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Abstract

The seed maturation program only occurs during late embryogenesis, and repression of the program is pivotal for seedling
development. However, the mechanism through which this repression is achieved in vegetative tissues is poorly
understood. Here we report a microRNA (miRNA)–mediated repression mechanism operating in leaves. To understand the
repression of the embryonic program in seedlings, we have conducted a genetic screen using a seed maturation gene
reporter transgenic line in Arabidopsis (Arabidopsis thaliana) for the isolation of mutants that ectopically express seed
maturation genes in leaves. One of the mutants identified from the screen is a weak allele of ARGONAUTE1 (AGO1) that
encodes an effector protein for small RNAs. We first show that it is the defect in the accumulation of miRNAs rather than
other small RNAs that causes the ectopic seed gene expression in ago1. We then demonstrate that overexpression of
miR166 suppresses the derepression of the seed gene reporter in ago1 and that, conversely, the specific loss of miR166
causes ectopic expression of seed maturation genes. Further, we show that ectopic expression of miR166 targets, type III
homeodomain-leucine zipper (HD-ZIPIII) genes PHABULOSA (PHB) and PHAVOLUTA (PHV), is sufficient to activate seed
maturation genes in vegetative tissues. Lastly, we show that PHB binds the promoter of LEAFY COTYLEDON2 (LEC2), which
encodes a master regulator of seed maturation. Therefore, this study establishes a core module composed of a miRNA, its
target genes (PHB and PHV), and the direct target of PHB (LEC2) as an underlying mechanism that keeps the seed maturation
program off during vegetative development.
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Introduction

Seed maturation is a highly coordinated developmental phase

in which storage reserves, including seed storage proteins (SSPs),

are synthesized and accumulated to high levels. The maturation

genes need to be repressed, however, in order to allow seedling

development to occur. Indeed, these genes are not expressed in

vegetative organs of the plant [1]. Research in the past decade

with the model plant Arabidopsis has led to the identification of

repressors of seed maturation genes in vegetative organs

(reviewed in [2]), including chromatin-remodelling ATPases

[3–5], polycomb group (PcG) proteins [6–9], histone deacety-

lases [10], and DNA-binding transcription factors [11–13].

However, our understanding of the molecular mechanisms that

repress the seed maturation program during vegetative deve-

lopment remains fragmented, and thus continued efforts are

needed to identify additional factors involved and, more im-

portantly, the molecular and functional links between the vari-

ous components.

In Arabidopsis, ABA-INSENSITIVE3 (ABI3), FUSCA3 (FUS3),

LEC1 and LEC2 are master regulators of seed maturation [14–17],

and they regulate one another [18,19]. ABI3, FUS3 and LEC2 are

closely-related members of a plant-specific B3-domain transcrip-

tion factor family. LEC1 encodes a novel homolog of the CCAAT-

binding factor HAP3 subunit. Loss-of-function mutations in ABI3,

FUS3, and LEC1 give rise to pleiotropic seed phenotypes including

a strong reduction of SSPs. These regulatory genes are predomi-

nantly expressed in the seed. When misexpressed in vegetative

tissues, they induce ectopic expression of the SSP genes and even

the formation of somatic embryos [15,17,20–22]. It remains

poorly understood, however, how the expression and activity of

these master regulators are in turn regulated.
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Small RNAs of 20–30 nucleotides (nt) have emerged as key

sequence-specific regulators of gene expression that influence

almost all aspects of plant biology (reviewed in [23–26]). There are

two major types of small RNAs in plants, microRNA (miRNA)

and small interfering RNA (siRNA). Plant miRNAs are generated

from longer precursors arising from defined genomic loci – the

MIRNA genes. The biogenesis of miRNAs involves several

evolutionarily conserved families of proteins, including DICER-

LIKE (DCL), ARGONAUTE (AGO), HUA ENHANCER 1

(HEN1), and HASTY (HST). Plant miRNAs regulate target

mRNAs temporally and spatially through transcript cleavage and/

or translational inhibition. Conserved miRNAs tend to target

transcription factor genes that play crucial roles in almost all

aspects of plant development. Plants are rich in endogenous

siRNAs, which can be classified into several types, such as trans-

acting siRNAs (ta-siRNAs), natural cis-antisense transcripts-

associated siRNAs, and heterochromatic siRNAs.

Here, we show that mutations in AGO1 resulted in the ectopic

expression of seed maturation genes in seedlings. Taking

advantage of the weak ago1 allele identified in this work, we were

able to identify the miRNA species (miR166) responsible for the

repression of seed genes. We demonstrated that targets of miR166,

the class III homeodomain leucine zipper (HD-ZIPIII) family of

transcription factor genes, PHB and PHV, are positive regulators of

seed genes. Further, we provided evidence to suggest that PHB

acts directly at LEC2. This work thus uncovered an important role

of miR166 in the repression of seed genes during seedling

development.

Results

Identification of a Weak ago1 Allele That Causes Ectopic
Expression of a Seed Gene Promoter Reporter

We have recently conducted a genetic screen in Arabidopsis to

isolate mutants exhibiting ectopic expression of a soybean b-

conglycinin gene promoter:GUS transgene (bCG:GUS), which is

normally expressed only in the seed [5,27,28]. Here, we describe

the characterization of one of the mutants identified from the

screen, initially named essp5 (ectopic expression of seed storage proteins 5).

The essp5 mutant plants exhibited strong ectopic GUS activity in

leaves, but not in other organs (Figure 1A–1D). In addition, the

mutant plants had pleiotropic developmental defects, such as late

flowering, narrow and dark green leaves, shorter siliques and fewer

seeds (Figure 1B and Figure S1).

The mutation segregated as a recessive allele and was mapped to

the AT1G48410 gene (Figure S2), which encodes AGO1, the major

effector protein that associates with small RNAs [29]. A single

missense mutation in this gene was identified that would lead to the

conversion of a leucine residue at position 740 to a phenylalanine.

The leucine 740 is a highly conserved residue in the PIWI domains

of AGOs from diverse species (Figure 1E). A number of mutant ago1

alleles have been described previously and their pleiotropic

morphological phenotypes have been documented [29–32]. The

morphological phenotypes of essp5 resemble those documented for

weak ago1 alleles. We obtained T-DNA insertion mutants of ago1,

including ago1-36 (SALK_087076), ago1-39 (SALK_089073), ago1-

40 (SALK_076199), ago1-41 (SALK_096625), and ago1-42

(SALK_116845) (Figure 1F), crossed them with bCG:GUS and

examined GUS expression in F2 progeny seedlings. The T-DNA

insertion lines, regardless of their insertion sites, all displayed similar

morphological phenotypes: long rod-shape cotyledons, delayed

emergence of true leaves, and premature death with only a couple of

small true leaves. As shown in Figure 1G–1J, ectopic GUS activity

was clearly observed in several T-DNA alleles with insertion sites

located throughout the gene. Furthermore, we performed an

allelism test to provide additional evidence that essp5 is a weak ago1

allele. A weak ago1 allele (ago1-25) that exhibits similar morpholog-

ical phenotype [33] was crossed with essp5 and the F1 progeny were

examined for GUS activity. As shown in Figure S3, the F1 seedlings

displayed ectopic GUS expression, indicating that the essp5 GUS

phenotype cannot be complemented by a weak ago1 allele.

Together, these observations suggest that essp5 is allelic to AGO1

and thus designated as ago1-100.

Ectopic Expression of Seed Genes in ago1 Mutant
Seedlings

To find out whether the endogenous seed maturation genes are

indeed ectopically expressed in ago1 mutant seedlings, we per-

formed northern blot analysis to profile the expression of both the

2S and 12S storage protein genes. As shown in Figure 2A, the

transcripts of the storage protein genes are highly accumulated in

the two strong alleles, ago1-41 and ago1-42, both with T-DNA

insertion sites located in the 59 end of the gene but barely

detectable in ago1-100/essp5 and other weak alleles with insertion

sites located in the middle and 39 end of the AGO1 gene. We

further examined the transcript levels of the four master regulators

by quantitative real-time RT-PCR (qRT-PCR). In line with the

ectopic expression of the storage protein genes, all the master

regulators are expressed to varying levels in the mutants, especially

ago1-42 (Figure 2B). In addition, we also profiled the temporal

expression pattern of the maturation genes, using 2S2 as a marker.

ago1-41 seedlings from 5 d to 19 d after germination were

examined. As shown in Figure 2C, the 2S2 transcript peaked in

abundance at around 13 d, but was clearly detected throughout

the time course. These expression analyses clearly demonstrate the

involvement of AGO1 in the repression of seed maturation genes.

Derepression of Seed Maturation Genes in Other miRNA
Biogenesis Mutants

AGO1 associates with miRNAs and some endogenous siRNAs

to mediate their activities [34]. AGO1 association also stabilizes

Author Summary

Seed development can be conceptually divided into two
phases: namely the morphogenesis phase, in which cell
division is active and all the major organs are formed, and
the maturation phase, in which cells enlarge and storage
reserves are synthesized and accumulated. Expression of
the seed maturation program is tightly controlled such
that it only occurs during the late phase of seed de-
velopment. To uncover the molecular mechanisms under-
lying the repression of seed genes during vegetative
development, we performed a reporter-assisted genetic
screen, and one mutant identified is a weak allele of
ARGONAUTE1 (AGO1) that displays ectopic seed gene
expression. We then performed a series of transgenic and
genetic analyses to search for the molecular mechanisms
underlying the mutant phenotype. We first demonstrate
that the decrease in miR166 in ago1 is a major cause of the
mutant phenotype. Further, we show that the targets of
miR166, type III HD-ZIP transcription factors PHB and PHV,
are sufficient for derepressing seed maturation genes in
seedlings, likely by binding directly to the promoter of a
master regulator gene of maturation. Thus, this work
establishes a miRNA–mediated pathway that represses the
embryonic program and also establishes PHB/PHV as
direct activators of the maturation program.

Repression of Seed Genes by MicroRNAs
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the small RNAs such that ago1 mutants show a reduction in the

steady-state levels of miRNAs and siRNAs [35–36]. To confirm

that the ectopic expression of seed maturation genes in ago1

mutants is due to defects in small RNA biogenesis or activity, we

examined seed gene expression in seedlings of loss-of-function

alleles of genes commonly involved in small RNA biogenesis. For

this purpose, we obtained mutant alleles of HEN1, hen1-5

(SALK_049197) and hen1-6 (SALK_090960), and of HST, hst-1

[37], hst-15 (SALK_079290) and hst-16 (SALK_056352). We

introduced these mutations, individually, into the bCG:GUS

background and examined GUS expression in the F2 generation.

We were able to detect clear ectopic GUS activity in the hen1

backgrounds (hen1-5; Figure 3A and 3B), but not in the hst alleles.

We then generated double mutants between ago1, hen1, and hst. As

shown in Figure 3C–3J, both ago1-41 hst-16 and hen1-5 hst-16

double mutants exhibited a high level of expression of the storage

protein genes and the master regulators. The ago1-41 hen1-5 plants

were very small, which precluded seed gene expression analysis.

These results indicate synergistic genetic interactions among

AGO1, HEN1, and HST in repressing seed genes during seedling

development and, more importantly, the involvement of a small

RNA pathway(s) in this repression process.

Since AGO1, HEN1 and HST are essential players in small

RNA biogenesis and are involved in several small RNA pathways

[38], it was necessary to determine which pathway underlies the

mutant phenotype. To this end, we took advantage of pathway-

specific components to define the specific pathway responsible for

the ago1 mutant phenotype. Specifically, RDR2 is an essential

component of the heterochromatin pathway and RDR6 is

required for the biogenesis of trans-acting siRNAs. We obtained

Figure 1. essp5 Results in Ectopic Expression of a Seed Marker Gene and Is Allelic to ARGONAUTE1. (A and B) Comparison of essp5 with
wild type (wt) plants at two weeks. (C and D) GUS expression of the essp5 mutant (C) and wild type (wt, bCG:GUS) grown on agar at two weeks. Scale
bars, 2 mm in (C) and 5 mm in (D). (E) Alignment of partial amino acid sequences (residues 707 to 755) of PIWI domains in AGO proteins from
Arabidopsis (At), Rice (Os), Pea (Ps), Tobacco (Nb), Drosophila (Dm), Brassica (Bn). The essp5 mutation site (L740) is in orange. The asterisks indicate
absolutely conserved residues, colons indicate high similarity, and dots indicate low similarity. (F) Structure of the AGO1 gene showing the location of
the essp5 mutation and the T-DNA insertion sites of other ago1 alleles. Boxes and lines represent exons and introns, respectively. The colored boxes
represent the conserved protein domains: light blue (PAZ), magenta (MID), and blue (PIWI). (G–J) GUS expression in four T-DNA insertion alleles of
AGO1. Shown here is a representative F2 progeny from each of the crosses of the corresponding T-DNA allele with the bCG:GUS line. Scale bar,
500 mm.
doi:10.1371/journal.pgen.1003091.g001

Repression of Seed Genes by MicroRNAs
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and introduced the rdr2-1 (SAIL_1277_H08) and rdr6-11 [39]

mutations into the bCG:GUS background by genetic crosses and

examined GUS expression in the F2 progeny. A large number of

F2 seedlings were stained for GUS and no ectopic GUS activity

was observed in either population. This genetic evidence suggests

that it is unlikely that the trans-acting siRNA or the hc-siRNA

pathway is involved in the repression of seed genes in seedlings.

Since AGO1, HEN1, and HST all act in miRNA biogenesis, a

miRNA(s) is thought to be a strong candidate for the repression of

seed genes during vegetative development.

Reduced Accumulation of Conserved miRNAs in ago1
and Other miRNA Biogenesis Mutants

To provide evidence that a miRNA pathway is indeed

underlying the mutant phenotype, we examined the steady-state

levels of a number of conserved miRNAs in ago1 and other mutant

backgrounds. In ago1 mutants, it was documented previously that

the accumulations of a number of conserved miRNAs decline

markedly and their target gene transcripts are concomitantly

elevated [35–36]. Here, we performed a miRNA northern blot

analysis to examine and compare the accumulation of conserved

miRNA species in ago1, hen1, hst, and the two double mutants, ago1

hst and hen1 hst. As shown in Figure 4, we confirmed the published

observation for ago1 in that all the miRNAs examined were clearly

reduced. More importantly, we observed further reduced accu-

mulation of most examined miRNAs in ago1 hst and hen1 hst double

mutants compared to the single mutants (Figure 4). These findings

are consistent with a genetic model for explaining the ectopic seed

gene expression in ago1and other mutants: the steady-state level of

a specific miRNA was reduced below a threshold to lead to the

ectopic expression of its target gene, which encodes a positive

regulator of seed maturation genes leading to the ectopic

expression of seed genes in leaves.

Overexpression of miRNA166 Rescues the essp5/ago1-
100 Mutant Phenotype and Loss of miR166 Causes
Ectopic Expression of Seed Maturation Genes

Post-germination repression of seed genes is critical in order for

the seedling to develop normally. We thus reasoned that such a

fundamental developmental program should be controlled by a

conserved miRNA(s). Therefore, to find out which miRNA was

involved in conferring the essp5/ago1-100 GUS phenotype, we

over-expressed each of the 15 conserved miRNA species, as listed

in [23] and Table S1, in the essp5/ago1-100 background and

Figure 2. Expression Analysis of Seed Maturation Genes in ago1
Mutant Seedlings. (A) RNA blot analysis of the expression of the five
2S genes and three 12S genes (CRA1, CRB, and CRC) in ago1 mutant
seedlings grown for 14 days on MS agar. Wild type (Col) leaves and
siliques were used as negative and positive controls, respectively. Same
amount of RNA was used for each blot. Elongation factor 1a was used
as loading control. (B) Real time quantitative RT-PCR (qRT-PCR) analysis
of ABI3, FUS3, LEC1, and LEC2 genes in seedlings (aerial portion) of four
ago1 mutants grown for 12 days on MS agar. Actin-8 was used as an
internal control. The mean and standard error were determined from
three biological replicates, for each of which the PCR was conducted in
triplicated technical repeats. (C) RNA blot analysis of temporal
expression of maturation genes (2S2 as a marker) in ago1-41 mutant
seedlings grown on MS agar for 5, 7, 10, 13, 16, and 19 days. Wild type
(Col) leaves and siliques were used as negative and positive controls,
respectively. Same amount of RNA was used for each blot. Elongation
factor 1a was used as a loading control. Shown at the bottom are
images of the ago1-41 mutant on agar at various time points. Scale bar,
1 mm.
doi:10.1371/journal.pgen.1003091.g002

Repression of Seed Genes by MicroRNAs
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examined GUS expression of the resulting transgenic plants. The

transgenic plants overexpressing different miRNAs displayed

unique morphological phenotypes, which are consistent with

previously published observations (reviewed in [23]).

Analysis of leaf GUS expression was conducted in the T2

generation. For each miRNA transgene, multiple independent

transgenic lines were analyzed (in most cases 10 lines); and for

each line, at least 20 T2 progeny homozygous for essp5 were

stained for GUS activity. We only observed loss of leaf GUS

activity in miR166 and miR156 overexpressing lines. In this study,

we have focused on the characterization of miR166. In total, we

only obtained four miR166 transgenic lines, miR166ox-1-4, of

which two showed clear loss of leaf GUS activity (miR166ox-1-2)

while the other two (miR166ox-3-4) did not show as obvious a

change compared with essp5/ago1-100 seedlings (Figure 5A–5D).

The extremely low rate of positive transgenic plants for miR166 is

likely due to the fact that some transgenic seedlings failed to

develop the shoot apical meristem and could not survive in soil, as

observed by others [40]. To confirm that the loss of leaf GUS

activity in the transgenic lines was indeed due to the elevated

accumulation of miR166, a northern blot analysis was performed.

As shown in Figure 5E, there were clearly higher levels of miR166

in lines miR166ox-1-2 than lines miR166ox-3-4. In addition, we

observed the formation of aberrant structures on leaves of

miRNA166ox-1-2 (Figure 5F). Similar aberrant structures were

observed by Zhou et al in miRNA166 overexpressors [40]. These

observations suggest that the reduction of miRNA166 and the

concomitant accumulation of its target gene transcripts are likely

the cause underlying the ectopic GUS phenotype of essp5/ago1-100

seedlings.

To demonstrate that the specific loss of miR166 can cause the

ectopic expression of seed maturation genes, we obtained the

recently developed transgenic lines that exhibit a dramatic

reduction in miR165/166 accumulation achieved by the expres-

sion of a short tandem target mimic (STTM165/166) [41]. RNA

blot analysis was performed to examine the expression of seed

storage protein genes in these transgenic lines, using 2S2 as a

probe. As shown in Figure 5G, the 2S2 gene is clearly expressed in

the strongest line (STTM165/166-48), but not detectable in a

weaker line (STTM165/166-31). This observation indicates that

miR166 plays an important role in repressing seed genes in

seedlings.

Ectopic Expression of the HD-ZIPIII Genes PHB or PHV Is
Sufficient for Seed Gene Expression in Seedlings

It has been well established that the miR165/166 family

miRNAs target the transcripts of the HD-ZIPIII genes, controlling

their expression level and domain, to fulfill their roles in plant

development including leaf polarity determination [42–45]. The

HD-ZIPIII family consists of five transcription factors (REV, PHB,

PHV, AtHB8, and AtHB15), and they play both redundant and

unique roles in diverse plant developmental processes [46]. In this

context, it is worth noting that the transcript level of PHB was

found to be decreased in miR166 overexpressors (Figure S4). To

investigate whether the HD-ZIPIII proteins are responsible for

conferring the ectopic GUS phenotype of essp5/ago1-100, we

introduced loss-of-function mutations in PHB and PHV genes into

Figure 3. Ectopic Expression of Seed Maturation Genes in
miRNA Biogenesis Mutants. (A and B) GUS expression in hen1
mutant (A) and wild type (wt, bCG:GUS) grown on agar for two weeks.
Shown here are representative F2 progeny from the crosses of hen1-5
with the bCG:GUS line. Scale bars, 3 mm in (A) and 5 mm in (B). (C and
D) RNA blot analysis of the 2S and 12S genes in seedlings (aerial tissues)
in various miRNA biogenesis mutant backgrounds grown for 14 days on
MS agar. Wild type (Col) leaves and siliques were used as negative and
positive controls, respectively. Same amount of RNA was used for each
blot. Elongation factor 1a was used as a loading control. (E) qRT-PCR
analysis of ABI3, FUS3, LEC1, and LEC2 genes in seedlings (aerial portion)

of various miRNA biogenesis mutants grown for 15 days on MS agar.
Actin-8 was used as an internal control. The mean and standard error
were determined from three biological replicates. (F–J) Morphological
phenotypes of 13-day seedlings of various miRNA biogenesis mutants.
Scale bar, 1 mm.
doi:10.1371/journal.pgen.1003091.g003

Repression of Seed Genes by MicroRNAs
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essp5/ago1-100 by genetic crosses and examined leaf GUS

expression in F2 and F3 seedlings. A large number of F2/F3

seedlings were examined and no clear loss of leaf GUS activity was

observed in phb essp5 or phv essp5. We further introduced phb phv

double mutations into the essp5/ago1-100 background, but still saw

no detectable loss of leaf GUS activity. Obviously, the potential

redundancy among the five HD-ZIPIII genes could be confound-

ing the genetic analyses above.

Next, taking advantage of the previously identified gain-of-

function mutations in HD-ZIPIII family genes, we investigated

whether these proteins are sufficient to cause the ectopic

expression of seed genes. These gain-of-function alleles have

mutations in the miR166 target regions to cause a mismatch

between the miRNA and the target mRNA and thus render the

transcripts resistant to miRNA-mediated degradation and conse-

quently the ectopic accumulation of HD-ZIPIII transcripts. First,

the gain-of-function mutations phb-1d [47] and phv-1d [44] were

introduced into the bCG:GUS background by genetic crosses and

ectopic GUS activity was examined in F2 seedlings (Figure 6A–6I).

Meanwhile, another gain-of-function phb allele driven by the

CaMV 35S promoter, 35S:PHB G202G [43], was also introduced

into the bCG:GUS background by Agrobacterium-mediated transfor-

mation and GUS activity was examined for each independent T1

plant (Figure 6A and 6J–6M). As shown in Figure 6A–6M, ectopic

GUS activity was clearly observed for phb-1d, phv-1d, and 35S:PHB

G202G. Further, we performed northern blot and qRT-PCR

analyses to examine the ectopic expression of endogenous seed

maturation genes in the gain-of-function mutant plants (Figure 6N

and 6O). Two representative maturation genes 2S2 and 2S3 were

clearly expressed in the mutant seedlings (Figure 6N). Similarly, the

four master regulators were all elevated to varying levels (Figure 6O).

In addition, a gain-of-function REV mutant, rev-10d [42], was also

analyzed in the bCG:GUS background but no ectopic GUS activity

was detected. In summary, our gain-of-function genetic evidence

indicates that the HD-ZIPIII proteins PHB and PHV are each

sufficient for ectopic expression of seed genes.

Physical Occupancy of PHB at the LEC2 Gene Promoter
HD-ZIP proteins are plant-specific transcription factors and

named for the combination of homeodomain and leucine zipper

Figure 4. Reduced Accumulation of miRNAs in Various miRNA Biogenesis Mutant Backgrounds as Determined by Northern
Blotting. The genotypes of the mutants are indicated at the top. Total RNAs were extracted from two-week old seedlings (aerial portion). The levels
of each small RNA were normalized to those of U6 and compared with wild type (Col). The numbers below the gel images indicate the relative
abundance of the small RNAs.
doi:10.1371/journal.pgen.1003091.g004

Repression of Seed Genes by MicroRNAs
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domains at their N termini [48]. They bind a palindromic DNA

sequence in vitro as dimers [49]. To determine whether PHB acts

directly at maturation gene loci, we performed chromatin

immunoprecipation (ChIP) experiments to examine PHB occu-

pancy at the promoters of these genes.

For the ChIP assays, we generated Arabidopsis plants transgenic

for a YFP-tagged gain-of-function allele of PHB under the control

of the PHB native promoter (PHB:PHB G202G-YFP). Morpholog-

ically, the transgenic plants resemble the phb-1d mutant

(Figure 7A–7D). When the transgene was introduced into the

bCG:GUS background, it resulted in ectopic GUS activity

(Figure 7E–7H). Expression of the master regulators of seed

maturation in the transgenic seedlings was also examined by qRT-

PCR. As shown in Figure 7I, these genes were ectopically

expressed to similar levels compared to those of phb-1d, and the

expression levels in homozygous seedlings were clearly higher than

those in the hemizygous siblings. These observations demonstrate

that the PHB:PHB G202G-YFP plants resemble phb-1d. In addition,

we observed, at a low frequency, disorganized growth and/or

formation of somatic embryo-like structures in the transgenic

plants (Figure 7J–7L). Some parts of these plants could be stained

by the neutral lipid dye fat red (Figure 7M–7O), indicating a high

level accumulation of seed storage-specific triacylglycerols in these

plants (fat red/sudan red stains only seed storage-specific lipids).

ChIP was performed with anti-GFP antibodies and an

Arabidopsis line transgenic for GFP driven by the CaMV 35S

promoter (35S:GFP) was used as a negative control. The ChIP

DNAs were analyzed by qPCR to examine the enrichment of

promoter region genomic DNAs of the four master regulator

genes. One region in the LEC2 promoter was highly enriched

relative to the 35S:GFP and no antibody controls (Figure 7P), but

no enrichment was found for the promoter regions of other

Figure 5. Over-Expression of miRNA166 Rescues the essp5 GUS Phenotype, and Loss of miR166 Causes Ectopic Expression of Seed
Maturation Genes. (A) Loss of ectopic GUS activity in essp5 plants overexpressing miR166. The miR166 transgene driven by the CaMV 35S promoter
was introduced into essp5/+ background. Four T1 transgenic lines were identified, designated essp5 miR166ox-1–4. T2 seeds were germinated on
selective MS agar plates such that only seedlings transgenic for miR166 were selected. After 13 days of growth, essp5-like seedlings were harvested
and stained for GUS activity. (B–D) Photos showing the GUS phenotypes of essp5 (B), essp5 miR166ox-1 (C), and essp5 miR166ox-2 (D), respectively, as
listed in (A). (E) Accumulation of miR166 in the four transgenic lines as listed in (A), i.e., essp5 miR166ox-1–4, as determined by northern blotting. The
genotypes of the plants are indicated at the top. Total RNAs were extracted from two-week old seedlings (aerial portion). The numbers below the gel
images indicate the relative abundance of the small RNAs. (F) Comparison of leaf morphology of miRNA166 overexpressors with that of wild type.
Note the aberrant structures formed on the transgenic leaves (arrows). (G) RNA blot analysis of the 2S2 gene in seedlings (aerial tissues) in the miR166
silencing lines STTM165/166-48 and STTM165/166-31 grown for 14 days on MS agar. Wild type (Col) leaves and siliques were used as negative and
positive controls, respectively. The PHB:PHB G202G-YFP transgenic plants were also included as a positive control. Elongation factor 1a was used as a
loading control.
doi:10.1371/journal.pgen.1003091.g005
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maturation genes examined (Figure S5). The enrichment level in

homozygous plants was about double that in the hemizygous

siblings, consistent with the ectopic expression level of seed genes

in these plants (Figure 7I). Interestingly, a partial palindromic

sequence, aaAATCATTAC, was found in the vicinity of the

enriched genomic region in the LEC2 promoter, but not at other

maturation loci. This sequence is very similar to the HD-ZIPIII

binding consensus sequence, GTAAT(G/C)ATTAC, derived

from an in vitro binding site selection experiment [49]. These

observations suggest that PHB, when ectopically expressed, binds

to the LEC2 promoter and activates the expression of the gene.

LEC2 can, in turn, activate a network of maturation-related genes

including ABI3, FUS3, LEC1, and the SSP genes (Figure 8).

Discussion

In this work, we first identified a weak EMS ago1 allele, which

exhibited ectopic expression of a GUS reporter driven by a seed

gene promoter. Taking advantage of the weak ago1 allele and its

GUS phenotype, we then performed a series of transgenic and

Figure 6. HD-ZIPIII Genes PHB/PHV Are Sufficient for Activating Ectopic Expression of Seed Genes in Seedlings. (A) GUS phenotypes of
gain-of-function mutations in PHB and PHV genes. Note1: phb-1d or phv-1d was crossed with bCG:GUS. In the F2 progeny grown on agar for three
weeks, phb-1d- or phv-1d-like plants were selected and stained for GUS activity. Note2: The 35S:PHB G202G transgene was introduced into the
bCG:GUS background by agrobacterium-mediated transformation. Independent T1 transgenic seedlings were selected and stained for GUS activity.
(B–M) GUS phenotypes of gain-of-function phb and phv mutants grown on agar for three weeks. Shown here are representative F2 progeny from the
cross of phb-1d or phv-1d with bCG:GUS, as well as the T1 transgenic lines containing the 35S:PHB G202G in bCG:GUS background. Wild type (wt,
bCG:GUS) seedlings (two weeks old) were also stained as negative controls (E, I, and M). Scale bars, 2 mm in B–D, F–H and J–K; 5 mm in E, I and M. (N)
RNA blot analysis of the expression of the maturation genes (2S2 and 2S3 as markers) in the gain-of-function phb and phv mutant seedlings grown for
22 days on MS agar. For the 35S:PHB G202G transgenic plants, independent T1 plants were selected and grouped into three groups according to the
severity of their morphological phenotypes. Note the difference in the hybridization intensities. Wild type (Col) leaves and siliques were used as
negative and positive controls, respectively. Same amount of RNA was used for each blot. Elongation factor 1a was used as a loading control. In the
top panel, two exposures of the EF1- a loading control were shown. (O) qRT-PCR analysis of ABI3, FUS3, LEC1, and LEC2 expression in seedlings (aerial
portion) of phb-1d and phv-1d mutants grown for 20 days on MS agar. For each mutant allele, heterozygous (HE) and homozygous (HO) mutant
seedlings were measured separately for comparison. Actin-8 was used as an internal control. The mean and standard error were determined from
three biological replicates.
doi:10.1371/journal.pgen.1003091.g006
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genetic analyses to search for the molecular mechanisms

underlying the mutant phenotype. We first demonstrated that

miR166 reduction is a major cause of the mutant phenotype and

further showed that the targets of miR166, PHB and PHV, are

sufficient for derepressing seed maturation genes in seedlings.

Finally, our ChIP assay using a tagged PHB transgenic line

suggests that PHB may act directly at the LEC2 promoter

(summarized in Figure 8). However, in addition to LEC2, PHB

may also regulate other factors that in turn regulate seed

maturation genes directly or indirectly. Future studies, such as

ChIP-seq, are needed to address this issue. Therefore, this work

has added miR165/166 to the documented repertoire of

postgermination repressors of the embryonic program (reviewed

in [2]), and more importantly, established PHB, and possibly

PHV, as direct positive regulators of the master regulator of seed

maturation LEC2. A major future challenge in the field is to find

out the genetic and molecular relationships amongst the various

players, including transcription factors, chromatin remodelers and

modifiers, and the newly added miRNA, and build an integrated

genetic network.

Given the well-established expression patterns and roles of

miR166 and its targets in leaf polarity determination (reviewed in

[50,51]), an obvious outstanding question is why the normal

expression of the PHB and PHV genes in the adaxial domain of

leaf primordia in wild type plants is not sufficient to cause the

ectopic expression of seed maturation genes. miR165/166 is

concentrated in the abaxial domain to restrict the expression of the

HD-ZIPIII transcription factor genes to the adaxial domain in the

lateral organs in Arabidopsis [42–44] and maize [45]. In phb and phv

gain-of-function mutants, the expression of PHB and PHV is not

restricted to the adaxial domain but extends into the entire

primordium. We observed ectopic expression of seed maturation

genes only in these gain-of-function mutants, indicating that the

normal, adaxial expression of the HD-ZIP III genes is not

sufficient to activate the seed maturation program. There could be

at least two underlying reasons. First, the ectopic expression of the

seed maturation genes in the phb and phv gain-of-function mutants

only occurs in the abaxial domain. In this scenario, the lack of

necessary co-factors or the presence of negative factors in the

adaxial domain may prevent the HD-ZIPIII genes from activating

the seed maturation genes. Alternatively, it might be a matter of

thresholds – the adaxial domain normally does not have sufficient

levels of HD-ZIPIII expression to trigger the seed maturation

Figure 7. PHB Occupancy at LEC2 Promoter. (A–D) Morphological
phenotype of the 35S:GFP (A) and PHB:PHB G202G-YFP (B–D) transgenic
plants grown on agar for three weeks. (B) a hemizygous plant. (C–D)
homozygous plants. Note that multiple cotyledons (3 or 4) were found
in the majority (,80%) of PHB:PHB G202G-YFP homozygous plants.
Scale bar, 3 mm. (E–H) GUS phenotype of PHB:PHB G202G-YFP

transgenic seedlings (in bCG:GUS background) grown on MS agar for
three weeks (E–G) and wild type (wt, bCG:GUS) grown on MS agar for
two weeks. Scale bars, 1 mm in E–G and 5 mm in H. (I). qRT-PCR analysis
of ABI3, FUS3, LEC1, and LEC2 expression in seedlings (aerial portion) of
hemizygous (HE) and homozygous (HO) PHB:PHB G202G-YFP seedlings
grown for 20 days on MS agar. Actin-8 was used as an internal control.
The mean and standard error were determined from three biological
replicates. (J–O) Fat red staining of PHB:PHB G202G-YFP plants that
exhibited disorganized growth. Such plants were found at a rate of
approximately 10% among the homozygous transgenic plants. Shown
in J (20 d), K (35 d), and L (35 d) are plants before staining that
correspond to those in (M), (N), and (O), respectively, after staining.
Scale bar, 1 mm. (P) PHB occupancy at LEC2 promoter as determined by
ChIP using anti-GFP antibody in PHB:PHB G202G-YFP plants. The 35S:GFP
plants served as negative control. ChIP DNAs were analyzed by qPCR.
The results were reproduced in two biological replicates. Standard
deviations were calculated from three technical repeats. Shown at the
top is a schematic representation of the LEC2 gene. Boxes and lines
represent exons and introns, respectively. Transcription start sites are
indicated by arrows. Black bars labeled P1–P3 represent the regions
examined by ChIP-qPCR. The potential PHB binding sequence is also
indicated.
doi:10.1371/journal.pgen.1003091.g007
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program, but when the miRNA is compromised, the expression

level is high enough to trigger the program. Our preliminary

observation is in support of the first scenario. GUS expression

along the adaxial-abaxial axis in essp5/ago1-100 was examined and

GUS activity was found only on the abaxial side (Figure S6). In

addition, interestingly, GUS was also observed in both the upper

and lower epidermal cells (Figure S6).

The seed maturation program is a tightly regulated develop-

mental process. Mechanisms are in place to not only ensure its

repression during seedling development but also prevent its

precocious induction during early embryogenesis [2,52]. The

induction of seed maturation is also referred to as the morpho-

genesis-to-maturation phase transition of embryogenesis. While

our studies have established miR165/166 and implicated miR156

as players in the repression of the seed maturation program in

vegetative development, two recent studies have also revealed

important roles of miRNAs in regulating the morphogenesis-to-

maturation phase transition [53,54]. Of these, the work of Nodine

and Bartel [53] demonstrated that miR156 and two of its target

genes SPL10 and SPL11 play a major role in early embryo

patterning and in preventing the precocious expression of

maturation genes. An obvious question is whether miR165/166

also acts similarly in early embryogenesis to control the

morphogenesis-to-maturation phase transition. Previous studies

have shown that PHB and PHV promote embryonic development,

and that the expression of these genes must be repressed by

miR165/166 for embryonic development to proceed normally.

For example, Grigg et al showed that serrate (se) mutants cause

ectopic expression of PHB and PHV in the root pole of embryos,

and that the embryonic lethal phenotype of se mutants can be

rescued by loss-of-function mutations in PHB and PHV [55]. Smith

and Long also showed that PHB and PHV promote shoot

development during embryogenesis [56]. These studies focused

on the roles of the miR165/166-PHB/PHV module in early

embryo patterning. Our finding that this module plays an

important role in repressing seed maturation genes during seedling

development prompted us to test its role in the morphogenesis-to-

maturation phase transition. We performed a ChIP analysis using

a transgenic line expressing a tagged PHB driven by its

endogenous promoter (PHB:PHB-YFP). Preliminary data suggests

that PHB acts directly at LEC2 during embryogenesis (Figure S7).

Future investigations are needed to sort out the contributions of

each miRNA to the repression of the seed maturation program

during the pre- and post-maturation stages.

Materials and Methods

Plant Material, Growth Conditions, and Genotype
Analysis

Seeds of mutants including the T-DNA insertion mutants were

obtained from the ABRC, unless otherwise indicated. Seeds were

stratified at 4uC for 3-d. Then the seeds were sowed on soil or on

agar plates containing 4.3 g/L Murashige and Skoog nutrient mix

(Sigma-Aldrich), 1.5% sucrose, 0.5 g/L MES (pH 5.7), and 0.8%

agar. Plants were grown under 16 h-light (22uC)/8 h-dark (20uC)

cycles; except that the phb-1d/+ and phv-1d/+ mutants were grown

Figure 8. A Model of MicroRNA–Mediated Repression of Seed Genes in Leaves. In wild type seedlings, AGO1 and miR166 repress the
expression of PHB/PHV, which promotes the seed maturation program by directly activating LEC2 expression and indirectly that of other positive
regulators of the seed maturation program. miR156 may also play a role in the process, possibly by repressing SPL10 and SPL11, based on this work
and that of Nodine and Bartel [53]. It is not known, however, whether SPLs are sufficient for inducing the expression of seed genes or whether they
directly activate the seed genes.
doi:10.1371/journal.pgen.1003091.g008
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at 17uC during reproductive development as described [47].

Homozygous T-DNA insertion mutants were identified by

genotyping.

Map-Based Cloning of essp5
The mutant essp5 was isolated from the same genetic screen as

essp1 and essp3 [5,27]. For genetic mapping of the essp5 mutation,

mutant plants were crossed with wild type plants of the Ler

ecotype. A total of 644 homozygous essp5 mutants were collected

from the F2 segregating population. Genomic DNA extracted

from these seedlings was used for PCR-based mapping with simple

sequence polymorphism markers, and the essp5 locus was mapped

to a ,127 kb genomic interval on BACs F11A17, T1N15 and

F9P7 on chromosome one (17,852–17,979 kb). Sequencing of the

genomic region revealed a mutation in At1g48410.

Histochemical GUS and Fat Red Staining
The modified GUS staining solution (0.5 mg/mL 5-bromo-4-

chloro-3-indolyl-glucuronide, 20% methanol, 0.01 M Tris-HCl,

pH 7.0) was used [5]. Seedlings immersed in GUS staining

solution were placed under vacuum for 15 min, and then

incubated at 37uC overnight. The staining solution was removed

and samples were cleared by sequential incubation in 75% and

95% ethanol. Fat red staining was performed by incubating

samples in a saturated solution of Sudan red 7B (Sigma) in 70%

ethanol for 1 h at room temperature. Samples were then rinsed

with 70% ethanol [57].

Gene Expression Analysis by qRT–PCR and Northern
Blotting

Plants grown on MS media were used for gene expression

analyses. RT-PCR and RNA blot analyses were preformed as

described previously [5]. Probes for detecting transcripts of the

CRA1, CRB, and CRC genes were designed based on Pang et al

[58]. Real-time PCR was conducted using the Bio-Rad CFX96

real-time PCR detection system and the SsoFastTM EvaGreenH
Supermix kit (Bio-Rad Laboratories, Inc.). Data from three

biological replicates were analyzed by the software Bio-Rad

CFX96 Managertm V1.6.541.1028, using Actin8 as the internal

reference. DNA oligonucleotides used as probes or in real-time

PCR are listed in Table S1.

miRNA Northern Blot Analysis
RNA isolation and hybridization for miRNA detection were

performed as described [59,60]. 59-end-labeled 32P antisense

DNAs or an LNA oligonucleotide (for miRNA166) were used to

detect miRNAs from total RNAs (10 mg each sample). Oligonu-

cleotide probes used are listed in Table S1.

miRNA Transgene Constructs
Genome sequences surrounding the selected MIRNA genes

(listed in Table S1) were amplified by PCR from genomic DNA

isolated from wild-type Arabidopsis (Col). The amplified DNA

was first cloned into the pDNR221 vector (Invitrogen), confirmed

by sequencing, and then recombined into the pEarlyGate100

Gateway-compatible destination vector [61] where the MIRNA

genes are under the control of the CaMV 35S promoter. The

constructs were introduced into essp5 homozygous or heterozy-

gous plants (essp5/+). PCR primers used for amplifying the

MIRNA genes are listed in Table S1. Transgenic plants were

selected on Basta, allowed to grow to maturity and seeds were

collected, and GUS expression was analyzed in the next

generation.

ChIP
For the construction of the PHB:PHB G202G-YFP transgene

plasmid, the PHB promoter was PCR amplified from Arabidopsis

(Col-0) genomic DNA by Fusion DNA Polymerase (NEB, M0530)

using primers EcoRI-PHBpr and PHBpr-NcoI, and inserted into

the pBluscript SK vector. The plasmid was then fully digested by

SpeI and partially digested by EcoRI. The full-length promoter

fragment was purified and ligated with the pEARLEYGATE 104

vector [61] to generate the plasmid pEG104-PHBpro. The PHB

G202G coding sequence was amplified from cDNAs made from

35S:PHB G202G transgenic plants [43] with primers PHBf and

PHBr, cloned into the pENTR-D-topo vector (invitrogen), and

subsequently cloned into the destination vector pEARLEY-

GATE104 by LR reaction. The generated plasmid pEG104-PHB

G202G were digested by NcoI and SpeI, and the PHB G202G-YFP

fragment was recovered and ligated with pEG104-PHBpro to

obtain the pEG104-PHB:PHB G202G-YFP plasmid. The

PHB:PHB-YFP transgene plasmid was constructed using a similar

strategy. Primers are listed in Table S1.

Chromatin immunoprecipitation (ChIP) was carried out as

described previously [62]. One gram of twenty-day-old Arabi-

dopsis plants grown on MS agar was used for each ChIP. The

sonicated chromatin was immunoprecipitated with 5 mL of anti-

GFP antibody (ab290, Abcam). Quantitative ChIP PCR was

performed with three technical replicates, and results were

presented as percentage of input. ChIP experiments were

performed at least two times. See Table S1 for primer sequences

used for ChIP-PCR and construction of the PHB:PHB G202G-YFP

transgene.

Supporting Information

Figure S1 Morphological phenotype of mature essp5 plants. (A)

Morphological comparison of the essp5 mutant with wild type

(bCG:GUS) at maturity. (B) A close-up view of a single branch of a

typical essp5 plant.

(TIF)

Figure S2 Genetic Mapping of essp5. (A) Fine genetic mapping

with PCR-based markers located the essp5 locus to the bottom of

chromosome 1, on BAC clones F11A17, T1N15, and F11I4. The

numbers of recombination events out of the total numbers of

chromosomes examined (1,288) are indicated. (B) Structure of the

AGO1 gene and the location of the essp5 mutation. Boxes and lines

represent exons and introns, respectively. The colored boxes

represent the conserved protein domains: green (PAZ), blue

(MID), red (PIWI). A single mutation (C2212 to T2212) was found

in the 13th exon of AGO1 (At1g48410). This mutation potentially

leads to the replacement of Leucine with Phenyalanine at amino

acid 740 of the protein.

(TIF)

Figure S3 Phenotype of F1 plants from the cross of ago1-25 and

essp5. (A) Morphological comparison of ago1-25, essp5 and the F1

progeny (ago1-25 essp5) at 45 days. (B–D) GUS phenotype of ago1-

25, essp5 and the F1 progeny (ago1-25 essp5) grown on MS agar for

14 days. Scale bars, 2 mm.

(TIF)

Figure S4 qRT-PCR analysis of PHB expression in wild type

and miR166 overexpressors. Plants were grown for 14 days on MS

agar. The miR166 overexpressors analyzed here were the wild

type siblings of miR166ox-1 and miR166ox-2 shown in Figure 5 (the

miR166 construct was initially introduced into an essp5 heterozy-

gous background). Actin-8 was used as an internal control. The
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mean and standard error were determined from two biological

replicates.

(TIF)

Figure S5 ChIP analyses of PHB occupancy at seed maturation

gene promoters. (A) Structures of the four master regulatory genes

of seed maturation. Boxes and lines represent exons and introns,

respectively. Transcription start sites are indicated by arrows.

Black bars labeled P1–P3 represent the regions examined by

ChIP-PCR and/or ChIP-qPCR. (B) PHB occupancy at the

promoter regions of the four master regulatory genes of

maturation by PCR analysis of the DNAs co-immunoprecipitated

with GFP-specific antibodies (IP). Chromatin isolated before

immunoprecipitation (input) served as a positive control. DNAs

from a mock control (no antibody, no ab) and DNAs precipitated

from a GFP only transgenic line (35S:GFP) served as negative

controls. 1, no antibody; 2, 35S:GFP; 3, PHB:PHB G202G-YFP

(hemizygous, HE); 4, PHB:PHB G202G-YFP (homozygous, HO).

PCR cycle numbers: 25 for input DNAs and 35 for ChIP DNAs.

The results were reproducible in two independent experiments.

(TIF)

Figure S6 Transverse section of GUS-stained essp5 leaf. The

GUS stained leaf tissue was fixed using 2.5% glutaraldehyde in 4%

paraformaldehyde and dehydrated through a graded series of

ethanol. The sample was then embedded in LR White resin

(Sigma-Aldrich) following the manufacturer’s instructions. Serial

2 mm sections were cut by a Reichert-Jung Ultracut E Microtome

equipped with a glass knife. The sections were mounted onto glass

slides and observed under a Zeiss Axioskop 2 Plus microscope.

Sacle bar, 20 mm.

(TIF)

Figure S7 PHB occupancy at LEC2 gene promoter in

developing siliques. (A) PHB occupancy at the LEC2 promoter

(P1 region as shown in Figure 7P) as determined by ChIP using

anti-GFP antibody in siliques collected from PHB:PHB-YFP plants

at 5-day after pollination. The 35S:GFP plants served as negative

control. ChIP DNAs were analyzed by qPCR. The results were

reproduced in two biological replicates. Standard deviations were

calculated from three technical repeats. (B) qRT-PCR analysis of

LEC2 expression in wild type and the phb-13 mutant. Plants were

grown for 14 days on MS agar. Actin-8 was used as an internal

control. The mean and standard error were determined from two

biological replicates.

(TIF)

Table S1 Oligonucleotides used in this study.

(DOC)

Acknowledgments

We thank Kathryn Barton for kindly providing us with seeds of phb-1d and

phv-1d mutants and with a plasmid containing the 35S:PHB G202G

transgene construct; John Bowman for seeds of rev-10d and rev-dmiRNA;

Guiliang Tang for STTM165/166 seeds; John Harada for lec2-1 seeds;

Herve Vaucheret for ago1-25 seeds; Detlef Weigel for MIM166 seeds;

Miltos Tsiantis for se-3 phb-13 phv-11, hyl1-1 phb-13 phv-11, dcl1-9 phb-6 phv-

5; Michael Prigge for phb-13 phv-11 er-2, phb-13 er-2 and phv-11 er-2; Chung-

Mo Park for phb-13; ABRC for seeds of T-DNA insertion lines; Mistianne

Feeney for Figure S4; Alex Molnar for help with preparing the figures; Ida

van Grinsven for sequencing service; and three anonymous reviewers for

valuable suggestions that have improved the work.

Author Contributions

Conceived and designed the experiments: YC XC XT SB MT SL XL

EWTT AW SJR. Performed the experiments: XT SB MT QL SL XL GT

VN. Analyzed the data: XC YC XT SB MT EWTT AW SJR. Wrote the

paper: YC XC.

References

1. Vicente-Carbajosa J, Carbonero P (2005) Seed maturation: Developing an

intrusive phase to accomplish a quiescent state. Int J Dev Biol 49: 645–651.

2. Zhang H, Ogas J (2009) An epigenetic perspective on developmental regulation

of seed genes. Mol Plant 2: 610–627.

3. Henderson JT, Li HC, Rider SD, Mordhorst AP, Romero-Severson J, et al.

(2004) PICKLE acts throughout the plant to repress expression of embryonic

traits and may play a role in gibberellin-dependent responses. Plant Physiol 134:

995–1005.

4. Li HC, Chuang K, Henderson JT, Rider SD Jr, Bai Y, et al. (2005) PICKLE

acts during germination to repress expression of embryonic traits. Plant J 44:

1010–1022.

5. Tang X, Hou A, Babu M, Nguyen V, Hurtado L, et al. (2008) The Arabidopsis

BRAHMA chromatin-remodeling ATPase is involved in repression of seed

maturation genes in leaves. Plant Physiol 147: 1143–1157.

6. Moon YH, Chen L, Pan RL, Chang HS, Zhu T, et al. (2003) EMF genes

maintain vegetative development by repressing the flower program in

Arabidopsis. Plant Cell 15: 681–693.

7. Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon YH, et al. (2004)

Interaction of Polycomb-group proteins controlling flowering in Arabidopsis.

Development 131: 5263–5276.

8. Schubert D, Clarenz O, Goodrich J (2005) Epigenetic control of plant

development by Polycomb-group proteins. Curr Opin Plant Biol 8: 553–561.

9. Makarevich G, Leroy O, Akinci U, Schubert D, Clarenz O, et al. (2006)

Different Polycomb group complexes regulate common target genes in

Arabidopsis. Embo Rep 7: 947–952.

10. Tanaka M, Kikuchi A, Kamada H (2008) The Arabidopsis Histone Deacetylases

HDA6 and HDA19 Contribute to the Repression of Embryonic Properties after

Germination. Plant Physiol 146: 149–161.

11. Tsukagoshi H, Morikami A, Nakamura K (2007) Two B3 domain transcrip-

tional repressors prevent sugar-inducible expression of seed maturation genes in

Arabidopsis seedlings. Proc Natl Acad Sci USA 104: 2543–2547.

12. Suzuki M, Wang HH, and McCarty DR (2007) Repression of the LEAFY

COTYLEDON 1/B3 regulatory network in plant embryo development by

VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. Plant Physiol 143:

902–911.

13. Gao MJ, Lydiate DJ, Li X, Lui H, Gjetvaj B, et al. (2009) Repression of seed

maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings.
Plant Cell 21: 54–71.

14. Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, et al. (1992) Isolation of the

Arabidopsis ABI3 gene by positional cloning. Plant Cell 4: 1251–1261.

15. Lotan T, Ohto M, Yee KM, West MA, Lo R, et al. (1998) Arabidopsis LEAFY
COTYLEDON1 is sufficient to induce embryo development in vegetative cells.

Cell 93: 1195–1205.

16. Luerssen H, Kirik V, Herrmann P, Misera S (1998) FUSCA3 encodes a protein
with a conserved VP1/AB13-like B3 domain which is of functional importance

for the regulation of seed maturation in Arabidopsis thaliana. Plant J 15: 755–

764.

17. Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, et al. (2001) LEAFY

COTYLEDON2 encodes a B3 domain transcription factor that induces embryo

development. Proc Natl Acad Sci USA 98: 11806–11811.

18. Kagaya Y, Toyoshima R, Okuda R, Usui H, Yamamoto A, et al. (2005) LEAFY
COTYLEDON1 controls seed storage protein genes through its regulation of

FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant Cell Physiol 46: 399–
406.

19. To A, Valon C, Savino G, Guilleminot J, Devic M, et al. (2006) A network of

local and redundant gene regulation governs Arabidopsis seed maturation. Plant
Cell 18: 1642–1651.

20. Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, et al. (1994)

Regulation of gene expression programs during Arabidopsis seed development:

Roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6: 1567–
1582.

21. Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P (2004) The

transcription factor FUSCA3 controls developmental timing in Arabidopsis
through the hormones gibberellin and abscisic acid. Dev Cell 7: 373–385.

22. Santos Mendoza M, Dubreucq B, Miquel M, Caboche M, Lepiniec L (2005)

LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of
oil and seed specific mRNAs in Arabidopsis leaves. FEBS Lett 579: 4666–4670.

23. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their

regulatory roles in plants. Annu Rev Plant Biol 57: 19–53.

24. Ramachandran V, Chen X (2008) Small RNA metabolism in Arabidopsis.

Trends Plant Sci 13: 368–374.

Repression of Seed Genes by MicroRNAs

PLOS Genetics | www.plosgenetics.org 12 November 2012 | Volume 8 | Issue 11 | e1003091



25. Chen X (2009) Small RNAs and their roles in plant development. Annu Rev

Cell Dev Biol 25: 21–44.

26. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:

669–687.

27. Lu Q, Tang X, Tian G, Wang F, Liu K, et al. (2010) Arabidopsis homolog of the

yeast TREX-2 mRNA export complex: components and anchoring nucleoporin.

Plant J 61: 259–270.

28. Tang X, Lim M-H, Pelletier J, Tang M, Nguyen V, Keller WA, Tsang EWT,

Wang A, Rothstein S J, Harada JJ, Cui Y (2012) Synergistic Repression of the

Embryonic Program by SET DOMAIN GROUP 8 and EMBRYONIC

FLOWER 2 in Arabidopsis Seedlings. J Exp Bot 63: 1391–1404.

29. Vaucheret H (2008) Plant ARGONAUTES. Trends Plant Sci 13: 350–358.

30. Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, et al. (1998) AGO1

defines a novel locus of Arabidopsis controlling leaf development. Embo J 17:

170–180.

31. Kidner CA, Martienssen RA (2004) Spatially restricted microRNA directs leaf

polarity through ARGONAUTE1. Nature 428: 81–84.

32. Yang L, Huang W, Wang H, Cai R, Xu Y, et al. (2006) Characterizations of a

hypomorphic argonaute1 mutant reveal novel AGO1 functions in Arabidopsis

lateral organ development. Plant Mol Biol 61: 63–78.
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