dn,F =

√
nMZ(F̂ − FHF )Dn,F +

√
n(MẐ −MZ)F̂Dn,F
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=
√
nMZ∆FDn,F +

√
n(ΠZ − ΠẐ)(ZQFHFDn,F + ∆FDn,F ).

Hence,

√
nMẐF̂Dn,F − S

Ψ(F )
n

=
√
n
(
MZ∆FDn,F − n−1

Y e′LΣ−1
L (H̃ ′L)−1

)
︸ ︷︷ ︸

J1

+
√
n(ΠZ − ΠẐ)∆FDn,F︸ ︷︷ ︸

J2

+
√
n
(

(ΠZ − ΠẐ)ZQFHFDn,F + n−1v′ΛΣ−1
Λ QF (H̃ ′L)−1

)
︸ ︷︷ ︸

J3

. (B.2.11)

We show that ‖J1‖∞, ‖J2‖∞ and ‖J3‖∞ are all OP(n−1/2 logO(1) n). By

Lemma B.2.9 and the fact that ‖(ΠZ − ΠẐ)∆FDn,F‖∞ = ‖(ΠZ − ΠẐ)∆F‖∞, we
have

‖J2‖∞ = OP(n−1/2 logO(1) n). (B.2.12)

The bound for ‖J1‖∞ is based on the following observation:

‖J1‖∞
(i)

≤
√
n‖∆FDn,F − n−1

Y e′LΣ−1
L (H̃ ′L)−1‖∞ +

√
n‖ΠZ∆FDn,F‖∞

(ii)

≤
√
n/nY ‖n−1/2

Y e′L̂Dn,F − n−1/2
Y e′LΣ−1

L (H̃ ′L)−1‖∞ +
√
nn−1

Y ‖ΠZe
′L̂‖∞

(iii)

≤ O(n−1/2)‖e′L[HLDn,F − Σ−1
L (H̃ ′L)−1]‖∞ +O(n−1/2)‖e′∆LDn,F‖∞

+O(n−1/2)‖ΠZe
′L̂‖∞

(iv)

≤ O(n−1/2)‖e′L‖∞‖HLDn,F − Σ−1
L (H̃ ′)−1‖∞pY +O(n−1/2)‖e′∆L‖∞

+O(n−1/2)‖ΠZe
′L̂‖∞

(v)
= OP(n−1/2 logO(1) n) + n−1/2‖ΠZe

′L̂‖∞
(vi)
= OP(n−1/2 logO(1) n) + n−1/2‖T−1ZΣ−1

Z Z ′e′(LHL + ∆L)‖∞
(vii)

≤ OP(n−1/2 logO(1) n) + n−1/2T−1‖Z‖∞‖Σ−1
Z ‖∞‖Z

′e′L‖∞‖HL‖∞p3
Y

+ n−1/2T−1‖Z‖∞‖Σ−1
Z ‖∞‖Z‖ · ‖e

′∆L‖∞p2
Y

√
T

(viii)
= OP(n−1/2 logO(1) n),

(B.2.13)

where (i) holds by MZ = IT − ΠZ and the triangular inequality; (ii) and (iii) hold
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by ∆F = n−1
Y e′L̂ and L̂ = LHL + ∆L (Lemma B.2.4) together with the fact that

Dn,F is diagonal with diagonal entries taking values in {−1, 1} (Lemma B.2.5);

(iv) follows by Lemmas B.2.1 and B.2.5; (v) follows by Lemmas B.2.3(1), B.2.6(2)

and HLDn,F − Σ−1
L (H̃ ′)−1 = OP(n−1/2 logO(1) n) (due to the first claim of Lemma

B.2.5); (vi) follows by L̂ = LHL + ∆L (Lemma B.2.4); (vii) follows by Lemma

B.2.1; finally, (viii) follows by Lemmas B.2.2, B.2.3(2) and B.2.6(2). Also notice

that

‖J3‖∞ ≤
√
n‖[(ΠZ − ΠẐ)Z + n−1v′ΛΣ−1

Λ ]QFHFDn,F‖∞

+ n−1/2‖v′ΛΣ−1
Λ QF [(H̃ ′L)−1 −HFDn,F ]‖∞

(i)

≤
√
n‖(ΠZ − ΠẐ)Z + n−1v′ΛΣ−1

Λ ‖∞‖QFHFDn,F‖∞pY

+ n−1/2‖v′Λ‖∞‖Σ−1
Λ QF‖∞‖(H̃ ′)−1 −HFDn,F‖∞p2

Y

(ii)
= OP(n−1/2 logO(1) n), (B.2.14)

where (i) follows by Lemma B.2.1 and (ii) follows by Lemmas B.2.3(1) and B.2.8,

together with the second claim of Lemma B.2.5. The desired result follows by

(B.2.11), together with (B.2.12), (B.2.13) and (B.2.14).

Lemma B.2.12. Let Assumption 3 and H0 hold. Then there exists a diagonal

matrix Dn,X whose diagonal elements are either -1 or 1 such that

∥∥∥√nMẐX̂Dn,X − S
Ψ(X)
n

∥∥∥
∞

= OP(n−1/2 logO(1) n).

Proof. The proof is analogous to that of Lemma B.2.11.

Lemma B.2.13. Let Assumption 3 hold. Recall J , Ψi,j’s and Fn defined in (B.2.10)

and let maxi,j denote max(i,j)∈[n]×J . Then ∀q > 2, there exists an Fn-measurable

random variable Bn = OP(n2/q logO(1) n) such that almost surely (1) maxi,j E(|Ψi,j|3 |
Fn) ≤ Bn, (2) maxi,j E(|Ψi,j|4 | Fn) ≤ B2

n and (3) E[maxi,j |Ψi,j|q | Fn] ≤ Bq
n.

Proof. Define

A : = 1 + ‖ΛΣ−1
Λ QF (H̃ ′L)−1‖∞ + ‖ΛΣ−1

Λ QX(H̃ ′R)−1‖∞
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+‖(n−1
Y n)LΣ−1

L (H̃ ′L)−1‖∞ + ‖(n−1
W n)RΣ−1

R (H̃ ′R)−1‖∞. (B.2.15)

Notice that A = OP(logO(1) n) by Lemma B.2.2. For j = (j1, j2) ∈ J and

i ∈ [n], let µi,j = Ψi,j/A. Notice that , |µi,j| ≤ |vi,j1|. By the exponential-type tail

condition in Assumption 3, we have that ∀(i, j) ∈ [n] × J and µi,j ∈ Ξ(β, γ,Fn).

Hence, by Lemma B.3.5 (applied to the conditional probability measure P(· | Fn)),

maxi,j E(|µi,j|3 | Fn) ≤ C1, maxi,j E(|µi,j|4 | Fn) ≤ C1 and E(maxi,j |µi,j|q | Fn) ≤
C1nT , where C1 > 0 is a constant depending only on q and the constants in

Assumption 3. The desired result holds with Bn = C1(nT )1/qA3.

Lemma B.2.14. Let Assumption 3 hold. Recall Ψi,j, J and Fn defined in (B.2.10).

Then

(1) There exists a constant b > 0 such that P
(
minj∈J n

−1
∑n

i=1 E[Ψ2
i,j | Fn] ≥ b

)
→

1.

(2) maxj∈J
∣∣n−1

∑n
i=1

[
Ψ2
i,j − E(Ψ2

i,j | Fn)
]∣∣ = oP(1).

(3) maxj∈J |n−1
∑n

i=1 Ψi,j| = oP(1).

Proof. Let JF = [T ]× [pY ] and JX = J\JF . Notice that ∀j = (j1, j2) ∈ JF

Ψi,j = Ψ(F ),i,j =

vi,j1
[
(n−1

Y n)L′iΣ
−1
L (H̃ ′L)−1 − Λ′iΣ

−1
Λ QF (H̃ ′L)−1

]
ιj2 ∀i ≤ nY

−vi,j1Λ′iΣ−1
Λ QF (H̃ ′L)−1ιj2 ∀i > nY

and

E(Ψ2
i,j | Fn) = E(v2

i,j1
)
[
Λ′iΣ

−1
Λ QF (H̃ ′L)−1ιj2

]2

for nY + 1 ≤ i ≤ n. (B.2.16)

We first show part (1). Let Λ(2) = (ΛnY +1, · · · ,Λn)′ ∈ RnW×r. Notice that

Λ(2)Z
′ = RX ′. Thus, Λ(2) = RX ′Z(Z ′Z)−1 = RQX . Therefore,

min
j∈JF

n−1

n∑
i=1

E[Ψ2
i,j | Fn] ≥ min

j∈JF
n−1

n∑
i=nY +1

E[Ψ2
(F ),i,j | Fn]

(i)

≥ n−1κ1 min
1≤d≤pY

n∑
i=nY +1

[
Λ′iΣ

−1
Λ QF (H̃ ′L)−1ιd,pY

]2
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= n−1κ1 min
1≤d≤pY

∥∥∥Λ(2)Σ
−1
Λ QF (H̃ ′L)−1ιd,pY

∥∥∥2

2

(ii)

≥ n−1κ1

[
spY

(
RQXΣ−1

Λ QF (H̃ ′L)−1
)]2

,

where (i) follows by (B.2.16) and mini,t Ev2
i,t ≥ κ1 (by Assumption 3) and (ii)

follows by Λ(2) = RQX and the fact that for matrix A ∈ Rr1×r2 and vector x ∈ Rr2 ,

‖Ax‖2 ≥ sr2(A)‖x‖2. Since the singular values of ΣR, QX , ΣΛ, QF and H̃L are

bounded away from infinity and zero, we have that the right-hand size of the above

display is bounded away from zero. Similarly, we can show the same result for

minj∈JX n
−1
∑n

i=1 E[Ψ2
i,j | Fn]. We have proved part (1).

To show part (2), recall the random variable A defined in (B.2.15) in the

proof of Lemma B.2.13. Let µi,j = Ψ2
i,j/A

2 for (i, j) ∈ [n]× J . By the definition of

Ψi,j in (B.2.10), we have |µi,j| ≤ v2
i,j. By Lemma B.3.5 and Assumption 3, there

exist a constant C1 > 0 such that v2
i,j ∈ Ξ(C1, 2γ,Fn). Thus, µi,j ∈ Ξ(C1, 2γ,Fn).

Since {µi,j}j∈J is independent across i conditional on Fn, it follows, by Lemma

B.3.8, that maxj∈J |
∑n

i=1[µi,j − E(µi,j | Fn)]| = OP(
√
n logO(1) n). Therefore, part

(2) follows by noticing that

max
j∈J

∣∣∣∣∣n−1

n∑
i=1

[
Ψ2
i,j − E(Ψ2

i,j | Fn)
]∣∣∣∣∣ = A2 max

j∈J

∣∣∣∣∣n−1

n∑
i=1

[µi,j − E(µi,j | Fn)]

∣∣∣∣∣
= A2OP(n−1/2 logO(1) n)

(i)
= oP(1),

where (i) holds by A = OP(logO(1) n) as argued in the proof of Lemma B.2.13.

To show part (3), we use a similar argument. Let di,j = Ψi,j/A. Then |di,j| ≤
|vi,j|. Since vi,j ∈ Ξ(β, γ,Fn) (Assumption 3), we have di,j ∈ Ξ(β, γ,Fn). Hence, by

Lemma B.3.8 and E(di,j | Fn), we have that maxj∈J |
∑n

i=1 di,j| = OP(
√
n logO(1) n).

Then part (3) follows by

max
j∈J

∣∣∣∣∣n−1

n∑
i=1

Ψi,j

∣∣∣∣∣ = Amax
j∈J

∣∣∣∣∣n−1

n∑
i=1

di,j

∣∣∣∣∣ = AOP(n−1/2 logO(1) n) = oP(1).

The proof is complete.

Lemma B.2.15. Recall the definitions in (B.2.10) and Dn,F in Lemma B.2.5.
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Under Assumption 3 and H0, ‖Λ̂Q̂FDn,F−ΛΣ−1
Λ QF (H̃ ′L)−1‖∞ = OP(n−1/2 logO(1) n).

Proof. We adopt all the notations in Lemma B.2.7. Notice that

‖Λ̂Q̂FDn,F − ΛΣ−1
Λ QF (H̃ ′L)−1‖∞

(i)

≤ ‖Λ[HΛQ̂FDn,F − Σ−1
Λ QF (H̃ ′L)−1]‖∞ + ‖∆ΛQ̂FDn,F‖∞

(ii)

≤ ‖Λ‖∞‖HΛQ̂FDn,F − Σ−1
Λ QF (H̃ ′L)−1‖√p+ ‖∆Λ‖∞‖Q̂F‖

√
p

(iii)
= OP(logO(1) n)‖HΛQ̂FDn,F − Σ−1

Λ QF (H̃ ′L)−1‖+OP(n−1/2 logO(1) n), (B.2.17)

where (i) holds by Lemma B.2.7(1), (ii) holds by Lemma B.2.1 and (iii) holds by

Lemmas B.2.2 and B.2.7.
By Lemmas B.2.7 and B.2.4, we have that under H0,

T−1Ẑ ′Ẑ = H ′ZΣ̄ZHZ = H ′ZΣZHZ +OP(n−1 logO(1) n)

T−1Ẑ ′F̂ = T−1(H ′ZZ + ∆′Z)(ZQFHF + ∆F ) = H ′ZΣZQFHF +OP(n−1/2 logO(1) n)

HZ = Λ′(ΛHΛ + ∆Λ)/n = ΣΛHΛ +OP(n−1/2 logO(1) n)

HF = L′(LHL + ∆L)/nY = ΣLHL +OP(n−1/2 logO(1) n).

Thus,

Q̂F = (T−1Ẑ ′Ẑ)−1(T−1Ẑ ′F̂ ) = H−1
Λ Σ−1

Λ QFΣLHL +OP(n−1/2 logO(1) n).

It follows, by Lemma B.2.5, that

HΛQ̂FDn,F − Σ−1
Λ QF (H̃ ′L)−1

= Σ−1
Λ QF

(
ΣLHLDn,F − (H̃ ′L)−1

)
+OP(n−1/2 logO(1) n)

= OP(n−1/2 logO(1) n).

We finish the proof by combining this and (B.2.17).

Lemma B.2.16. Recall the definitions in (B.2.10). Let Dn =

Blockdiag(Dn,F , Dn,X), where Dn,F and Dn,X are defined in Lemmas B.2.5



198

and B.2.12, respectively. Let Assumption 3 and H0 hold. Then

max
j=(j1,j2)∈J

n−1

n∑
i=1

(Ψ̂i,jDn,j2 −Ψi,j)
2 = OP(n−1 logO(1) n).

Proof. Recall, from the definitions in (B.2.10),

Ψ̂(F ),i =

v̂i
[
(n−1

Y n)L̂′i − Λ̂′iQ̂F

]
for 1 ≤ i ≤ nY

−v̂iΛ̂′iQ̂F for nY + 1 ≤ i ≤ n
(B.2.18)

and

Ψ(F ),i =

vi
[
(n−1

Y n)L′iΣ
−1
L (H̃ ′L)−1 − Λ′iΣ

−1
Λ QF (H̃ ′L)−1

]
for 1 ≤ i ≤ nY

−viΛ′iΣ−1
Λ QF (H̃ ′L)−1 for nY + 1 ≤ i ≤ n.

(B.2.19)

Thus, by the triangular inequality, we have

max
1≤i≤nY

‖Ψ̂(F ),iDn,F −Ψ(F ),i‖∞

≤ ‖v̂ − v‖∞ max
1≤i≤nY

‖[(n−1
Y n)L̂′i − Λ̂′iQ̂F ]Dn,F‖∞︸ ︷︷ ︸

=:G1

+ ‖v‖∞ max
1≤i≤nY

∥∥∥(n−1
Y n)

[
L̂′iDn,F − L′iΣ−1

L (H̃ ′L)−1
]∥∥∥
∞︸ ︷︷ ︸

=:G2

+ ‖v‖∞ max
1≤i≤nY

∥∥∥Λ̂′iQ̂FDn,F − Λ′iΣ
−1
Λ QF (H̃ ′L)−1

∥∥∥
∞︸ ︷︷ ︸

=:G3

. (B.2.20)

Notice that

G2 = (n−1
Y n)‖L̂Dn,F − LΣ−1

L (H̃ ′L)−1‖∞
(i)
= (n−1

Y n)‖(LHL + ∆L)Dn,F − LΣ−1
L (H̃ ′L)−1‖∞

≤ (n−1
Y n)

(
‖L[HLDn,F − Σ−1

L (H̃ ′L)−1]‖∞ + ‖∆LDn,F‖∞
)

(ii)

≤ (n−1
Y n)

(
‖L‖∞‖HLDn,F − Σ−1

L (H̃ ′L)−1‖√pY + ‖∆LDn,F‖∞
)
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(iii)
= OP(n−1/2 logO(1) n),

where (i) holds by Lemma B.2.4(1), (ii) holds by Lemma B.2.1(1) and (iii) holds by

the bounds for ‖HLDn,F − Σ−1
L (H̃ ′L)−1‖ (Lemma B.2.5), ‖L‖∞ (Lemma B.2.2) and

‖∆LDn,F‖∞ = ‖∆L‖∞ (Lemma B.2.6). By Lemma B.2.15, G3 = OP(n−1/2 logO(1) n).

By the triangular inequality,

G1 ≤ G2 +G3 +
∥∥∥(n−1

Y n)L′iΣ
−1
L (H̃ ′L)−1 − Λ′iΣ

−1
Λ QF (H̃ ′L)−1

∥∥∥
∞

(i)
= OP(logO(1) n),

where (i) holds by Lemma B.2.2. By (B.2.20), together with the bounds for G1,

G2 and G3, we have

max
1≤i≤nY

‖Ψ̂(F ),iDn,F −Ψ(F ),i‖∞ ≤ ‖v̂ − v‖∞OP(logO(1) n) + ‖v‖∞OP(n−1/2 logO(1) n)

(i)
= OP(n−1/2 logO(1) n), (B.2.21)

where (i) holds by Lemmas B.2.10 and B.2.2. From (B.2.18) and (B.2.19), we have

max
nY +1≤i≤n

‖Ψ̂(F ),iDn,F −Ψ(F ),i‖∞

≤ ‖v̂ − v‖∞ max
nY +1≤i≤n

‖Λ̂′iQ̂FDn,F‖∞

+ ‖v‖∞ max
nY +1≤i≤n

‖Λ̂′iQ̂FDn,F − Λ′iΣ
−1
Λ QF (H̃ ′L)−1‖∞

≤ ‖v̂ − v‖∞
(
‖ΛΣ−1

Λ QF (H̃ ′L)−1‖∞ + ‖Λ̂Q̂FDn,F − ΛΣ−1
Λ QF (H̃ ′L)−1‖∞

)
+ ‖v‖∞‖Λ̂Q̂FDn,F − ΛΣ−1

Λ QF (H̃ ′L)−1‖∞
(i)

≤ OP(n−1/2 logO(1) n)
(
‖ΛΣ−1

Λ QF (H̃ ′L)−1‖∞ +OP(n−1/2 logO(1) n)
)

+OP(logO(1) n)OP(n−1/2 logO(1) n)

(ii)

≤ OP(n−1/2 logO(1) n)‖Λ‖∞ · ‖Σ−1
Λ QF (H̃ ′L)−1‖√pY +OP(n−1/2 logO(1) n)

(iii)
= OP(n−1/2 logO(1) n), (B.2.22)

where (i) holds by Lemmas B.2.10, B.2.2 and B.2.15 and (ii) holds by Lemma B.2.1

and (iii) holds by Lemma B.2.2.
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By (B.2.21) and (B.2.22), max1≤i≤n ‖Ψ̂(F ),iDn,F − Ψ(F ),i‖∞ =

OP(n−1/2 logO(1) n). By an analogous argument, we can show that

max1≤i≤n ‖Ψ̂(X),iDn,X − Ψ(X),i‖∞ = OP(n−1/2 logO(1) n) with Dn,X defined in

Lemma B.2.12. Therefore,

max
1≤i≤n

‖Ψ̂iDn −Ψi‖∞

=

(
max
1≤i≤n

‖Ψ̂(F ),iDn,F −Ψ(F ),i‖∞
)
∨
(

max
1≤i≤n

‖Ψ̂(X),iDn,X −Ψ(X),i‖∞
)

= OP(n−1/2 logO(1) n).

Thus, the desired result follows by

max
j=(j1,j2)∈J

n−1

n∑
i=1

(Ψ̂i,jDn,j2 −Ψi,j)
2 ≤ max

1≤i≤n
max

j=(j1,j2)∈J

∣∣∣Ψ̂i,jDn,j2 −Ψi,j

∣∣∣2
= max

1≤i≤n
‖Ψ̂iDn −Ψi‖2

∞ = OP(n−1 logO(1) n).

Proof of Theorem 2.3.1. Recall the definitions in (B.2.10). We define

Ŝn = n1/2MẐ [F̂Dn,F , X̂Dn,X ]

Υi = Ψi

Υ̂i = Ψ̂iBlockdiag(Dn,F , Dn,X)

S̃Υ̂
n = n−1/2

∑n
i=1(Υ̂i − ¯̂

Υ)ξi with
¯̂
Υ = n−1

∑n
i=1 Υ̂i,

where {ξi}ni=1 are i.i.d N(0, 1) random variables independent of the data (defined

in (B.2.10)), Dn,F and Dn,X are defined in Lemmas B.2.5 and B.2.12, respectively.

Since Dn,F and Dn,X are diagonal matrices with diagonal entries taking

values in {−1, 1}, we have ‖Ŝn‖∞ = ‖Sn‖∞ and ‖S̃Υ̂
n ‖∞ = ‖SBSn ‖∞, where Sn and

SBSn are defined in Algorithm 3. Therefore, we only need to show the following
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claim:

lim sup
n→∞

sup
η∈(0,1)

∣∣∣P [‖Ŝn‖∞ > Q
(

1− η, ‖S̃Υ̂
n ‖∞

)]
− η
∣∣∣ = 0, (B.2.23)

where Gn is the σ-algebra defined in (B.2.10) and Q
(

1− η, ‖S̃Υ̂
n ‖∞

)
=

inf
{
x ∈ R | P

(
‖S̃Υ̂

n ‖∞ > x | Gn
)
≤ α

}
. By Proposition B.1.1, it suffices to verify

the following conditions:

(i) There exist constants q1, q2 > 0 such that ‖Ŝn − SΥ
n ‖∞ = OP(n−q1) and

max1≤j≤p n
−1
∑n

i=1(Υ̂i,j −Υi,j)
2 = OP(n−q2), where SΥ

n = n−1/2
∑n

i=1 Υi and

Υ̂i,j and Υi denote the jth component of Υ̂i and Υi, respectively.

(ii) There exist a constant r > 2 and an Fn-measurable positive random

variable Bn such that, almost surely, n−1
∑n

i=1 E(|Υi,j|3 | Fn) ≤ Bn,

n−1
∑n

i=1 E(|Υi,j|4 | Fn) ≤ B2
n and E(max1≤j≤p |Υi,j|r | Fn) ≤ 2Br

n.

(iii) There exists a constant b > 0 such that

P
(
min1≤j≤p n

−1
∑n

i=1 E(Υ2
i,j | Fn) > b

)
→ 1, max1≤j≤p |n−1

∑n
i=1[Υ

2
i,j −

E(Υ2
i,j | Fn)]| = oP(1) and max1≤j≤p |n−1

∑n
i=1 Υi,j| = oP(1).

(iv) n2/r−1B2
n log3(p∨n) = oP(1), n−1B2

n log7(p∨n) = oP(1), nq2/ log4 p→∞ and

n2q1/ log p→∞.

To see Condition (i), we notice that, by Lemmas B.2.11 and B.2.12, we have

‖Ŝn − SΥ
n ‖∞ =

∥∥∥[n1/2MẐF̂Dn,F − S
Ψ(F )
n , n1/2MẐX̂Dn,X − S

Ψ(X)
n

]∥∥∥
∞

= OP(n−1/2 logO(1) n).

Hence, ‖Ŝn − SΥ
n ‖∞ = OP(n−1/3). By Lemma B.2.16,

max1≤j≤p n
−1
∑n

i=1(Υ̂i,j − Υi,j)
2 = OP(n−1 logO(1) n) = OP(n−1/3). Thus,

Condition (i) holds with q1 = q2 = 1/3.

Applying Lemma B.2.13 with q = 8, we have that Condition (ii) holds with

r = 8 and Bn = OP(n1/4 logO(1) n). Condition (iii) holds by Lemma B.2.14. Since
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p = T (pY + pW ) = O(n), Condition (iv) follows by simple computations. The proof

is complete.

Proof of Theorem 2.3.2. The proof consists of two steps. First, we show that,

under H1, the test statistic diverges at the rate
√
n. In the second step, we show

that the critical value diverges at the rate logO(1) n.

Step 1: show
√
n‖MẐ [F̂ , X̂]‖∞ diverges at the rate

√
n under H1.

Recall ζ = [F,X] and Σζ = ζ ′ζ/T and let r0 := pY + pW − k0 and an :=

sr(ΛZ
′). By Lemma 2.2.1, under H1, r = pY + pW − k1 > r0. Hence,

an = sr(ZΛ′) = sr ([FL′, XR′]) = sr {ζBlockdiag(L′, R′)}
(i)

≥ sr (ζ) spY +pW−r+1 {Blockdiag(L′, R′)}

= sr (ζ) spC+1 {Blockdiag(L′, R′)} , (B.2.24)

where (i) holds by Lemma B.3.1(2). By Assumption 3, with probability approaching

one, sr(ζ) =
√
T · sr(Σζ) ≥

√
T/κ. Notice that

spC+1 {Blockdiag(L′, R′)} =
√
spC+1 [Blockdiag(nY ΣL, nWΣR)]

(i)

≥
√
κ−1(nY ∧ nW ) with probability approaching one,

where (i) holds by the fact that the eigenvalues of ΣL and ΣR are bounded below

by κ−1 (Assumption 3). These observations, together with (B.2.24), imply that

there exists a constant C1 > 0 such that

P (an ≥ C1n)→ 1. (B.2.25)

By the definition of SVD, ‖MẐχ
′‖ = sr0+1(χ′). It follows, by Lemma B.3.1(1)

and r > r0 (thus r ≥ r0 + 1)), that

‖MẐχ
′‖+‖v′‖ = sr0+1(χ′)+s1(−v′) ≥ sr0+1(χ′−v′) = sr0+1(ΛZ ′) ≥ sr(ΛZ

′) = an.

(B.2.26)

By χ′ = ζBlockdiag(L′, R′) + v′ and the sub-multiplicative property of the
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spectral norm,

‖MẐχ
′‖ ≤ ‖MẐ [F,X]‖ · ‖Blockdiag(L′, R′)‖+ ‖v‖. (B.2.27)

It follows, by (B.2.26) and (B.2.27), that

‖MẐ [F,X]‖ ≥ an − 2‖v‖
‖Blockdiag(L′, R′)‖

=
an − 2‖v‖√

‖Blockdiag(nY ΣL, nWΣR)‖
(i)

≥ an − 2‖v‖√
max {nY ‖ΣL‖, nW‖ΣR‖}

, (B.2.28)

where (i) holds by Lemma B.3.1(5). Since ‖v‖∞ = OP(logO(1) n) (Lemma B.2.2)

and the eigenvalues of ΣL and ΣR are bounded, it follows by (B.2.25) and (B.2.28),

that there exists a constant C2 > 0 such that

P
(
‖MẐ [F,X]‖ >

√
nC2

)
→ 1. (B.2.29)

By Lemma B.2.4(2) and (4), F̂ = FHF + ∆F , where HF ∈ RpY ×pY is a

(random) matrix with singular values bounded below by a positive constant with

probability approaching one and ‖∆F‖ = OP(logO(1) n). By a similar argument

(omitted), X̂ = XHX + ∆X , where HX ∈ RpW×pW and ‖∆X‖ = OP(logO(1) n) have

the same property as HF and ∆X , respectively. By Lemma B.3.1(5), there exists a

constant C3 > 0 such that

P (spY +pW [Blockdiag(HF , HX)] > C3)→ 1. (B.2.30)

Moreover,

‖MẐ [F̂ , X̂]‖ = ‖MẐ ([F,X]Blockdiag(HF , HX) + [∆F ,∆X ]) ‖

≥ ‖MẐ [F,X]Blockdiag(HF , HX)‖ − ‖MẐ [∆F ,∆X ]‖
(i)

≥ ‖MẐ [F,X]‖ · spY +pW [Blockdiag(HF , HX)]− ‖MẐ [∆F ,∆X ]‖
(ii)

≥ ‖MẐ [F,X]‖ · spY +pW [Blockdiag(HF , HX)]−OP(logO(1) n),

(B.2.31)
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where (i) holds by Lemma B.3.1 and the fact that ‖MẐ [F,X]‖ = s1{MẐ [F,X]}
and (ii) follows by ‖MẐ [∆F ,∆X ]‖ ≤ ‖[∆F ,∆X ]‖ (MẐ being a projection matrix).

By the sub-additivity of probability measures, we have

P
(
‖MẐ [F̂ , X̂]‖ ≥ 2

√
nC2/C3

)
≥ P

(
‖MẐ [F,X]‖/C3 −OP(logO(1) n) ≥ 2

√
nC2/C3

)
− P (spY +pW [Blockdiag(HF , HX)] ≤ C3)

(i)→ 1, (B.2.32)

where (i) holds by (B.2.29), (B.2.30) and (B.2.31).

Recall the elementary inequalty ‖A‖ ≤ ‖vecA‖2 ≤
√

dim(vecA)‖A‖∞ for

any matrix A. Hence, ‖MẐ [F,X]‖ ≤
√
T (pY + pW )‖MẐ [F,X]‖∞. This and

(B.2.32) imply that there exists a constant C4 > 0 such that

P
(
‖MẐ [F̂ , X̂]‖∞ > C4

)
→ 1. (B.2.33)

Step 2: show that the critical value diverges at the rate logO(1) n.

Recall Ψ̂i, S̃Ψ̂
n and Gn defined in (B.2.10). Notice that S̃Ψ̂

n = SBSn , where

SBSn is defined in Algorithm 3. Notice that S̃Ψ̂
n , conditional on Gn, is a zero mean

Gaussian vector with its entries having a maximal variance bounded above by

max1≤i≤n ‖Ψ̂i‖2
∞. In other words, S̃Υ̂

n /max1≤i≤n ‖Ψ̂i‖∞ ∈ Ξ(1, 2,Gn). By Lemma

B.3.6, ‖S̃Υ̂
n ‖∞/max1≤i≤n ‖Ψ̂i‖∞ = OP(

√
log n). From the proofs of Lemmas B.2.4

and B.2.7, it is not hard to show that, under H1, max1≤i≤n ‖Ψ̂i‖∞ = OP(logO(1) n).

Therefore, ‖S̃Υ̂
n ‖∞ = OP(logO(1) n).

By (B.2.33), the test statistic
√
n‖MẐ [F̂ , X̂]‖∞ diverges at the rate

√
n.

Since the critical value only diverges at the rate logO(1) n, the probability that the

test rejects the null hypothesis converges to one. The proof is complete.
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B.3 Technical tools

Lemma B.3.1. The following hold.

(1) Let A,B ∈ Rn1×n2 be two matrices. If i + j − 1 ≤ min{n1, n2}, then

si+j−1(A+B) ≤ si(A) + sj(B).

(2) Let A ∈ Rn1×n0 and B ∈ Rn0×n2. If 1 ≤ i ≤ n0, then si(AB) ≥ si(A)sn0−i+1(B).

(3) Let A,B ∈ Rn1×n2 be two matrices. If rankB ≤ k and 1 ≤ j ≤ min{n1, n2}− k,
then sj(A) ≥ sj+k(A+B) ≥ s2k+j(A).

(4) Let A ∈ Rn1×n2. Suppose that B ∈ Rn1×m consists of the first m columns of A

with m ≤ n2. Then for 1 ≤ j ≤ m ∧ n1, sj(B) ≤ sj(A).

(5) Let A ∈ Rn1×n1 and B ∈ Rn2×n2. Then sn1+n2 [Blockdiag(A,B)] ≥
min {sn1(A), sn2(B)} and s1[Blockdiag(A,B)] ≤ max {s1(A), s1(B)}.

Proof. Part (1) and (4) are Fact 6(b) and Fact 3, respectively, in Chapter 17.4

of Hogben (2006). Part (2) follows by Lemma 3 of Wang and Xi (1997). Part

(3) follows by applying part (1): sj(A) = sj(A) + sk+1(B) ≥ sj+k(A + B) and

sj+k(A+B) = sj+k(A+B) + sk+1(−B) ≥ s2k+j(A).

To see part (5), let λmax and λmin(·) denote the maximum and minimum

eigenvalues, respectively. Notice that

(sn1+n2 [Blockdiag(A,B)])2 = λmin (Blockdiag(A′A,B′B))

= min
x′1x1+x′2x2=1

x′1A
′Ax1 + x′2B

′Bx2

≥ min
x′1x1+x′2x2=1

λmin(A′A)‖x1‖2
2 + λmin(B′B)‖x2‖2

2

≥ min {λmin(A′A), λmin(B′B)}

= min
{

(sn1(A))2 , (sn2(B))2} .
This proves the first claim in part (5). Notice that

(s1[Blockdiag(A,B)])2 = λmax (Blockdiag(A′A,B′B))

= max
x′1x1+x′2x2=1

x′1A
′Ax1 + x′2B

′Bx2

≥ max
x′1x1+x′2x2=1

λmax(A′A)‖x1‖2
2 + λmax(B′B)‖x2‖2

2
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≥ max {λmax(A′A), λmax(B′B)}

= max
{

(s1(A))2 , (s1(B))2} .
This proves the second claim in part (5). The proof is complete.

Lemma B.3.2. Let X and Y be two random vectors. Then ∀t, ε > 0,

|P (‖X‖∞ > t)− P (‖Y ‖∞ > t)| ≤ P (‖X − Y ‖∞ > ε) + P (‖Y ‖∞ ∈ (t− ε, t+ ε]) .

Proof. The result holds by the following observations using the triangular inequality:

(1) P(‖X‖∞ > t) ≤ P(‖X − Y ‖∞ > ε) + P(‖Y ‖∞ > t − ε) = P(‖X − Y ‖∞ >

ε) + P(‖Y ‖∞ > t) + P(‖Y ‖∞ ∈ (t − ε, t]) and (2) P(‖X‖∞ > t) ≥ P(‖Y ‖∞ > t +

ε)−P(‖X−Y ‖∞ > ε) = P(‖Y ‖∞ > t)−P(‖Y ‖∞ ∈ (t, t+ε])−P(‖X−Y ‖∞ > ε).

Lemma B.3.3. Let X and Y be two random vectors and F and G
two σ-algebras. Define FX(x) = P (‖X‖∞ ≤ x | F) and FY (x) =

P (‖Y ‖∞ ≤ x | G). Then ∀ε > 0, supα∈(0,1)

∣∣P (‖X‖∞ > F−1
Y (1− α) | F

)
− α

∣∣ ≤
ε+ P (supx∈R |FX(x)− FY (x)| > ε | F).

Proof. For simplicity, we use P|F(·) to denote P(· | F). Fix α ∈ (0, 1) and notice

that

P|F
(
‖X‖∞ > F−1

Y (1− α)
)

≤ P|F
(
‖X‖∞ > F−1

Y (1− α) and sup
x∈R
|FX(x)− FY (x)| ≤ ε

)
+ P|F

(
sup
x∈R
|FX(x)− FY (x)| > ε

)
(i)

≤ P|F
(
‖X‖∞ > F−1

X (1− α− ε)
)

+ P|F
(

sup
x∈R
|FX(x)− FY (x)| > ε

)
= α + ε+ P|F

(
sup
x∈R
|FX(x)− FY (x)| > ε

)
, (B.3.1)

where (i) follows from Lemma A.1(ii) in Romano and Shaikh (2012) (if

supx∈R[FY (x) − FX(x)] ≤ ε then F−1
X (1 − α − ε) ≤ F−1

Y (1 − α)). Also notice

that

P|F
(
‖X‖∞ > F−1

Y (1− α)
)
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≥ P|F
(
‖X‖∞ > F−1

Y (1− α) and sup
x∈R
|FX(x)− FY (x)| ≤ ε

)
(i)

≥ P|F
(
‖X‖∞ > F−1

X (1− α + ε) and sup
x∈R
|FX(x)− FY (x)| ≤ ε

)
≥ P|F

(
‖X‖∞ > F−1

X (1− α + ε)
)
− P|F

(
sup
x∈R
|FX(x)− FY (x)| > ε

)
= α− ε− P|F

(
sup
x∈R
|FX(x)− FY (x)| > ε

)
(B.3.2)

where (i) follows from Lemma A.1(ii) in Romano and Shaikh (2012) (if

supx∈R[FX(x) − FY (x)] ≤ ε then F−1
Y (1 − α) ≤ F−1

X (1 − α + ε)). The desired

result follows by (B.3.1) and (B.3.2).

Lemma B.3.4. Let Y = (Y1, · · · , Yp)′ be a random vector and F a σ-algebra. If

E(Y | F) = 0, Y | F is Gaussian and minE(Y 2
j | F) ≥ b a.s. for some constant

b > 0, then there exists a constant Cb > 0 depending only on b such that ∀ε > 0.

sup
x∈R

P (‖Y ‖∞ ∈ (x− ε, x+ ε] | F) ≤ Cbε
√

log p a.s.

Proof. By Nazarov’s anti-concentration inequality (Lemma A.1 in Chernozhukov,

Chetverikov, and Kato (2014)), there exists a constant C ′b depending only on b such

that almost surely, supx∈R P(max1≤j≤p Yj ∈ (x − ε, x + ε] | F) ≤ 2C ′bε
√

log p and

supx∈R P(max1≤j≤p(−Yj) ∈ (x− ε, x+ ε] | F) ≤ 2C ′bε
√

log p.

Since ‖Y ‖∞ = max{max1≤j≤p Yj,max1≤j≤p(−Yj)}, the desired result follows

by supx∈R P(‖Y ‖∞ ∈ (x− ε, x + ε] | F) ≤ supx∈R P(max1≤j≤p Yj ∈ (x− ε, x + ε] |
F) + supx∈R P(max1≤j≤p(−Yj) ∈ (x− ε, x+ ε] | F) ≤ 4C ′bε

√
log p.

Lemma B.3.5. The following hold.

(1) Let X ∈ RmX be a random vector whose jth entry is denoted by Xj. Suppose that

there exist constants b, γ > 0 such that ∀j ∈ {1, · · · ,mX}, Xj has an exponential-

type tail with parameter (b, γ). Then for any nonrandom vector a ∈ RmX , a′X has

an exponential-type tail with parameter
(
b‖a‖1 log1/γ(‖a‖0 + 2), γ

)
.

(2) Let {Xj}mXj=1 be a sequence of random variables. Suppose that constants b, γ > 0

satisfy that ∀j ∈ {1, · · · ,mX}, Xj has an exponential-type tail with parameter (b, γ).

Let q > 0 be any nonrandom number. Then there exists a constant Cγ,q > 0 depend-
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ing only on γ and q such that Emax1≤j≤mX |Xj|q ≤ Cγ,qmXb
q and E|Xj|q ≤ Cγ,qb

q

∀j ∈ {1, · · · ,mX}.
(3) Let X1 and X2 be two random variables having exponential-type tails with pa-

rameters (b1, γ1) and (b2, γ2), respectively. Then X1X2 has an exponential-type tail

with parameter
(
21/γ0b1b2, γ0

)
, where γ0 = γ1γ2(γ1 + γ2)−1

(4) Let X have an exponential-type tail with parameter (bX , γX). Then ∀a ∈ R,
X − a has an exponential-type tail with parameter (bX + |a|, γX).

(5) Let K1, K2, K3, K > 0 be constants such that ∀d ≥ K1, P(|X| ≥ d) ≤
K2 exp(−(d/K3)

K). Then X has an exponential-type tail with parameter (c,K),

where c > 0 is a constant depending only on K1, K2, K3 and K.

Proof. Proof of part (1). Let A0 := {i | ai 6= 0}. Then by Holder’s in-

equality and the union bound, P(|a′X| > x) ≤ P(‖a‖1 maxi∈A0 |Xi| > x) ≤∑
i∈A0

P(‖a‖1|Xi| > x) ≤ ‖a‖0 exp
[
1− (xb−1‖a‖−1

1 )γ
]
. If ‖a‖0 = 1, then the result

follows by b‖a‖1 < b‖a‖1 log1/γ(3). For ‖a‖0 > 1, we let c = b‖a‖1 log1/γ ‖a‖0 <

b‖a‖1 log1/γ(‖a‖0 + 2). For x ≤ c, P(|a′X| > x) ≤ 1 ≤ exp(1 − (x/c)γ).

Since P(|a′X| > x) ≤ ‖a‖0 exp
[
1− (xb−1‖a‖−1

1 )γ
]
, it suffices to show that

∀x > c, log ‖a‖0 − (xb−1‖a‖−1
1 )γ ≤ 1 − (xc−1)γ. This is to say that xγ ≥

(log ‖a‖0 − 1)/((b‖a‖1)
−γ − c−γ) ∀x > c. By simple computations, one can show

that cγ = (log ‖a‖0 − 1)/((b‖a‖1)−γ − c−γ). Part (1) follows.
Proof of part (2). Notice that, by the union bound, P(max1≤j≤mX |Xj| >

x) ≤
∑mX

j=1 P(|Xj| > x) ≤ mX exp [1− (x/b)γ]. Then

E max
1≤j≤mX

|Xj|q
(i)
=

ˆ ∞
0

P
(

max
1≤j≤mX

|Xj|q > x

)
dx =

ˆ ∞
0

P
(

max
1≤j≤mX

|Xj| > x1/q

)
dx

(ii)

≤ mX

ˆ ∞
0

exp
[
1−

(
x1/q/b

)γ]
dx

(iii)
= mXb

q

(
qγ−1

ˆ ∞
0

e1−ddq/γ−1dd

)
,

where (i) follows by the identity EX =
´∞

0
P(X > x)dx for any non-negative random

variable X, (ii) follows by P(max1≤j≤mX |Xj| > x) ≤ mX exp [1− (x/b)γ] and (iii)

follows by a change of variable d =
(
x1/q/b

)γ. The bound for Emax1≤j≤mX |Xj|q

follows with Cγ,q = qγ−1
´∞

0
e1−ddq/γ−1dd. The bound for E|Xj|q follows by the

same reasoning with max1≤j≤mX |Xj| replaced by |Xj|. This completes the proof
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for part (2).

Proof of part (3). The proof of Lemma A.2 of Fan, Liao, and Mincheva

(2011) implies that ∀γ ∈ (0, γ0), X1X2 has an exponential-type tail with parameter

(b3, γ) ∀b3 > b0 max{(γ/γ0)1/γ0 , (1+log 2)1/γ0}, where γ0 = γ1γ2(γ1 +γ2)−1 and b0 =

b1b2. It is easy to check that 2(γ1+γ2)γ−1
1 γ−1

2 b1b2 > b0 max{(γ/γ0)1/γ0 , (1 + log 2)1/γ0}.
Part (3) follows.

Proof of part (4). Let c = bX + |a|. Notice that P(|X − a| > t) ≤ P(|X|+
|a| > t) = P(|X| > t− |a|). For t ∈ (0, c], P(|X| > t− |a|) ≤ 1 ≤ exp [1− (t/c)γX ].

For t > c, t − |a| > 0 and P(|X| > t − |a|) ≤ exp [1− ((t− |a|)/bx)γX ]. It is easy

to check that (t− |a|)/bx ≥ t/c ∀t > c. Part (4) follows.

Proof of part (5). It is easy to see that there exist constants c1, c2 > 0

such that c1 ≥ K1, c2 ≥ K3 ∨ c1 and logK2 − 1 ≤ (K−K3 − c−K2 )cK1 . Now we verify

that we can take c = c2. For d ∈ (0, c2], P(|X| > d) ≤ 1 ≤ exp(1 − (x/c2)
K); for

d > c2, P(|X| > d) ≤ K2 exp(−(d/K3)
K) and it is straight-forward to check that

∀d > c2, K2 exp(−(d/K3)K) ≤ exp(1− (d/c2)K). Part (5) follows.

Lemma B.3.6. Let {Wj}j∈J be random variables. If there exist constant b, γ > 0

such that ∀j ∈ J , Wj has an exponential-type tail with parameter (b, γ), then

maxj∈J |Wj| = OP(log1/γ |J |), where |J | is the cardinality of J .

Proof. By the union bound, we have

P
(

max
j∈J
|Wj| > (log |J |)1/γ x

)
≤
∑
j∈J

P
(
|Wj| > (log |J |)1/γ x

)
≤ |J | exp

[
1−

(
(log |J |)1/γ x/b

)γ]
= exp [1 + (1− (x/b)γ) log |J |] .

Hence, for any ε > 0, one can choose large enough x such that the right-hand side

of the above display is smaller than ε. The result follows.

Lemma B.3.7. Let Fn be a σ-algebra and {Wt}Tt=1 be random variables with

E(Wt | Fn) = 0. Suppose that the following hold:

(i) There exist constants γ1, b1 > 0 such that ∀t ∈ [T ], Wt ∈ Ξ(b1, γ1,Fn)

(ii) There exist constants γ2, b2 > 0 such that αn(t | Fn) ≤ exp(−b2t
γ2) and
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γ :=
[
γ−1

1 + γ−1
2

]−1
< 1 a.s, where

αn(t | Fn) := sup
{∣∣∣P(A | Fn)P(B | Fn)− P(A

⋂
B | Fn)

∣∣∣ :

A ∈ σ ({(Ws, · · · ,Ws) | s ≤ ι}) ,

B ∈ σ ({(Ws, · · · ,Ws) | s ≥ ι+ t}) and ι ∈ N
}
.

Then T−1/2
∑T

t=1Wt ∈ Ξ(b∗, γ,Fn), where b∗ > 0 is a constant depending only on

γ1, γ2, b1 and b2.

Proof. Let K > 0 be a constant to be chosen later. By Theorem 1 in Merlevède,

Peligrad, and Rio (2011) (applied to the conditional probability measure P(· | Fn)),

there exist constants C1, C2, C3, C4, C5 > 0 depending only on γ1, γ2, b1 and b2,

such that ∀d ≥ K,

P

(∣∣∣∣∣
T∑
t=1

Wt

∣∣∣∣∣ > dT 1/2 | Fn

)
≤ T exp

(
−C1T

γ/2dγ
)︸ ︷︷ ︸

J1,T (d)

+ exp

(
− C2d

2T

1 + C3T

)
︸ ︷︷ ︸

J2,T (d)

+ exp

[
−C4d

2 exp

(
C5

(T 1/2d)γ/(1−γ)

[log(T 1/2d)]
γ

)]
︸ ︷︷ ︸

J3,T (d)

a.s.

It is not hard to see that one can choose a large enough K such that ∀d ≥
K, J1,T (d) ≤ exp(−C1d

γ), J3,T (d) ≤ J1,T (d) and J2,T (d) ≤ exp(−C6d
2), where

C6 = C2/(1 + C3). Hence, ∀d ≥ K, J1,T (d) + J2,T (d) + J3,T (d) ≤ 2 exp(−C1d
γ) +

exp(−C6d
2). Since γ < 1, we can enlarge K, if necessary, such that ∀d ≥ K,

exp(−C6d
2) ≤ exp(−C1d

γ).

Hence, ∀d ≥ K, P
(
T−1/2

∣∣∣∑T
t=1Wt

∣∣∣ > d | Fn
)
≤ 3 exp (−C1d

γ) a.s. Thus,

the desired result follows by Lemma B.3.5.

Lemma B.3.8. Let {xi,j}(i,j)∈[n]×J be an array of random variables and Fn be a

σ-algebra. Suppose the following hold:

(i) Condition on Fn, xi is independent across i, where xi = {xi,j | j ∈ J}.
(ii) E(xi,j | Fn) = 0 ∀(i, j) ∈ [n]× J .
(iii) There exist constants b, γ > 0 such that ∀(i, j) ∈ [n]× J and ∀x > 0, P(|xi,j| >
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x | Fn) ≤ exp (1− (x/b)γ) a.s.

(iv) ∀0 < c <∞, n−c log |J | → 0, where |J | denotes the cardinality of J .

Then maxj∈J |
∑n

i=1 [xi,j − E(xi,j | Fn)]| = OP(
√
n log |J |).

Proof. Fix an arbitrary ε > 0. Let x̃i,j = xi,j − E(xi,j | Fn). By Lemma B.3.5(2)

and (4) applied to the conditional probability measure P(· | Fn), we have that there

exists a constant b1 > 0 depending only on b and γ such that ∀d > 0 ∀(i, j) ∈ [n]×J ,
P(|x̃i,j| > x | Fn) ≤ exp (1− (x/b1)γ) a.s.

Then by Theorem 1 in Merlevède, Peligrad, and Rio (2011) (applied to the

conditional probability measure P(· | Fn)), there exist positive constants C1, C2,

C3, C4, C5 and r depending only on bMε and γ such that r < 1 and ∀d > 0,

P

(∣∣∣∣∣
n∑
i=1

x̃i,j

∣∣∣∣∣ > d
√
n log |J | | Fn

)

≤ n exp
[
−C1

(
d
√
n log |J |

)r]
+ exp

[
−C2nd

2 log |J |
1 + nC3

]
+ exp

{
−C4d

2 log |J | exp

[
C5 log−r

(
d
√
n log |J |

)(
d
√
n log |J |

)r/(1−r)]}
a.s.

Then, by the union bound, we have that

P

(
max
j∈J

∣∣∣∣∣
n∑
i=1

x̃i,j

∣∣∣∣∣ > d
√
n log |J | | Fn

)

≤
∑
j∈J

P

(
max
j∈J

∣∣∣∣∣
n∑
i=1

x̃i,j

∣∣∣∣∣ > d
√
n log |J | | Fn

)

≤ |J |n exp
[
−C1

(
d
√
n log |J |

)r]
+ |J | exp

[
−C2nd

2 log |J |
1 + nC3

]
+ |J | exp

{
−C4d

2 log |J | exp

[
C5 log−r

(
d
√
n log |J |

)(
d
√
n log |J |

)r/(1−r)]}
a.s.

By assumption (iv), the first and third terms in the above display go to zero for

any d > 0. Hence, we can choose a large constant d∗ > 0 and n∗ ∈ n such that

∀n ≥ n∗, P
(

maxj∈J |
∑n

i=1 x̃i,j| > d∗
√
n log |J | | Fn

)
≤ ε a.s. The result follows by

the law of iterated expectations.
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B.4 An example of difficult low-dimensional

asymptotics

By Lemma 2.2.1, H0 in (2.2.3) holds if and only if rank[F,X] = pY +pW −k0,

which is equivalent to the condition rankΣζ = pY + pW − k0. Hence, one way of

testing H0 is to test the rank of a low-dimensional matrix Σζ ∈ Rp×p, where

p = pY + pW . Let λk0(·) denote the sum of the smallest k0 eigenvalues. We can test

whether λk0(Σζ) = 0.

For simplicity, assume that (F,X,L,R) is nonrandom with ΣL = IpY and

ΣR = IpW so the normalization imposed in PCA is correct. A natural estimator for

Σζ is Σ̂ζ = T−1ζ̂ ′ζ̂, where ζ̂ = [F̂ , X̂]. It is not hard to show that Tvec(Σ̂ζ−Σζ)→d

N(a,Ω) for some vector a ∈ Rp2 and matrix Ω ∈ Rp×p. It is well known that, under

H0, λk0(·) is a smooth function in a neighborhood of Σζ .

The first difficulty is that a is nonzero and is not straight-forward to estimate.

It is not hard to show that a = vec(Blockdiag(n−1
Y L′E(ee′)L, n−1

W R′E(uu′)R)). Let

ê = Y − L̂F̂ ′ and û = W − R̂X̂ ′. Notice that by construction, L̂′ê = 0 and R̂′û = 0.

This means that n−1
Y L̂′êê′L̂ = 0 and n−1

W R̂′ûû′R̂ = 0. Therefore, it is not clear how

to consistently estimate a.

The second difficulty is more problematic and arises due to the singularity

of Ω, which requires us to take into account the asymptotic distribution of the error

in approximating the distribution of Tvec(Σ̂ζ − Σζ) with N(a,Ω). To see this, let

λ′k0(·) denote the derivative of λk0(·). By the first order Taylor’s expansion,

T [λk0(Σ̂ζ)− λk0(Σζ)] = Tλ′k0(Σζ)vec(Σ̂ζ − Σζ) +OP(T−1).

Hence, the limiting distribution of T [λk0(Σ̂ζ)− λk0(Σζ)] is Gaussian with variance

[λ′k0(Σζ)]
′Ωλ′k0(Σζ). Since under H0, λk0(Σ̂ζ) ≥ 0 = λk0(Σζ), the limiting distribu-

tion of T [λk0(Σ̂ζ)− λk0(Σζ)] cannot be Gaussian with nonzero variance. Therefore,

λ′k0(Σζ)Ω = 0. Since λ′k0(Σζ) can be shown to be nonzero, Ω is singular.

Since λ′k0(Σζ)a 6= 0, we need to remove the bias in Σ̂ζ and consider

T 3/2[λk0(Σ̂ζ − T−1â)− λk0(Σζ)] = T 3/2λ′k0(Σζ)vec(Σ̂ζ − Σζ − T−1â) +OP(T−1/2),
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where â is an estimate for a. Suppose that we have strong approximation Tvec(Σ̂ζ−
Σζ) = a + J1 + J2,T , where J1 ∼ N(0,Ω) and J2,T = oP(1). Then, by the above

display and λ′k0(Σζ)Ω = 0, we have

T 3/2[λk0(Σ̂ζ − T−1â)− λk0(Σζ)] = λ′k0(Σζ)
[√

T (a− â) +
√
TJ2,T

]
+ oP(1).

Although we might be able to find an estimator â such that it is possible to

derive the asymptotics of
√
T (â− a), dealing with

√
TJ2,T , which does not vanish,

is much harder. This is because J2,T contains the error of approximating terms such

as n−1
Y

∑nY
i=1

∑T
t=1 ei,tζtL

′
i with Gaussian distributions. Consequently, we need to

resort to higher order Edgeworth expansions. Due to the intertemporal dependence

in ei,t, these expansions could be very complicated; see Gotze and Hipp (1994) and

Lahiri (2010). In addition, we have to take into account the dependence between
√
T (a− â) and

√
TJ2,T .

The third difficulty is that since Ω is singular with λ′k0(Σζ)Ω = 0, we have

reasons to suspect that the product of λ′k0(Σζ) and some higher order terms in the

Edgeworth expansion is also degenerate. For some estimators â, λ′k0(Σζ)
√
T (a− â)

might also be degenerate in the limit. In some cases, we also need to include higher

order terms in the Taylor expansion of the function λk0(·). Hence, quite complicated

arguments and possibly additional assumptions are required to determine which

orders in expansions are needed.

These difficulties still arise even if one replaces λk0(·) with other functions,

such as canonical correlations.



Appendix C

Proofs for Chapter 3

In the rest of the article, we use λmin(·) and λmax(·) to denote the minimal

and maximal eigenvalues of a matrix, respectively. For a random variable, let

‖ · ‖Lr(P ) denote the Lr(P )-norm, i.e., ‖zi‖Lr(P ) = [Ezri ]
1/r. For a vector x =

(x1, · · · , xp)> ∈ Rp, letM(x) denotes its support {i | xi 6= 0}.

C.1 Proof Theorems 3.2.1 and 3.2.2

Proof of Theorem 3.2.1. Under H0 in (3.1.2), li(g0) = zi(εi + w>i β∗). Notice

that

σ2
l = Eli(g0)2 = σ2

zσ
2
ε + Ez2

i (w
>
i β∗)

2 ≥ σ2
zσ

2
ε .

Hence, s2
n :=

∑n
i=1E(li(g0))2 ≥ nσ2

zσ
2
ε . It follows that∑n

i=1 E|li(g0)|3

s3
n

≤ E|zi(εi + w>i β∗)|3

n1/2σ3
εσ

3
z

(i)

≤

√
‖ziσ−1

z ‖6
L6(P )‖εi + w>i β∗‖6

L6(P )

n1/2c3

(ii)
= o(1),

where (i) follows by Holder’s inequality and (ii) follows by Assumption 4 and

Minkowski’s inequality ‖εi + w>i β∗‖L6(P ) ≤ ‖εi‖L6(P ) + ‖w>i β∗‖L6(P ) = O(1). By

Lyapunov’s CLT (Theorem 11.1.4 of Athreya and Lahiri (2006)),
∑n

i=1 li(g0)/sn →d

N (0, 1).
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By Slutsky’s lemma, it suffices to show that sn/
√
n−1

∑n
i=1 li(g0)2 →p 1.

Notice that this is equivalent to the condition

n−1

n∑
i=1

(
li(g0)2

Eli(g0)2
− 1

)
= oP (1). (C.1.1)

By Markov’s inequality, we have that, for any M > 0,

P

(n−1

n∑
i=1

(
li(g0)2

Eli(g0)2
− 1

))2

> M

 ≤M−1n−1E

(
li(g0)2

Eli(g0)2
− 1

)2

(C.1.2)

(i)

≤ 2M−1n−1

[
Eli(g0)4

[Eli(g0)2]2
+ 1

]
, (C.1.3)

where (i) holds by the elementary inequality (a+ b)2 ≤ 2a2 + 2b2.

By Holder’s inequality and Assumption 4,

Eli(g0)4σ−4
z ≤

√
‖ziσ−1

z ‖8
L8(P )‖εi + w>i β∗‖8

L8(P ) < C0

for some constant C0 > 0, depending only on C. Since Eli(g0)2 ≥ σ2
zσ

2
ε ≥ σ2

zc
2, we

have

Eli(g0)4/
[
Eli(g0)2

]2 ≤ C0c
−4 <∞.

This, together with (C.1.3), implies (C.1.1). The proof is complete.

Proof of Theorem 3.2.2. Since the eigenvalues of ΣX are bounded away from

zero and infinity, we have σ2
z = Ez2

i = b>ΣXb = (a>ΩXa)−1 � ‖a‖−2
2 . It follows, by

√
n|hn|/‖a‖2 →∞, that

√
n|hn|σz →∞. (C.1.4)

It should be noted that when a>β∗ = g0 + hn, we have li(g0) = zi(εi +

w>i β∗) + z2
i hn. Also note that (C.1.3) in the proof of Theorem 3.2.1 still holds, in

that for all M > 0,

P

(n−1

n∑
i=1

(
li(g0)2

Eli(g0)2
− 1

))2

> M

 ≤ 2M−1n−1

[
Eli(g0)4

[Eli(g0)2]2
+ 1

]
. (C.1.5)
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Observe that, by Assumption 4,∥∥∥∥ li(g0)

σz(σz|hn| ∨ 1)

∥∥∥∥
L4(P )

≤
∥∥∥∥ zi(εi + w>i β∗)

σz(σz|hn| ∨ 1)

∥∥∥∥
L4(P )

+

∥∥∥∥ z2
i hn

σz(σz|hn| ∨ 1)

∥∥∥∥
L4(P )

(C.1.6)

≤
∥∥∥∥zi(εi + w>i β∗)

σz

∥∥∥∥
L4(P )

+
∥∥ziσ−1

z

∥∥2

L8(P )

σz|hn|
σz|hn| ∨ 1

(C.1.7)

≤
∥∥ziσ−1

z

∥∥2

L8(P )

∥∥εi + w>i β∗
∥∥2

L8(P )
+O(1) = O(1). (C.1.8)

Observe that

Eli(g0)2 = E
(
ziεi + zi(w

>
i β∗ + zihn)

)2
= E(z2

i ε
2
i ) + E(z2

i (w
>
i β∗ + zihn)2) ≥ σ2

zσ
2
ε .

Also, we have Eli(g0)2 ≥ [Eli(g0)]2 = σ4
zh

2
n. Hence,

Eli(g0)2 ≥ (σ4
zh

2
n ∨ σ2

zσ
2
ε) = σ2

z(σ
2
zh

2
n ∨ σ2

ε).

This, together with (C.1.8) and Assumption 4, implies that

Eli(g0)4

[Eli(g0)2]2
≤ O(1) [σz(σz|hn| ∨ 1)]4

[σ2
z(σ

2
zh

2
n ∨ σ2

ε)]
2 ≤ O(1)

σ4
zh

4
n ∨ 1

σ4
zh

4
n ∨ c4

≤ O(1)(1 ∨ c−4). (C.1.9)

It follows, by (C.1.5) and (C.1.9), that n−1
∑n

i=1 (li(g0)2/Eli(g0)2 − 1) = oP (1),

which means that
n−1

∑n
i=1 li(g0)2

Eli(g0)2
= 1 + oP (1). (C.1.10)

By Markov’s inequality, we have that, ∀M > 0,

P

(n−1/2
∑n

i=1 (li(g0)− Eli(g0))√
Eli(g0)2

)2

> M

 ≤M−1E [li(g0)− Eli(g0)]2

Eli(g0)2

= M−1Eli(g0)2 − [Eli(g0)]2

Eli(g0)2
≤M−1.

Hence,
n−1/2

∑n
i=1 (li(g0)− Eli(g0))√

Eli(g0)2
= OP (1). (C.1.11)
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Lastly, we observe that

Eli(g0)2 = E
[
zi(εi + w>i β∗) + z2

i hn
]2

(i)

≤ 2Ez2
i (εi + w>i β∗)

2 + 2Ez4
i h

2
n

(ii)

≤ 2σ2
z

√
E(ziσ−1

z )4E(εi + w>i β∗)
4 + 2E(ziσ

−1
z )4σ4

zh
2
n

(iii)

≤ O(1) +O(1)σ4
zh

2
n,

where (i) follows according to the elementary inequality (a+ b)2 ≤ 2a2 + 2b2, (ii)

follows by Holder’s inequality and (iii) is determined by Assumption 4. Since

Eli(g0) = σ2
zhn, we have∣∣∣∣∣n−1/2

∑n
i=1Eli(g0)√

Eli(g0)2

∣∣∣∣∣ ≥
√
nσ2

z |hn|√
O(1) +O(1)σ4

zh
2
n

=

(
O(1)

nσ2
zh

2
n

+O(n−1)

)−1/2

→∞,

(C.1.12)

where the last step follows by (C.1.4). The desired result follows by (C.1.12),

(C.1.11) and (C.1.10), together with Slutsky’s lemma.

C.2 Proof of Theorem 3.3.1

In the rest of the article, we recall the definitions from Section 3.3: zi =

a>xi/(a
>a), wi = (Ip − aa>/(a>a))xi, π∗ = U>a β∗ and w̃i = U>a wi.

We need to derive some auxiliary results before we can prove Theorem 3.3.1.

The proof of the following lemma is similar to that of Theorem 7.1 of Bickel, Ritov,

and Tsybakov (2009) and thus is omitted.

Lemma C.2.1. Let Y ∈ Rn and X ∈ Rn×p. Let ξ̂ be any vector satisfying

‖n−1X>(Y − Xξ̂)‖∞ ≤ η. Suppose that there exists ξ∗ such that ‖n−1X>(Y −
Xξ∗)‖∞ ≤ η and ‖ξ̂‖1 ≤ ‖ξ∗‖1. If s∗ = ‖ξ∗‖0 and

min
J0⊆{1,··· ,p},|J0|≤s∗

min
δ 6=0,‖δJc0‖1≤‖δJ0‖1

‖Xδ‖2√
n‖δJ0‖2

≥ κ, (C.2.1)

then ‖δ‖1 ≤ 8ηs∗κ
−2 and δ>X>Xδ/n ≤ 16η2s∗κ

−2, where δ = ξ̂ − ξ∗.
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Lemma C.2.2. Suppose that Assumption 5 and H0 in (3.1.2) hold. Consider

the optimization problem (3.3.6). Let vi = yi − zig0, σ2
v = Ev2

i and ρ∗ = σε/σv.

There exists a constant C > 0, such that for any η, λ > C
√
n−1 log p, ρ0 ≤

[1 + c2c
−1
1 (c−1

3 − 1)]−1/2, we have

P ((π∗, ρ∗) and γ∗ are in the feasible region in (3.3.6))→ 1.

Proof. Let V = Y − Zg0 and notice that under Assumption 5, Z − W̃γ∗ = u and

Ew̃iui = 0. Since uiσ−1
u ∼ N (0, 1) is independent of w̃i ∼ N (0,ΣW̃ ) with the

eigenvalues of ΣW̃ = EW̃>W̃/n bounded away from zero and infinity, it follows

that there exists a constant that upper bounds the sub-exponential norm of each

entry of w̃iuiσ−1
u . To see this, note that, by the moment generating function of

N (0, 1), for t > 0,

E exp(tw̃i,juiσ
−1
u ) = E[E(exp(tw̃i,juiσ

−1
u ) | w̃i,j)] = E exp(w̃2

i,jt
2/2).

Since w̃2
i,j has bounded sub-exponential norm (by Lemma 5.14 of Vershynin (2010)),

Lemma 5.15 of Vershynin (2010) implies that for small enough t, E exp(tw̃i,juiσ
−1
u ) =

E exp(w̃2
i,jt

2/2) is bounded by some constant. Hence, Equation (5.16) in Vershynin

(2010) implies that w̃i,juiσ−1
u has bounded the sub-exponential norm.

By Proposition 5.16 of Vershynin (2010) and the union bound, we have that

∀t0 > 0,

P
(
‖n−1W̃>uσ−1

u ‖∞ > t0
√
n−1 log p

)
≤ 2p exp

[
−min

(
t20 log p

K2
,
t0
√
n log p

K

)]
,

where K > 0 is a constant depending only on the constants in Assumption 5. Hence,

there exists a constant M1 > 0, such that P
(
‖n−1W̃>u‖∞ > M1σu

√
n−1 log p

)
→

0. It follows that

P
(
‖n−1W̃>(Z − W̃γ∗)‖∞ > 2c

−1/2
3 M1

√
n−1 log pn−1/2‖Z‖2

)
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≤ P
(
‖n−1W̃>u‖∞ > M1σu

√
n−1 log p

)
+ P

(
2

√
c3σu
σz

≥ n−1/2‖Z‖2

σz

)
(i)
= o(1),

(C.2.2)

where (i) follows by 2
√
c3σu/σz ≥ 2 (Assumption 5) and n−1/2‖Zσ−1

z ‖2 = 1 + oP (1).

By the Law of Large Numbers : n−1‖Zσ−1
z ‖2

2 is the average of n independent χ2(1)

random variables.

Notice that under H0 in (3.1.2), V − W̃π∗ = ε. By an analogous argument,

there exists a constant M3 > 0 such that

P
(
‖n−1W̃>(V − W̃π∗)‖∞ > M3ρ∗

√
n−1 log pn−1/2‖V ‖2

)
→ 0. (C.2.3)

Since V = W̃π∗ + ε = Wβ∗ + ε, we have that σ2
v = β>∗ ΣWβ∗ + σ2

ε . Assumption 5

implies that

β>∗ ΣXβ∗ + σ2
ε = σ2

y ≤ σ2
ε/c3

and thus β>∗ ΣXβ∗ ≤ (c−1
3 − 1)σ2

ε . Therefore,

‖β∗‖2
2 ≤ (β>∗ ΣXβ∗)/λmin(ΣX) ≤ c−1

1 β>∗ ΣXβ∗ ≤ c−1
1 (1− c−1

3 )σ2
ε .

Observe that ΣW = MaΣXMa, where Ma = Ip − aa>/(a>a) is a projection matrix.

Hence, λmax(ΣW ) ≤ λmax(ΣX) and thus

σ2
v = β>∗ ΣWβ∗ + σ2

ε ≤ λmax(ΣX)‖β∗‖2
2 + σ2

ε ≤ [1 + c2c
−1
1 (c−1

3 − 1)]σ2
ε .

Since ρ0 ≤ [1 + c2c
−1
1 (c−1

3 − 1)]−1/2 ≤ σε/σv, we have that σ2
ε = ρ∗σvσε ≥ σ2

vρ∗ρ0.

By the Law of Large Numbers ,

n−1V >(V − W̃π∗) = n−1V >ε = (1 + oP (1))σ2
ε ,

n−1‖V ‖2
2 = (1 + oP (1))σ2

v and thus

P

(
n−1V >(V − W̃π∗)

ρ0ρ∗n−1‖V ‖2
2

≥ 1

2

)
= P

(
σ2
ε(1 + oP (1))

σ2
v(1 + oP (1))ρ0ρ∗

≥ 1

2

)
→ 1. (C.2.4)
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The desired result follows by (C.2.2), (C.2.3), (C.2.4) and the fact that

ρ∗ = σεσ
−1
v ≥ [1 + c2c

−1
1 (c−1

3 − 1)]−1/2 ≥ ρ0.

Lemma C.2.3. If n−1V >(V − W̃ π̂) ≥ η̄, then n−1(V − W̃ π̂)>(V − W̃ π̂) ≥
η̄2/(n−1V >V ).

Proof. Since n−1V >(V − W̃ π̂) ≥ η̄, we have that, for any t ≥ 0,

n−1(V − W̃ π̂)>(V − W̃ π̂)

≥ n−1(V − W̃ π̂)>(V − W̃ π̂) + t
(
η̄ − n−1V >(V − W̃ π̂)

)
(i)

≥ min
γ

{
n−1(V − W̃γ)>(V − W̃γ) + t

(
η̄ − n−1V >(V − W̃γ)

)}
= tη̄ − 1

4
t2n−1V >V,

where (i) follows by the first-order condition of quadratic optimizations. The

desired result follows by maximizing the last line with respect to t with t =

2η̄/
(
n−1V >V

)
.

We now proceed to prove Theorem 3.3.1.

Proof of Theorem 3.3.1. Let V = Y − Zg0, s∗ = ‖γ∗‖0, ηπ = ηn−1/2‖V ‖2 and

λγ = λn−1/2‖Z‖2. Notice that

n−1/2(V − W̃ π̂)>(Z − W̃ γ̂)

= n−1/2(V − W̃ π̂)>u︸ ︷︷ ︸
I1

+n−1/2(V − W̃ π̂)>W̃ (γ∗ − γ̂)︸ ︷︷ ︸
I2

. (C.2.5)

Since the eigenvalues of EW̃>W̃/n is bounded away from zero and infinity, it

follows, as a simple consequence of Theorem 6 in Rudelson and Zhou (2013), that

there exists a constant κ > 0, such that P (Dn(s∗, κ))→ 1, where

Dn(s∗, κ) =

{
min

J0⊆{1,··· ,p},|J0|≤s∗
min

δ 6=0,‖δJc0‖1≤‖δJ0‖1

‖W̃ δ‖2√
n‖δJ0‖2

> κ

}
. (C.2.6)
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Define the eventM =
{

(π∗, ρ∗) and γ∗ are in the feasible region in (3.3.6)
}
. By

Lemma C.2.2, with appropriate choice of tuning parameters as specified in the

theorem, we have P (M)→ 1 and thus

P
(
M
⋂
Dn(s∗, κ)

)
→ 1. (C.2.7)

We apply Lemma C.2.1 with (Y,X, ξ∗) replaced by (Z, W̃ , γ∗) and obtain that, on

the eventM
⋂
Dn(s∗, κ),

‖γ̂ − γ∗‖1 ≤ 8λγs∗κ
−2 and n−1/2‖W̃ (γ̂ − γ∗)‖2 ≤ 4λγ

√
s∗κ

−1. (C.2.8)

Thus, onM
⋂
Dn(s∗, κ), we have the bound

|I2| ≤ n1/2‖n−1W̃>(V − W̃ π̂)‖∞‖γ̂ − γ∗‖1 ≤ 8n1/2λγηπs∗κ
−2,

where in the last step we utilized

‖n−1W̃>(V − W̃ π̂)‖∞ ≤ ηρ̂n−1/2‖V ‖2 ≤ ηπ

with ρ̂ ≤ 1, from the constraints in optimization problem (3.3.6). Moreover, by

constraints in (3.3.6) and Lemma C.2.3, onM
⋂
Dn(s∗, κ), we have that

σ̂ε ≥ ρ0ρ̂n
−1/2‖V ‖2/2 ≥ ρ2

0n
−1/2‖V ‖2/2

and thus, by σu ≥ c3σz,∣∣∣∣ I2

σ̂εσu

∣∣∣∣ ≤ 16nλγηπs∗κ
−2

c3σzρ2
0‖V ‖2

=
16
√
nληs∗κ

−2

c3ρ2
0

× n−1/2‖Z‖2

σz

(i)
= oP (1), (C.2.9)

where (i) follows by ρ−1
0 = O(1) and λ, η �

√
n−1 log p with s∗ = o(

√
n/ log p)

and n−1/2‖Z‖2/σz = 1 + oP (1). Observe that by the Law of Large Numbers :

n−1‖Zσ−1
z ‖2

2 is the average of n independent χ2(1) random variables.

For I1, notice that under H0 in (3.1.2), u is independent of {V, W̃}. Since π̂
and σ̂ε are computed using {V, W̃}, it follows that u is independent of V − W̃ π̂
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and σ̂ε. Thus, under H0,

I1σ̂
−1
ε σ−1

u | (V, W̃ ) ∼ N (0, 1)

and thus I1σ̂
−1
ε σ−1

u ∼ N (0, 1). This, together with (C.2.9), implies that, under H0,

Sn
σ̂u
σu

=
n−1/2(V − W̃ π̂)>(Z − W̃ γ̂)

σ̂εσu
→d N (0, 1). (C.2.10)

By (C.2.8) and s∗ = o(
√
n/ log p),

∣∣σ̂u − n−1/2‖u‖2

∣∣ =
∣∣∣n−1/2‖Z − W̃ γ̂‖2 − n−1/2‖u‖2

∣∣∣
≤ n−1/2‖Z − W̃ γ̂ − u‖2

= n−1/2‖W̃ (γ̂ − γ∗)‖2

= OP (λn−1/2‖Z‖2

√
s∗) = oP (n−3/4‖Z‖2). (C.2.11)

Therefore,

|σ̂u − σu|
σu

≤
∣∣σ̂u − n−1/2‖u‖2

∣∣
σu

+
∣∣n−1/2‖uσ−1

u ‖2 − 1
∣∣

(i)
=
oP (n−3/4‖Z‖2)

σu
+ oP (1)

(ii)
= oP (1), (C.2.12)

where (i) follows by the Law of Large Numbers (n−1‖uσ−1
u ‖2

2 is the average of n

independent χ2(1) random variables) and (ii) follows by σz/σu ≤ c−1
3 (Assumption

5) and n−1/2‖Z‖2/σz = 1 + oP (1) (as argued in (C.2.9)).

By (C.2.12), σ̂u/σu = 1 + oP (1) and the desired result follows by (C.2.10)

and Slutsky’s lemma.

C.3 Proof of Theorem 3.3.2

We need the some auxiliary results before we prove Theorem 3.3.2.

Lemma C.3.1. Let Assumption 5 hold. In (3.3.3), σu = (a>ΩXa)−1/2.
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Proof. We define γ̃∗ = Uaγ∗ ∈ Rp and observe that zi = w̃>i γ∗ + ui = w>i γ̃∗ + ui

and Ewiui = U>a Ew̃iui = 0. Thus, σ2
u = Ez2

i − γ̃>∗ Ewiw>i γ̃∗.
Let Ma = Ip − aa>/(a>a). Recall that zi = a>xi/(a

>a) and wi = Maxi.

Since Ewizi = Ewiw
>
i γ̃∗,

Ewiw
>
i = MaΣXMa

and Ewizi = MaΣXa‖a‖−2
2 , we have

MaΣXMaγ̃∗ = MaΣXa‖a‖−2
2

and thus, MaΣX(Maγ̃∗ − a‖a‖−2
2 ) = 0. Since Ma is the projection matrix onto the

(p− 1)-dimensional linear space orthogonal to a, there exists k1 ∈ R with

ΣX(Maγ̃∗ − a‖a‖−2
2 ) = k1a,

implying that Maγ̃∗ = k1ΩXa+ ‖a‖−2
2 a. Next we aim to identify k1. Observe that

γ̃>∗ MaΣXMaγ̃∗
(i)
= (Maγ̃∗)

>(MaΣXMaγ̃∗)

(ii)
= (k1ΩXa+ ‖a‖−2

2 a)>ΣXa‖a‖−2
2

= k1 + ‖a‖−4
2 a>ΣXa.

where (i) and (ii) follow byM2
a = Ma andMaΣXMaγ̃∗ = MaΣXa‖a‖−2

2 , respectively.

Together with

γ̃>∗ MaΣXMaγ̃∗ = (Maγ̃∗)
>ΣX(Maγ̃∗)

= (k1ΩXa+ ‖a‖−2
2 a)>ΣX(k1ΩXa+ ‖a‖−2

2 a),

we can solve for the unknown k1. The above display allows us to obtain k1 =

−(a>ΩXa)−1 and thus

γ̃>∗ MaΣXMaγ̃∗ = ‖a‖−4
2 a>ΣXa− (a>ΩXa)−1.
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Since

σ2
u = Ez2

i − γ̃>∗ Ewiw>i γ̃∗ = Ez2
i − γ̃>∗ MaΣXMaγ̃∗

and Ez2
i = ‖a‖−4

2 a>ΣXa, we have σ2
u = (a>ΣXa)−1. The proof is complete.

Lemma C.3.2. Let Assumption 5 hold. Suppose that at least one of the following

conditions holds:

(1) ‖a‖0 ∨ ‖β∗‖0 = o(
√
n/ log p) or

(2)M(a)
⋂
M(β∗) = ∅ and ‖β∗‖0 = o(

√
n/ log p).

Then, ‖π∗‖0 = o(
√
n/ log p).

Proof. We denote sa = ‖a‖0 and sβ = ‖β∗‖0. Without loss of generality, we assume

that a = (a>0 , 0)> ∈ Rp with ‖a0‖0 = sa. Let Ua0 ∈ Rsa×(sa−1) satisfy U>a0Ua0 = Isa−1

and Ua0U>a0 = Isa − a0a
>
0 /(a

>
0 a0). It is easy to verify that

Ip − aa>/(a>a) =

(
Isa − a0a

>
0 /(a

>
0 a0) 0

0 Ip−sa

)

and

Ua =

(
Ua0 0

0 Ip−sa

)
∈ Rp×(p−1).

It then follows that

π∗ = U>a β∗ =

(
U>a0β∗,M(a)

β∗,[M(a)]c

)
(C.3.1)

Take note that

‖π∗‖0 = ‖U>a0β∗,M(a)‖0 + ‖β∗,[M(a)]c‖0 ≤ (sa − 1) + ‖β∗‖0.

This proves the result under condition (1). Under condition (2), β∗,M(a) = 0 and

thus ‖π∗‖0 = ‖β∗,[M(a)]c‖0 = ‖β∗‖0. This proves the result under condition (2).

Lemma C.3.3. Let Assumption 5 and H1,n in (3.3.10) hold. Let vi = yi − zig0,
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σ2
v = Ev2

i , ρ̄∗ = [1 + c2c
−1
1 (c−1

3 − 1)]−1/2 and hn = n−1/2(a>ΩXa)1/2σεd. Then,

σv = O(1).

Moreover, there exists a constant C > 0, such that ∀η, λ > C
√
n−1 log p and

∀ρ0 ≤ [1 + c2c
−1
1 (c−1

3 − 1)]−1/2, we have

P ((π∗ + γ∗hn, ρ̄∗, γ∗) is feasible in (3.3.6))→ 1.

Proof. Under H1,n, vi = w̃>i π∗ + εi + zihn. Consequently,

‖vi − w̃>i π∗ − εi‖L2(P ) = ‖zihn‖L2(P ) =
√
Ez2

i h
2
n.

Observe that

Ez2
i h

2
n = ‖a‖−4

2 a>ΣXah
2
n

= ‖a‖−4
2 (a>ΣXa)(a>ΩXa)(a>ΩXa)−1h2

n

(i)

≤ (c2c
−1
1 )(a>ΩXa)−1h2

n = (c2c
−1
1 )n−1σ2

εd
2 = o(1),

where (i) holds by Assumption 5. Hence, by the triangular inequality applied

to L2(P )-norm, we have σv = ‖vi‖L2(P ) = ‖w̃>i π∗ + εi‖L2(P ) + o(1). By the same

argument as in the proof of Lemma C.2.2,

‖w̃>i π∗ + εi‖2
L2(P ) = π>∗ Ew̃iw̃

>
i π∗ + σε = β>∗ ΣWβ∗ + σ2

ε ≤ [1 + c2c
−1
1 (c−1

3 − 1)]σ2
ε .

The first claim follows by σv ≤ [1 + c2c
−1
1 (c−1

3 − 1)]1/2σε + o(1) = O(1).

Notice that under H1,n, the analysis for the feasibility of γ∗ is the same as

under H0. Thus, by the argument in the proof of Lemma C.2.2, for some constant

M1 > 0, we have

P
(
‖n−1W̃>(Z − W̃γ∗)‖∞ > M1

√
n−1 log pn−1/2‖Z‖2

)
→ 0. (C.3.2)

(3.3.3) implies that, under H1,n, vi = w̃>i π∗ + εi + zihn = w̃>i (π∗ + γ∗hn) +
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εi + uihn. Thus,

n−1W̃>(V − W̃ (π∗ + γ∗hn)) = n−1

n∑
i=1

w̃iεi + n−1

n∑
i=1

w̃iuihn.

By a similar argument as in the proof of Lemma C.2.2, entries of w̃iεi and w̃iuiσ−1
u

have bounded sub-exponential norms. As in the proof of Lemma C.2.2, we can

use Proposition 5.16 of Vershynin (2010) and the union bound to conclude that

for some constant M2 > 0 we have P (‖n−1W̃>uσ−1
u ‖∞ > M2

√
n−1 log p)→ 0 and

P (‖n−1W̃>ε‖∞ > M2

√
n−1 log p)→ 0. It follows that

P
(
‖n−1W̃>(V − W̃ (π∗ + γ∗hn))‖∞ > 2M2

√
n−1 log p

)
(C.3.3)

= P
(
‖n−1W̃>(ε+ uhn)‖∞ > 2M2

√
n−1 log p

)
≤ P

(
‖n−1W̃>ε‖∞ > M2

√
n−1 log p

)
+ P

(
‖n−1W̃>uσ−1

u ‖∞|σuhn| > M2

√
n−1 log p

)
(i)
= o(1),

where (i) holds by |σuhn| = n−1/2σε|d| = o(1) (by Lemma C.3.1 and the definition

of hn).

Notice that

Evi(uihn + εi)σ
−2
ε = E(uihn + εi)

2σ−2
ε = 1 + σ−2

ε σ2
uh

2
n = 1 + n−1d2 = 1 + o(1).

By the Law of Large Numbers ,

n−1V >(V − W̃ (π∗ + γ∗hn))σ−2
ε = E(uihn + εi)

2σ−2
ε + oP (1) = 1 + oP (1).

In the display above, the first oP (1) term is equal to n−1σ−2
ε (π∗+γ∗hn)>W̃>(ε+hnu).

Since W̃ is uncorrelated with (ε, u), this term is the partial sum of zero-mean

independent random variables. Since π∗+hnγ∗ has bounded L2-norm by Bernstein’s

inequality, we have that this term is oP (1). The Law of Large Numbers also implies
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that n−1‖V ‖2
2σ
−2
v = 1 + oP (1). Hence,

P

(
n−1V >(V − W̃ (π∗ + γ∗hn))

n−1‖V ‖2
2

>
1

2
ρ0ρ̄∗

)

= P

(
σ2
ε(1 + oP (1))

σ2
v(1 + oP (1))

>
1

2
ρ0ρ̄∗

)
(i)

≥ P

(
(1 + oP (1))

[1 + c2c
−1
1 (c−1

3 − 1)](1 + oP (1))
>

1

2
ρ0ρ̄∗

)
(ii)

≥ 1 + o(1), (C.3.4)

where (i) follows by σv ≤ [1 + c2c
−1
1 (c−1

3 − 1)]1/2σε + o(1) (shown at the beginning

of the proof) and (ii) follows by ρ0 ≤ ρ̄∗ = [1 + c2c
−1
1 (c−1

3 − 1)]−1/2. According to

(C.3.2), (C.3.3) and (C.3.4), P ((π∗ + γ∗hn, ρ̄∗, γ∗) is feasible in (3.3.6))→ 1. The

proof is complete.

Now we are ready to prove Theorem 3.3.2.

Proof of Theorem 3.3.2. Let V = Y − Zg0, s∗ = ‖γ∗‖0 + ‖π∗‖0, hn =

n−1/2(a>ΩXa)1/2σεd, λγ = λn−1/2‖Z‖2, ηπ = ηn−1/2‖V ‖2 and σ2
v = EV >V/n .

Notice that ‖γ∗‖0 ≤ s∗ and ‖π∗ + γ∗hn‖0 ≤ s∗. By Lemmas C.3.1 and C.3.2,

s∗ = o(
√
n/ log p) and hn = n−1/2σ−1

u σεd. (C.3.5)

Under H1,n, V = Zhn + W̃π∗ + ε = uhn + W̃ (γ∗hn + π∗) + ε and thus

n−1/2(V − W̃ π̂)>(Z − W̃ γ̂) (C.3.6)

= n−1/2(V − W̃ π̂)>W̃ (γ∗ − γ̂) + n−1/2(V − W̃ π̂)>u

= n−1/2(V − W̃ π̂)>W̃ (γ∗ − γ̂)︸ ︷︷ ︸
I1

+n−1/2ε>u︸ ︷︷ ︸
I2

+ n−1/2hnu
>u︸ ︷︷ ︸

I3

+n−1/2(π∗ − π̂ + γ∗hn)>W̃>u︸ ︷︷ ︸
I4

.

We next treat each of the four terms in the decomposition above separately.

As argued in the proof of Theorem 3.3.1, there exists a constant

κ > 0 such that P (Dn(s∗, κ)) → 1. Define the event M = {(π∗ +



228

γ∗hn, ρ̄∗, γ∗) is feasible in (3.3.6)}. By Lemma C.3.3, P (M)→ 1 and thus

P
(
M
⋂
Dn(s∗, κ)

)
→ 1. (C.3.7)

Since γ̂ does not depend on whether hn = 0, we conclude, as argued in the

proof of Theorem 3.3.1, that σ̂u/σu = 1+oP (1) and that on the eventM
⋂
Dn(s∗, κ),

‖γ̂ − γ∗‖1 ≤ 8λγs∗κ
−2 and n−1/2‖W̃ (γ̂ − γ∗)‖2 ≤ 4λγ

√
s∗κ

−1. (C.3.8)

By the definition of π̂,

‖n−1W̃>(V − W̃ π̂)‖∞ ≤ ηρ̂n−1/2‖V ‖2 ≤ ηπ;

thus, by (C.3.8),

|I1|
σ̂uσε

≤
√
n‖n−1W̃>(V − W̃ π̂)‖∞‖γ̂ − γ∗‖1

σ̂uσε

≤ 8
√
nηπλγs∗κ

−2

σu(1 + oP (1))σε

(i)
=

(s∗n
−1/2 log p)OP (σvσz)

σuσε

(ii)
= oP (1), (C.3.9)

where (i) follows by n−1‖Z‖2
2σ
−2
z = 1 + oP (1) and n−1‖V ‖2

2σ
−2
v = 1 + oP (1) (by the

Law of Large Numbers since both n−1‖Z‖2
2σ
−2
z and n−1‖V ‖2

2σ
−2
v are averages of n

independent χ2(1) random variables) and (ii) holds by (C.3.5),σu/σz ≥ c3, σε ≥ c1

and σv = O(1) (Lemma C.3.3).

By CLT, I2/σu →d N (0, σ2
ε). Since σ̂u/σu = 1 + oP (1), the Slutsky’s lemma

implies that
I2

σ̂uσε
→d N (0, 1). (C.3.10)

By (C.3.5),

n−1/2hnu
>u/(σ̂uσε) = d(σu/σ̂u)(n

−1u>uσ−2
u ).

Notice that n−1u>uσ−2
u is the average of n independent χ2(1) random variables. It
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follows, by the Law of Large Numbers and σu/σ̂u = 1 + oP (1), that

I3

σ̂uσε
= d+ oP (1). (C.3.11)

On the eventM
⋂
Dn(s∗, κ), we have that

‖π̂‖1 ≤ ‖π∗ + γ∗hn‖1,

‖n−1W̃>(V − W̃ π̂)‖∞ ≤ ηρ̂n−1/2‖V ‖2 ≤ ηπ

and

‖n−1W̃>(V − W̃ (π∗ + γ∗hn))‖∞ ≤ ηρ∗n
−1/2‖V ‖2 ≤ ηπ.

We apply Lemma C.2.1 with (Y,X, ξ∗), replaced by (V, W̃ , π∗ + γ∗hn), and obtain

‖π̂ − (π∗ + γ∗hn)‖1 ≤ 8ηπs∗κ
−2 and n−1/2

∥∥∥W̃ [π̂ − (π∗ + γ∗hn)]
∥∥∥

2
≤ 4ηπ

√
s∗κ

−1.

(C.3.12)

Observe that, on the event M
⋂
Dn(s∗, κ), ‖n−1W̃>u‖∞ = ‖n−1W̃>(Z −

W̃γ∗)‖∞ ≤ λγ and thus

|I4|
σ̂uσε

≤
√
n‖n−1W̃>u‖∞‖π̂ − (π∗ + γ∗hn)‖1

σuσε
· σu
σ̂u

(i)

≤ 8
√
nλγηπs∗κ

−2

σuσε
· (1 + oP (1))

= OP (s∗n
−1 log p)

n−1/2‖V ‖2

σε
· n
−1/2‖Z‖2

σu

(ii)
= oP (1), (C.3.13)

where (i) follows by (C.3.12) and σ̂u/σu = 1 + oP (1) and (ii) follows by the same

argument as (C.3.9). By Slutszky’s lemma, together with (C.3.6), (C.3.9), (C.3.10),

(C.3.11), (C.3.13), we have

Sn
σ̂ε
σε

=
n−1/2(V − W̃ π̂)>(Z − W̃ γ̂)

σ̂uσε
→d N (d, 1). (C.3.14)

Since σε is bounded away from zero, it remains to show that σ̂ε = σε + oP (1).
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Note that

∣∣σ̂ε − n−1/2‖ε‖2

∣∣ =
∣∣∣n−1/2‖V − W̃ π̂‖2 − n−1/2‖ε‖2

∣∣∣
≤ n−1/2‖V − W̃ π̂ − ε‖2

(i)

≤ n−1/2‖W̃ (π∗ + γ∗hn − π̂)‖2 + n−1/2‖uσ−1
u ‖2|σuhn|

(ii)
= OP (ηπ

√
s∗) +OP (1)n−1/2σε|d|

(iii)
= oP (1),

where (i) holds by V = W̃ (π∗ + γ∗hn) + uhn + ε, (ii) holds by (C.3.12) and

n−1/2‖uσ−1
u ‖2 = OP (1) (by the Law of Large Numbers ) and (iii) holds by ηπ

√
s∗ =

n−1/2‖V ‖2

√
s∗n−1 log p, (C.3.5), n−1/2‖V ‖2 = OP (1) (argued in (C.3.9)).

Law of Large Numbers also implies that n−1/2‖ε‖2
2 = σ2

ε + oP (1). This,

together with the above display, implies that σ̂ε = σε + oP (1). Hence, by Slutszky’s

lemma and (C.3.14), Sn →d N (d, 1). It follows that

P
(
|Sn| > Φ

(
1− α

2

))
= P

(
Sn < −Φ−1

(
1− α

2

))
+ P

(
Sn > Φ−1

(
1− α

2

))
= P

(
Sn − d < −Φ−1

(
1− α

2

)
− d
)

+P
(
Sn − d > Φ−1

(
1− α

2

)
− d
)

→ Φ
(
−Φ−1

(
1− α

2

)
− d
)

+1− Φ
(

Φ−1
(

1− α

2

)
− d
)
.

The desired result follows by noticing that

1− Φ
(

Φ−1
(

1− α

2

)
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