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Similarity and Categorization: The Reversed Association Test 
 

Takashi Yamauchi (tya@psyc.tamu.edu) 
Department of Psychology, Mail Stop 4235 

Texas A&M University College Station, TX 77843 USA 
 
 

Abstract 

The reversed association theory (Dunn & Kirsner, 1988) 
provides a powerful procedure for studying the link between 
cognitive processes and task performance. It helps find 
whether two behavioral tasks involve the same or different 
cognitive processes. However, this theory has not been fully 
utilized. Finding reversed association requires a large, single 
study consisting of at least six independent manipulations. 
Furthermore, the statistical procedure to verify reversed 
association has not been fully developed. This article presents 
practical solutions for these problems by investigating the 
recent controversy over categorization and similarity 
judgments. First, a contrast analysis is illustrated in a case 
study to statistically verify reversed association. Second, 
empirical experiments and computer simulations are 
presented to verify the reliability of the reversed association 
test. Combined together, this study reveals that there is a non-
monotonic relationship (i.e., reversed association) in 
performance for categorization and similarity judgment tasks.  

Keywords: Similarity, Categorization. 

Introduction 
This article examines the cognitive processes underlying 
categorization and similarity judgments. Although similarity 
has been known to play a central role in category formation, 
the role of similarity in categorization has been questioned 
lately (Hahn & Ramscar, 2001; Hampton et al., 2007). On 
the empirical side, a number of studies have demonstrated 
functional independence between similarity and 
categorization judgments. Some feature information that 
affects a categorization task is nonetheless ineffective in a 
similarity judgment task, and vice versa (see Han & 
Ramscar, 2001). On the basis of this discrepancy, several 
theorists have proposed that categorization relies on 
multiple processes – a similarity-based associative process 
and a rule-based abstract process (Sloman, 1996).  

However, this view has been severely criticized on two 
fronts. First, the empirical evidence for the multiple-
processes view of categorization also turned out to be 
consistent with a similarity-based single process view 
(Nosofsky & Johansen, 2000; Pothos, 2005).  Second, the 
evidence supporting the multiple-processes view is 
primarily based on the notion of functional independence, 1 
which by itself is not very informative in linking cognitive 
processes and task performance (Van Orden, 2001). Thus, it 
is unclear whether similarity and categorization tasks are 
mediated by the same or different process(es).  

In this article, I apply the reversed association theory 
developed by Dunn and Kirsner (1988) and investigate the 
relationship between categorization and similarity. In what 
follows, I will first illustrate the problems with interpreting 

functional independence as evidence for a multiple-
processes view, and then introduce Dunn and Kirsner’s 
reversed association theory as a tool to assess the 
relationship between task performance and cognitive 
processes. A statistical method for evaluating reversed 
association will be presented, and three empirical studies 
and one computer simulation investigating the dissociation 
between categorization and similarity will be described. As 
readers will see, our study implicates a strong possibility 
that similarity and categorization judgments rely on some 
unshared cognitive processes, and suggests that the reversed 
association test is an important and practical method to 
examine the dissociation of the processes underlying two 
related tasks. 
 
Dissociation in Similarity and Categorization 
Judgment 

 
The key evidence for Sloman’s two systems of reasoning 
comes from the behavioral discrepancy underlying 
categorization and similarity judgments (Sloman, 1996). 
Rips (1989) provided some of the first empirical evidence 
for this dissociation. His main argument is that some 
independent variables affect categorization but not 
similarity judgments, and vice versa (i.e., functional 
independence). For example, modifying an internal feature 
did not change the perceived similarity between original and 
transformed animals, whereas modifying a surface feature 
did change the perceived similarity between original and 
transformed animals. In contrast, modifying an internal 
feature changed the category membership of original and 
transformed animals, whereas modifying a surface feature 
did not change the category membership of original and 
transformed animals (Rips, 1989). By manipulating central 
features (Kroskaand & Goldstone, 1996), necessary features 
(Thibaut, Dupont, & Anselme, 2002), causal features (Ahn 
& Dennis, 2001), and the frequency of features (Rips & 
Collins, 1993), other studies demonstrated analogous 
dissociations.  

All of these studies were designed to examine functional 
independence between categorization and similarity 
judgments. In the categorization task, participants judged if  
a target item belonged to one of two designated categories. 
In the similarity judgment task, participants judged if a 
target item was similar to one of two designated categories. 
Participants’ responses were analyzed in a 2-alternative 
forced-choice setting. Two option categories were pitted 
against each other, so that the selection of one category 
reflected an operation of one cognitive strategy (e.g., 
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attending primarily to causal features) over the other (e.g., 
attending equally to causal and non-causal features).  

The problem with testing “functional independence” is 
that its interpretation is not always straightforward. For 
example, hypothetical data like those shown in Figure 1 
may indicate functional independence between two tasks. 
However, these response patterns can emerge from the two 
tasks that are different only in their decision thresholds.  

 

 
Figure 1: A hypothetical example of functional 
independence. In (a), the performance for a similarity task, 
but not a categorization task, is affected by a manipulation 
of surface features. In (b), this relationship is reversed. By 
measuring the relative impacts of the two types of features, 
a crossed interaction effect can be obtained – (c). For 
example, in (c) the impact of a superficial feature is larger in 
a similarity task than in a categorization task. In contrast, 
the impact of an internal feature is larger in a categorization 
task than in a similarity task. 
 

Consider the following logistic regression functions 
(Figures 2a & 2b): 
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Figure 2: Two logistic regression functions simulating two 
2AFC tasks (similarity vs. categorization tasks). The error 
terms of the two logistic functions are distributed normally 
with mean 0 and standard deviation 0.15. The 8000 dots 
shown in (a) and (b) represent hypothetical results from 
8000 subjects performing one of the two tasks at a given 
level of the independent variable (the x-axes). (c) and (d) 
represent “results” from two hypothetical experiments. 

 
Assume that these functions represent the data collected in 
two tasks – a similarity judgment task (Figure 2a) and a 
categorization task (Figure 2b). The x-axes of Figures 2a 
and 2b represent a hypothetical variable (e.g., the strength of 
a particular feature dimension) varying from 0 to 100. The 
y-axes of the figures represent the proportion of selecting 
one category (e.g., Category A) over the other (Category B) 
in a similarity task (Figure 2a) or in a categorization task 
(Figure 2b). The two functions differ only in their decision 
thresholds. Figure 2b is obtained by shifting Figure 2a by 18 
units along the x-axis, and the slopes of these graphs are 
identical.  

Even in this simple setting, a semblance of “functional 
independence” can emerge from a manipulation of an 
experimental design. For example, similarity performance is 
affected by var 1 and var 2 (e.g., modifying surface 
features), whereas categorization performance is less 
affected by the same manipulation (Figure 2c). In contrast, 
the categorization task is affected by var 1’ and var 2’(e.g., 
modifying an internal feature), whereas similarity 
performance is less affected by the same manipulation 
(Figure 2d). 

This simple observation suggests that a variant of 
functional independence can emerge even when two tasks 
differ in their decision thresholds (e.g., one task requires 
more conservative responses than the other). In other words, 
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demonstrating functional independence is important, but not 
sufficient in determining whether two tasks stem from the 
same or different cognitive process(es) (Hampson, 2007; 
Henson, 2006 for a similar argument). 

 
 

 
Figure 3: Examples of monotonic relationships between 
two tasks – (a), and reversed association in task 1 and task 2 
– (b). 
 
Dunn-Kirsner’s Reversed Association Test 

Unlike functional independence, Dunn and Kirsner’s 
(1988) reversed association theory is free from such 
confusion. The theory is extremely powerful, because it 
makes only a minimum assumption between a task and a 
process. In a nutshell, the theory suggests that if the 
performance for two tasks is not monotonically related, then 
the two tasks are not mediated by the same process.  

For example, in Figure 3, consider three independent 
manipulations (e.g., manipulating feature information) with 
respect to two tasks (e.g., similarity and categorization 
tasks). If the three manipulations change the performance 
for task 1 monotonically, then the same manipulations 
should also change the performance for task 2 
monotonically (either in an increasing or decreasing fashion 
– Figure 3a), provided that the two tasks are based on the 
same process. A violation of this monotonicity is called 
“reversed association,” and it offers strong evidence for the 
idea that two tasks are not identical in their cognitive 
processes (Figure 3b) (a summary of a proof is presented in 
the Appendix A, and see also Dunn & Krisner, 1988 for 
details).  

Despite its theoretical significance, the reversed 
association theory has not been fully utilized. The problem 
is its applicability. First, finding reversed association 
requires at least 6 different conditions (three independent 
variables applied to two tasks) in a single experiment. It is 
difficult to implement such a large scale study in many 
instances (e.g., neuroimaging studies). Second, it is unclear 
how to verify reversed association statistically. For example, 
a graph like the one shown in Figure 3b indicates a reversed 
association, but how can it be verified statistically?  

In the next case study, I propose a practical solution for 
these problems. First, to overcome the need to implement 

multiple conditions (six conditions), a meta-analytic 
procedure comparing several independent studies is 
illustrated. Second, to test the presence of reverse 
association statistically, a contrast analysis is presented. 
 

Study 1: A reversed association test 
 

The purpose of this case study is to illustrate a statistical 
procedure to test reversed associations in a series of 
manipulations made in three independent studies. In one of 
Rips’s (1989) original experiments, participants received a 
description of an unknown animal called “sorp,” and made 
either a similarity or categorization judgment. Participants 
in the similarity condition judged whether a “sorp” was 
more similar to a bird or an insect. Participants in the 
categorization condition received the same stimulus 
material, but they judged if the same sorp was more likely to 
be a bird or an insect.  

Rips’s original study consisted of a 2 (categorization vs. 
similarity judgment tasks) x 2 (accidental vs. essential 
transformation) factorial design (Rips, 1989, pp.38-42). This 
design does not allow us to assess the non-monotonicity of 
the two tasks. In Study 1, we added one more condition to 
his study, and investigated reversed association in a 2 
(categorization vs. similarity judgment tasks) x 3 (accidental 
vs. essential vs. no-cause conditions) between-subjects 
design.  

The stimuli were 3 different descriptions of an unknown 
animal called “sorp” whose attributes were later modified in 
three different ways: accidental, essential, or no-cause. In 
the Rips study (1989), “sorp” originally had attributes 
consistent with “birds” (e.g., “has two wings” and “lives in a 
nest high in the branches of a tree”), but later developed to 
display characteristics of insects (e.g., “grows two more 
pairs of legs and clinging upside down to the undersides of 
tree leaves”). The transformation was caused by hazardous 
chemicals – the accidental condition –  or by a some genetic 
process – the essential condition.  

The accidental and essential conditions in this study were 
taken directly from the original Rips study. In the other 
condition, the no-cause condition, the transformation of the 
animal was described but the actual cause of the 
transformation was unspecified.  

Reversed association test 
This section illustrates a meta-analytic procedure to 

investigate whether the three manipulations implemented 
separately in the three sets of the study would affect 
similarity and categorization performance. To examine the 
impact of the three variables, we first calculated the 
proportion of selecting one “designated” category in each 
study. The designated category in this case study was 
participants’ selecting “birds” over “insects.” We then 
calculated the extent to which these proportions exceeded a 
chance level performance of 0.5 in Z-scores. These Z-scores 
were converted to effect size r and Fisher Z to compare the 
three independent studies. A contrast analysis was applied 
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to assess the overall trend of the influence of the three 
manipulations. The specific procedure applied in this 
analysis is as follows: 

(a) For the three studies, the proportions of selecting one 
designated category over the other were calculated. The 
extent to which the observed proportion p exceeds a chance 

level performance of 0P =0.5 was translated into Z-scores 

with the following formula (p. 13 Fleiss, 1981):  
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where 00 1 PQ  =0.5, in is the sample size of the i-th 

study, and ip  is the proportion observed in a given study.  

(b) To compare the three independent studies, these Z-
scores were translated into effect size r, and then Fisher Z 
(p. 19, Rosenthal, 1984): 
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where ir , iZ , and in  each represents the effect size, Z-

score and sample size of the i-th study. riZ  is a 

transformation of r obtained in the i-th study (Fisher Z; p. 
21 Rosenthal, 1984). This transformation is used to prevent 
the bias stemming from the distribution of r as r becomes 
large. 

(c) To assess reversed association, two orthogonal 
contrasts (linear contrast weights=(-1, 0, 1); quadratic 
contrast weights=(1, -2, 1) ) were applied to the Fisher Z’s 

( riZ ), which were obtained separately in the similarity and 

categorization judgment tasks of the three studies: 
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 i , in , and riZ each represent the contrast weight, 

sample size, and Fisher Z of the i-th study and (6) is known 
to have the standard normal distribution (p. 80, Rosenthal, 
1984; see also Rosenthal & Rosnow, 1985).  A statistically 
significant high score of (6) would support the presence of a 
particular trend (either a linear or quadratic trend). The 
presence of reversed association can be detected by a 
significant linear trend in one task and a significant 
quadratic trend in the other task.  

 

Method 

Participants A total of 185 undergraduate students at Texas 
A&M University participated in this experiment for course 
credit. These participants were assigned to one of 6 
conditions. 

Materials & Procedures The stimuli were presented on a 
piece of paper, on which one of the three different 
descriptions of “sorp” was shown (accidental, essential, or 
no-cause descriptions). Participants first read the 
description, and then answered either a categorization or 
similarity question. The two questions were identical except 
for a few words.  

(Categorization) Question 
Is this sorp more likely to be a bird or an insect?  Circle 

either one below. 
Bird    Insect 
 
(Similarity) Question 
Is this sorp more similar to a bird or an insect?  Circle 

either one below. 
Bird    Insect 
 
In the three conditions, the unknown animal initially had 

features consistent with birds and then came to possess the 
features consistent with insects. The transformation of the 
bird- to insect features was triggered by an accident 
(exposure to hazardous chemical waste) in the accidental 
condition and by a genetic process in the essential condition 
(Rips, 1989). In the no-cause condition, no specific cause of 
the transformation was described. 

Design The design of this experiment was a 2 (questions: 
categorization vs. similarity) x 3 (description: accidental, 
essential vs. no-cause) factorial. The two factors were 
between-subjects factors.  

 
Results & Discussion 
Figure 4 is a graphical representation of the effect sizes 
generated by the three types of descriptions (accidental, 
essential, and no-cause). As Figure 4 reveals, a reversed 
association effect is apparent. An application of a linear 
contrast indicates a significant linear trend in the similarity 
judgment task; z = 3.40, p < 0.001, but not in the 
categorization judgment task; z = 0.87, p = 0.38. In contrast, 
a significant quadratic trend was evident in the 
categorization judgment task; z = 3.55, p < 0.001 but not in 
the similarity judgment task; z=0.56, p >0.5.  

These results demonstrate a significant linear trend in the 
similarity task and a significant quadratic trend in the 
categorization task. However, care should be taken to 
interpret these results because we do not know the reliability 
of this statistical procedure. Specifically, if the test still 
yields a significant reversed association (a significant linear 
trend in one task and a significant quadratic trend in the 
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other task) even when the two tasks are separated merely by 
response thresholds (see Figures 2a and 2b), the test would 
be unreliable. In this regard, it is important to scrutinize the 
false alarm rate of this test procedure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: A summary of the results from Study 1. 
 

Study 2: Estimating the false alarm rate of 
the reversed association test 

 
In Study 2, we conducted 30,000 simulated experiments and 
examined the false alarm rate of the reversed association 
test. Specifically, we estimated the probability that 
statistically significant reversed associations would occur 
when two tasks were identical except for their response 
thresholds (i.e., a false alarm rate: False alarm rate = P(A | 
B), where A = statistically significant reversed associations: 
B = two tasks differ only in their response thresholds).  

The basic procedure of this simulation study was as 
follows: (1) selecting one logistic regression function from a 
pool of three, and then modifying it with two different 
response threshold parameters (Figure 5a and 5b); (2) 
introducing three intervals (the intervals represent three 
experimental conditions, such as the accidental, essential, 
and no-cause conditions in Study 1) to the two functions 
(Figure 5c); (3) randomly selecting 30 data points from each 
interval and applying the reversed associated test to the 
data; (4) repeating this procedure 30,000 times with 
different parameters, and measuring how often statistically 
significant reversed association would occur in these 30,000 
simulated experiments. If the false alarm rate of the reversed 
association test is high, then the test is not be very useful.   

 
Method 

This simulation study assumes that people’s binary 
responses, such as selecting one category from two options 
(e.g, birds vs. insects), can be modeled by a logistic 
regression function. A logistic regression function is defined 
by two parameters, its slope and inflection point. 

error
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Parameter a in (7) corresponds to the slope of the function 
(see Figure 5a), and -b/a corresponds to the point at which 
the probability of selecting one category is equal to the other 
(P(cate_A)=P(cate_B)=0.5). I call this point “the inflection 
point” of a function. 

Figure 5b shows two logistic regression functions with 
two different inflection points. 
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In (8), chance level performance 

(P(cate_A)=P(cate_B)=0.5) occurs at a level of 40 (–
b/a=40), whereas in (9), chance level performance occurs at 
a level of 60  (–b/a=60). To simulate different response 
thresholds applied in similarity and categorization tasks, we 
generated 200 random pairs of inflection points (–b/a) with 
a restriction that the parameter -b/a ranged from 0 to 100. 
To simulate responses made by individual participants, error 
terms were added to the two functions and 4000 random 
data points were generated for each of the two functions 
(Figure 5c). 
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The error terms were assumed to be normally distributed 
with mean 0 and standard deviation 0.15. To simulate the 
three variables implemented in each experiment (e.g., 
accidental, essential, and no-cause conditions in Study 1), 
we dividend the x-axis into 10 intervals ranging from 0 to 
100 (see the x-axis of Figure 5c), and randomly selected 50 
triads of intervals with the following restrictions: 
0<interval_1< interval_2< interval_3<100.  

Thirty samples were selected randomly from each 
interval, from which the effect sizes were calculated, and 
contrast analyses employing linear and quadratic weights 
were implemented. This procedure was applied to three 
different logistic regression functions with three different 
slopes (a=0.1, 0.06, 0.04, and see Figure 5). A “statistically 
signification reverse association effect” was measured by 
the presence of a significant linear contrast in one task and a 
significant quadratic contrast in the other task. To assure 
that our statistics did not miss indications of false alarms, 
we set the alpha level to be particularly lenient; alpha = 0.1 
(one tailed).  

In summary, this simulation study employed the 
following steps. Step 1: we selected one logistic regression 
function from a pool of three and generated 200 pairs of 
functions that had different response threshold parameters (-
b/a); Step 2: 50 different randomly selected triads of 
variable intervals were implemented to every pair of the 
functions and 30 random samples were taken from each 
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interval; Step 3: contrast analyses were applied to every pair 
of the functions (Figure 5), and the presence of a 
statistically significant reversed association effect was 
tallied; Step 4: Steps 1-3 were repeated for the other two 
remaining logistic regression functions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: A graphical representation of the procedure used 
in the simulation study (Study 2). 

 
Results 

The estimated false alarm rate of the reversed association 
test was quite small. We found only one occasion (out of 
30,000 simulated experiments) in which the test resulted in 
a significant reversed association. To assure that the low 
false alarm rate did not come from the arbitrary selection of 
the parameters, we conducted additional studies. First, we 
raised the alpha level from 0.10 to 0.15. Second, the 
standard deviation of the error term was also changed from 
0.15 to 0.20. Even with these modifications, the false alarm 
rate remained the same.  

 
Discussion 

 
The results from the two studies have shown that the 

reversed association test could be a promising tool in 
detecting the dissociation between two tasks. But in order to 
use this tool effectively, it is crucial to know its limitations. 
This section summarizes important limitations of the 
reversed association test.   

(a) This is NOT a necessary and sufficient test. The 
purpose of assessing linear and quadratic trends in two tasks 
is to statistically verify monotonic and non-monotonic 
relationships in two tasks.  Assessing a liner trend is one 
way of capturing the monotonicity of a function; however, 
there are many nonlinear monotonic functions 

(e.g., 3xy  ). This means that when the test does not show 

significant effects, it can NOT be concluded that there is NO 
reversed association between two tasks. In this sense, it is 
important to show first whether the data conform to the 

general pattern of reversed association (e.g., by means of 
plotting) and then apply the statistical test.  

(b) The two tasks should be compared in a tightly 
controlled condition. Subtle differences in the procedures, 
participants, instructions and stimuli are likely to result in 
significant differences in the performance for the 
categorization and similarity judgment tasks.  In this regard, 
the two tasks should be compared under a tightly controlled 
uniform condition whenever possible.  

 (c) The test does not identify the underlying “processes” 
that separate two tasks. The reversed association test is 
useful to detect the “dissociation,” but the test does not tell 
what “process” contributes to the dissociation. In other 
words, the test cannot identify the cause of the 
“dissociation.” 
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