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GENERALIZED q, t-CATALAN NUMBERS

EUGENE GORSKY, GRAHAM HAWKES, ANNE SCHILLING, AND JULIANNE RAINBOLT

Abstract. Recent work of the first author, Negut, and Rasmussen, and of Oblomkov
and Rozansky in the context of Khovanov–Rozansky knot homology produces a family of
polynomials in q and t labeled by integer sequences. These polynomials can be expressed
as equivariant Euler characteristics of certain line bundles on flag Hilbert schemes. The
q, t-Catalan numbers and their rational analogues are special cases of this construction. In
this paper, we give a purely combinatorial treatment of these polynomials and show that
in many cases they have nonnegative integer coefficients.

For sequences of length at most 4, we prove that these coefficients enumerate subdia-
grams in a certain fixed Young diagram and give an explicit symmetric chain decomposition
of the set of such diagrams. This strengthens results of Lee, Li and Loehr for (4, n) rational
q, t-Catalan numbers.

1. Introduction

The last decade revealed deep, and yet partially conjectural connections [GORS14, GN15,
GM13, GM14, GM16, GMV16, GMV17] of the HOMFLY-PT link homologies with various
intricate constructions in algebraic combinatorics such as q, t-Catalan numbers of Garsia
and Haiman [GH96], LLT polynomials [HHL+05], and the elliptic Hall algebra [SV13]. Some
of these conjectures were recently proven (mostly for the torus knots and links) by Elias,
Hogancamp and Mellit [EH19, Hog17, Mel17].

An interesting class of knots, which best fits in the framework of the above conjectures,
are the so-called Coxeter links defined as closures of braids

β(a1, . . . , an) = ℓa11 · · · ℓann t1 · · · tn−1,

where ℓi = ti−1 · · · t1t1 · · · ti−1 are Jucys–Murphy elements and ti are the standard braid
group generators. Here ai are arbitrary integers, but in this paper we will mostly assume
ai > 0, so that all crossings in the braid β(a1, . . . , an) are positive.

Motivated by the geometry of the flag Hilbert scheme of points on the plane (see Sec-
tion 2.2 and references therein) we can approximate the invariants of such knots with the
following combinatorial expressions. Define

f(a1, . . . , an) =
∑

T

za11 · · · zann

n∏

i=2

1

(1− z−1
i )(1 − qtzi−1/zi)

∏

i<j

ω(zi/zj), (1.1)

where the sum is over standard tableaux T with n boxes, zi is the (q, t)-content of the box

labeled by i in T , and ω(x) = (1−x)(1−qtx)
(1−qx)(1−tx) . A priori, this is a rational function in q and t,

but we prove in Section 2.3 that it is always a polynomial in q and t with integer coefficients.
This polynomial can be expressed as a sum over Tesler matrices with row sums ai as in
[GN15] and especially [AGH+12], where similar polynomials have already appeared.
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In the special case when

ai = Si(m,n) :=

⌊
im

n

⌋
−

⌊
(i− 1)m

n

⌋
,

by [GN15] the function f(Si(m,n)) agrees with the rational q, t-Catalan number cm,n(q, t).
By the main result of [Mel16], this is a polynomial in q and t with nonnegative coefficients.
More precisely,

cm,n(q, t) =
∑

D

qarea(D)tdinv(D),

where the sum is over all Dyck paths D in the m × n rectangle and area(D), dinv(D) are
certain combinatorial statistics (see for example [Hag08]). In the even more special case
m = n+ 1, we obtain ai = Si(n+ 1, n) = 1, and the polynomial f(1, . . . , 1) agrees with the
q, t–Catalan number of Garsia and Haiman [GH96].

Motivated by [GNR16, OR17], we expect that the beautiful combinatorics of q, t-Catalan
numbers and their rational analogues can be generalized to the case of arbitrary ai, possibly
constrained by some inequalities. In fact, as we show in this paper, that varying ai allows
one to compute the invariants f(a1, . . . , an) recursively, see Corollary 2.19 for the n = 4
example.

Using the machinery of Tesler matrices, we prove the following result.

Proposition 1.1. Suppose that ai > 0. Then f(a1, . . . , an) is a polynomial in q and t. At
t = 1, this polynomial specializes to

f(a1, . . . , an)
∣∣∣
t=1

=
∑

µ⊆λ(a)

q|λ(a)|−|µ|,

where λ(a) = (a2 + · · ·+ an, a3 + · · ·+ an, . . . , an).

Example 1.2. For n = 2, one has

f(a1, a2) = [a2 + 1]q,t := qa2 + qa2−1t+ · · ·+ qta2−1 + ta2 .

For n = 3 and a2 > a3 one has

f(a1, a2, a3) = [a2 + 2a3 + 1]q,t + qt[a2 + 2a3 − 2]q,t + · · ·+ qa3ta3 [a2 − a3 + 1]q,t.

See Examples 2.16 and 2.17 for derivations of these formulas.

Conjecture 1.3. If a1 > a2 > · · · > an > 0, then f(a1, . . . , an) is a polynomial in q and t
with nonnegative coefficients.

For general a1 > a2 > · · · > an > 0, it is still an open problem to find an explicit statistics
stat on partitions µ such that

f(a1, . . . , an) =
∑

µ⊆λ(a)

q|λ(a)|−|µ| tstat(µ). (1.2)

In this paper, we solve the problem for n = 4:

Theorem 1.4. For a+1 > b, a+1, b+1 > c > 0, the polynomial F (a, b, c) := f(a1, a, b, c)
has nonnegative integer coefficients and can be written in the form (1.2). The statistics
stat(µ) arises from an explicit decomposition of the set of µ ⊆ λ(a) into symmetric chains.

See Section 3 for further details.
Since a symmetric chain specializes to qk + qk−2 + · · · + q−k+2 + q−k a t = q−1, we

immediately obtain the following corollary.
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Corollary 1.5. For a + 1 > b, a + 1, b + 1 > c > 0, the coefficients of the specialization
F (a, b, c)|t=q−1 are unimodular in even and in odd degrees.

Remark 1.6. By [GNR16, OR17] the specialization of f(a1, . . . , an) at q = t−1 coincides
with the part of the HOMFLYPT polynomial of the knot β(a1, . . . , an).

Remark 1.7. Our statistic and decomposition is different from that in [LLL14, LLL18].
In particular, some of their chains are not symmetric, but the authors show that partitions
come in symmetric pairs.

We provide a recursion for F (a, b, c) and prove that the combinatorial expression also
satisfies the recursion (see Sections 2.5 and 4.6).

The set of Young diagrams µ contained in the diagram λ(a) is in bijection with the
Demazure crystal [Kas93, Lit95] with highest weight (a1, . . . , an) and Weyl group element
c = t1 · · · tn−1. The size of µ can be easily expressed in terms of the weight of the corre-
sponding element of the crystal basis. This observation leads to many interesting questions:

• What is the crystal-theoretic interpretation of the statistics stat?
• Is there a crystal-theoretic interpretation of the symmetric chains and the polyno-
mials f(a1, . . . , an)?

Remark 1.8. In the terminology of [CD18], subdiagrams of λ(a) correspond to so-called
s-Dyck paths, and it is shown in [CD18] that they are in bijection with remarkably many
combinatorial objects, just as usual Catalan numbers are in bijection with trees, triangula-
tions etc. It would be interesting to relate the results of [CD18] both to Demazure crystals
and to the above statistics stat.

The paper is organized as follows. In Section 2, we discuss the algebraic aspects of
the function f(a1, . . . , an) (or equivalently F (a2, . . . , an)). The definition of the function
f(a1, . . . , an) is given in Section 2.1. In Section 2.2, we briefly recall its connection to flag
Hilbert schemes and knot invariants; combinatorially inclined readers are welcome to skip
this section. In Section 2.3, we connect f(a1, . . . , an) to Tesler matrices and prove that
they are indeed polynomials in q and t. In Section 2.5 we prove the recursion for n = 4.
Section 3 contains the combinatorial expressions for F (a, b, c). We also provide examples.
In Section 4, we construct the symmetric chains underlying the combinatorial formulas
explicitly and also prove the combinatorial formulas.

Acknowledgments. The authors would like to thank the American Institute for Mathe-
matics (AIM) for hosting the conference “Categorified Hecke algebras, link homology, and
Hilbert schemes” in October 1-5, 2018, where this work began. E. G. would also like to
thank Andrei Negut, and Karola Meszaros for very useful and inspiring discussions.

E.G. was partially supported by NSF grants DMS–1700814, DMS–1760329, and the
Russian Academic Excellence Project 5-100. A.S. was partially supported by NSF grants
DMS–1760329 and DMS–1764153.

2. The algebraic side

2.1. The formula. Given a standard tableau T of size n, we define a vector z(T ) =
(zi)16i6n, where zi is the (q, t)-content of the box in T labeled by i. The (q, t)-content of
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the box with row and column coordinates (r, c), is qc−1tr−1. For example, for the tableau

T =
4
3 5
1 2 6 7

we have

z(T ) = (1, q, t, t2, qt, q2, q3).

By convention, z1 = 1. We define the weight of a tableau T by

wt(T ) = wt(z(T )) =
n∏

i=2

1

(1− z−1
i )(1− qtzi−1/zi)

∏

i<j

(1− zi/zj)(1− qtzi/zj)

(1− qzi/zj)(1− tzi/zj)
.

Note that some of the individual factors in this product (both in the numerator and de-
nominator) could vanish, and the convention is that we simply ignore these factors. Given
a vector of integers (a2, . . . , an), we define

F (a2, . . . , an) =
∑

T

za22 · · · zann · wt(T ), (2.1)

where the summation is over all standard tableaux of size n.

Proposition 2.1. For all integer vectors (a2, . . . , an), the function F (a2, . . . , an) is a poly-
nomial in q and t with integer coefficients.

The proof is very similar to the computations in [GN15, Section 6.5], but we present it
in Section 2.3 for completeness.

Remark 2.2. For a2 = · · · = an = m, the polynomial F (a2, . . . , an) agrees with the
Fuss–Catalan polynomial, see [GN15] and [Mel16].

Conjecture 2.3. For a2 > a3 > · · · > an > 0, the polynomial F (a2, . . . , an) has nonnega-
tive coefficients.

In this paper, we prove this conjecture for n = 2, 3 and 4 in the slightly more general
case a2 + 1 > a3, a2 + 1, a3 + 1 > a4 > 0. In addition, we provide explicit combinatorial
formulas for F (a2, a3, a4) in this case (see Section 3).

Remark 2.4. Note that it is not enough to assume that ai +1 > ai in the conjecture. For
example,

F (0, 1, 2) = q8 + q7t+ q6t2 + q5t3 + q4t4 + q3t5 + q2t6 + qt7 + t8 + q6t+ q5t2 + q4t3 + q3t4

+ q2t5 + qt6 + q5t+ 2q4t2 + 2q3t3 + 2q2t4 + qt5 − q4t− q3t2 − q2t3 − qt4.

On can check that F (1, 2, 3) contains negative terms as well.

2.2. Flag Hilbert schemes. The definition of F (a2, . . . , an) is motivated by the geometry
of the flag Hilbert scheme of points on the plane, which we briefly review here.

The flag Hilbert scheme FHilbn(C2) is defined as the moduli space of flags

FHilbn(C2) = {C[x, y] = I0 ⊃ I1 ⊃ I2 ⊃ · · · ⊃ In},

where all Ik are ideals in C[x, y] of codimension k. Similarly, the punctual flag Hilbert
scheme FHilbn(C2, 0) is defined as the set of such flags, where all Ik are supported at the
origin.
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The dilation action of (C∗)2 on C
2 defined by (x, y) 7→ (q−1x, t−1y) lifts to an action on

both FHilbn(C2) and FHilbn(C2, 0). The fixed points of this action correspond to the flags
of monomial ideals, and it is easy to see that these are in bijection with standard Young
tableaux of size n. The flag Hilbert scheme carries natural line bundles Lk := Ik−1/Ik which
are equivariant with respect to the action of (C∗)2. The weight of the line bundle Lk at
a fixed point corresponding to a standard tableau T equals the (q, t)-content zk(T ). Note
that the line bundle L1 is trivial.

The results and conjectures in [GNR16, OR17] lead to the following conjecture.

Conjecture 2.5. For all ai the Khovanov–Rozansky homology of the closure of the braid
β(a1, . . . , an) (defined in the introduction) is isomorphic to the total sheaf cohomology

H•(FHilbn(C2, 0),La1
1 ⊗ · · · ⊗ Lan

n ).

For small values of n, the geometry of FHilbn(C2, 0) can be described explicitly. For
n = 2 we have

FHilb2(C2, 0) = P
1, L2 = O(1),

so

H•(FHilb2(C2, 0),La1
1 La2

2 ) = H•(P1,O(a2)).

Furthermore, for a2 > 0 higher cohomology vanishes and the (C∗)2-equivariant character
of the space of global sections agrees with F (a2). For n = 3 the space FHilb3(C2, 0) is a
smooth cubic Hirzebruch surface, and the line bundles La1

1 La2
2 La3

3 and their cohomology
can be described explicitly for all a1, a2, a3, see [GNR16]. In particular, for a2 > a3 higher
cohomology vanishes and the (C∗)2-equivariant character of the space of global sections
agrees with F (a2, a3).

However, for n > 4 the spaces FHilbn(C2, 0) become very singular and reducible. Still,
they carry a natural virtual structure sheaf, and one can use virtual localization techniques
to prove the identity

χ(C∗)2(FHilb
n(C2, 0),La1

1 ⊗ · · · ⊗ Lan
n ) = F (a2, . . . , an).

Here on the left hand side, we obtain the (C∗)2-equivariant Euler characteristic which can
be computed as an explicit sum over fixed points of (C∗)2 or, equivalently, over standard
Young tableaux. This sum agrees with (2.1). We refer the reader to [GN15] and [GNR16]
for further details.

It is important to point out that, although the polynomial F (a2, . . . , an) has a geometric
interpretation, this does not immediately imply Conjecture 1.3. Indeed, for n = 2, 3 this
follows from vanishing of higher cohomology, but no such vanishing results are available yet
for n > 4. It would be interesting to compare the results of this paper with the geometry
of FHilb4(C2, 0).

2.3. Tesler matrices. To prove Proposition 2.1, we need to use the formalism of Tesler
matrices, developed in [Hag11, AGH+12, GHX14]. Given a sequence a = (a1, a2, . . . , an)
of nonnegative integers, we define a Tesler matrix to be an upper-triangular matrix M =
(mij)j>i with nonnegative integer coefficients mij > 0 satisfying a system of linear equations

mii +
∑

j<i

mji −
∑

j>i

mij = ai for 1 6 i 6 n. (2.2)

Lemma 2.6. The set of Tesler matrices is finite for fixed a.
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Proof. Equation (2.2) can be rewritten as follows:

mii + · · ·+mnn +
∑

j<i,k>i

mjk = ai + · · ·+ an. (2.3)

Since all mij are nonnegative integers, we obtain mij 6 a1 + · · ·+ an for all i, j. �

Given a sequence (a2, . . . , an), we define a partition or Young diagram

λ(a) = (a2 + · · ·+ an, . . . , an)

(note that a1 is not used). Let us call a Tesler matrix two-diagonal , if mij = 0 for j > i+1.

Lemma 2.7. There is a bijection between the set of two-diagonal Tesler matrices associated
to a = (a1, . . . , an) and the set of subdiagrams of λ(a2, . . . , an).

Proof. If M is a two-diagonal Tesler matrix, then for i > 2 (2.3) simplifies to

mii + · · ·+mnn +mi−1,i = ai + · · ·+ an,

while for i = 1 we obtain

m11 + · · ·+mnn = a1 + · · · + an.

This means that for i > 2 the diagonal elements of M define a subdiagram of λ(a)

mii + · · ·+mnn 6 ai + · · ·+ an = λi−1,

while m11 and all mi−1,i are uniquely determined by the diagonal. �

We define the functions A(m) and B(m) by the equations

∞∑

m=0

A(m)zm =
(1− z)(1− qtz)

(1− qz)(1− tz)
= 1− (1− q)(1− t)

z

(1− qz)(1 − tz)

= 1− (1− q)(1− t)

∞∑

m=1

[m]q,tz
m,

∞∑

m=0

B(m)zm =
1− z

(1− qz)(1− tz)
=

∞∑

m=0

([m+ 1]q,t − [m]q,t)z
m.

Theorem 2.8. For all ai > 0, we have

F (a2, . . . , an) =
∑

M

∏

i

B(mi,i+1)
∏

j>i+1

A(mi,j), (2.4)

where the sum is over all Tesler matrices M satisfying (2.2).

Proof. The proof is very similar to [GN15, Section 6.5], but we present it here for complete-
ness. Consider the rational function

Φ(z1, . . . , zn) = za11 · · · zann

n∏

i=2

1

(1− z−1
i )(1− qtzi−1/zi)

∏

i<j

ω(zi/zj).

One can prove that for ai > 0 the only poles of this function are at points (z1, . . . , zn) corre-
sponding to the (q, t)–contents of all standard tableaux. Therefore (2.1) can be interpreted
as a sum of residues at these poles, which equals to the residue at infinity.
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The residue at infinity equals to the coefficient of the rational function
n∏

i=2

1

(1− zi)(1− qtzi−1/zi)

∏

i<j

ω(zi/zj)

at za11 · · · zann . On the other hand, we can expand the rational function as follows:

n∏

i=2

1

(1− zi)(1− qtzi−1/zi)

∏

i<j

ω(zi/zj)

=
∏

i

1

(1− zi)
×

∏

i

(1− zi/zi+1)

(1− qzi/zi+1)(1− tzi/zi+1)
×

∏

j>i+1

ω(zi/zj)

=
∑

mii

zmii

i ×
∑

mi,i+1

B(mi,i+1)

(
zi
zi+1

)mi,i+1

×
∑

mi,j

A(mi,j)

(
zi
zj

)mi,j

. (2.5)

The terms in the sum in (2.5) are parameterized by the exponents mii,mi,i+1,mi,j which
can be combined in a single upper-triangular matrix M = (mij). Such a term contributes
to za11 · · · zann if

mii +
∑

j>i

mij −
∑

j<i

mji = ai,

which is precisely the Tesler matrix condition (2.2). �

Corollary 2.9. For all ai > 0 the function F (a2, . . . , ar) is a polynomial in q and t.

Proof. Indeed, by Lemma 2.6 there are finitely many terms in the sum (2.4), and for all
m > 0 both A(m) and B(m) are polynomials in q and t. �

Corollary 2.10. The specialization of F (a2, . . . , ar) at t = 1 agrees with the sum
∑

µ⊆λ(a)

q|λ(a)|−|µ|,

where a = (a2, . . . , an).

Proof. It is clear that at t = 1 the coefficients A(m) and B(m) specialize as follows:

A(m)
∣∣∣
t=1

= 0 for m > 0, A(0)
∣∣∣
t=1

= 1, B(m)
∣∣∣
t=1

= qm.

Therefore at t = 1 the sum (2.4) specializes to the sum over two-diagonal Tesler matrices
which by Lemma 2.7 correspond to subdiagrams µ ⊆ λ(a). The weight of such a two-

diagonal Tesler matrix specializes to
∏

i q
mi,i+1 = q|λ(a)|−|µ|. �

Corollary 2.11. For ai > 0 and an = 0 we have

F (a2, . . . , an−1, 0) = F (a2, . . . , an−1).

Proof. The last equation in (2.2) reads as

mnn +
∑

j<n

mjn = an.

Hence if an = 0, we obtain mjn = 0 for all j. Therefore a Tesler matrix with param-
eters (a1, a2, . . . , an−1, 0) is just an (n − 1) × (n − 1) Tesler matrix with row parameters
(a1, a2, . . . , an−1) completed with a column of zeroes. Since A(0) = B(0) = 1, the weight of
a Tesler matrix in (2.4) does not change after adding this column. �
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2.4. Separating the sum. It is useful to separate the sum (2.1) into two pieces. Clearly,
for any tableau T either z2 = q or z2 = t. Let us call a standard tableau T head-like if
z2 = q. Given such a tableau, we define reduced weight w̃t(T ) = (1− t/q)wt(T ) and

H(a2, . . . , an; q, t) =
∑

z2(T )=q

za22 · · · zann · w̃t(T ).

Similarly to the proof of Proposition 2.1 one can prove that H(a2, . . . , an) is a polynomial
in q and t with integer coefficients.

Remark 2.12. The polynomial H(a2, . . . , an) depends on a2 only by an overall factor of
qa2 :

H(a2, . . . , an; q, t) = qa2


 ∑

z2(T )=q

za33 · · · zann · w̃t(T )


 .

Remark 2.13. In the geometric setup of Section 2.2 the series H(a2, . . . , an) computes the
equivariant character of the pushforward π∗(L

a2
2 · · · · · · Lan

n ) at one of the fixed points on

FHilb2(C2, 0) = P
1. Here π : FHilbn(C2, 0) → FHilb2(C2, 0) is the natural projection.

The following is clear from the definition:

F (a2, . . . , an) =
1

1− t/q
H(a2, . . . , an; q, t) +

1

1− q/t
H(a2, . . . , an; t, q). (2.6)

Therefore any linear relation on H(a) implies a linear relation for F (a).

Lemma 2.14. Assume that H(a2, . . . , an) is a polynomial in q and t with nonnegative
coefficients, where all monomials qitj satisfy i > j. Then F (a2, . . . , an) is a polynomial in
q and t with nonnegative coefficients.

Proof. By linearity of (2.6) it suffices to prove the statement for a single monomial qitj with
i > j. In this case

qitj

1− t/q
+

qjti

1− q/t
= qjtj

qi−j+1 − ti−j+1

q − t
= qjtj(qi−j + · · ·+ ti−j)

= qitj + qi−1tj+1 + · · · + qj+1ti−1 + qjti.

�

Corollary 2.15. Assume that the polynomial H(a2, a3, . . . , an) has nonnegative coefficients.
Then for all sufficiently large N the polynomial F (N, a3, . . . , an) has nonnegative coeffi-
cients.

Proof. Indeed, by Remark 2.12 we have

H(N, a3, . . . , an) = qN−a2H(a2, . . . , an)

and for sufficiently large N all terms in it satisfy the condition in Lemma 2.14. �

As we will see below, writing the formulas for H(a; q, t) is much more efficient than the
ones for F (a; q, t), and the sums contain twice less terms.

Example 2.16. Consider the case n = 2. There is only one tableau with z2(T ) = q, and

z(T ) = (1, q). A direct computation shows that wt(1, q) = 1
1−t/q , so w̃t(1, q) = 1. Therefore

H(a) = qa. By the proof of Lemma 2.14, this confirms Example 1.2.
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Example 2.17. Consider the case n = 3. There are two tableaux with z2 = q and

wt(1, q, q2) =
1

(1− t/q)(1− t/q2)
, wt(1, q, t) =

1

(1− t/q)(1 − q2/t)

while

w̃t(1, q, q2) =
1

(1− t/q2)
, w̃t(1, q, t) =

1

(1− q2/t)
.

We obtain

H(a, b) =
qa+2b

(1− t/q2)
+

qatb

(1− q2/t)
= qa(q2b + q2b−2t+ · · ·+ tb) = qa

b∑

i=0

(q2)b−iti. (2.7)

Note that (2.7) holds for any integer a and b > −1. Furthermore, H(a,−1) = 0 for
all integers a. For a > b > 0 the conditions of Lemma 2.14 are satisfied, and F (a, b) has
nonnegative coefficients. Using (2.6), one can confirm the explicit expression in Example 1.2
(see also Lemma 2.21).

2.5. Recursion for n = 4. The situation for n = 4 is more interesting. We record here
the reduced weights w̃t(T ) for all five head-like tableaux:

w̃t(1, q, q2, q3) =
1

(1− t/q2)(1 − t/q3)
, w̃t(1, q, q2, t) =

1

(1− t/q2)(1− q3/t)
,

w̃t(1, q, t, q2) =
(1− t)

(1− t2/q2)(1− q2/t)(1 − t/q)
, w̃t(1, q, t, t2) =

1

(1− q2/t2)(1− q/t)
,

w̃t(1, q, t, qt) =
1− q

(1− q2/t)(1 − q/t)(1− t/q)
.

Lemma 2.18. The polynomials H(a, b, c) satisfy the following recursion

H(a, b, c) = H(a+ 1, b+ 1, c− 1) + (qt)cH(a+ c, b− c) +

c−1∑

i=0

(qt)b+2c−2iH(a− b− 2c+ 4i).

Proof. Let us compute the contribution of all tableaux to H(a, b, c)−H(a+1, b+1, c− 1).
Let ℓ(T ; a, b, c) = za2z

b
3z

c
4. Then

ℓ(1, q, q2, q3; a, b, c) = qa+2b+3c = ℓ(1, q, q2, q3; a+ 1, b+ 1, c− 1),

ℓ(1, q, q2, t; a, b, c) = qa+2btc, ℓ(1, q, q2, t; a+ 1, b+ 1, c− 1) = qa+2b+3tc−1,

ℓ(1, q, t, q2; a, b, c) = qa+2ctb, ℓ(1, q, t, q2; a+ 1, b+ 1, c− 1) = qa+2c−1tb+1,

ℓ(1, q, t, t2; a, b, c) = qatb+2c, ℓ(1, q, t, t2; a+ 1, b+ 1, c− 1) = qa+1tb+2c−1,

ℓ(1, q, t, qt; a, b, c) = qa+ctb+c = ℓ(1, q, t, qt; a + 1, b+ 1, c− 1).

Therefore the contributions of (1, q, q2, q3) and (1, q, t, qt) cancel, and

H(a, b, c) −H(a+ 1, b + 1, c − 1)

= qa+2btc(1−q3/t)w̃t(1, q, q2, t)+qa+2ctb(1−t/q)w̃t(1, q, t, q2)+qatb+2c(1−q/t)w̃t(1, q, t, t2)

=
qa+2btc

(1− t/q2)
+

qa+2ctb(1− t)

(1− t2/q2)(1 − q2/t)
+

qatb+2c

(1 − q2/t2)
.
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On the other hand, by (2.7) we obtain

(qt)cH(a+ c, b− c) =
qa+2btc

(1− t/q2)
+

qa+2ctb

(1− q2/t)
,

so

H(a, b, c) −H(a+ 1, b+ 1, c − 1)− (qt)cH(a+ c, b− c) = −
qa+2ctb

(1− q2/t2)
+

qatb+2c

(1− q2/t2)
.

Comparing this with the last term in the recurrence, we find

c−1∑

i=0

(qt)b+2c−2iH(a− b− 2c+ 4i) =

c−1∑

i=0

(qt)b+2c−2i · qa−b−2c+4i

=

c−1∑

i=0

qa+2itb+2c−2i = qatb+2c 1− q2ct−2c

1− q2/t2
=

qatb+c − qa+2ctb

1− q2/t2
.

�

Corollary 2.19. The polynomials F (a, b, c) satisfy the recursion relation

F (a, b, c) = F (a+ 1, b+ 1, c− 1) + (qt)cF (a+ c, b− c) +

c−1∑

i=0

(qt)b+2c−2iF (a− b− 2c+ 4i).

Note that the entries a − b − 2c + 4i in the recurrence of Corollary 2.19 can become
negative. However, the following symmetry relation holds.

Proposition 2.20. We have for a > 0

F (−a) = −
1

(qt)a−1
F (a− 2).

Proof. By (2.6) and Example 2.16, we have

F (a) =
1

1− t/q
qa +

1

1− q/t
ta = qa

1− (t/q)a+1

1− t/q
.

Hence

F (−a) = q−a1− (t/q)−a+1

1− t/q
= −q−a(t/q)−a+1 1− (t/q)a−1

1− t/q
= −

1

(qt)a−1
F (a− 2).

�

Note that using Corollary 2.19 and Proposition 2.20, F (a, b, c) for a > b > c > 0 can be
reduced to F (a, b) for a > b > 0 and F (a) for a > 0, which are given in Example 1.2.

Now we compute F (a, b) explicitly by separating the sum.

Lemma 2.21. For b > −1 and a > b− 1 we have

F (a, b) =
b∑

i=0

a+2b−2i∑

j=i

qjt(a+2b−2i)−j .
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Proof. We may express F (a, b) in terms of H(a, b) by separating the sum as above. Using
the expression for H(a, b) from Example 2.17 (note that this expression is valid for b > −1
and any value of a) this gives us

F (a, b) =
1

1− t/q
qa

b∑

i=0

(q2)b−iti +
1

1− q/t
ta

b∑

i=0

(t2)b−iqi

=
1

q − t

(
qa+1

b∑

i=0

(q2)b−iti − ta+1
b∑

i=0

(t2)b−iqi
)

=

b∑

i=0

qa+2b+1−2iti − ta+2b+1−2iqi

q − t
=

b∑

i=0

a+2b−2i∑

j=i

qjt(a+2b−2i)−j ,

where the last step is legal because we are assuming a > b− 1. �

Lemma 2.22. We have F (−1) = F (a,−1) = 0 for a > −2 and F (a, b,−1) = 0 for a, b > 1.

Proof. Since H(−1; q, t) = q−1, Equation (2.6) implies F (−1) = 0. On the other hand,
Lemma 2.21 immediately implies F (a,−1) = 0. Finally, by Corollary 2.19 we have

F (a− 1, b− 1, 0) = F (a− 1 + 1, b− 1 + 1, 0 − 1) + (qt)0F (a− 1 + 0, b − 1− 0).

But by Corollary 2.11 we have F (a−1, b−1, 0) = F (a−1, b−1) and the lemma follows. �

The recursion of Corollary 2.19 implies the following “two-step” recursion. It has the
advantage that it does not contain any negative arguments, which will be advantageous for
the combinatorial analysis of Section 4.

Lemma 2.23. For a > b− 1, a, b > c− 1 > 0, we have

F (a, b, c) = F (a+ 2, b+ 2, c− 2) + (qt)c F (a+ c, b− c) + (qt)c−1 F (a+ c, b− c+ 2)

+

min(a−b,2c)∑

j=2

(qt)b+j F (a− b+ 2c− 2j) −
1∑

j=a−b+1

(qt)b+j F (a− b+ 2c− 2j).

Remark 2.24. If a > b then the last sum is empty. If a = b or a = b− 1 then the next to
last sum is empty, and the last sum contains one or two terms, respectively.

Proof. Using the recurrence in Corollary 2.19 and then the same recurrence again on the
term F (a+ 1, b+ 1, c− 1), we obtain

F (a, b, c) = F (a+ 2, b+ 2, c− 2) + (qt)c F (a+ c, b− c) + (qt)c−1 F (a+ c, b− c+ 2)

+
c−1∑

i=0

(qt)b+2c−2iF (a− b− 2c+ 4i) +
c−2∑

i=0

(qt)b+2c−1−2iF (a− b− 2c+ 2 + 4i).

The first three terms are the same as in the statement of the lemma. The last two sums
can be combined to

2c−2∑

j=0

(qt)b+2c−jF (a− b− 2c+ 2j),
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or, reversing the order of the sum:

2c∑

j=2

(qt)b+jF (a− b+ 2c− 2j). (2.8)

If 2c 6 a − b the corollary is proved. Otherwise we may break expression (2.8) above into
two pieces to obtain

a−b∑

j=2

(qt)b+jF (a− b+ 2c− 2j) +
2c∑

j=max(a−b+1,2)

(qt)b+jF (a− b+ 2c− 2j),

or equivalently

a−b∑

j=2

(qt)b+jF (a− b+ 2c− 2j) +
2c∑

j=a−b+1

(qt)b+jF (a− b+ 2c− 2j)

−
1∑

j=a−b+1

(qt)b+jF (a− b+ 2c− 2j).

Therefore, if we show that the middle sum above is 0 the corollary is proved. However,
setting K = −a+ b− 2c we have

2c∑

j=a−b+1

(qt)b+jF (a− b+ 2c− 2j) =
∑

−K6r6K−2

(qt)b−(K+r)/2F (r),

where the sum is over only those r such that 2|(K + r). Since F (−1) = 0 this can be split
into ∑

26r6K

(qt)b−(K−r)/2F (−r) +
∑

06s6K−2

(qt)b−(K+s)/2F (s),

where again the sum is only over r with 2|(K + r). However, applying Proposition 2.20
term-wise to the left sum gives precisely the opposite of the right sum. �

3. Combinatorial expressions

In this section, we present a combinatorial formula for F (a, b, c) when a+1 > b, a+1, b+
1 > c > 0.

3.1. Symmetric chain expression. Recall that λ(a, b, c) = (a + b + c, b + c, c). We set
A = |λ(a, b, c)| = a + 2b + 3c, ǫij = max(0, i + j − b − c), and mcj = c − j (mod 2) for
convenience. Define the symmetric chain for k 6 ℓ as

[k, ℓ]q,t = qℓtk + qℓ−1tk+1 + · · ·+ qk+1tℓ−1 + qktℓ.

We may write F (a, b, c) as a sum of symmetric chains.

Theorem 3.1. For nonnegative integers a, b, c and a+ 1 > b, a+ 1, b+ 1 > c, we have

F (a, b, c) =
∑

(i,j)∈Q̃

[i+ ǫij, A− 2i− j]q,t,

where Q̃ = {(i, j) | 0 6 j 6 c, j 6 i 6 b+ c, 2i+ 2j 6 a+ b+ 2c−mcj}.
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The proof of Theorem 3.1 is given in Section 4, see in particular Corollary 4.14. For the

various conditions appearing in Q̃, see the conditions for quasiheads in Table 3. Note that
Theorem 3.1 immediately implies that the right hand side is symmetric in q and t.

Remark 3.2. Note that the conditions on i and j imply that i+ ǫij 6 A− 2i− j. Namely,
since i 6 b+ c, we have i+ ǫij 6 max(b+ c, i+ j). Furthermore, since 2i+ 2j 6 a+ b+ 2c,
we have A − 2i − j = A − 2i − 2j + j > b + c + j which in turn is greater or equal to
max(b+ c, i+ j) given that j > 0 and i 6 b+ c.

Remark 3.3. Note that the interval [i + ǫij, A − 2i − j] of integers that appears in the
symmetric chains in Theorem 3.1 will be called the area range in Section 4 as it is the range
of the area statistic for the given symmetric chain.

Remark 3.4. Surprisingly, the identity H(a, b, c) =
∑

(i,j)∈Q̃
qA−2i−jti+ǫij does not hold in

general, as the right hand side satisfies slightly different recursion relation, see Lemma 4.11.

3.2. Combinatorial expression. The symmetric chain expression of Theorem 3.1 leads
to a purely combinatorial expression for F (a, b, c) as a sum of all subpartitions of λ(a, b, c)
with two associated statistics. The area statistics for λ ⊆ λ(a, b, c) is given by

area(λ) = |λ(a, b, c)| − |λ|.

The second statistics requires a little more notation. We set L = a+ b+ c. Furthermore,
we name the following cases:

Case 1. z > min(b+ c− x, ⌈y−a
2 ⌉)

(a) x+ y − z + 2ǫyz < L
(b) x+ y − z + 2ǫyz > L

(i) y + z < b+ c
(ii) y + z > b+ c

Case 2. z < min(b+ c− x, ⌈y−a
2 ⌉).

With this, we are ready to define the t-statistics, where λ = (x, y, z) is a partition with
x > y > x > 0 and x 6 a+ b+ c, y 6 b+ c, z 6 c

stat(λ) =





x+max(0, ⌈y−a
2 ⌉, y + z − b− c, ⌈2y+z−L

2 ⌉) in Case 1(a),

−L+ 2x+ y − z +max(0, ⌈L+z−x−a
2 ⌉) in Case 1(b)(i),

2x+ 3y + z − (a+ 3b+ 3c)

+max(0, ⌈2b+2c−x−y
2 ⌉, a+ 2b+ 2c− x− 2y) in Case 1(b)(ii),

y + z in Case 2.

(3.1)

Our main result is the following.

Theorem 3.5. Let a, b, c be nonnegative integers with a+ 1 > b, a+ 1, b+ 1 > c. Then

F (a, b, c) =
∑

λ⊆λ(a,b,c)

qarea(λ)tstat(λ).

The proof of Theorem 3.5 is given in Section 4.7.

Example 3.6. Let us take a = b = c = 1, so that λ(1, 1, 1) = (3, 2, 1). The subpartitions

λ of (3, 2, 1) together with their monomial qarea(λ)tstat(λ) are listed in Table 1, organized in
the chains associated to Theorem 3.1.
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Table 1. Subpartitions of (3, 2, 1) with their monomials qarea(λ)tstat(λ)

chains subpartitions with statistics

[0, 6]q,t ∅

q6 q5t q4t2 q3t3 q2t4 qt5 t6

[1, 4]q,t

q4t q3t2 q2t3 qt4

[1, 3]q,t

q3t q2t2 qt3

Remark 3.7. Note that stat(λ) is in general different from dinv(λ) and bounce(λ). As
stated in [Hag08, Exercise 3.19], dinv(λ) is the number of cells x in λ such that leg(x) 6

arm(λ) 6 leg(x) + 1. Here leg(x) is the number of cells in λ above x in the same column
as x and arm(x) is the number of cells in λ to the right of x in the same row as x. Then

qarea(λ)tdinv(λ) for the partitions in Table 1 read row by row, top to bottom, left to right are

q6, q5t, q4t2, q3t2, q2t4, qt5, t6, q4t, q3t3, q2t3, qt3, q3t, q2t2, qt4,

which differs from Table 1. Similarly, one may check that bounce(λ) is in general different
from stat(λ).

Example 3.8. Consider (a, b, c) = (1, 1, 2), so that λ(1, 1, 2) = (4, 3, 2). The subpartitions
λ of (4, 3, 2) together with their monomial qarea(λ)tstat(λ) are listed in Table 2 organized in
the chains associated to Theorem 3.1.

Remark 3.9. As the parameter a becomes larger with respect to b and c, simplifications
occur.

• When a > b + c − 1, the statistics in (3.1) can be simplified by eliminating Case 2
and setting any expression that appears inside a “⌈·⌉” to 0. Moreover, in Table 3
the parameters δij and δEF become uniformly 0 and the condition (4.3d) becomes
unnecessary.

• When a > b + 2c, all the above simplifications hold. Moreover, in Table 3 the
conditions (4.2c), (4.3c), and (4.5c) become unnecessary.

4. Partition chains and proofs

In this section, we assume that a > b− 1, a, b > c− 1. We provide four different indexing
sets for symmetric chains that partition the set

Λ := {λ | λ ⊆ λ(a, b, c) and λ a partition}
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Table 2. Subpartitions of (4, 3, 2) with their monomials qarea(λ)tstat(λ)

chains subpartitions with statistics

[0, 9]q,t ∅

q9 q8t q7t2 q6t3 q5t4 q4t5 q3t6 q2t7 qt8 t9

[1, 7]q,t

q7t q6t2 q5t3 q4t4 q3t5 q2t6 qt7

[1, 6]q,t

q6t q5t2 q4t3 q3t4 q2t5 qt6

[2, 5]q,t

q5t2 q4t3 q3t4 q2t5

[3, 3]q,t

q3t3

called tails, pseudoheads, heads, and quasiheads. The tails, pseudoheads, and quasiheads
are defined as

Set of tails T := {TEF | conditions (4.2a)-(4.2c) on E,F},

Set of pseudoheads P := {Pij | conditions (4.3a)-(4.3d) on i, j},

Set of quasiheads Q := {Qst | conditions (4.5a)-(4.5c) on s, t},

(4.1)

where TEF , Pij , and Qst are defined in Table 3 and for convenience A = a + 2b + 3c and
L = a+ b+ c throughout this section. In addition, we write P = P− ∪ P+, where

P− = {Pij ∈ P | δij 6 ǫij} and P+ = {Pij ∈ P | δij > ǫij}

and ǫij and δij are also given in Table 3.
Finally, we define the set of heads H = H− ∪H+, where H− = P− and

H+ = {(k, ℓ, 0) | a < ℓ 6 k < b+ c}.

For a negative head, the area range is the same as its area range as a pseudohead. For
positive heads we set the area range to

Rℓ
k = [ℓ,A− k − ℓ].

Example 4.1. In terms of the indexing sets of Table 3, the symmetric chains in Table 1
of Example 3.6 from top to bottom correspond to the tails T 00 = (3, 2, 1), T 10 = (2, 2, 1),
T 01 = (3, 1, 1), the pseudoheads (and heads) P00 = (0, 0, 0), P10 = (1, 1, 0), P11 = (1, 1, 1),
and the quasiheads Q00 = (0, 0, 0), Q10 = (1, 1, 0), Q11 = (1, 1, 1), respectively. The tails
are the largest partitions in the chain and the pseudoheads (heads, quasiheads) are the
smallest partitions in each chain.
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Example 4.2. The symmetric chains in Table 2 of Example 3.8 from top to bottom
correspond to the tails T 00 = (4, 3, 2), T 10 = (3, 3, 2), T 01 = (4, 2, 2), T 11 = (3, 2, 2),
T 21 = (2, 2, 2), the pseudoheads P00 = (0, 0, 0), P10 = (1, 1, 0), P11 = (1, 1, 1), P21 = (2, 2, 1),
P22 = (2, 2, 2), the heads P00 = (0, 0, 0), P10 = (1, 1, 0), P11 = (1, 1, 1), H2

2 = (2, 2, 0), P22 =
(2, 2, 2), and the quasiheads Q00 = (0, 0, 0), Q10 = (1, 1, 0), Q11 = (1, 1, 1), Q20 = (2, 2, 0),
Q22 = (2, 2, 2), respectively. The tails are the largest partitions in the chain and the heads
are the smallest partitions in the chain. For the chain [2, 5]q,t, the head and pseudohead are
not the same.

The set of tails, pseudoheads, heads, and quasiheads are all in area preserving bijection.
That is, if X,Y are one of the sets tails, pseudoheads, heads, and quasiheads and the area
ranges for x ∈ X and y ∈ Y are Rx and Ry, respectively, then there is a bijection Φ: X → Y
such that Rx = RΦ(x) for all x ∈ X (see Sections 4.1, 4.2 and 4.5).

In Section 4.4, we define chains (using the strings of Section 4.3) and prove in Theorem 4.8
that the chains partition Λ, the set of all subpartitions of λ(a, b, c). In Section 4.6, using
the quasiheads, we show that the combinatorial symmetric chain function G(a, b, c) satisfies
the same recursions as F (a, b, c), thereby proving Theorem 3.1. The proof of Theorem 3.5
is given in Section 4.7.

4.1. Area preserving bijection between tails and pseudoheads. We now construct
an area preserving bijection between tails and pseudoheads.

Lemma 4.3. Define maps Ψ and Ψ−1 by

Ψ(E,F ) = (E + F − ǫEF , F + ǫEF ),

Ψ−1(i, j) = (i− j + 2ǫij , j − ǫij).

Then Ψ induces a bijection from T to P via the rule that if Ψ(E,F ) = (i, j) then

(a+ b+ c− E, b+ c− F, c) 7→ (i, i, j).

The inverse of this bijection is induced by Ψ−1 via the rule that if Ψ−1(i, j) = (E,F ) then

(i, i, j) 7→ (a+ b+ c− E, b+ c− F, c).

Moreover, if Ψ(E,F ) = (i, j), then REF = Rij .

Proof. First we show that Ψ is a bijection on Z
2. Indeed, note that if either Ψ(E,F ) = (i, j)

or Ψ−1(i, j) = (E,F ) we have δEF = δij and ǫEF = ǫij . Hence, a simple computation shows
that Ψ ◦Ψ−1 and Ψ−1 ◦Ψ are the identity on Z

2. Moreover, it is apparent that Ψ preserves
the area range. It remains to show that Ψ(T ) ⊆ P and Ψ−1(P ) ⊆ T .

First let TEF ∈ T and suppose Ψ(E,F ) = (i, j). We must show that the conditions
in (4.3a)-(4.3d) hold:

• Condition (4.3a): The condition 0 6 j 6 c translates to 0 6 F + ǫEF 6 c which is
immediate from (4.2a).

• Condition (4.3b): The condition j 6 i 6 b+c translates to F+ǫEF 6 E+F−ǫEF 6

b+ c. The left hand side follows from the left hand side of (4.2b). If ǫEF = 0, then
we have E + 2F 6 b + c so the right hand side follows. Otherwise the right hand
side reduces to −F + b+ c 6 b+ c which follows from F > 0.

• Condition (4.3c): The condition 4i+ j 6 a+3b+3c translates to 4E+5F −3ǫEF 6

a+ 3b+ 3c which is (4.2c).
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Table 3. Various indexing sets for chains

Tails TEF = (a+ b+ c− E, b+ c− F, c)
Conditions

0 6 F 6 c− ǫEF (4.2a)

2ǫEF
6 E 6 F + a (4.2b)

4E + 5F − 3ǫEF
6 a+ 3b+ 3c (4.2c)

Area range REF = [E + F,A− 2E − 3F +max(ǫEF , δEF )]

Notation ǫEF = max(0, E + 2F − b− c) and δEF = ⌈E+F−a
2 ⌉

Pseudoheads Pij = (i, i, j)
Conditions

0 6 j 6 c (4.3a)

j 6 i 6 b+ c (4.3b)

4i+ j 6 a+ 3b+ 3c (4.3c)

i− 2j 6 a (4.3d)

Area range Rij = [i+ ǫij, A− 2i− j +max(0, δij − ǫij)]
Notation

ǫij = max(0, i + j − (b+ c)), δij = ⌈
i+ ǫij − a

2
⌉ (4.4)

Quasiheads Qst = (s, s, t)
Conditions

0 6 t 6 c (4.5a)

t 6 s 6 b+ c (4.5b)

2s+ 2t 6 a+ b+ 2c−mct (4.5c)

Area range Rst = [s+ ǫst, A− 2s− t]
Notation ǫst = max(0, s + t− (b+ c)) and mct = (c− t) (mod 2)

• Condition (4.3d): The condition i − 2j 6 a translates to E − F − 3ǫEF 6 a which
follows from the right hand side of (4.2b).

Now let Pij ∈ P and suppose Ψ−1(i, j) = (E,F ). We must show that the conditions in
(4.2a)-(4.2c) hold:

• Condition (4.2a): The condition 0 6 F 6 c−ǫEF translates to 0 6 j−ǫij 6 c−ǫEF .
The left hand side follows from j > 0 unless ǫij > 0, in which case it follows from

i 6 b+ c. The right hand side is equivalent to j 6 c (since ǫij = ǫEF ).
• Condition (4.2b): The condition 2ǫEF 6 E 6 F+a translates to 2ǫEF 6 i−j+2ǫij 6
j − ǫij + a. The left hand side is equivalent to j 6 i and the right hand side follows
from (4.3d).

• Condition (4.2c): The condition 4E + 5F − 3ǫEF 6 a + 3b + 3c translates to 4i −
4j + 8ǫij + 5j − 5ǫij − 3ǫEF 6 a+ 3b+ 3c which follows from (4.3c).

�
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4.2. Area preserving bijection between pseudoheads and heads. We now construct
an area preserving bijection between pseudoheads and heads. Set δℓk = ⌈ ℓ−a

2 ⌉ and ǫℓk =

max(k + δℓk − b− c, 0).

Lemma 4.4. Define maps Θ and Θ−1 by

Θ(i, j) = (i+ j − δij , i+ ǫij),

Θ−1(k, ℓ) = (ℓ− ǫℓk, k − ℓ+ ǫℓk + δℓk).

Then Θ induces a bijection from P to H, which is the identity on P− and, if Θ(i, j) = (k, ℓ)
it acts as (i, i, j) 7→ (k, ℓ, 0) on P+. The inverse of this map is the identity on H− and,
if Θ−1(k, ℓ) = (i, j), then (k, ℓ, 0) 7→ (i, i, j) on H+. Moreover if Θ(i, j) = (k, ℓ) then
Rij = Rℓ

k.

Proof. First we show that Θ is a bijection on Z
2. Indeed, note that if either Θ(i, j) = (k, ℓ)

or Θ−1(k, ℓ) = (i, j) we have δℓk = δij and ǫℓk = ǫij. Hence, a simple computation shows that
Θ ◦Θ−1 and Θ−1 ◦Θ are the identity on Z

2. Moreover, it is apparent that Θ preserves the
area range.

Now suppose Pij ∈ P+, and Θ(i, j) = (k, ℓ). We wish to show that (k, ℓ, 0) ∈ H+. This
means we must verify the inequalities a < i+ ǫij 6 i+ j− δij < b+ c. The first inequality is
immediate because δij > ǫij is equivalent to i− ǫij > a. The second inequality is the same
as δij + ǫij 6 j which is equivalent to i − 2j 6 a− 3ǫij . If ǫij = 0, this is the same as the
pseudohead condition i − 2j 6 a. Otherwise, it is equivalent to the pseudohead condition
4i+j 6 a+3b+3c. Finally, the last inequality is just i+j−(b+c) < δij which is immediate
since the former is less than or equal to ǫij which is by assumption less than δij .

Now suppose Hℓ
k ∈ H+ and Θ−1(k, ℓ) = (i, j). We need to show that δij > ǫij as well as

the pseudohead conditions (4.3a)-(4.3d) for i = ℓ− ǫℓk and j = k− ℓ+ ǫℓk + δℓk for any (k, ℓ)
such that a < ℓ 6 k < b+ c:

• δij > ǫij. We have δij − ǫij = δℓk − ǫℓk = min(−k + b+ c, δℓk). But this is a positive
number because k < b+ c and ℓ > a.

• Condition (4.3a): The condition 0 6 j 6 c translates to 0 6 k − ℓ + ǫℓk + δℓk 6 c.

The left side holds since all of k − ℓ, ǫℓk, δ
ℓ
k are nonnegative. Now, if ǫℓk = 0 then

k + δℓk 6 b+ c 6 a+ c+ 1 ≤ ℓ+ c which implies the right hand side. On the other

hand, if ǫℓk > 0 the inequality becomes 2k − ℓ + 2δℓk 6 b + c which would certainly

hold if 2k + 2 ℓ−a
2 − ℓ = 2k − a < b + 2c. But this is true since k < b + c and

k 6 b+ c− 1 6 a+ c.
• Condition (4.3b): The left hand side of the condition j 6 i 6 b + c translates
to k − ℓ + ǫℓk + δℓk 6 ℓ − ǫℓk, that is, k + 2ǫℓk 6 2ℓ − δℓk. If ǫℓk = 0 this says

k 6 ⌊3ℓ+a
2 ⌋. But k 6 b + c − 1 6 (a + 1) + (a + 1) − 1 = 2a + 1. On the other

hand ℓ > a implies ⌊3ℓ+a
2 ⌋ 6 2a + 1. If ǫℓk > 0 the left hand inequality reduces

to 3k 6 2ℓ − 3δℓk + 2b + 2c = ⌊ ℓ+a
2 ⌋ + a + 2b + 2c which would certainly hold if

2k+ k = 3k 6 2a+2b+2c. But 2k 6 b+ c− 2 and k 6 2a+1 so this holds (in fact
strictly). Moreover, the righthand side easily holds as ℓ− ǫℓk 6 ℓ 6 k < b+ c.

• Condition (4.3c): The condition 4i+ j 6 a+3b+3c translates to 3ℓ−3ǫℓk+k+ δℓk 6

a + 3b + 3c. If ǫℓk = 0, we have k + δℓk 6 b + c. Hence it is enough to show

that 3ℓ 6 a + 2b + 2c. But this is also true since k + δℓk 6 b + c is equivalent to

2k + ℓ 6 a + 2b + 2c and ℓ 6 k. On the other hand, if ǫℓk > 0 the inequality we
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need to show reduces to 3ℓ− 2k − 2δℓk 6 a. Since ℓ− k 6 0 it suffices to show that

ℓ− 2δℓk 6 a. But this is clear since ℓ− 2δℓk 6 ℓ− 2 ℓ−a
2 = a.

• Condition (4.3d): The condition i − 2j 6 a translates to 3ℓ − 2k − 3ǫℓk − 3δℓk 6 a.

But this follows from ℓ− 2δℓk 6 a and ℓ− k 6 0.

This shows that Θ induces a bijection from P+ to H+. Extending this map to all of P by
declaring it to be the identity on P− is also a bijection as long as H− ∩H+ = ∅. Indeed,
only partitions of the form (m,m, 0) may lie in both H− and H+. Moreover, being in H−

implies δm0 − ǫm0 6 0 which means m 6 a. On the other hand, being in H+ would require
a < m. �

4.3. Strings. We now consider the set of all partitions Λ which fit inside the partition
λ(a, b, c) = (a+ b+ c, b+ c, c). We call such a partition (x, y, z) positive if z < min(b+ c−
x, ⌈y−a

2 ⌉) and negative otherwise. Write Λ = Λ− ∪ Λ+.

Let Pij = (i, i, j) be a pseudohead with Ψ(E,F ) = (i, j). Suppose that TEF = (p, q, c).
We define the string associated to Pij and TEF to be

S(Pij) = S(TEF ) =
⋃

i6x<p

(x, i, j)
⋃

i6y<q

(p, y, j)
⋃

j6z6c

(p, q, z). (4.6)

Lemma 4.5. (p, q, c) is a partition containing (i, i, j) and is contained in λ(a, b, c). Thus
every S(Pij) is a nonempty set of partitions contained in λ(a, b, c).

Proof. It is clear that p = L−E 6 L by the left side of (4.2b). Furthermore, q = b+c−F 6

b+ c by the left side of (4.2a). Obviously c 6 c. Hence (p, q, c) is contained in λ(a, b, c).
Now p−q = L−E−(b+c−F ) = a−E+F > 0 by the right side of (4.2b). Furthermore,

q = b+c−F > c follows from F 6 c (which comes from the right side of (4.2a)) unless b < c.
If b < c, we must have b = c−1 so we just need to show q = (c−1)+c−F > c or equivalently
F 6 c−1. Indeed, if F = c then ǫEF = max(2c+E−(2c−1), 0) = max(E+1, 0) > 0 by the
left-hand side of (4.2b). Thus the right-hand side of (4.2a) implies F 6 c− 1 contradicting
the assumption F = c. This shows that (p, q, c) is indeed a partition.

Finally it is obvious that j 6 c and since we already showed that p > q all that remains
to show is q > i. But this says b+ c− F > i or b+ c− (j − ǫij) > i which is equivalent to
i+ j − (b+ c) 6 ǫij which follows immediately from (4.4). �

Theorem 4.6. Let µ ∈ Λ−. Then there exists unique Pij ∈ P such that µ ∈ S(Pij).
Conversely, if µ ∈ S(Pij) for some pseudohead Pij , then µ ∈ Λ−.

Proof. Let µ = (x, y, z) ∈ Λ−. Let us set:

E(y, z) = y − z + 2ǫyz and F(y, z) = z − ǫyz.

We prove the first statement in three cases.

(1) First suppose x+E(y, z) < L. Note that this corresponds to Case 1(a) in Section 3.2.

To show uniqueness suppose µ ∈ S(Pij) with tail T (L−p)(b+c−q).
If µ is from the second union in (4.6), then µ = (p, y, j) for i 6 y < q. Since

E(y, j) > E(i, j) we have:

x+ E(y, z) = p+ E(y, j) > p+ E(i, j) = (L− E(i, j)) + E(i, j) = L.

If µ is from the third union in (4.6), then µ = (p, q, z) for j 6 z 6 c. Now
q = b+ c−F(i, j) implies q+ j > b+ c. From this, it follows that E(q, z) > E(q, j).
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Since E(q, j) > E(i, j) as well we have:

x+ E(y, z) = p+ E(q, j) > p+ E(i, j) = (L− E(i, j)) + E(i, j) = L.

This means that µ can only come from the first union, so that we must have i = y
and j = z. Hence µ can be in no other string than S(Pyz).

Now we show that µ ∈ S(Pyz). First we need to check Pyz satisfies the pseudohead
conditions:

• Condition (4.3a): 0 6 z 6 c is immediate.
• Condition (4.3b): z 6 y 6 b+ c is immediate.
• Condition (4.3c): 4y+ z 6 a+3b+3c. If ǫyz = 0 then the original assumption
becomes x+y−z < L and we also have y+z 6 b+c. Adding the first inequality
to twice the second yields x+3y+z < a+3b+3c and we are done since y 6 x. If
ǫyz > 0 then the original assumption reduces directly to x+3y+z < a+3b+3c
so we are done for the same reason.

• Condition (4.3d): y−2z 6 a. First suppose ǫyz = 0. Now, since µ is a negative

partition we either have z > ⌈y−a
2 ⌉ which would mean 2z > y − a and we

would be done, or else, z > b + c − x. In the second case: ǫyz = 0 along with
the original assumption imply x + y − z < L, and subtracting from this the
inequality x + z > b + c gives y − 2z < a. Finally, if ǫyz > 0 then we have
y + z > b + c. Subtracting three times this from 4y + z 6 a + 3b + 3c (which
we have already verified) gives y − 2z < a.

Now that Pyz is in fact a pseudohead it is obvious that µ ∈ S(Pyz) (in the first
union) because x < L− E(y, z).

(2) Now suppose x + E(y, z) > L and y + z < b + c. Note that this corresponds
to Case 1(b)(i) in Section 3.2. To show uniqueness suppose µ ∈ S(Pij) with tail

T (L−p)(b+c−q).
If µ is from the first union in (4.6), then µ = (x, i, j) for i 6 x < p. But this

means x+ E(i, j) < L, that is, x+ E(y, z) < L, contradicting our assumption.
If µ is from the third union in (4.6), then µ = (p, q, z) for j 6 z 6 c. Now

q = b + c − F(i, j) where F(i, j) = j because y + z < b + c means i + j < b + c.
Thus q + j = b + c so q + z > b+ c, that is, y + z > b+ c, again contradicting our
assumption.

This means that µ can only come from the second union in (4.6). In this case, µ
is of the form (p, y, j) for i 6 y < q. In particular, x = p = L−E(i, j) = L−E(i, z).
But i + z 6 y + z < b+ c so ǫiz = 0 and this reduces to x = L− i + z. Therefore,
i = L+ z − x, and we see µ can be in no other string than S(P(L+z−x)z).

Now we show that µ ∈ S(P(L+z−x)z). First we need to check that P(L+z−x)z

satisfies the pseudohead conditions:
• Condition (4.3a): 0 6 z 6 c is immediate.
• Condition (4.3b): z 6 L+z−x 6 b+c. The left hand side is immediate because
x 6 L. On the other hand the first original assumption implies L + z − x 6

E(y, z) + z and the second original assumption implies E(y, z) = y − z. Thus
L+ z − x 6 y 6 b+ c.

• Condition (4.3c): 4(L+ z−x)+ z 6 a+3b+3c. Since µ is a negative partition
we have z > min(b + c − x, ⌈y−a

2 ⌉). First suppose that z > ⌈y−a
2 ⌉. This along
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with the fact that (L+ z − x) + z 6 y + z < b+ c implies that:

4(L+ z − x) + z = (L+ z − x) + 3(L+ z − x+ z)− 2z

6 y + 3(b + c) + (a− y) = a+ 3b+ 3c.

Otherwise we must have z < ⌈y−a
2 ⌉, but z > b+ c− x. Now ⌈y−a

2 ⌉ > b+ c− x
means y > a+2b+2c−2x. Since y < b+c−z this gives a+2b+2c−2x < b+c−z
which becomes 2x−z > a+b+c. Adding this inequality to x+z > b+c (which
is equivalent to the assumption on hand) we obtain 3x > a+ 2b + 2c. At this
point we suppose for the sake of contradiction that 4(L+z−x)+z > a+3b+3c.
This means (L+ z − x+ z) + 3L+ 3z − 3x > a+ 3b+ 3c which in light of the
previous equation yields (L+ z−x+ z) + 3L+3z > 2a+5b+5c. This in turn
gives 3L+3z > 2a+4b+4c since L+z−x+z < b+ c. Finally, we are left with
3z > −a+ b+ c. But at the same time 4(L + z − x) + z > a+ 3b + 3c means
4(L+z−x+z)−3z > a+3b+3c. And again making use of L+z−x+z < b+c
this implies 3z < −a + b + c, which is a contradiction. Hence we must have
4(L+ z − x) + z 6 a+ 3b+ 3c.

• Condition (4.3d): (L + z − x) − 2z 6 a. Again, µ is negative so we may
consider two cases. First, if z > ⌈y−a

2 ⌉ then L + z − x 6 y implies L + z −
x − 2z = (L + z − x) − y + a 6 a. On the other hand if z > b + c − x then
(L+ z − x)− 2z = L− x− z 6 L− b− c = a.

Now since P(L+z−x)z is indeed a pseudohead, the facts that L−E(L+ z−x, z) =
L − (L − x) = x and L + z − x 6 y < b + c − F(L + z − z, z) (since the latter is
equal to b+ c− z) imply that µ ∈ S(P(L+z−x)z) (in the second union in (4.6)).

(3) Now suppose x + E(y, z) > L and y + z > b + c. Note that this corresponds to
Case 1(b)(ii) in Section 3.2. To show uniqueness suppose µ ∈ S(Pij) with tail

T (L−p)(b+c−q).
If µ is from the first union in (4.6), then µ = (x, i, j) for i 6 x < p. This means

that x+ E(y, z) = x+ E(i, j) < L, contradicting our assumption.
If µ is from the second union in (4.6), then µ = (p, y, j) for i 6 y < q. Thus

y < b + c − F(i, j) which is equivalent to y + j − (b + c) < ǫij 6 ǫyj which implies
ǫyj = 0 and y + j − (b+ c) < 0, contradicting y + j = y + z > b+ c.

This means that µ can only come from the third union in (4.6), so that we must

have x = p and y = q. Hence µ can be in no other string than S(T (L−x)(b+c−y)).

Now we show that µ ∈ S(T (L−x)(b+c−y)). First we need to check that T (L−x)(b+c−y)

satisfies the tail conditions (4.2a)-(4.2c) for E = L− x and F = b+ c− y:
• Condition (4.2a): 0 6 F 6 c − ǫEF . This means 0 6 b + c − y 6 c −
ǫ(L−x)(b+c−y). The left-hand side follows from y 6 b + c. The right-hand side
says ǫ(L−x)(b+c−y) 6 y−b. We may assume ǫ(L−x)(b+c−y) = a+2b+2c−x−2y be-
cause if it were 0 then the fact that z 6 c and y+z > b+c imply y−b > 0 which
would prove this side. Under this assumption what we need to show becomes
x+3y > a+3b+2c. But y+z > b+c implies that E(y, z) = 3y+z−2(b+c), so
the original assumption that x+ E(y, z) > L becomes x+ 3y + z 6 a+ 3b+ 3c
which implies what we wanted to show as z 6 c.

• Condition (4.2b): 2ǫEF 6 E 6 F + a. If ǫEF = 0 the left-hand side is imme-
diate. Otherwise it is equivalent to x + 4y > a + 3b + 3c. This follows from
x+ 3y + z 6 a + 3b + 3c unless y < c. But this means we must have z > b to
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obtain y+ z > b+ c. Since y > z this would give b 6 c−2 which is not allowed.
The right hand side follows directly from x > y.

• Condition (4.2c): 4E + 5F − 3ǫEF 6 a + 3b + 3c. This reduces to 4x + 5y +

3ǫ(L−x)(b+c−y) > 3a + 6b + 6c. If ǫ(L−x)(b+c−y) = 0 we must have x + 2y >

a+2b+2c. Adding three times this inequality to the inequality x− y > 0 gives
us what we desire. If ǫ(L−x)(b+c−y) > 0 then ǫ(L−x)(b+c−y) = a+2b+2c−x−2y
and the inequality 4x+5y+3ǫ(L−x)(b+c−y) > 3a+6b+6c reduces to x− y ≥ 0.

Now we know that T (L−x)(b+c−y) is a valid tail. Denote Ψ(L− x, b+ c− y) = (i, j).

In order to show that µ ∈ S(T (L−x)(b+c−y)) we need only verify that j 6 z. That is

to say b+c−y+ǫ(L−x)(b+c−y) 6 z. If ǫ(L−x)(b+c−y) = 0 this follows from the original
assumption that y+ z > b+ c. Otherwise it reduces to a+3b+3c 6 x+3y+ z. But
this is equivalent to the original assumption that x+ E(y, z) > L since y+ z > b+ c
implies ǫyz = y + z − (b+ c).

This concludes the proof of the first statement.
Now we prove the second statement. Suppose µ = (x, y, z) ∈ S(Pij) for some pseudohead

Pij . We must show that z > min(b+ c− x, ⌈y−a
2 ⌉). We use two cases:

(1) µ is in the first union in (4.6). We show z > ⌈y−a
2 ⌉. We have y = i and j = z so this

becomes j > ⌈ i−a
2 ⌉. But the latter is equivalent to 2j > i− a which is equivalent to

condition (4.3d).
(2) µ is in the second or third union in (4.6). We show z > b+ c − x. First, if ǫij > 0

then i + j > b + c directly implies j > b + c − x so that z > b + c − x. Now
we assume ǫij = 0. Since x = L − E(i, j) and z > j it would be enough to show
j > b + c − (L − (i − j)) which reduces to j > −a + i − j but this follows from
condition (4.3d).

�

If Hℓ
k ∈ H+, we define the appendage associated to Hℓ

k to be

A(Hℓ
k) = {(k, ℓ, z) | z < min(b+ c− k, ⌈

ℓ− a

2
⌉)}.

Theorem 4.7. Let µ ∈ Λ+. Then there exists unique Hℓ
k ∈ H+ such that µ ∈ A(Hℓ

k).

Conversely, if µ ∈ A(Hℓ
k) for some positive head Hℓ

k, then µ ∈ Λ+.

Proof. Let µ = (x, y, z) ∈ Λ+. Note that this correspond to Case 2 in Section 3.2. Then it is
immediate that µ could only belong to the appendage A(Hy

x). Since z < min(b+c−x, ⌈y−a
2 ⌉)

in particular 0 < min(b+ c−x, ⌈y−a
2 ⌉). This implies both x < b+ c and y > a so (as y 6 x)

Hy
x ∈ H+. Since µ is positive z < min(b+ c− x, ⌈y−a

2 ⌉), so µ ∈ A(Hy
x).

Now if µ = (x, y, z) ∈ A(Hℓ
k) for some head, then x = k and y = ℓ and so the inequality

z < min(b+ c− x, ⌈y−a
2 ⌉) is clearly satisfied implying that µ ∈ Λ+. �

4.4. Chains. Suppose TEF ∈ T . Set (i, j) = Ψ(E,F ). If Pij ∈ P+ set (k, ℓ) = Θ(i, j). We

define the chain of TEF to be

C(TEF ) =

{
S(Pij) if Pij ∈ P−,

S(Pij) ∪A(Hℓ
k) if Pij ∈ P+.

(4.7)

Our fundamental result concerning chains is the following.
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Theorem 4.8. Λ is the disjoint union:

Λ =
⋃

TEF∈T

C(TEF ).

Moreover, for each integer m ∈ REF = [E + F,A − 2E − 3F + max(δEF , ǫEF )] there is
precisely one element µ ∈ C(TEF ) with area area(µ) = m.

Proof. The first statement is immediate by combining Theorems 4.6 and 4.7.
Now fix TEF and set (i, j) = Ψ(E,F ). If Pij ∈ P−, then by definition C(TEF ) = S(Pij).

By construction, this string has one partition of area m for each m ∈ [area(TEF ), area(Pij)].

But area(TEF ) = E + F . Moreover, area(Pij) = A − 2i − j = A − 2E − 3F + ǫEF and
since Pij ∈ P− implies that ǫij = max(δij , ǫij) = max(δEF , ǫEF ) this means area(Pij) =
A− 2E − 3F +max(δEF , ǫEF ).

Now suppose Pij ∈ P+. Then C(TEF ) = S(Pij)∪A(Hℓ
k) has one partition of area m for

each m ∈ [area(TEF ), area(Pij)] and one partition of area n for each n ∈ [area(Hℓ
k)−min(b+

c− k, ⌈ ℓ−a
2 ⌉)+ 1, area(Hℓ

k)]. Again, area(T
EF ) = E+F and area(Pij) = A− 2E− 3F + ǫEF

so it suffices to prove the two equations

area(Hℓ
k)−min(b+ c− k, ⌈

ℓ− a

2
⌉) + 1 = A− 2E − 3F + ǫEF + 1,

area(Hℓ
k) = A− 2E − 3F +max(δEF , ǫEF ) = A− 2E − 3F + δEF .

However, we have

k + ℓ = (i+ j − δij) + (i+ ǫij) = 2i+ j − (δij − ǫij)

= 2(E + F − ǫEF ) + (F + ǫEF )− (δEF − ǫEF ) = 2E + 3F − δEF ,

so that area(Hℓ
k) = A− (k + 1) = A− 2E − 3F + δEF as desired. On the other hand

min(b+ c− k, ⌈
ℓ− a

2
⌉) = min(b+ c− (i+ j − δij, ⌈

i + ǫij − a

2
⌉)

= min(b+ c− (i+ j) + δij , δij) = δij +min(b+ c− (i+ j), 0)

= δij − ǫij = δEF − ǫEF .

Hence we have

area(Hℓ
k)−min(b+ c− k, ⌈

ℓ− a

2
⌉) = A− 2E − 3F + δEF − (δEF − ǫEF )

= A− 2E − 3F + ǫEF ,

which gives the other equation we wanted after adding 1 to both sides. �

Since Ψ and Θ fix the area range, we can conclude the following statement.

Corollary 4.9. Let X represent the set of heads, the set of pseudoheads, or the set of tails.
Then Λ is the disjoint union of all chains which contain an element of X. Moreover, for
x ∈ X and each m in the area range of x, there is precisely one element µ of area m in the
same chain as x.
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4.5. Area preserving bijection between head and quasiheads. We write Q = Q−
6 ∪

Q−
> ∪Q+, where

Q−
6 = {Qst ∈ Q | s+ t 6 b+ c, s 6 a},

Q−
> = {Qst ∈ Q | s+ t > b+ c} ∪ {Qst ∈ Q | s+ t = b+ c, s > a},

Q+ = {Qst ∈ Q | s+ t < b+ c, s > a},

and H = P−
6 ∪ P−

> ∪H+, where

P−
6 = {Pij ∈ P− | i+ j 6 b+ c} and P−

> = {Pij ∈ P− | i+ j > b+ c}.

Proposition 4.10. There is an area range preserving bijection from H to Q.

Proof. We prove the proposition in three parts. First we show that the identity is an
area range preserving bijection from P−

6 to Q−
6. Then we define an area range preserving

bijection from P−
> to Q−

>. Finally we define an area range preserving bijection from H+ to
Q+.

(1) The set P−
6 is the set of triples (i, i, j) obeying the conditions (4.3a)-(4.3d) as well

as the inequalities δij 6 ǫij and i + j 6 b + c. In light of (4.3b), ǫij = 0 and
δij 6 ǫij simply becomes i 6 a. But this in turn implies (4.3d). Moreover, adding
i 6 a to 3i + 3j 6 3b + 3c gives condition (4.3c). Thus P−

6 is the set of triples
(i, i, j) satisfying the four conditions in (4.3a) and (4.3b) as well as i + j 6 b + c
and i 6 a. On the other hand, Q−

6 is the set of triples (s, s, t) satisfying the five
conditions (4.5a)-(4.5c) as well as s+ t 6 b+ c and s 6 a. Since conditions (4.3a)-
(4.3b) are equivalent to (4.5a)-(4.5b), if we can show that condition (4.5c) is implied
by the other four conditions, it follows that Q−

6 = P−
6 . Indeed, adding the three

inequalities s+ t 6 b+ c, s 6 a, and t 6 c gives 2s+ 2t 6 a+ b+ 2c. This is strict
unless we have equality in all of the three previous conditions. In particular, this
would mean t = c so that mct = 0. Thus in any case 2s + 2t 6 a + b + 2c − mct.
Therefore, Q−

6 = P−
6 . Since for Pij ∈ P−

6 max(0, δij − ǫij) = 0, we have Rij = Rst if
i = s, j = t, so that the identity is an area range preserving bijection between the
two sets.

(2) Let ωij = max(0, ⌈2i+j−L
2 ⌉) and define maps Φ and Φ−1 by

Φ(i, j) = (i+ ωij, j − 2ωij) and Φ−1(s, t) = (s− ωst, t+ 2ωst).

Now if Φ(i, j) = (s, t) or Φ−1(s, t) = (i, j), it is clear that ωij = ωst. From this
it follows that Φ−1 ◦ Φ and Φ ◦ Φ−1 are the identity on Z

2. We claim that Φ
induces an area range preserving bijection from P−

> to Q−
> via the rule that if

Φ(i, j) = (s, t), then (i, i, j) 7→ (s, s, t) with the inverse induced by Φ−1 via the rule
that if Φ−1(s, t) = (i, j), then (s, s, t) 7→ (i, i, j).

First suppose Pij ∈ P−
> , so that conditions (4.3a)-(4.3d) are satisfied alongside

δij−ǫij 6 0 and i+j > b+c. We need to check that if Φ(i, j) = (s, t), i.e., s = i+ωij

and t = j − 2ωij , then (s, t) satisfies conditions (4.5a)-(4.5c) and that s+ t > b+ c
and (s+ t = b+ c) =⇒ s > a.

• Condition (4.5a): 0 6 t 6 c. This translates to 0 6 j − 2ωij 6 c. The right
hand side follows from j 6 c (see the right hand side of (4.3a)). If ωij = 0, the
left hand side follows from the left hand side of (4.3a). Otherwise it says that

j > 2⌈2i+j−L
2 ⌉. Now δij − ǫij 6 0 is equivalent to i− ǫij 6 a, but i+ j > b+ c so
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ǫij > 0 and this becomes i−(i+j−(b+c)) 6 a or −j 6 a−b−c. Adding this to

(4.3c) yields 4i 6 2a+2b+2c or 2i 6 L. This is enough to prove j > 2⌈2i+j−L
2 ⌉

unless 2i = L and j is odd. But then 4i + j is odd and a + 3b + 3c is even so
we have strictness in (4.3c), that is, 4i+ j < a+ 3b+ 3c. Hence adding this to
−j 6 a− b− c results in 4i < 2a+ 2b+ 2c which contradicts 2i = L.

• Condition (4.5b): t 6 s 6 b + c. This translates to j − 2ωij 6 i + ωij 6 b+ c.
The left hand side follows from the left hand side of (4.3b). If ωij = 0, then
the right hand side comes from the right hand side (4.3b). Otherwise the right

hand side says i+⌈2i+j−L
2 ⌉ 6 b+c which follows from i+ 2i+j−L

2 6 b+c (which
is equivalent to (4.3c)) since b+ c is an integer.

• Condition (4.5c): 2s+2t 6 a+ b+2c−mct. This translates to 2i+2j−2ωij 6

a+ b+ 2c −mcj (note that mc(j−2ωij) = mcj). If ωij = 0 then 2i+ j 6 L so it
suffices to show j 6 c−mcj which is evident by the definition of mcj and j 6 c.
On the other hand if ωij > 0, then proving 2i+2j 6 (2i+j−L)+a+b+2c−mcj

suffices since (2i+ j −L) 6 2ωij . But the former again reduces to j 6 c−mcj.
• s+t > b+c. This says i+j−ωij > b+c. This is clear from the definition of P−

>

if ωij = 0 so suppose ωij > 0. Now, as in the first bullet point, δij − ǫij 6 0 and

i+ j > b+ c imply j > b+ c−a. The latter is equivalent to 2i+2j−22i+j−L
2 >

2b+ 2c, or, dividing by 2, i+ j − 2i+j−L
2 > b+ c. But since b+ c is an integer,

this implies i+ j − ⌈2i+j−L
2 ⌉ > b+ c as desired.

• (s + t = b + c) =⇒ s > a. This translates to, if i + j − ωij = b + c, then
i+ ωij > a. If ωij = 0, the hypothesis would clearly contradict the assumption
i+ j > b+ c. Thus we may assume ωij > 0 which means 2i + j > L. Adding
this to −i− j > −b− c− ωij gives i > a− ωij as desired.

Now suppose Qst ∈ Q−
>, so that conditions (4.5a)-(4.5c) are satisfied alongside

s+t > b+c and (s+t = b+c) =⇒ s > a. We need to check that if Φ−1(s, t) = (i, j),
that is, i = s − ωst and j = t+ 2ωst, then (i, j) satisfies conditions (4.3a)-(4.3c) as
well as δij − ǫij 6 0 and i+ j > b+ c. (We do not need to check condition (4.3d) as
adding −3i− 3j < −3b− 3c to (4.3c) yields i− 2j < a.)

• Condition (4.3a): 0 6 j 6 c. This translates to 0 6 t+2ωst 6 c. The left hand
side follows from 0 6 t (which is the left hand side of (4.5a)). Now, if either
t−c or a+b are odd, then 2s+2t 6 a+b+2c−mct implies 2s+2t < a+b+2c,
which is to say t+22s+t−L

2 < c so that t+2ωst 6 c. On the other hand if both

t− c and a+ b are even, then we can only deduce t+ 22s+t−L
2 6 c from (4.5c),

but in this case 2s+t−L
2 = ωst so we still get what we want.

• Condition (4.3b): j 6 i 6 b+ c. This translates to t+ 2ωst 6 s − ωst 6 b + c.
The right hand side follows from the right hand side of (4.5b). If ωst = 0, then
the left hand side comes from the left hand side (4.5b). Now suppose ωst > 0.
We need to show that t + 2ωst 6 s − ωst. The inequality we wish to show is
equivalent to 2t−2s+6ωst 6 0. Since 2ωst can be rewritten as 2s+ t−L+mLt

this becomes 4s+ 5t 6 3L− 3mLt.
First suppose that s + t > b + c and mLt 6 mct. Since twice (4.5c) reads
4s+ 4t 6 2L+ 2c− 2mct it suffices to prove t 6 a+ b− c+ 2mct − 3mLt, since
the sum of the last two inequalities mentioned gives the one at the end of the
last sentence. Since t 6 c, it suffices to show a+ b > 2c − 2mct + 3mLt. Since
s + t > b + c, we have −2s − 2t 6 −2b − 2c − 2 which we can add to (4.5c)
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to get a > b + 2 +mct or a − b > 2 +mct. Adding this to 2b > 2c − 2 yields
a+ b > 2c+mct which implies a+ b > 2c− 2mct+3mLt since we are assuming
mLt 6 mct.
Now suppose that s+ t > b+ c, but 0 = mLt < mct = 1. Since L+ c must be
odd, we have strictness in (4.5c), that is we have 2s+ 2t < a+ b+ 2c = L+ c.
Thus we have 4s+4t 6 2L+2c− 2 so it suffices to prove t 6 a+ b− c− 1 since
adding these gives 4s + 5t 6 3L− 3mLt as desired. Again, t 6 c so its enough
to show a+b > 2c+1. Since strictness of (4.5c) implies 2s+2t 6 a+b+2c−1,
we can add this to −2s−2t 6 −2b−2c−2 to obtain a > b+3. Since b > c−1,
this implies a+ b > 2c+ 1 as desired.
Finally suppose that s + t = b + c (and so also s > a). We need to show
4(b + c) + t 6 3L − 3mLt, or equivalently, t 6 3a − b − c − 3mLt. When
s + t = b + c, condition (4.5c) becomes a > b + mct. Thus s > a implies
s > b + mct + 1, which in turn means t 6 c − mct − 1. In fact t 6 c − 2
because if t = c− 1 then we would have mct = 1 and thus t 6 c− 2. Now since
a > b+mct > c−1+mct this means t 6 c−2+(a−b−mct)+2(a−c+1−mct)
or that t 6 3a − b − c − 3mct which implies t 6 3a − b − c − 3mLt unless
0 = mct < mLt = 1. But in the latter case a+ b must be odd so a > b implies
a > b. Thus we have a > b+ 1 > c so that t 6 c− 2 + (a− b− 1) + 2(a− c) or
t 6 3a− b− c− 3.

• Condition (4.3c): 4i+j 6 a+3b+3c. This translates to 4s+t−2ωst 6 a+3b+3c.
If ωst = 0, then 2s + t 6 L which we add to two times the right hand side of
(4.5b) to obtain 4s + t 6 a+ 3b + 3c as desired. Now suppose ωst > 0. Then
4s + t − 2ωst = 4s + t − 2⌈2s+t−L

2 ⌉ 6 4s + t − 22s+t−L
2 = 2s + L 6 L + b + c,

where the last inequality comes from the right hand of (4.5b).
• δij − ǫij 6 0. This reduces to i− ǫij 6 a which says that s−ωst−max(0, s+ t+
ωst− (b+ c)) 6 a. Since s+ t > b+ c, this is equivalent to −t−2ωst 6 a− b− c.
If ωst = 0 then 2s + t 6 L and which we may add to −2s − 2t 6 −2b − 2c
to get −t 6 a − b − c as desired. If ωst > 0 then it will suffice to show
−t− 22s+t−L

2 6 a− b− c but this reduces to −2s− 2t 6 −2b− 2c.
• i + j > b + c. This means s + t + ωst > b + c. If ωst > 0 this follows from
s + t > b + c. Now suppose ωst = 0. Then 2s + t 6 L which we may add
to −s − t 6 −b − c to get s 6 a. Thus the assumptions s + t > b + c and
(s+ t = b+ c) =⇒ s > a reveal that s+ t > b+ c.

This proves that Φ induces a bijection from P−
> toQ−

>. Moreover if Pij ∈ P−
> , then

δij 6 ǫij and i+j > b+c, so the area range reduces to Rij = [2i+j−(b+c), A−2i−j].
Now if Φ(i, j) = (s, t), then since by the above Qst ∈ Q−

> we have s + t > b + c so
that we get Rst = [2s+ t− (b+ c), A− 2s− t]. Since it is clear that 2i+ j = 2s+ t
we see that Rij = Rst and so the bijection induced by Φ preserves the area range.

(3) Define maps Ω and Ω−1 by

Ω(k, ℓ) = (ℓ, k − ℓ) and Ω−1(s, t) = (s+ t, s).

Since Ω is an invertible linear transformation (with inverse Ω−1), it is immediate
that Ω−1 ◦Ω and Ω ◦Ω−1 are the identity on Z

2. We claim that Ω induces an area
range preserving bijection from H+ to Q+ via the rule that, if Ω(k, ℓ) = (s, t), then
(k, ℓ, 0) → (s, s, t) with inverse induced by Ω−1 via the rule that, if Ω−1(s, t) = (k, ℓ)
then (s, s, t) → (k, ℓ, 0).
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First suppose that Hℓ
k ∈ H+ so that a < ℓ 6 k < b+ c, and that Ω(k, ℓ) = (s, t),

that is, s = ℓ and t = k − ℓ. We need to check inequalities (4.5a)-(4.5c) as well as
s+ t < b+ c and s > a.

• Condition (4.5a): 0 6 t 6 c. This translates to 0 6 k − ℓ 6 c. The left hand
side is true because ℓ 6 k. Moreover, since ℓ > a > b− 1, the inequalities ℓ > b
and k < b+ c give k − ℓ < c.

• Condition (4.5b): t 6 s 6 b + c. This translates to k − ℓ 6 ℓ 6 b + c. Now
k 6 b+ c− 1 6 2a+ 1 < 2ℓ which established the left hand side. On the other
hand ℓ 6 k < b+ c makes the right hand side obvious.

• Condition (4.5c): 2s + 2t 6 a+ b + 2c −mct. This translates to 2k 6 a + b+
2c−mc(k−ℓ). But k 6 b+ c− 1 and since a > b− 1 also k 6 a+ c. Since adding
these gives 2k 6 a+ b+ 2c− 1 we are done.

• s+ t < b+ c. This translates to ℓ+ k− ℓ < b+ c, that is, k < b+ c, as assumed.
• s > a. This says ℓ > a, as assumed.
Now suppose that Qst ∈ Q+ so that the inequalities (4.5a)-(4.5c) hold and we

have s + t < b + c and s > a. We need to show that if Ω−1(s, t) = (k, ℓ) then
Hℓ

k ∈ H+, that is, a < ℓ 6 k < b + c. Since k = s + t and ℓ = s, this says
a < s 6 s+ t < b+ c. The left and right hand inequalities are those assumed above.
The middle inequality follows from the left hand side of (4.5a).

This proves that Ω induces a bijection from H+ to Q+. Moreover if Hℓ
k ∈ H+, then

Rℓ
k = [ℓ,A − k − ℓ]. Now if Ω(i, j) = (s, t), then since by the above Qst ∈ Q+, we have

s+ t < b+ c so ǫst = 0 and Rst = [s,A− 2s − t] = [ℓ,A− 2ℓ− k + ℓ]. Thus Rℓ
k = Rst and

so the bijection induced by Ω preserves the area range. �

4.6. Combinatorial recursion. In this section, we show that the combinatorial expression
of Theorem 3.1 also satisfies the recursion relations of Lemma 2.23 for c > 1 and equals
F (a, b, 0) and F (a, b,−1) for c = 0 and c = −1, respectively.

Recall that the set of quasiheads is defined as

Q̃(a, b, c) = {(i, j) | 0 6 j 6 c, j 6 i 6 b+ c, 2i + 2j 6 a+ b+ 2c−mcj}

where mcj = c− j (mod 2). Define

Hcomb(a, b, c) =
∑

(i,j)∈Q̃(a,b,c)

qA−2i−jti+ǫij , (4.8)

where ǫij = max(0, i+ j − b− c).

Lemma 4.11. For a+ 1 > b, a+ 1, b+ 1 > c > 1, we have

Hcomb(a, b, c) = Hcomb(a+ 2, b+ 2, c− 2) + (qt)cH(a+ c, b− c)

+ (qt)c−1H(a+ c, b− c+ 2) +
∑

26ℓ6min(2c,a−b)

qa+2c−ℓtℓ+b − δa,b−1q
a+2ctb

− (δa,b + δa,b−1)q
a+2c−1tb+1, (4.9)

where H(a, b) is given by (2.7).

Proof. Observe that if (a′, b′, c′) = (a+2, b+2, c−2), then b′+c′ = b+c, a′+b′+2c′ = a+b+2c,
mc′j = mcj. Therefore

Q̃(a′, b′, c′) = {(i, j) | 0 6 j 6 c′, j 6 i 6 b+ c, 2i+ 2j 6 a+ b+ 2c−mcj}.
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We conclude that Q̃(a′, b′, c′) ⊆ Q̃(a, b, c) and the difference of these two sets consists of

(i, j) ∈ Q̃(a, b, c) with j = c or j = c− 1. In the former case, the inequalities have the form

c 6 i 6 b+ c, 2i 6 a+ b (4.10)

and the contribution to Hcomb equals
∑

c6i6b+c
2i6a+b

qA−c−2i ti+max(0,i−b).

This sum breaks into two parts for c 6 i 6 b and for b+ 1 6 i
∑

c6i6b
2i6a+b

qa+2b+2c−2i ti +
∑

b+16i6b+c
2i6a+b

qa+2b+2c−2i t2i−b.

If a > b, the restriction 2i 6 a+b in the first sum is redundant and so it becomes (qt)cH(a+
c, b − c). On the other hand if a = b − 1, the first sum does not contain the i = b term
qa+2ctb but (qt)cH(a+ c, b− c) does. Thus we conclude the above is equal to

(qt)cH(a+ c, b− c)− δa,b−1q
a+2ctb +

∑

2b+262i6min(2b+2c,a+b)

qa+2b+2c−2i t2i−b.

Similarly, in the case j = c− 1 for a > b we obtain

c− 1 6 i 6 b+ c, 2i 6 a+ b+ 1

and the contribution to Hcomb equals
∑

c−16i6b+1
2i6a+b+1

qa+2b+2c−2i+1 ti +
∑

b+26i6b+c
2i6a+b+1

qa+2b+2c−2i+1 t2i−1−b.

If a > b the restriction 2i 6 a + b + 1 in the first sum is redundant and so it becomes
(qt)c−1H(a + c, b − c + 2). On the other hand if a = b or a = b− 1 the first sum does not
contain the i = b+1 term qa+2c−1tb+1 or the i = b term qa+2ctb but (qt)c−1H(a+c, b−c−2)
does. Thus we conclude the above is equal to

(qt)c−1H(a+ c, b− c+ 2)− (δa,b−1 + δa,b)q
a+2c−1tb+1

+
∑

2b+362i−16min(2b+2c−1,a+b)

qa+2b+2c−2i+1t2i−1−b.

Finally,

∑

2b+262i6min(2b+2c,a+b)

qa+2b+2c−2it2i−b +
∑

2b+362i−16min(2b+2c−1,a+b)

qa+2b+2c−2i+1t2i−1−b

=
∑

2b+26k6min(2b+2c,a+b)

qa+2b+2c−ktk−b,

where we combined terms with even and odd k. If we denote ℓ = k − 2b, then
∑

2b+26k6min(2b+2c,a+b)

qa+2b+2c−ktk−b =
∑

26ℓ6min(2c,a−b)

qa+2c−ℓ tℓ+b.

�
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Corollary 4.12. Let

Fcomb(a, b, c) =
1

1− t/q
Hcomb(a, b, c; q, t) +

1

1− q/t
Hcomb(a, b, c; t, q).

Then for a+ 1 > b, a+ 1, b+ 1 > c > 1 we have

Fcomb(a, b, c) = Fcomb(a+ 2, b+ 2, c − 2) + (qt)cF (a+ c, b− c)

+ (qt)c−1F (a+ c, b− c+ 2) +
∑

26ℓ6min(2c,a−b)

(qt)ℓ+bF (a− b+ 2c− 2ℓ)

−
1∑

j=a−b+1

(qt)b+jF (a− b+ 2c− 2j). (4.11)

Proof. This follows directly from Lemma 4.11, using (2.6), and Example 2.16. Also note
that

1∑

j=a−b+1

(qt)b+jF (a− b+ 2c− 2j) = δa,b(qt)
b+1F (a− b+ 2c− 2)

+ δa,b−1

[
(qt)bF (a− b+ 2c) + (qt)b+1F (a− b+ 2c− 2)

]
.

�

We need to check the base cases.

Lemma 4.13. We have

Fcomb(a, b, 0) = F (a, b, 0) for a, b > 0,

Fcomb(a, b,−1) = F (a, b,−1) for a, b > 1.

Proof. For a, b > 0 and c = 0, we have j = 0 in Q̃(a, b, 0), so 0 6 i 6 b. Therefore, by
comparing (4.8) with (2.7)

Hcomb(a, b, 0) = H(a, b),

and hence Fcomb(a, b, 0) = F (a, b). Furthermore, by Corollary 2.11 the first claim follows.
For a, b > 1, we have by Lemma 2.22 and the fact that Fcomb(a, b,−1) = 0 by definition

that F (a, b,−1) = Fcomb(a, b,−1) = 0. �

Corollary 4.14. For nonnegative integers a, b, c and a + 1 > b, a + 1, b + 1 > c, we have
F (a, b, c) = Fcomb(a, b, c) proving Theorem 3.1.

Proof. By Lemma 2.23 and Corollary 4.12, F (a, b, c) and Fcomb(a, b, c) satisfy the same two
step recursion. Hence the equality F (a, b, c) = Fcomb(a, b, c) can be reduced to the equalities
F (a, b, 0) = Fcomb(a, b, 0) for a, b > 0 and F (a, b,−1) = Fcomb(a, b,−1) for a, b > 1. These
are given in Lemma 4.13. �

4.7. Proof of Theorem 3.5. By Corollary 4.14, we have that F (a, b, c) = Fcomb(a, b, c).
By Proposition 4.10, there is an area preserving bijection between quasiheads and heads.
Combined with Corollary 4.9, there is also an area preserving bijection with pseudoheads
and tails. Furthermore, each λ ⊆ λ(a, b, c) sits in precisely one chain indexed by a given
pseudohead (or head). The proofs of Theorems 4.6 and 4.7 tell us, which chain λ sits in
depending on the cases spelled out in Section 3.2:
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Case Chain membership
Case 1(a) λ ∈ C(Pyz)
Case 1(b)(i) λ ∈ C(P(L+z−x)z)

Case 1(b)(ii) λ ∈ C(T (L−x)(b+c−y))
Case 2 λ ∈ C(Hy

x)

Now if the area range for a given chain is [r,R], then due to the symmetry between q and
t in each chain, we have

stat(λ) = r +R− area(λ) = r +R−A+ x+ y + z

for λ = (x, y, z). Using the area ranges for pseudoheads, tails, and heads as given in
Table 3 and the beginning of this section, this yields (3.1). In Case 1(a), we first obtain

stat(λ) = x+max(ǫyz , δyz), which is equal to x+max(0, ⌈y−a
2 ⌉, y + z− b− c, ⌈2y+z−L

2 ⌉). In
Case 1(b)(i), we first obtain stat(λ) = −L+2x+y−z+max(ǫ(L+z−x)z, δ(L+z−x)z), but using

that y + z 6 b+ c and L+ z − x 6 y, we obtain ǫ(L+z−x)z = 0 and δ(L+z−x)x = ⌈L+z−x−a
2 ⌉.

Combined with Theorem 3.1 this proves Theorem 3.5.
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