
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Generic Reduction, and Work with Partial Computations and Partial Oracles

Permalink
https://escholarship.org/uc/item/68n499zk

Author
Igusa, Gregory

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/68n499zk
https://escholarship.org
http://www.cdlib.org/

Generic Reduction, and Work with Partial Computations and Partial Oracles

by

Gregory Igusa

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Theodore Slaman, Chair
Professor Leo Harrington

Associate Professor Sherrilyn Roush

Spring 2013

Generic Reduction, and Work with Partial Computations and Partial Oracles

Copyright 2013
by

Gregory Igusa

1

Abstract

Generic Reduction, and Work with Partial Computations and Partial Oracles

by

Gregory Igusa

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Theodore Slaman, Chair

A generic computation of a subset A of the natural numbers N consists of a computation
which correctly computes most of the bits of A and never incorrectly computes any bits of
A, but which does not necessarily give an answer for every input. This concept derives its
motivation from a recent trend in complexity theory to study the complexity of a problem
in terms of how difficult it is to compute the majority of size n instances of the problem,
and not in terms of how difficult it is to compute the most difficult size n instances of the
problem.

When considered from a purely recursion-theoretic point of view, generic computability
proves to be somewhat counterintuitive. It can be shown to be, in some sense, as nontran-
sitive as possible, and not only do minimal pairs not exist in this context, but even finite
minimal sets of reals can be shown to not exist.

If we modify the definition of generic computation to make it transitive, we are naturally
confronted with a deduction procedure in which the oracles, like the computations, are not
required to be total. For this reason, “generic reduction” is defined in an inherently Π1

1

manner. While studying generic reduction, we show that it is Π1
1-complete, and we also

present a characterization of the hyperarithmetic reals in terms of generic reduction.
Finally, we increase the level of abstraction, studying transitive and nontransitive deduc-

tion procedures with partial oracles. We provide a framework for discussing such reductions,
we mention how various known results in recursion theory can be fit into this framework,
and we discuss a number of seemingly trivial reductions, showing how subtle variations in
the definitions can impact the produced reduction.

i

To Wondra Waizenegger, and Andre Kornell

For the defining impact you both had on making my years as a graduate student the best
years of my life.

ii

Contents

Contents ii

1 Generic Computation 1
1.1 Introduction . 1
1.2 Graph Embeddings . 8
1.3 Minimal Pairs . 10

2 Generic Reduction 19
2.1 Introduction . 19
2.2 Uniform Generic Reducibility . 28
2.3 Nonuniform Generic Reduction . 46

3 Related Reductions 48
3.1 Introduction . 48
3.2 Coarse Reduction . 52
3.3 Mod-Finite, and Cofinite Reductions . 53
3.4 Mod-Recursive Reductions . 62
3.5 Infinite Information Reductions . 64

Bibliography 73

A Coarse Computation 75

B Cone Avoidance 77

C Π1
1-Completeness 79

D Hyperarithmetic Sets, and Higher Recursion Theory 81

iii

Acknowledgments

I want to thank my advisor Ted Slaman for his insight into the meanings behind mathematical
results. His commentary on mathematics is invariably enlightening, both in terms of the
intuitive reasons behind why proofs and constructions work, and also in terms of the aspects
of constructions that necessarily cannot be changed. Ted’s ability to instill interest in the
subjects that he talks about is exceptional, and I am constantly impressed with the skill with
which he keeps track of the mathematical interests, techniques, and progress of his many
students.

Thanks, Ted!

1

Chapter 1

Generic Computation

1.1 Introduction

Background

In complexity theory, there is a frequently observed phenomenon that a given sort of question
can be proved to be very difficult in the worst-case scenario, while still being very easy to
solve in practice. The first extensively studied example of this phenomenon is the simplex
algorithm for linear programming. A linear programming problem is a problem of maximizing
a linear function on a convex polytope. The simplex algorithm, introduced by Dantzig [1] in
1947, is a sort of greedy algorithm, which uses local information to travel along the edges of
the polytope until it maximizes the value of the function. It is used hundreds of times per
day, always producing correct results very quickly. In 1969, Klee and Minty [11] showed that
there exist linear programming problems for which the simplex algorithm takes exponential
time. Then, in 1979, Khachiyan [4] showed that the linear programming problem can be
solved in polynomial time. In practice, however, Dantzig’s simplex algorithm runs much
more quickly than Khachiyan’s ellipsoid algorithm.

There is a joke told in some circles about the difference between theory and practice:
in theory, there is no difference, but in practice, they are completely different. The origin
and intended context of this joke are open to debate, but the joke retains a very distinct
humor value in the mathematical community. This humor, perhaps, betrays a certain bias
in the community: ideally, when theory and practice do not match up, theory should be
modified to fit the observed world; however, in practice, it is all too frequent that these sorts
of phenomena do not fit nicely into the established theoretical framework, and thus they are,
in some sense, unfit for theoretical study.

Ideally, however, when a difference between theory and practice arises, a new theoretical
framework is developed for exploring this difference.

In 1986, Levin [12] introduced the notion of average-case complexity to provide a theo-
retical framework for studying problems which are easier in practice than they are in theory.
He notes that some NP problems, such as factoring large numbers, are difficult (or at least

CHAPTER 1. GENERIC COMPUTATION 2

believed to be difficult), whereas other problems, including many NP-complete problems,
are very easy to solve in the vast majority of cases. In particular, he observes that this latter
sort of NP-complete problem is almost useless for cryptographic purposes.

The idea behind average-case complexity is relatively straightforward: rather than look-
ing at the longest running time of an algorithm on a size n instance of the problem, Levin
examines the expected value of the running time of the algorithm on a randomly chosen size
n instance of the problem (with some slight modifications to make average-case complexity
behave better with respect to compositions of functions.) This provides a means of rigor-
ously distinguishing between questions which are actually difficult, and questions which are
generally easy, but which can occasionally have difficult questions coded into them.

In 2003, Kapovich, Miasnikov, Schupp and Shpilrain [9] introduced the notion of generic-
case complexity as a means of studying this discrepancy from a different viewpoint.

The generic-case complexity of a problem is the complexity of the majority of the in-
stances of the problem (density-1 many instances of the problem, as will be defined in Defi-
nition 1.1.1), without any regard to the complexity of the problem in the few outlier cases.
For this reason, while average-case complexity gives a slightly better idea of the overall
difficulty of a problem, generic-case complexity more directly allows us to study the differ-
ence between the worst case complexity of a question, and the most frequently encountered
complexity of that question.

One of the benefits of studying generic-case complexity is that the generic-case complexity
of a problem can sometimes be computed even while the worst case complexity of the problem
is unknown [9]. Indeed, there are situations where the generic-case complexity of a problem
is known, while the problem is currently not known to be solvable [7, 8], or even while the
problem is known to be unsolvable [9]. Currently, the majority of questions that have been
analyzed from the point of view of generic-case complexity are questions regarding groups,
especially regarding the word problem for groups: in a group that is presented in terms of
its generators and relations, how difficult is it to determine whether or not two given words
are equal? The word problem for finitely presented groups is known to not be decidable,
but for every known group with undecidable word problem, the word problem is generically
computable.

For our purposes, perhaps the largest benefit of generic-case complexity over average-case
complexity is that generic-case complexity lends itself much more naturally to a recursion-
theoretic analogue: generic computability. It is reasonable to ask which things can “usually”
be computed, but it does not make much sense to ask which things can be computed “on
average.” Indeed, every instance of an undecidable question whose generic-case complexity
has been found is a natural example of a nonrecursive set which is generically computable!

Definitions

In this paper, we follow the general notational heuristics of recursion theory. Those familiar
with the subject are free to skip to Definition 1.1.1. Those unfamiliar with the subject may
look to [14] if they desire a more thorough introduction than that which is provided here.

CHAPTER 1. GENERIC COMPUTATION 3

A partial recursive funcion is any deterministic algorithm, which could theoretically be
implemented on a computer, with the property that given a natural number as input, the
algorithm runs for some (possibly infinite) amount of time, and then, if it halts in a finite
amount of time, it gives an output which is a natural number. Given a partial recursive
function ϕ, if ϕ halts on input n, giving output m, we say that ϕ(n) converges, denoted
ϕ(n) ↓, and that ϕ(n) = m. If ϕ runs infinitely on input n, we say that ϕ(n) diverges, or
ϕ(n) ↑. The domain of a partial recursive function is the set of inputs on which it halts. A
partial recursive function is total if its domain is N. There is a natural listing of the partial
recursive functions, and ϕe is the eth function on that list.

A subset of the natural numbers is known as a real. A real is recursive (alternatively,
computable) if there is a partial recursive function ϕ, whose domain is all natural numbers,
such that ϕ(n) = 1 if n ∈ A, and ϕ(n) = 0 if n /∈ A, or in other words, if the characteristic
function of the real is a total recursive function. A real is recursively enumerable (alterna-
tively, r.e. or enumerable) if it is the domain of some partial recursive function. The domain
of ϕe is denoted We.

A Turing functional, ϕ is a generalization of a partial recursive function which is designed
to be able to work with a real A as an oracle in the following sense. While ϕA is running,
it may at any time ask a question of the form “Is n ∈ A?” at which point it will be given
the answer to that question. It may ask as many questions of this form as it wants, as often
as it wants, and for as many natural numbers n as it wants. We say that A computes B
(alternatively, B is recursive in A, or A ≥T B) if there exists a Turing functional ϕ such
that ϕA is a computation of B. Likewise, we say that B is enumerable in A if ϕA is an
enumeration of B. We may assume that the eth partial recursive function, ϕe, is equal to
the eth Turing functional running on the empty oracle, ϕ0

e.
(There are other, perhaps more elegant, ways to define oracle computations, particularly

by having ϕ query initial segments of A rather than querying individual elements of A, but
this method is more in line with colloquial notations, and it will also be more useful to us
in Chapters 2 and 3, because it will generalize better in those contexts.)

The Turing degrees are the equivalence classes of reals under mutual relative computabil-
ity (A ≡T B iff A ≥T B and B ≥T A). If A and B are reals, the join of A and B, denoted
A ⊕ B is the real given by (2n ∈ A ⊕ B ↔ n ∈ A) and (2n + 1 ∈ A ⊕ B ↔ n ∈ B). The
most relevant thing about A⊕B is that A⊕B ≥T A, and A⊕B ≥T B, and in fact that it
is the minimal upper bound of A and B in the Turing degrees.

Sometimes, for the sake of brevity, a real A is confused with its characteristic function.
Likewise, a function, especially a Turing functional with an oracle, ϕA, is sometimes confused
with the real computed by ϕA. (So, for example, if we write “A(n) = B(n),” we mean “either
n ∈ A and n ∈ B, or n /∈ A and n /∈ B.” Likewise, if we write “ϕA = B”, we mean “A
computes B via the functional ϕ.”) A real is also frequently thought of as an infinite sequence
of zeroes and ones, and the nth bit of the real is the nth number in that sequence.

The language of first order arithmetic is the first order language with constants 0, 1,
binary functions +,×, and the binary predicate <. A formula Φ(x̄), of first order arithmetic,
potentially with free variables, is Σ0

0 if it can be written without unbounded quantifiers. (A

CHAPTER 1. GENERIC COMPUTATION 4

quantifier is bounded if it is of the form ∃x < y or ∀x < y.) A formula Φ(x̄) is Σ0
n+1 if it

is of the form ∃yΨ(x̄, y) where Ψ(x̄, y) is a Π0
n formula (a formula that is the negation of a

Σ0
n formula). A real A is Σ0

n if it can be defined by a Σ0
n formula, Φ(x), or in other words,

if x ∈ A ↔ Φ(x) (with all symbols interpreted in the usual way in N). A real is ∆0
n if it is

both Σ0
n and Π0

n. A real, A, is arithmetic if there exists an n such that A is Σ0
n.

The jump of a real, A, denoted A′, is the real given by A′ = {n |φAn (n) ↓}. A real is ∆0
2 if

and only if it is recursive in 0′. This is true if and only if it can be written as a uniform limit
of recursive sets. (More precisely, X is ∆0

2 if and only if there is a total recursive ϕ such that
for every n, lims→∞ϕ(〈n, s〉) exists, and is equal to X(n).) Similarly, the reals recursive in
A′ are precisely the reals that can be expressed as limits of functions that are recursive in A.
One important fact about the jump operator is that for every A, A′ is not recursive in A. If
a real, B, can be defined by a sequence of n alternating quantifiers, followed by something
that is recursive in A, then B ≤T A(n), the nth jump of A.

Sometimes, for the sake of brevity, a real A is confused with its characteristic function.
Likewise, a function, especially a Turing functional with an oracle, ϕA, is sometimes confused
with the real computed by ϕA. (So, for example, if we write “A(n) = B(n),” we mean “either
n ∈ A and n ∈ B, or n /∈ A and n /∈ B.” Likewise, if we write “ϕA = B”, we mean “A
computes B via the functional ϕ.”) A real is also frequently thought of as an infinite sequence
of zeroes and ones, and the nth bit of the real is the nth number in that sequence.

2<ω is the set of finite binary strings. A binary string σ is a function n→ 2 for some n.
σ can also be thought of as a sequence of zeroes and ones of length n. |σ| is the domain of
σ. #(σ) is the number of m such that σ(m) = 1, or in other words, the cardinality of σ,
regarded as a subset of n. Such strings are frequently used as approximations to reals, and,
if |σ| = n, we say that σ ≺ X if for every m < n, σ(m) = X(m). In this case, we say that
σ = X � n, and that σ is an initial segment of X. If σ, τ ∈ 2<ω, and if |σ| < |τ |, then we
likewise say that σ ≺ τ , or that σ is an initial segment of τ if σ(n) = τ(n) for n < |σ|.

A tree is a set of finite sequences of natural numbers, closed under initial segment. A path
through a tree is a real, thought of as an infinite sequence, each of whose initial segments is
an element of the tree. Trees and other subsets of naturally countable sets will be referred to
as “computable” if the preimages of those sets under the natural counting are computable.
A real that is meant to be thought of as an actual real number will be referred to as a real
number, or as an element of R, or of [0, 1].

Now, we begin with the definitions needed to discuss generic computability.

Definition 1.1.1. Let A be a real, and let α ∈ [0, 1]. Then A has density α if the limit of

the local densities of its initial segments is α, or in other words, if limn→∞
#(A�n)

n
= α. In

this case we will frequently say that A is density-α..

In this paper, we will mostly be interested in density-1 sets. Note that the intersection
of two reals is density-1 if and only if each of the reals is density-1. (For any ε > 0, once the
local densities of each of the reals is > 1− ε

2
, the density of their intersection will be > 1− ε.)

CHAPTER 1. GENERIC COMPUTATION 5

Sometimes, we will refer to the density of a real over an interval, I. In that case, it is
understood that we mean #(A�I)

#I
.

Definition 1.1.2. A real A is generically computable if there exists a partial recursive
function ϕ whose domain has density 1, whose range is contained in {0, 1} such that if
ϕ(n) = 1 then n ∈ A, and if ϕ(n) = 0 then n /∈ A.

Notice that to generically compute a real, one is not allowed to make any mistakes.
Density-1 many correct answers must be given, and no incorrect answers may be given. This
is because the original motivation was not algorithms which sacrifice accuracy for speed, but
rather algorithms which only give correct answers, and yet give answers much more quickly
in general than in the worst case scenario. Thus, a generically computable set is a set which,
almost everywhere, can be computed, and not a set which can be approximated very well
by a computable set.

Definition 1.1.3. For reals A and B, A is generically B-computable if A is generically
computable using B as an oracle. In this case, we frequently say B generically computes A,
and we write B →g A.

Note here that we very intentionally do not use the notation “B ≥g A.” This is because
the →g relationship is very highly nontransitive (see Observation 1.1.9). In fact, in Proposi-
tion 1.2.5, we will see that →g is as far from being transitive as possible. In Chapter 2, we
will define and discuss generic reduction, a modified notion of relative generic computation
which is transitive, and we reserve the symbol “≥g” for that notion.

Observations

To help dispel some common misconceptions, and to develop an intuition for generic com-
putation, we prove a number of elementary facts concerning generic computation.

The following two definitions, and corresponding lemmas, will be very useful for these
preliminary results.

Definition 1.1.4. Let A be a real. Then R(A) is the real given by n ∈ R(A) ↔ m ∈ A,
where 2m is the largest power of 2 dividing n.

Definition 1.1.5. Let A be a real. Then r(A) is the real given by n ∈ r(A)↔ ∃m(n = 2m

and m ∈ A).

Lemma 1.1.6. For any reals A and B, B ≥T A if and only if B →g R(A).

Lemma 1.1.7. For any real A, r(A) is generically computable.

Proof. The basic idea behind Definition 1.1.4 and Lemma 1.1.6 is that each bit of A is spread
out across an entire “column” of R(A).

CHAPTER 1. GENERIC COMPUTATION 6

Each column has positive density, and so, in particular, any density-1 subset of N must
intersect every column. Thus, to generically compute R(A), it is necessary to give at least
one output in each column, and because every output of a generic computation must be
correct, it is necessary to be able to correctly compute every bit of A.

Lemma 1.1.7 is trivially true, because for any A, r(A) can be generically computed via
the function ϕ where ϕ(n) = 0 if n is not a power of 2, and ϕ(n) is undefined if n is a power
of 2.

Thus, we immediately can conclude the following:

Observation 1.1.8. Every nonzero Turing degree contains a real which is not generically
computable, and a real which is generically computable.

Proof. Let A be nonrecursive. Then R(A) is not generically computable, but r(a) is generi-
cally computable.

It is clear that A ≡T R(A) ≡T r(A).

This shows that although in some sense, generically computable reals are “closer” to
being computable than other reals, this has nothing to do with the information content of
the real, and everything to do with how the information is distributed within the real.

Also, we remind the reader that relative generic computation is not transitive, and in
particular that it is important not to confuse the generic computational power of a real with
the difficulty in generically computing the real.

Observation 1.1.9. “A generically computes B” is not a transitive relationship.

Proof. Let A be a nonrecursive real. Then 0 →g r(A) by Lemma 1.1.7, r(A) →g R(A)
because r(A) ≥T R(A), but 0 9g R(A) by Lemma 1.1.6

In fact, the generic computational power of a real is measured exactly by its usual com-
putational power.

Observation 1.1.10. A ≡T B if and only if ∀C(A→g C ⇐⇒ B →g C).

Proof. We prove the slightly stronger statement:
A ≥T B if and only if ∀C(B →g C =⇒ A→g C).
Certainly, if A ≥T B, then for any C, A→g C if B →g C. This is by the usual proof of

transitivity of Turing reductions: If A ≥T B, and B →g C, then A →g C by the algorithm
which emulates the generic computation of C from B, while simultaneously computing B
from A to determine the answers that the oracle for B would give.

Conversely, if A �T B, then A 9g R(B) by Lemma 1.1.6. B →g R(B) because B ≥T
R(B).

CHAPTER 1. GENERIC COMPUTATION 7

As our final observation of this section, we observe that the reason r(A) is generically
computable is not that r(A) is density-0, but rather that r(A) is a subset of a recursive
density-0 set. In the following observation, we work with density-1 sets rather than density-
0 sets, because they will be more useful to us in the future.

Observation 1.1.11. Let A be a density-1 set. Then A is generically computable if and
only if A contains a density-1 r.e. subset.

Proof. If A contains a density-1 r.e. subset, B then A can be computed from the enumeration

of B by the algorithm ϕ(n) =

{
1 if n ∈ B
undefined otherwise

. This algorithm halts on density-1

because B is density-1, and it never gives incorrect answers because B ⊆ A. Note that ϕ
does not need to decide when it it going to be undefined: it simply does not halt on inputs
that are not in B.

Conversely, if A is a density-1 set, and ϕ is a generic computation of A, then let B =
{n |ϕ(n) = 1}. B is clearly r.e. It is contained in A because ϕ is not allowed to give
incorrect answers, and it is density-1 because it is the intersection of A with dom(ϕ), and
the intersection of two density-1 sets is density-1.

To generalize Observation 1.1.11, we first define a real to be coarsely computable if it
agrees with a recursive real on a set of density-1.

Definition 1.1.12. A real A is coarsely computable if there exists a recursive real B such
that {n |A(n) = B(n)} is density-1.

Coarse computability is not immediately relevant to our study, but it will resurface in
Chapters 2 and 3. Currently we mention it primarily to disambiguate between it and generic
reduction.

Proposition 1.1.13. (Jockusch, Schupp) [6] There exists a coarsely computable real that
is not generically computable, and also a generically computable real that is not coarsely
computable.

We prove the first half here, and we defer the proof of the second half to Lemma A.0.17,
in Appendix A, since our proof will use techniques that we introduce in Section 1.3, most
notably, Definitions 1.3.5, and 1.3.6, and also Lemma 1.3.7.

The basic idea is that any density-1 real that has no density-1 r.e. subset is coarsely
computable but not generically computable. Alternatively, if A is a ∆0

2 real that is not
recursive, then R(A) is coarsely computable but not generically computable.

Here, we present a construction of a density-1 real that has no density-1 subset.
We also stress that generic computability really is the computability notion that we wish

to study - we are motivated by algorithms that usually give answers more quickly than they
“should” be able to, not by algorithms that sacrifice accuracy in order to provide faster
answers!

CHAPTER 1. GENERIC COMPUTATION 8

Proof. We build a real A such that A is density-1, and has no density-1 r.e. subset. In fact,
it will not even have an infinite r.e. subset.

For each e, let We be the eth r.e. set. If We is infinite, let ne be the smallest element of
We that is greater than 2e. If We is finite, let ne = 0.

Then, let A = N \ {ne | e ∈ N}.
Then first of all, A has no density-1 r.e. subsets, since A has no infinite r.e. subsets,

since for every e, if We is infinite, then ne ∈ We, and ne /∈ A.
Secondly, A is density-1, as follows.
For every m, A is missing at most m+ 1 of the elements less than 2m. This means that

if 2m < n ≤ 2m + 1, then

#(A � n)

n
≥ n− (m+ 2)

n
= 1− m+ 2

n
≥ 1− m+ 2

2m

which clearly approaches 1 as n (and thus implicitly m) goes to infinity.

1.2 Graph Embeddings

The primary purpose of this section will be to prove Theorem 1.2.5, which says that any
reflexive binary relation with countable domain embeds into the reals under →g. This
theorem shows that, in some sense, generic relative generic computation is as far from being
transitive as possible, and indeed, its primary purpose is to help solidify the lesson from the
observations in the previous section: that the set of reals that a given real can generically
compute has nothing to do with the set of reals which can generically compute the given
real.

Indeed, in the statement A→g B, the A and the B should not even truly be thought of
as the same kind of thing. Lemma 1.1.10 shows that the A can be thought of in terms of
its Turing degree without causing any confusion, but in Chapter 2, when we define generic
reduction, we will see from Corollary 2.1.16, and Proposition 2.3.1 that B should be thought
of in terms of its generic degree. (Observation 1.1.8 certainly shows that B should not be
thought of in terms of its Turing degree!)

To prove Theorem 1.2.5, we will need two purely recursion theoretic facts.

Observation 1.2.1. There exists a recursive reflexive binary relation R on N such that for
any reflexive binary relation R′ with countable domain, R′ is isomorphic to R restricted to
some subset of N.

The relation R is simply the Fraisse limit of the finite reflexive binary relations. We also
present a direct construction of R:

Proof. We build our relation R in stages. At the end of any stage, R will be defined on a
finite initial segment of N.

CHAPTER 1. GENERIC COMPUTATION 9

At stage 0, the domain of R is {0}, and 〈0, 0〉 ∈ R
At stage s+1, we extend R to be defined on the next 4n many elements of N, where n is the

domain of R at the end of stage s. For every possible way to extend R � n by one element, we
take one of the new elements and define R on that element via the chosen extension. Every
new element is related to itself (to maintain reflexivitiy), and no new element is related to
any other new element. (Note that since the relationship is not symmetric, we need 4n many
new elements. For every old element a, we must choose whether a new element b satisfies
aRb and also independently whether it satisfies bRa.)

This construction can clearly be carried out recursively. Any countable reflexive binary
relation R′ embeds in it by picking a counting 〈ai〉 of the domain of R′, and mapping
inductively each ai to an element that was added to the domain of R at stage i. (By the
construction of R, when the embedding has been defined on a0, ..., an, there is exists a way
to extend the embedding to map an+1 to an element added at stage n+ 1.)

Observation 1.2.2. There exists a countable sequence of reals 〈Xi〉 such that for each i, Xi

cannot be computed by the recursive join of the rest of the Xj.

This is satisfied by the columns of any 1-random, or Cohen 1-generic subset of N × N.
This follows from the fact that no 1-random [3] or 1-generic is autoreducible. We present a
proof of the existence of a nonautoreducible real for completeness.

Definition 1.2.3. A real A is autoreducible if there is a Turing functional ϕ such that

for every n, ϕA(n) =

{
1 if n ∈ A
0 if n /∈ A

, and such that ϕ never queries the nth bit of A while

computing the nth bit of A.

Lemma 1.2.4. There exists a real A which is not autoreducible.

Those familiar with forcing in arithmetic will recognize this proof as the proof that
no Cohen 1-generic is autoreducible. For those familiar with randomness, a Kolmogorov-
Loveland random is very clearly not autoreducible.

Proof. We build A by finite approximation.
At stage s, we diagonalize against A being autoreducible via ϕs in the following way.
Let σs ∈ 2<ω be the approximation to A at stage s.
Choose ns to be a number larger than |σs|.
Search for an extension τ of σs that will make ϕτs(ns) halt without querying ns.
If no such τ exists, then A cannot be autoreducible via ϕs.
Otherwise, let σs+1 be equal to the τ that was found, except that σs+1(ns) = 1−ϕτs(ns) =

0. ϕs did not query ns while computing ns from τ , so ϕτs(ns) = ϕσs+1
s (ns), so σs+1(ns) 6=

ϕσs+1
s (ns), so as long as A is an extension of σs+1, A will not be autoreducible via ϕs.

ns ∈ σs+1 ↔ ϕσs+1
s (ns) = 0

With these two observations, we now prove our theorem.

CHAPTER 1. GENERIC COMPUTATION 10

Theorem 1.2.5. For any reflexive binary relation R on N, there exists a subset X of R such
that 〈N, R〉 is isomorphic to 〈X,→g〉.

The basic idea of this proof is that in each real, we code, with a large amount of redun-
dancy, the information necessary to generically compute that real, and then we also code
everything that it should be able to generically compute into a set of density-0.

Proof. By Observarion 1.2.1, it suffices to prove the proposition for recursive relations.
Fix a recursive reflexive relation R. Choose 〈Xi〉 as in Observation 1.2.2, and for each

i, define Yi to be the recursive join of the set of Xj such that R(i, j). (More precisely
Yi = {〈n, j〉|n ∈ Xj ∧R(i, j)}.) Let Zi = R(Xi)⊕ r(Yi).

Let X = {Zi | i ∈ N}.
If R(i, j) then Yi ≥T Xj, so Zi ≥T Xj, so in particular we have that Zi generically

computes Zj.
Conversely, if ¬R(i, j) then Zi is computable from the join of the Xk with k 6= j

({j |R(i, j)} is recursive, since R is a recursive relation). Thus in particular, Zi �T Xj, so
Zi 9g R(Xj) by Lemma 1.1.6, so Zi 9 Zj, because any density-1 set of bits of R(Xi)⊕r(Yi)
must include density-1 many bits of R(Xi).

1.3 Minimal Pairs

At first glance, the lack of a degree structure for generic computation suggests that generic
computation is not a realm in which it is fruitful to do recursion theory. However, as
mentioned in the introduction to the previous section, the most major obstruction is that
the oracle and the set being generically computed are, morally, different sorts of objects. If
we regard them as such, then it becomes more clear which sorts of questions have natural
analogues in this setting. For instance, we can ask whether there are minimal pairs for generic
computation, by simply asking whether any two nonrecursive sets have something that is not
generically computable that they can both generically compute. We could equivalently ask
whether any two non-generically-computable sets have something they can both generically
compute, but there is no reason to do this, given that the input sets should be thought of in
terms of their Turing degrees. Likewise, in this question, the “output” is thought of only in
terms of how difficult it is to generically compute without any reference to what the output
set’s computing power is. (In contrast, asking about a minimal degree would be awkward
and probably unenlightening.)

The primary purpose of this section is to prove Theorem 1.3.13, which says that there
are no minimal pairs for generic computation. (In fact, the proof can be modified to show
that given any finite set of nonrecursive reals, there is a not-generically-computable real that
every one of them can generically compute!) This result is somewhat startling, given that it
implies that even if two sets form a minimal pair in the Turing degrees, they are still able
to agree enough to both generically compute some non-generically-computable real. A key

CHAPTER 1. GENERIC COMPUTATION 11

stepping stone will be our proof of Proposition 1.3.8, which says that given any nonrecursive
set A, A can enumerate some density-1 set which has no density-1 r.e. subset. We will not
need to use the actual proposition, but the techniques in the proof will be useful for the
proof of Theorem 1.3.13.

Attempting to construct minimal pairs

In this subsection, we motivate Proposition 1.3.8 by explaining how its negation would
imply the negation of Theorem 1.3.13. To do this, we start by describing the obstruction
to adapting the usual minimal pair construction to the generic computation setting, and
then we explain how a real not satisfying Proposition 1.3.8 would be able to overcome this
obstruction, if it existed.

One of the primary purposes of this subsection is to help the reader understand the sorts
of concerns that one must address when working with generic computation, and a reader
looking for a proof of Theorem 1.3.13 may freely skip ahead to Lemma 1.3.4. However, the
techniques of these proofs will be revisted in Chapter 2, when we address the existence of
minimal pairs for generic reduction.

To familiarize the reader with the notation that will be used in this subsection, we first
provide a brief proof of the existence of minimal pairs in the Turing degrees:

Theorem 1.3.1. There exist nonrecursive reals A and B, such that for any real C, if A ≥T C
and B ≥T C, then C is recursive.

Proof. We build A and B by finite approximation. We have one stage for each number e,
and one for each pair of natural numbers, 〈i, j〉.

At each stage, we have a finite string σ ∈ 2<ω that will eventually be an initial segment of
A, and likewise, we have an approximation τ for B. We then extend these strings to longer
finite strings, while accomplishing some task.

At stage e, we ensure that neither A nor B can be computed by ϕe.
To accomplish this, we choose an n longer than |σ| or |τ |. If ϕe(n) does not halt, then we

do not need to do anything, since ϕe is not a computation of anything. If ϕe(n) halts, then
extend σ and τ to strings σ̃ and τ̃ such that σ̃(n) = τ̃(n) 6= ϕe(n). This guarantees that if
A and B are extensions of σ̃ and τ̃ , then neither can be computed by ϕe.

At stage 〈i, j〉, we guarantee that if ϕAi and ϕBj both are computations of the same real,
then that real is recursive.

First, if σ and τ can be extended to σ̃ and τ̃ so that for some n, ϕσ̃i (n) 6= ϕτ̃j (n), then do
that. This guarantees that when A and B are finished being built, ϕAi (n) will not be equal
to ϕBj (n), and so, in particular, ϕAi and ϕBj will not both be computations of the same real.

If σ and τ cannot be extended to make ϕi and ϕj disagree anywhere, then we do not
need to do anything, because if ϕAi and ϕBj both end up being computations of the same
real, C, then we can compute C by the following method.

For any n, search for an extension σ̃ of σ such that ϕσ̃i (n) halts. We know we can find
such a σ̃, because otherwise ϕAi (n) does not halt, and so ϕAi is not a computation of anything.

CHAPTER 1. GENERIC COMPUTATION 12

Then n is in C if and only if ϕσ̃i (n) = 1. The reason that we can conclude this is that we
know B is an extension of τ , and we know σ and τ could not be extended to make ϕi and
ϕj disagree, and so, because ϕσ̃i (n) = 1, we know that if ϕBj (n) halts, then ϕBj (n) = 1, and
so n ∈ C.

Once all of the stages have been completed, we have ensured that neither A nor B is
computable, and that if A ≥T C, and B ≥T C, then C is computable.

Now, we show why this proof does not work in the setting of relative generic computation.

Proposition 1.3.2. The naive way to build a minimal pair for generic construction does
not work.

Of course, this proposition is difficult to make precise, and indeed, the most rigorous
proof of the proposition will be the proof of Theorem 1.3.13. Here, our primary purpose is
to isolate the flaw in the natural line of reasoning in order to clarify a major part of why
generic computation does not work the way that Turing reduction works.

Proof. We attempt to adapt the proof of Theorem 1.3.1.
Again, we build A and B by finite approximation. Again, we have one stage for each e,

and one for each 〈i, j〉.
We ensure that neither A nor B is computable the same way as before.
Then, at stage 〈i, j〉, we must extend σ and τ to make sure that if ϕAi and ϕBj both are

generic computations of the same real, then that real is generically computable.
Again, if σ and τ can be extended to make ϕi and ϕj disagree, then we do that. Again,

in this case, for the n at which they disagree, ϕAi (n) will not be equal to ϕBj (n), and so, in
particular, there will not be any real that is generically computed both by ϕAi and by ϕBj .

Now, if σ and τ cannot be extended to make ϕi and ϕj disagree anywhere, and if, for
some C, ϕAi and ϕBj are both generic computations of C, then we attempt to generically
compute C as well.

Again, for any n, search for an extension σ̃ of σ such that ϕσ̃i (n) halts. We know that for
density-1 many n’s, we will find such a σ̃, because otherwise ϕAi does not halt on density-1,
and so ϕAi is not a generic computation of anything. If we find such a σ̃, perhaps we try to
be safe, and also find an extension τ̃ of τ such that ϕτ̃j (n) halts. Then, if we also find such
a τ̃ , perhaps we decide to guess that n is in C if and only if ϕσ̃i (n) = ϕτ̃j (n) = 1.

It seems safe, because at this point, we know that if ϕAi (n) halts, then it equals 1, and
if if ϕBj (n) halts, then it equals 1. Unfortunately, it is entirely possible that neither ϕAi (n),
nor ϕBj (n) halts, and that, indeed, n /∈ C.

Our problem here is that our algorithm guarantees that our outputs are all consistent
with the outputs of ϕAi and ϕBj , but, unfortunately, all that shows is that there exists a real
C such that ϕAi and ϕBj are both generic computations of C, and such that we can generically
compute C. It does not show that we can generically compute every C such that ϕAi and
ϕBj are both generic computations of C.

CHAPTER 1. GENERIC COMPUTATION 13

This obstruction could be avoided by a counterexample to Proposition 1.3.8:

Proposition 1.3.3. Let A be a nonrecursive real such that every density-1 set that A can
enumerate has an r.e. subset which is density-1. Then there exists a nonrecursive real B
such that for any real C, if A→g C and B →g C, then C is generically computable.

Proof. We build B by finite approximation as before.
We ensure that B is nonrecursive as before.
Given 〈i, j〉, and given an approximation τ for B, if there exists an extension τ̃ of τ such

that for some n, ϕAi (n) 6= ϕτ̃j (n), then we extend τ to τ̃ , thereby ensuring that ϕAi and ϕBj
cannot both compute the same real.

If there is no such τ̃ , then, if ϕAi and ϕBj are both generic computations of C, then C is
generically computable by the following algorithm, ψ.
{n |ϕAi (n) ↓} is r.e. in A, and it is density-1 because ϕAi is a generic computation of C.

So, by the assumption on A, fix a density-1 r.e. set W ⊆ {n |ϕAi (n) ↓}.
Now, we define ψ so that ψ(n) ↓ if and only if n ∈ W and there exists a τ̃ extending τ

such that ϕτ̃j (n) ↓. In this case, we let ψ(n) = ϕτ̃j (n) for the first such τ̃ that we find.
Then, because n is in W , we know that ϕAi (n) ↓. Because τ could not be extended to

make ϕi disagree with ϕj, we know that ϕAi (n) = ϕτ̃j (n) = ψ(n), so in particular, n ∈ C ⇔
ψ(n) = 1, because ϕAi is a generic computation of C. Thus, ψ gives only correct answers on
its domain. The domain of ψ is density-1 because it is the intersection of two density-1 sets.
(The halting set of ϕAi is density-1, and the set of n such that τ can be extended to make
ϕτ̃j (n) ↓ is density-1 because it contains the halting set of ϕBj .)

Of course, we will now see that there is no A satisfying the hypothesis of Proposition
1.3.3, and indeed that there are no minimal pairs (or even finite minimal sets) for generic
computation.

Nonexistence of minimal pairs

Here, we prove Theorem 1.3.13, which says that that there are no minimal pairs for generic
computation.

We saw, in the proofs of Propositions 1.3.2 and 1.3.3 that any proof of Theorem 1.3.13
will necessarily need to make careful use of the halting sets of the generic computations.
Indeed, the halting sets of generic computations will be the only thing that is relevant to
us, since all of our computations will output only 1s as answers, and this section will make
liberal use of Observation 1.1.11, which we restate here as Lemma 1.3.4.

Lemma 1.3.4. Let A be a density-1 set. Then A is generically computable if and only if A
contains a density-1 r.e. subset.

CHAPTER 1. GENERIC COMPUTATION 14

To prove Theorem 1.3.13, given two nonrecursive reals A and B, we will show that A
and B can each enumerate a density-1 set such that the union of those two density-1 sets
has no density-1 r.e. subset. We will do this in three parts, Propositions 1.3.9, 1.3.11, and
1.3.12, depending on whether neither, one or both of the two sets are ∆0

2. We will require
a technical lemma to adapt our proof of Proposition 1.3.9 to prove Propositions 1.3.11 and
1.3.12. Proposition 1.3.12 has already been proved by Downey, Jockusch, and Schupp [2], but
the technical lemma that we use to prove Proposition 1.3.11 proves Proposition 1.3.12 as well.

We begin by introducing some terminology that will be used for the proofs.

Definition 1.3.5. Let Pi = {n ∈ N | 2i ≤ n < 2i+1}.

Note then that N is the disjoint union of the Pi together with {0}.

Definition 1.3.6. For X ⊆ N, we say that X has a gap of size 2−e at Pi if the last 2i−e

many elements of Pi are not elements of X.

Note then the following lemma:

Lemma 1.3.7. If the only elements missing from X are from gaps of the form just described,
then X is density-1 if and only if for every e, X has only finitely many gaps of size 2−e

Proof. If X has a gap of size 2−e at Pi then #(X�2i)
2i

≤ 1 − 2−e−1, so in particular, if X has
infinitely many gaps of size 2−e, it does not have density 1.

Conversely, if there is some i such that after Pi, all of the gaps in X have size ≤ 2−e,
then for n ≥ 2i+1, the density of X over the interval [2i, n] will be ≥ 1 − 2−e, and so the
density of X � n will always be ≥ 1 − 2−e+1. (Note that since the gaps appear at the ends
of the Pi, the local minima of the density of X always occur at the end of a Pi.) If for every
e, there exists such an i, then the limiting density of X will be 1.

Now, we prove Proposition 1.3.8. This proof will be generalized to allow us to prove
Propositions 1.3.9, 1.3.11, and 1.3.12, but we will only go through it in full detail here.

Proposition 1.3.8. For any nonrecursive real A, there is a density-1 set S(A) that is r.e.
in A such that S(A) has no density-1 r.e. subset. In fact, S(A) can be found to be recursive
in A, and even tt-reducible to A.

First, a brief overview: we will define a total Turing functional ϕ on 2ω. For each e, there
will be a strategy that diagonalizes against the eth r.e. set, We, being a density-1 subset of
ϕX for any real X. In doing so, the eth strategy will cause at most one real Xe to have the
property that ϕXe is not density-1. Xe will be the leftmost path through a recursive tree
Te, so repeating the same argument with rightmost paths gives a pair of functionals ϕ and
ψ such that for any nonrecursive X either ϕX or ψX is density-1.

CHAPTER 1. GENERIC COMPUTATION 15

Proof. Over the course of the construction, after stage s, ϕX � 2s will be defined for every
X, using at most the first s bits of X. This will be useful in verifying that the strategies
work as they are supposed to.

The eth strategy acts as follows:
Define Te as the tree whose infinite paths consist of the reals X such that We ⊆ ϕX .

Note that Te is a recursive tree, since we can determine the lth level of Te in the following
way. Run the enumeration of We for the first l steps. For every n less than 2l, if We has
enumerated n, remove any σ of length l such that ϕσ(n) = 0. As long as l is less than
the stage s of the construction, this can be accomplished recursively. Let Te,s be the tree
consisting of all extensions of the (s− 1)th level of Te.

At stage s, if s < e, do nothing. Also, if Te,s is finite, do nothing. Else, place a marker
ps on the leftmost infinite path of Te,s, at the shortest σ on that path such that σ has no
marker. Then define ϕX � Ps for all X by placing a gap of size 2−e into ϕX at Ps if σ ≺ X,
and by not placing such a gap if σ ⊀ X. (Define ϕ so that ϕX has a gap of size 2−e at Ps if
and only if σ ≺ X.)

The idea here is that the marker ps signifies the existence of a trap at Ps: We must either
avoid enumerating any of the elements of the gap at Ps, thereby creating another instance
of its density dropping below 1−2e+1, or it must enumerate some of those elements, thereby
removing all extensions of σ from the tree Te.

Note then that if Te is finite, then for every X, ϕX has only finitely many gaps of size
2−e. Furthermore, in this case, the strategy has guaranteed that We * ϕX for any X. (After
the stage at which the tree is seen to be finite, the eth strategy stops acting. This stage is
precisely the point at which, for every X, We has enumerated something not in ϕX .)

On the other hand, if Te is infinite, then the leftmost path, Xe, of Te has infinitely many
markers on it, so ϕXe has infinitely many gaps of size 2−e so in particular, We is not density-
1. (We ⊂ ϕX for every infinite path X through Te. This is because of how Te is defined.)
Furthermore, if X 6= Xe then X has only finitely many markers on it, so ϕX has only finitely
many gaps of size 2−e (If X 6= Xe then there is some stage s and some σ ≺ X such that
after stage s, σ never looks like it might be an initial segment of the leftmost path of Te, so
after that stage s, X can only get at most |σ| many markers placed on it)

Finally, note that the strategies have no need to interact: they ignore each other’s markers
and trees, and at stage s, at most s + 1 many strategies are eligible to act, and ϕX gets
defined on Ps for every X by just defining ϕX to be the intersection of the sets that each
strategy wants ϕX to be. By Lemma 1.3.7, a real X will have the property that ϕX is not
density-1 if and only if some specific strategy causes ϕX to not be density-1. Thus, the only
reals X such that ϕX is not density-1 are the Xe.

As mentioned in the overview, repeating the same construction again with rightmost
paths will finish the proof, since if X is the leftmost path of one recursive tree and the
rightmost path of another, then X is recursive. If this is not the case, then for one of the
two constructions, the set computed from X is density-1 and has no density-1 r.e. subset.

CHAPTER 1. GENERIC COMPUTATION 16

Next, we proceed to prove Proposition 1.3.9. The proof is effectively the same as the proof
of Proposition 1.3.8, with the only major modification being that we define two functionals
simultaneously, and replace Te with a 4-ary branching tree whose paths correspond to pairs
of reals 〈X, Y 〉 such that We ⊂ ϕX ∪ ψY .

Proposition 1.3.9. If A and B form a minimal pair for generic computability, then either
A or B is ∆0

2.

Proof. Again, we describe how the eth strategy acts at stage s:
If s < e, do nothing. Otherwise define Te,s as the set of pairs 〈σ, τ〉 such that |σ| = |τ |

and such that We,s � 2s−1 ⊂ ϕXs−1 ∪ ψYs−1 for some X � σ, and some Y � τ . Note that this
will be recursive, since we define ϕ and ψ restricted to Ps by the end of stage s.

Then, if Te,s is finite, do nothing. Otherwise put a marker ps on the leftmost infinite path
of Te,s, at the shortest pair 〈σ, τ〉 on that path such that 〈σ, τ〉 has no marker. Then define
ϕXs � Ps and ψYs � Ps for all X and Y by placing a gap of size 2−e into ϕXs at Ps if σ ≺ X,
and by not placing such a gap if σ ⊀ X, and likewise placing a gap of size 2−e into ψYs at Ps
if and only if τ ≺ Y .

Note, as before, that only one path through Te gets infinitely many markers on it, so in
particular only finitely many markers are placed on nodes that are not on that path. That
path corresponds to a pair of reals 〈Xe, Ye〉, and if X 6= Xe then ϕX will have only finitely
many gaps of size 2−e. Note also that the leftmost path of Te computes both Xe and Ye, so
in particular, both are ∆0

2, but it is not true that either is necessarily the leftmost path of a
recursive tree, so we are unable to use the previous trick to get them to be recursive.

Again, the strategies do not interfere with each other, and so if A is different from all
of the Xe and B is different from all of the Ye then ϕA is density-1, ψB is density-1, and
ϕA ∪ ψB has no density-1 r.e. subset. By Lemma 1.3.4, this suffices, since ϕA ∪ ψB is not
generically computable, but A and B can each generically compute it, because they can each
enumerate (and in fact, compute) a density-1 subset of ϕA ∪ ψB. A is different from all of
the Xe and B is different from all of the Ye, because neither A nor B is ∆0

2, while all of the
Xe and Ye are ∆0

2.

Now we prove our technical lemma, which states that the “leftmost path” in the above
construction can be replaced by any uniformly chosen ∆0

2 infinite path through Te.

Lemma 1.3.10. Let F be any function from reals to reals such that for a 4-ary branching
recursive tree T , if T is infinite, then F(T) is an infinite path through T , and such that F(T)
is uniformly recursive in 0′ together with a recursive index for T . Then for any reals A and
B, one of the following three things holds.

1: A and B do not form a minimal pair for generic computability.
2: There exists a recursive tree T such that F(T) ≥T A.
3: There exists a recursive tree T such that F(T) ≥T B.

CHAPTER 1. GENERIC COMPUTATION 17

So, for example, letting F be the function corresponding to the construction in the proof
of the low basis theorem, we could prove that if A and B form a minimal pair for generic
computability, then either A or B must be low.

Proof. We modify the proof of Proposition 1.3.9 by, for each e, choosing a ∆0
2 index for F(Te).

This can be done uniformly by the fixed point theorem, since we can uniformly compute the
trees Te from the graphs of ϕ and ψ, and since F is assumed to be uniform. (By the fixed
point theorem, we may assume we have a fixed index for the graphs of the Turing functionals
ϕ, ψ that we build. The graphs are recursive, as, at stage s, ϕX(n), ψY (m) are defined for
all X and Y and for all n,m ≤ 2s. Te is uniformly computable from the graphs of ϕ and ψ,
and a ∆0

2 index for F(Te) is uniformly computable from Te by assumption.)
Having chosen a ∆0

2 index for each F(Te), at each stage, instead of placing a marker
on the shortest unmarked node of the leftmost infinite path of Te, the eth strategy places
a marker on the shortest unmarked node of the current approximation to F(Te). We then
proceed to place the corresponding gaps in ϕ and ψ in the usual way. The eth strategy does
nothing if Te,s is finite.

Then, as before, if Te is infinite, then the only path that gets infinitely many markers
is F(Te). This is because for any n, after the first n bits of F(Te) have stabilized to their
final configuration, all future markers will be on extensions of F(Te) � n. In this case, We

is not density-1, so the eth strategy succeeds. If Te is finite, then for any X and for any Y ,
We * ϕX ∪ ψY as before.

Then, for each e, define Xe and Ye as before, note that F(Te) computes either of them, and
note that ϕX and ψY both compute density-1 subsets of the same non-generically computable
real, as long as for every e, X 6= Xe and Y 6= Ye.

We now can prove Proposition 1.3.11 as a direct corollary of this lemma.

Proposition 1.3.11. If A is ∆0
2 and B is not ∆0

2 then A and B do not form a minimal pair
for generic computability.

Proof. For any infinite recursive tree T , and any nonrecursive ∆0
2 set A, 0′ can uniformly

(in indices for T and A) compute an infinite path Z through T such that Z �T A. (See
Theorem B.0.18 in Appendix B for a proof of this fact.)

Apply Lemma 1.3.10 using the F representing this computation, and note then that for
any T , F(T) � A by construction. Also, F(T) � B because B is not ∆0

2, and F(T) is.
Therefore, A and B do not form a minimal pair for generic computability.

Note that this same proof can be modified to prove Proposition 1.3.12, by simultaneously
avoiding the cones above both A and B.

Proposition 1.3.12. (Downey, Jockusch, and Schupp) [2] If A and B are both ∆0
2 then A

and B do not form a minimal pair for generic computability.

CHAPTER 1. GENERIC COMPUTATION 18

Now, we combine Propositions 1.3.9, 1.3.11, and 1.3.12 to prove our main theorem for
the section.

Theorem 1.3.13. For any nonrecursive reals A and B, there exists a real C such that C is
not generically computable, but such that C is both generically A-computable and generically
B-computable. Thus, there are no minimal pairs for generic computation.

In fact, we can easily strengthen our construction to accommodate larger finite sets of
reals, and we can show that for any n, there are no minimal n-tuples for generic computation.

Theorem 1.3.14. For any nonrecursive reals A0, ..., An−1, there exists a real C such that C
is not generically computable, but such that for every i < n, Ai →g C.

Proof. We use the same construction as for Propositions 1.3.9, 1.3.11, and 1.3.12, except
that we use a 2n-ary branching tree, n different functionals, and we simultaneously avoid the
cones above all of the ∆0

2 sets among the A0, ..., An−1. The details are omitted.

19

Chapter 2

Generic Reduction

2.1 Introduction

We have seen that relative generic computability is a wildly nontransitive relation, and we
have commented that the reason for this is that in a relativized generic computation, the
input reals and the output reals are not really the same sort of thing. Here, we seek to
deepen our understanding of generic computation by generalizing it to a transitive notion
of computation, generic reducibility. The most important property that one might expect
of this generalization would be to preserve the definition of the generically computable sets,
and in particular a generic reduction using a generically computable oracle should be the
same as a generic computation.

We hope that by analyzing generic reducibility, we will acquire a more thorough under-
standing of generic computability, both because it will help us understand what can be done
if one knows a generic description of a real (and thus what can be gained from generically
computing a real), and because, once we have a degree structure, we have a larger array
of tools at our disposal for our study. As with generic computation, we also engage in this
study because it is surprisingly strange, counterintuitive, and foreign, and we hope to widen
our understanding of computation in general by understanding computation in this context.

In this section, we introduce four notions of generic reducibility, prove that two of them
are equivalent, and prove that at least two of them are distinct. We also prove a few general
results that hold for all our notions of generic reducibility.

We caution the reader that our notation here differs slightly from the notation of our
previous paper [5] on generic computation in order to make our notation agree better with the
notation used by others in the field: Jockusch and Schupp [6] use ≤g for generic reduction.
We previously used ≤G for this notion, but now we will use ≤g, and we will reserve ≤G for
nonuniform generic reduction.

CHAPTER 2. GENERIC REDUCTION 20

Definitions

Definition 2.1.1. A generic description of a real A is a set S of ordered pairs 〈n, x〉, with
n ∈ N, x ∈ {0, 1}, such that:

if 〈n, 0〉 ∈ S then n /∈ A,
if 〈n, 1〉 ∈ S then n ∈ A,
and {n | ∃x〈n, x〉 ∈ S} is density-1.

Thus, in particular, the graph of a generic computation is a generic description. It
should be mentioned that this notation conflicts slightly with the notation of Jockusch and
Schupp [6], in that they define a generic description as a partial function, so that, by their
definition, a generic computation is simply a generic description which is partial recursive.
We define “generic description” as a set, since the terminology of recursion theory is well
suited to discussing sets are inputs and outputs of reductions. However, in this paper, sets
are frequently referred to as if they were functions, so if, for example, we refer to the domain
of a generic description, or the outputs of a generic description, we assume that the meaning
will be clear from context. Sometimes, when a generic description is used as an oracle, we
will refer to it as a “generic oracle.” A generic oracle for A will frequently be denoted as (A).

It is interesting to notice, though, that the output of a generic computation of A is more
than just a generic description of A, in that it is an enumeration of a generic description of
A. For this reason, we define:

Definition 2.1.2. A time-dependent generic description of a real A is a set S of ordered
triples 〈n, x, l〉, with n, l ∈ N, x ∈ {0, 1}, such that {〈n, x〉 | ∃l〈n, x, l〉 ∈ S} is a generic
description of A.

So a time-dependent generic description of A is an enumeration of a generic description of
A, together with a record of when the elements of that generic description were enumerated.
Thus, B generically computes A if and only if B can enumerate a generic description of A,
which is true if and only if B can compute a time-dependent generic description of A. Here, l
should be thought of as the stage at which it is known whether or not n ∈ S. It is frequently
convenient to assume that for each n, x there is at most one l in the description. Adding
this assumption presents no complications.

Jockusch and Schupp [6] define generic reducibility via enumeration operators. The
relation is basically the one that one might intuitively construct, using only densely much
information from the oracle, A, to deduce a generic computation of B. For those familiar
with the notation, the definition is as follows:

Definition 2.1.3. A generic reduction of B from A is an enumeration operator which, given
any generic description of A as input, outputs a generic description of B. B is generically
reducible to A if there exists a generic reduction of B from A. In this case, we write A ≥g B.

For those unfamiliar with the notation,

CHAPTER 2. GENERIC REDUCTION 21

Definition 2.1.4. An enumeration operator is an r.e. set W of codes for pairs 〈n,D〉 where
n ∈ N and D is a code for a finite subset of N. It is thought of as a function, sending a real
A to the set {n | ∃D[D ⊆ A ∧ 〈n,D〉 ∈ W]}.

It should be noted that this definition of generic reduction has the following features.
The computation of B from A must be uniform in the generic description of A, and the
computation is only allowed to reference which sets are contained in the graph of the input
set when computing a generic description for the output set (so in particular, giving less
information about A never results in more information about B, and information is not
allowed to be deduced from the rate/order of enumeration of the graph of A).

With these comments in mind, we make the following definitions:

Definition 2.1.5. A time-dependent generic reduction of B from A is a Turing functional
which, given any time-dependent generic description of A as input, outputs a time-dependent
generic description of B. B is time-dependently generically reducible to A if there exists a
time-dependent generic reduction of B from A.

Definition 2.1.6. B is non-uniformly generically reducible to A if for every generic descrip-
tion of A, there is an enumeration operator which outputs a generic description of B using
the given generic description of A as input.

Definition 2.1.7. B is non-uniformly time-dependently generically reducible to A if every
time-dependent generic description of A, can compute a time-dependent generic description
of B. In this case, we write A ≥G B.

Again, we mention that the ability to compute a time-dependent generic description
of a set is equivalent to the ability to enumerate a generic description of the set, and so
the difference between the time-dependent and non-time-dependent reductions is entirely a
difference in terms of what the input of the reduction is. The outputs are phrased differently
just to make transitivity obvious, and also to make it easier to work with any given form of
reduction on its own. Also for the remainder of this paper, whenever a non-time-dependent
generic description is used as an oracle, it will be assumed that it is being used in the
context of a generic reduction, and in particular, if neither 〈n, 0〉, nor 〈n, 1〉 is in the generic
description, we will not be allowed to “know” that fact.

Equivalences and nonequivalences of definitions

From the definitions, we may immediately conclude the following implications.

Observation 2.1.8. The existence of a uniform reduction of either type implies the existence
of a non-uniform reduction of the corresponding type.

Observation 2.1.9. The existence of a non-time-dependent reduction of either type implies
the existence of a time-dependent reduction of either type.

CHAPTER 2. GENERIC REDUCTION 22

Observation 2.1.8 is trivially true. Observation 2.1.9 is true since from any time-dependent
generic description, one can enumerate a generic description, and then proceed to use the
corresponding non-time-dependent reduction procedure. Thus, if there exists a non-time-
dependent reduction, that reduction also functions as a time dependent one. The rules of
enumeration operators do not allow for an obvious converse to Observation 2.1.9, although
the first proposition that we prove is that the converse does hold for the uniform generic
reductions, and so in particular, the two uniform reductions are equivalent.

Proposition 2.1.10. A ≥g B if and only if the following holds:
There is a Turing functional ϕ such that for any time-dependent generic description X

of A, ϕX is a generic computation of B.

By Observation 2.1.9, we need only prove that the second implies the first.

Proof. Assume that from every time-dependent generic description X of A, ϕX is a generic
computation of B. Then in particular, there are no time-dependent generic descriptions X,
of A, such that ϕX gives false information about B. So, given a generic oracle (A) for A, we
may generically compute B from (A) by considering all time-dependent versions X of (A),
and outputting anything that ϕX would output on any of those inputs.

More formally, let W be the set of all 〈a,D〉 such that a codes an ordered pair 〈x, y〉, D
is a finite set of ordered pairs 〈ni,mi〉, i ≤ c, and such that there exists a sequence 〈li | i ≤ c〉
where ϕσ gives output y on input x for σ = {〈〈ni,mi〉, li〉 | i ≤ c}.

Then, for any generic description of A, the output of W will be the set of all pairs 〈x, y〉
such that ϕX(x) = y for some time-dependent version, X, of that generic description. The
domain of this partial function will be density-1, because it is the union of the domains of
the ϕX , every one of which is density-1. The outputs of this partial function will all be
correct, because ϕX never gives incorrect answers. Thus, the output of W will be a generic
description of B.

Next, we show that neither of the nonuniform reductions is equivalent to the uniform
reduction. To prove this, we introduce some notation. Recall from Chapter 1, the definition
of R(X):

Definition 2.1.11. For any real X, n ∈ R(X)↔ m ∈ X, where 2m is the largest power of
2 dividing n.

Note now the following strengthening of Lemma 1.1.6, proved by Jockusch and Schupp
[6], but with a proof included for completeness:

Observation 2.1.12. For any real X, X computes R(X) uniformly and X can be computed
uniformly from any generic description of R(X). Therefore, the map sending X 7→ R(X)
induces an embedding from the Turing degrees to the generic degrees.

CHAPTER 2. GENERIC REDUCTION 23

Here, the generic degrees are the equivalence classes of the reals under mutual generic
reducibility, together with the partial ordering induced by generic reduction. These degrees
will depend on the definition of generic reduction that is used, but the proof is sufficiently
general to work for all four of the generic degree structures.

Proof. X computes R(X) uniformly, and so generically computes R(X) uniformly.
Conversely, to compute the mth bit of X from a generic description of R(X), search for

any n such that 2m is the largest power of 2 dividing n and such that the generic description
of R(X) has a value for the nth bit of R(X). Use that as the value for the mth bit of
X. There must be such an n because the set of numbers divisible by 2m and not by 2m+1

has positive density (in fact, has density 1
2m+1), and the generic description has values for

density-1 many bits of R(X).
The proof of the embedding follows directly: If X computes Y then any generic descrip-

tion of R(X) can be used uniformly to compute X and therefore Y and therefore R(Y).
Likewise, if R(X) ≥g R(Y), then X can compute R(X), which can generically compute
R(Y). Y can then be recovered from this generic description.

We now introduce an alternate definition, which would have sufficed for the purposes of
Lemma 1.1.6, but with the property that one cannot uniformly recover X from a generic
description of R̃(X).

Definition 2.1.13. For any real X, n ∈ R̃(X)↔ m ∈ X, where 2m is the largest power of

2 less than or equal to n. (0 is never in R̃(X)).

The key distinction here is that R(X) codes each of the entries of X into a positive
density set, and so any generic description of R(X) must be able to recover all the entries

of X. On the other hand, R̃(X) codes the entries of X into progressively larger sets, each

finite, and so any generic description of R̃(X) is only guaranteed to be able to recover all
but finitely many of the entries of X.

Proposition 2.1.14. Let A be a real such that one cannot uniformly compute A from an
arbitrary cofinite subset of the entries of A. Then R(A) is non-uniformly generically equiv-

alent to R̃(A) (and therefore non-uniformly time-dependently generically equivalent), but

R̃(A) �g R(A). Therefore, neither of the non-uniform notions of generic reducibility is
equivalent to the uniform notion.

Note that there exist reals satisfying the hypothesis of the proposition, for example any 1-
random real, or any Cohen 1-generic real. Alternatively, Lemma 1.2.4 provides us with a real
that is not autoreducible, and any real that is not autoreducible will satisfy this hypothesis.

Proof. First of all, any generic description of R(A) can be used uniformly to recover A by

Observation 2.1.12. It can therefore compute R̃(A).

CHAPTER 2. GENERIC REDUCTION 24

Likewise, from any generic description of R̃(A), one can uniformly compute all but finitely
many bits of A. From this, one can non-uniformly compute A (by directly coding the missing
bits into the computation), and therefore compute R(A).

On the other hand, any cofinite subset of the entries of A can be used to uniformly
compute a generic description of R̃(A). Any generic description of R(A) can be used to
uniformly compute A. Thus, since there is no uniform way to compute A from a cofinite
subset of its entries, there is no uniform way to go from a generic description of R̃(A) to a
generic description of R(A).

We note now one important corollary of Observation 2.1.12

Corollary 2.1.15. For any reals A, and B, A generically computes B if and only if B
generically reduces to R(A).

Proof. This follows directly from the statement of Observation 2.1.12.

This allows us to conclude the comment at the beginning of Chapter 1, Section 2, that
the output of a generic computation should be thought of in terms of its generic degree:

Corollary 2.1.16. If A and B are generically equivalent, then for any C, C →g A if and
only if C →g B.

Proof. If A and B are in the same generic degree, then they also have the same generic
degrees above them. Thus R(C) ≥ A if and only if R(C) ≥ B. Here, ≥ stands for any of
the notions of generic reduction.

Finally, we mention and prove a basic lemma that will be important to us.

Lemma 2.1.17. Let A and B be reals. Then the generic degree of A⊕B is the least upper
bound of the generic degrees of A and B.

The proof of this lemma is basically that a generic description of A ⊕ B is the same as
a generic description of A together with a generic description of B. The proof is simply the
process chasing inequalities to verify that fact.

Proof. To generically compute A from a generic oracle (C) for A ⊕ B, whenever (C) gives
an output on an even number 2n, ϕ(C)(n) halts and gives that same output. Then, certainly
ϕ never gives any false outputs, so we only need to verify that if dom((C)) is density-1, then
dom(ϕ(C)) is density-1.

So, assume dom((C)) is density-1.

Let ε > 0. Fix m such that for all n ≥ m, #(dom((C))�n)
n

> 1− ε
2
.

Then, since the number of odd bits in dom((C)) � n can be at most n
2
, we have that, if

f(n) is the number of even bits in dom((C)) � n, then f(n)
n

> 1
2
− ε

2
. Thus f(n)

n/2
> 1− ε. So,

for all k ≥ m
2

, #(dom(ϕ(C))�k)
k

= f(2k)
k

> 1− ε.

CHAPTER 2. GENERIC REDUCTION 25

Similarly, the natural computation of the odd bits also halts on density-1.
Now, to show that if D ≥g A, and D ≥g B, then D ≥g A ⊕ B (here, we are using ≥g

as shorthand for any of our notions of generic reduction), first we mention that any generic
oracle, (D), for D can be used to generically compute A ⊕ B by simply simultaneously
generically computing A and generically computing B, and outputting the bits of A on the
even bits, and the bits of B on the odd bits.

This clearly only gives correct outputs about A ⊕ B, so it remains to check that the
domain of this computation is density-1.

For this, assume that (D) generically computes A via ϕ0, and generically computes B
via ϕ1. Let ψ be the natural reduction which combines the two reductions into a reduction
for A⊕B.

Let ε > 0.

Fix m such that for all n ≥ m,
#(dom(ϕ

(D)
0)�n)

n
> 1− ε, and

#(dom(ϕ
(D)
1)�n)

n
> 1− ε.

Then, we claim that for n ≥ 2m, #(dom(ψ(D))�n)
n

> 1− ε.
This is simply because

#
(

dom
(
ψ

(D)
)
� n
)

= #
(

dom
(
ϕ
(D)
0

)
�
⌈n

2

⌉)
+ #

(
dom

(
ϕ
(D)
1

)
�
⌊n

2

⌋)
,

and the two summands, when divided by
⌈
n
2

⌉
, and

⌊
n
2

⌋
, respectively are each greater

than 1− ε.
(This uses the fact that, for a, b, c, d > 0, if a

b
> x and c

d
> x, then a+c

b+d
> x.)

Notations for working with partial oracles.

Having established the formalisms and basics concerning the definitions of our reductions,
we mention some more colloquial terminology that will be useful to us, and prove some basic
lemmas concerning that terminology.

Definition 2.1.18. A partial oracle (A) for A is an oracle which, when asked whether or
not n ∈ A, is not obligated to always answer, is not obligated to answer immediately if it
will answer, and is not obligated to say whether or not it will give an answer. However, it is
obligated to only give correct answers when it does give answers. The domain of the partial
oracle is the set of n such that (A) gives an answer when asked whether or not n ∈ A. If n
is in the domain of (A), we say that (A) halts on n.

When using a partial oracle in a uniform fashion, or in a nonuniform time-independent
fashion, a Turing functional may query a bit of the oracle, and then keep doing other work
while it waits to see if the oracle will respond. However, everything that the functional
outputs must be able to be phrased in the form “If (A) shows that the following facts are
true about A, then output the following...”. (The functional is not allowed to use clauses of
the form “If (A) has not yet halted on this input...” or “If (A) halts on this input before it

CHAPTER 2. GENERIC REDUCTION 26

halts on that input...”.) Note that this is simply an informal way of thinking of enumeration
reductions.

If there are contradictory facts that are concluded by a Turing functional, for instance,
if ϕ(A)(5) = 0, and ϕ(A)(5) = 1 can both be concluded from (A), then we simply say that ϕ
is ill-defined on (A) at 5.

Note that, in general, it will not present a problem that Turing functionals can be ill-
defined if they are equipped to be able to work with partial oracles. This is primarily because,
when defining a generic reducibility A ≥g B, we always need to prove that the reduction
never makes any mistakes on any partial oracle for A, and, in particular, this shows that
the reduction is not ill-defined on any oracle for A, since if it gives any output, that output
must be correct. Likewise, if proving that A �g B, if we find a partial oracle (A) such
that ϕ(A)(n) 6= B(n), then we already know that ϕ is not a generic reduction of B from A,
regardless of whether there are also partial oracles for A which give correct answers.

Note also that the rules of partial oracles imply that if (A)1 and (A)2 are partial oracles
for A, and if dom((A)1) ⊆dom((A)2), then for every n, if ϕ(A)1(n) ↓= k, then ϕ(A)2(n) ↓= k.
(However, it is entirely possible that ϕ(A)1 is well defined at n, but ϕ(A)2 is ill-defined at n.
Again, though, this will not occur in practice.) For this reason, we will sometimes write “ϕA”
to mean ϕ(A), where (A) is any partial oracle for A that halts everywhere. Note that ϕA can
also be thought of as the partial function which outputs anything that ϕ could output on
any partial oracle, (A), for A

This is a slight abuse of notation, but it is at least mostly justifiable, since any ordinary
Turing functional can be realized as a reduction in this sense in a uniform way:

Observation 2.1.19. Let ϕe be the eth Turing functional, in the usual sense. Then, uni-
formly from e, we can construct a functional ψ, in the sense of Definition 2.1.18 (formalized
rigorously as an enumeration operator from inputs and outputs, in the sense of Definition
2.1.3) such that for every real X, ϕX and ψX halt on exactly the same inputs, and give
exactly the same outputs. (In particular, ψX(n) is never ill-defined for any X, or n.)

Proof. In the language of this section, ψ is the functional which does exactly the same
thing as ϕe, and whenever ϕ would query a bit of its oracle, ψ queries that same bit, and
then simply waits for the oracle to give an output on that bit, refusing to go on with its
construction until the oracle gives an output. If the oracle is total, then ψ clearly behaves
in the same way as ϕe.

As an enumeration operator, ψ can be written as the operator which simultaneously
evaluates ϕe on all oracles and all inputs, and such that whenever ϕXe (n) halts, then ψ
enumerates a code which give the same output as ϕXe (n), and which uses all of the bits of
X that had been queried during the computation of ϕXe (n).

CHAPTER 2. GENERIC REDUCTION 27

Quasi-minimal generic degrees

We will discuss specific theorems that are known for the individual notions of generic re-
duction over the next two sections, but the remainder of this section will be devoted to
discussing results that are true for all of the different notions of generic reduction. We will
use the symbol ≥g, but it should be understood that what we say applies equally well to any
other notion of generic reduction.

Currently there is very little known about the degree structure for generic reduction. For
the remainder of this chapter, much of our motivation will be derived from the following two
questions.

Question 1. Do there exist minimal degrees in the generic degrees?

Question 2. Do there exist minimal pairs in the generic degrees?

A positive answer to Question 1 would provide a positive answer to Question 2, unless
it were the case that there is a single nonzero generic degree that is below all other nonzero
generic degrees. There is no a priori reason to dismiss this possibility, so the two questions
are, at least at first glance, independent of each other.

To help us address these questions, we borrow a term from the study of enumeration
reducibility, and make the following definition.

Definition 2.1.20. A generic degree a is quasi-minimal if a is nonzero, and if for every
nonrecursive real X, the generic degree of R(X) is not below a.

Then, while proving that the embedding from the Turing degrees to the generic degrees
is not surjective, Jockusch and Schupp [6] actually prove the stronger result that there exists
a quasi-minimal generic degree. Theorem 1.3.13 allows us to strengthen this result:

Proposition 2.1.21. For every nonzero generic degree a, there is a quasi-minimal generic
degree b such that a ≥g b .

Proof. Let a be a nonzero generic degree. If a is quasi-minimal, then we are done. Else,
choose A nonrecursive, so that the generic degree of R(A) is below a. In the Turing degrees,
every nonzero degree is half of a minimal pair, so choose B such that A and B form a minimal
pair for Turing reducibility. By Theorem 1.3.13, choose some C, not generically computable,
such that A and B can both generically compute C.

Then C generically reduces to both R(A), and R(B), and the generic degree of C must
be quasi-minimal, since if there were some D such that C ≥g R(D), then we would have
R(A) ≥g R(D) and also R(B) ≥g R(D), and therefore A ≥T D and also B ≥T D, and so D
would have to be recursive, since A and B form a minimal pair. Let b be the generic degree
of C.

We may immediately conclude the following.

Corollary 2.1.22.

CHAPTER 2. GENERIC REDUCTION 28

(a) If a is a minimal generic degree, then a is quasi-minimal.

(b) If a and b form a minimal pair in the generic degrees, then either a or b is quasi-minimal.

(c) If there exist minimal pairs in the generic degrees, then there exist minimal pairs in
which both of the two degrees are quasi-minimal.

Proof. A degree which is not quasi-minimal must have a quasi-minimal degree below it, and
thus cannot be minimal.

If neither a nor b is quasi-minimal, then Theorem 1.3.13 provides us with a generic degree
below both of them.

If a and b form a minimal pair in the generic degrees, then choose ã and b̃ to be quasi-
minimal such that a ≥g ã and b ≥g b̃. Then ã and b̃ form a minimal pair in the generic
degrees.

Unfortunately, quasi-minimal degrees are somewhat difficult to work with, because they
are incapable of actually computing anything, in the usual sense. Corollary 2.1.22 shows
that working with them is necessary for addressing Questions 1 and 2, so we will need to
introduce some new techniques for working with them.

2.2 Uniform Generic Reducibility

In this section, we focus solely on uniform generic reduction, which is, over all, much easier
to work with than nonuniform generic reduction. In some cases, these results also have
corollaries concerning nonuniform generic reduction, and we point these corollaries out where
able.

First, we show that uniform generic reduction is Π1
1-complete, then afterwards, we discuss

a technique for avoiding the Π1
1 nature of generic reduction by studying the generic degrees

of density-1 sets.

Π1
1-completeness

Perhaps the greatest difficulty in working with generic reduction is simply that the definition
is naturally a Π1

1 definition. A ≥g B if there is a reduction procedure which generically
computes B from every generic oracle for A. Here, we show that this universal quantifier
over reals is indispensable by showing that ≥g is Π1

1-complete.
We accomplish this by showing that from any tree T ⊆ ωω, we can use the jump of that

tree to uniformly find A and B such that A ≥g B if and only if T is well-founded.
For a definition and short introduction to Π1

1-completeness, see Appendix C. For a more
thorough introduction, see [10].

CHAPTER 2. GENERIC REDUCTION 29

Theorem 2.2.1. There exists an algorithm which, given a tree T ⊆ ωω, uses T ′ as an oracle
to compute a pair of reals A and B such that A ≥g B if and only if T is well-founded. Thus,
≥g is Π1

1-complete.

The proof will be comprised of three parts.
In the first part, we describe the intended reduction from A to B. The reduction will

have the property that an infinite path through T corresponds to a method of creating a
generic oracle for A which does not generically compute B via the intended reduction. Every
node of the path will be able to be translated into another drop in the density of the domain
of the computation without a corresponding drop in the density of the domain of the oracle.

In the second part, we build A and B to ensure that no reduction other than the intended
reduction will work. During this second part, we do not need to work effectively, but rather
we have access to T ′.

Finally, we verify that our construction works. If T is well-founded, this will be clear,
because the intended reduction will function as it is designed to. If T is ill-founded, we
will need to show that for any potential generic reduction ϕ, there is a generic oracle for A
that either makes ϕ give a false answer somewhere, or that makes dom(ϕ) not be density-1.
During this third part, we are not forced to work effectively in anything, and indeed, the
generic oracles that we build would be quite difficult to compute.

Proof. Part 1

Let T ⊆ ωω.
For each σ ∈ T , there will be a single bit bσ ∈ {0, 1}.
bσ will be coded into A in a manner so that any partial oracle for A which cannot recover

bσ must have its density drop below 1− 2−|σ|−2 at least once as a result.
bσ will be coded into B in a manner so that if a computation cannot compute bσ, then

the domain of that computation will have its density drop below 1
2

as a result.
The intention of this is that then, if there is an infinite path Q through T , we will be

able to produce a generic oracle for A which omits bσ for every σ on P , and which therefore
cannot generically compute B, because it is missing infinitely many pieces of information
about B, and each missing piece of information forces there to be another instance of the
computation’s domain’s density dropping below 1

2
.

Unfortunately, this creates a problem where there could theoretically be a generic oracle
for A which chooses a collection of σ’s of increasing lengths from different paths of T ,
and omits each of the corresponding bσ’s, thereby potentially not being able to generically
compute B even if the tree is well-founded.

For this reason, we need to also introduce a method for information to propagate down
the tree: if σ ≺ τ , and bσ is known, then it should be easy to deduce what bτ is. That
way, removing the knowledge of an entire branch will still have the original desired effect,
but removing bits of information from different branches will be much more difficult than
previously.

CHAPTER 2. GENERIC REDUCTION 30

However, if we want to be able to remove information along a path, we need to make
sure that our procedure for propagating information downward along T does not also cause
information to propagate upward along T . Else, if Q is a path through T , σ ≺ τ , σ ≺ Q, and
τ ⊀ Q, then bσ would be able to be deduced from bτ , so we would not be able to selectively
remove only the information along Q from A.

Thus, for each σ ∈ T , for each m < |σ|, we create a procedure to deduce bσ from
〈bσ0 , ..., bσm〉, where σ−1 = σ, and σi+1 is the immediate predecessor of σi. This procedure
is coded in a way so that if a partial oracle for A does not know the procedure, then its
density must drop below 1 − 2|σm|+2 as a result. The procedure is also coded in a way so
that knowing bσ and knowing the procedure does not necessarily allow us to deduce any of
the bσi .

The actual coding is as follows:

Consider the sets Pi from Definition 1.3.5.
In B, for each σ ∈ ωω, choose an i in a uniform manner, and code bσ into Pi. (If n ∈ Pi,

then n ∈ B ↔ bσ = 1.) If σ /∈ T , then bσ = 0.

A will be equal to Ã⊕R(T), where Ã is built as follows.

Assign half of the Pi to coding bσ’s in Ã, and half of the Pi to coding deduction procedures
in Ã.

Then, for each σ ∈ ωω, choose an i in a uniform manner, and code bσ into the last 1
2|σ|

of

Pi. (If n is one of the last 2i−|σ| many elements of Pi, then n ∈ Ã↔ bσ = 1. If n is a smaller

element of Pi then n /∈ Ã.)
Choose one Pi for each sequence 〈σ,m, τ, j, k〉 such that σ ∈ ωω,m < |σ|, τ ∈ 2m, j ∈

{0, 1}, k ∈ N. Call it Pσ,m,τ,j,k. Then, to deduce bσ from the sequence 〈bσ0 , ..., bσm〉, we use
the following formula.

bσ = j ⇐⇒ ∃n∃k n ∈ Ã ∩ Pσ,m,〈bσ0 ,...,bσm 〉,j,k

When we actually build Ã, we will ensure that for exactly one value of k, we put the last
1

2|σ|−m−1

∣∣Pσ,m,〈bσ0 ,...,bσm 〉,j,k∣∣ many elements of Pσ,m,〈bσ0 ,...,bσm 〉,j,k into Ã.
For a fixed value of 〈σ,m, τ〉, the set of all Pσ,m,τ,j,k is known as the deduction proce-

dure coding bσ from its m + 1 predecessors. The deduction procedure operates under true
assumptions if τ = 〈bσ0 , ..., bσm〉, and it operates under false assumptions if τ = 〈bσ0 , ..., bσm〉.

The idea here is that knowing 〈bσ0 , ..., bσm〉 will direct you to the correct place to look for
the value of bσ. Once you know where to look, you simply search until you find an answer. If
you try to search for the value of bσ using incorrect values for 〈bσ0 , ..., bσm〉, then you might
get the correct answer, you might get the incorrect answer, and you might get no answer.
Because of this, knowing bσ gives little to no information about 〈bσ0 , ..., bσm〉. However, if
we wish to remove a deduction procedure from an oracle, we only need to remove the place
where it actually gives an answer, ie the last 2i

2|σ|−m−1 many elements of Pi for some i. The
size is calibrated so that removing a deduction procedure whose shortest element is τ is just
as difficult as removing the knowledge of what bτ is.

CHAPTER 2. GENERIC REDUCTION 31

So now, given that A and B are each built in the manner just described, a generic oracle
for A is able to generically compute B by the following algorithm.

Let (A) be a generic oracle for A.
To determine whether or not n ∈ B, we first determine which Pi n is in. Then we

determine which bσ is coded into that Pi. Then, since A ≥g R(T), we can use (A) to
determine whether or not σ ∈ T . If no, then n /∈ B. If yes, then we attempt to determine
the value of bσ as follows.

We define the sentence “(A) can determine the value of bσ.” by induction on |σ|.
Let Pi be the set assigned to code bσ in to Ã. Then, if (A) gives an output on one of the

last 2i−|σ| many elements of Pi, then (A) can determine the value of bσ, and that value is the
value of the output that we found.

The other way that (A) can determine the value of bσ is with our deduction procedures.
If there is some m < |σ| such that (A) can determine the values of bτ for τ equal to one of
the m+1 immediate predecessors of σ, and if (A) also includes the value of A in the location
where the corresponding deduction procedure has a 1, then the deduction procedure allows
(A) to determine the value of bσ in the manner described when we were describing the
deduction procedures.

Then, if T is well-founded, for any generic oracle (A), for A, there will only be finitely
many σ such that (A) cannot determine the value of bσ. The proof is as follows.

Let (A) be a generic oracle for A. Assume there are infinitely many σ such that (A)

cannot determine the value of bσ. Let T̃ ⊆ ωω be the smallest subtree of T containing all of
the σ such that (A) cannot determine the value of bσ. Then, T̃ is well-founded, because it
is contained in T , which is well-founded. Also, it is infinite, by assumption. Thus, it must
have at least one node where it branches infinitely. Call the first such node σ0.

From each of those countably many branches, choose a minimal node σ such that the
generic oracle cannot determine the value of bσ. (For i > 0, let σi be en extension of the

ith branch of T̃ such that (A) cannot determine the value of bσi , but such that for any τ , if
σ0 ≺ τ ≺ σi, then (A) can determine the value of bτ .)

Then, we claim that the domain of (A) must have its density drop below 1 − 2−|σ0|−3

infinitely often.
The reason for this is that, for any given i, if σi is an immediate successor to σ0, then

the generic oracle must have its density drop below 1− 2−|σ0|−3 to not know the value of bσi
(This is by the manner in which the bσi are directly coded into A). Otherwise, by assumption
on σi, we know that the generic oracle can determine the values of the bτ for all of the τ
that satisfy σ0 ≺ τ ≺ σi. Thus, since the first of those τ has length |σ0| + 1, the deduction
procedure that allows us to determine bσi from those bτ is coded in a way so that if the
generic oracle cannot recover that deduction procedure, then its density must drop below
1− 2−|σ0|−3.

Each of these things is coded in a different place, so the domain of the generic oracle has
its density drop below 1− 2−|σ0|−3 infinitely often, so the domain is not density-1, so (A) is
not a generic oracle, providing a contradiction.

CHAPTER 2. GENERIC REDUCTION 32

Thus, if T is well-founded, any generic oracle can (uniformly) recover all but finitely
many of the bσ, and therefore all but finitely many of the bits of B. Thus, A ≥g B.

Part 2

In this part, we construct Ã (and therefore A, and B, which are still defined according
to the construction outlined in Part 1) in a way so that if T is ill-founded, then A �g B.

If T is ill-founded, then the intended reduction will not work as a generic reduction, so
the main purpose of this section will be ensuring that any reduction which “cheats” infinitely
often occasionally makes mistakes, and therefore can not be used to generically reduce B to
A, since a generic reduction is never allowed to give incorrect outputs. (Here, “cheating”
simply means guessing at the values of bσ without having solid evidence as to why those
guesses should be correct.)

For those who like to think about constructions in terms of forcing, we will be building
a generic with respect to the poset implicitly defined in Part 1, except with the additional
caveats that on the “incorrect” deduction procedures, we are only allowed to encode them
giving one output, giving the other output, or giving no output. Furthermore, our conditions
are allowed to include restrictions of the form in the following paragraph.

One of our key techniques will be to fix a finite set of numbers, and demand that for any
n in that set, any deduction procedure that operates under false assumptions about any bσ
with |σ| = n does not produce any answers. (More formally, for any n0 in that set, and any
σ0, σ1, with σ0 ≺ σ1, and |σ0| = n0, |σ1| = n1 > n0, for any m ≥ n1 − n0 − 1, for any τ such

that τ(n1 − n0 − 1) 6= bσ0 , for any j, and k, Pσ1,m,τ,j,k ∩ Ã is empty.)

The actual construction is as follows.
At the beginning of stage s, there is some number f(s) such that we have determined the

values of bσ for every σ such that |σ| < f(s), and for no other σ. For every σ with |σ| < f(s),

and every deduction procedure for computing bσ, we have determined the values of Ã on the
entire deduction procedure. (That is to say, if |σ| < f(s), then we have determined whether

or not n ∈ Ã for every n in any Pσ,m,τ,j,k.) We also have some finite set of numbers n such
that we demand that for any n in that set, any deduction procedure that operates under
false assumptions about any bσ with |σ| = n does not produce any answers. We have not

determined the values of Ã on any other deduction procedures.
At this point, we have one single functional, φs, that we need to diagonalize against. This

means that we either must ensure that there will be some generic oracle (A) for A such that

φ
(A)
s does not have density-1 domain, or we must ensure that there is some generic oracle

(A) for A such that ϕ
(A)
s incorrectly computes B at some number.

The first question that we ask is whether there any way of extending our definition of Ã
to make ϕAs produce an incorrect computation for B. (Again, we remind the reader that T is

fixed, and B depends entirely on A, so determining the value of Ã also determines the values
of A and B, and so determines whether or not ϕAs produces any incorrect computations for
B. Also, generic computations are defined in a way so that having more information about
the oracle always produces more outputs, and never produces different outputs, and thus,

CHAPTER 2. GENERIC REDUCTION 33

if any generic oracle for A produces incorrect results, then the full oracle for A produces
incorrect results.)

If ϕAs can be made to produce any incorrect computation for B, then we make that

extension, and this guarantees that when we are done constructing Ã, (and therefore A and

B,) it will not be true that A ≥g B. After that, we extend Ã arbitrarily in order to meet
the hypotheses on what the construction should look like at the beginning of a stage. (This
involves finding the largest number c such that bσ is defined for a σ with |σ| = c, or such that
some deduction procedure for such a σ is defined somewhere, and extending the definition
of Ã arbitrarily to all other bτ ’s and deduction procedures for bτ ’s of equal or lesser length.)

If ϕAs cannot be made to produce any incorrect computations for B, then we extend

our definition of Ã such that for every σ with |σ| = f(s), bσ = 0. More importantly, we
restrict every deduction procedure that computes such a bσ and that operates under false
assumptions to not give any answers. (Ie, to be empty.) We allow all the correct deduction
procedures to give correct answers immediately. Finally, we insist that for the rest of the
construction, for every deduction procedure that operates under a false assumption about
the value of bσ for any σ with |σ| = f(s), that deduction procedure does not give any answers.

This completes the construction. (The second option will certainly happen infinitely

often, and so Ã will be defined everywhere after ω many steps.)

Part 3

Finally, we prove that if T is ill-founded, then A �g B. To do this, we must demonstrate
that for any ϕ that was not able to be extended to make a false claim about B, there exists
a generic oracle, (A), for A such that ϕ(A) does not have density-1 domain. (At the end of
Part 1, we verified that if T is well-founded, then A ≥g B. Also, if ϕ could have been able
to be extended to make a false claim about B, we would have done that, and then it would
certainly not witness A ≥g B.)

We remind the reader that in this part of the proof, we are allowed to work omnisciently,
and in particular we will be allowed to know every choice that was made in Part 2, as well
as knowing an example of an infinite path through T .

Assume T is ill-founded. Let Q be an infinite path through T . Assume that at stage s
of the construction ϕAs could not have been made to produce any incorrect computations for
B.

Let s0 = s, and for each i > 0, let si be the ith stage t after stage s such that ϕAt was
not able to be made to produce any incorrect computations for B at stage t. Let σi be the
initial segment of Q such that |σi| = si

Now, we define (A) to be the oracle for A which does not give answers on the coding
locations of any of the bσi , and which also does not include the answers (the 1s) from any
of the deduction procedures used for deducing bσ0 , or from any of the deduction procedures
used for deducing bσi , unless those deduction procedures have sufficiently large m values that
they depend on bσi−1

.

Then we claim that (A) is a generic oracle for A, and that ϕ
(A)
s does not have density-1

CHAPTER 2. GENERIC REDUCTION 34

domain.
To show that (A) is a generic oracle for A, we show that the set of places where (A) does

not give answers is density-0.
There are finitely many (in fact, at most one) σi of each possible length, and so the union

of all of the coding locations of all of the bσi is density-0. (This is by Lemma 1.3.7, because
each bσi is coded into a smaller portion of its corresponding Pj than the previous one.) Also,
for each length n, there is at most one deduction procedure whose answers we erased whose
shortest queried string has length n. This is because only the correct deduction procedures
give any answers that need to be erased, and because we only erase deduction procedures
that do not require knowledge of the previous bσi . Thus, again, the union of all the the
erased answers from deduction procedures has density-0.

Finally, we show that ϕ
(A)
s does not give outputs in any of the locations where the bσi are

coded in B.
The proof of this fact is that, for any i, any finite subset of the information in (A)

is a partial oracle that could be extended to a partial oracle for a different set A1 which
would also be consistent with the requirements imposed at the beginning of stage s of the
construction, and such that the value of bσi in A1 was different from the value of bσi in A.

(This statement will be proved by induction shortly) Therefore, if ϕ
(A)
s gives any outputs on

any of the the bσi , then at stage s, we would have been able to extend our condition on A
to a condition specifying enough of A1 to cause ϕs to produce an incorrect computation for
B, contradicting our assumption on ϕs.

We conclude our proof by proving by induction on i, that any finite subset of the infor-
mation in (A) is a partial oracle that could be extended to a partial oracle for a different set
A1 which would also be consistent with the requirements imposed at the beginning of stage
s of the construction, and such that the value of bσi in A1 was different from the value of bσi
in A.

Recall that by the construction of Ã, and by the assumption on σi, for every i, bσi = 0

Case 1: i = 0
Assume that we have seen a finite number of the pieces of information in (A).
Then we have not seen any of the locations where bσ0 is coded, and we have also seen

nothing but 0’s from all of the deduction procedures for computing bσ0 . At stage s, the value
of bσ0 had not yet been decided, and there were no conditions yet on the deduction pro-
cedures for computing bσ0 , except for some requirements that certain deduction procedures
that operated under false assumptions were not allowed to give any outputs. Furthermore,
none of the deduction procedures operating under false assumptions about bσ0 ever give an-
swers. Therefore, it would be consistent with what we have seen so far of (A) and with the
requirements imposed at the beginning of stage s to have bσ0 equal to 1, and then to fill in A1

with bσ0 = 1, and with the deduction procedures that compute bσ0 having 1’s in the correct
locations in the next coding sets that we have not yet looked at. Since none of the deduction
procedures that operated under the assumption bσ0 = 1 have given answers in the finite
amount of (A) that we have seen, we may freely extend them in A1 to give correct outputs

CHAPTER 2. GENERIC REDUCTION 35

in A1. (Notice that this is consistent with the conditions imposed on the construction at the
beginning of stage s, because the condition that says that those deduction procedures must
never give outputs was imposed at the end of stage s.)

Case 2: i > 0
Assume again that we have seen a finite number of the pieces of information in (A).
Then, again, we have not seen any of the locations where bσi is coded, and we have also

seen nothing but 0’s from all except a few of the deduction procedures for computing bσi .
Of these deduction procedures, the only ones from which we have seen any 1’s are the ones
which operate under true assumptions, and which also depend on the value of bσi−1

. By
induction, it is consistent (both with what we have seen of (A), and with the condition on
the construction at stage s) that bσi−1

could have the opposite value from its actual value.
Thus it would be consistent to fill in A1 to have the incorrect value for bσi−1

, and then to
also have the incorrect value for bσi , and then to have the “relevant” deduction procedure
then place 1’s into the next relevant location. (Here, relevant means operating under the
assumptions that are true of A1, but potentially false of A0.) Again, this does not contradict
any of our requirements, since none of the deduction procedures which use bσi = 1 have given
any outputs yet, so the ones which operate under assumptions which are correct in A1 can
still be made to give outputs which are correct in A1.

This concludes our proof of Π1
1-completeness of ≥g.

We briefly mention two things about this proof.
First of all, the fact that a deduction procedure operating under false assumptions about

bσi never gives incorrect answers is very important in order to ensure that it is consistent
with any finite oracle that bσi has the opposite value. However, it is also important that it
never gives correct answers, because it might be possible to deduce the value of bσi+1

without
knowing the value of bσi . (And to avoid that, we might be forced to remove too much
information from our oracle (A).) It is also important that sometimes, incorrect deduction
procedures can give correct answers, because otherwise, seeing a deduction procedure give
a correct answer would tell you that all of its assumptions were correct, and it is also
important that sometimes incorrect deduction procedures give incorrect answers, because
otherwise, seeing any answer from any deduction procedure would be sufficient to know
that the answer was correct. By using all three sorts of deductions (incorrect, correct, and
nonresponsive), we have enough leeway to force the opponent to not give answers if he is
clever enough to avoid making mistakes.

The second thing is that this proof is almost a proof that nonuniform generic reduction
is Π1

1 complete, but there are two obstructions. First of all, we use almost the same generic
oracle for every ϕ, except that ϕs could potentially “know” about the infinitary requirements
imposed before stage s, (since we cannot break those requirements in order to make ϕs give
an incorrect answer,) so for larger values of s, we need to go deeper into T before we begin
removing information from (A). We cannot intersect all of these oracles, because that would

CHAPTER 2. GENERIC REDUCTION 36

involve removing too many deduction procedures that used bits all the way from the root of
the tree.

The second obstruction is that even if we were able to overcome this, we would still need
to somehow prove that none of the ϕ that gave incorrect answers would be able to produce
a generic computation of B from our density-1 oracle. (In nonuniform generic reduction,
giving incorrect answers on one oracle does not disqualify you from being a legitimate generic
reduction on some other oracle, and we would need to create one single oracle from which
no ϕ would be able to produce a generic computation.)

This seems quite difficult, which is somewhat strange, given that nonuniform generic re-
duction is naturally defined in a Π1

1 manner (For every generic oracle, there exists a reduction
such that... etc) whereas uniform generic reduction is naturally defined with a leading exis-
tential quantifier over naturals (There exists a reduction such that for every generic oracle,
etc.) Nonuniform generic reduction is probably also Π1

1-complete (it would be very surprising
if this seemingly much more complicated notion of reduction was actually less complicated
in the definability hierarchy), but unfortunately, it is sufficiently difficult to work with that
we do not know how to prove that it is Π1

1-complete.

Densiy-1 degrees

When working with generic computation and generic reduction, in general, one needs to
balance working with what the halting sets of computations should be, and what the outputs
of those computations on their halting sets should be. In some sense, the work with the
halting sets is the new concept that we explore in generic computation, and the outputs can
be dealt with in similar ways as they are dealt with in ordinary Turing reduction. To isolate
and better understand the role that halting sets have in the theory of generic reduction, we
consider the generic degrees of density-1 sets.

Definition 2.2.2. A generic degree a is density-1 if there exists a real A ∈ a such that A
is density-1.

As it turns out, a generic degree having a density-1 real in it is equivalent to it having a
coarsely computable real in it. (From Definition 1.1.12.)

Proposition 2.2.3. A generic degree a is density-1 if and only if there exists a coarsely
computable real A ∈ a, ie a real A ∈ a and a recursive real B, such that {n |A(n) = B(n)}
is density-1.

Proof. Certainly, if a generic degree is density-1, then the second half holds by letting A be
a density-1 real in a, and by letting B = N.

The converse follows directly from the following lemma.

Lemma 2.2.4. Let A, and B be reals, and assume that B is recursive, and that {n |A(n) =
B(n)} is density-1.

Then {n |A(n) = B(n)} ≡g A.

CHAPTER 2. GENERIC REDUCTION 37

Proof. A ≥g {n |A(n) = B(n)} via the algorithm ϕ where ϕ(n) = 1 for any n such that
A(n) = B(n). Since B is recursive, and since any generic oracle gives density-1 many of the
bits of A, and since the intersection of two density-1 sets is density-1, any generic oracle for
A will find density-1 many locations where A and B agree.

Conversely, {n |A(n) = B(n)} ≥g A via ϕ(n) = B(n) for any n such that A(n) = B(n).
The oracle tells ϕ where to halt, and a computation of B on that input tells ϕ what output
to give. The domain is density-1 again because the intersection of two density-1 sets is
density-1.

The two most fundamental facts for this subsection are that the intersection of two
density-1 sets is density-1, and that when working with density-1 sets, we may work entirely
with oracles and computations that only output ones. The proof of this first fact is briefly
sketched after Definition 1.1.1, and the second fact is just a generalization of Observation
1.1.11, but we state and prove both for the sake of completeness.

Observation 2.2.5. Let A and B be reals. Then A ∩ B is density-1 if and only if both A
and B are density-1.

Proof. If A ∩B is density-1, then each of A and B is density-1 because it is a superset of a
density-1 set.

Conversely, fix some ε > 0. We must prove that there is some m such that ∀n >
m |(A∩B)�n|

n
> 1− ε.

If A and B are each density-1, then choose m such that for every n > m, |A�n|
n

> 1 − ε
2

and |A�n|
n

> 1− ε
2
. This m suffices for our purposes.

Observation 2.2.6. Let A and B be density-1 reals. Then A ≥g B if and only if there
exists a Turing functional ϕ which never produces 0 as an output, such that for any generic
oracle (A) for A, if every output of (A) is a 1, then ϕ(A) is a generic computation of B.

Proof. Let A and B be density-1 reals.
Assume A ≥g B. Fix ϕ such that for any generic oracle (A) for A, ϕ(A) is a generic

computation of B. If we modify ϕ to not halt when it otherwise would halt and output 0,
then it will still be true that for any (A), ϕ(A) is a generic computation of B, because the
outputs that it gives will still be correct, and the domains will still be density-1, since for
each (A), the domain of ϕ(A) will be the intersection of B with the previous domain of ϕ(A).

Since this reduction works for every generic oracle, in particular, it also works for generic
oracles whose domain is contained in A.

Conversely, assume there exists a ϕ which generically computes B from any generic oracle
for A which only outputs 1s. Then it can be modified to generically compute B from any
generic oracle (A) for A because A is density-1, (A) must contain density-1 many elements
of A in its domain, and ϕ may be modified to ignore the zeroes, and to give exactly the same
outputs as it would have given if those zeroes were not in the domain of (A).

CHAPTER 2. GENERIC REDUCTION 38

Observation 2.2.6 is usually only used implicitly, in that it was useful in narrowing the
search for reductions, but not in writing the proof. It will occasionally be used explicitly.
More importantly than that, however, is the philosophy implicit in the observation: that
generic descriptions of density-1 sets should be thought of as density-1 subsets of those sets.

Observation 2.2.5 is used explicitly ad nauseum when working with density-1 degrees,
and references to it will frequently be suppressed to decrease proof length.

We apply Observation 2.2.5 to prove two results which give an idea of why density-1
degrees are easier to work with than other generic degrees.

Lemma 2.2.7. Let a and b be density-1 generic degrees. Then a ≥g b if and only if
∃A ∈ a ∃B ∈ b such that A and B are both density-1, and A ⊆ B.

Proof. Assume ∃A ∈ a ∃B ∈ b(A ⊆ B), with A and B both density-1. Then A ≥g B via
the algorithm ϕ where ϕ(n) = 1 if n ∈ A. This algorithm only gives correct outputs because
A ⊆ B, and it halts on the intersection of A with the domain of the generic oracle for A,
which is density-1.

Conversely, assume a ≥g b, and let A0 ∈ a, B0 ∈ b, with A0, B0 both density-1. Let
A = A0 ∩ B0, and let B = B0. By definition, A ⊆ B. Also, A0 is density-1 by Observation
2.2.5. So it remains to show that A ≡g A0.

A ≥g A0 because A ⊆ A0 and A is density-1. Conversely, A0 ≥g A because a generic
oracle for A0 can be used to generically compute B0, and we may then restrict the domain of
this computation to only give outputs on elements of A0. This has density-1 domain because
the domain is the intersection of A0 with the domain of the generic computation of B0,
and it always correctly computes A because it correctly computes B, and for any n ∈ A0,
A(n) = B(n).

Lemma 2.2.8. Let A and B be density-1 reals. Then A ∩B ≡g A⊕B.

Proof. By Lemma 2.2.7, A ∩B ≥g A⊕B (since both A and B generically reduce to it.)
Conversely, A ⊕ B ≥g A ∩ B by the algorithm ϕ where ϕ(n) = 1 if 2n and 2n + 1 are

both in A ⊕ B. (If we would like, we may also have ϕ(n) = 0 if either 2n or 2n + 1 is not
in A ⊕ B, this would still be a correct generic reduction, but it is against the philosophy
implicit in Observation 2.2.6.) The domain is density-1 by the usual proof that A⊕B ≥g A,
and A⊕B ≥g B. (See Lemma 2.1.17.)

We use Lemma 2.2.7 to prove one of our more amusing results: that the density-1 sets
are dense!

Proposition 2.2.9. Let a and b be density-1 generic degrees. Assume a >g b. Then there
exists a density-1 degree c such that a >g c >g b.

Proof. Use Lemma 2.2.7 to fix density-1 sets A ⊆ B in a and b respectively.

CHAPTER 2. GENERIC REDUCTION 39

We build a real C such that A ⊆ C ⊆ B, which guarantees that C is density-1 and that
A ≥g C ≥g B. The main difficulty of the construction will be ensuring that C �g A, and
B �g C.

We caution the reader to notice that it is not necessarily important to ensure thatA ≥T C,
and indeed, this will probably not be the case.

The basic idea of the proof is that C will copy A until it forces one instance of B not
computing it, then it will copy B until it forces one instance of it not computing A, then it
switches back to copying A.

At stage 2e, we have some finite approximation σ2e to C, and we wish to extend it so
that C does not generically reduce to B via ϕe. The first thing that we ask is whether it is
true that for every generic oracle (B), for B, ϕ

(B)
e is a generic computation of B which never

outputs any 0s. If not, then we do not have to do anything, since any generic computation
of C must also be a generic computation of B. (C will be density-1 when we build it since
it will contain A, so by Observation 2.2.6, we may assume that any generic computation
of C outputs density-1 many 1s, and no 0s, and C will be contained in B, so that generic
computation would also be a generic computation of B.)

C will be density-1 when we build it (it will contain A), by Observation 2.2.6, we may
assume that any generic computation of C outputs density-1 many 1s, and no 0s, and C will
be contained in B, so any such generic computation must have domain contained in B, and
thus be a generic computation of B.

If yes, then there must be some number n such that ϕBe (n) = 1, but n /∈ A. Otherwise,
B ≥g A via ϕe. (Recall that generic reductions are defined in a way so that having less
information about the oracle never results in more outputs, so if ϕBe ⊆ A, then for every

(B), {n |ϕ(B)
e (n) = 1} is a density-1 subset of A, and so ϕ

(B)
e is a generic computation of A.)

By the usual argument, there must be infinitely many such n (because otherwise we could
modify ϕe to not halt on those n.) So we can choose one such n that is larger than |σ2e|,
and extend our approximation to C to be equal to A up to and including that n.

This ensures that it is not true that B ≥g C via ϕe.

At stage 2e + 1, we have some finite approximation σ2e+1 to C, and we wish to extend
it so that A does not generically reduce to C via ϕe. The first thing that we ask is whether
it is true that for every generic oracle (A), for A, with dom((A)) ⊆ A, ϕ

(A)
e is a generic

computation of A. If not, then we do not have to do anything: C will contain A, so every
such generic oracle for A will, in fact, also be a generic oracle for C. Thus if any of the ϕ

(A)
e

is not a generic computation of A, then A will definitely not reduce to C via ϕe.
If yes, then it must be true that for some n /∈ A, ϕBe (n) = 1. Otherwise, B ≥g A because

for any (B), ϕ
(B)
e never gives incorrect outputs about A. (We implicitly use Observation

2.2.6 in assuming that ϕe can only make mistakes by outputting 1s when it is not supposed
to. Notice that any generic oracle for B actually is a superset of some generic oracle for A,
and so for any (B), the domain of ϕ

(B)
e is density-1.)

Similarly, if we let B1 be the real which agrees with σ2e+1 up to |σ2e+1|, and which agrees
with B after that, then there must also be some n /∈ A, ϕB1

e B(n) = 1 because otherwise

CHAPTER 2. GENERIC REDUCTION 40

B1 ≥g A, which is not possible, since it is a finite modification of B. We extend our
approximation to C to be equal to B until we have copied enough to make ϕCe B(n) = 1 for
some n /∈ A.

This ensures that it is not true that C ≥g A via ϕe.

Then, after countably many stages, we have ensured that there is no ϕ witnessing either
B ≥g C, or C ≥g A. Hence, because A ⊆ C ⊆ B, we have that that A >g C >g B. Let c be
the generic degree of C.

We can strengthen this result to split A over B:

Proposition 2.2.10. Let a and b be density-1 generic degrees. Assume a >g b. Then there
exist density-1 degrees c and d such that a >g c >g b, a >g c >g b, and c⊕ d = a.

Proof. The basic idea of this proof will be that we will mimic the previous construction, but
we will ensure that C ∩ D = A, which will ensure that C ⊕ D ≡g A by Lemma 2.2.8. We
may also, if we desire, ensure that C ∪D = B, which we will do, just for symmetry, but this
does not ensure that b is the infimum of c and d in the generic degrees.

We will assume familiarity with the proof of 2.2.9.

As before, fix density-1 sets A ⊆ B in a and b respectively.
At stage 2e, we have some finite approximations σ2e to C, and τ2e to D, and we wish

to extend them so that C does not generically reduce to B via ϕe, and so that A does not
generically reduce to D via ϕe. (Notice here that we are satisfying requirement 2e for C,
but requirement 2e+ 1 for D.)

We accomplish this by having C copy A until ϕBe incorrectly computes some bit of C.
We simultaneously have D copy B until ϕDe incorrectly computes some bit of A. (If one of
the strategies satisfies its objective before the other one does, then it continues to copy the
set that it is copying until the other strategy has satisfied its own objective.) If one of the
strategies does not need to act, then both strategies only wait for the one that needs to act
to satisfy its objective. If neither strategy needs to act, then we simply move on to stage
2e + 1. (Again, this cannot be done uniformly, but that is fine, because we do not need
either C or D to be computable from A, but rather just for them both to be generically
computable from A, which will be satisfied by both of them containing A.)

At stage 2e+ 1, we have C copy B and D copy A in a manner analogous to what we did
at stage 2e.

At the end of the construction, we have that C ∩D = A, and so C ⊕D ≡g A. We have
also forced that C �g A,D �g A,B �g C, and B �g D. So we may let c, and d be the
generic degrees of C, and D, respectively.

Now, that we have established some techniques for working with density-1 degrees, we
discuss what is known about how the density-1 degrees embed in the generic degrees as a
whole.

CHAPTER 2. GENERIC REDUCTION 41

Proposition 2.2.11. Let a be any non-quasi-minimal generic degree. Then there is a quasi-
minimal density-1 generic degree, b, such that a >g b.

Proof. The proof of Proposition 2.1.21 also proves Proposition 2.2.11, since all of the sets
that are generically computed in the proof of Theorem 1.3.13 are density-1. (We find A such
that a ≥g R(A) >g 0. We then find a real C so that A and C form a minimal pair in the
Turing degrees, and then since they do not form a minimal pair for generic computation, we
may let b be the generic degree of the real that both of them can generically compute.)

Notice that Proposition 2.1.21 is proved for all generic degrees (indeed, it is trivially true
for quasi-minimal generic degrees), however, our proof of Proposition 2.2.11 only works for
non-quasi-minimal generic degrees.

We also show that in some sense, the density-1 degrees go reasonably high up in the
generic degrees.

Proposition 2.2.12. Let A be any nonrecursive real which can be uniformly computed from
a sufficiently fast growing function. Then there is a density-1 real B such that B ≥g R(A).

We clarify that when we say that A can be uniformly computed from a sufficiently
fast growing function, we mean that there is a single increasing function f , and a single
Turing functional ϕ such that for any g such that ∀n g(n) ≥ f(n), ϕg computes A. (This
hypothesis holds for precisely the hyperarithmetic reals. See Appendix D for a definition of
the hyperarithmetic reals, and a proof of this fact.)

We also mention that for this proof, we use uniform time-dependent generic reduction,
because the time-independent version of the proof is more difficult to make precise.

Proof. Let f be a function so that any faster growing function computes A. Let ϕ be the
reduction that witnesses this.

Let B be any density-1 real such that for every n, and m, if n < f(m), then |B�n|
n

< 1−2m.
For any increasing f , there is such a B because for any fixed m0, the density of B will
eventually be allowed to go above 1− 2m0 (as soon as n is larger than f(m0),) and so B can
satisfy the “slow growing” requirement while still having its density go to 1 eventually.

Then, from any time-dependent generic oracle (B) for B, we can define a function g,

where g(m) is the first number n such that we see that |B∩dom((B))�n|
n

≥ 1 − 2m. g(m) is
defined, because the density of (B) must go to 1, so there must be some least n0 such that
|B∩dom((B))�n0|

n0
≥ 1 − 2m, and so there must be some n ≥ n0 where (B) first shows this to

happen.
B ∩ dom((B)) ⊆ B, so we have that for every m, g(m) ≥ f(m), so we may compute A,

and therefore compute (and generically compute) R(A) via n ∈ A↔ ϕg(n) = 1.

We mention that in the previous proof, g is computed uniformly from the time-dependent
generic oracle, but two different time-dependent generic oracles that gave exactly the same
outputs might give different g’s, depending on the time dependence. By Proposition 2.1.10,

CHAPTER 2. GENERIC REDUCTION 42

this proof also proves the time-independent version, but if we wanted to do the time-
independent proof directly, we would need to apply ϕ to all apparently consistent values
for g, and give outputs whenever ϕ halted on any of them. So no single g would be com-
puted as an intermediate step, but A would still be computed uniformly in the end.

On the other hand, we now show that the density-1 degrees can only bound countably
many Turing degrees.

Proposition 2.2.13. There are at most countably many reals A such that there is a density-1
real B such that B ≥g R(A).

The key idea of this proof is that for any fixed ϕ, there can be at most one A such that
there exists a density-1 real B such that B ≥g R(A) via ϕ. This is because given any two
density-1 reals, there is a generic oracle that is a generic oracle for both of them.

Proof. Fix a Turing functional ϕ. Assume that B0 ≥g R(A0) via ϕ, and also that B1 ≥g
R(A1) via ϕ, for some density-1 reals B0, and B1, and for some reals A0, and A1.

Then, let (B) be the generic oracle which outputs a 1 if and only if n ∈ B0 ∩ B1, and
which never outputs a 0.

Then ϕ(B) is a generic computation of R(A0), because (B) is a generic oracle for B0, and
likewise, it is a generic computation of R(A1), because (B) is a generic oracle for B1.

Thus, A0 = A1, because otherwise R(A0) and R(A1) would differ on a set of positive
density, and so it wouldn’t be possible for one single generic computation to generically
compute both of them.

Thus, for each ϕ, there is at most one R(A) that generically reduces to some density-1
real via ϕ, so since there are only countably many Turing reductions, there can be at most
countably many R(A)s that have a density-1 degree above them.

We combine the ideas from these two proofs to prove the converse to Proposition 2.2.12,
demonstrating a characterization of the hyperarithmetic reals in terms of generic reducibility,
and density-1 sets.

Theorem 2.2.14. A real A is hyperarithmetic if and only if there is a density-1 real B such
that B ≥g R(A).

The basic idea of the construction is that we use B to generate a function such that from
any faster growing function, one can generate a binary tree of density-1 oracles that includes
B. (The function generated is not the same as the function from Proposition 2.2.12, since
this function’s purpose is in some sense dual to the purpose of the previous function.)

Once we have this class of oracles, we have them engage in a process that can be visualized
as them voting in pairs until they can elect one leader who is strong-willed enough to make
them vote unanimously. B is able to make them vote unanimously, so eventually they will
find such a leader, and B also is not corruptible, so when they find such a leader, even if

CHAPTER 2. GENERIC REDUCTION 43

that leader is not B, that leader will have B’s support, and so in particular that leader will
lead the oracles to the correct conclusion.

Proof. For this proof, we use the characterization of the hyperarithmetic reals as the reals
for which there exists a function such that the real can be uniformly computed from any
faster growing function, as in the comment after Proposition 2.2.12. (See Theorem D.0.25,
in Appendix D.)

The forward direction of the theorem follows directly from Proposition 2.2.12, so we only
prove the other direction.

Let A be a real, B a density-1 real, and ϕ a Turing functional such that B ≥g R(A) via
ϕ.

Then, let f be the function where f(m) is the smallest number such that ∀n > f(m), #(B�n)
n

>
1− 2m. Then we claim that from any g that dominates f , we can uniformly compute A.

The basic idea of the construction is that from any such g, we can get a lower bound on
the rate at which the density of B goes to 1. We then consider all density-1 oracles whose
density goes to 1 at at least that rate (this bound allows us to build a tree of possibilities
for B that includes only paths which are density-1,) and we use the techniques of the proof
of Proposition 2.2.13 to eliminate the incorrect answers.

Let g be a function such that for all m, g(m) ≥ f(m). By replacing g with a faster
growing function if necessary, we may assume that g is an increasing function.

(Replace g with g̃, where g̃(m) = max(g(m), g̃(m− 1) + 1).)
Define Tg ⊆ 2<ω to be the tree where σ ∈ Tg if and only if ∀n,m, if n > g(m), and if

n ≤ |σ|, then #{k<n |σ(k)=1}
n

> 1− 2m. The only relevant facts about Tg are that every path
through Tg is density-1, B is a path through Tg, and that Tg is uniformly recursive in g.

The first fact is because g is used to provide a lower bound on the rate at which the
density of a path must go to 1, and that paths through Tg all respect that lower bound. The
second fact is because, by definition B is a path through Tf , and faster growing functions
provide larger trees, not smaller ones. The third fact is because the definition is uniform in g
(and the apparently unbounded quantifiers over n and m are bounded by g(m) < n ≤ |σ|.)

To compute whether or not n ∈ A, we search for a real X0 such that for every X that
looks like it might be a path through T , if we let YX = X0 ∩X, and let (YX) be the partial
oracle for YX which only halts on the elements of YX , then for some odd value of k, ϕ(YX)(k2n)
halts, and such that all of those computations (ranging over different reals X) halt and give
the same answer. Then n ∈ A if and only if that answer is “1.”

Such a real exists because B is such a real. (If we let X0 = B, then for every X, either
X can eventually be shown to not be a path through T , or (YX) is a generic oracle for B,
and so ϕ(YX) must be a generic computation of R(A), and thus it must halt on some k2n.
This is observed at some finite stage by the usual compactness argument.)

Furthermore, the answer given when X0 is found must be correct, because B is a path
through Tg, and so is always one of the eligible values for X, so for any X0, (YB) is a partial
oracle for B. ((YB) is only a generic oracle for B if X0 is density-1, but that does not matter.)

CHAPTER 2. GENERIC REDUCTION 44

Any partial oracle for B can be extended to a generic oracle for B by simply giving more
outputs, and so ϕ(YB) cannot give any incorrect outputs for R(A).

Thus, once again, intuitively speaking, B is smart enough to force every X to give the
correct vote, so a consensus must eventually be reached, and no X0 is able to force B to vote
incorrectly, so any reached consensus must be a correct one. g is only used in order to build
a population of density-1 sets that includes B as a member.

We now present a major open question concerning density-1 sets, and then discuss the
corollaries that a resolution to the question could have.

Question 3. Is it true that for every nonzero generic degree a there exists a nonzero density-
1 generic degree b such that b ≤g a?

The particularly interesting thing about this question is that a resolution to it would
allow us to either resolve Question 1 or Question 2. If the answer is positive, then it allows
us to prove that there are no minimal degrees in the generic degrees, because the density-1
generic degrees are dense, and 0 is a density-1 generic degree. However, if the answer is
negative, then we can deduce that there exist minimal pairs in the generic degrees, by an
argument that is analogous to the argument from Proposition 1.3.3, because an example of
a degree that does not bound a density-1 degree would be an analogue to a nonrecursive set
such that every density-1 set that it could enumerate would contain a density-1 r.e. subset.

Proposition 2.2.15. If for every nonzero generic degree a there exists a nonzero density-1
generic degree b such that b ≤g a, then there are no minimal degrees in the generic degrees.

Proof. Let a be a generic degree, and assume that there exists a nonzero density-1 generic
degree b such that b ≤g a.

Then, 0 is a density-1 generic degree (because N is generically computable, and density-1),
and so by Proposition 2.2.9, there exists a density-1 generic degree c, such that b >g c >g 0.
Thus, a >g c >g 0, and so a is not a minimal generic degree.

Proposition 2.2.16. If there exists a nonzero generic degree a such that there is no nonzero
density-1 generic degree b with b ≤g a, then a is half of a minimal pair in the generic degrees.

This proof is the analogue of the proof of Proposition 1.3.3.

Proof. Let A ∈ a. We will build a real C such that R(C) and A form a minimal pair for
generic reduction, or in other words, so that if A ≥g D, and C →g D, then D is generically
computable.

We build C by finite approximation.
We have one stage for each e, and one stage for each 〈i, j〉.
At stage e, we ensure that C is not computed by ϕe in the usual manner.

CHAPTER 2. GENERIC REDUCTION 45

At stage 〈i, j〉, we have an approximation τ for C, and we need to ensure that if D
generically reduces to A via ϕi, and if D is generically computable from C via ϕj, then D is
generically computable.

(As a reminder, being generically computable from C is equivalent to being generically
reducible to R(C). Also, being generically equivalent to 0 equivalent to being generically
computable.)

Then, the first thing that we ask is whether there is any extension τ̃ of τ such that for
some n, ϕAi (n) 6= ϕτ̃j (n). If there is, then we extend τ to τ̃ , thereby ensuring that ϕCj cannot
be a generic computation of any real that generically reduces to A via ϕi. (This is because
neither computation is allowed to make any mistakes, and in particular, generic reductions
are not allowed to make any mistakes on any generic oracles, including the entire oracle.)

On the other hand, if there is no such τ̃ , then we may generically compute any D that
generically reduces to A via ϕi, and that is generically computable from C via ϕj by an
algorithm that halts on a subset of the halting set of ϕAi , giving only the outputs given by
ϕj applied to extensions of τ .

The key thing to notice here is that the domain of ϕAi is a density-1 set that generically
reduces to A. This is witnessed by the algorithm that halts wherever ϕi halts, and that
outputs a 1 wherever it halts. (By the definition of generic reduction, for any generic oracle

(A) for A, dom
(
ϕ
(A)
i

)
⊆ dom

(
ϕAi
)
. Furthermore, we may assume that for every such (A),

dom
(
ϕ
(A)
i

)
is density-1, because otherwise ϕi is not a generic reduction when applied to A.)

Thus, by the hypothesis on A, dom
(
ϕAi
)

is generically computable, and so contains a
density-1 r.e. subset, W . (By Lemma 1.1.11, a density-1 set is generically computable if and
only if it contains a density-1 r.e. subset.)

Now, we define ψ so that ψ(n) ↓ if and only if n ∈ W and there exists a τ̃ extending τ
such that ϕτ̃j (n) ↓. In this case, we let ψ(n) = ϕτ̃j (n) for the first such τ̃ that we find.

This is a generic computation of any D that we are concerned with, because the halting
set is contained in the halting set of ϕAi , and the fact that we couldn’t diagonalize means
that the output that we found from our τ̃ must be the same output as the output given by
ϕAi .

Thus, not only would a be half of a minimal pair, but the other half would not even
necessarily be quasi-minimal.

As a corollary to Propositions 2.2.15 and 2.2.16, we may deduce the following fact.

Corollary 2.2.17. If there exist minimal generic degrees, then there exist minimal pairs of
generic degrees. In fact, any minimal generic degree is half of a minimal pair in the generic
degrees.

This is simply because the answer to Question 3 must either be “yes,” or “no.”
After we posed question 2, we mentioned that the only way for Corollary 2.2.17 to be

false would be if there were a single minimal generic degree that was below all the other

CHAPTER 2. GENERIC REDUCTION 46

nontrivial generic degrees. In the Turing degrees, it is easy to show that any nontrivial
Turing degree has another Turing degree that is incomparable to it, but we do not have a
proof that this is true in the generic degrees. It would seem highly unlikely that the generic
degrees have an “hourglass” shape, with a nonminimal generic degree that is comparable to
all others (such a degree would necessarily be quasi-minimal), but we do not currently have
a method of ruling this out.

Question 4. Does there exist a generic degree a such that for every generic degree b, either
a ≥g b, or b ≥g a?

2.3 Nonuniform Generic Reduction

In this section, we will focus on nonuniform time-dependent generic reduction, ≥G. In
general, we will refer to this as simply nonuniform generic reduction, since very little can be
said about either nonuniform generic reduction, besides that which is also true of the uniform
ones, and the only tool that we know of for working with nonuniform generic reduction only
works for the time-dependent version:

Proposition 2.3.1. A ≡G B if and only if ∀C(C →g A⇐⇒ C →g B).

This provides us with a full analogue of Observation 1.1.10, and it also suggests that
from a philosophical standpoint, ≥G might be the “correct” transitive analogue of generic
computation, since it shows that the ≡G degrees are the degrees which precisely measure
how difficult it is to generically compute a given real. (Here, when we discuss how difficult
a real is to generically compute, we refer specifically to relative generic computation, →g,
since that is the relation to which we want a transitive analogue.)

Proof. As in the proof of Observation 1.1.10, we prove the following:
A ≥G B if and only if ∀C(C →g A =⇒ C →g B).
First, assume that A ≥G B.
Then it is easy to show that C →g A =⇒ C →g B, simply because if C →g A, then C can

compute a (single) generic oracle for A, and that generic oracle can be used to generically
compute B.

Conversely, assume that ∀C(C →g A =⇒ C →g B).
Fix a time-dependent generic oracle (A) for A.
Then (A), regarded as a set, can be used to generically compute A (so therefore (A)→g

A). Thus, by assumption, (A)→g B.
Thus, any time dependent generic oracle for A can be used to generically compute B, so

A ≥G B.

CHAPTER 2. GENERIC REDUCTION 47

Thus, the non-uniform generic degrees can be regarded entirely as filters in the Turing
degrees (with a generic degree corresponding to the set of Turing degrees that embed above
it), and with ≥G interpreted as ⊇.

From this point of view, there is a natural question to ask.

Question 5. Which filters in the Turing degrees can be realized as the filter above some
generic degree?

We also mention that the answer to this question is independent of the definition of
generic reduction that we use. The easiest proof of this is by Corollary 2.1.15, which, in
particular, shows that this question can also be thought of as a question about generic
computability.

The question is somehow more relevant to ≥G than it is to ≥g or to→g, since a complete
answer to Question 5 would also completely characterize the ≡G-degrees.

48

Chapter 3

Related Reductions

3.1 Introduction

This chapter will consist almost entirely of work done in collaboration with Damir Dzhafarov.
In this chapter, we introduce and discuss a number of notions similar to generic reduction
in terms of their format.

Motivation

The individual reducibility notions that are discussed in this chapter are not always intrinsi-
cally important, but the overarching program for this chapter is to analyze and understand
two general questions.

Question 6. How is the theory of a notion or reducibility dependent on the specifics of the
involved definitions?

Question 7. What sorts of strategies can be used to code information in a way so that it
can be recovered when the rules for recovering information from an oracle are unusual?

An understanding of Question 6 should provide us with the ability to shift mindsets
between different definitions, and different contexts, and to make accurate predictions about
how the change in context will affect the results that can be concluded in that context. This
sort of mental agility is useful when proving or disproving almost any analogue of almost
any theorem, because it helps us find and focus on the key difference that must be overcome
or exploited in the new context.

Question 7 is motivated in large part by reverse mathematics. The most common theo-
rems analyzed in reverse mathematics are theorems of the form “For every set A satisfying
certain hypotheses, there is a setB with certain properties.” In practice, when one proves that
such a theorem is reverse mathematically powerful, the proof involves building A recursively
while ensuring that any B satisfying the conditions of the theorem must be computationally

CHAPTER 3. RELATED REDUCTIONS 49

powerful. This can be thought of as a fairly obscurely defined rule for extracting informa-
tion from A, and in that sense, it is important to know how to build A so that the desired
information can be recovered from any B.

Definitions

When working with generic reduction, to show that A ≤g B, one insists that the oracle
gives outputs on density-1, and that it is correct wherever it gives outputs, and from this,
one attempts to produce density-1 many bits of B. In this chapter, we consider altering the
definition, both by using notions of largeness other than “density-1,” and by asking what
happens if we demand that oracles and computations are total, but we only demand that
they are correct on a “large” set.

As with generic reduction, we could also work with both uniform and nonuniform re-
ducibilities, but for many of our reducibilities, the nonuniform ones will be trivial, and for
many of the rest, the nonuniform ones will be too difficult to work with. We will still mention
nonuniform reducibilities, but they will not be the focus of the chapter.

It should also be mentioned that the “largeness” notions being considered do not neces-
sarily need to satisfy the usual hypotheses of a largeness notion. In particular, we do not
necessarily demand that the intersection of two large sets is large, nor do we demand that
every superset of a large set is large.

We now define all of the reducibilities that will be studied in this chapter, and briefly
explain why we use those specific reducibilities.

Definition 3.1.1. B is coarsely reducible to A, or A ≥cor B if from any oracle for A which
is correct on a density-1 set, one can coarsely compute B in the sense of Definition 1.1.12.

For this definition, the uniform and nonuniform notions of coarse reducibility can both
be studied, and we will consider both, although the main result that we will prove is that
neither implies, nor is implied by either Turing reducibility or generic reducibility.

Definition 3.1.2. B is mod-finitely reducible to A, or A ≥mf B if from any oracle for A
which is correct on a cofinite set, one can uniformly produce a computation of B which is
correct on a cofinite set.

For this definition, the uniformity hypothesis is essential, because if we use the nonuniform
definition, the reduction is equivalent to Turing reduction. We also consider the analogous
notion with partial oracles, cofinite reduction.

Definition 3.1.3. B is cofinitely reducible to A, or A ≥cf B if from any partial oracle for A
which halts on a cofinite set, one can uniformly produce a partial computation of B which
halts on a cofinite set (and always gives correct answers.)

The uniformity hypothesis is again essential, because nonuniform cofinite reducibility
is equivalent to Turing reducibility. We compare both of these to a related notion that is

CHAPTER 3. RELATED REDUCTIONS 50

defined in terms of restricting our computation techniques, rather than in terms of altering
our oracles and our outputs.

Definition 3.1.4. B is use-bounded-from-below reducible to A, or A ≥ubfb B if there is a
Turing functional ϕ such that ϕA is a computation of B, and such that for every n, there is
an m0 such that for all m ≥ m0, ϕ never queries n while computing ϕA(m).

The idea behind this reduction is that normally, the use of a computation is thought of
in terms of the largest element of the oracle that is queried during the computation, but
here, we care about what the smallest queried number is, or in other words, whether the
use for the computation is eventually bounded from below. (Again, we remind the reader
that in our model of oracle computations, individual bits of the oracle can be queried, rather
than initial strings of the oracle. This is classically equivalent, but generalizes better to our
setting.)

Morally speaking, a reduction in which every bit of the oracle only needs to be queried
for finitely many bits of the output should be closely related to a reduction in which missing
finitely much information about the oracle causes us to be able to correctly compute all but
finitely many bits of the output, since such a reduction algorithmically captures the essence
of each bit of the oracle only being necessary for finitely many bits of the output. However
these notions are not equivalent. We show that (A ≥mf B)⇒ (A ≥ubfb B)⇒ (A ≥cf B)⇒
(A ≥T B), and that none of the implications reverse.

We also define some reductions that are more counterintuitive at first glance.

Definition 3.1.5. B is mod-recursively reducible to A, or A ≥mr B if from any oracle for A
which is correct on a recursive set, one can uniformly produce a computation of B which is
correct on a recursive set.

Here, it is important to understand that when we say that the oracle is correct on a
recursive set, we mean that the set on which it is correct is recursive. We do not mean that
the set on which it is correct contains a recursive set. This does not produce any particular
problems, and is our “largeness” notion that is not closed under supersets. However, it
becomes meaningless to attempt to work with this “largeness” notion in terms of partial
oracles (since the empty set is recursive, and a computation that never halts is easy to
produce.) We show that (A ≥mr B)⇒ (A ≥T B), and that the implication is strict.

Finally, we discuss our most counterintuitive reduction (not incredibly strange in terms
of its definition, but very strange in terms of its behavior.)

Definition 3.1.6. B is infinite information reducible to A, or A ≥ii B if from any partial
oracle for A which halts on an infinite set, one can uniformly produce a partial computation
of B which halts on an infinite set (and always gives correct answers where it halts.)

We show that the usual join of two reals becomes the infimum of their degrees in the
ii degrees. We show that 1-reductions embed backwards in the ii degrees. We also show a
highly counterintuitive result: that there exist maximal pairs in the ii degrees.

CHAPTER 3. RELATED REDUCTIONS 51

Related Nontransitive Computations

We now present one additional piece of notation, allowing us to more easily discuss the sorts
of procedures that are involved in working with the reductions that we have presented thus
far, and also giving us more flexibility in discussing relationships between the different degree
structures that we work with.

The definition is slightly imprecise for reasons that are somewhat unavoidable. In prac-
tice, for specific a and b, the definition will usually be clear, and when it is not clear, we will
clarify what we mean.

Definition 3.1.7. Let a and b be two different notions of reduction, and let A and B be
reals.

Then, A →a,b B if an a-oracle for A can be used to produce a b-computation of B. In
this case, we also write B ←b,a A.

If A→a,b B, and B →b,a A, then we write A↔a,b B

So, for instance, we have that R(A) ≥g B if and only if A →g B, which is equivalent
to A →T,g B. Likewise, A ≥g R(B) if and only if A →g,T B. The proof that X 7→ R(X)
induces an embedding from the Turing degrees to the generic degrees follows from the notion
of “transitivity” that is frequently satisfied by such notions of computation.

Definition 3.1.8. Let a, b, and c be reduction notions. Then →a,b and →b,c are transitive
with respect to each other if, for any reals A,B,C, if A→a,b B, and B →b,c C, then A→a,c C.

Lemma 3.1.9. Assume a, b, c are any of the following reduction notions.
T , g, cor, cf , mf , mr, ii.
Then →a,b and →b,c are transitive with respect to each other.

Proof. All of the above notions have the property that working with a b-oracle for B involves
being able to uniformly do something from any b-computation of B. Also, none of the above
notions have restrictions on what a Turing machine is allowed to do over the course of a
computation.

(Here, for all of the “partial” reduction notions, we use the time-dependent formalizations,
which ensures that all of the actual internal work being done during a computation is just
work with ordinary Turing machines. It is not necessarily true that time-dependent and
time-independent oracles are equivalent when the output is allowed to have some mistakes.)

Thus, to c-compute C from an a-oracle for A, we first use the a-oracle for A to b-compute
B, and then use the outputs of that computation as our b-oracle to c-compute C.

From this lemma, the proof of Observarion 2.1.12, that X 7→ R(X) induces an embedding
from the Turing degrees to the generic degrees, can be reduced to the following.

CHAPTER 3. RELATED REDUCTIONS 52

Proof. For any X, X ↔T,g R(X).
Thus, if A ≥T B, then R(A)→g,T A→T,T B →T,g R(B), so R(A) ≥g R(B).
Likewise, if R(A) ≥g R(B), then A→T,g R(A)→g,g R(B)→g,T B, so A ≥T B.

Notice now that over the course of proving Proposition 2.1.14, that ≥G and ≥g are not

equivalent, we also proved that for any X, X ↔cf,g R̃(A).

Corollary 3.1.10. The map X 7→ R̃(X) induces an embedding of the cofinite degrees into
the generic degrees.

We also mention that, in both directions of our proof of Theorem 2.2.14, that A is hyper-
arithmetic if and only if there is a density-1 real B such that B ≥g R(A), we used the fact
that the hyperarithmetic reals are precisely those that can be computed from sufficiently fast
growing functions. However, we did not establish a strong equivalence between sufficiently
fast-growing functions and density-1 generic oracles.

To formalize this, let “fg” be the “sufficiently fast growing” notion of reduction. (So
a →fg,− computation is a computation that can be done uniformly with any oracle g such
that for all n g(n) ≥ f(n), and a →−,fg f computation is a computation which produces a
function g such that for all n g(n) ≥ f(n).)

Then, in our proof of Theorem 2.2.14, we showed that for every f , there is a density-1
real B such that B →g,fg f . (Here, again, we use the time-dependent notion of generic
computations.)

We also showed that for any density-1 real B, there is a real f such that for any real A,
if B →g,T A, then f →fg,T A, but f did not have the property that f →fg,g B.

Thus, anything that can be done with a sufficiently fast growing function can also be
done with a generic oracle for some density-1 set, but the converse is only true for which
reals can be Turing computed.

3.2 Coarse Reduction

Recall that B is coarsely reducible to A, or A ≥cor B if from any oracle for A which is
correct on a density-1 set, one can coarsely compute B. We present the same definition
more rigorously

Definition 3.2.1. B is coarsely reducible to A, or A ≥cor B if there exists a Turing functional
ϕ such that for any C, if the set of n such that C(n) = A(n) has density 1, then ϕC is a
total function, and the set of n such that ϕC(n) = B(n) is density-1.

If the Turing functional is allowed to depend on C, then B is non-uniformly coarsely
reducible to A. The two reductions are fairly similar, and all of our proofs function equally
well for either reduction.

We show that neither coarse reducibility nor Turing reducibility implies the other.

CHAPTER 3. RELATED REDUCTIONS 53

Proposition 3.2.2. There exist A and B such that A ≥T B but A �cor B.

Proof. Let B to be any real that is not coarsely computable, and let A = r(B). (r(B) is the
real where the bits of B are coded sparsely into the powers of 2, from Definition 1.1.5.)

B and r(B) are in the same Turing degree, so A ≥T B.
On the other hand, A �cor B, because 0 is an oracle which agrees with A on a set of

density 1, and B cannot be coarsely computed without an oracle. (This proof functions for
both uniform and nonuniform coarse reductions.)

Proposition 3.2.3. There exist A and B such that A ≥cor B but A �T B.

Proof. Let C be any nonrecursive real. Let A = 0. Let B = r(C).
r(C) is not computable, so A �T B, but r(C) is coarsely computable without even using

an oracle, so A ≥cor B.

We also show that neither coarse reducibility nor generic reducibility implies the other.

Proposition 3.2.4. There exist A and B such that A ≥g B but A �cor B. There also exist
A and B such that A ≥cor B but A �g B.

Proof. For either direction, let A be zero, and let B be the real constructed from the corre-
sponding part of Proposition 1.1.13.

3.3 Mod-Finite, and Cofinite Reductions

Our goal for this section will be to prove the following implications, and to prove that none
of the implications reverse.

(A ≥mf B)⇒ (A ≥ubfb B)⇒ (A ≥cf B)⇒ (A ≥T B) (3.1)

Before we do that, we provide more rigorous formalizations of the definitions of the
reductions.

Introduction

Definition 3.3.1. B is mod-finitely reducible to A, or A ≥mf B if there exists a Turing
functional ϕ such that ϕA is a computation of B, and such that for any C, if the set of
n such that C(n) 6= A(n) is finite, then ϕC is a total function, and the set of n such that
ϕC(n) 6= B(n) is finite.

CHAPTER 3. RELATED REDUCTIONS 54

We mention here that there is an additional hypothesis that might seem somewhat un-
warranted, which is that not only should an almost correct oracle give an almost correct
computation, but we also demand that the correct oracle must give a correct computation.
We use this additional requirement here because it does not affect what it means for B to
be reducible to A, but it does provide a definition that is easier to work with, since it makes
it easier to diagonalize against specific potential mod-finite reductions.

Lemma 3.3.2. Definitions 3.1.2 and 3.3.1 are equivalent.

Proof. We only need to prove that if there exists a mod-finite reduction according to Defini-
tion 3.1.2, then there also exists a mod-finite reduction in which an oracle with no mistakes
produces an output with no mistakes.

Let A and B be reals, and let ϕ be a Turing functional. Assume that for every C that is
mod-finitely equal to A, ϕC is mod-finitely equal to B.

Let S = {n |ϕA(n) 6= B(n)}.

Define ψ where ψX(n) =

{
ϕX(n) n /∈ S
B(n) n ∈ S

.

S is finite, and thus the values of B on S can be coded recursively, so ψ is recursive.
Also, for every C that is mod-finitely equal to A, ψC is mod-finitely equal to ϕC , and thus
is mod-finitely equal to B. Finally, ψA = B by construction.

We also reiterate the comment from the introduction, that we only discuss uniform mod-
finite reductions, since nonuniform mod-finite reducibility is equivalent to Turing reducibility.
(Any oracle for A that disagrees with A on a finite set can be used nonuniformly to recover
A, and any computation that is incorrect on a finite set can be used nonuniformly to produce
a correct computation.)

Now, we prove that just as cofinite degrees embed in the generic degrees, the mod-finite
degrees embed in the coarse degrees.

Corollary 3.3.3. The map X 7→ R̃(X) induces an embedding of the mod-finie degrees into
the coarse degrees.

(Recall that R̃(X) is defined by: n ∈ R̃(X)↔ m ∈ X, where 2m is the largest power of
2 less than n.)

Proof. It is easy to see that, for any A, A →mf,cor R̃(A). This is simply because a finite

amount of error in A only produces a finite amount of error in the computation of R̃(A).

Conversely, to show that R̃(A)→cor,mf A, we use a “voting” algorithm.

To recover the mth bit of A from a coarse oracle, R, for R̃(A), we say that m ∈ A if and
only if at least half of the n ∈ [2m, 2m+1 − 1] are in R.

This algorithm can only make finitely many mistakes, because every time that it makes
a mistake, the density of the set on which R = R̃(A) must drop below 3

4
one additional

CHAPTER 3. RELATED REDUCTIONS 55

time. This is because each bit of A is coded into a section of R̃(A) that takes up half of the
numbers up to the end of that section, so if half of the coding numbers for the mth bit are
wrong, then one quarter of all of the numbers of R (up to the end of that coding section)
are wrong.

Thus, we have that, for any A, A↔mf,cor R̃(A), and so the map X 7→ R̃(X) induces an
embedding of the mod-finie degrees into the coarse degrees.

Definition 3.3.4. B is cofinitely reducible to A, or A ≥cf B if there exists a Turing functional
ϕ such that ϕA is a computation of B, and such that for any partial oracle (A) for A, if the
domain of (A) is cofinite, then ϕC is a partial computation of B, and the domain of ϕC is
cofinite.

Again, we mention that our insistence that ϕA = B is purely a convenience, and that it
does not change the definition of the reducibility, because, if some finite amount of informa-
tion is missing from ϕ, then that information can be “hard coded” into the algorithm. Also
the proof of Proposition 2.1.10 holds in this context, so since we are working with uniform
reductions, we may ignore whether or not the oracle is time-dependent.

We may now prove one of our intended implications.

Lemma 3.3.5. (A ≥cf B)⇒ (A ≥T B), and (A ≥T B) ; (A ≥cf B).

Proof. The fact that (A ≥cf B) ⇒ (A ≥T B) follows directly from the fact that a cofinite
reduction is assumed to be a Turing reduction with additional properties.

For the nonimplication, let A be any real that is not autoreducible, and let B = R(A).
Then, as with the proof of Proposition 2.1.14, A cannot uniformly be recovered from a
cofinite subset of its bits, but any cofinite subset of the bits of B can be used to uniformly
recover A, and so it is not possible to uniformly generate a cofinite subset of the bits of B
from a cofinite subset of the bits of A since that would involve being able to generate all the
bits of A from a cofinite subset of the bits of A.

Thus A ≥T B but A �cf B.

Observation 3.3.6. The Turing degrees embed in the cofinite degrees. Furthermore, the
embedding of the Turing degrees into the generic degrees (from Observation 2.1.12) is equal
to the composition of this embedding with the embedding of the cofinite degrees into the
generic degrees (from Corollary 3.1.10.)

Proof. The map X 7→ R(X) induces an embedding of the Turing degrees into the cofinite
degrees.

This is because X can compute R(X), so in particular X →T,cf R(X).
Conversely, any cofinite oracle for R(X) must include at least one bit from each column,

and X can be recovered from those bits, so R(X)→cf,T X.

CHAPTER 3. RELATED REDUCTIONS 56

By the usual application of Lemma 3.1.9, this proves that X 7→ R(X) induces an em-
bedding of the Turing degrees into the cofinite degrees.

To show the second part, we only need to show that for any X, R̃(R(X)) ≡g R(X).
We accomplish this by liberal use of Lemma 3.1.9.

R̃(R(X))→g,cf R(X)→cf,g R(X)→g,T X →T,cf R(X).

The first arrow is by Corollary 3.1.10. The second is since any cofinite oracle for a real
is also a generic oracle for that real. The third is by Observation 2.1.12. The fourth is by
the first part of the proof of this observation.

Use-bounded-from-below reductions

Recall the definition of ≥ubfb:

Definition 3.3.7. B is use-bounded-from-below reducible to A, or A ≥ubfb B if there is a
Turing functional ϕ such that ϕA is a computation of B, and such that for every n, there is
an m0 such that for all m ≥ m0, ϕ never queries n while computing ϕA(m).

We reiterate that the idea of this definition is that every bit of the oracle is only queried
for finitely many outputs. (In other words, the “use” of ϕA(m) is bounded from below by a
function that depends on m and that eventually goes to infinity.)

Lemma 3.3.8. (A ≥ubfb B)⇒ (A ≥cf B).

Proof. This implication is fairly easy, since any use-bounded-from-below reduction actually
is a cofinite reduction:

Assume that A ≥ubfb B via ϕ. Then ϕ also provides a cofinite reduction, if it is simply
assumed to not halt whenever it queries a bit of its oracle, and the oracle does not give an
answer. Then, given any cofinite oracle, (A), for A, choose m0 large enough so that for all
m ≥ m0, ϕ never queries any n that is not in (A) while computing ϕB(m).

Then ϕ(A)(m) halts (and is equal to B(m)) for any m ≥ m0.
Thus, A ≥cf B via ϕ.

Lemma 3.3.9. (A ≥cf B) ; (A ≥ubfb B).

This is our first involved proof in this chapter, and the technique we will use will be used
frequently for our nonimplications. It is similar, but not as complicated, as the method used
to prove Theorem 2.2.1

The proof will be comprised of three parts.
In the first part, we describe the intended reduction from A to B. This reduction will be

a cofinite reduction, but it will not (a priori) be a ubfb reduction.

CHAPTER 3. RELATED REDUCTIONS 57

In the second part, we build A and B so that the intended reduction will work, but
simultaneously we diagonalize against every potential ubfb reduction. During this part, we
do not need to work recursively in anything, but in practice, we will be building a 1-generic
with respect to the poset that is implicitly defined in Part 1.

In the third part, we verify that the construction from the second part has the intended
properties.

Proof. Part 1

For each pair 〈i, j〉, we will have a single bit b〈i,j〉 ∈ {0, 1}.
Each of these bits is coded into a single bit of B.
On the other hand, for each value of i, the bits can be coded into A in one of two manners:
Sometimes there is a “master deduction procedure” that, for our fixed value of i, can be

used to recover every b〈i,j〉, and sometimes there exists a collection of “individual deduction
procedures” to recover each of the individual values of b〈i,j〉.

For any value of i, if there is no master deduction procedure, then every individual
deduction procedure will exist. On the other hand, if there is a master deduction procedure,
then every individual deduction procedure that gives an answer must give the same answer
as the master deduction procedure, and furthermore all but finitely many of the individual
deduction procedures will give answers. Individual deduction procedures are defined in a
way so that when they do not give answers, it is never possible to “know” that this is the
case.

The purpose of this is to ensure that removing a master deduction procedure from the
domain of (A) only removes finitely many bits from the domain of ϕ(A). However, a potential
ubfb reduction will never know whether or not it needs to query the master deduction.

The deduction procedures are coded as follows.

For each i, we assign two bits, ai,0, ai,1 ∈ {0, 1} to the master deduction procedure for i.
For each i, at most one of ai,0 and ai,1 will be equal to 1.
If ai,0 = 1, then ∀j b〈i,j〉 = 0.
If ai,1 = 1, then ∀j b〈i,j〉 = 1.
Each of these bits is coded into a single bit of A.

Also, for each 〈i, j〉, we assign countably many bits a〈i,j〉,k,0, a〈i,j〉,k,1 to individual deduc-
tion procedures.

For each 〈i, j〉, at most one of the a〈i,j〉,k,0, a〈i,j〉,k,1 will be equal to 1.
If ∃k a〈i,j〉,k,0 = 1, then b〈i,j〉 = 0.
If ∃k a〈i,j〉,k,1 = 1, then b〈i,j〉 = 1.
Each of these bits is also coded into a single bit of A.

Then, the idea is that any reduction, while trying to compute b〈i,j〉, if it has not yet seen
an individual deduction, needs to make a choice. It can guess that there exists a master
deduction procedure, and look at the individual deduction of a related b, and thereby risk
giving an incorrect answer if there is no master deduction. It can also guess that there is
no master deduction procedure, and keep waiting for the individual deduction procedure to

CHAPTER 3. RELATED REDUCTIONS 58

halt, and thereby risk not being total if that deduction procedure does not hat. It can also
give up, and query the master deduction procedure, but for a fixed value of i, it can only
afford to do this for finitely many values of j, or else it will not be a ubfb reduction.

Part 2

We build A (and therefore also B) by finite approximation.
At stage s, we have determined some finite segment of A. Choose is minimal such that,

for every i ≥ is we have not yet determined any of the values of the ai,0, ai,1, a〈i,j〉,k,0, or
a〈i,j〉,k,1.

Then, first we ask whether there is any way to extend our definition of A (consistently
with ensuring that the requirements from Part 1 are satisfied, and also with ensuring that
the restrictions imposed by higher priority strategies are satisfied) in order to make ϕAs
incorrectly compute b〈is,j〉 for some j.

If there is, then we finitely extend our definition of A to make that happen, and we have
successfully prevented B from being ≤ubfb A via ϕs.

If there is no way to make ϕA incorrect, then we ensure that there exists a master
computation for is, and we initiate a substrategy that will ensure that if ≤T A via ϕs, then
ϕAs is not a ubfb reduction, while simultaneously ensuring that the intended reduction is a
cofinite reduction.

This substrategy fixes some value, j̃, for j, and it ensures that, unless it decides to
choose a new j̃, the individual deduction for computing b〈is ,̃j〉 never gives an output. Then,
in the future, if ϕs ever queries a “forbidden element” (defined in the next parahraph) when
computing the value of b〈is ,̃j〉, then the strategy chooses a new j̃ for which no individual
deduction computing b〈is ,̃j〉 has given an output, and allows the previous individual deduction
to give the correct output.

Here, the forbidden elements include the two elements of A coding the master deduction
for is, and they also include, for every r < s, if the rth substrategy had been initiated at
stage r, if we let jr,s be the value of j that the rth substrategy was restraining at the start
of stage s, if that strategy ever acts again, then location lr,s where the individual deduction
for b〈ir,jr,s〉 is coded is also a forbidden element. (So notice that at stage s, the locations of
the forbidden elements are not all defined, but there are finitely many forbidden elements,
and once an element becomes forbidden, it never stops being forbidden, so if ϕs ever queries
a forbidden element, at some state of the construction, we will know that it did so, and that
that point, the sth substrategy can look for a new j̃.)

After the strategy has acted, all higher priority substrategies that need to act are allowed
to act, and also all individual deductions computing b〈i,j〉 for i, j ≤ s are made to give outputs
unless they are restrained by some strategy, or unless they have already given an output.
This ensures that all strategies will act infinitely often, and that all individual deduction
procedures will eventually give outputs unless actively restrained by some strategy.

This completes the construction.

Part 3

CHAPTER 3. RELATED REDUCTIONS 59

First, we verify that the intended reduction is a cofinite reduction.
First of all, with the entire oracle for A, B can be computed because for every bit of B,

the value of that bit can be deduced either from a master procedure, or from an individual
procedure (or frequently both.) Secondly, if the oracle does not halt on finitely many bits
of A, then this only prevents the computation from halting on finitely many bits of B. This
is because if the oracle for A fails to give the value of A at a place where A has a zero,
then this does not affect the computation at all. If it fails to give the value of A at a 1 that
is in one of the individual procedures, then this prevents at most one bit of B from being
correctly deducible. (Depending on whether or not the oracle includes a master procedure
for that bit.) If a 1 is removed from a master procedure, then this theoretically makes it
more difficult to deduce the values of B at all of the related bits, however there will still
exist individual computations for all but at most one of the bits that are deducible from
that master procedure. This is due to the fact that every individual procedure eventually
gives an output unless it is specifically restrained by some substrategy, each substrategy only
restrains one individual procedure at a time, and each substrategy works on a different value
of i (so in particular, two different substrategies will always work on bits that are dependent
on different master procedures.)

Thus, the intended reduction can be made to attempt to compute a given bit by si-
multaneously attempting to query the master deduction bits, and also searching all of the
individual deduction bits that are tied to that bit. Thus, removing a finite amount of in-
formation from the oracle removes at most a finite number of places where the computation
halts. (Recall that this is the paradigm of computation in which oracles and computations
are never allowed to be incorrect, but are sometimes allowed to not give outputs.)

Thus, A ≥cf B.

Now, we verify that A �ubfb B.
For this, we must show that for every s, either ϕAs is not a computation of B, or ϕAs is

not a use-bounded-from-below computation.
So, fix some s, and let is be the i that was chosen at stage s. If, at stage s, A had been

able to be extended to make ϕs produce a mistake, then this was done, and so ϕAs 6= B.
On the other hand, if not, then one of two things would have happened during the

construction. One option is that the corresponding substrategy acted infinitely often, in
which case there were infinitely many different b〈is ,̃j〉 such that ϕs queried a forbidden element.
Since there are finitely many elements that are forbidden to ϕs, by the pigeonhole principle
this means that there must be one bit of A that is queried by ϕs during the computations
of infinitely many different bits of B, so ϕAs is not ubfb.

Alternatively, it is possible that the corresponding substrategy acted only finitely often.
In this case, there was one fixed j̃ such that ϕs never queried the master deduction procedure,
or any of the other forbidden bits, when computing the value of b〈is ,̃j〉, and such that the
individual deduction procedure for b〈is ,̃j〉 never gave any outputs. Let n be the location in

B where b〈is ,̃j〉 is coded. (So n ∈ B ⇔ b〈is ,̃j〉 = 1.) In this case, we claim that ϕAs (n) did not
halt.

CHAPTER 3. RELATED REDUCTIONS 60

The reason for this is that otherwise, at the stage when ϕAs (n) halted, the fraction of
A that ϕs had looked at was consistent both with n ∈ A, and n /∈ A (because the master
deduction was not queried, and the individual deduction never gave any output.) It was
also consistent with the restrictions imposed at the beginning of stage s (because none of
the other forbidden elements were queried, so the fraction of A that had been looked at did
not include any of the outputs of any of the individual deductions that had been restrained
at the beginning of stage s.)

Thus, if that were enough to make ϕs halt, then at stage s, it would have been possible
to extend our definition of A in order to make ϕAs (n) give an incorrect answer, by simply
not including a master computation for column is, and by adding an individual computation
for b〈is ,̃j〉 that disagrees with the value of ϕAs (n), and defining all other queried bits exactly
the way that they had been defined in A, and defining the forbidden bits to be zero. (This
individual computation can be added with a k value that is larger than any of the k values
that were looked at by ϕs while it was computing B(n).)

Since, at stage s, none of these values had yet been decided for A, and since this is
consistent with every value of A that had been queried by ϕs, and since this does not
conflict with any of the restraints imposed by higher priority strategies at the beginning of
stage s, this this means that at stage s, the partial definition of A could have been extended
to make ϕAs incorrectly compute B, contradicting the assumption on s.

In stark contrast to the incomparability between generic reductions and coarse reductions,
mod-finite reductions are somewhat stronger than cofinite reductions, and in fact can be
shown to be strictly stronger than ubfb reductions.

Lemma 3.3.10. (A ≥mf B)⇒ (A ≥ubfb B).

Proof. Assume that A ≥mf B via ϕ.

Thus, ϕA = B and if Ã differs from A on a finite set, then ϕÃ computes a set which
differs from B on a finite set.

To ubfb compute B from A, we define ψ where ψX(n) is computed as follows.
Let X1, ..., X2n be the reals which agree with X after the first n bits of X. Then, the

first thing that ψ does is compute the values of ϕXi(n) for each i ≤ 2n. It does this without
querying any of the first n bits of X, but querying any of the larger bits of X whenever ϕ
would want it to.

After all of the ϕXi(n) have halted, ψ starts to, one at a time, query the largest bits of X
that it had previously not been allowed to query, until it rules out all but one of the possible
outputs, and then it gives that output.

Then, first of all, ψA is total, because ϕAi(n) will halt for every i, because ϕÃ is a total

function for any Ã that differs from A on a finite set, and each of the Ai differs from A on
at most a finite set. At this point, theoretically if ψ were to query all of the first n bits of
A, then it would definitely narrow down the possible outputs to one output, so ψA(n) will
eventually halt.

CHAPTER 3. RELATED REDUCTIONS 61

Also, ψA is a computation of B, because the one output that ψA cannot rule out is ϕA(n),
which is equal to B(n), so when it halts, it must give the correct answer.

Finally, ψA is a ubfb reduction. This is because ϕ is a mod-finite reduction, so for every
a, there is an b such that if Ã is equal to A on every number larger than a, then ϕÃ is equal
to B on every number larger than b. Thus, when n ≥ b, ψ will not need to query any of
the first a many bits of A, since all of those variations of A will give the same outputs on n.
Thus, each a will only be queried when computing ϕÃ(n) for n less than the corresponding
b.

Lemma 3.3.11. (A ≥ubfb B) ; (A ≥mf B).

Once again, the proof is in three parts.
First, we establish the intended reduction by which A ≥ubfb B.
Secondly, we construct A and B to ensure that A �mf B.
Finally, we verify that our construction has succeeded.

Proof. Part 1

In this construction, each column of A will be used to code a single bit of B. A will have
exactly one element in each column, and the parity of that element will tell us whether or
not the corresponding number is in B.

More precisely, for each n, there is exactly one m such that 〈n,m〉 ∈ A. Then, n ∈ B ⇔
〈n,m〉 ∈ A for some odd value of m.

This reduction is clearly a ubfb reduction, since each bit of A needs to be queried to
compute at most one bit of B. However, A is not necessarily mod-finitely above B, since
changing a single bit of A can cause the reduction to stop being total. If the reduction can
halt without finding any bits in the nth column of A, then the reduction can also be tricked
into giving incorrect answers even on the correct oracle (for example, if the element of A in
the nth column is very large.)

The remainder of the proof consists of verifying that A, and B can indeed be constructed
in this manner so that A �mf B.

We build A (and therefore B) by finite approximation.
Let σs be our approximation to A at the beginning of stage s. Then, the first thing we do

at stage s is ask whether there is an extension of σs, following the rules of the construction,
that would cause ϕAs to incorrectly compute B. If there is, then we make that extension,
and we move on to the next stage. Otherwise, let ns be the smallest value of n such that
we have not yet determined whether or not any 〈n,m〉 ∈ A. Then we put 〈ns, 0〉 ∈ A (and
therefore n /∈ B) and move on to the next stage.

A is then the limit of the σs.

Then, we claim that for each s, either ϕAs 6= B, or there is some Ã that is equal to A on

a cofinite set such that ϕÃs is not total.
If ϕAs is not total, then we are finished.

CHAPTER 3. RELATED REDUCTIONS 62

Otherwise, we ask whether, at stage s, there was any way to extend σs in order to cause
ϕs to make a mistake. If yes, then we must have done that, and therefore ϕAs 6= B.

If not, then let Ã = A\{〈ns, 0〉}. Then we claim that ϕÃs (ns) diverges.

The proof of this is simply that if ϕÃs (ns) converges and gives some answer, then our σs
could have been extended to have all of the values of Ã that were queried before ϕÃs (ns)
halted, and then to have σs+1(〈ns,m〉) = 1 for some sufficiently large m of the correct parity
to make ϕAs give an incorrect answer on ns.

From the previous five results, we can conclude the primary theorem of the section.

Theorem 3.3.12.
(A ≥mf B)⇒ (A ≥ubfb B)⇒ (A ≥cf B)⇒ (A ≥T B) and none of the implications reverse.

3.4 Mod-Recursive Reductions

Per usual, we begin with a more formal definition of mod-recursive reductions.

Definition 3.4.1. A is mod-recursively reducible to B, or B ≥mr A if there exists a Turing
functional ϕ such that ϕA is a computation of B, and such that for any C, if the set of n
such that C(n) 6= A(n) is recursive, then ϕC is a total function, and the set of n such that
ϕC(n) 6= B(n) is recursive.

Again, the requirement that ϕA = B does affect the definition of a mod-recursive reduc-
tion, but it does not affect the definition of what is mod-recursively reducible to what. We
also mention that since N is a recursive set, it is very important to the definition that the
“mistakes” must actually be a recursive set, and not simply contained in a recursive set.

Lemma 3.4.2. Definitions 3.1.5 and 3.4.1 are equivalent.

Proof. The proof is almost identical to the proof of Lemma 3.3.2. The only real difference
is that the set of places where ϕA makes a mistake is not finite, and so we cannot directly
code the values of B at those locations in to ψ. The fix is relatively easy though.

Let A and B be reals, and let ϕ be a Turing functional. Assume that for every C that is
mod-recursively equal to A, ϕC is mod-recursively equal to B.

Let S = {n |ϕA(n) 6= B(n)}.

Define ψ where ψX(n) =

{
ϕX(n) n /∈ S
1− ϕX(n) n ∈ S

.

S is recursive, and thus ψ is recursive, since it can compute S and emulate ϕ simultane-
ously. Also, for every C that is mod-recursively equal to A, ψC is mod-recursively equal to
ϕC , and thus is mod-recursively equal to B. Finally, ψA = B by construction.

CHAPTER 3. RELATED REDUCTIONS 63

We mention that this construction would have worked perfectly well for Lemma 3.3.2,
but it would not have worked for the proof that the first and second notions of cofinite
reducibility were equivalent.

Again, we do not discuss nonuniform mod-recursive reductions, because they are equiv-
alent to Turing reductions. This time, however, we also do not discuss reductions in which
the computations are allowed to have a recursive set on which they do not halt, because that
reduction would be degenerate, since computations would not need to halt anywhere.

Also, again, mod-recursive reducibility clearly implies Turing reducibility, and our main
result in this section will be that it is not equivalent to Turing reducibility.

Proposition 3.4.3. There exist A and B such that A ≥T B but A �mr B.

Proof. The construction is fairly straightforward. B will be the real given by n ∈ B if and
only if both 2n ∈ A, and 2n+ 1 ∈ A.

Then, if we use the intended reduction, it will have the property that changing A on all
of the odd numbers will change the output on a set that has no reason to be recursive, since
whether or not the output changes will depend on whether or not the corresponding even
number is in A. As long as the even numbers in A are not a recursive set, this will result in
a nonrecursive change in the output.

The remainder of the proof will be constructing A so that no other ϕ yields a mod-
recursive reduction.

We construct A (and therefore B) by finite approximation.
At stage s, let σs be our current approximation to A. Let ks = |σs|. First, as usual,

we ask whether there is an extension of σs that ensures that ϕAs 6= B. If there is such an
extension, we make that extension, otherwise we do nothing.

After that, we extend our approximation to ensure that ϕs (without oracle) does not
correctly compute the even bits of A in the usual manner in which one diagonalizes against
sets being computable. (Fix some n for which we have not yet determined whether 2n is in
A. If ϕs(2n) = 0, then 2n ∈ A. Otherwise, 2n /∈ A. Then extend the approximation so that
it is defined on an initial segment of the natural numbers.)

Now, let Ã be defined by

2n ∈ Ã⇔ 2n ∈ A, and 2n+ 1 ∈ Ã⇔ 2n+ 1 /∈ A.

Also, let As be defined by

n ∈ As ⇔ (n < ks ∧ n ∈ A) ∨ (n ≥ ks ∧ n ∈ Ã).

Then we claim that at the end of the construction, for every s, if both ϕAs , and ϕAss are total,
then either ϕAs is not a computation of B, or, {n |ϕAss (n) 6= B(n)} is not recursive.

Assume ϕAs , and ϕAss are total. Then, at stage s, if we could have caused ϕAs to give an
incorrect output, then we would have done that. Thus, we may assume that for any X � σs,
if ϕXs (n) ↓, then ϕXs (n) = X(2n) · X(2n + 1). (Otherwise, σs could have been extended to

CHAPTER 3. RELATED REDUCTIONS 64

the portion of X that was used in the computation of ϕXs (n), and this would have caused it
to make a mistake.)

Thus, we have that for every n, ϕAss (n) = As(2n) · As(2n + 1). So, in particular, for
n ≥ ks

2
, we have that ϕAss (n) = B(n) if and only if 2n /∈ A. Thus, since {2n | 2n ∈ A} is not

a recursive set, {n |ϕAss (n) 6= B(n)} is not recursive.

3.5 Infinite Information Reductions

Our final reduction that we consider is also our most foreign one.

Definition 3.5.1. B is infinite information reducible to A, or A ≥ii B if there exists a Turing
functional ϕ such that for any partial oracle (A) for A, if the domain of (A) is infinite, then
ϕC is a partial computation of B, and the domain of ϕC is infinite.

Here, we cannot assume that ϕA is a computation of B, because that would dramatically
change the nature of the reducibility. Also, only the notion with partial oracles is worth
considering, because it is too easy to produce a computation that is correct infinitely often if
the computation is also allowed to be incorrect infinitely often (In fact, there would be only
one degree under that reduction.)

We begin by showing a single fact that helps illustrate the counterintuitive nature of this
reduction.

Observation 3.5.2. Let A and B be reals. Then the infinite information degree of A ⊕ B
is the infimum of the ii degrees of A and B.

Before we begin this proof, we mention that when we write A ⊕ B, we mean the usual
join of A and B (produced by coding A into the even bits of A ⊕ B, and B into the odd
bits of A⊕ B). We recognize that this is not the join of the degrees in our current context,
but we will still use this notation, since, strictly speaking, A⊕B is defined as a function on
reals, not on Turing degrees.

Proof. The easier part is showing that A ≥ii A⊕B, and likewise that B ≥ii A⊕B.
Intuitively, it is easy to use infinitely many bits of A to correctly produce infinitely many

bits of A⊕B. More formally, A ≥ii A⊕B via the algorithm ϕ where if (X) is a partial oracle,
then ϕ(X)(n) halts only if n is even, and if (X)(n

2
) halts. In this case, ϕ(X)(n) = (X)(n

2
).

Similarly, B ≥ii A⊕B.
The slightly more difficult part is showing that if A ≥ii C, and B ≥ii C, then A⊕B ≥ii C.
To show this, assume that ϕ0 and ϕ1 are Turing functionals such that A ≥ii C via ϕ0,

and B ≥ii C via ϕ1. Then, we can define ψ where for any partial oracle (X) for X, ψ(X)

looks at the even bits of X that are in (X), and applies ϕ0 to those bits, and it looks at the
odd bits of X and applies ϕ1 to those bits, and then it outputs anything that either of its
two partial functions would output.

CHAPTER 3. RELATED REDUCTIONS 65

Then, A⊕B ≥ii C via ψ, because any infinite partial oracle for A⊕B must halt on either
infinitely many bits of A or infinitely many bits of B, and thus either the ϕ0 part of the ϕ1

part of ψ must give infinitely many outputs. Furthermore, for any partial oracle (A⊕B) for
A ⊕ B, ψ(A⊕B) does not give any incorrect outputs about C, because ϕ0 does not give any
incorrect outputs about C with any partial oracle for A, and likewise the ϕ1 part does not
give any incorrect outputs.

At this point, it becomes relevant to show that the ii degrees are nontrivial, to ensure
that Observation 3.5.2 has actual content.

Observation 3.5.3. If B is either 1-random relative to A, or 1-generic relative to A, then
A �ii B.

Proof. If we assume, for a contradiction, that A ≥ii B via ϕ. Then in particular, ϕA must be
a partial computation of B that halts on an infinite set and that only gives correct outputs
when it halts (Since A is a partial oracle for A with infinite domain). So it remains to show
that if B is 1-random, or 1-generic relative to A, then A is not able to correctly compute
infinitely many bits of B without making any mistakes.

This is a standard result of classical recursion theory, but we prove it here for complete-
ness:

If ϕA is a partial computation of B which halts for infinitely many n, then B is not
1-random relative to A, since the set of all reals which agree with ϕA is a Π0

1(A) null class.
(For each m, the set of reals which agree with ϕA on the first m bits of the domain of ϕA

has measure 2−m.)
Likewise, if ϕA is a partial computation of B which halts for infinitely many n, then B

is not 1-generic relative to A, because while B was being constructed, it would have always
been able to be extended in a way so that it disagreed with ϕA on at least one of ϕA’s
outputs.

From these two results, we can see that ii reducibility neither implies nor is implied by
Turing reducibility.

Corollary 3.5.4. There exist A and B such that A ≥ii B, A �T B, B �ii A, and B ≥T A.

Proof. Let X1 and X2 be a pair of mutually 1-random, or mutually 1-generic reals.
Let A = X1, and let B = X1 ⊕X2. Then A ≥ii B and B ≥T A because B = A⊕ C for

some C.
Also, A �T B because A �T X2 because X2 is random (resp. generic) relative to X1.

Likewise, X1 is random (resp. generic) relative to X2, so X2 �ii A by Observation 3.5.3, and
therefore, B �ii A by Observation 3.5.2, because B = C ⊕X2 for some C.

CHAPTER 3. RELATED REDUCTIONS 66

We also generalize Observation 3.5.2 to better illustrate the reason that joins embed
upside down in the ii degrees.

Observation 3.5.5. Let A and B be reals. Then if A ≥1 B, then B ≥ii A.

Proof. We first remind the reader of the definition of ≥1:
A ≥1 B if and only if there exists a recursive injective function f : N → N such that

n ∈ B ⇔ f(n) ∈ A.
The idea behind this definition is that B can be computed from A in the (in some sense)

easiest possible manner: all of B is embedded in A in a recursive manner, so to compute a
single bit of B, you query the corresponding bit of A, and then give that as your output.

However, this can immediately be used to produce an ii reduction from B to A.
n ∈ B ⇔ f(n) ∈ A, and so we may define ϕ where for any partial oracle (X), for any

n such that (X) gives an output on n, ϕ(X) gives the same output on f(n). Then, if (B)
is a partial oracle for B with infinite domain, then ϕ(B) halts on the image of the domain
of (B) under f , which is an infinite set, because f is injective. Furthermore, ϕ(B) correctly
computes A wherever it halts because n ∈ B ⇔ f(n) ∈ A.

We also mention that there certainly exist more intricate ii reductions than those that
have been mentioned so far, and in particular, that ii reductions can be built in a way that
sometimes requires very many bits of the oracle to produce a single bit of the output.

Proposition 3.5.6. There exist reals A and B such that A ≥ii B via ϕ, but such that for
any n, there is a finite partial oracle σ, for A such that #(dom(σ)) = n, such that ϕσ does
not halt anywhere.

The basic idea of this is that some bits of B can be coded in a way that require a large
number of bits of A to recover those bits of B.

Proof. Recursively choose one natural number nS for each finite set S of natural numbers
such that the cardinality of S is equal to the smallest element of S.

Then let nS ∈ B if and only if #(S ∩ A) is odd.
Then, first of all, the implicitly defined functional ϕ is definitely an ii reduction. This is

because, once any oracle (A), for A, gives any output on any bit of A, say the nth bit of A,
then at that point, any n additional bits of A will be sufficient to compute an additional bit
of B.

On the other hand, there is no fixed bound on the number of bits of A required to
compute a bit of B: for any n, if (A) is a finite partial oracle for A which halts on n bits,
and whose smallest bit is larger than n, then (A) is not sufficient to deduce any bits of B!

This proof is somewhat unsatisfying, because any partial oracle (A), for A, will have the
property that there is some finite collection of bits in (A) such that knowing just those bits

CHAPTER 3. RELATED REDUCTIONS 67

is sufficient to reach the point where from then on, any additional bit of A will produce at
least one additional bit of B. This can be easily avoided by replacing A with A⊕ A, which
would have the property that for almost any partial oracle, there are numerous bits that can
be added to the oracle without increasing the domain of the computation.

This new reduction still feels, in some sense, trivial, and, indeed, over the course of
proving Theorem 3.5.7, which says that there exist maximal pairs for generic reduction,
we will show that many ii reductions share certain properties with these types of trivial
reductions. However, we will sometimes require hyperarithmetic techniques to reduce to the
trivial case.

The remainder of this section will be devoted to establishing some techniques and nota-
tions for proving Theorem 3.5.7.

Theorem 3.5.7. There exist maximal pairs in the ii-degrees.

In proving this theorem, we will first prove the following result.

Lemma 3.5.8. Let A and C be reals such that C ≥ii A. Then, either O →T,ii A, or
A⊕O →T,ii C.

(Here, O is Kleene’s O, defined in Appendix D.)
From this lemma we will immediately be able to conclude a proposition that implies our

theorem.

Proposition 3.5.9. Let A and B be reals such that A ⊕ O 9T,ii B, and B ⊕ O 9T,ii A.
Then there does not exist any real C such that C ≥ii A, and C ≥ii B.

Proof. Assuming Lemma 3.5.8, Proposition 3.5.9 follows immediately, since, if there existed
a C above both A and B, then either O →T,ii A, which would contradict the fact that
B ⊕O 9T,ii A, or A⊕O →T,ii C.

But then we would have that A ⊕ O →T,ii B, by Lemma 3.1.9, since, by assumption,
C ≥ii B.

We now devote our attention to proving Lemma 3.5.8. We will make extensive use of the
notations and techniques of [13], and anyone unfamiliar with the language and techniques
involved in working with recursive ordinals should look to Appendix D. We also provide a
notation for 1-extensions of partial oracles, since they are very relevant for the sorts of finesse
that are required for our construction.

Definition 3.5.10. Let σ be a finite partial oracle. (In other words, σ is a partial oracle for
some real X, and dom(σ) is finite.)

Then, τ is a 1-extension of σ, written τ �1 σ, if τ is an extension of σ that is defined on
exactly one more element. (In other words, if #dom(τ) = #dom(σ)+1, and if τ � dom(σ) =
σ.)

CHAPTER 3. RELATED REDUCTIONS 68

To help motivate the upcoming definitions and techniques, we first engage in a mental
exercise.

Assume that C ≥ii A via ϕ. Assume further that σ is a finite partial oracle for C that
has the property that for any τ �1 σ, if τ is also a partial oracle for C, then #dom(ϕτ) >
#dom(ϕσ).

Consider the set of all τ �1 σ such that ϕτ does not incorrectly compute any bits of A.
(Here, we do not assume that τ is a partial oracle for C. Indeed, every τ that is a partial
oracle for C is in this set.) Let X be the set of numbers that are in the domain of ϕτ for one
of these τ but that are not in the domain of ϕσ. Then, one of the following things happens.

1. If there exist infinitely many τ �1 σ such that ϕτ incorrectly computes any bits of A,
then A→T,ii C.

This is because A can search for 1-extensions of σ which give false outputs. Whenever
it finds such a 1-extension, it knows that the additional bit that is in dom(ϕτ)\dom(ϕσ)
must be incorrect. Thus, it can figure out infinitely many of the bits of C, by ruling
out infinitely many incorrect 1-extensions of σ.

2. If there exist finitely many τ �1 σ such that ϕτ incorrectly computes any bits of A,
and if X is infinite, then 0 ≥ii A.

This is because we may compute infinitely many bits of A by a computation which
knows σ, knows all of the τ which give incorrect outputs, and which then gives any
output given by ϕτ for any τ �1 σ other than the finitely many “bad” τ ’s.

3. If there exist finitely many τ �1 σ such that ϕτ incorrectly computes any bits of A,
and if X is finite, then, by the pigeonhole principle, there must exist some n ∈ X
such that for infinitely many τ �1 σ, ϕτ (n) halts, and is equal to A(n). (Note that by
assumption on σ, if τ �1 σ is a partial oracle for C, then dom(ϕτ)) dom(ϕσ).)

In this case, that output must be equal to A(n), since otherwise, we would be in Case
(1).

In Case (3), we would like to somehow say that σ already “knew” the value of A(n), and
we now define α-deduction to allow us to formalize this idea.

Definition 3.5.11. Let α be an ordinal, σ a finite partial oracle, n an integer, and i ∈ {0, 1}.
We define the statement “σ α-deduces that ϕ(n) = i” by induction on α.
σ 0-deduces that ϕ(n) = i if and only if ϕσ(n) = i.
If α > 0, then σ α-deduces that ϕ(n) = i if and only if either ϕσ(n) = i, or there exist

infinitely many τ �1 σ such that for each such τ , there is a βτ < α such that τ β-deduces
that ϕ(n) = i.

Definition 3.5.12. We say that “σ deduces that ϕ(n) = i” if there exists some α such that
σ α-deduces that ϕ(n) = i.

CHAPTER 3. RELATED REDUCTIONS 69

Lemma 3.5.13. If σ deduces that ϕ(n) = i then there exists some α < ωCK1 such that σ
α-deduces that ϕ(n) = i.

Proof. Fix ϕ, n, and i.
We first show that the set of finite partial oracles, σ, such that σ deduces that ϕ(n) = i can

be defined by an arithmetically definable monotonic closure operator. (Defined in Appendix
D.)

Then, since all such closure operators reach their limit at a stage before ωCK1 , we will be
able to find an α < ωCK1 such that for all σ, if σ deduces that ϕ(n) = i, then there exists a
β ≤ α such that σ β-deduces that ϕ(n) = i.

Let X be a set of finite partial oracles.
Let Γ(X) be the set of all finite partial oracles, σ such that any of the following holds.

• σ ∈ X

• ϕσ(n) = i

• There exist infinitely many τ ∈ X such that τ �1 σ.

Then, Γ(X) is arithmetic in X. (In fact, it is Π0
2 in X.) Γ is also clearly monotonic.

Furthermore, Γα (the αth iteration of Γ on the empty set) is equal to the set of σ such
that σ α-deduces that ϕ(n) = i.

By Lemma D.0.41, there is an α < ωCK1 such that Γα = Γα+1.
Then, for that value of α, we have that, for all σ, if σ deduces that ϕ(n) = i, then σ

α-deduces that ϕ(n) = i.

Lemma 3.5.14. If α < ωCK1 , then the statement “σ α-deduces that ϕ(n) = i” is uniformly
recursive in σ, ϕ, n, i, and Ha, where a is any ordinal notation for 2 · α + 2.

(Ordinal notations, and Ha are defined in Appendix D.)

Proof. The proof is by induction on α.
If α = 0, then to determine whether or not σ α-deduces that ϕ(n) = i, we simply ask

whether ϕσ(n) halts and is equal to i. This is recursive in 0′, and so also in 0′′.
If α is a successor, then let α = β + 1.
Then to determine whether or not σ α-deduces that ϕ(n) = i, we simply ask whether,

∀k∃l∃τ, (l > k), (τ �1 σ), (l ∈ dom(τ)), and τ β-deduces that ϕ(n) = i.
By induction, whether or not τ β-deduces that ϕ(n) = i is uniformly recursive in Hb,

where |b| = 2 · β + 2. Therefore, this is uniformly recursive in H ′′b = Ha for some a with
|a| = |b|+ 2 = 2 · β + 4 = 2 · α + 2.

If α is a limit, then let u = 3 · 5e, and assume |u| = α.
Then to determine whether or not σ α-deduces that ϕ(n) = i, we ask whether or not it

is true that for every k, there is a v that is enumerated by ϕe such that there are k many
different τ �1 σ such that τ |v|-deduces that ϕ(n) = i.

CHAPTER 3. RELATED REDUCTIONS 70

For each v enumerated by ϕe, |v| < α, and so 2|v| + 2 < α (since α is a limit ordinal).
Therefore, Hu can uniformly compute whether or not τ |v|-deduces that ϕ(n) = i (since
it can uniformly compute all the H-sets required to compute each of those facts), and so
H ′′u = Ha can compute whether or not the number of τ that |v|-deduce that ϕ(n) = i goes
to infinity as |v| approaches |u|.

Lemma 3.5.15. Let A and C be reals such that C ≥ii A via ϕ, and assume that for every
recursive ordinal and 0(α) 9T,ii C. Also, assume that σ is a finite partial oracle for C.

Then, if σ deduces that ϕ(n) = i, then A(n) = i.

Note that this assumption on C is implied by A ⊕ O 9T,ii C, since, for every recursive
ordinal α, O ≥T 0(α). (Here, 0(α) is the αth jump of 0, defined in Appendix D.)

Proof. We prove by induction on α that if σ is a finite partial oracle for C, and σ α-deduces
that ϕ(n) = i, then A(n) = i.

If α = 0, then clearly if σ α-deduces that ϕ(n) = i, and σ is a partial oracle for C, then
by definition of 0-deduction, ϕσ(n) = i, and so A(n) = i, because C ≥ii A via ϕ, and so no
partial oracle for C is allowed to cause ϕ to make any mistakes.

Now, let α > 0, and assume by induction that for all β < α, if σ is a finite partial oracle
for C, and σ β-deduces that ϕ(n) = i, then A(n) = i.

Assume that σ is a finite partial oracle for C, and that σ α-deduces that ϕ(n) = i.
Then, by definition of α-deduction, we know that there exist infinitely many τ �1 σ such

that for some βτ < σ, τ βτ -deduces that ϕ(n) = i.
If any of those τ are finite partial oracles for C, then by induction, we can conclude that

A(n) = i.
Otherwise, none of those τ are finite partial oracles for C. Thus, since σ was a finite

partial oracle for C, we know that, for every one of those τ , τ(mτ) 6= C(mτ), where mτ is
the single number in the domain of τ that was not in the domain of σ.

By Lemma 3.5.14, we can uniformly compute infinitely many such τ using Ha, where a
is a notation for the ordinal 2 ·α+ 2. Thus, if none of those τ are finite partial oracles for C,
then Ha can compute infinitely many bits of C. It does this by finding those τ , and knowing
that the single new bit is incorrect for C.

We are now ready to prove Lemma 3.5.8. The proof will be roughly analogous to the
mental exercise that was presented after the statement of Lemma 3.5.8, except that the
problematic Case (3) will no longer be present.

Proof. Assume that C ≥ii A via ϕ, and assume that O 9T,ii A, and A ⊕ O 9T,ii C. For
each partial oracle σ, let fσ be the partial function where fσ(n) = i if and only if σ deduces
that ϕ(n) = i.

Let σ be a finite partial oracle for C that has the property that for any τ �1 σ, if τ is
also a partial oracle for C, then #dom(fτ) > #dom(fσ).

CHAPTER 3. RELATED REDUCTIONS 71

Then, first of all, we show that there exists such a σ.
The empty oracle does not deduce infinitely many bits of A, because otherwise O can

compute infinitely many bits of A. This is because O can uniformly compute all of the
H-sets, and thus, by Lemma 3.5.14, can uniformly compute all of the facts that the empty
oracle can deduce. (By Lemma 3.5.13, we know that any fact that is deduced is α-deduced
for some recursive ordinal α.) By Lemma 3.5.15, all of those facts are correct. Thus, if there
are infinitely many facts deducible from 0, then O can uniformly compute infinitely many
bits of A.

Now, if for every σ that is a finite partial oracle for C, there exists a τ �1 σ that is a
finite partial oracle for C which does not deduce any more facts than σ does, then we can
build an infinite partial oracle, (C), for C by letting σ0 be the empty oracle, and at each
stage letting σs+1 be an extension of σs which does not deduce any additional facts about
A. Then dom(ϕ(C)) cannot possibly be infinite, because, if ϕ(C)(n) = i, then there is an
s such that ϕσs(n) = i. (s is obtained by letting i be large enough that σi includes all of
the bits of (C) that were queried in the computation of ϕ(C)(n).) However, in that case,
σs deduces that ϕ(n) = i, and so, by construction, σ0 deduces that ϕ(n) = i. Since there
are only finitely many facts that are deduced by the empty oracle, there can only be finitely
many n such that ϕ(C)(n) halts. This contradicts the fact that C ≥ii A via ϕ.

Now, fix a σ that is a finite partial oracle for C such that for any τ �1 σ, if τ is also a
partial oracle for C, then #dom(fτ) > #dom(fσ).

Consider the set of all τ �1 σ such that fτ does not incorrectly compute any bits of A.
Let X be the set of numbers that are in the domain of fτ for one of these τ but that are not
in the domain of fσ. Then, one of the following things happens.

1. If there exist infinitely many τ �1 σ such that fτ incorrectly computes any bits of A,
then A⊕O →T,ii C.

This is because O can search for 1-extensions of σ which deduce facts that σ does not
deduce, and it can figure out what those deduced facts are. Whenever it finds such
a 1-extension, A can tell whether or not the additional fact is true. If the additional
fact is false, then, by Lemma 3.5.15, it must be because τ is not a partial oracle for C,
and in particular, the single bit in dom(ϕτ) \dom(ϕσ) must be incorrect. Thus, A⊕O
can figure out infinitely many of the bits of C, by ruling out infinitely many incorrect
1-extensions of σ.

2. If there exist finitely many τ �1 σ such that fτ incorrectly computes any bits of A,
and if X is infinite, then O →T,ii A.

This is because O can compute infinitely many bits of A by a computation which knows
σ, knows all of the τ which give incorrect outputs, and which then gives any output
given by fτ for any τ �1 σ other than the τ which give incorrect outputs. Again, for
any τ , O can uniformly enumerate the outputs of fτ .

CHAPTER 3. RELATED REDUCTIONS 72

3. If there exist finitely many τ �1 σ such that fτ incorrectly computes any bits of A,
and if X is finite, then, by the pigeonhole principle, there must exist some n ∈ X such
that for infinitely many τ �1 σ, fτ (n) is defined, and is equal to A(n). (Again, by
assumption on σ, if τ �1 σ is a partial oracle for C, then dom(fτ)) dom(fσ).)

This contradicts our definition of deduction, since if there exist infinitely many τ �1 σ
such that τ deduces that ϕ(n) = i, then σ already deduces that ϕ(n) = i, and so n
could not have been in X.

This exhausts all the cases, thus, we have that if C ≥ii A, then either O →T,ii A, or
A⊕O →T,ii C.

From this, we can immediately conclude Proposition 3.5.9. Then, to conclude Theorem
3.5.7, assuming Proposition 3.5.9, we only need to show that there exist reals satisfying the
hypothesis of Proposition 3.5.9.

Lemma 3.5.16. There exist reals A and B such that A⊕O 9T,ii B, and B ⊕O 9T,ii A.

Proof. The construction is a standard construction, and is carried out recursively in O′.
We build A and B by finite approximation, ensuring that for each e, if ϕA⊕Oe has infinite

domain, then there exists an n such that ϕA⊕Oe (n) 6= B(n), and likewise that if ϕB⊕Oe has
infinite domain, then there exists an n such that ϕB⊕Oe (n) 6= A(n).

At stage 2e, we have approximations σ and τ to A and B, and we ask whether there is
any extension, σ1 of σ that would cause ϕσ1⊕Oe (n) to halt on some n > |τ |. If there is, then
we extend σ to σ1, and extend τ to some τ1 so that τ1(n) 6= ϕσ1⊕Oe (n). If there isn’t, then
it is already guaranteed that the domain of ϕA⊕Oe will be finite, and so ϕA⊕Oe will not be an
infinite information computation of anything.

At stage 2e+1, we similarly ensure that ϕB⊕Oe is not an infinite information computation
of A.

This concludes the proof of Theorem 3.5.7, that there are maximal pairs in the infinite
information degrees.

At this point, it would seem that the natural next question is whether there exist maximal
infinite information degrees.

Question 8. Does there exist a real A such that for all B, if B ≥ii A, then B ≡ii A?

73

Bibliography

[1] George B. Dantzig. “Maximization of a linear function of variables subject to linear
inequalities”. In: Activity Analysis of Production and Allocation. Cowles Commission
Monograph No. 13. New York, N. Y.: John Wiley & Sons Inc., 1951, pp. 339–347.

[2] Rod Downey, Carl G. Jockusch Jr., and Paul E. Schupp. “Asymptotic density and
computably enumerable sets”. submitted for publication.

[3] Santiago Figueira, Joseph S. Miller, and André Nies. “Indifferent sets”. In: J. Logic
Comput. 19.2 (2009), pp. 425–443.

[4] L. G. Hačijan. “A polynomial algorithm in linear programming”. In: Dokl. Akad. Nauk
SSSR 244.5 (1979), pp. 1093–1096.

[5] Gregory Igusa. “Nonexistence of Minimal Pairs for Generic Computability”. To appear
in J. Symbolic Logic, see also http://arxiv.org/abs/1202.2560.

[6] Carl G. Jockusch Jr. and Paul E. Schupp. “Generic computability, Turing degrees, and
asymptotic density”. In: J. Lond. Math. Soc. (2) 85.2 (2012), pp. 472–490.

[7] Ilya Kapovich and Paul Schupp. “Genericity, the Arzhantseva-Ol′shanskii method and
the isomorphism problem for one-relator groups”. In: Math. Ann. 331.1 (2005), pp. 1–
19.

[8] Ilya Kapovich, Paul Schupp, and Vladimir Shpilrain. “Generic properties of White-
head’s algorithm and isomorphism rigidity of random one-relator groups”. In: Pacific
J. Math. 223.1 (2006), pp. 113–140.

[9] Ilya Kapovich et al. “Generic-case complexity, decision problems in group theory, and
random walks”. In: J. Algebra 264.2 (2003), pp. 665–694.

[10] Alexander S. Kechris. Classical descriptive set theory. Vol. 156. Graduate Texts in
Mathematics. New York: Springer-Verlag, 1995, pp. xviii+402.

[11] Victor Klee and George J. Minty. “How good is the simplex algorithm?” In: Inequali-
ties, III (Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to
the memory of Theodore S. Motzkin). New York: Academic Press, 1972, pp. 159–175.

[12] Leonid A. Levin. “Average case complete problems”. In: SIAM J. Comput. 15.1 (1986),
pp. 285–286.

BIBLIOGRAPHY 74

[13] Gerald E. Sacks. Higher recursion theory. Perspectives in Mathematical Logic. Berlin:
Springer-Verlag, 1990, pp. xvi+344. isbn: 3-540-19305-7. doi: 10.1007/BFb0086109.
url: http://dx.doi.org/10.1007/BFb0086109.

[14] Robert I. Soare. Recursively enumerable sets and degrees. Perspectives in Mathemat-
ical Logic. A study of computable functions and computably generated sets. Berlin:
Springer-Verlag, 1987, pp. xviii+437.

[15] Robert M. Solovay. “Hyperarithmetically encodable sets”. In: Trans. Amer. Math. Soc.
239 (1978), pp. 99–122.

75

Appendix A

Coarse Computation

Here, we prove Lemma A.0.17, which says that there exist generically computable sets which
are not coarsely computable, which is the second half of Proposition 1.1.13.

For this proof, recall Definitions 1.3.5, and 1.3.6, and Lemma 1.3.7, which establish a
means of manipulating the densities of sets by splitting the natural numbers into countably
many sets Pi, and then placing “gaps” into those sets. When we build a real with this
technique, if a real has countably many gaps of the same “size,” then it is not density-1, but
if, for every e, the real has at most finitely many gaps of size e, then the real is density-1.

Lemma A.0.17. There exists a generically computable real that is not coarsely computable.

Proof. In this proof, we do not explicitly build a real satisfying the lemma. Rather, we
explicitly build a generic computation, ψ while ensuring that any real that is generically
computed by ψ is not coarsely computable. (Notice that this is, in fact, necessary, since all
the reals that are generically computed by ψ differ on a density-0 set, so if one of them is
coarsely computable, then they all are, via the same coarse computation.)

For each e, there will be a strategy that ensures that if ϕe is total, then the set of places
where it is correct has infinitely many gaps of size e. This strategy will cause dom(ψ) to
have at most one gap of size e, and it will do so in the event that ϕe is not total.

For each e, there will be a strategy Se, and we will assign countably many Pi to each Se.
Call them Pi,e.

The eth strategy behaves as follows.
It starts by placing a gap of size e into the domain of ψ at P0,e (and for the other n in

P0,e, defining ψ(n) = 0), and it also starts emulating ϕe to see if it halts on all of P0,e.
The intention of this is that if ϕe ever halts on all of P0,e, then Se will fill in the gap that

it placed, and make ψ(n) 6= ϕe(n) for all n in the last 1
2e

of P0,e. This will create one gap of
size e in {n |ϕe(n) = ψ(n)} without leaving any lasting gap in the domain of ψ.

While Se is waiting for ϕe to halt on P0,e, it slowly fills in the values of ψ on Pi,e to halt
and output 0. (If after s steps, ϕe has not yet halted on all of P0,e, then for 0 < i < s, if
n ∈ Pi,e, then ψ(n) = 0.)

APPENDIX A. COARSE COMPUTATION 76

If ϕe halts on all of P0,e, then Se fills in the gap in the manner previously described, and
it selects a new value of i1 (larger than the stage at which ϕe halted on P0,e), and restricts
the domain of ψ to have a gap of size e at Pi1,e until it sees ϕe halt on all of Pi1,e.

Se repeats this process for the entire construction, and at the end of the construction,
one of two things have happened.

Either it only acted finitely often, in which case there is some i such that ϕe never halted
on all of Pi,e. In this case, ϕe is not a total function, and so it cannot be a coarse computation
of anything. Also, in this case, Se causes the domain of ψ to have exactly one gap of size e
(at the last Pi,e that it selected.)

Otherwise, Se acted infinitely often, in which case there are infinitely many values of
i such that ψ(n) 6= ϕe(n) for n among the last 1

2e
of the elements of Pi,e. (Every time it

acts, it creates one more such value of i.) In this case, by Lemma 1.3.7, we know that
{n |ψ(n) 6= ϕe(n)} is not density-0, and so ϕe cannot possibly be a coarse computation of
any real that ψ is a generic computation of.

Now, if we simply run all of the strategies Se in parallel, and allow each of them to define
its respective domain in the manner that it desires, then ψ will be defined everywhere except
with, for every e, at most one gap of size e in its domain. Thus, by Lemma 1.3.7 the domain
of ψ will be density-1, ψ is defined uniformly recursively on its domain, and for any e, ϕe is
not a coarse computation of any set that is generically computed by ψ.

If we let A be any of the sets generically computed by ψ, then A is generically computable,
but not coarsely computable.

77

Appendix B

Cone Avoidance

In this section, we prove a theorem of Gandy, Kreisel, and Tait, known as the cone avoidance
basis theorem, which says basically that given a recursive tree, T , and a nonrecursive ∆0

2

real A, 0′ can be used as an oracle to uniformly compute a path Z through T such that Z
does not compute A. (In other words, such that Z avoids the cone above A.)

Theorem B.0.18. For any infinite recursive tree T , and any nonrecursive ∆0
2 set A, 0′ can

uniformly (in indices for T and A) compute an infinite path Z through T such that Z �T A.

Proof. We will construct Z in stages.
At stage s, we will have an infinite recursive tree Ts ⊆ T , and we will narrow it to a

new infinite recursive tree Ts+1 ⊆ Ts such that for every path X though Ts+1, ϕ
X
s is not a

computation of A.
As we do this, at every stage, we will ensure that for every length l < s, there is exactly

one σ ∈ Ts with |σ| = l. This will ensure that Z is computed by the construction, since
we will only need to do s many steps of the construction to compute the first s bits of Z.
(Z will be the unique path through the intersection of all of the trees that are built in this
construction.)

The actual construction is as follows.

Let T0 = T .
For s ≥ 0, at stage s, we have a recursive tree Ts, and we do the following.
For each n ≥ 0, let Ts,n be the tree of all σ in Ts such that either ϕσe (n) 6= A(n), or ϕσe (n)

does not halt in less than or equal to |σ| many steps. Ts,n is clearly recursive (For any fixed
value of n the value of A(n) can be coded directly in to the computation.)

We now prove three things.
First, if X is a path through Ts,n, then ϕXe is not a computation of A. Second, there

exists an n such that Ts,n is infinite. Third 0′ can uniformly find such an n.

Let X be a path through Ts,n. We show that it is not possible that ϕXe (n) = A(n).
To show this, assume that ϕXe (n) = A(n). Let m be the max of the number of steps

before ϕXe (n) halts, and the largest number that is queried by ϕe during the computation of

APPENDIX B. CONE AVOIDANCE 78

ϕXe (n). Let σ = X � m. Then σ /∈ Ts,n, since ϕσe (n) = ϕXe (n) = A(n), and this computation
halts in less than or equal to |σ| many steps. Thus, there is an initial segment of X that is
not in Ts,n, so X is not a path through Ts,n, providing a contradiction.

Now, assume that for every n, Ts,n is finite. Then we claim that we can compute A by
the following algorithm.

For any fixed value of n, search for a value of m such that for all σ ∈ Ts of length m,
ϕσe (n) has halted in less than or equal to m steps, and such that all of those computations
give the same output. (Such an m must be found eventually, because any m greater than
the height of Ts,n is such an m.) Then n ∈ A ↔ ϕσe (n) = 1 for some σ ∈ Ts of length m.
(For any such m that is found, the output must be correct, because once every path through
Ts has given an output, then none of them can change their minds in the future, and so if
that output is incorrect, then since Ts is infinite, Ts,n would be infinite.)

This algorithm always halts, and always gives correct outputs. It only references Ts,
which is a single recursive tree, and so it is a recursive algorithm.

Finally, 0′ can uniformly find such an n because 0′ can uniformly determine whether or
not n ∈ A, and because 0′ can uniformly ask whether a given recursive binary branching
tree is infinite. (0′ computes A, and uses knowledge of the bits of A to uniformly determine
recursive indices for the trees Ts,n. For each such tree, it asks the question “Consider the
program which looks for a finite height past which Ts,n does next extend, and which halts if
it finds that height. Does that program ever halt?” When it finds a value of n such that the
answer is “no” then that is the n that it is looking for.)

At this point, for each σ ∈ Ts,n, if |σ| = s, then 0′ asks whether the part of Ts,n extending
σ is infinite. (In practice, there will be at most two such σ’s.) For at least one of those values
of σ, the answer will be “yes,” since otherwise Ts,n is finite. Let τ be the leftmost such σ.

Let Ts+1 be the part of Ts,n that goes through τ .
More formally, σ ∈ Ts+1 ↔ (σ ∈ Ts,n) ∧ ((σ � τ) ∨ (σ � τ)).
Then, for every s, Ts+1 is obtained uniformly from Ts using 0′ as an oracle, and for every

X that is a path through Ts+1, ϕ
X
s is not a computation of A. So if we let Z be the unique

path that is through all of the Ts, then Z is a path through T , Z does not compute A, and
Z is obtained uniformly by 0′ from indices for A and for T .

79

Appendix C

Π1
1-Completeness

In this appendix, we define what it means for a set of reals to be Π1
1-complete (Boldface Π1

1

should not be confused with lightface Π1
1, which we will define when we discuss hyperarith-

metic reals.) For a more comprehensive presentation of the subject, see [10].
Before we do that, however, we will need to state a couple other definitions.

Definition C.0.19. Let S be a subset of the reals 2ω.
Then we say that S is Π1

1 if it can be defined by a Π1
1 formula with real parameters.

More formally, S is Π1
1 if there is a formula Φ of second-order arithmetic, and a parameter

B ∈ 2ω such that Φ has three free variables that range over reals, and no quantified variables
that range over reals, and such that, for any A ∈ 2ω, A is in S if and only if ∀XΦ(A,B,X).

Definition C.0.20. Let S be a subset of the reals.
Then we say that S is Borel if it is ∆1

1, or in other words, if both S and 2ω \ S are Π1
1.

It should be noted that the collection of Borel sets can alternatively be defined as the
smallest collection of sets of reals which contains all the open sets of reals, and which is
closed under complements, and countable unions and intersections. We will not need this
characterization.

Definition C.0.21. Let f be a function f : 2ω → 2ω.
Then we say that f is Borel if the graph of f is Borel as a subset of 2ω × 2ω. (Here, and

in general for the purpose of complexity of sets of reals, 2ω × 2ω can be thought of as the
same thing as 2ω, using the homeomorphism {X, Y } 7→ X ⊕ Y to translate between them.)

Most maps that are defined uniformly, including any sort of uniform reduction, and also
the map sending A 7→ A′ are Borel. Also, the composition of Borel maps is Borel.

Definition C.0.22. Let S be a Π1
1 set.

Then we say that S is Π1
1-complete if for every Π1

1 set S̃ ⊆ 2ω, there exists a Borel

function f fuch that ∀X ∈ 2ω(X ∈ S̃ ←→ f(X) ∈ S).

APPENDIX C. Π1
1-COMPLETENESS 80

The idea behind this is that a question is Π1
1-complete if being able to answer that

question allows one to answer any other Π1
1 question in a Borel way. Thus, we determine

membership in our other Π1
1 set by mapping its elements over to the first set, and answering

the question of membership in the first set.

From the point of view of recursion theory, the most important Π1
1-complete set is the

set of well-founded trees on ω<ω. (Here, ω<ω can be thought of as the set of finite sequences
of natural numbers. A tree on ω<ω, like a tree on 2<ω, is a subset of ω<ω that is closed
under initial segments. A tree is well-founded if there are no infinite paths through T . A
tree on 2<ω is well-founded if and only if it is finite, but a tree on ω<ω can have branches of
arbitrarily high length while still avoiding having any infinite branches.)

In our proof of Theorem 2.2.1, we create a Borel function which, given a tree, T ⊆ ω<ω,
produces a pair of reals A, and B such that A ≥g B if and only if T is well-founded. This
shows that ≥g is Π1

1-complete (when thought of as a subset of 2ω×2ω), since any Π1
1 question

can be translated into a question about well-foundedness of trees by a Borel map, and then,
in turn, can be translated from that into a question about generic reducibility.

The purpose of showing that a relationship is Π1
1-complete is that it shows that, in some

sense, that relationship is as complicated as possible, for a relationship with a Π1
1 definition.

In particular, it shows that the relationship cannot possibly be arithmetically definable, or
even Borel definable.

81

Appendix D

Hyperarithmetic Sets, and Higher
Recursion Theory

In this appendix, we define the hyperarithmetic reals, and provide enough background to
understand Theorems 2.2.14 and 3.5.7.

Like the set of Borel sets, the set of hyperarithmetic reals can be characterized in either
of two ways: as an intersection of larger sets, or a countable union of smaller sets. The first
is easier to define, but we will need the second for our proof of Theorem 3.5.7, and so we
present both here.

For a more comprehensive presentation of the subject, see [13].

Definition D.0.23. Let A ∈ 2ω be a real.
Then we say that A is Π1

1 if it can be defined by a Π1
1 formula.

More formally, A is Π1
1 if there is a formula Φ of second-order arithmetic such that Φ

has one free variable that ranges over reals and one free variable that ranges over natural
numbers, and no quantified variables that range over reals, and such that, n ∈ A if and only
if ∀XΦ(n,X).

Definition D.0.24. Let A ∈ 2ω be a real.
Then we say that A is hyperarithmetic if it is ∆1

1, or in other words, if both A and N \A
are Π1

1.

(Note that strictly speaking, this is a definition of ∆1
1, and the fact that it coincides with

the hyperarithmetic reals, whose original definition we will present shortly, is a theorem of
Kleene.)

For the purpose of Theorem 2.2.14 the only thing that needs to be known is that the
hyperarithmetic reals are precisely the reals that can be computed from any sufficiently fast
growing function.

Theorem D.0.25. (Solovay) [15]
Let A be a real. Then A is hyperarithmetic if and only if there is a function f , and a

Turing functional ϕ such that for every function g dominating f , ϕg is a computation of A.

APPENDIX D. HYPERARITHMETIC SETS, AND HIGHER RECURSION THEORY82

(Here, g dominates f if and only if ∀n, g(n) ≥ f(n).)

We prove here that if A can be computed from a sufficiently fast growing function, then
A is ∆1

1. The converse will be deferred until after we present the original definition of
hyperarithmetic reals.

Proof. Let A be a real, and assume that for every function g dominating f , ϕg is a compu-
tation of A.

Then, we provide a ∆1
1 characterization of A as follows.

n ∈ A if and only if there exists a function f such that for every σ, if σ is a finite
approximation to the graph of a function dominating f , then there exists a τ � σ which is
also a finite approximation to the graph of a function dominating f such that ϕτ (n) = 1.

(Note that finite approximations to subsets of N×N can be coded as integers. Thus, the
only quantifier over reals in the definition was the existence of an f . In this, we are inherently
working with functions in terms of their graphs, so really, this quantifier is saying “there exists
an X ⊆ N× N such that for every n, there is exactly one m such that 〈n,m〉 ∈ X.”)

This provides a Σ1
1 characterization of A. (A Π1

1 characterization of N \ A.)
Also, n ∈ A if and only if for every function f , there exists a σ which is a finite approxi-

mation to the graph of a function dominating f such that ϕσ(n) = 1.
(By assumption, we know that there is an f such that for every g dominating f , ϕg(n) =

A(n). Thus, if for every f , there is something dominating f that gives a given answer, then
that answer must be correct, since, in particular, it is true if the f is the “correct” f .)

This provides a Π1
1 characterization of A.

Therefore, A is ∆1
1, and so A is hyperarithmetic.

To help motivate the definitions that we will present, we first engage in a mental exercise.
For each n, we can let 0(n) be the nth jump of 0. (So 0(0) = 0, and 0(n+1) = (0(n))′, the

halting set relative to 0(n).)
Each time we take the jump, the Turing degree increases. (So 0(n+1)
T 0(n).)
If we want to, however, we can take the uniform join of all of these degrees, and let

0(ω) = {〈n,m〉 |m ∈ 0(n)}. Which is, in some sense, the ωth jump of 0.
We can keep taking jumps, to get 0(ω+1), 0(ω+2), eventually 0(ω·2), 0(ω2), 0(ω3), 0(ωω), etc.
At first glance, it would appear that we should be able to define 0(α) for any countable

ordinal α, but we eventually reach a problem with the “take a uniform join” step of the
operation, since we can only take a uniform join if we have a way of presenting α in a
recursive manner. For this reason, 0(α) will only be defined for recursive ordinals α.

To make all of this precise, we begin by presenting a notation for discussing recursive
ordinals.

In the following definition, |n| = α should be read as “the number n is a notation for the
ordinal α.”

Definition D.0.26.

APPENDIX D. HYPERARITHMETIC SETS, AND HIGHER RECURSION THEORY83

• |1| = 0.

• If |u| = α then |2u| = α + 1.

• Let an be the nth number enumerated by ϕe. Then, if for every n, |an| = αn, and if,
furthermore, for every n, αn+1 > αn, then |3 · 5e| = limn→∞αn.

Notice that this definition allows for there to be multiple notations for the same ordinal.
We will see in Lemma D.0.30 that this does not present a major problem when defining 0(α).

Definition D.0.27. Then, Kleene’s O is the set of notations for recursive ordinals: the
smallest subset of the natural numbers that has the following properties.

• 1 ∈ O.

• If u ∈ O, then 2u ∈ O.

• If, for every n, the nth number enumerated by ϕe, an is in O, and if for every n,
|an+1| > |an|, then 3 · 5e ∈ O.

Definition D.0.28. α is a recursive ordinal if ∃u ∈ O, |u| = α.
ωCK1 is the smallest nonrecursive ordinal.

We are now ready to define the H-sets, which will be our formalization of how to take
an ordinal number of jumps of 0.

Definition D.0.29. Let u ∈ O. Then Hu is the real defined by induction in the following
manner.

• H1 = 0

• H2u = H ′u

• H3·5e is the uniform join of the Han where an is the nth number enumerated by ϕe.

More formally, let an be the nth number enumerated by ϕe. Then H3·5e = {〈x, n〉 |x ∈
Han}.

This definition allows us to make precise what we mean when we refer to 0(α).

Lemma D.0.30. (Spector)
Let u, v ∈ O. Then Hu ≡T Hv if and only if |u| = |v|.
Thus, for any recursive ordinal α, we may define 0(α) by fixing any u ∈ O such that

|u| = α, and letting 0(α) = Hu. This definition is only well-defined up to Turing degree, but
that is sufficient to determine what computes 0α, and what is computable from 0(α).

We now present the original definition of hyperarithmetic.

APPENDIX D. HYPERARITHMETIC SETS, AND HIGHER RECURSION THEORY84

Definition D.0.31. Let A ∈ 2ω be a real.
Then A is Hyperarithmetic if and only if there is some recursive ordinal α such that

0(α) ≥T A.

Theorem D.0.32. (Kleene)
Definitions D.0.24 and D.0.31 are equivalent.

The proof is omitted, but can be found in [13].
We now prove Theorem D.0.25 by first proving that every H-set has a modulus.

Lemma D.0.33. Let u ∈ O. Then there exists an f and an e such that for any g dominating
f , ϕge is a computation of Hu. Furthermore, an index for e can be computed uniformly from
u.

Proof. We prove the statement by induction on |u|.
If u = 1, so Hu = 0, which can be uniformly computed from any function.
If u = 2v, then by induction, fix some f0, e0 such that for any g dominating f0, ϕ

g
e0

is a
computation of Hv. Let f1 be the smallest function with the property that if ϕHve (e) halts,
then ϕHve (e) halts in less than or equal to f1(e) many steps.

Let f(n) = max(f0(n), f1(n)).
Then, from any g dominating f , we can compute Hu as follows.
Compute Hv using ϕge0 . Then use our computed values for Hv to run approximations of

ϕHve (e). Then, e ∈ Hu if and only if ϕHve (e) halts in less than or equal to g(e) many steps.
This construction is uniform in e0, so if we could uniformly compute e0 from v, then we can
uniformly compute an index for this construction from u.

If u = 3 · 5k, then, for each n, let ui be the ith number enumerated by ϕk. By induction,
fix fi, ei such that for any g dominating fi, ϕ

g
ei

is a computation of Hui .
Then, let f(n) = maxm≤n{fm(n−m)}.
Then, let g dominate f . Let gi(n) = g(n + i). Note then that gi dominates fi, so to

compute whether or not 〈x, i〉 ∈ Hu, we use ϕgiei to compute whether or not x ∈ Hui .
The ui can be computed uniformly from k (since we are assuming that u ∈ O, and so,

in particular, ϕk will eventually enumerate infinitely many things), the ei can be computed
uniformly from the ui by induction, and the rest of the computation is uniform in the ei, so
an index for the computation can be recovered uniformly from u.

We can now easily prove the forward direction of Theorem D.0.25.

Corollary D.0.34. (Solovay) [15]
Let A be a hyperarithmetic real. There is a function f , and a Turing functional ϕ such

that for every function g dominating f , ϕg is a computation of A.

APPENDIX D. HYPERARITHMETIC SETS, AND HIGHER RECURSION THEORY85

Proof. By Definition D.0.31, fix a u such that Hu ≥T A. By Lemma D.0.33, choose f0 such
that any g dominating f0 can be used uniformly to compute Hu. Fix i, j such that ϕHui is a
computation of A, and such that for any g dominating f0, ϕ

g
j is a computation of Hu.

Then, let f be f0. To compute A from any g dominating f , use ϕj to compute Hu, and
then use the computed values of Hu with ϕi to compute A.

We conclude this appendix by mentioning, without proof, various results concerning
recursive ordinals and H-sets.

Lemma D.0.35. If a ∈ O, then Ha can uniformly enumerate the b ∈ O such that |a| > |b|.
Furthermore, for each such b, Ha can uniformly compute Hb.

Lemma D.0.36. O can uniformly compute Ha for any a ∈ O.

Definition D.0.37. Let Γ : 2ω → 2ω be a map from reals to reals. Then the set inductively
defined by Γ is defined as follows.

For any ordinal α, we define Γα by induction.
Γ0 is the empty set.
Γα+1 = Γ(Γα) ∪ Γα.
If λ is a limit, then Γλ =

⋃
α<λ Γα.

Then, Γ∞, the set inductively defined by Γ is given by Γ∞ =
⋃
α∈ORD Γα.

The idea behind this is that Γ is a closure condition, and given any real X, Γ(X) tells
you certain new elements need to be added to that set in order for it to be closed under
Γ. To reach a set that is actually closed under Γ, we might need to apply Γ a transfinite
number of times.

Observation D.0.38. If α < β, then Γα ⊆ Γβ ⊆ N. Also, if Γα = Γβ, then for all γ > α,
Γγ = Γβ. Thus, since new elements can only be added to Γ∞ a countable number of times,
Γ∞ = Γω1.

In particular, since there exists an ordinal, α, such that Γα = Γ∞, there must be a least
such ordinal.

Definition D.0.39. |Γ|, is the least ordinal, α, such that Γα = Γ∞.

Definition D.0.40. A closure condition, Γ, is monotonic if it satisfies the property that for
any reals X, and Y , if X ⊆ Y , then Γ(X) ⊆ Γ(Y).

Lemma D.0.41. (Spector)
If Γ is monotonic, and Γ is Π1

1, then |Γ| < ωCK1 , and Γ∞ is Π1
1.

APPENDIX D. HYPERARITHMETIC SETS, AND HIGHER RECURSION THEORY86

(Here, a map on reals is Π1
1 if there is a formula Φ, of second order arithmetic, with three

free variables ranging over reals, and no quantified variables that range over reals, such that
for each X, there is a unique Y such that ∀ZΦ(X, Y, Z), and if, for each X, the unique Y is
Γ(X).)

The basic idea of Lemma D.0.41 is that it provides a way of concluding, for almost any
set that is built in stages, that there is a stage before ωCK1 at which the set is finished being
built.

