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Abstract. An algorithm that shows how ray divergence in multi-view
stereo scene reconstruction can be used towards improving bundle ad-
justment weighting and conditioning is presented. Starting with a set of
feature tracks, ray divergence when attempting to compute scene struc-
ture for each track is first obtained. Assuming accurate feature matching,
ray divergence reveals mainly camera parameter estimation inaccuracies.
Due to its smooth variation across neighboring feature tracks, from its
histogram a set of weights can be computed that can be used in bundle
adjustment to improve its convergence properties. It is proven that this
novel weighting scheme results in lower reprojection errors and faster
processing times than others such as image feature covariances, making
it very suitable in general for applications involving multi-view pose and
structure estimation.

Key words: Multi-view reconstruction, ray divergence, weighted bun-
dle adjustment, confidence ellipsoids, image feature covariances

1 Introduction

During the past years there has been a surge in the amount of work dealing with
multi-view reconstruction of scenes, for industry and in many other modern ap-
plications. State-of-the-art algorithms [1] provide very accurate matching, cam-
era poses and scene structure, based on sparse features such as those obtained
with the SIFT [2] or related algorithms. These recent algorithms are capable of
reconstructing large scenes from even unstructured image sets, obtained for ex-
ample from the Internet. In such scenarios, camera parameters such as location,
orientation and intrinsics may be available or accurately estimated for some of
the cameras but not all. This could also be the case even in structured sets of
images acquired with the same camera. Because of this reason, despite very ac-
curate feature matching, the accuracy of a multi-view reconstruction still relies
on accurate camera parameter calibrations. This creates a great need to identify



2 M. Hess-Flores, D. Knoblauch, M. Duchaineau, K. Joy, F. Kuester

where and why errors are present in these parameters, specifically without the
need to know ground-truth, since this is not always available. In the absence of
ground-truth data, multi-view algorithms usually resort to bundle adjustment [3]
to reduce reprojection error, which is the most meaningful geometric measure
of accuracy in the lack of any ground-truth. However, this can be an expensive
element in a scene reconstruction pipeline for high numbers of scene points and
cameras, despite recent and efficient sparse implementations such as SBA [3],
and must be used wisely. Furthermore, it requires a good enough starting point
close to the global minimum for convergence.

Our main goal in this paper is to show how simple ray divergence when at-
tempting scene reconstruction is an inexpensive yet powerful tool that can aid in
bundle adjustment convergence for multi-view stereo. Ray divergence is defined
as the shortest distance between rays emanating from each respective camera
center and through each pixel position of a given feature track, as will be further
described in Subsection 2.1. Our work is partially inspired by the recent algo-
rithm of Knoblauch et al. [4], which measures per-correspondence ray divergence
when attempting scene reconstruction from a set of initial unconstrained dense
correspondences and then decomposes the total error map into errors related to
camera parameters and correspondence errors. To the knowledge of the authors
there had been no other previous work on such an error factorization without
using ground truth knowledge. The ray divergence metric relies on the input fea-
ture matches being unconstrained, which is what allows for measuring geometric
errors. Using matches generated for example through epipolar geometry-based
guided matching would yield no reconstruction error, since these are generated
such that they lie on the same epipolar plane with the point they represent in
3D space.

As far as other previous work on camera parameter error analysis, it has
been done for the most part with respect to ground-truth values, such as the
methodology to test the accuracy of camera pose estimation presented in Rode-
horst et al. [5]. The work in Zhao et al. [6] deals with how extrinsic and intrinsic
calibration inaccuracies contribute towards depth estimate errors, but for the
specific case of a stereo camera pair with a known baseline and other relative
positioning information. Benchmarks also exist for reconstruction accuracy [7],
though the analysis is done versus ground-truth values, and our algorithm is
based on ray divergence rather than the accuracy of exact recovered positions.

In our algorithm, we compute ray divergence per feature track and use it
as a joint measure of all camera parameter inaccuracies, without the need for
ground-truth knowledge and prior to actually computing the 3D structure. We
start out similarly to Knoblauch et al. [4], first computing ray divergences for
all available feature matches but with the important difference that we use ro-
bust SIFT features instead of dense correspondences, keeping in mind that such
feature matches are also unconstrained and therefore it is possible to extract a
geometric error unlike in guided matching. We also assume that these feature
matches are highly accurate, and this is generally true since sparse SIFT matches
are less prone to mismatching due to occlusions, repetitive patterns and texture-
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less regions than dense correspondences. To further ensure that we have very
accurate matches, epipolar geometry-based RANSAC outlier removal [8] is ap-
plied prior to computing ray divergences. This in turn allows us to assume that
the total ray divergence error corresponds only to camera-related inaccuracies,
such that we can avoid the error decomposition in Knoblauch et al. to obtain
camera parameter errors.

As will be discussed, the validity of ray divergence as a measure of camera
parameter uncertainty can be proven, since it correlates well with Beder et al.’s
confidence ellipsoid roundness measure for computed 3D scene points [9] in the
case when image feature covariances are set to identity. Furthermore, since ray
divergence encodes camera inaccuracy information, we show how it can be used
in weighted bundle adjustment to improve its convergence properties. It is shown
how this scheme outperforms weighting based on more-expensive image feature
covariance metrics [10, 11] or Beder et al.’s confidence measure. The entire proce-
dure is first derived for the two-view case, but later shown how this can easily be
extended to multiple views. In summary, our algorithm presents a very practical
and inexpensive way to measure camera parameter uncertainty in the absence
of ground-truth information and use that uncertainty to improve bundle adjust-
ment conditioning. The entire procedure will be described in detail in Section 2,
followed by experimental results (Section 3) and conclusions (Section 4).

2 Proposed Algorithm

Our analysis will begin with the two-view case, where it is first shown in Sub-
section 2.1 how to compute ray divergence, and in Subsection 2.2 how to set up
weighted bundle adjustment based on ray divergence values. The extension to
multiple views will be outlined in Subsection 2.3.

2.1 Two-View Ray Divergence Calculation

The first step in our algorithm is to compute ray divergence per feature match,
similarly to Knoblauch et al. [4], except we start with sparse SIFT features [2]
instead of dense correspondences. In the case of perfect feature matches, camera
intrinsics and extrinsics and no radial distortion, rays starting from each camera
center and through the respective image plane feature location should intersect
at an exact position in 3D space, but due to any inaccuracies this generally will
not occur. We define ray divergence as the shortest distance between such rays,
as depicted on the left image of Fig. 1. As mentioned earlier, due to accurate
feature matching ray divergence is assumed to correspond entirely to camera pa-
rameter inaccuracies, which turns out to be a good approximation even if there
are small matching errors. Matches will never be perfect in reality, but we filter
bad matches through RANSAC on the epipolar geometry, using a 3.8402 inlier
threshold on Sampson error [8].

Ray directions D; for the two cameras are calculated per Eq. 1, with x;
and y; being the pixel coordinates in each image. The absolute orientation R;
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Fig. 1. Concept of ray divergence d (left), and sample dense camera parameter error
maps for image pairs from different datasets, to depict their smooth variation.

and position C; for each of the two cameras is computed by factorizing the
essential matriz, which can be computed from feature matches using N-point
algorithms [8]. The cameras’ intrinsic parameters (such as focal length and prin-
cipal point, with no pixel skew) are assumed to be at least roughly known in
order to create each 3 x 3 matrix K.

Given the camera center locations C;, the shortest distance between the two rays
corresponds to the Euclidean distance between the nearest distance points P; on
each ray as shown in Eq. 2, with ¢; defining the distance to move along each ray.
Finally, the ray divergence d can be obtained from d; = |P; — P;|?. This error
comprises any inaccuracies with the camera poses, intrinsics or radial distortion,
and influences scene reconstruction in a global, smooth manner [4].

P,=C;+t;%xD;. (2)

The ray divergence d is then computed for all available feature matches. In
Knoblauch et at. [4], the resulting set of divergences corresponds to the total
reconstruction error which is a function of both feature matching errors and
camera-related errors, but as mentioned earlier we assume here that the entire
error corresponds to the cameras. Therefore, we can say that ray divergence d; for
a given feature match is a function of relative rotation between the two cameras
R,.;, relative translation T;..;, intrinsic parameters for the two cameras K; and
K5, and radial distortion, which we’ll represent as distorted pixel coordinates
(xria yri)a such that d; = f(Rrela Tret, K1, K2, Tri, yri)-

To show how errors in these parameters affect ray divergence in a global,
smooth manner, and for visualization purposes since it becomes more difficult
to show using sparse matches, we computed dense correspondences through a
standard optical flow method to obtain a total ray divergence map for a few
test sequences. Each was factorized into camera-parameter error maps, modelled
as smooth B-spline surfaces, and correspondence error maps (remaining high-
frequency components). The resulting camera-parameter error maps are shown
in Fig. 1. Starting with sparse features, a smooth but sparse set of surface points
is obtained as shown in Fig. 2 for the Palmdale dataset, which shows grayscale-
coded ray divergence values for all available matches. In general, it has been
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Fig. 2. Ray divergences (left) for the set of matches from a pair of Palmdale dataset
images (middle), displayed such that lighter colors indicate higher divergences. The
true radial distortion map for the used camera, in pixels, is also displayed (right).

observed that the highest divergences tend to occur towards the edges of images
(as seen in Fig. 2, where most matches are on the left-hand side of the images)
in part because of radial distortion, and it becomes clear that we want such
matches to have less of an influence in bundle adjustment because of their higher
ray divergence, as discussed further in Subsection 2.2.

2.2 Bundle Adjustment Weighting with Ray Divergences

Now that ray divergences have been computed, and assuming that these are a
function mainly of camera parameter inaccuracies, it will be shown how these
values can be used as input weights to bundle adjustment in order to improve
its convergence properties. However, one further step before applying bundle
adjustment is to obtain initial estimates for the scene’s structure. We use Lind-
strom’s triangulation algorithm [12] due to its superior accuracy and speed with
respect to standard linear triangulation [8].

Weighted Bundle Adjustment. The objective of bundle adjustment is to
adjust pose and structure estimates in such a way that the total reprojection
error of the 3D points with respect to their corresponding 2D feature track
positions in each camera is minimized [8]. The cost function which is traditionally
minimized can be expressed as the sum of squares of reprojection errors between
each 3D point and the feature matches which yielded it, as shown in Eq. 3 for
the general case of N 3D points seen in M cameras.

N M
min(ag, bi) > Y vig(d(Q(a,bi), wi;))* - (3)

i=1j=1

Here, x;; is the position of the iy, feature on image j. The binary variable v;;
equals ‘17 if point ¢ is visible in image j (‘0 otherwise). The vectors a; and b;
parametrize each camera j and 3D point i, respectively, with Q(a;,b;) as the
reprojection of point 4 on image j. Finally, d? is the Euclidean distance in each
image between each original correspondence and its associated reprojection. This
minimization involves a total of 3N + 11 M parameters, and can be achieved us-
ing the Levenberg-Marquardt algorithm. The SBA implementation [3] was used,
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since it exploits the sparse block structure of the normal equations solved at
each iteration to greatly speed up the process.

The Levenberg-Marquardt algorithm is based on solving the augmented nor-
mal equations at each iteration. In weighted bundle adjustment, each input fea-
ture is weighted differently with the objective of improving convergence by giving
less weight to those features that are more likely to be inaccurate. In practice,
these weights are implemented as covariances. The normal equations have the
form shown in Eq. 4, but when using weighted bundle adjustment, the equations
change to the form shown in Eq. 5, where Y corresponds to a block-diagonal
matrix consisting of 2 x 2 covariance matrices for each input feature, J is the
parameter Jacobian matrix, §,, the parameter update step, ;1 the damping term
and € the error vector.

(JET 4+ ul)s, = JTe. (4)

(JTE T+ ul)s, = JF 2 e (5)

Comparison with Reconstructed Point Confidence Ellipsoid Round-
ness. Before proceeding, we wish to analyze the validity of ray divergence as a
measure of camera errors, such that it can aid in bundle adjustment. Beder et
al. [9] present an algorithm to determine the best initial pair for a multi-view
reconstruction. Their analysis is based on computing a confidence ellipsoid for
each computed 3D scene point X, such that its roundness measures the quality
of each obtained point. For two views, the covariance matrices of image feature
matches 2’ and 2”7 are given by C’ and C” respectively [10,11]. Then, the co-
variance matrix C'xx of the distribution of the scene point coordinates X is
proportional to the upper left 4 x 4 submatrix Ny, il: 4 for the inverse of the 5 x5
matrix N given by Eq. 6. The A and B matrices encode information related to
the projection matrices for the two cameras, the image coordinates of the feature
match yielding the scene point, and the 3D point coordinates.

-1
C o0
T T
v (o (oG &)Y ) .
X

0

Now, if the homogeneous vector X = [X{', X;,]7 is normalized to Euclidean co-
ordinates, the covariance matrix of the distribution of the Euclidean coordinates
is given by Eq. 7, where J. corresponds to the Jacobian of a division of Xy by
Xp.

c© = J.CxxJL . (7)

Finally, if we perform the singular value decomposition of the matrix C(¢), the
roundness R of the confidence ellipsoid is obtained as the square root of the
quotient of the smallest singular value A3 and the largest singular value \q, per

R = ,/f\—f. The value of R lies between 0 and 1, and only depends on the rel-
ative geometry of the two poses, the feature positions and the 3D point; radial
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Confidence ellipsoid roundness vs. ray divergence

Ray divergence values
°

-1
0.275 0.3 0.325 0.35 0.375
Reconstructed point confidence ellipsoid roundness values

Fig. 3. Reconstructed point confidence ellipsoid roundness values using identity im-
age feature covariances (left) for the set of matches from a pair of Palmdale dataset
images, where lighter colors indicate lower roundness values. The middle image shows
its correlation with ray divergence. The right image displays Zeisl’s covariance metric
values [11] for SIFT features in a Stockton image as green ellipsoids.

distortion is not modelled.

Something very important to note here is that image feature covariances [10,
11] are defined completely by the intensity variations in local neighborhoods
and thus may look rather random to visual inspection, with no clear pattern as
the image is traversed, as seen on the right in Fig. 3. On the other hand, the
surface of ray divergences has a much smoother shape, which is a function of
all camera parameter inaccuracies. So if we filter out all features that have high
image covariances, matches obtained between remaining ‘good’ features are still
bound to the information ray divergence provides, in order to know if they’re
overall good or bad matches for reconstruction purposes. This is the power of
using ray divergence to weight bundle adjustment, since it provides information
beyond just the feature matching uncertainty. For example, two perfect matches
could still yield a non-zero ray divergence due to camera inaccuracies. There-
fore, using ray divergence or even the values provided by Beder et al.’s metric [9],
though more expensive to compute and not inclusive of radial distortion, provide
a stronger constraint towards weighting bundle adjustment than image-based co-
variances [10,11]. The right side of Fig. 3 shows the result of applying Zeisl’s
image covariance metric [11] on a select group of SIFT features, displayed as el-
lipses with size proportional to covariance values. The left side shows the smooth
transitions in values for Beder et al.’s confidence ellipsoid roundness [9] using
identity image feature covariances, and the middle shows its correlation with
ray divergence. Though it is not an exact correlation because of differences near
the edges of images, where the behavior is slightly different, the bulk of points
show a very good correlation (a coefficient of 0.93 for the main linear part of this
particular plot), such that higher divergences, in absolute value, exhibit lower
roundness.

Gaussian Weighting. A close look at a ray divergence histogram reveals a
smooth curve, typically reaching a maximum near zero. If we assume that the
probability p(d) that a given feature match exhibits a ray divergence d is given
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by Eq. 8, where u4 corresponds to the mean ray divergence and o4 to its stan-
dard deviation for a given two-view set of feature matches, we can essentially
assume that ray divergence histogram values follow a Gaussian probability den-
sity function (pdf) and use these values as weights for bundle adjustment. The
average and standard deviation are computed directly from the ray divergences
for the available set of feature matches. Since these weights must be input as
2 x 2 covariance matrices, we assume an isotropic probability distribution and set
the diagonal elements with equal pdf-based values, while setting the remaining
two elements to zero. It is very important to note that we want to penalize low
pdf values since these correspond typically to higher divergences. Therefore, we
‘invert’ the pdf values and place this number along the diagonal; their original
values are obtained again later from matrix inversion while solving the aug-
mented weighted normal equations. This results in higher covariances providing
lower weights.

1 ld—pg)?

e *a . (8)

p(d) = P
The advantages of using Gaussian values as weights is that positive weights
are always obtained, no matter what the divergence values are or if they show
zero-crossings. The area under the computed Gaussian curve is always unity,
by definition, and this is helpful towards mathematical stability since very large
variations between the smallest and largest assigned weights is not typical. Also,
exponentials are much cheaper to compute than for example a singular value
decomposition, as needed in Beder et al.’s algorithm [9]. Finally, ray divergence
transitions are smooth such that high ray divergences should be assigned higher
covariances than lower ones.

2.3 Extension to Multiple Views

The extension to multiple views is rather simple, and is based directly on the
two-view case. In a sequential multi-view pipeline, since covariances have to
be specified as 2 x 2 covariance matrices for each feature of a given feature
track, for each feature in a new image we simply assign the Gaussian-based
weight corresponding to the ray divergence for the feature’s match to the prior
image. Average and standard deviation are obtained from the set of pairwise
matches between the two most recent images, in order to compute the pdf prior
to computing each individual weight. Covariances for the features in the very first
image can be initialized to identity, or by computing them from images [10, 11] for
better initial accuracy. This way of chaining pairwise consecutive estimates works
well no matter what the number of frames as long as pairwise ray divergence
estimates are well-conditioned, which can usually be achieved through a prior
frame decimation [13]. An analysis of this baseline effect on divergences is shown
in Section 3. For non-sequential cases, the average of all ray divergence values
for all matches to a given feature could potentially be used, though we have yet
to test this case.
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Fig. 4. Ray divergence histograms at increasing baselines (left to right), for pairwise
frames from the Stockton dataset.

3 Results

The algorithm was tested on real scenes such as Stockton, Palmdale, castle-
P19 [7] and Medusa [14], as well as synthetic scenes such as Megascenel and
Coneland. All tests were conducted on a single-core Intel Xeon machine at
2.80GHz with 1 GB of RAM, on one thread. For all tests, we assume that
the same camera is used per dataset and have initial values available for the
focal length and principal point, though these in some cases were inaccurate.
Images were not undistorted prior to testing, and were acquired sequentially.

One important initial experiment consisted in analyzing the behavior of ray
divergence given different baselines. For this, we started out with one frame of
the Stockton sequence and then obtained ray divergences at different baselines
from that particular frame. In Fig. 4, results show that Gaussian fitting works
well for ‘good’ baselines, which are typically achieved by applying frame decima-
tion [13] or other choosing algorithms [1] such that the baseline is not too small
for linear triangulation but not too small or large for pose estimation degenera-
cies to occur. This was also verified in several other datasets. The middle image
shows the most smooth histogram, and that is where frame decimation picked
the best keyframe. In general, with good baselines ray divergence histograms
are smooth and can generally be approximated well by Gaussian fitting. With
other baselines, ray divergences would not be suitable for Gaussian fitting and
for bundle adjustment, since the values are more heavily affected by noise. A
good frame decimation is key to our algorithm’s success. Table 1 shows the re-
projection error and processing time results for these different baselines, where
it is shown that the frame decimation keyframe yielded the lowest reprojection
error and processing time per point.

In the next experiment, we compared processing times and reprojection er-
rors obtained using weighted bundle adjustment under four different conditions:
bundle adjustment weighted by image feature covariances [10], by confidence
ellipsoid roundness with and without including image feature covariances, and
based on ray divergences. This was only performed on good two-view baselines,
obtained with prior frame decimation. Table 2 shows the results for some test
datasets. Average values for all test parameters were obtained across pairwise
frame analysis for all consecutive pairs of each dataset. Unweighted bundle ad-
justment was not compared, since the comparison would not be direct. Time
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Table 1. Number of points, final total reprojection error R (pixels), bundle adjustment
iterations I, processing time ¢ in seconds and min/max ray divergence for Gaussian-
pdf ray divergence-weighted bundle adjustment at different baselines, for the Stockton
dataset. Best results were obtained for the three-frame frame decimation keyframe.

Baseline Points R I t ming maxgq

Consecutive 3605 0.049 150 4.24 —-0.606 0.774
3 frames 3369 0.013 33 0.83 —0.863 0.508
5 frames 1831 0.200 73 0.87 —0.774 0.561
8 frames 476 0.111 30 0.09 —-0.297 0.537

Table 2. Iterations I, final total reprojection error R (pixels) and processing time
t (seconds) in (I, R,t) format obtained using bundle adjustment under four different
weighting schemes: image feature covariances (CBA), reconstructed point confidence
ellipsoid roundness with (UWBA) and without including image feature covariances
(UIBA), and Gaussian-pdf with ray divergences (RDBA).

Dataset CBA UWBA UIBA RDBA

Stockton 43,0.621,0.90 40,0.171,0.84 37,0.072,0.79 38,0.015,0.78
Palmdale 23,4.687,0.45 22,1.692,0.38 20,0.831,0.41 22,0.113,0.37
castle-P19  150,281.13,0.99 150,4150,0.95 150,1046.1,0.88 97,90.036, 0.62
Dinosaur 26,2.631,0.06 22,0.286,0.05 24,0.09,0.05 24,0.162,0.05
Megascenel 49,12.14,0.04 42,0.179,0.03 45,0.074,0.03 46,0.124,0.04
Coneland 150,28052,1.10 150,1880.38,0.99 115,599.88,0.79 126,81.86,0.90

is consumed by the SBA software [3] to read-in covariance data, and there is
matrix inversion for covariance matrices and multiplication of these with Jaco-
bian matrix elements at each iteration, so processing times are typically higher
when using covariances. Even so, our bundle adjustment weighting outperforms
unweighted bundle adjustment as far as final reprojection error in almost every
case, as seen on the right in Fig. 6 where N BA represents the unweighted case.
It can be seen that ray divergence-based weighting outperforms every other type
of weighting in just about every category, though it’s slightly slower and with a
higher reprojection error than the more-expensive UIBA in a few cases. Over-
all, our weighting scheme provides the best combination of processing time, final
reprojection error and computational complexity in computing weights. As far
as complexity, Beder’s algorithm (UW BA and UIBA) for example includes the
inversion of a 5 x 5 matrix and two singular value decompositions of a 4 x 4 and
a 3 x 3 matrix, whereas ray divergence computation does not involve SVD or
inversions at all. The feature covariance method C'BA is also more expensive,
requiring multiple exponential evaluations for each covariance matrix, whereas
our method computes a single exponential value.

Having proven that the algorithm performs very well on pairwise reconstruc-
tions, it was applied as explained in Subsection 2.3 to perform multi-view recon-
structions using our sparse multi-view reconstruction pipeline. Fig. 5 shows on
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Fig. 5. Top row: sparse multi-view reconstructions for the Stockton (left), Medusa (mid-
dle left), Palmdale (middle right) and Megascenel (right) datasets. Their respective
dense reconstructions using the PMVS algorithm [15] are shown on the bottom.

Reprojection errors per weighting scheme

Final reprojection error (pixels)

Dataset

Fig. 6. Side view of a multi-view reconstruction showing the effect of using distorted
images (left) versus images undistorted with parameters recovered per our algorithm
(middle), for the Palmdale dataset. Total reprojection errors are lower than with other
weighting schemes (right), as shown for a few datasets.

the top row sparse reconstructions that were obtained while applying sequential
multi-view reconstruction, bundle-adjusting with each added image using ray
divergence-based weighting. These high-quality sparse reconstructions allow for
other algorithms to be applied, such as dense reconstructions with the PMVS
algorithm [15] as shown on the bottom row of Fig. 5. Fig. 6 shows the effect on
scene reconstruction of using original distorted images versus versions that were
undistorted using parameters recovered with our weighted bundle adjustment.

4 Conclusions

An algorithm that makes use of scene reconstruction ray divergence for weighting
bundle adjustment and improving its convergence properties was introduced. It
was shown that ray divergence, which is a function of all camera parameter inac-
curacies, is more efficient to compute and outperforms other weighting schemes
such as those based on image feature covariances. There is no dependence on
ground-truth information, and results show an improved convergence on different
real and synthetic scene types.
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