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Abstract

We study how people terminate their search for information when mak-
ing decisions in a changing task environment. In three experiments,
differing in the cost of search, participants made a sequence of two-
alternative decisions, based on the information provided by binary cues
they could search. Whether limited search was sufficient, or extensive
search was required, changed across the course of the experiment, but
was not indicated to participants. We find large individual differences
but that, in general, the extent of search is changed in response to
environmental change, and does not necessarily involve a reduction in
accuracy. We then examine the ability of four models to account for
individual participant behavior, using a generalization measure that
tests model predictions. Two of the models use reinforcement learning,
and differ in whether they use error or both error and effort signals to
control how many cues are searched. Two of the models use sequential
sampling processes, and differ in the regulatory mechanisms they use
to adjust the decision thresholds that control the extent of search. We
find that error-based reinforcement learning is usually an inadequate
account of behavior, especially when search is costly. We also find evi-
dence in the model predictions for the use of confidence as a regulatory
variable. This provides an alternative theoretical approach to balancing
error and effort, and highlights the possibility of hierarchical regulatory
mechanisms that lead to delayed and abrupt changes in the extent of
search.



Introduction

Search is a basic cognitive ability. People and animals have always needed to

search their environment for basic needs like food, mates, and safety. More recently,

people have needed to search their external information environment, to find out

whether employers are recruiting new workers, if a curtain is available in an acceptable

color, how humid potential holiday destinations are forecast to be, and what features

are available on a smartphone. In addition, people have always needed to search

their internal environments, containing their knowledge and memories. Retrieving,

recalling and reconstructing information from memory is a basic pre-cursor to much

of human thinking, decision-making, and action. There is a large literature on human

and animal behavior in foraging, mate search, visual search, information search, and

memory retrieval in addressing how people and animals search their external and

internal environments. A recent overview of these disparate but related areas is

provided by Todd, Hills, and Robbins (2012).

A pervasive characteristic of both external physical and information environ-

ments, and internal knowledge and memory environments, is that they are change-

able. Seasons change, adversaries move, companies start and stop recruiting, features

are added to phones, new facts are learned, and experienced events are forgotten.

Finding relevant information is challenging enough in static environments, but be-

comes much harder in dynamically changing environments. There is a large literature

on animal and human behavior in dynamic environments, measuring experimentally

how changes are detected and environments monitored, and attempting to understand

the learning and adaptation processes underlying decision making. (e.g., Biernaskie,

Walker, & Gegear, 2009; Brown & Steyvers, 2005; Eliassen, Jørgensen, Mangel, &

Giske, 2009; Gallistel, Fairhurst, & Balsam, 2004; Marshall, J, Ashford, Rowcliffe, &

G, 2013; Nassar et al., 2012; Otto, Gureckis, Markman, & Love, 2010; Speekenbrink

& Shanks, 2010).

Understanding the intersection of these two areas—the basic cognitive capabil-

ity of search, and the inherent changeability of search environments—is a difficult

problem in cognitive modeling. It addresses the question of how people learn, adapt

and regulate the way in which they search, simultaneously finding the information

they need to make decisions and act, while evaluating and modifying the effective-

ness of those search processes as the environment shifts. This raises questions of how

people monitor changing environments, how they make predictions about the infor-
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mation they will find, how they make inferences about what information they could

find, and how they adapt their search processes accordingly. Put simply, the general

challenge is to understand how people adapt their search in dynamic environments.

In this paper, we consider one limited but important part of the general chal-

lenge. Whereas a body of previous work has focused on the order in which people

search for information (e.g., Garca-Retamero, Takezawa, & Gigerenzer, 2009; Garca-

Retamero, Takezawa, Woike, & Gigerenzer, 2013; Newell, Rakow, Weston, & Shanks,

2004; Rakow, Newell, Fayers, & Hersby, 2005; Todd & Dieckmann, 2005), we focus

on how people adapt the termination of their search. It is often possible to continue

to search, and it is often not obvious when enough information, or the right sort of

information, has already been found. When people make decisions about how many

job listings to check, how many curtains to look at, how many holiday destinations to

consider, and how many features to evaluate on a phone, they are making decisions

about when to terminate their search. As an environment changes, different termi-

nation decisions may be needed. Job seeking is different depending on whether many

or a few jobs are available, and if makers of smart phones introduce a few new “must

have” features, there may be no need to evaluate the other features of a phone that

is missing these crucial elements.

The cognitive modeling problem of understanding how people adapt their ter-

mination of search can be approached from a number of theoretical perspectives. One

approach involves assuming there is an internal competition between multiple decision

processes. Many models of adaptive decision making adopt this general and powerful

approach (e.g., Busemeyer & Myung, 1992; Erev & Barron, 2005). The approach can

be naturally applied to the problem of modeling the adaptive termination of search, by

considering competing heuristic decision strategies with different search termination

properties. A good example of this approach is provided by the Strategy Selection

Learning (SSL: Rieskamp & Otto, 2006) model, in which reinforcement learning con-

trols which of two different heuristics are applied over a sequence of decision making

trials. One of these heuristics is take-the-best (TTB: Gigerenzer & Goldstein, 1996),

which terminates search as soon as evidence that discriminates between the choice

alternatives is found. The other heuristic is the Weighted Additive heuristic (WADD:

Payne, Bettman, & Johnson, 1990), which assumes all of the available information is

searched. Thus, the SSL model provides an account of when and why people switch

between limited ‘one-reason’ search and exhaustive search of their decision making
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environment.

Another theoretical perspective is provided by sequential sampling models of the

time course of decision-making. These models have their origins in stimulus sampling

processes that naturally correspond to information search. The basic assumption is

that people sample information from stimuli, accumulating the evidence they provide

for alternative decisions, until a sufficient threshold evidence has been reached to

make one of these decisions. There are many sorts of sequential sampling models,

making different assumptions about how information is sampled and accrued, and

their development and evaluation is a long-standing and currently active sub-field of

cognitive modeling (e.g., Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Brown

& Heathcote, 2008; Link & Heath, 1975; Ratcliff, 1978; Ratcliff & McKoon, 2008;

Vickers, 1979).

The termination of search is naturally addressed within the sequential sam-

pling framework; it is controlled by how thresholds are set, used, and adapted. The

speed-accuracy tradeoff, perhaps the most basic issue in search termination, is con-

trolled by setting thresholds, and empirical success in capturing this behavior is seen

throughout the modeling literature. It has also been shown that setting thresholds

in sequential sampling models can make them behaviorally equivalent to some of the

most important heuristic models (Lee & Cummins, 2004; Newell, 2005; Newell & Lee,

2011). When the threshold of evidence needed to make a decision is low, sequential

sampling models mimick one-reason decision-making heuristics like TTB. When the

threshold is very high, sequential sampling models conduct exhaustive search, and

mimick tallying heuristics, like WADD, that use all the available features, cues or

information.

There is far less work on developing sequential sampling models that allow for

the adaptation of search. This extension requires learning rules that specify how

thresholds are adjusted within or between decision-making trials, and the ability to

detect changes in the environment. Simen, Cohen, and Holmes (2006) develop a

candidate model that uses reinforcement learning methods to change the thresholds

on a drift-diffusion sequential sampling model, in a way that is sensitive to the re-

ward rates and payoff structures in the decision making environment. Busemeyer

and Rapoport (1988) present a series of experiments and models that also address

the issue of the extent of search within a sequential sampling framework. They also

consider different payoff structures, and compare various sequential sampling mod-
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els of evidence accumulation, as well as different heuristic strategies, as accounts of

human and optimal behavior. The changes in the environment demand different lev-

els in the extent of search, directly addressing the problem we tackle. The models

evaluated by Busemeyer and Rapoport (1988) do not, however, extend as far as pro-

viding a learning or adaptation mechanism for the trial-by-trial change in thresholds

of evidence accumulation. And, as with Simen et al. (2006), the focus remains on

accuracy, reward and payoff as the determinants of when and why people should

terminate search.

It seems unlikely, however, that animals and people adapt how much they search

based solely on externally observable accuracy and immediate reward and payoff

(Kheifets & Gallistel, 2012; Marshall et al., 2013). Many decisions involving search,

and requiring the termination of search, do not provide immediate corrective feedback,

and so the accuracy of decision-making is not available. The environment does not

usually send a signal indicating whether a better food source could have been found

by more extensive foraging. Relatedly, many decisions regarding search, even if good

ones, do not necessarily provide clear immediate reward. Changing how extensively

applicants are vetted for recruiting may have non-obvious consequences that are not

realized for many years.

One way to deal with the inadequacy of observed accuracy or reward as a

signal for adapting search is to introduce additional useful signals. The SSL model

(Rieskamp & Otto, 2006) considers signals based on effort, motivated by the idea

that people are motivated not just to be accurate and obtain rewards, but also to

expend as little effort as possible. The use of an effort signal marks an important

theoretical shift towards allowing internally generated, rather than environmentally

provided, measures of performance to guide the adaptation of search. The sequential

sampling framework allows for learning, adaptation or self-regulation mechanisms

for thresholds that are based on internally generated measures of performance. The

best developed model using this approach is the Self-Regulating Accumulator (SRA:

Vickers, 1979), which relies on internally-generated measures of confidence, rather

than external measures of accuracy, to adapt thresholds and control the extent of

search.

Our goal in this paper is to examine how people adapt when they terminate

search in changing environments. Empirically, we are interested both in situations

where it is likely changes in accuracy will signal the change in environment, and in sit-
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uations where it is unlikely accuracy will be affected by environmental change. Thus,

we make an empirical contribution by conducting a series of experiments measuring

how people regulate their search from trial to trial in changing environments, under

conditions in which information is more or less easy to obtain. Theoretically, we

are interested in both simple heuristic decision rules and sequential sampling models,

as well as adaption based on both external signals like error-correction and internal

signals like confidence. We develop a series of reinforcement learning and sequential

sampling models, and evaluate them against our data. Our findings make a theoretical

contribution, because the differences between the models correspond to different the-

oretical assumptions about how people terminate their search, and how they adapt

that termination process. Our evaluation of the models against the data relies on

a powerful, but under-used, approach based on generalization tests (Busemeyer &

Wang, 2000), which examine how well a model predicts data in a task setting that is

different from the one used to infer its parameter values. In this way, we also provide

a methodological contribution, providing a case study of how generalization tests can

be applied to evaluate cognitive models.

The paper is organized as follows. In the next section, we describe a series of

three experiments measuring how people terminate their search, and change their

termination of search, in changing environments. The different experiments use the

same task and environments, but manipulate the costs and incentives involved in

limited and expansive search strategies. We report basic empirical results for all of

these experiments, including examining individual differences. We then develop a se-

quence of four models that make a natural theoretical progression, and evaluate them

against the empirical data. The first model is a basic reinforcement learning heuristic

that only adapts when errors are made; the second model is a reinforcement learning

heuristic that is sensitive to both errors and effort; the third model is a sequential

sampling model that is sensitive to both error and effort through the unifying mech-

anism provided by confidence; and the final model is a hierarchical extension of this

sequential sampling model closely related to the established SRA model. We evaluate

the usefulness of these models in describing, explaining and predicting the empirical

data, and discuss the implications of our findings for future empirical and theoretical

development.
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Experiments

The experimental task was designed to meet two guiding principles. First,

we wanted to include two kinds of changes in the statistical structure across trials,

both requiring changes in how people terminated search, but with only one likely

to be signaled by a change in accuracy. Secondly, we wanted to be able to make

fine-grained trial-by-trial measures of the extent to which people searched, so that

we could quantify how they terminated search. To achieve these aims we designed

a task in which participants answered a series of 200 two-alternative forced choice

multi-attribute decision problems. Using a standard approach, the task involved

deciding which of two objects was higher on a particular criterion. To make a decision

participants could access information from a minimum of one and a maximum of nine

cues on each trial. These cues provided binary information about each object in the

current trial pair. The dependent measure of interest, assessing when participants

terminated their search, is quantified in terms of how many cues participants examine

before making a decision on each trial.

Method

Participants. A total of 94 undergraduate students (Experiment 1 N = 30;

Experiment 2, N = 36, Experiment 3 N = 28) from the University of New South

Wales participated in return for course credit and, in Experiment 3 only, performance

related pay. No participant completed more than one experiment.

Stimuli. The experimental environment was created by selecting pairs of objects

from the widely-studied German cities environment developed by Gigerenzer and

Goldstein (1996). In the original environment, the objects correspond to German

cities, the criterion is the population of each city, and the nine cues correspond to

features like “is a state capital” and “has a team in the Bundesliga”. We re-described

the objects as soil samples, the criterion as the energy efficiency of the samples, and

the cues as the binary results of tests of the soil samples like “contains Actinium” and

“seismic analysis is positive”. Each cue is naturally associated with a cue validity,

which is the proportion of times it indicates the correct decision when it discriminates

between objects. In our energy task re-description, the cue validities of 99%, 91%,

87%, 78%, 77%, 75%, 71%, 56% and 51% correspond to the nine tests.
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Actinium

Radiation

Promethium
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Underground
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0.99

0.91

0.87
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Yes Yes

No No

Yes No
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No Yes
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? ?

? ?

Sample A Sample B

Run Test

   0/6

   1/6

   6/6

Choice

Correct?

Trial 3 of 200

A B

Figure 1. Schematic presentation of the experimental task, and the assessment of partici-
pant’s performance. On each trial, a sequence of binary cues can be searched in a fixed order.
When search is terminated, a decision is made, and feedback is provided. The accuracy of
decisions, and the extent of search—measured in terms of the proportion of cues beyond
the first discriminating cue–are taken as measures of decision-making and search behavior.
The dashed-line box highlighting the first discriminating cue, and the sequence showing the
proportion of extra cues measure ‘(‘0/6”, “1/6”, “6/6”), are included for explanation, and
are not part of the experimental interface.

Procedure. A schematic presentation of the experimental task is shown in Fig-

ure 1. Each trial requires the participant to make a decision about which of two soil

samples is the more energy efficient fuel source. The stimuli are always represented in

terms of the same cues, with the same validities, but whether each cue is present or

absent for each stimulus varies trial to trial. To search the soil test cue information,

participants could click a “Run Test” button, and reveal this binary information.

Participants had to run at least one test per trial, but were free to choose as many

as they liked after that, before making their decision. The order in which tests could

be run was fixed according to the cue validities, which were displayed beside the cue

names.

The information about each test was presented on screen and was described to

participants as follows: “if a test has a success of 75% this means that if there were

100 trials in which one sample had a positive result (YES) for that test and the other
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sample had a negative result (NO) for that test, then the sample with the positive

result would be the correct choice (be richer in the energy source) on 75 of those 100

cases, whereas for the remaining 25 cases the other sample would have been richer in

the energy source” (cf. Rieskamp & Otto, 2006). Following each decision feedback

was provided, and a record of how many correct decisions had been made was shown

on the screen throughout the experiment.

The experiment had a total of 200 trials which were subdivided into three blocks

of 50, 100 and 50 trials respectively. These subdivisions were not made explicit to the

participants—from their perspective the experiment ran continuously from trial 1 to

200—but corresponded to change points in the statistical structure of the underlying

environment. The experimental design is shown schematically in Figure 2. In the

first block of 50 trials, participants learned in an environment in which the first

discriminating cue always gave the correct answer. In the second block from trials

51 to 150, the first discriminating cue provided no information, corresponding to the

correct answer on exactly half of the trials. In the third block from trials 151 to

200, as for the first block, the first discriminating cue always corresponded to the

correct answer. Throughout all 200 trials, exhaustive search of all the cues, and

the rational combination of the evidence they provided, always corresponded to the

correct answer.1 Thus, overall, the three blocks correspond to a first stage in which

either limited or exhaustive search will lead to accurate decisions, a second block

in which only exhaustive search is required, and a final block in which again either

limited or exhaustive search will be effective.

The same 200-trial task was used in three separate experiments, which manipu-

lated the costs and benefits related to information search. In Experiment 1 there was

no time cost, and participants could run the tests to reveal information as quickly as

they liked. In Experiment 2 there was a time cost to running each test. Specifically,

participants had to wait for 3 seconds for the result of each test to be displayed on

the screen. During this time a message with the words “Computer now running test”

appeared on the screen. In Experiment 3, participants played for points that could be

converted to dollars at the end of the experiment (100 points = AUD$0.05). Partici-

1By rational combination of the evidence, we mean the sum of the log odds defined by the cue
validities (see Lee & Cummins, 2004; Lee & Zhang, 2012). This is normative, given the assump-
tion that the cues provide independent evidence. It would also be worthwhile considering more
sophisticated normative models that incorporated assumptions about the relationships between the
cues.
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Figure 2. Schematic presentation of the experimental design, including example of the two
problem types used to construct the environmental changes . In the first 50 trials, problems
were presented for which searching to the first discriminating cue, as well as searching all
cues, provided the correct answer. In the second block, the first discriminating cue gave
the same answer as searching all cues exactly half the time, and searching all cues always
provided the correct answer. The third block had the same properties as first block.

pants were given 2000 points at the start of the experiment and could earn 70 points

on each trial for a correct answer. However, each decision incurred a handling fee cost

of 34.5 points. In addition, in the first and third blocks, clicking on each information

button incurred a cost of 3 points. This cost structure combined with the changes in

the statistical structure of the underlying environment encouraged limited search in

the first and third blocks, and more extensive search in the second block. A reminder

of the handling fee and reward was displayed on-screen throughout the experiment.

Participants were told at the start of the experiment that on some trials they might

need to pay for information. Trials that incurred costs were indicated on screen with

a points-cost indicator next to each test button. At the conclusion of the experiment,

a final score was displayed, and participants were debriefed and paid a cash reward
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based on their score.

Empirical Results

The structure of the experimental trials, with three blocks, is designed to study

how people change the extent of their search faced with two different sorts of envi-

ronmental change. The first change occurs after trial 50, and requires that limited

search be extended. This change is associated with an accuracy signal, because the

use of limited search will lead to errors in decision-making. The second change occurs

after trial 150, and allows for a return to limited search. This change is not associated

with an accuracy signal, because both limited and exhaustive search are effective in

the third block of trials.

In the language of fast and frugal heuristics, this design means that a one-reason

decision-rule like TTB, which relies on the first discriminating cue to make a decision,

is effective in the first and third blocks, but not the second. An exhaustive search

heuristic like WADD is effective for all of the trials, and required in the second block.

In the language of sequential sampling models, low thresholds on required evidence

are effective in the first and third blocks, but larger thresholds are required in the

second block.

The basic empirical interest is on whether and how people would be sensitive

to the two types of changes in the task environment, and adapt the decisions they

made, and how many cues they searched. The dependent measure of decision-making

is straightforward, and corresponds to whether or not each decision was correct or an

error. The dependent measure of the extent of search is more complicated. Following

Newell and Lee (2009), we used the Proportion of Extra Cues (PEC) measure, which

is illustrated in Figure 1. The PEC measure gives the proportion of cues beyond the

first discriminating cue that a participant chose to use. Recall that participants are

required to run tests until discriminating information is found. At this point, there is

some number n of remaining tests that could be run. Stopping search, and making a

decision at this point, corresponds to a PEC measure of zero. Continuing search by

running a further k tests corresponds to a PEC measure of k/n. Running all of the

possible tests corresponds to a PEC measure of one. In this way, the PEC measure

provides a normalized index of the extent of search for each participant on each trial.

Figure 3 provides visual summaries of the error measure of decisions and PEC

measure of search for all of the participants in all three experiments. The same raw
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Figure 3. Summary of the search and decision-making behavior of all the participants in all
three experiments. The top row of panels show the pattern of the extent of search and errors
for each individual participant. The bottom row of panels shows the same information, but
aggregated over participants, to make clear the distribution of search and errors. Mean
behavior for each of the three experimental blocks is overlayed in both displays
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information—the PEC measure and accuracy of every participant on every trial in

every experiment—is presented in two different ways. The first presentation format,

in the upper column, focuses on individual behavior. The error counts and PEC

measure are shown for each participant as lines. In the lower columns, the focus is on

the distribution of behavior over individuals. The squares correspond to histograms,

showing the distribution of error counts and PEC measures over the trial sequence.

The change points between the three blocks at trials 50 and 150 are also indicated,

and the overall average PEC behavior of all participants in the three blocks is shown

by thick lines connecting cross markers.

The two different approaches to visual presentation are complementary, and

together suggest a number of empirical findings. The most obvious one is the change

in search behavior across blocks, involving an increase in the extent of search moving

from the first to second block of trials, and a similarly-sized decrease in the extent of

search moving from the second to third block of trials. This pattern of change is clear

in the aggregated behavior across all participants, and in many of the individual

participants. To highlight the key empirical result that people change the extent

of their search, even when their decision making is accurate, we examined those

participants who made no errors in the final block. There are 47 participants—more

than half of all participants—who were perfectly accurate in this block. Their PEC

measure of the extent of search changed, however, from an average of 63% in the

second block to an average of 38% in the final block. At the individual level, 43

out of these 47 participants decreased the extent of their search, and some decreased

their PEC from near 100% (exhaustive search) to near 0% (searching to the first

discriminating cue).

The qualitative pattern is evident in all three experiments, although there are

quantitative differences. The overall extent of search is higher in the first experiment,

where there was no explicit cost for search. The increase and decrease in the extent

of search is most marked in the third experiment, where the pay-off structure of

the environment is aligned with the optimal change in search strategies (Otto et al.,

2010). The other obvious conclusion relates to the accuracy of decision making, and

mirrors the changes in the patterns of search. Decisions made in the first and third

blocks are relatively accurate, but there is a spike in errors at the beginning of the

second block.

Overall, the empirical findings in Figure 3 are that people adapt their search to
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changes in the task environment, including both increasing and decreasing their extent

of search, with and without changes in accuracy. The patterns of these changes are

sensitive to the cost of search, and, while there are clearly large individual differences

in the detailed changes to searches and decisions, there are also broad regularities at

the group level.

An Evaluation of Four Models

In this section, we develop and evaluate four models against the experimental

data. Because the nature of the models and the data present significant challenges for

evaluation, we first motivate our approach to evaluation. We then present the four

models in a logical theoretical sequence, evaluating each model against its predecessor.

Finally, we present some overall evaluation of the four models together.

Evaluation Method

Model evaluation for the models and task we consider presents a number of

significant challenges. The first challenge is that the evaluation must simultane-

ously account for the decisions participants made, and how many cues they searched.

Evaluating the fit of a model to bivariate behavioral data always requires making

assumptions about the relative importance of capturing both sorts of behavior.

The second challenge is that the models have different levels of complexity, and

these differences must be taken into account with goodness-of-fit (Myung, Forster,

& Browne, 2000). In general, the models we consider do not have simple nested

relationships to each other, with one being a special case of the other. The types

of parameters and processes they use also vary widely, and make widely-used (and

abused) model selection criteria like the AIC and BIC problematic. There is no reason

to believe for most of the model comparisons we consider that a count of the number

of parameters is a good approximation to model complexity.

The third challenge is that the models are not naturally probabilistic. As is often

the case with heuristic models of decision making, the standard implementations

of some models are deterministic. This means they do not automatically have a

likelihood function, and so state-of-the-art Bayesian methods of evaluation cannot be

applied.

There are difficult but principled ways in which these challenges could be ad-

dressed. For example, deterministic models can be made amenable to computa-
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Figure 4. The basic approach to model evaluation, based on generalization performance.
The decision and search behavior of a participant is summarized in the left panel. The fit of
a model on the first 100 trials, based on best-fitting parameters is shown in the right panel,
using a solid line. The generalization performance of the model on the second 100 trials,
on which it was not trained, is also shown, using an open line. The agreement between
participant behavior and model generalization predictions provide the assessment measure
we use to evaluate models.

tional Bayesian inference by using synthetic likelihood (Wood, 2010) or approximate

Bayesian computation methods (e.g., Turner & Van Zandt, 2012), or theoretical ex-

tensions based on principles like entropification (Grünwald, 2000; Lee, 2004). Alter-

natively, it might be possible to define reasonable probabilistic versions of the basic

models.

In this paper, however, we adopt a practical approach to model evaluation,

summarized in Figure 4, based on generalization (Busemeyer & Wang, 2000). Gen-

eralization tests evaluate models by training under one set of circumstances, and

testing how well they perform in different but related circumstances. Generalization

tests differ from more routinely used prediction tests, like cross-validation, because

the former require that testing is done on data coming from an environment that is

different from the one used for training.

In some ways, our experimental design is well suited to this approach, because

it is founded on a sequence of different environmental changes. A powerful test of a
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model on our task is to train it on a participant’s behavior in the first 100 trials, so that

it experiences the first type of environmental change, and then test the model on its

ability to predict that participant’s behavior in the final 100 trials, which includes the

second type of environmental change. Figure 4 provides a summary of our approach.

The left panel shows the search and decision behavior of a participant, using the same

approach to visual display as Figure 3. The right panel shows the behavior of a model

that has been trained on the first 100 trials. This training results in parameter values

being inferred that can then be used to generate model predictions for the final 100

trials. The search behavior of the model in the test trials is presented by the solid

line, while the generalization test behavior is presented by the open line. The error

rates predicted by the model are shown as an open histogram overlayed on the gray

histogram representing participant behavior. Only the agreement between predicted

and observed behavior on the test trials is used to measure generalization, consistent

with the logic of assessing prediction to control model complexity.

This generalization measure provides a useful practical assessment of a model.

Because it relies on data that not only were not used to train the model, but involve

a different environment change from the training data, an overly-complicated model

cannot perform well simply by describing the training data. Good generalization

performance on the test data provides compelling evidence that a model is capturing

basic aspects of the way a participant is choosing to terminate their search and make

decisions.

More formally, a participant’s behavior is represented by the decision di and

number of cues searched ti on the ith trial. A model with a set of parameters θ

makes predictions d̂i (θ) and t̂i (θ) about these behaviors. To find the best-fitting

values of these parameters on trials 1 to 100 in the training, we present the model

with exactly the same sequence of trials received by the participant, and consider the

sum-squared error measure

SSEtrain (θ) =
∑

i∈train

{
w
(
d̂i (θ)− di

)2
+
(
t̂i (θ)− ti

)2}
. (1)

We found the parameter combination θ∗ that minimizes this sum-squared error mea-

sure using a direct search optimization method known as iterated grid search (Kim,

1997; Thisted, 1988)

We then used θ∗ to allow the model to make predictions about the test trials
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101 to 200. The performance of the model follows that used in training, so that

SSEtest (θ∗) =
∑
i∈test

{
w
(
d̂i (θ∗)− di

)2
+
(
t̂i (θ∗)− ti

)2}
. (2)

A conveniently scaled final measure of generalization error performance is then the

root-mean-squared-error
√

SSEtest (θ∗). This evaluation procedure was used for every

model and every participant, based on the model receiving exactly the same sequence

of problems seen by that participant.2

The value of w determines the relative weight given to capturing decisions. The

results reported in this paper are based on w = 1 to give equal weight to both com-

ponents of task behavior. We also examined results using w = 5 and w = 20, giving

greater weights to decisions. These error measures are worth considering, because it

is hard to evaluate a model that predicts accurately the number of search cues, but

does not predict the decision a participant made. One interpretation in these circum-

stances is that the participant simply failed to execute the decision correctly, and the

prediction of the model about the termination of search is a good one. Another inter-

pretation is that the model has failed to capture the outcome of the decision process,

and so its predictions about the details of that process—such as the termination of

search—cannot be accurate.

Thus, we considered error measures using higher values of w, in an attempt

to ensure the decisions of participants and the models agreed. We found that often

mismatches between model predictions and observed decisions could not be removed,

even when these mismatches were highly penalized. Possibly, this provides some sup-

port for the accuracy of execution intepretation. Overall, however, participants made

relatively few errors, and most parametrizations of the models resulted in relatively

few errors. These base-rates naturally lead to good agreement on decisions, and we

found it was not sensitive to the value of w. Hence we settled on w = 1 giving equal

weights to both decision and search in evaluating models.

2Because the PEC measure jumps between discrete values from trial-to-trial, it is difficult to
present in an informative way without some sort of smoothing. Figure 4, and the remaining vi-
sual displays of search behavior in this paper, rely on a exponentially decaying smoothing filter.
This approach to smoothing gives greatest emphasis to the trial being displayed, but averages it
over adjacent trials, giving progressively less weight to trials further from the one being displayed.
Specifically, we used a smoothing window of 50 trials, with a decay rate of 0.05.

17



A B

Actinium
Radiation

Promethium
Carbon

Gravimetric
Seismic

Europium
Underground
Microscopic

Alternatives Evidence

0 1 2 3 4 5 6 7 8 9
−6

−4

−2

0

2

4

6

Cues Searched

Decision Process
Log−

O
dds E

vidence

Evidence for A 

Evidence for B 

Figure 5. The basic search and decision processes used by all of the evaluated models. On
a trial, the cues provide a sequence of evidence values, on a log-odds scale, that are accumu-
lated. Both the tallies specific to each alternative (solid lines), and the difference between
these tallies (dashed line), are accumulated. When search is terminated, the alternative
with the greatest evidence is chosen.

Modeling Search and Decisions

All four of the models we consider are placed on equal footing, by using the

same process to accumulate evidence as cues are searched, and make decisions once

search is terminated. The models vary in how they terminate search and, most

interesting, in how they adapt their termination of search over the sequence of trials

in the experiment.

Figure 5 shows the basic search and decision processes that are common to all

of the models, at the level of a single trial. On the far left are the two alternatives

presented on the trial, represented by two columns of circles that correspond to their

cues. Cues that are present for an alternative are shown by black dots, and cues that

are absent are shown by white dots.

The cues are searched from the top to bottom, and generate evidence in favor

of one or other alternative when they discriminate. The sequence of these evidence

values is shown by the crosses in Figure 5, which progress from left to right as cues
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are searched. The evidence values are calculated on a log-odds scale, since this is the

natural additive scale for aggregating evidence (e.g., Cover & Thomas, 2006). For-

mally, If the kth cue discriminates in favor of the first alternative, the definition of cue

validity means that the evidence it provides in favor of that choice is log (vk/ (1− vk))

(Bergert & Nosofsky, 2007; Lee & Cummins, 2004; Lee & Zhang, 2012). Evidence in

favor of the first (left-hand) alternative corresponds to the positive values, while evi-

dence in favor of the second (right-hand) alternative corresponds to negative values.

These evidence values can be accumulated in a number of ways. Figure 5

shows the two approaches used in the models we consider. The solid lines labeled

as “Evidence for A” and ‘Evidence for B” correspond to the cumulative sum of the

evidence values that favor the alternative. Thus, the upwards-moving tally line is the

accumulated evidence for the Alternative A as cues are searched, and the downwards-

moving tally line is the evidence for Alternative B. The difference between these two

tallies is shown by the broken line, and measures the signed evidence in favor of one

or other of the alternatives as evidence is accumulated.

Both of these approaches to accumulating evidence are widely used in cogni-

tive modeling, especially in sequential sampling models, where the first approach

corresponds to race or accumulator models (Vickers, 1970, 1979), and the second cor-

responds to random-walk or diffusion models (Ratcliff & McKoon, 2008). Obviously,

the two approaches generate the same decision at each point during a potential search,

choosing the alternative with the most evidence from the observed cues. However,

the two approaches could lead to search being terminated after different numbers of

cues, which could make their decisions differ. Figure 5 provides an example of this

difference, with greater evidence for Alternative A in the early stages of search (from

cue 3 to cue 6), but greater evidence for Alternative B in the later stages (from cue

7 to cue 9.) Thus, the differences between the four models we consider involve when

search is terminated within a trial, and how the termination of search is adapted over

a series of trials.

Error-Based and Effort-Based Learning

As mentioned in the introduction, reinforcement learning provides a simple and

influential account of how people adapt and learn by trying to avoid making errors.

Error-based learning is a cornerstone of psychological theorizing, and is naturally

applied to model the regulation of search in our task. The basic idea is that, if people
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Figure 6. Overview of the error model, and error-effort model. Both models terminate
search after searching γt proportion of cues on the tth trial. The error-based model increases
the extent of search by a factor α if an incorrect decision is made. The error-effort model
additionally decreases search by a factor β if a correct decision is made.

choose the wrong alternative, they will increase the extent of their search on future

trials, aiming to collect more evidence, and so make more accurate decisions.

An extension of this approach is to consider not only decision accuracy, but

also the extent of search, as signals or inputs into a learning process. The idea is

that people are sensitive not only to errors, but also to the effort required to make a

decision, and seek to minimize both. A simple way to implement this more general

set of goals is to increase search if an incorrect decision is made, trying to minimize

errors, but decrease search when a correct decision is made, trying to minimize effort.

Figure 6 shows how these mechanisms for regulating search are implemented in

the models we consider. On the tth trial, a proportion of cues γt is searched, and

the alternative with the greatest evidence is chosen. In the error model, search is

increased by a learning parameter α following an error. Formally, γt+1 ← (1 + α) γt.

In the error-effort model, search is increased in the same way following an error,

but search is also decreased by a learning parameter β following a correct decision.

Formally, γt+1 ← (1− β) γt. The learning rates α, for both models, and β, for the
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error-effort model, are free parameters. For both models, the initial proportion of

cues to be searched γ1 is an additional free parameter.

Comparing Error-Based and Effort-Based Learning

Figure 7 presents the evaluation of the error model, and the error-effort model

for two illustrative participants. Individual participants are organized in rows, and

the models in columns. The first of these two participants was chosen because their

behavior was highly representative of the regularities seen at the group level, as shown

in Figure 3. This participant is considered in all of the model comparisons we report.

The second participant in Figure 7 was chosen because they provide a good example

of the important insights we observed based on examining all of the participants in

all three experiments. In particular, they provide a clear example of how the simpler

error model can be inadequate, and the more complicated error-effort model provides

a better account of how people regulate search.

In Figure 7, both participants start with limited search, increase this search after

making errors at the first environmental change, but then reduce their search, without

making errors, after the second environmental change. For these sorts of participants,

the error-effort model is able to capture the reduction of search, whereas the error

model cannot. The summary of all of the empirical data in Figure 3 shows that

the sort of decision and search behavior of the specific participants in Figure 7 was

frequently observed. Thus, the apparent limitations of the error model are serious

ones.

Figure 8 evaluates the error and error-effort models on all of the participants in

all of the experiments, using the root-mean-square generalization error measure. Each

experiment corresponds to a panel, and the generalization error of each participant for

each model is shown by markers. Within each experiment, participants are ordered

from left to right in terms of the difference in the generalization errors for the two

models. Those participants on the left, shaded in light gray, are those for whom the

generalization error is lower for the error-effort model, while participants on the right,

shaded in darker gray, are those for whom the generalization error is lower for the

error model.3 Participants in the middle of panels, in the unshaded region, are those

3The fact that sometimes the error model is preferred shows concretely that the generalization
measure we use controls for model complexity. The error-effort model contains the error model as
a special case, and could always fit any observed data at least as well. But, it is more complicated,
which means it may not generalize as well when the error model is a better account of behavior.
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Figure 7. Evaluation of the error model, and the error-effort model, for two participants.
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pants who were best described by the error-effort model (light shading), best described by
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for whom the two models performed equally well.

Figure 8 shows that the majority of participants in all three experiments are

better captured by the error-effort model. This is especially true in Experiments 2 and

3, where there are costs associated with search. In these circumstances, participants

often reduced their search in the first and third blocks, and this behavior cannot be

captured by the error model. It is clear that many participants adapt their search

without being triggered by making errors.

Confidence-Based Learning

The first two models can be conceived as simple reinforcement learning heuristic

accounts of searching and deciding. They adapt how many cues are searched, based

upon feedback on the accuracy of decision making. A different approach to terminat-

ing search is to stop examining cues once sufficient evidence has been accumulated

in favor of one or the other alternative. This is the approach taken by sequential

sampling models of the time course of decision making, and the basis for the third

and fourth models we consider.

Figure 9 shows a sequential sampling model approach to making a decision on

a single trial. There are threshold levels of evidence δAt and δBt for the two alterna-

tives. Following the standard assumptions of accumulator sequential sampling models

(Vickers, 1970, 1979), the first alternative to accumulate a threshold level of evidence

leads to search being terminated, and that alternative being chosen. In Figure 9, this

means that Alternative A is chosen after the 5th cue is examined.

The extent of search in the sequential sampling model is controlled by the

thresholds. As has been emphasized previously (Lee & Cummins, 2004; Newell,

2005), small thresholds will lead to relatively few cues being searched, with one-

reason decision making being a special case when the thresholds are near zero. The

larger the thresholds, the more cues, in general, need to be searched to gather enough

evidence to make a decision, and search becomes more exhaustive. This relationship

between thresholds and search means that it is the adaptation of the boundaries that

corresponds to how the extent of search is regulated.

In the model we consider, the adaptation of the thresholds is based on regu-

lating confidence (Hausmann & Läge, 2008; Vickers, 1979). Accumulator sequential

sampling models naturally provide a balance-of-evidence measure of confidence, given

by the difference between the (magnitude of) the two tallies when a decision is made
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Figure 9. Overview of the confidence model. The model terminates search on the tth trial
when one of the evidence thresholds δAt or δBt is exceeded. The threshold that was reached
is then adjusted based on the difference between the achieved confidence ct and the target
level of confidence τ , using a learning rate λ.

(Vickers, 2001), as represented by the broken line in Figure 9. Thus, when a decision

is made after 5 cues, Alternative A has about 3 units of evidence, while Alternative

B has about 1 unit of evidence. The difference between these two tallies thus gives 2

units of confidence on the log-odds scale for the chosen alternative. In the model we

consider, this measure of confidence in each decision is compared to a target or de-

sired level of confidence. Under-confidence corresponds to the case when the achieved

confidence is less than the target level, and leads to the threshold that triggered the

decision being increased. Over-confidence corresponds to the case when the achieved

confidence is greater than the target level, and leads to the threshold being decreased.

Formally, the target level of confidence τ is a parameter of the model, as is a

learning rate λ. If the balance-of-evidence measure of confidence in a decision is ct,

and is triggered by a threshold δAt on the tth trial, the learning rule that updates the
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threshold for the next trial is δAt+1 ← δAt + λ (τ − ct).4 In this way, under-confidence

leads to thresholds being raised, so that search is increased, while over-confidence

leads to thresholds being lowered, so that search is decreased. The initial thresholds

for both alternatives are assumed to be symmetric, and are given by a third model

parameter δ1.

One way to think about the progression to the third model from the first two

models is that it represents a change in basic modeling approach, from searching

a proportion of cues and learning from accuracy, to searching until sufficient evi-

dence is found and regulating based on confidence. Since both reinforcement learning

and sequential sampling approaches are widely considered in modeling sequential

decision-making, it is important to have examples from both. Another, complemen-

tary, perspective is that the sequential sampling model provides an alternative, and

more parsimonious, account of how search can be increased and decreased than the

reinforcement learning models. In the second error -effort model, for example, there

are essentially separate processes, with separate parameters, for increasing and de-

creasing search. The use of confidence as a regulatory mechanism in the sequential

sampling model naturally leads to both increases in search (when under-confident),

and decreases in search (when over-confident) through the same psychological mech-

anism.

Figure 10 presents the evaluation of the error-effort model and the confidence

model to two participants. The first is the same participant considered at the top of

Figure 7, and their behavior is captured well by the confidence model, and reasonably

well by the error-effort model. The behavior of the second participant in the final 100

trials, however, is better predicted by the confidence model. The error-effort model

does not observe decreases in search following correct decisions during the training

block, leading to a parameter estimate β = 0, and so incorrectly predicts a near-

constant extent of search. The confidence model, however, tries more to maintain the

target level of confidence τ = 2.56 estimated from the training data in making its

predictions. A natural property of the trials in the final block, where one-reason and

exhaustive search both lead to the same answer, is that stronger evidence in favor of

4As in Lee and Dry (2006), confidence is signed according to the decision made, so that decision
accuracy affects adaptation. That is, having a confidence of, say, 3 units of evidence in favor of the
incorrect decision will mean the model is under-confident relative to its target level of confidence.
Intuitively, if the model makes errors, it will adapt to gather more information before making future
decisions.
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the correct alternative is found earlier in search. This property of the environment

leads to over-confidence when using the large thresholds needed for extensive search

in the second block, and so the confidence model predicts a lowering of thresholds,

and subsequent reduction in the extent of search, as observed in the behavior of the

participant.

Figure 11 summarizes the performance of the error-effort model and the confi-

dence model on all of the participants in all the experimental conditions. Both of the

models account for a significant proportion of participants in all of the experimental

conditions. An examination of the difference in the generalization errors also suggests

that, when there is a large difference in the predictive accuracy of the two models, it

is almost always in favor of the confidence model. But, the overall conclusion is that

both models provide useful accounts for many participants.

Hierarchical Confidence-Based Learning

The final model we consider is a hierarchical extension of the confidence model.

The decision-process is the same, but the mechanism for adapting the threshold is

extended. Rather than using a learning rule that adjusts the thresholds after every

decision is made, internal accumulator processes are used to aggregate evidence of

over- and under-confidence. As shown in Figure 12, there is now an internal accu-

mulator for each of the two decision boundaries. These accumulators operate in the

same way as the one that makes the overt decisions, except that they are driven

by evidence of over- and under-confidence provided by the difference between the

achieved and target level of confidence. When the over- or under-confidence tally

reaches a critical level, a learning rule is applied to the decision threshold associated

with the overt decision process. The model is naturally hierarchical, in the sense that

the same sequential sampling process used to make overt decisions, as in the origi-

nal confidence-based model, are now applied internally to make regulatory decisions

about increasing and decreasing thresholds.

Figure 12 provides a concrete example that helps explain the formal notation of

the hierarchical model. The over- and under-confidence tallies for the two alternatives

are given by oAt , oBt , uAt and uBt . Figure 12 presents the 10th trial in an experiment,

in which Alternative B is chosen after 5 cues have been examined, but there is almost

equal evidence for both alternatives at this point, and so the confidence in the decision

ct is near zero. For any reasonable target level of confidence τ significantly greater
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Figure 11. The generalization errors for all participants in all three experiments, comparing
the error-effort model and the confidence model. The shaded regions show the subset of
participants who were best described by the confidence model (light shading), best described
by the error-effort model (dark shading), or were equally well described by both models
(unshaded).
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than zero, this will register as an under-confident decision, quantified by the difference

τ − ct. This under-confidence will thus be added to the accumulator uB, so that

uBt+1 ← uBt+1 + (τ − ct).
Figure 12 also shows the history of the hierarchical model over the sequence

of trials leading up to the 10th trial and, in particular, highlights a trial tadapt at

trial 5 where a threshold adjustment was made. At this trial, the accumulator for

over-confidence in Alternative B, oB reached the critical threshold κ, resulting in the

threshold for decision making δB being reduced. This previous adjustment is clear in

Figure 12 from the smaller threshold for Alternative B than Alternative A, coming

from the application of the learning rule δBadapt+1 ← δBadapt + λ
(
uBt − oBt

)
at the adap-

tation trial. The nature of this learning rule means that the extent of the adjustment

in the threshold depends on the learning parameter λ, and on the difference between

the evidence for under- and over-confidence at the time of adaptation. Note that,

after adaptation, both the over- and under-confidence accumulators for Alternative B

were reset, and began collecting evidence for the need for further adaptation afresh.

The hierarchical confidence model requires one additional parameter, κ, corre-

sponding to the (fixed) thresholds for the internal regulatory accumulator processes.

This parameter can be interpreted as measuring how delayed (or “lagged”) rather

than immediate (or “twitchy”) the adaptation of search is. If κ = 0 the hierar-

chical model will reduce to the confidence-based model, and adapt decision-making

thresholds on every trial. Larger values of κ mean more evidence of over- or under-

confidence is needed to trigger threshold adaptation, corresponding to greater delays

or lags between adjustments.

The hierarchical confidence-based learning model is a natural extension of the

SRA model developed by Vickers (1979), which is sometimes also called the PAGAN

model in the literature (e.g., Vickers & Lee, 1998). While originally developed for

simple perceptual decision-making tasks, the model is naturally adapted to the sorts

of cue-based evidence involved in our task, and has previously been considered in the

same form used here (Lee & Dry, 2006).

Figure 13 presents the evaluation of the confidence model and the hierarchical

model to two participants. The first is again the same participant considered at the

top of Figures 7 and 10, and their behavior is again captured well by both models.

The second participant provides an example where the hierarchical model makes bet-

ter predictions, because it predicts a delay between the change in the environment,
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two participants.
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and the adaptation of search. The confidence model predicts a decrease in the ex-

tent of search that is larger and more sudden than observed in the behavior of the

participant. The hierarchical model, however, estimates a large critical threshold on

adaptation κ = 9.75 from the way the participant changed their search during the

first environmental change. Here, they made a sequence of errors, coming from too

limited search, before adapting to more extensive search. A similar pattern is seen

during the second environmental change, with a lack of immediate adjustment of the

extent of search, and this is naturally predicted by the hierarchical model.

Figure 14 summarizes the performance of the confidence model and the hierar-

chical confidence model on all of the participants in all the experimental conditions.

In the second and third experiments, where search is costly, there are many par-

ticipants better accounted for by the hierarchical model, although the difference in

generalization error between the models is small for almost all of the participants in

all of the experiments.

Overall Modeling Results

The model comparisons presented in Figures 8, 11 and 14 evaluated pairs of

logically related models. These comparisons are useful to understand when and why

the additional elements of one of the models—such as including effort as well as error

signals in learning, or making threshold adjustment hierarchical—are important for

predicting how people search. We also conducted two analyses that apply to all of

the models simultaneously. The first compares all four models on all the participants

in all of the experiments. The second examines the parameter values inferred for

participants in those cases where a model provided better generalization performance

than all of the other models.

Figure 15 presents a comparison of all four models for all three experiments, in

two ways. The left column of panels provide a relative measure of which model had

the best generalization error for each participant, while the right column of panels

show the distribution of generalization errors across participants. In the left column,

each panel corresponds to an experiment, and the height of the bars for each model

indicate how many participants in that experiment were best predicted by each model.

In the right columns, the distributions of generalization errors are shown for each of

the models

The results in the left column of Figure 15 suggest that all of the models are
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markers that belong to the same participant.

useful for explaining the behavior of at least some participants. The error-effort

model and the confidence model consistently are the best accounts of the majority

of participants. The error model is useful in the first experiment, but less so in the

second and third experiments where search is more costly. In contrast, the hierarchical

model is most useful when search is costly. The distribution of generalization errors

in the right column of Figure 15 are consistent with these conclusions. Especially in

the third experiment, there are some participants poorly described by the error and

error-effort models, while the confidence and hierarchical confidence models always

fare relatively well.

Figure 16 shows the inferred parameters for all four models, for those partic-

ipants in all three experiment for which the model provided a better explanation,

in terms of generalization performance, than all of the other models.5 Each model

happens to include parameters that lie on two different scales. For the error model,

α is a learning rate and γ1 is a proportion of cues. For the error-effort model, α and

β are learning rates, and γ1 is a proportion of cues. For the confidence model, λ is

a learning rate, and the threshold δ1 and target confidence τ both lie on a log-odds

5In the model comparison in Figure 15, if models had equal generalization performance, the count
for that participant was divided among these models. In the parameter analysis in Figure 16, only
those cases where one model is uniquely best are shown. This approach is taken because the first
analysis is about comparing the relative merits of models, while the second is about understanding
the parameter values used by specific models when they provide the best account of people’s behavior.
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evidence scale. For the hierarchical confidence model λ is a learning rate, and the

threshold δ1, target confidence τ , and the internal threshold κ all lie on a log-odds

evidence scale. In Figure 16, the two scales for each model are shown by the two

y-axes, and the triangular markers for each parameter point towards the appropriate

axis. The lines connecting the markers connect the parameter values for the same

participant.

It is clear from Figure 16 that there are significant, and often interpretable,

individual differences in the parametrizations of each of the models. For example, the

error model includes participants—with small γ1 and large α parameter values—who

initially search few cues but have a large learning rate to increase search when they

make errors. But there are also participants—with small γ1 and large α parameter

values—who conduct extensive search from the outset, and thus need much smaller

learning rates. The same sort of trade-off between initial caution and strength of

adaption is seen for the error-effort model. In particular, there is a large subgroup

of participants who start by searching most of the cues, and require low error-driven

learning rates, consistent with their extensive search leading to accurate decisions. It

is additionally clear for the error-effort model that the effort-driven learning rate β is

lower than the error-driven learning rate α, consistent with the relatively few errors

made by most participants.

Meanwhile, Figure 16 shows large individual differences in the target levels

of confidence for different participants, as well as their initial caution and level of

adaptation. There is some suggestion of a subgroup of participants with large learning

rates but low target levels of confidence, consistent with a willingness to make possibly

inaccurate decisions based on limited search, and adapt quickly (“twitchily”) to a

changing environment. Relatively few participants provided unambiguous evidence

for the hierarchical confidence model, but the few who did also suggest large individual

differences in the parameters that control their search and decision making.

Discussion

Search is a fundamental cognitive ability, because it provides the mechanism for

gathering information from the world or the mind on which decisions and actions can

be based. Inherent in having a capability to search is having a capability to terminate

search, and an ability to learn, adapt and regulate the termination of search. A search

process that does not terminate is not useful, and termination strategies that are
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unable to learn from experience, or adapt to changes in the environment or the goals

of a decision maker will usually be inefficient and limiting.

In this study, we examined how people terminate their search in a dynamically

changing environment. Unlike many previous studies of dynamic decision making,

the environmental changes in our task were not always signaled by changes in ac-

curacy. We also collected detailed information about the termination of search. By

constraining the order in which cues could be examined, we gained the ability to have

a fine-grained but simple measure of the extent of search. This allowed our analysis

and modeling to move beyond the comparison of extreme heuristics that either rely on

one-reason or exhaustive search. The best current models of the regulation of search

in cue-based decision-making—like the SSL model (Rieskamp & Otto, 2006)—do not

make detailed predictions about our behavioral data, because they assume either one

discriminating cue or all cues are searched. The models we have developed and eval-

uated, in contrast, make predictions about the intermediate levels of search produced

by people.

Many cognitive models that incorporate learning rely heavily on the availabil-

ity of corrective feedback, the use of error-driven learning mechanisms. One gen-

eral conclusion justified by our results is that error-based learning mechanisms are,

by themselves, incomplete as accounts of how people regulate the extent of their

search (Kheifets & Gallistel, 2012). We found clear empirical evidence that peo-

ple change their search behavior without having made errors. Additional learning

mechanisms—such as reducing effort when possible, or regulating confidence, as used

in our models—are important elements in a full account of how people control their

search behavior.

Of course, the set of four models we considered could and should be broadened

greatly. Our models were chosen because they covered both the major reinforcement

learning and sequential sampling approaches to modeling dynamic decision making.

They also form a logical progression. The error-effort model extends the error model.

The confidence model provides an alternative psychological mechanism to the error-

effort model for increasing and decreasing search. The hierarchical confidence model

extends the confidence model to allow for delayed and abrupt adaptation. But other

models could usefully be considered to provide additional resolution on this theoretical

progression. In particular, there is more than one important theoretical difference

between the error-effort and confidence model. In the confidence model, the basic
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search termination process shift from depending on the number (or proportion) of cues

searched to the evidence they provided, and the mechanism for adaptation shifts focus

from a single alternative to the balance between the two alternatives. Future work

should explore how the clear individual differences observed in our data between the

error-effort and confidence models hinge on these different theoretical assumptions.

As well as narrowing in to examine the current models more closely, future

work should also expand the modeling scope and consider other possible approaches.

For example, we considered only accumulator (or race) processes for the tallying of

evidence, as made clear in Figure 5. In this approach, the difference between tallies

provides a measure of confidence. An alternative approach, widely used in the em-

pirically successful class of drift-diffusion (random-walk) sequential sampling models

(Bogacz et al., 2006; Ratcliff, 1978; Ratcliff & McKoon, 2008; Ratcliff & Rouder,

1998), accumulates evidence as the difference between totals, and terminates search

once this difference reaches a threshold. This approach necessitates alternative mech-

anisms for modeling confidence, which have recently been developed and evaluated

(e.g., Pleskac & Busemeyer, 2010; Ratcliff & Starns, 2009). This theoretical devel-

opment has not yet extended to the problem of adapting thresholds over sequences

of trials—as required to make predictions in our task—but it is clear the building

blocks needed for this development are in place. Thus, although we used the accu-

mulator approach, because self-regulating models are well-developed (Vickers, 1979),

and previously used for cue-based decision making (Lee & Dry, 2006), it is possible

the diffusion approach could generate models worth evaluating.

An especially important possibility for diffusion modeling is to consider the use

of converging bounds or threshold levels of evidence. Our accumulator approach nat-

urally captures the idea that search must terminate, even if the evidence does not

strongly favor one alternative over the other. This behavior contrasts with the behav-

ior of a standard diffusion model with constant bounds. There is a body of research,

however, that considers within-trial changes in diffusion model boundaries, usually

in the form of boundaries that converge over time (e.g., Busemeyer & Rapoport,

1988; Gluth, Rieskamp, & Búchel, 2012; Heath, 1992; Hockley & Murdock, 1987;

Milosavljevic, Malmaud, Huth, Koch, & Rangel, 2010; Rapoport & Burkheimer, 1971;

Ratcliff & Frank, 2012; Thura, Beauregard-Racine, Fradet, & Cisek, 2012; Viviani,

1979). Converging boundaries are often understood as a natural generalization dif-

fusion models to cases where there is time pressure or a deadlines, as in urgency
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gating (Cisek, Puskas, & El-Murr, 2009; Ditterich, 2006; Frazier & Yu, 2008), but are

also suited to situations like the current task in which there is limited information

available from the environment. The fact that there are only 9 cues, of decreasing

validity, and many do not discriminate between alternatives, makes the idea of the

expected utility of information important for understanding the optimal termination

of search in the current task. It is also natural to conceive of diffusion models with

converging boundary as optimizing different criteria such as the rate of reward over

a sequence of decision trials, rather than focusing on optimality within a single trial

(e.g., Drugowitsch, Moreno-Bote, Churchland, Shadlen, & Pouget, 2012; Ratcliff &

Frank, 2012), and this may provide an important insight into optimizing how search

termination should be adapted over a sequence of trials in a changing environment.

A recent example of how the limited potential information (or “finite horizon”)

property of the current task might be incorporated in an optimality analysis is pro-

vided by (Lee & Zhang, 2012), who studied the rationality of take-the-best when

only a limited number of cues can be searched. These authors showed that it can

be optimal for search to terminate before all cues are examined, even if the current

cue does not provide additional information, because it is unlikely (or impossible)

that more extensive search will alter the currently preferred decision. More generally,

there is a long-standing and currently active (e.g., Kogut, 1990; Lee, 2006; Seale &

Rapoport, 1997, 2000) research area in cognitive modeling studying optimal stopping

in people’s sequential choices, which also centers its analysis on the expected value

of search. This literature includes studies of whether and how people learn to adapt

their stopping behavior (Campbell & Lee, 2006), and whether it is sensitive to differ-

ent environments (e.g., Guan, Lee, & Silva, 2014; Kahan, Rapoport, & Jones, 1967),

which is clearly relevant to understanding how people terminate search, and change

the extent of their search over time in dynamic environments.

The task we considered involved two (latent) sudden and large changes in the

underlying decision environment. This is a useful design given our interest in the

limits of accuracy as a signal for adaptation. It also provides an effective way to

study to what extent the adaptation of search lags behind environmental change,

and whether it involves sudden or gradual shifts. The ability of the hierarchical

confidence model to provide the best predictions for some participants, particularly

in direct competition with a reduced model that does not include delays, but is

otherwise identical—suggests it is an important phenomenon. Delayed sequential
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effects in decision making are difficult to study and model (e.g., Gao, Wong-Lin,

Holmes, Simen, & Cohen, 2009), and the extent of delay is sometimes captured in

dynamic decision making models simply by the inclusion of free parameters (Brown &

Steyvers, 2005). The hierarchical model, as with the original SRA model on which it

is based, provides a viable alternative. In particular, this model has the attraction of

modeling delay psychologically, rather than parametrizing it statistically, by making

the elegant theoretical assumption that sequential sampling processes can embed

hierarchically, and regulate one another based on confidence. Another class of models

worth considering in this regard are extended reinforcement learning models known

as actor-critic models (Barto, Sutton, & Anderson, 1983; Konda & Tsitsiklis, 2000).

These models also have a hierarchical structure, with an overt decision making process

being monitored and regulated by a latent control process.

We focused on process models of search and decision making, evaluating them

as algorithmic accounts of cognition within Marr’s (1982) hierarchy. Future work

should also consider “rational” or “optimal” models, evaluated from a computational

perspective in the hierarchy. It would be interesting to know how extensively people

should search, given the information about the task, environment, and current prob-

lem available to them. It would be especially interesting to understand the optimal

way in which the extent of search should be adjusted as decisions are made, and more

is learned about the environment. There are several ways this research direction

could be pursued. Most obviously, both the reinforcement learning and sequential

sampling model classes we have considered have well-studied links to optimality re-

sults. These results would need to be generalized in a number of ways, however, to

apply to the current task. For example, while some analyses of sequential sampling

models consider non-homogenous evidence accrual (see Smith, 2000), many do not,

and the inhomogeneity arising from the ordered search of validity-weighted informa-

tion is central to our task. Most importantly, the optimality needs to be with respect

to a changing environment, and so include optimal methods for learning when search

should be terminated.

Just as the models we considered are a small sample of possible relevant models,

the types of dynamic environmental change we considered are only a small sample.

As Speekenbrink and Shanks (2010) point out in their empirical and modeling inves-

tigation of cue-based categorization, real-world environments change in many ways.

Previous work in modeling human decision making has used environments involving
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gradual drift (e.g., Otto et al., 2010; Rakow & Miller, 2009), patterns consistent with

cyclical change (e.g., Yi, Steyvers, & Lee, 2009), step change jumps (e.g., Brown &

Steyvers, 2005), and combinations of all of these sort of dynamics (e.g., Speekenbrink

& Shanks, 2010). Our experimental design considered only large discrete changes of

two types, encouraging a transition from limited to extensive search, and back again.

It is not unreasonable to consider dynamics like this, involving a change to the origi-

nal state, given the prevalence of cyclic patterns of change in real environments, and

our design was appropriate for our interest in whether error signals are necessary for

adaptation.

Obviously, however, there are combinatorially many sensible experimental de-

signs that could be evaluated, in a large possible program of empirical work. One

way to manage the scale of such an undertaking might be to characterize the dynamic

patterns seen in real-world environments in an organizing taxonomy. Much as our

use of the German cities data set gave the cues an environmental structure, it should

be possible to match the dynamics of environmental change to real-world sequences.

All of the models we have considered are immediately applicable to any sequence or

structure of environmental change, and testing their ability to predict how people

search and decide in those environments should provide stringent evaluations of the

psychological assumptions and mechanisms on which the models are based.

We think the experimental and modeling evidence we have presented make a

clear case for the insufficiency of error as a means of adapting search, for the sensitivity

of people’s adaptation to the costs of search, for the potential role of confidence

as a unifying regulatory variable, and for the usefulness of considering hierarchical

and latent adaptation in human search. But there are many more environments,

task conditions, and models that could and should be considered to understand how

people decide how extensively they should search before making decisions, and how

they adapt the extent of their search to changing goals and environments.
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