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ABSTRACT:
Over 500 000 automated and manual acoustic localizations, measured over seven years between 2008 and 2014,

were used to examine how natural wind-driven noise and anthropogenic seismic airgun survey noise influence bow-

head whale call densities (calls/km2/min) and source levels during their fall migration in the Alaskan Beaufort Sea.

Noise masking effects, which confound measurements of behavioral changes, were removed using a modified point

transect theory. The authors found that mean call densities generally rose with increasing continuous wind-driven

noise levels. The occurrence of weak airgun pulse sounds also prompted an increase in call density equivalent to a

10–15 dB change in natural noise level, but call density then dropped substantially with increasing cumulative sound

exposure level (cSEL) from received airgun pulses. At low in-band noise levels the mean source level of the

acoustically-active population changed to nearly perfectly compensate for noise increases, but as noise levels

increased further the mean source level failed to keep pace, reducing the population’s communication space. An

increase of >40 dB cSEL from seismic airgun activity led to an increase in source levels of just a few decibels.

These results have implications for bowhead acoustic density estimation, and evaluations of the masking impacts of

anthropogenic noise. VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1121/10.0000935

(Received 10 September 2019; revised 27 February 2020; accepted 2 March 2020; published online 31 March 2020)

[Editor: Rebecca A. Dunlop] Pages: 2061–2080

I. INTRODUCTION

After summering in the eastern Beaufort Sea, the

Bering–Chukchi–Beaufort (BCB) population of bowhead

whales (Balaena mysticetus) typically begins its autumn

westward migration in late August (Moore and Reeves,

1993). Unlike the spring migration, the autumn migration

takes place relatively close to the northern shores of Alaska

(Moore and Reeves, 1993). During their travels the animals

produce a wide variety of signals that often defy simple

classification into specific call types (Ljungblad et al., 1982;

Clark and Johnson, 1984; Cummings and Holliday, 1987;

Moore et al., 2006; Blackwell et al., 2007), but past work

has roughly divided calls between “simple” frequency-

modulated (FM) calls and “complex” calls (Blackwell et al.,
2007). These calls are distinct from more extended

sequences defined as “song,” produced during the winter

season at more southern latitudes (Blackwell et al., 2007;

Stafford et al., 2008; Delarue et al., 2009; Tervo et al.,
2009; Tervo et al., 2011). While bowhead song appears to

serve a reproductive purpose, the functional purposes of the

call repertoire used during the summer remain largely

unknown, although it is suspected that long-range communi-

cation plays one important role.

Each year from 2007 through 2014, the Shell Exploration

and Production Company (SEPCO) commissioned

Greeneridge Sciences, Inc. to deploy at least 35 Directional

Autonomous Seafloor Acoustic Recorders (DASARs, model

C) [(Greene et al., 2004)], divided unequally among five sites

in the coastal Beaufort Sea. The motivation behind the effort

was to evaluate the potential impact of airgun and other indus-

trial sounds on bowhead whale behavior during their westward

fall migration in the relatively shallow Arctic waters off

Alaska (Blackwell et al., 2013; Blackwell et al., 2015;

Blackwell et al., 2017). Over that entire period, over one

a)This paper is part of a special issue on The Effects of Noise on Aquatic

Life.
b)Electronic mail: athode@ucsd.edu
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million bowhead whale calls were recorded during the fall

migrations (Blackwell et al., 2015). To our knowledge, no

bowhead song was recorded.

The scale of the dataset, combined with a need for

timely analysis, motivated the development of methods for

automatically detecting, classifying, and localizing bowhead

whale sounds, while exploiting the directional localization

capabilities of the DASAR packages (Thode et al., 2012). A

team of experienced analysts also manually processed a sub-

set of these data from all years, to serve as a consistency

check on the automated results. These combined analyses

have previously been used to track seismic airgun activity

around the Beaufort Sea (Thode et al., 2010), to determine

that the population changes its calling rate in response to

both airguns (Blackwell et al., 2015) and industrial activities

(Blackwell et al., 2017), to establish source levels and the

depth distributions of calling animals during the migration

(Thode et al., 2016), and to demonstrate that over the span

of seven seasons, the distribution of minimum call fre-

quency decreased from a mean of 94 to 84 Hz (Thode et al.,
2017). The previous source level study did not include back-

ground noise level as a covariate in the analysis.

Here, this seven-year automatically-analyzed dataset

and the manually-analyzed subset are used to examine how

both the source level and the spatial density of bowhead

whale calls, or “call density” (calls generated per unit area

per unit time1) vary with changes in continuous natural

ambient noise levels and seismic airgun activity. For over a

century it has been known that humans increase their speech

amplitude in response to increases in background noise lev-

els, an effect pithily dubbed the “Lombard effect,” after

Eugene Lombard, who first observed the phenomenon in

1911 (Lombard, 1911; Brumm and Zollinger, 2011;

Hotchkin and Parks, 2013). This effect has also been

reported in multiple terrestrial species (Hotchkin and Parks,

2013) and several marine mammal species, including hump-

back (Megaptera novaeangliae) (Dunlop et al., 2014), right

(Eubalaena glacialis (Parks et al., 2011; Parks et al., 2012;

Parks et al., 2016), and killer whales (Orcinus orca) (Holt

et al., 2009; Holt et al., 2011). Other studies have also noted

changes in call production rate in response to changes in

anthropogenic noise levels (Castellote et al., 2012; Melcon

et al., 2012; Risch et al., 2012), with calling rates generally

decreasing even in the presence of low levels of noise, but

sometimes also increasing (Blackwell et al., 2015;

Blackwell et al., 2017; Di Iorio and Clark, 2010). Little lit-

erature exists on how marine mammals adjust calling rate in

response to natural ambient noise fluctuations, but it is now

accepted that many species of marine and terrestrial animals

respond to changes in background noise levels by varying

their source level, call production rate, or call structure/fre-

quency (Bradbury and Vehrencamp, 1998).

Beaufort Sea ambient noise levels are currently domi-

nated by wind-driven sources, since at present shipping and

other persistent human activities minimally impact the over-

all noise environment. The data analyzed in this study thus

provide an opportunity to measure how natural variations in

an ambient acoustic environment without anthropogenic

noise sources could affect the “communication space” of an

entire baleen whale population, which is defined by (Clark

et al., 2009) as “space over which an individual animal can

be heard by other conspecifics, or a listening animal can

hear sounds from other conspecifics.” These data can also

provide insight into how a baleen whale population, in

aggregate, could adjust its vocal behavior to compensate for

such variations, in an attempt to maintain a fixed communi-

cation space.

Over the seven-year period analyzed, several seismic

airgun surveys occurred at various distances from the study

area. These surveys provide an additional opportunity to

directly compare the acoustic strategies used by a baleen

whale population to compensate for natural and artificial

noise interference, allowing its acoustic response to human

industrial noise to be placed within the context of its natural

noise response.

Demonstrating behavioral changes in source levels and

calling rates in a marine environment is tricky, because

changing background noise levels also affect the likelihood

that a passive sensor detects a sound (Helble et al., 2013).

Higher noise levels “mask” weaker calls, shifting the

observed source level distribution upward. As a result, both

the measured source level and measured call density distribu-

tions become correlated with background noise level, even if

a population has no actual underlying behavioral response to

these factors. For this reason, this paper will use the term

“measured call density” when discussing raw (potentially

masked) measurements of call density, while the term “call

density” will always refer to the true (unmasked) underlying

call density produced by the population.

Section II develops the theory used in this paper to

account for masking effects, using distance sampling theory

with noise-related covariates. Section III then describes the

geography of the field site, the equipment and deployments,

methods for automated and manual call detection and locali-

zation, sample selection criteria, procedures for measuring

continuous noise and airgun exposure levels, and procedures

for statistical regression. Section IV presents the conditional

probabilities of call density and source level as a function of

background noise level and analysis type (i.e., manual or

automated), as well as regression analyses of source level

and call density vs background noise and airgun cumulative

sound exposure levels (cSEL). Finally, Sec. V discusses the

similarities and differences between the population-level

response to natural and anthropogenic noise, and outlines

the relevance of these observations to passive acoustic den-

sity estimation.

II. MODIFIED POINT TRANSECT THEORY FOR
REMOVING MASKING EFFECTS

A. Definition of localization probability Pa

An appropriate measure of a population’s behavioral

response to noise is the conditional probability density func-

tion (PDF) that a source level SL is generated, given a fixed
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noise level NL: p(SLjNL), which is defined here as the behav-
ioral response distribution. If the population does not exhibit

a Lombard effect, then over sufficiently long measuring times

its source level distribution becomes independent of the noise

distribution, such that p(SLjNL)¼p(SL) and p(SL,NL)¼ p(SL)

p(NL). This behavioral response distribution is not directly

measured from data; instead, one observes the joint PDF

p(þ, SL, NLjRmax) of the measured bowhead source levels

and associated noise levels, where p(“þ”) indicates the prob-

ability that a call is detected AND localized, and Rmax is the

maximum range from the closest sensor from which localized

calls are accepted.2 This observed, or masked, distribution

represents the probability density of measuring a given noise

level NL and localizing a call with source level SL within dis-

tance Rmax. This observed distribution is thus weighted by the

probability that a given noise level p(NL) occurs. The joint

PDF can be estimated from an appropriately normalized two-

dimensional histogram of all measured call samples. The SL
and NL of the joint PDF are always computed using the same

units.

Basic probability theory yields

pðSLjNL;RmaxÞ ¼
pðþ; SL;NLjRmaxÞ

pðNLÞpðþjSL;NL;RmaxÞ
; (1)

where we have explicitly retained a potential dependence of

the derived conditional distribution on Rmax, even though

the true underlying behavioral response distribution should

be independent of Rmax. Equation (1) shows that two correc-

tion factors must be applied to the observed distribution to

obtain the underlying behavioral response distribution. The

first factor, p(NL), the observed distribution of noise

throughout all seasons, converts the observed joint probabil-

ity into a probability conditioned on NL, and is readily esti-

mated from the data. Following Buckland et al., 2012, the

second factor, p(þjSL,NL,Rmax), can be rewritten as a locali-
zation probability Pa(SL,NL,Rmax), which represents the

average probability that a call within radius Rmax of the clos-

est sensor is both detected and localized by the system,

given that the call’s source level is SL and the background

noise level is NL. Pa depends on source level, noise level,

and the value of Rmax selected. In principle, the azimuth of a

call with respect to a sensor should also affect Pa, since the

ability to locate a call depends on the relative location of

other sensors. We found, however, that if all DASARs dis-

tributed at a site were incorporated into estimating p(þ, SL,
NLjRmax), the resulting distribution showed no azimuthal

variation.

There are several potential approaches to estimating Pa.

The simplest approach, and the one used here for analyzing

call rates, only uses samples that lie within a small value of

Rmax, so that any sound generated within that radius is

assumed detectable and localizable (Pa � 1), regardless of

the call’s source level or ambient noise conditions. Past

work on this dataset effectively took this approach by con-

cluding that calls generated within 2 km of the nearest

DASAR were always localizable (Blackwell et al., 2015).

The second approach, used in this source level analysis,

takes advantage of the relatively flat bathymetry and simple

propagation environment surrounding the DASAR sensors

to apply a modified point transect analysis, a particular ver-

sion of distance sampling theory (Buckland et al., 2012).

This approach empirically estimates the localization proba-

bility of a call as a function of both its range to the nearest

sensor and its source level-to-noise ratio (SLNR), thus pro-

viding a means of correcting masking effects out to ranges

of at least 30 km. Among other assumptions, appropriate use

of distance sampling theory requires that the mean spatial

density of calling animals (call density), when measured

over long enough intervals, is independent of distance from

a sensor, such that any apparent variation in the measured

spatial density with range can be attributed to changes in the

detectability of calls. Since the DASAR sensors were

deployed in the middle of the migration corridor of bowhead

whales, and the dataset spans multiple years, it is reasonable

to assume that the true call density of animals across the

study site averages out to a constant value, a conclusion that

is supported by the resulting analysis.

A more general approach to treating masking, not used

here, is to conduct Monte-Carlo-type modeling that combines

simulated source signals, propagation modeling, and boot-

strapped noise samples and then passes the resulting synthe-

sized time series through a detector (human or automated) to

numerically estimate a detection probability (K€usel et al.,
2011; Helble et al., 2013). While this approach can handle

more complex propagation environments and situations where

call densities are heterogeneous, this approach is also time

consuming, assumes considerable knowledge about the propa-

gation environment, and can be difficult to evaluate when

multiple humans have been involved in analyzing the original

dataset, due to various biases human operators display when

choosing what to detect and localize (Urazghildiiev and Clark,

2007; Moyer-Horner et al., 2012).

B. Modified point transect theory

Given these assumptions, distance-sampling theory

states that the average localization probability Pa can be

computed as follows:

PaðSL;NL;RmaxÞ�pðþjSL;NL;RmaxÞ

¼
ðRmax

0

pðþjSL;NL;rÞpðrÞdr�
ðRmax

0

gðSL;NL;rÞpðrÞdr:

(2)

Here r is the range to the closest sensor, and g(SL,NL,r), the

localization function, is the probability that an animal is

localized, given a source level SL, noise level NL and range

r. Note that most distance sampling literature defines g(r) as

the “detection function” and Pa as the “probability of

detection,” but here g(r) and Pa are defined, respectively, as

a “localization function” and “probability of localization,”

to emphasize that these quantities reflect the probability that
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a call is detected on two or more sensors, and can thus be

localized.

p(r), the probability that an animal is present at range r,

is defined in the distance sampling literature (Buckland et al.,
2012) as “the distribution of distances available for

detection,” an unwieldy moniker that is abbreviated to

“availability function” for the rest of the paper. Under the

assumption of uniform call density, p(r) becomes propor-

tional to the geometric perimeter defined by points that lie at

range r from the sensor.3 The scenario where an animal’s

range is measured from a single location is defined as a point
transect and, under that particular geometry, p(r)¼ 2pr/
pR2

max¼ 2r/R2
max. For a simple point transect the availability

function is proportional to the circular perimeter with radius

r. However, the majority of passive acoustic systems that can

measure range (including the configurations to be discussed

here) require at least two spatially distributed sensors to

obtain a distance estimate from the closest sensor. The

requirement for distributed tracking arrays requires modifica-

tions of standard point transects, and as a result p(r) becomes

a more complex function that depends on the number and

spacing of sensors in the tracking system. The Appendix pro-

vides these modified availability function definitions. We

also re-emphasize that as a consequence of using a distrib-

uted tracking array g(r) actually represents a probability of

localization, instead of the more standard probability of

detection, and for that reason we will continue to refer to g(r)
as a localization function instead of the more standard

“detection function” terminology.

The localization function is generally modeled as a

parameterized “key” function with the property that g(0)¼ 1

and g(1)¼ 0. A variety of standard functions exist, includ-

ing the half-normal and uniform, but the best-fit model was

found to be the hazard-rate (Buckland, 1992), since it pro-

vides two adjustable parameters:

gðSL;NL; rÞ ¼ 1� exp � r

rðSL;NLÞ

� ��bðSL;NLÞ
" #

: (3)

Here r is defined as the scale parameter, as it defines the

range scale over which the localization function begins to

rapidly decrease. Larger values of r indicate higher detect-

ability levels at greater ranges. Meanwhile b, the shape
parameter, defines the “sharpness” of the drop-off in locali-

zation probability with range, with larger values of b indi-

cating a sharper transition. Both parameters are assumed to

vary with source and noise level.

From Eq. (2), the probability f(SL,NL,r) of observing a

call at range r becomes

f ðSL;NL; rÞ ¼ pðrÞgðSL;NL; rÞ=PaðSL;NL;RmaxÞ: (4)

If M calls with the same source level are observed under the

same noise conditions, each at a range rm from the sensor,

then the log-likelihood function of these observations is pro-

portional to
PM

m¼0 logðf ðrmÞÞ. Applying maximum likeli-

hood methods to Eqs. (2)–(4) then yields best-fit estimates

of the localization function’s scale and shape parameters for

all samples that share the same SL and NL. The R package

Distance provides standard software for obtaining the

maximum-likelihood solution (Thomas et al., 2010) and

was applied here. For reasons detailed in the Appendix,

localization ranges were binned with 250 m resolution

before maximizing the likelihood.

Despite the large sample sizes available from this data-

set, the sheer number of possible combinations of source and

noise levels meant that obtaining sufficient sample sizes

could be challenging for many SL and NL combinations.

While “multi-covariate” distance sampling (MCDS) techni-

ques have been developed to handle situations where a detec-

tion function with multiple covariates must be estimated

from limited data (Marques and Buckland, 2004), in this situ-

ation one can exploit the sonar equation to reduce the number

of covariates needed for the localization function.

Specifically, the sonar equation gives the signal-to-noise ratio

(SNR) of a signal with source level SL received on a sensor

at range r as (expressed in dB units) SNR¼ SL-TL(r)-NL
¼ [SL-NL]-TL(r)¼SLNR-TL(r), where SLNR is the source-

level-to-noise ratio (or SL-NL in dB terms) and TL(r) is the

transmission loss arising from the sound propagating a dis-

tance r through the environment. The sonar equation demon-

strates that signals that originate at the same location and

share a common SLNR will generate the same set of SNR

values across a distributed group of sensors. If we assume

that SNR is the dominant factor in determining the detectabil-

ity for low-frequency, low-directionality signals, then signals

that share the same SLNR should share the same detection

probabilities across all sensors, and thus share the same local-

ization function: g(SL, NL, r)¼ g(SL-NR, r)¼ g(SLNR, r).
Thus, the SLNR, which can also be interpreted as a source

level “normalized” by background noise level, becomes the

only relevant covariate for g(r); consequently, all data sam-

ples that share the same SLNR can be lumped together to

estimate the localization function. We found that samples

arranged into 2 dB SLNR bins between 52 and 90 dB pro-

vided sufficient sample sizes to fit a localization function.

Below 52 dB there were so few localized calls that we felt a

localization function could not be fitted, and thus calls below

52 dB SLNR were not incorporated into the analysis.

III. METHODS

A. Equipment and deployment configuration

DASARs are autonomous acoustic recording packages

equipped with an omnidirectional acoustic pressure sensor

(sensitivity of �149 dB re V/1 lPa) and two horizontal

directional sensors capable of measuring the north–south

and east–west components of acoustic particle velocity. This

arrangement permits the azimuth of received sounds, such

as bowhead whale calls, to be measured from individual

DASARs. Each time series is sampled at 1 kHz with a maxi-

mum usable acoustic frequency of 450 Hz due to antialias-

ing filter roll off. Coincident bearings to calls detected on

different DASARs are combined via triangulation to yield
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two-dimensional call positions, from which the range of each

call to every DASAR can be estimated (Greene et al., 2004).

This ability to measure bearing from a single point allows a

location to be estimated using only two DASARs (instead of

three to four nondirectional sensors), but DASARs still

require modifications of point transect theory (Appendix).

From August to October, 2008 to 2014, between 35 and

40 DASARs were deployed across a 280 km swath off the

Alaskan North Slope, on the continental shelf in water depths

between 20 and 53 m. The deployments were grouped into

“Sites,” labeled 1–5 traveling from west to east (Fig. 1).

Most sites included seven DASARs, deployed in a trian-

gular grid with 7 km separation and labeled “A” to “G” from

south to north. The analysis presented here merged data col-

lected at Sites 3 and 5, as these sites had identical layouts. The

analysis excludes data from the first year of the study (2007),

when a different type of sensor was used in the DASARs.

Bowhead whale calls in the raw acoustic data were post-

processed two ways: by a team of human analysts, and by a

six-stage automated detection and localization program. Both

approaches have been extensively described and evaluated in

other publications (Thode et al., 2012; Thode et al., 2016;

Thode et al., 2017). Regardless of the particular approach

used, each detected call event on every DASAR was assigned

a start time, duration, frequency bandwidth, and range. Call

events matched between DASARs yielded both a 2-D loca-

tion estimate and uncertainties in azimuth and range.

B. Sample selection criteria

Call detections and localizations varied in quality, so

three selection criteria were applied to determine whether a

particular call was included in subsequent analyses:

(1) A call’s localized range to the closest DASAR had to be

less than a threshold value Rmax. Two values of Rmax—

3.5 and 30 km—are examined in Sec. IV. The 3.5 km

threshold was selected because the distance sampling

analysis showed that DASARs are effective for detect-

ing and localizing these calls for most source level val-

ues, regardless of ambient noise conditions (Blackwell

et al., 2013). These data are thus assumed to be unaf-

fected by noise masking, but yield smaller sample sizes.

The 30 km range cutoff permits larger sample sizes, but

must be corrected for masking effects.

(2) The frequency band covered by the call’s fundamental

component had to lie between 20 and 170 Hz, a low-

frequency cutoff enforced in order to justify the assump-

tion of an omnidirectional call directivity.

(3) For analyses involving call source level (but not call den-

sity), the call’s estimated source level had to be within 6

dB of the source level computed from any other DASAR

detecting the same call, a metric dubbed the “discrepancy”

in Thode et al. (2016). This procedure provides a safe-

guard against the possibility that the automated algorithm

captured only a small fragment of a call, generating an

inappropriate source level value. Had only a fragment of a

call been captured on one or more DASARs by the auto-

mated detection process, then the estimated source level

would vary between the DASARs and the discrepancy of

the call would be high. A more restrictive 3 dB discrep-

ancy criteria was found to lower the sample size substan-

tially, but not change the statistical regression results.

Filtering call samples by their range uncertainty had lit-

tle impact on the estimated localization function, even

though calls generated at ranges greater than 20 km from the

DASAR site displayed substantial range uncertainties. Thus,

call samples were included in the two sets (manual and auto-

mated) regardless of their range uncertainty.

C. Metrics for continuous in-band noise and airgun
survey exposure

Calls that passed the above criteria were assigned the

source level (SL) and noise level (NL) values derived from

FIG. 1. (Color online) Locations of passive acoustic deployments. (a) North Slope of Alaska; (b) DASAR deployments. (c) Closeup of Site 5 deployment

and bathymetry.
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the DASAR closest to the call’s position. We assumed that

the noise level measured at a DASAR was the same as the

noise level experienced by a whale within 30 km range,

because noise levels between DASARs at the same site gen-

erally varied by only a few decibels over the same time

interval.

Noise levels associated with each call were computed

by extracting a time series that had the same duration and

bandwidth as the call, but starting 3 s before the start of the

call sample. A 3 s time shift was chosen because most bow-

head whale calls have less than 2 s duration, and an extra

buffer second was added to reduce the possibility that any

signal energy from a bowhead call might contaminate the

noise sample. The noise sound exposure level (SEL), root-

mean-square (RMS) sound pressure level (SPL), and peak

power spectral density (PSD) were computed by band-pass

filtering the noise sample over the same bandwidth as the

call. The possible presence of airgun signals or other nonsta-

tionary transients in the noise sample was checked by com-

paring noise metrics from the first half of the noise sample

with the second half. Metrics that differed by more than

3 dB led to that particular sample (noise and associated call)

being rejected from further consideration. Repeating these

analyses with noise samples taken after each call yielded no

change in the results.

Noise levels were also calculated over a fixed band-

width between 20 and 170 Hz for each call, in order to allow

the “in-band” noise levels to be compared with more famil-

iar fixed-bandwidth measurements. We found that RMS

fixed-bandwidth measurements were generally 15 dB greater

than a typical in-band RMS measurement. For Rmax

¼3.5 km the in-band noise sample bandwidth distribution

was skewed, with mean, median, and mode values of 52, 46,

and 32 Hz, respectively, with 25 Hz standard deviation. For

the 30 km limit the distribution values shift slightly lower

(45, 38, 24 Hz; 24 Hz standard deviation), reflecting the fact

that more distant calls display narrower received bandwidths

due to propagation attenuation. Thus the 15 dB difference

between the in-band and fixed 150 Hz bandwidth noise sam-

ples must arise partially from the reduction in noise sample

bandwidth [10log10(50 Hz/150 Hz) � 5 dB] with the remain-

der arising from larger noise levels at lower frequencies

(a spectral tilt exists in the noise spectrum).

Seismic airgun activity was detected using the same

automated algorithm described in detail by Thode et al.
(2012) and Blackwell et al. (2015). Seismic activity was

designated as “present” for a given call on any DASAR if at

least one airgun pulse was detected on DASAR G at the

same site within 5 min of the detected call. The motivation

for using DASAR G data was that it was the deepest loca-

tion at each site, and thus offered the best probability of

detecting the greatest number of airgun pulses of all the sen-

sors at the site. Using detection criteria from the deepest

location thus acted as a safeguard against missing pulse

detections on shallower DASARs. If airgun pulses were

associated with a call, then the cumulative sound exposure

level (cSEL; dB re 1 lPa2-s) was measured over the 10-min

window centered around the call, the same metric used by

Blackwell et al. (2015). However, that previous study mea-

sured cSEL over fixed nonoverlapping 10-min intervals,

while here the cSEL associated with each call was inte-

grated over all airgun pulses detected within 5 min of a

given call. The integration only included time windows

when an airgun pulse was deemed present; bowhead whale

calls and ambient wind-driven noise were thus excluded

from the cSEL calculation. The cSEL calculations were also

computed over the entire 10–450 Hz bandwidth, consistent

with Blackwell et al. (2015).

D. Call density analysis

Blackwell et al. (2015) previously analyzed the rela-

tionship between call density and seismic airgun activity,

but did not include ambient noise level as a predictor vari-

able. That study computed call density by counting call

localizations that occur within contiguous, nonoverlapping,

10-min windows that start at the top of the hour.

Localizations were only counted if they occurred within

2 km of the closest DASAR, entirely sidestepping the issue

of masking effects by assuming a localization probability of

one for all calls within 2 km range. The call counts within

these “cell-time intervals” were then used as the dependent

variable in estimating the impact of seismic airgun sounds

on call density (and thus underlying call production rates).

The main issue of applying this method to the present

study is that it cannot distinguish between times when ani-

mals are present but silent, and when animals are not present

at all, so the resulting cell-time interval samples have many

zero values that bias the subsequent measured call rate dis-

tribution. There are also boundary artifacts, in that the mea-

sured density assigned to calls that occur at the start of a

new time window are not influenced by the presence of calls

detected at the end of the previous window. Furthermore, it

is challenging to define ambient noise level for a collection

of calls with different frequency content. For this reason, a

modified version of the analysis was applied here. For a

given call localized within 3.5 km of a particular DASAR,

all other calls detected within 5 min of that given call (and

also located within 3.5 km of the same particular DASAR)

were tabulated to assign a measured call density to the given

call, along with its associated noise level. While the fre-

quency range of the calls remained restricted to values

between 20 and 170 Hz, the calls’ discrepancies or other

localization features were not used to filter calls, because

the discrepancy criteria is relevant only for evaluating

source level and not whether a call was generated close to a

DASAR. By selecting Rmax equal to 3.5 km, we assumed

that all calls generated within that radius were successfully

localized, a strategy similar to that used for Blackwell et al.
(2015). That particular study used only a 2 km radius; the

choice of a larger 3.5 km radius for this analysis will be jus-

tified in Sec. IV B.

Assigning a unique call density to each sample ensured

that call density was only measured whenever animals were

2066 J. Acoust. Soc. Am. 147 (3), March 2020 Thode et al.

https://doi.org/10.1121/10.0000935

https://doi.org/10.1121/10.0000935


present, and avoided the boundary artifacts mentioned above.

However, centering a time window on each individual call

created samples that were not statistically independent; the

auto-covariance between call density measurements 50 sam-

ples apart was 0.5, which only fell to 0.1 at 250-sample lag

separation. Given a median time separation of 3 min and 23 s

between samples, these lag scales are the time equivalent

3 and 14 h, respectively.

A preliminary regression analysis using generalized

estimation equations (GEE) (Dobson and Barnett, 2008)

with a first-order autoregressive covariance structure found

that although measured call density samples were correlated

in time, the impact of nonindependent samples could be

neglected. Although call densities for adjacent samples were

highly correlated, the regression results from GEE were vir-

tually the same as a conventional generalized linear model

(GLM), because the time scale used for the complete analy-

sis (months) was much greater than the correlation window

in the data (hours). The statistical analysis thus focused on

the GLM regressions.

Distributions of call density had a long tapering tail to

the right (higher densities), but a normal probability plot

showed that the logarithm of call density fit a normal distri-

bution, so measured distributions were formulated in terms

of logarithms. The relationship between the logarithm of

calling density, noise level, and cSEL was computed with a

GLM using a polynomial fit up to fourth-order with interac-

tive terms permitted between noise and cSEL, and assuming

a normal distribution for the response variable. Calls (and

their associated call rates) were separated into sets where

airgun activity was either present or absent. Separate models

were fitted to each nonoverlapping dataset, in order to

implement an efficient dose-response model for airgun

activity for the airgun-present dataset. For calls detected

without airgun presence, in-band noise level was the only

predictor variable, while the calls detected during airgun

presence used in-band noise level and cSEL as predictor

variables. The Bayes Information Criterion (BIC) was used

to establish the highest-order terms permitted in the model.

The resulting residuals were examined to confirm the fit was

a normal distribution.

E. Source level analysis

Call received levels and positions were combined with

an acoustic propagation model to derive the estimated

source level of the call within the 20–170 Hz frequency

band, under the assumption that the low-frequency acoustic

radiation propagating from the animal was omnidirectional

(i.e., the source level would be the same regardless of the

animal’s aspect relative to the sensor). Three different prop-

agation models were tested: a 15logR power-law transmis-

sion loss model, a Pekeris waveguide model, and a normal

mode propagation model that incorporated source depth,

sound speed profile, water depth, and bottom sediment pro-

file (Thode et al., 2016). All three models yielded results

within three dB of each other in terms of source level

distribution estimates, so the simple power-law transmission

model was retained for the rest of the analysis.

Source levels were computed using four metrics: sound

exposure level (SEL; dB re 1 lPa2-s @ 1 m), root-mean-square

sound pressure level (SPL; dB re 1 lPa @ 1 m), and median

and maximum power spectral density (PSD; dB re 1 lPa2/

Hz @ 1 m). The last two metrics were estimated by comput-

ing a spectrogram of the call using a 512-point fast Fourier

transform (FFT) with 90% overlap, collating all time-

frequency cells (Df¼ 1.95 Hz; Dt¼ 51.2 ms) that lie within

the “bounding box” of the call localization, and extracting

the median and maximum PSD values from the resulting

distribution. The call duration was simply defined as the

duration of the bounding box. Calls that had noise samples

contaminated by airgun signals were rejected.

The regression analysis of the masked source level dis-

tribution followed a procedure similar to that of the call rate

analysis. For each combination of localization method (man-

ual; automated) and Rmax (3.5, 30 km), calls were divided

according to whether airgun activity was absent or present.

Calls belonging to the airgun-absent set were fit using a nor-

mal GLM to up to a fourth-order polynomial regression

using in-band noise level as the only predictor variable, and

using the BIC to set the maximum model order. Calls in the

airgun-present set included cSEL as an additional, poten-

tially interactive, parameter.

The regression analysis for the unmasked source level

distribution required some additional steps. The original raw

call samples were binned according to airgun cSEL level,

with the bins being defined as 0 (no airgun presence) and

within the 90–140 dB range, with 2 dB increments. For every

cSEL bin k, the Nk joint observations of source level SL and

noise level NL that existed in that bin were used to construct

a normalized two-dimensional histogram estimate of the joint

PDF p(þ, SL, NLjRmax, cSEL). The SLNR of each histogram

bin was then calculated, and the appropriate value of Pa(Rmax,
SLNR), as computed from point transect theory, was divided

into the bin value to generate the unnormalized unmasked

joint probability p(SL, NLjRmax, cSEL). (We thus assumed

that the presence and intensity of airgun survey activity did

not influence call detectability). After every histogram bin

was readjusted, the entire distribution was renormalized (so

that integrating the joint distribution over all values of NL
and SL yielded one). We then numerically resampled this

unmasked joint distribution Nk times to generate Nk new joint

estimates of SL and NL for cSEL bin k. The complete set of

resynthesized observations was then applied to the same

regression analysis as the original masked samples.

Two additional statistics were also computed: the behav-

ioral response distribution p(SLjNL) (defined in Sec. II A)

and the derivative of the regression curves with respect to in-

band noise level, defined here as the “behavioral sensitivity.”
The behavioral response distribution was obtained by calcu-

lating the marginal distribution p(NL) for both masked and

unmasked distributions, and then using Eq. (1).

The behavioral sensitivity reveals how the mean source

level of the calling population increases with respect to a
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unit increase in noise level (DSL/DNL), and thus indicates how

“sensitive” a population’s acoustic behavioral response is to

ambient noise fluctuations at various in-band noise levels. For

example, a DSL/DNL value of one at all noise levels would

indicate that the population’s mean source level increases 1 dB

for every 1 dB increase in ambient noise level, regardless of the

original ambient noise level involved: a perfect Lombard

adjustment. By contrast, a sensitivity value of zero at all noise

levels would indicate the population’s source level distribution

is completely indifferent to ambient noise changes.

IV. RESULTS

A. Sample sizes

Table I shows the call sample sizes available from the

four different datasets. Sites 3 and 5 contributed roughly equal

numbers of samples to the analysis, even when the range, fre-

quency, and discrepancy restrictions are applied. Although the

manual datasets are only �10% of the sample size of the auto-

mated results, they had nearly double the percentage of calls

associated with airgun pulses when compared with the auto-

mated datasets. The reason for this is that the manual analyses

were originally intended for use in evaluating the impact of

airguns on bowhead whale behavior, so the subset of days

selected for manual analysis was not sampled randomly.

B. Distance sampling analysis

Figure 2 displays histograms (normalized in terms of

probability density) of the distribution of localized calls

from the automated long-range dataset, as a function of

range from the closest sensor and for three different values

of SLNR: 62, 72, and 82 dB. Overlaid on the histograms are

the best-fit estimates of Eq. (4), f(SLNR,r), using the hazard

rate model of Eq. (3) and the seven-sensor availability func-

tion defined in Eq. (A2), Appendix.

Each curve matches the observed distribution well. As

the SLNR increases, the most probable range for localizing

a call increases: a natural consequence of point transect the-

ory, since larger numbers of calls are available at greater

ranges, and calls become more detectable as their relative

source level increases. The good fit between the data histo-

grams and the theoretical curves justifies the assumption of

an uniform spatial distribution of the migration coordinator,

which accumulated across multiple years.

The top row of Fig. 3 replots this observed and modeled

f(rjSLNR) as two-dimensional images with respect to both

range and SLNR (in 2 dB increments), illustrating that calls

with 52 dB SLNR seem to be the lower limit for localization

capability with the 7-km-spaced array at this study site.

The middle row of Fig. 3 displays the corresponding

empirical and modeled localization function g(SLNR, r) as a

function of range and SLNR. We also estimate g empirically

[Fig. 3(c)] by dividing the observed f(rjSLNR) by the avail-

ability function p(r) [Eqs. (4) and (A2)] and setting the max-

imum value attained to 1.

Even with large sample sizes, relatively few high-

SLNR signals occur at small ranges, so the upper-left region

in Fig. 3(c) is undersampled simply because of the low

TABLE I. Sample sizes used for analyses of Sites 3 and 5.

Dataset criteria Method Max range (km) Site 3 Site 5 % with airgun Total

All samples (Sites 3 and 5) Manual — 49 940 64 207 114 147

Automated — 361 149 402 379

Short range Manual 3.5 4727 5381 44.11 10 108

Automated 3.5 42 662 46 915 21.73 89 577

Long range Manual 30 18 673 21 865 45.95 40 538

Automated 30 198 144 206 328 21.45 404 472

FIG. 2. Observed call range distribution f(SLNR,r) at Sites 3 and 5 combined, using long-range automated analysis (Table I), evaluated at three different

source level-to-noise ratios (SLNR): (a) 62 dB; (b) 72 dB; (c) 82 dB. Histograms have been normalized to approximate probability density functions (PDFs).

Dark circles represent modeled fit of f [Eq. (4)] assuming a hazard-rate localization function [Eq. (3)] and a distributed sensor availability function (A2). For

each localization at Sites 3 and 5, only the range to the closest DASAR is used.
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probability that a relatively rare loud call is produced at

close range. This undersampling thus generates artificially

low values of the estimated g(r) in this region. The modeled

form of g(r) in Eq. (3) [Fig. 3(d)] is not influenced by under-

sampling, since Eq. (3) forces the model into maintaining

monotonic decreases in detectability with increasing range.

Both the estimated and modeled localization functions dis-

play similar behavior at greater ranges, with the shoulder of

the localization function (point at which the localization

function begins decreasing substantially) increasing with

larger SLNR, as expected. Figure 3(e) shows the values of

Pa(SLNR,Rmax) derived from the localization function using

Eqs. (2) and (A2), while Fig. 3(f) displays the cumulative

distribution of SLNR values from the observed data.

Subplots (e) and (f), when taken together, support earlier

conclusions by Blackwell et al. (2015) that calls located

within 2 km of the closest sensor are virtually always detect-

able: for example, the two subplots combined demonstrate

that calls within 2 km range and with SLNR >60 dB (which

comprise 90% of all calls) have a >0.99 probability of being

detected. If Rmax¼3.5 km [vertical line in Fig. 3(e)], then

calls with 65 dB SLNR or higher, which comprise over 80%

of the calls [dashed line in Fig. 5(f)], have a 99% probability

of localization. The choice of Rmax ¼ 3.5 km, instead of

2 km, for the call density analysis in Sec. IV C, was made in

an attempt to balance sample size against potential masking

effects. While using locations less than 2 km would have

eliminated all possibility of masking, only 2748 samples

would have been analyzed, too few to allow a robust regres-

sion of source level vs noise level. Using 3.5 km as an upper

limit quadrupled the sample size (Table I) while only raising

the prospect of masking for the weakest calls.

Figure 4(a) shows the best-fit values of the scale (r)

parameter in Eq. (3) as a function of range and analysis

type, and confirms that the “shoulder” of the localization

function increases with increasing SLNR, rising from less

than a kilometer at 52 dB to nearly 30 km for an 85 dB

SLNR.4

For a fixed SLNR, the manual analysis generally yields

a larger scale parameter than the automated analysis, imply-

ing that the human analysts are able to localize weaker sig-

nals. As discussed in Thode et al. (2012), the automated call

localization algorithm sets a RMS detection threshold of

8 dB over 50 Hz bandwidth, so it is not surprising that the

FIG. 3. (Color online) Computation of localization probability Pa via modified point transect theory, using automated data. (a) Observed f(SLNR, r) imaged

in grid steps of 2 dB SLNR and 250 m range; (b) best-fit modeled f(SLNR,r); (c) estimated g(SLNR,r) [f(SLNR,r)/p(r)]; (d) best-fit modeled g(SLNR,r); (e)

probability of detecting a call within radius r (white line ¼3.5 km), as a function of SLNR [Eq. (2)]; (f) cumulative distribution of calls as a function of

SLNR (dashed line¼ 65 dB, the SLNR with 99% localization probability at 3.5 km range). The figure illustrates that over 80% of calls have SLNR levels

that exceed 65 dB.
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effective localization range of the automated procedure is a

few kilometers smaller than the manual analysts’, who can

detect calls much weaker than 8 dB SNR in spectrograms.

Beginning at 70 dB SLNR, the manual scale parameter

begins to taper off, crossing below the automated scale at

76 dB SLNR. We interpret this tapering off as an artifact

arising from the relatively few samples available at high

SLNR for the smaller manual dataset.

Figure 4(b) shows the variation of the shape parameter b,

which determines the sharpness of the localization cutoff. The

results suggest that, at low SLNR values, human analysts have

a sharper cutoff in their localizing ability (i.e., they can local-

ize most calls out to the range defined by the scale parameter,

then drop off quickly beyond that). However, once the SLNR

increases past 68 dB, the automated algorithm achieves a

sharper cutoff. The decrease in the shape parameter for the

manual analysis at high SLNR levels may be a sample size

artifact, and not a fundamental measurement of human locali-

zation performance at high SLNR values.

C. Call density vs continuous in-band noise levels
and seismic airgun exposure

As a reminder, the term “call density” in this section

refers to a call density estimate where noise masking effects

have either been removed or deemed negligible.

Background in-band noise levels and airgun cSEL lev-

els were correlated with Pearson correlation coefficients of

0.23 and 0.26 for the respective manual and automated

short-range datasets, because only airgun pulses with higher

cSEL can be detected at high noise levels. This correlation

is the reason why a fourth-order polynomial fit was the

highest possible for the regression analysis, because

attempts to fit higher orders became numerically unstable.

Figure 5 (left column) displays the log-normal regres-

sion prediction results of call density vs background noise

intensity, for situations where seismic activity is nonexistent

(red dashed line), present at small levels (cSEL of 100 dB re

1 uPa2-s; green solid line), and present at moderate/heavy

levels (cSEL of 120 dB re 1 uPa2-s; gray dashed line). The

right column shows the predicted call rate vs airgun cSEL

level at a fixed in-band SPL noise level of 90 dB. The top

and bottom rows represent the manual and automated

analyses.5

Restricting our attention to the automated regression

analysis results [Figs. 5(c), 6(c), and 5(d)], we find that

whenever airgun activity is absent [dashed gray line in Fig.

5(c)], call density increases from roughly 0.2 to 0.4 calls/

min within 3.5 km range as the ambient noise levels increase

from 65 to 105 dB (40 dB), although the response tapers off

beyond 95 dB.

Replicating previous research on the same dataset

(Blackwell et al., 2015), Fig. 5(c) shows that the presence of

even low levels of seismic activity results in an increase in

call density, given the same fixed background noise level.

For example, at weak airgun exposures of 100 dB cSEL, the

call density normally produced at background noise levels

of 90 dB RMS [vertical black line in Fig. 5(c)] increases

31% from 0.38 to 0.5 calls/min. In order to return to the

baseline call density, ambient noise levels would have to

decrease 12 dB to 78. The presence of airgun pulses there-

fore boosts call density by 23% to 40%, depending on the

initial ambient noise level.

In contrast, as seismic survey cSEL levels continue to

increase, call densities are gradually suppressed. Although

not shown in Fig. 5, at 115 dB cSEL call densities match

those produced at ambient baseline levels. At higher levels

call densities become suppressed below baseline states, as

can be seen for the red curve in Fig. 5(c) for 120 dB cSEL.

If the in-band noise level is 90 dB, an increase in the cSEL

from 100 to 135 dB roughly halves the call density from 0.5

to 0.25 calls/min. Thus a 40 dB SPL increase in in-band

ambient noise level prompts roughly the same response as a

35 dB decrease in airgun cSEL (when the airgun cSEL does

starts at high levels).

As discussed previously, if noise levels are measured

over a fixed bandwidth of 20–170 Hz, the resulting noise

levels are roughly 15 dB higher than the in-band levels

reported in the previous paragraph.

When airgun presence is treated as a simple categorical

variable (no cSEL value incorporated), the regression finds

no significant relationship between call production rate and

airgun presence.

D. Call source level vs continuous in-band noise
levels and seismic airgun exposure

Figures 6 and 7 display various joint and conditional

probabilities of source and background noise levels,6 dis-

played on a logarithmic scale (log-10), for the various

FIG. 4. (Color online) Scale “r” (a) and shape “b” (b) parameters of hazard

rate localization function vs SLNR for both automated (black) and manual

(red) data analysis. Small dots indicate standard error of parameter fits.
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datasets provided in Table I. Figures 6 shows manual loca-

tions, restricted to ranges less than 3.5 km from the closest sen-

sor. Figure 7 uses locations up to 30 km range from the

automated dataset.5 All units are expressed in terms of dB

sound pressure level (RMS SPL); results computed in terms of

sound exposure level (SEL) and maximum power spectral den-

sity (mPSD) generate the same overall patterns and are not

reproduced here. All figures follow the same format, with joint

probabilities in the left column, probabilities conditioned on

noise level in the right column, and marginal distributions of

noise and source levels in the middle column.

The top rows [subplots (a) and (c)] in Figs. 6 and 7

show the observed distributions, uncorrected for masking

effects, while the bottom rows [subplots (d) and (f)] display

the results of applying the Pa values from the distance

sampling methods presented in Sec. III E, thus correcting for

noise masking effects. A comparison between the masked

(top row) and unmasked (bottom row) distributions of Fig. 6

(Rmax ¼ 3.5 km) shows little difference in the distributions,

validating the argument that using Rmax¼ 3.5 km removes

most masking effects.

Subplot f on the lower right of both figures shows the

final estimated behavioral response distribution p(SLjNL).

Some of these behavioral response distributions contain

SLNR values less than 52 dB, and so have not been corrected

with a Pa value, generating a 45� spurious sharp cutoff in the

figure [e.g., Fig. 7(f)]. Figure 7 also shows evidence of arti-

facts at very high source and noise levels, where small sam-

ple sizes have been inflated by very low Pa values. When

these artifacts are ignored, one sees a strong Lombard effect

in both the masked and unmasked data, with the mean source

level increasing with background noise level.

Figure 8 displays regressions of both source level (top

row) and behavioral sensitivity (DSL/DNL; middle row) for

data samples when seismic airgun survey noise is present.

The bottom row plots the modeled relationship between

source level and airgun survey cSEL level. The modeled

SPLs are shown for the masked and unmasked behavioral

response distributions (left and right columns) as a function

of background noise level, analysis type, and Rmax.
5

V. DISCUSSION

A. Relationship between source level, ambient noise,
and airgun exposure

Figure 8(a) demonstrates a clear Lombard effect for all

four datasets, with the mean source level rising 20 to 25 dB

over a 30–40 dB increase in noise. However, the mean

source level regressed from the long-range dataset (Rmax

¼ 30 km) is several dB greater than that of the short-range

FIG. 5. (Color online) Regression analysis of call density vs in-band ambient noise level [SPL (RMS)] and airgun cSEL. The top and bottom rows display

manual and automated analyses, respectively. (a) Call density vs ambient noise level when no seismic activity is present (black, dashed), when seismic activ-

ity generates 100 dB re 1 Pa2-s cSEL (green, dashed), and when seismic activity is 120 dB (red, dashed). (b) Call density vs seismic cSEL, with ambient

noise level fixed at 90 dB SPL [black vertical line in subplot (a)]. The green and red vertical lines indicate the cSEL levels held fixed in subplot (a). Subplots

(c) and (d) show the corresponding automated regressions. Shaded regions represent 5%–95% confidence intervals for nonsimultaneous bounds, and the hor-

izontal span of the curves cover the 1st through 99th percentiles. All call density values have been transformed back from the log-transformed regression

models.
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set. The reason behind this difference arises from masking

effects on weaker calls, and not due to errors in the transmis-

sion loss function used to estimate source level. Permitting

call samples to be collected from a larger region biases the

samples toward louder calls: the effective sampling area for

weaker calls will be smaller than that for louder calls, as

weaker calls cannot be detected out to the cutoff range Rmax.

By applying the masking correction factors from Fig. 3(e)

and recalculating the regression from the resampled distribu-

tion, the discrepancy between the sampling ranges becomes

substantially reduced [Fig. 8(b)]. The distance sampling

unmasking approach described in Sec. II B is thus validated.

The behavioral sensitivity for both the masked and

unmasked regressions (Fig. 8, middle row) shows that at

low in-band noise values, the short-range analyses display a

nearly perfect compensation for ambient noise variations,

with sensitivities just above 1. For the same noise values the

corresponding long-range sensitivities are lower, lying

between 0.6 and 0.9. As noise levels increase, the sensitivi-

ties for all analyses decline steadily, corresponding with a

gradual shrinking of the population’s communication space.

While the exact details of the decline vary between the

analyses, the sensitivities of the masked regressions fall to

nearly zero at high noise levels between 95 and 105 dB,

indicating that the population is no longer able to adjust

(increase) its source level at these higher noise levels, which

correspond to the 90–99th percentiles of the noise distribu-

tion [Fig. 7(e)]. Unmasking the distribution still reveals this

sensitivity decrease, although at very high noise levels the

sensitivities do not fall to zero, which may be a spurious

artifact from low sample sizes.

By contrast, the population barely changes its source

level in response to increasing airgun activity [Figs. 8(e) and

8(f)]: over a 40 dB increase of cSEL the mean source level

increases by just a few dB, yielding a low behavioral sensi-

tivity with respect to airguns. This result is not initially puz-

zling, since seismic airgun signals are impulsive, and one

might expect that the animals would not need to raise their

source levels to avoid the noise, but would simply increase

their call production rate in order to transmit a call during

times when the airguns are silent. However, seismic survey

noise is not completely impulsive; previous work (Guerra

et al., 2011) has shown that continuous reverberation can

exist between the airgun pulses during a seismic survey, and

FIG. 6. (Color online) Various stages of computing the underlying conditional probability density p(SLjNL) from the observed joint distribution of source

level and noise level p(þ,SL,NL), using the “short range” manually analyzed data (N¼ 10 108; Rmax ¼ 3.5 km) from Table I. (a) Observed joint distribution

p(þ,SL,NL); (b) marginal distribution of observed source level [p(þ, SL); black] and underlying unmasked source level [p(SL); red]; (c) observed source

level distribution conditioned on noise level p(þ,SLjNL)¼ p(þ,SL,NL)/p(NL); (d) underlying unmasked joint distribution of p(SL,NL)¼p(þ,SL,NL)/

Pa(SLNR); (e) observed (black) and underlying unmasked (red) cumulative background noise distributions, where each noise sample is computed over a

unique bandwidth that matches the call; (f) underlying unmasked source level distribution conditioned on noise level [p(SLjNL); Eq. (1)]. Small black circles

indicate mean polynomial regression of source level with respect to noise level. All units are in terms of sound pressure level (dB re 1 &#120583;Pa, RMS).

Diagonal white lines illustrate points that share a constant SLNR of 64 dB (for manual analyses) and 68 dB (for automated analyses).
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thus one would expect the animals to raise their source lev-

els as the diffuse reverberation levels rise. Perhaps that is

the explanation for the mild increases in source level as the

cSEL airgun noise level increases.

B. Implications for passive acoustic population
density estimation

This work has two implications when applying passive

acoustic monitoring to density estimation: first, when con-

verting measurements of call production density into esti-

mates of underlying animal density and abundance; and

second, when trying to estimate call density over short inter-

vals within a season, a situation where the “pooling

robustness” assumption of distance sampling is violated.

1. Converting call production density into animal
density

While a variety of methods exist for estimating the true

(unmasked) underlying call density of animals, translating

this density into an animal density is difficult because an

individual’s call production rate depends heavily on the ani-

mal’s behavioral state as well as other environmental, eco-

logical, and contextual factors that influence behavior

(Ellison et al., 2012). The work presented here lists another

behavioral factor—natural and anthropogenic noise—which

should be considered when estimating long-term abundance

or abundance trends.

For example, to learn whether the bowhead whale popu-

lation off Alaska is increasing over time, one must compare

call density estimates across years in order to obtain relative

trends. This work shows that in order to measure accurate

population trends using passive acoustics only, two correction

factors should be applied to raw counts of measured call den-

sity: a noise masking correction, and then a behavioral correc-

tion to adjust call production rates for Lombard effects. The

former correction can be achieved by standard distance sam-

pling methods, if one fitted a separate localization function for

each season, but the latter correction would still need to be

applied as well, because localization distance functions can

only correct for masking effects, and not behavioral effects.

In principle the behavioral correction would not be

required if the underlying noise distributions (natural and seis-

mic) between seasons were the same, but in reality, seismic

survey activity varies widely across years. Even mean ambient

noise level percentiles varied by up to 4 dB across the study’s

lifetime (Thode et al., 2017), which translates into changes of

call density of 0.3 to 0.4 calls/min per unit area: a nearly 33%

shift. Thus, call rates should be corrected for both masking

and behavioral noise effects if passive acoustics is used to

precisely estimate long-term, multi-seasonal trends.

2. Addressing breakdowns in pooling robustness

The explicit incorporation of noise levels into distance

sampling theory becomes relevant in situations where call

FIG. 7. (Color online) Same as Fig. 6, except displaying long-range automated data (N¼ 404 472; Rmax ¼ 30 km) from Table I.
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density is estimated over relatively short intervals, such as if

one were to estimate a time series of relative animal abun-

dance throughout a single season. Under these circumstan-

ces, the so-called “pooling robustness” property of distance

sampling becomes invalid, and it becomes useful to explic-

itly incorporate noise levels as a covariate into the localiza-

tion function estimate.

Pooling robustness is often invoked to explain why dis-

tance sampling theory generally neglects the impacts of

noise on acoustic density estimation. The concept is

explained by Burnham et al. (2004, p. 19):

“In reality, detection probability does not depend on

distance only. It may depend on the ability of the surveyor,

the characteristics of the individual animals, environmental

or weather conditions, and a host of other factors.

However, when animals at zero distance are detected with

certainty [g (0)¼ 1], then providing that the fitted detection

function model is flexible enough, distance sampling esti-

mators of abundance and density are unbiased even though

all things other than distance are ignored in estimating

detection probability. This property, known as ‘pooling

robustness’, is a very powerful feature of distance sampling

methods.”

Thus, noise masking effects, one of these “other factors,”

can often be neglected if enough data are sampled from enough

circumstances to reproduce the underlying noise statistics.

Buckland et al. (2015), however, provide a warning

about blindly applying pooling robustness (p. 55): “If a sur-

vey region is stratified into two habitats, and detectability is

lower in one habitat than the other, the stratum-specific

abundance estimates will again be biased, if we assume that

the same detection function [will be applied] to both habi-

tats. Total abundance across habitats will only have the

pooling robustness property if effort is in proportion to stra-

tum area. For example, if one stratum is twice the size of the

other, it should have twice the survey effort.”

Expressing this caution in terms of call detectability in

noise, PAM distance sampling estimates that ignore noise

are unbiased only if calls are sampled in a way that reflects

the true underlying distribution of SLNR, which in turn

relies on the true underlying distribution of noise levels. If

the noise conditions associated with a set of call samples are

not representative of the overall long-term noise distribution

used to create the localization function, then the resulting

call density estimates will be biased. If the call samples are

collected under unusually quiet conditions, then the density

estimates will be biased high. In particular, if one is trying to

compute call densities at weekly intervals, it is risky to use a

localization function computed using all samples collected

across the season, because it is not guaranteed that the noise

conditions experienced over one week’s time are representa-

tive of noise levels (or seismic cSEL activity) captured over

FIG. 8. (Color online) Regression analysis of source level against in-band noise level, when seismic airgun activity is present. Top row shows predicted

source vs noise level for masked (a) and unmasked (b) distributions, when airgun cSEL is fixed at 110 dB re 1 uPa (black vertical line in bottom row); middle

row shows behavioral sensitivities for (c) masked and (d) unmasked distributions; bottom row shows predicted source level vs airgun cSEL, when in-band

noise level is fixed to 80 dB (vertical lines in top and middle rows). Manual analyses are represented by circles, automated analyses by triangles, short-range

(Rmax ¼ 3.5 km) analyses by black, and long-range (Rmax ¼ 30 km) by red. Shading represents 95% confidence intervals, and horizontal extent of curves cov-

ers the 1st to 99th percentiles of measured noise level.
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an entire season. At the very least, when constructing a call

abundance time series the temporal and spatial consistency of

ambient noise statistics should be confirmed.

If noise statistics are not stationary (consistent), at least

two approaches exist to rectify this situation. The first is to sub-

divide the call samples so that each set shares similar detectabil-

ity conditions, and then assign a separate localization function

to each. An example of this strategy is creating a separate local-

ization function for every season of data. Unfortunately, this

approach is often not practical when computing short-term call

density estimates. There are simply not enough call samples

collected over enough ranges in the course of a week to derive

a weekly updated localization function.

Another approach, recommended here, is to build a

localization function out of the full seasonal dataset, but use

SLNR (and thus noise) as a covariate. Calls detected over a

short time window can then be sorted by SLNR, and mea-

sured call densities for each SLNR value can then be calcu-

lated and adjusted by the appropriate SLNR masking factor

Pa. In this manner, an accurate, short-term time series can

be reconstructed. This particular approach only works if

calls with different SLNR are statistically independent; e.g.,

no call sequences with alternating high- and low-source lev-

els are generated.

Marques and Buckland (2004) discuss additional situa-

tions where covariates like SLNR need to be considered

explicitly in distance sampling density estimation.

VI. CONCLUSION

Bowhead whales respond to differing ambient noise

conditions by increasing their rate of calling and increasing

their call source level (Lombard effect). Here we show that

call density increases with increasing in-band continuous,

natural ambient noise and in the presence of weak seismic

survey activity. The effect of weak seismic survey activity is

roughly similar to a 10–15 dB change in continuous noise

levels. At higher exposures to seismic activity noise, indi-

vidual call rates become suppressed, and the measured call

density decreases. As the 10-min exposure reaches 115 dB

re 1 lPa2-s cSEL, call density returns to baseline (no airgun)

levels, and densities are further suppressed at higher levels.

Distance sampling, using the SLNR as a covariate, was

successfully applied to address masking effects. This tech-

nique may be viable to other situations where one can

assume a uniform or other a priori animal distribution in

azimuthally symmetric propagation conditions. Both the

raw and unmasked behavioral response distributions show

that calling bowhead whales display a strong Lombard

effect by increasing their call source levels in the presence

of in-band, continuous noise, producing a nearly 20 dB

change in mean source level between the 1st and 99th noise

percentiles. At low noise levels individual whales can adjust

their mean source level to completely compensate for ambi-

ent noise level changes, but they steadily loses their ability

to adjust as noise levels increase, until most calling individ-

uals in a population can no longer compensate for increasing

noise levels. We postulate that this apparent reduction in or

loss of behavioral sensitivity at high noise exposure levels

arises from physiological limits to sound production and does

not necessarily represent a loss of behavioral sensitivity. By

contrast, the population’s mean call source level increases by

just a few dB when seismic survey acoustic conditions

increase noise cSEL conditions by 40 dB. This apparent insen-

sitivity may arise from the impulsive nature of this noise,

which might allow whales to communicate using their base-

line source level during the times between airgun pulses, pro-

vided that they call more frequently. Increases of

reverberation levels with increasing cSEL may explain why a

weak source level response does exist to seismic airgun noise.

These results illustrate the importance of using behav-

ioral responses to natural noise fluctuations to place anthro-

pogenic responses in context, and may provide insight into

how to translate call density estimates into animal densities.

The modified distance sampling technique derived here may

also have applications in correcting measured call density

estimates collected over relatively short timescales.

Both humans and animals display other responses to

ambient noise shifts, including changes in the temporal and

spectral structure of signals (Brumm and Zollinger, 2011).

For example, Parks et al. (2012) has identified shifts in call

minimum frequency in right whale calls in response to

increasing low frequency noise. This dataset is ripe for fur-

ther such investigations, including incorporating long-term

changes in call spectral structure into the analysis (e.g.,

Thode et al., 2017).
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APPENDIX: DISTANCE SAMPLING AVAILABILITY
FUNCTIONS FOR DISTRIBUTED PAM ARRAYS

The distance sampling Eqs. (1)–(4) are derived assum-

ing that the distance of a detected object can be determined

using measurements from a single point. Thus, the standard
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FIG. 9. (Color online) Same as Fig. 3, except all ranges to a localization (not just closest range) have been incorporated into the distance analysis, using a

standard circular availability function.

FIG. 10. (Color online) Figure 9 recomputed using only the closest range for each localization, using the standard circular availability function.

2076 J. Acoust. Soc. Am. 147 (3), March 2020 Thode et al.

https://doi.org/10.1121/10.0000935

https://doi.org/10.1121/10.0000935


form of the availability function, p(r), is a circle normalized

by the total monitoring area A: 2pr/A (Marques et al.,
2013b; Buckland et al., 2012). However, most methods for

localizing underwater sounds require detecting the same

signal on multiple sensors, using either relative arrival time

differences on hydrophones or triangulation on directional

sensors to achieve the localization. As a result, a given

localization yields multiple ranges to different sensors, rais-

ing the question as to whether all ranges measured from all

sensors should be treated as independent samples when

computing the maximum-likelihood fit for the localization

function, or whether only the closest range to each position

should be used. In this appendix we demonstrate that the lat-

ter choice yields an answer that is clean and intellectually

consistent for this study, but requires a more complex avail-

ability function than a simple circle.

Two issues were found when using all ranges to a local-

ization: first, their use artificially inflates the scale parameter

in the localization function [r in Eq. (3)], since using all

ranges to a localization, and not just the closest, biases the

observed distribution toward larger ranges. For example, if a

call is detected at three DASARs at 300, 1000, and 2000 m

range, then the mean range of the three samples (1100 m)

will be larger than using the minimum range (300 m). A

more serious issue can be seen in Fig. 9, which displays the

localization function results in a format similar to that of

Fig. 3. One sees that for SLNR values below 70 dB the

observed range distribution f(SLNR,r) in subplot 9(a) (top

left plot) bifurcates into a bimodal distribution, with the

most prominent peak emerging at 7 km, i.e., the separation

between DASARs. Our interpretation of this result is that it

is a quirk of the triangulation algorithm that arises when an

analyst tries to estimate a bearing for a weak (low SNR)

call. The bearing uncertainty for weak calls rises substan-

tially, and when applying the maximum-likelihood robust

triangulation scheme of Lenth (1981) we observe a tendency

of the algorithm to “cluster” calls with high azimuthal

uncertainty around the closest DASAR, when then generates

a set of distances close to 7 km from the other DASARs.

Numerical simulations found that this effect only occurs

when a call is generated within a range dD/ of the closest

DASAR, where D is the sensor separation (7 km), and d/ is

FIG. 11. (Color online) Illustration of how the availability function changes for a three-sensor grid. The availability function is all points on the circles’

perimeter that do not penetrate other circles. (a) r < D=2 : pðrÞ ¼ 6pr; (b) D=2 < r < D=
ffiffiffi
3
p

: pðrÞ ¼ 12ar; (c) D=
ffiffiffi
3
p

< r : pðrÞ ¼ ð6aþ 2pÞr; (d)

D=
ffiffiffi
3
p
� r : pðrÞ ¼ 3Dþ 2pr. a ¼ sin�1ðD=2RÞ. For (d) one sees that at large ranges the availability function for the distributed array converges toward

the standard availability function of a circle.
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the azimuthal uncertainty in radians. At weak signal-to-

noise ratios (below 5 dB) the uncertainty can reach up to

10�, so the clustering effect occurs for weak calls 1 km or

closer to the nearest DASAR.

The number of calls affected by this situation is small

(20% of the sample), so using all ranges to construct a local-

ization function can be viable if one were simply trying to

build a general localization function without using SLNR as

a covariate, and had an ability to measure the source level of

a call (so low SLNR calls could be rejected). However,

given the desire to generate an accurate image of the behav-

ioral response p(SLjNL), this 7 km clustering in Fig. 9(a)

was unacceptable, and we are forced to fit a localization

curve using only the range to the closest DASAR that con-

tributed to a given localization.

However, using only the closest range to a call gener-

ates a new problem, as revealed for the resulting estimates

of f(SLNR,r) and g(SLNR,r), plotted in Figs. 10(a) and 10(c),

which show strong discontinuities in the localization func-

tion at 3.5 km for any SLNR above 68 dB, e.g., Fig. 10(c).

The reason for this artifact is that when only the range

to the closest DASAR (in a triangulating grid of DASARs)

is used, the availability function is no longer a circle, but

becomes a more complex locus of points whose structure

changes with increasing range. Figure 11 illustrates this

point for a simple three-sensor triangular grid, with sensor

separation D. When calls are generated at a range r<D/2
(upper left, a), then the loci of points that satisfy this condi-

tion define three nonoverlapping circles with cumulative

perimeter of 6pr, and thus the perimeter function is propor-

tional to this value.

As r increases past D/2, the circles of radius r overlap,

and only points outside the perimeter of any other circle sat-

isfy the condition of r being the closest range to a DASAR.

As r grows much larger than D/2, the circles nearly

completely overlap and the perimeter converges toward the

value of a single circle with circumference 2pr, shown in

Fig. 11(d).

Thus, for a three-sensor localization grid as in Fig. 11,

the availability function p(r) can be shown to be:

r <
D

2
: pðrÞ ¼ 6pr;

D

2
< r <

Dffiffiffi
3
p : 12ar;

Dffiffiffi
3
p < r : pðrÞ ¼ ð6aþ 2pÞr;

Dffiffiffi
3
p � r : pðrÞ ¼ 3Dþ 2pr; (A1)

FIG. 12. (Color online) (a) Availability function for a three-sensor array with 7 km separation (black), seven-sensor array with 7 km separation (red), and

standard point transect (blue). (b) Availability function for three-sensor (black) and seven-sensor (red) distributed array, normalized by standard point tran-

sect availability function.
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where a ¼ sin�1ðD=2RÞ. For seven sensors in a triangular

grid, which represents the actual Site 3 and 5 geometry, the

availability function becomes

r <
D

2
: pðrÞ ¼ 14pr;

D

2
< r <

Dffiffiffi
3
p : pðrÞ ¼ ð44a� 8pÞr;

Dffiffiffi
3
p < r : pðrÞ ¼ ð14aþ 2pÞr;

Dffiffiffi
3
p �� r : pðrÞ ¼ 7Dþ 2pr: (A2)

Figure 12 plots the three- and seven-DASAR availabil-

ity functions vs range for D¼ 7 km. The right subplot shows

the availability function divided by the standard distance

function 2pr and clearly reveals the availability functions’

discontinuous slope at D/2 (3.5 km) range. At larger ranges

the ratio in subplot b rapidly decreases and then asymptoti-

cally approaches 1, thus converging into the standard avail-

ability function when the range is much larger than the

dimensions of the distributed array.

The discontinuity at 3.5 km is what introduces the verti-

cal artifact visible in Figs. 10(a) and 10(c). This is an impor-

tant point because if point transect theory is applied to a
distributed tracking array with spacing D using only one
range (closest range) per localized call, then the resulting
localization function will appear to fall off sharply at a
range equal to D/2. This artifact could easily be interpreted

as a true localization function when, in reality, it arises from

using an incorrect availability function pðrÞ.
Equation (A2), combined with Eq. (4), yields Fig. (3).

While standard distance sampling software packages, e.g.,

the DISTANCE package (Thomas et al., 2010) developed

for the statistical software language R, do not allow the

specification of arbitrary availability functions, one can

select the range binning option and then duplicate samples

at each range according to the normalized availability func-

tion (e.g., right side of Fig. 12) to effectively apply any

availability function desired. Other approaches for modeling

nonstandard availability functions are provided in Marques

et al. (2010, 2013a) for point and linear transects,

respectively.

1Technically this term should be called “call intensity” or “call flux,” as it

describes a quantity that is a rate per unit area, but we opted for “call

density” to avoid confusion with acoustic intensity and to be consistent

with other animal density estimation literature.
2We emphasize at the outset that our definition of p(“þ”) and other

upcoming quantities includes the probability of not only detection, but

also of localization, a process that requires a call to be detected on addi-

tional sensors beyond just the closest sensor (which is the origin for Rmax).
3It is unfortunate that the distance sampling literature uses the Greek sym-

bol p for both the availability function and the famous irrational number,

but we chose to respect that [irrational] convention here by always writing

the availability function with an explicit dependence on r: p(r).
4At first glance, this relationship implies an effective transmission loss of

�20log10(R), which is considerably harsher attenuation than the

15log10(R) used to model the source levels. Note, however, that Fig. 4

shows parameters from a localization, and not a true detection, function,

and that at least two detections on at least two DASARs are required for a

localization. A simple simulation demonstrates that if a call is equidistant

from two sensors, and if the detection probabilities at both locations are

statistically independent, then the probability of localization is equal to

the square of the probability of detection. If a signal’s detectability vs

SNR is modeled as a sigmoid, one finds that a 15log10(R) propagation

model will generate a localization function that displays an 18 to

20log10(R) relationship between the scale parameter and SLNR, as

shown.
5See supplementary material at https://doi.org/10.1121/10.0000935 for

contour plots of the probability distributions of call density vs in-band

ambient SPL noise level; for displays of the joint and conditional proba-

bilities for other combinations of Rmax and analysis method; and for dis-

plays of regressions of both source level and behavioral sensitivity for

data samples collected in the absence of seismic survey noise.
6As stated in Sec. II B, the noise levels displayed here are computed from

bandwidths that vary from call to call. A regression of broadband noise

levels against these “floating bandwidth” levels found that adding 12 dB

to the noise scales shown here makes them approximately equal to the

RMS sound pressure level (SPL) measured over a fixed bandwidth of

20–170 Hz.
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