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ABSTRACT 

Envelope solitons for surface waves in deep water are studied 

using the coupled equation for the Fourier amplitudes of the surface 

displacement. Comp3.rison is. made with some wave-tank experiments .of 

Feir. A linear stability analysis is made for an imposed transverse 

ripple.. A slowly growing instability is found at wavelengths 

comparable to, or longer than, the length of the soliton. A slowly 

developing instability is found also for a soliton propagating through 

a train of waves of wavelength appreciably smaller than that of the 

soliton. A soliton propagating through a train of waves with wave­

length much larger than that of the soliton exhibits gross distortion 

due to the orbital fluid velocity of the wavetrain. This distortion 

is to some extent reversible, as the soliton tends to "recover" when 

·the wavetrain is damped to zero amplitude. Some comments are given 

concerning the statistics of a wave field containing solitons. 

I. INTRODUCTION 

The hydrodynamic equations describing the gravity wave field 

on the surface of an inviscid, irrotational fluid also may be written 

so as to describe the envelope function for a packet of surface waves. 

The propagation of a symmetric wa";ep3.cket of deep water waves was 

1 studied by Lighthill. In his analysis nonlinear interactions led to 

the development of a nonsymmetric shape and a peaking of the packet 

envelope function. 

2 
Benney and Newell have observed that certain waveforms have 

a persistent shape due to the balancing of nonlinear and dispersive 

effects. Chu and Mei3 have used a nonlinear WKB method, with the 

inclusion of dispersion, to study some steady and some nonsteady wave­

trains. Similar studies have been made by Davey 
4 

and by Lake and Yuen5 

who used the average Lagrangian method of Whitham
6 

to derive the non-

linear SchrOdinger equation. This equation describes the envelope 

function of a narrow bandwidth train of deep water waves. Among the 

solutions of this equation which were studied, are those for envelope 

solitons. 7 Zakbarovand Shabat
8 

have shown that these solitons are 

stable when interacting with other wavetrains described by .the same 

nonlinear Schrooinger equation. It is to be emphasized that these 

solitons (and other persistent waveforms) are one-dimensional wave-

trains. 

Experimental studies of soliton-like wavetrains prop3.gating in 

wa~ tanks have been reported by Feir9 and by Lake and Yuen5• The 

observed properties of these wave systems seem to be consistent w.ith 

theoretical expectaions. 3,5 
The above approaches3-7 assume a slowly varying amplitude for 

the wavetrain. Another approach to the investigation of surface wave 
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interactions is to decompose the wave amplitude into Fourier 

modes. The interactions then appear as nonlinear couplings of the 

. 10 11 12 
linear mode amplltudes. " This technique was used by West, Wttson 

and Thomson,13 who made a numerical analysis of the coupled mode equa­

tions. In this analysis a tendency for "bumps" in the envelope of a 

wavetrain to grow was noted by the authors. Indeed, unless care was 

taken to avoid such "bumps" when the initial conditions were selected, 

the growth of these tended to obscure the other phenomena being studied. 

The purpose of this paper is to investigate soliton propagation 

using the coupled mode equations of Ref. (13). In Section II the non-

linear SchrOdinger equation will be obtained as an approximation to the 

coupled mode equations. Solutions for envelope solitons and the 

Benjamin_Feir
14 

instability criteria will be noted for subsequent 

reference. 

Some numerical examples of the propagation and distortion of 

solitons 1-1ill be given in Section III, where the calculated results are 

compared with observations from wavetanks. 

Soliton stability is studied in Section IV. It is shown that a 

periodic modulation parallel to the wavecrests causes a r;.ather slowly 

growing instability. It is also shown that even in the one-dimensional 

case that the envelope soliton appears to be unstable upon encountering 

a second wavetrain of substantially different wave numbers than. those 

of which'the soliton is constructed. This does not violate the conclu-

8 
sions of Zakharov and Shabat, since the two wavetrains of substantllDly 

different frequencies each satisfy different nonlinear Schrodinger 

equations. 

Section V considers some statistical aspects of a wave field 

containing solitons. 
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II. RELATION OF THE MODE COUPLING mUATIONS 

TO THE NONLINEAR SCHRODINGER mUATION 

Following Ref. (13), we let the x-y plane of a rectangular 

coordinate system coincide with the undisturbed surface of the fluid, 

the depth of which is considered to be much larger than the wavelength 

of those surface waves studied. A two dimensional vector in the 

surface plane is indicated as ~ = (x,y). The wave height at position 

~ and time t is ~ (~, t). The corresponding velocity potential at 
15 

z = 0 is ¢ (x,t). A complex amplitude Z(~,t) is introduced as s ~ .-

Z(x,t) V -1 ¢ - it x s 
(1 ) 

Here'-
l. 

Vx g~/(-'V 2)4 
s 

is the phase velocity operator and 'V 
s 

the two-dimensional gradient 

operator acting on the coordinates (x,y). 

We suppose our "ocean" to be rectangular and of area L:. A 

discrete Fourier representation of Z can then be written in the form 

(2 ) 

Equations satisfied by the a's were obtained in Ref. (13) to be of 
f 

the form 

,- As 
<:-....• 

kp \ * li
f + i~ af ) B c~ at a + j B C~ 

a~a,£ 
L-J f-'!:-l! ~ '£ L ~+'£-~ ~ 

t,p t,p 
~- ~ ~ 

\: ..... 
kn 

* (1(a 4) + i t_ o . c; at a a + (3 ) 
k+n-"-p 

~ ~ £ 
~'1;'~ 

"" ....... '" ....... 

in the absence of viscous damping and wave generation due to wind. 
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1 

Here illk = (gk)2 is the angular frequency of a linear gravity wave of 

wavenumber k. [Note that in Ref. (13) these equations were expressed 

in terms of the slope variables 

(4) 

The coefficients C in Eqs. (3) are related to the coefficients r of 

Ref. (13) by the relations 

k k 
C£ '" = (£p/k) r '" , 
.~ ~ 

kp kp 
C-
£ 

(£P/k) r-
£ 

. 1 

We consider noW a narrow packet of waves near a fixed wave 

number JS = K '1 , directed parallel to the x-axis. In this case we 

can write the complex surface amplitude Z in the form 

, 
\"" 

I 
L~ 

a._ exp[i(p·x + illKt) 1 , 
K+P '" '" "'", .e 

where the primed summation implies that 

p « K (6) 

Equations (3) can be re-expressed in terms of G, using the 

second of Eqs. (5). The second order terms in (3) do not contribute 

-6-

because of the constraints on wavenumbers implied by the a-functions. 

The expression ill /K+P / is ex~nded to second order in .e and vie set 

'" '" 

- i2~/2 . 

The resulting equation for G 

Schr·Odinger equation 

(dG elG) 
i dt + cg dx 

is then the nonlinear 

1 
2 02G + 4 /G/ 2 G\ 

eli J 

Here c
g 

- ~ is the group velocity of the wavetrain at wavenumber 

K. To describe waves in one-dimension only, we write G = G(x,t) 

and drop the term involving y-derivatives from Eq. (7) • 

The one dimensional solution to Eq. (7) corresponding to an 

envelope soliton is of the fo~,5,7 

G(x, t) AO sech~ III K(x - Xo - Vg t)l exp [ i(qx - ill; + ¢o)] 

where q, ¢o' Xo and AO are real parameters and 

rI = qc + 
g 

(8 ) 

The "centered soliton, " corresponding to q = 0, is of the form 

(10) 



where 

and ¢ is a constant. 

c t 
g 
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(11) 

For later reference, we quot~ the Benjamin_Feir14 solution to 

Eq. (7), describing the interaction of two sinusoidal wavetrains. This 

is of the form 

G 

Here AO is a constant, € is a very small parameter, and 

to 

and 

e = o 
2 

- ~ m t/2 

We write 

Al = Re[exp(i q ~ + yt)] 

find that 

02
8 r (d

2 1 :- o~ If 1 : 2 ----'1 
d~2 

l - ,A l ~ l 
, ot j 0 I .. 

1 

y "!; ~ 2 4 2 2 
(UXqf8 ) [8Ao K - q ] 

The maximum growth rate, using Eq. (16), occurs for 

For this value of q, 

(12) 

(14) 

(16) 

(18) 

-8-

On writing m = K AO for the slope of the large amplitude wave, we 

see that 

TBF -

describes an e-folding time for the Benjamin-Feir interaction. 

Reference to the nonlinear term in Eq. (7) suggests that can be 

taken as a characteristic time scale for nonlinear interactions to 

develop, providing that the wavenumber seIBration between discrete 

Fourier modes in Eq. (2) is less than [see Eq. (17)] 

6 k = 2Y2K m. - (20) 

For the soliton depicted by Eq. (8) the characteristic time 

for dispersive spreading is also 't"BF' The balancing of this spreading 

by the nonlinear "peaking" effect leads to the steady solution (8). 

If waves in only a single dimension are considered, we can 

re-write Eq. (7) in the simpler form 

. oG 
l.dt (21) 

It has been shown by Zakharovand Shabat
8 

that solutions to Eq. (21) 

may be constructed as a superposition of several solitons and a non­

soliton component. The solitons remain as stable entities in spite of 

the presence of the nonlinear coupling term in Eq. (21). This 

stability of the soliton solutions of Eq. (21) does not imply a 

corresponding stability of the soliton solutions to the modal rate 

equations (3),' since the derivation of Eq. (21) from Eqs. (3) required 

the condition (5), i.e., that the surface wave spectrum is narrow. 

I 
-I 
I 

"J 

. i 
·1 
I 

I 
I' 

1 
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III. COMPARISON WITH THE FEIR EXPERIMENTS 

The numerical code described in Ref. (13) integrates Eqs. (3) 

for a specified set of modes, but is restricted to one-dimension, with 

all wavenumbers pu-allel to, say, the x-axis •. A "fetch" L is 

specified with periodic boundary conditions at 

The mode spacing is L k = 2rr./L. 

L 
x=-2" and x 

To integrate Eqs. (3) the initial amplitudes 

a (0) (k = n~, n = 1, 2, ••• ) at t = 0 are specified. 
n n 

L 
2" 

If the initial state of Eq. (3) is prepared to be that of a 

soliton, then the nonlinear interactions should not change the surface 

structure, i.e., the soliton should persist as it proPagates along the 

water surface. The initial conditions for Eq. (3) are obtained by 

taking the Fourier transform of the envelope function at time t = 0, 

to obtain the mode amplitudes 

a (0) 
n (22 ) 

where G(5,0) is given in Eq. (10). Integrating and normalizing 

Eq. (22), we obtain for the mode amplitudes of an initial soliton 

a (0) 
n 

r 1 - ·(0) h leN - ri)rr. Lk - aN sec ~ 
8 m K 

with the central mode given by wavenumber K = NLk • 

In calculations, Eq. (23) is used to represent the initial 

soliton by a finite number of modes. In Figure la is shown an 

envelope function constructed from fifteen modes with the parameters, 

. -1 1 
K = 0.2516 cm J L k = 0.01 cm - and m = 0.064, where m is the 

slope of the soliton. This envelope is given by the absolute value of 

-10-

G (x, t) (24 ) 

where 

is the group velocity of the central mode and the slope variables from 

Eq. (4) have been used. The modal rate equations in Ref. (13) are 

written in terms of the mode slopes, i.e., the q's, so that in Fig. 1 

and in all subsequent figures involving the envelope, it is the 

absolute value of Eq. (24) that is plotted. The mode slopes for Fig. 1 

are listed-in. Table I. 

In Fig. lb the displacement of the water surface is depicted 

for the above soliton. The surface displacement is described by 

Eqs. (1) and (4). The parameters for this example were selected to 

correspond to the wavepulse experiments conducted by Feir. 9 The 

initial amplitude of the central mode in Eq. (23) is obtained from the 

experiment using the expression 

~(O) 

where m = 0.064 and G(x = 0) = 0.254 cm for the first trace in 

Fig. 3 of Ref. (9) yielding ~(O) = 0.056 cm. The slope of the 

soliton is given by the sum of the mode slopes, i.e., 

~(O) 

~ 
(26) 

n 
which is also equal to the central wavenumber times the maximum surface 

displacement. 
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Figure 1 analytically models the shape o~ the pulse generated 

in Feir's experiment as measured four feet from the wavemaker. At a 

distance of twenty-four feet from this pOint, i.e., twenty-eight feet 

down the tank, the pulse amplitude is one half its initial value. This 

damping of the pulse is simulated in the present calculation using a 

phenomenological viscosity coefficient in the rate equations. The 

linear amplitude damping coefficient yields 

G(x, t) G(x,O) exp(-at) 

where t is given by the ratio of the distance traveled to the group 

velocity. The decay rate is given by a = 0.03 sec-lor in terms of 

the viscosity coefficient v = a/~ = 0.47 cm2/sec. 

Feir's discussion9 does not include the concept of a soliton. 

The analysis of Chu and Mei,3 however, compares the evolution of the 

pulse modeled as a soliton with the experimental results. As they 

pointed out the dominant effect is the attenuation in amplitude due to 

the short time of evolution; i.e., short compared with the e-folding 

time which is given in Table I as 11 sec. In Fig. 2 the results of 

the present calculation are given for the pulse after 24 seconds or 

approximately 24 feet from the initial point. The shape of the pulse 

is virtually unchanged from Fig. 1. The normalization has changed 

from 0.254 cm, however, to 0.115 cm; a 0.45 reduction in amplitude. 

Reference (9) describes the launching of six pulse shapes, all 

with the same central mode number and length of modulation, but with 

increasing amplitudes. The simulation of run (1), shown in Figs. 1 and 

2, indicates that this pulse is very close to a soliton in shape. The 

remaining runs, with their increased amplitudes, must therefore not be 

-12-

solitons. The modulational instability of these waveforms causes 

these pulses to breakup into one or more stable sOlitons.
16 

'This 

interpretation is consistent with what is observed in the latter runs 

of Ref. (9). 

In Fig. 3 the last of the six runs from Ref. (9) is simulated. 

Since only the amplitude was increased between this and the first run, 

the mode slopes of the soliton are simply scaled by a factor of four 

to correspond with the experiment. The viscosity coefficient has been 

modified in this case to again give the gross attenuation of the pulse. 

These quantities, along with the slope of the pulse are listed in the 

second column of Table I. 

The initial pulse is depicted in Fig. 3a, as it would be at 

the wave generator rather than at four feet along the tank as was the 

soliton in Figs. 1 and 2. This is admittedly not a complete 'simula-

tion of the experiment. After traveling 28 feet down the tank, 

however, Fig. 3b shows the same general structure observed in Ref. (9) 

for the breakup of the initial waveform. 

-' 
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IV. STABILITY 

We discuss first the stability of the soliton solution to Eq. 

(() given by Eq. (10) when a small sinusoidal ripple is impressed on 

it transverse to the direction of soliton propagation. 

Equation (() may be rewritten in a coordinate system translating 

with a velocity c parallel to the x-axis, i.e., 
g 

the more convenient form 

: oG 
l.dt 

= x - c t, in 
g 

(28 ) 

From Eq. (28) we obtain the relation for the wave energy (in scaled 

units) 

o 2 
i dt IGI 

A solution having finite extent in the ~-direction and periodic bounday 

conditions in the y~direction then satisfies the energy integral 

constant (30 ) 

over the surface area E A developing instability thus extracts 

energy from the soliton. 

The solution of the nonlinear Schrodinger equation which we 

investigate is of the form 

where G represents the soliton solution (10) and Y 
s 

(31 ) 

is assumed to 

-14-

be very small relative to the amplitude of the soliton. This is our 

transverse perturbation. It i:; convenient to introduce the dimen-

sionless variables 

-r == crx.t/8 

s (32 ) 

and to write the perturbation amplitude as the complex function 

yes, t) U(s, -r) + i yes, -r) , 

where U and V are real. Substituting expression (31) into the 

equation of evolution (28), linearizing in Y, and equating to zero the 

real and imaginary parts of. the resulting expression, yields the coupled 

equations oV 02U 
-d'T os2 

+ (H + W)U 

and 

oU 02V 
(H - w)U • d'T os2 

+ (34) 

The coefficient functions in Eq. (34) are given by 

H 

W 
2 

2 sech (s) 

and 

(36) 

Consider first the case of a simple exponentially growing 

instability, for which we write 
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u u(s) exp(E-r) 

v yes) exp(E-r).' 

When substituted into Eq. (34) this yields 

-Ev 

Eu 

u + (H + W)u 
ss 

v + (H - W)v , ss 

where the subscript notation for derivatives has been adopted, i.e., 

u ~ du/ds, etc. For stable oscilJating perturbations we would, on s 

the other hand, write 

u u(s) sin (E-r) 

v = yes) cos (E-r) 

which when substituted in Eq. (34) yields 

Ev 

Eu 

u + (H + W)u ss 

v + (H - W)v • ss 

Since neither set of Eqs. (37) and (38) is self-adjoint, we 

have no a priori assurance that normalizable solutions will be found 

with E real. 

At this point it might be observed that our discussion is 

similar to that of SChmidt,17 who studied the stability of a plasma 

wave soliton. His soliton was of the form (10), but his equation 

describing the transverse perturbation was somewhat different from 

Eqs. (34). SChmidt17 observed that for the case 

Q E o , 

-16-

Eqs. (37) and (38) have two sets of solutions: 

Even Farity: v v (0) sech s 

u 0 

Odd Farity: v 0 

u u (0) dV(O)/dS, (39 ) 

where the superscript indicates the condition Q = E = O. 

The solutions [Eqs. (39) 1 suggest using perturbation theory 

to analyze Eqs. (37) and (38) for small Q, or long wavelength 

perturbations. Consider first the odd parity case and define the 

operators 

2 
2 sech s - 1 

L' - 2 2 2 
(d Ids ) .+ 6 sech s - 1 • 

Equations (37) can then be rewritten 

k'u 

k'v 

and, using Eq. (39), 

- Ev - Qu 

2 
Eu - Qv + 4 v sech s 

o . 

( 40) 

(41) 

(42 ) 

Multiplying both expressions in Eqs. (41) by u(O) and integrating 

over all s, using Eqs. (42) and substituting the first expression 

into the second, yields 

'J 

.. 
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-00 

If we write the solution to Eq. (41) as a first order correction term, 

v = (44) 

then from the second expression in Eq. (41), to lowest order in E 

and Q, we obtain [see Eqs. (40)J 

(0) 
u • 

To evaluate the ratio of integrals in Eq. (43) and thereby 

obtain the eigenvalue E, we use the relations 

1 
2" ~r 

-00 

The first of these relations derives ~irectly from Eq. (41), whereas 

the second is the result of a numerical integration. Neglecting Q2 

in Eq. (43) we obtain the eigenvalue 

( 46) 

Equation (45) was numerically evaluated for later use. Also the above 

\ 
integrals were evaluated numerically as a test of the solution. 

An analysis similar to the above, starting with the even parity 

zeroth order solution [see Eqs. (39)) gave stable, oscillating modes 

[the case described by Eqs. (38)) for small Q. This contrasts with 

the results of Schmidt17 for plasma waves, where the even parity 

solution was unstable. 

For a shorter wavelength perturbation, corresponding to 

Q » 1, Eqs. (34) have the approximate form 

U + (Q - l)U ss 

v + (Q - l)V • ss 

These equations describe the propagation of linear waves, decoupled 

from the soliton. An impressed ripple of short wavelength [consistent 

with the assumption (5)] will thus tend to propagate in accordance with 

the linear dispersive wave equation. 

For Q > 1 there is no normalizable solution to Eqs. (37) 
18 

and (38) when E = 0, so a transition from simple exponential 

growth to simple oscillatory behavior is not possible in the range 

l<Q<oo. 

Equations (34) were numerically integrated using the perturba­

tion solution u = u(O), v= Ev(l) as the starting condition for 
19 

'( = O. For Q ~ 1 simple exponential growth consistent with the 

result (46) seemed to occur (for the two exponentiating periods that 

the calculation was continued). For Q = 2 the U and V solutions 

oscillated. Growth was not observed within the accuracy of the 
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calculation, but propagation away from the soliton did occur. For 

C), = 1.5 propagation away from the soliton was observed, but at a slower 

rate. Some growth seemed to occur. The oscillatory motion for the 

larger Q value is consistent with our conclusions based on E~s. (47). 

Defining the e-folding rate 7 by the relation 7t = ET, we 

have summarized in Fig. 4 the instability discussed above. The ~uantiw 
1 

7'BF [E~. (19)] is plotted against Q2 = t/(mK). Due to the limited 

accuracy of our calculations, the growth rate in the interval Q > 1 

is not shown. 

We now discuss the propagation of two specific solitons through 

a train of waves of wave number significantly different from that of 

the soliton. For both solitons the interval L was chosen as 100 m, 

so the wave-number interval was The start ing 

Fourier amplitudes were obtained using E~. (22). The initial slopes 

~(O) are given in columns (3) and (4) of'Table I. 

The soliton of column (3) has a central mode number N = 10, 

with amplitudes in the range- 6 ~ n ~ 14. We shall refer to this as 

the "fat" soliton, since its broad spectrum would seem to violate the 

conditions under which the nonlinear SchrOdinger e~uation was derived. 

E~uations (3) were integrated for an interval of 20 seconds 

for the fat soliton with the initial conditions of column (3) in Table 

1. The wave height ~,as obtained from E~. (3), is shown in Figs. 5l,b 

at t = 0 and 50 secs for the fat soliton and in Figs. 6a,b for the 

"thin" soliton. The corresponding envelope function G for the thin 

soliton is shown in Figs. 7a,b for t = 0 and 50 secs. Again no disto~ 

tion is discernable. 

We now study the interaction of these two solitons with other 

wavetrains. For the first case we let the thin soliton interact with 

shorter wavelength waves, corresponding to the mode numbers n = 32 

-20-

and 33. The startir~ slopes at t = 0 were ~32(0) 

f 00 and 450
• ~33(0) = 0.15, with respective phases 0 

0.1 and 

The .Iave 

amplitude S is shown in Figs. 8a,b,c at t = 0, 30, and 50 seconds, 

respectively. The envelope function G is shown at these times in 

Figs. 99., b, c. Little distortion has occurred at 30 secs. At 50 

seconds, however, the soliton edges show an appreciable disto~tion. 

It is here where G is small that a modest phase distortion can most 

readily upset the cancellation of Fourier amplitudes. These results 

certainly suggest that eventually the soliton would be destroyed by 

inter~ction with a spectrum of short wavelength waves. 

The next example studied of soliton interaction involved a 

train of long wavelength waves, with mode numbers n = 6 and 7. The 

t · 1 a,..(O) = 0.1 and "7(0) = 0.15, and the thin star ~ s opes were 't) ~ 

. d The d4splacement ~ is shown in Figs. lOa-f soliton was again use •• s 

at various times in the interval 0':::; t .:s 20 seconds. Marked 

distortion occurs at 2 secs, about ,one wave period at the soliton 

carrier fre~uency. The soliton substantially recovers its shape at 

10 seconds and then again at 20 seconds. It would appear that the 

, d d stretched by the orbital fluid velocity soliton, is being compresse an 

of the interacting wavetrain and that this is to some extent reversible. 

To investigate this further, the above calculation was repeated but at 

a,.. and "7 were set e"ual to zero. At 10 seconds the amplitudes 't) ~ ~ 

h . Fig 10d At 20 and 50 this time the soliton has the form s own ~n " • 

seconds it has amplitude shown in Figs. lla,b. The corresponding 

's shown in Figs. 12a,b at 20 and 50 seconds. envelope function • 

t 4me 'nterval that the soliton is undergoing a not clear in this • • 

progressive distortion. The leading edge (to the right) of the 

It is 

Ii 
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envelope function does seem to be steepening somewhat at 50 seconds. A 

similar asymmetric distortion was noted by Lighthill. l 

The final illustration studied of soliton interaction was that 

of the fat soliton interacting with a train of longer waves. These 

corresponded to modes n 3 and n = 4, with starting slopes 

0.09 and respective phases of 00 and 450
• 

The soliton is shown in Figs. l3a-d at times from 0 to 20 seconds. The 

soliton in this case. does not seem to recover, but progressively looses 

its initial waveform. It should be recalled that this was thought to 

bea "marginal" soliton· 

The above examples suggest that a random field of waves of 

wavelength much shorter than that of the soliton will probably br~k up 

the soliton, but rather slowly. A random wave field of much longer 

waves can probably destroy a soliton in a few wave periods. A periodic 

train of long vaves oiistorts the soliton, but it shows some recovery. 
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V. SOLITONS IN AN AMBIENT WAVE FIELD 

The preceding sections were concerned with the persistence of 

waveforms (usually solitons) both when isolated and when interacting 

with simple wavetrains of much different frequency. When discussing 

wave fields, such as present on the surface of the ocean, one often 

makes use of the notion of a wavepacket or pulse to describe the 

behavior of some component of the wave field. In this section we 

consider some statistical aspects of solitons when immersed in an 

ambient spectrum of waves. 

Consider the complex surface displacement [Eq. (2)) to have 

mode amplitudes of the form 

N 

+ L ( 48) 

;\=1 

where the A(~)IS are the amplitudes of the ambient wave field and 

the C (k) I S describe the solitons of which there are N. 
;\-

The 

homogeneous spectrum of the surface wave field over an area of ocean 

1: is given by 

1: 1 ( I 
(211 )2 2" 

2 

a~ I 

where the brackets denote an average over many realizations of the 

surface wave field and the a~'s are given by Eq. (48). 

Assuming the A(~) I s to be independent random variables with 

a Gaussian distribution and also independent of the C;\(~)IS J 

Eq. (49) can be rewritten as 



-23-

!c~) [L:/2(21l)2 J lj(:t) + h(:t) 1 ( 50) 

where 

1("~) - 1 A(~) 12 ) 

I 2 
h(:t) - 1 C", (:t) 1 ) . ( 51) 

'" 
It is not clear how to perform the formal average over the soliton 

distribution in Eq. (51), but it should involve averaging over the set 

of parameters ~ = (m, ~O' ~, 1'> defined in Section II. 

In the absence of solitons the surface wave-field~mplitudes 

have been assumed to be strictly uncorrelated so that the fourth order 

cumulant (r4) of the distribution vanishes. In general, it is of the 

form 

* * 
( a~l ~ a~ a~4) * * (a~l a~) (a~ a~4) 

( 52) 

After some algebraic manipulation and use of Eqs. (.48) - (51), Eq. (52) 

reduces to 
N -<) L.Jo 

",=1 

+ h(~)h(~) (B~_~ B~3-~4 + 

(53) 
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For (N) » 1, i.e., when many so 1.Uons are present in the area L:, the 

second term in Eq. (53) can bu neglected. 

Assuming each of the solitons to have the structure given by 

Eq. (10); Eq. (53) can be rewritten as 

where kiJ. and kill are the components of ~i perpendicular and 

parallel to ~, respectively. 

As mentioned above, we lack sufficient information to rigo~ 

evaluate the indicated statistical average in Eq. (53). We thus try a 

simple model, for mathematical convenience, replacing the B-functions 

by narrow Gaussian f~ctions, setting sech x ~ exp(-x2/2), and 

averaging the soliton parameters over uniform interva~s. If we choose 

all the wavenumbers to be parallel (appropriate for example to 

observations by monostatic, multi-frequency radar20 ) and set 

our model gives 

r (lL k 1. k) A ( / )2 ( 2 TI~ 2 )/8 k02 1
j
, 4 -~' -~' ~5' 4 ~ exp - 11 m ~l + c 

J 
I .. 



! 
I , I,;' 
j 
I· .. 

I 
! 
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Here A is an uneva1uated amplitude and m a "characteristic" slope 

parameter. The cumulant is thus positive definite and decreases with 

increasing spectral width of the soliton. 
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TABLE I: Slope '3.mplitudes [see Eq. (42)' for the "solitons" studied. 

Mode Humber 
n - N 

-7 

-6 

-5 

-4 

-3 

-2 

-1 

o 

1 

2 

3 

4 

5 

6 

7 

Viscosity 
coefficient-v 

Soliton 
Slope-m 

Central 
Wavenumber-K 

Mode 
Spacing-L\ k 

Nonlinear 
Growth time-'BF 

Mode Slope Amplitudes of Solitons -- ~(O) 

X 10-4 2.33 

-4 
5.36 x 10 

1.21 x 10-3 

2.66 x 10-3 

5.6 x 10-2 

. -2 
1.03 x 10 

-2 1.41 x 10 

1.22 x 10-2 

7.73 x 10-3 

4.34 x 10-3 

2.34 x 10-3 

1.25 x 10-3 

6.64 x 10-4 

-4 
3.5 x 10 

0.064 

6 -1 0.251 cm 

0.01 cm-1 

11.0 sec. 

-4 9.32 x 10 

2.1)+ x 10-3 

4.84 x 10-3 

1.06 x 10-2 

2.24 x 10-2 

4.12 x 10-2 

5.64 xlO-2 

4.88 x 10-2 

-2 3.09 x 10 

4 -2 
1. 7 x 10 

6 -2 
9.3 x 10 

5.0 x 10-3 

2.66 x 10-3 

2 
0.19 cm /sec 

0.256 

6 -1 0.251 cm 

0.01 cm-1 

0.69 sec. 

2.63 x 10-3 

6.07 x 10-3 

-2 
1.33 x 10 

4 -2 
2.5 x 10 

-2 3.54 x 10 

-2 3.11 x 10 

-2 
1.99 x 10 

-2 1.13 x 10 

6.14 x 10-3 

0.0 

0.16 

11.1 sec. 

2.68 x 10-3 

5.35 x 10-3 

1.02 x 10-2 

-2 1. 72 x 10 

2.21 x 10-2 

1.95 x 10-2 

-2 1.31 x 10 

7.82 x 10-3 

4.47 x 10-3 

0.0 

0.11 

-1 100m 

-1 
0.0628 m 

18.5 sec. 
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FIGURE CAPrIONS 

Fig. 1. The soliton specified by the slope amplitudes of eoll~rrJIl (1), 

Table I, is shown at t = O. (a) The envelope G and 

(b) the wave displacement ~ are normalized to 0.251 cm. 

Fig. 2. The soliton of Fig. 1 and its envelope are shown at t = 24 

seconds. (a) G and (b) ~ are normalized to 0.115 cm. 

Fig. 3. Wave packet with slope amplitudes given in column (2) of 

Table I is shown in (a) for time t = O. It is shown at 

t = 24 seconds in (b). 

Fig. 4. The e-folding rate I for soliton transverse instability is 

shown in units of the Benjamin-Feir time scale ~BF 

[Eq. (19) J. The quantity Q is defined by Eq. (36). 

Fig. 5. The "fat" soliton of column (3), Table I, is shown at 

(a) 0 seconds and (b) 20 seconds. The surface displacement 

is normalized to 24.7 em and 23.48 cm, respectively. 

Fig. 6. The "thin" soliton of column (4), Table I, is shown at 

(a) o seconds and (b) 50 seconds. The surface displacement 

is normalized to 10.19 cm and 9.91 cm, respectively. 

Fig. 7. The envelope function for the soliton of Fig. 6 is shown at 

(a) 0 seconds with an AO of 10.19 cm and (b) 50 seconds 

with an Ao Of 9.91 cm. 

Fig. 8. The thin soliton passing through an infinite wavetrain of 

higher frequency waves is depicted at time twith 

normalization AO; (a) t = 0, AO = 10.19 cm; 

(b) t = 30, AO = 9.9 cm; (c) 50 seconds, AO 8.4 cm. 

-)0-

Fig. 9. 'rhe enveloI,e function for the interacting soliton of Fig. 8 

is shown 8.t time t 8.Ylrl normalization AO (8.) t = '0, 

AO 10.19 em; (b) t 30, A = 0 9.0 cm; 

(c) 50 seconds, AO 3.4 cm. 

Fig. 10. The thin soliton passing through a wavetrain of lower 

frequency waves is shown at time t and normalization AO 

(a) t 0, AO 10.19 cm; (b) t = 2, AO = 21.27 cm 

(c) t 3 , AO 20.32 cm; (d) t = 10, AO = 16.19 cm; 

(e) t 18, AO = 17.11 cm; (f) t = 20 seconds, 

AO = 18.22 cm. 

Fig. 11. The soliton of Fig. 10 is shown for the case that the 

interacting wavetrain was damped to zero amplitude at 10 

seconds. The times and maximum surface displacements are 

(a) 20 seconds, 16.42 cm and (b) 50 seconds, 16.11 cm. 

Fig. 12. The envelope function, corresponding to the calculation 

shown in Fig. 11, is shown at time t, with corresponding 

AO's; (a) 20 seconds, 16.42 cm and (b) 50 seconds, 

16.11 em. 

Fig. 13. The fat soliton passing through a lower frequency wavetrain 

is shown at times t with corresponding AO's; 

(a) 0 seconds, 24.07 cm; (b) 2 seconds, 47.49 cm; 

(c) 10 seconds, 49.81 cm; (d) 20 seconds and 42.61 cm. 
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