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Abstract

This paper describes a working, computational model
of word recognition that combines a letter classification
component with a component that segments the string
of classified letters into words and uses a dynamic pro-
gramming method for matching the words against a lex-
icon of over 2,800 words. The letter classification com-
ponent is a neural network trained to classify, in paral-
lel, inputs corresponding to 20x188 pixel array images
of letter sequences, 14 or more letters long. Consistent
with human capabilities, the system can classify all 14
letters at a level above chance, and on average, clas-
sifies the first 7 or 8 letters in the sequence correctly.
Dictionary lookup improves classification accuracy by
1 character per image. The model is robust, having
been trained and tested on the entire text of the book
The Wonderful Wizard of Oz, printed in multiple fonts
and in both mixed and upper-case letters. It provides
a computation-level understanding of word recognition
capabilities, in which errors are attributable to the the-
oretically inevitable difficulties associated with learning
to classify large input patterns. The model mimics hu-
man capabilities for circumventing some of these difficul-
ties by imposing constraints on fixation positions that
reduce image variability.

Introduction

Marr (1982) proposed that cognitive processes can be
studied at multiple levels. A computation level stresses
the importance of understanding the nature of the task
to be accomplished before proposing algorithms, repre-
sentations, or physical hardware for accomplishing the
task. Understanding the nature of the task involves,
among other things, specifying a computational theory
that defines the conditions under which it is possible
to perform the task. Understanding a cognitive process
at this level corresponds to specifying how these condi-
tions are met when people perform the task. At the sec-
ond level of analysis, the algorithm level, an algorithm
for accomplishing the task is specified. Understanding
a cognitive process in this case, corresponds to relat-
ing behaviors people exhibit when performing the task
to behaviors exhibited by the more explicitly-specified
algorithm. When people and the algorithm exhibit sim-
ilar errors, or similar skills, in performing the task, it
is often concluded that the human errors and skills are
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caused by characteristics of the algorithm, rather than
the computation-level factors involved.

An example of an algorithm-level analysis of word
recognition is McClelland & Rumelhart’s (1981) Inter-
active Activation model. The model assumes that word
recognition requires both letter classification and dictio-
nary lookup components. The model simulates the dic-
tionary lookup component. It is assumed that when a
word 1s seen, a set of letter detectors is activated in paral-
lel, continuously feeding letter and letter order informa-
tion to a set of word detectors. Word familiarity is rep-
resented as learned associations between letter and word
detectors. When the activation pattern arising from a
set of letter detectors is consistent with one or more of
these associations, activation is amplified, causing word
detectors to fire more quickly, and through a backward
flow of activation, causing the letters to be identified
more quickly as well. Because the model exhibits many
of the same phenomena people exhibit when they recog-
nize words, including word frequency effects (Solomon &
Postman, 1952); word superiority effects (Reicher, 1969);
and pseudo-word superiority effects (Baron & Thurston,
1973) !, the model can be said to explain these human
phenomena in terms of the characteristics of the repre-
sentations and algorithms of the model.

The present paper adopts a complementary, compu-
tation level understanding of word recognition that is
based on a computational theory of classification learn-
ing. From this perspective, a classifier that converts the
image of a text string to an hypothesis about the let-
ter sequence depicted in the image, is characterized as
a function that maps some population of inputs onto a
corresponding population of outputs. People presum-
ably acquire this function through a classification learn-
ing process. The computational theory of classification
learning characterizes this learning process as function
approximation. The learning system successively ap-

' Word frequency effects refer to findings that people iden-
tify high frequency words more quickly than low frequency
words. Word superiority and pseudo-word superiority effects
refer findings that people identify a letter presented in the
context of a word or a wordlike letter string more quickly
than they identify a single letter in isolation, even when the
guessing advantage for words has been eliminated.
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proximates the function that underlies the population
of input-output pairs by using samples drawn from the
population to search through a space of candidate map-
ping functions, eliminating those functions that are in-
compatible with the sampled pairs. It can be shown
that without any natural constraints on the population,
or biases in the function approximation process, the dif-
ficulty of classification learning increases exponentially
with the sizes of the input and output patterns (Denker,
et al, 1987; Geman, Bienenstock & Doursat, 1992). This
boundary condition on learning is commonly referred to
as the curse of dimensionality, and applies to all classi-
fication learning systems, human or machine. It arises
because the larger the inputs and outputs to the system,
the greater will be the potential number of candidate
functions in the search space, and hence the longer the
search, and the greater the number of input-output pairs
that would have to be sampled to sufficiently approxi-
mate the function. Because of the exponential relations
involved, the curse implies that tabula rasa (blank slate)
classification learning is impossible for large inputs and
outputs.

The curse would not necessarily be a problem relevant
to word recognition if people identified words, one letter
al a time, such that the input to the classifier was the
relatively low-dimensional image of a single letter. How-
ever, a variety of evidence suggests that when people
read, they classify a relatively long string of characters
in parallel. Eye movement studies indicate that people
can at least partially classify as many as 14 letters per
fixation, and completely identify an average of 7 or 8
letters per fixation (McConkie & Rayner, 1975; Rayner,
Well & Pollatsek, 1980; Rayner, Well, Pollatsek & Bert-
era, 1982). Word superiority and related effects indi-
cate that letter classification occurs in parallel (Baron &
Thurston, 1973; Blanchard, McConkie, Sola & Wolver-
ton, 1984; Reicher, 1969). There is also evidence that
the parallel nature of the process is not due to words
being read on the basis of word shape detectors, since
printing words in aLtErNaTiNg cases, which eliminates
the familiarity of a word’s shape, has relatively small
effects on word recognition (McClelland, 1976).

These data indicate that the images input to the let-
ter classification process that underlies human reading
are quite large, and that outputs of the process repre-
sent a long string of characters, usually corresponding
to multiple words. When combined with the curse of
dimensionality principle, this implies that people would
not be able to learn to classify these images of letter se-
quences unless constraints exist to limit the variability
of the to-be-classified images images, and/or learning is
biased to exclude candidate mapping functions from the
search space on an a priori basis. This suggests that we
may understand reading better by understanding the na-
ture of these constraints that make letter classification

learning possible. Toward this end, the present paper
develops a working computational model of word recog-
nition that uses human-like natural constraints to learn
to classify images of long letter sequences.

Previous Work

In a previous paper (Martin, 1996) I supported this
computation-level perspective of letter classification by
training neural networks to classify images of letter se-
quences. The goal was to determine the impact on letter
classification learning of increasing the width of the in-
put images, and the number of to-be-classified letters,
and to determine the corresponding impact of natural
constraints on the variability of these images. Note that
the point of this work was not to support a claim that
people and the networks were necessarily similar at an
algorithm level, but rather that both systems were gov-
erned by the same computation-level limitations on clas-
sification learning, and that both could benefit from the
same types of constraints. In other words, the neural
networks provide a measure of both the problems asso-
ciated with high dimensional inputs and outputs, and the
potential utility of the constraints in overcoming these
problems.

The study produced a number of results. Consistent
with the curse, networks that were trained on images
of single characters had no difficulty at letter classifi-
cation learning, but as the image width increased from
20 to 80 pixels and the number of to-be-classified charac-
ters increased from 1 to 4 characters, catastrophic effects
on learning occurred. One natural constraint that may
reduce such difficulties is the regularity in fixation po-
sitions that characterizes human reading. People fixate
most often at a preferred viewing location—slightly to the
left of the middle of a word (Rayner, 1979). It is also
the case that people identify a word more quickly when
the eyes fixate near to this location (O'Regan & Jacobs,
1992). Such regularities may reduce image variability
sufficiently to overcome some of the problems associated
with the curse. The original nets did not have the benefit
of such constraints, as the input images were generated
by fixating at each character position within a word.
Simulating these regularities resulted in networks that
performed as well, or better than the networks trained to
classify single-letter images; thus overcoming the curse’s
negative effects for this size of inputs and outputs.

A third set of simulations addressed the role played
by constraints on letter sequences, since words are com-
posed of only a small subset of all possible letter se-
quences. This role was assessed by examining the extent
to which the trained networks exhibited word superior-
ity effects, pseudo-word superiority effects, and word fre-
quency effects similar to those exhibited by people. Such
a similarity would indicate that the nets had become spe-
cialized for classifying familiar letter sequences at the ex-
pense of all possible letter sequences. The nets exhibited

497



these effects, thus supplying evidence that constraints on
letter sequences also facilitate letter classification learn-
ing. Note that these results provide an explanation of
word frequency effects and word- and pseudo-word supe-
riority effects that differs from the explanation provided
by McClelland & Rumelhart (1981) in their Interactive
Activation Model, both in the level of the explanation:
Computation vs algorithm, and in the source of the ef-
fect: Letter classification learning vs dictionary lookup.

Current Work

The current work extends this conception by exploring
(1) the extent to which increasing image variability to
more realistic levels hinders classification learning, and
(2) the extent to which applying post-processing con-
straints can make up for such deficiencies in classification
learning. The model developed previously minimized the
variability of to-be-classified images relative to what peo-
ple face when they learn to read. The to-be-classified
images depicted sequences of about 4 letters, as com-
pared to the sequences of 14 letters that people classify,
and a highly simplified model for generating eye fixation
positions was used. Adding new sources of variability
will increase the difficulty of classification learning, and
reduce classification accuracy. Such decreases in clas-
sification accuracy may not be fatal, however, if post
processing mechanisms, such as dictionary lookup, inte-
gration across fixations, and syntactic and semantic pro-
cessing, provide sufficient constraints on classification to
correct errors. A more complete computation-level un-
derstanding of reading should describe the interplay of
these positive and negative influences on letter classifi-
cation accuracy. The work described here takes a first
step in this direction by more accurately modeling the
image variability with which the human reading system
must contend, and by incorporating a dictionary lookup
component.

Image Variability

The variability of to-be-classified images was increased
by extending image width from that sufficient to cover
letter sequences containing about 4 letters to that suf-
ficient to cover about 14 letters, and by more accu-
rately approximating the fixation position regularities
that characterize reading. The original research (Martin,
1996) used a simplified simulation of these regularities,
positioning each input image with respect to the cen-
ter of the 3rd letter in each word containing 3 or more
letters. Actual fixation locations are likely to impose
greater image variability, and thus greater learning diffi-
culties. Rather than positioning all images with respect
to a fixed location in all words, people tend to base fix-
ation locations on word length, at a position slightly to
the left of the middle of a word, and fixations are bet-
ter described as a probability distribution around this
location (Rayner, 1979).
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Two networks were trained from scratch, one using
the previous simplified simulation of fixation regulari-
ties that was independent of word length, and the other
using the method based on word length ? The impact
of having a probability distribution of fixation positions
around a given position was assessed by cloning the net-
worl trained with word-length-based fixation points, and
then retraining it with images generated as follows. On a
randomly-chosen one third of the exposures, the window
was shifted to the left or right one character. The result
of these endeavors led to the creation of three neural net-
works, trained on images of increasing variability. The
network that was trained with images generated with the
constant fixation position on the 3rd letter of a word,
presumably encountered the least image variability. The
network trained with the noisy, word-length-based fix-
ations presumably encountered the greatest image vari-
ability,

Dictionary Lookup Component

In their Interactive Activation model, McClelland &
Rumelhart (1981) assumed that the string of letters
output from letter detectors corresponded to a single
word, so that dictionary lookup simply involved match-
ing this string against the internal lexicon. However,
if the output of the letter classification task is an hy-
pothesis about the identities and order of a sequence
of 14 letters, then dictionary lookup must also involve
segmenting the string into words. The present work in-
tegrated dictionary lookup and segmentation to explore
the interplay between letter classification and dictionary
lookup.

The dictionary lookup component was an extension of
one developed in previous work (Martin & Talley, 1995)
in which a two-tiered dynamic programming method was
used for word segmentation and dictionary lookup to im-
prove the accuracy of a handwriting recognition system.
Dynamic programming refers to a general class of ef-
ficient search algorithms for use where the elements of
the problem have an inviolate order, as is the order of
letters within a word, and where it is possible to de-
fine a monotonically increasing decomposable objective
function that can be minimized over the length of the
sequence.

The present approach departs from this earlier work
with respect to the method used to identify word bound-
aries. The output of the letter classification system
is a sequence of vectors that can be divided into sub-
sequences corresponding to words. Each vector consists
of the activation values of 27 output nodes. The present

It was only possible to train two networks because each
net required 6 months to train, running on a relatively fast
sparcl0 machine. However, previous experience with large
nets and large training samples, has indicated little variability
across training and generalization. In addition, the initial
random states of the two networks were identical.



approach used the activation values of the output nodes
corresponding to a between-word “space” to determine
a candidate set of possible word boundaries. The in-
tent was to err on the side of proposing too many word
boundaries. If the output nodes for “space” had an acti-
vation value greater than .1, a possible word segmenta-
tion point was recorded. A list of possible sub-sequences
corresponding to words was generated by starting at the
leftmost character position and ending at each possible
word boundary. Each of these sub-sequences was sub-
mitted to a dynamic programming function that gen-
erated the best match in the dictionary of about 2,800
words from the story. Then, the best match across all
of this list was chosen, and the corresponding word re-
placed the first n letters of the classified string, where n
is the number of letters in the word. A space replaced
the next letter in the classified string, and the process
was repeated again until all 14 character positions in the
classified string had been replaced.

Training and Testing Materials

The training and testing materials were the same as
those used in the previous study. They were gener-
ated from the book The Wonderful Wizard of Oz by
L. Frank Baum. Text line images were created from 120
pages of text, corresponding to about 160,000 characters,
over 30,000 total words and about 2,800 different words.
To approach the real-world variability of text images in
reading, the text was printed in 3 different type fonts,
and in either all upper case letters or the original mix of
lower and upper case letters (see Figure 1). The set of
text line images were equally divided into the six differ-
ent font/case conditions, and each of these was equally
represented in separate training and test samples. The
test samples were sub-divided into two sets, referred to
as the test and validation sets. The first of these was
used to monitor generalization performance throughout
training; the validation set was only used in testing after
training had stopped. The training set contained about
13,600 distinct images of letter sequences comprised of
14 or more letters. The test and validation sets each
contained about 1,200 such images.

Dorothy lived in the midst of the great Kansas Prairies.

DOROTHY LIVED IN THE MIDST OF THE GREAT KANSAS PRAIRIES.
Dorothy lived in the midst of the great Kansas Prairies.

DOROTHY LIVED IN THE MIDST OF THE GREAT KANSAS PRAIRIES.
Dorothy lived in the midst of the great Kansas Prairies.
DOROTHY LIVED IN THE MIDST OF THE GREAT KANSAS PRAIRIES.

Figure 1: Samples of type font and case conditions

Neural Network Architecture

The neural network simulations all used a common type
of architecture that was an extension of local receptive

field, shared weight architectures (see Figure 2) used suc-
cessfully in a number of Optical Character Recognition
(OCR) systems (LeCun, et al, 1990; Martin & Pittman,
1991), and used in the previously mentioned (Martin,
1996) study. In all of these cases, the learning algorithm
was backpropagation (Rumelhart, Hinton & Williams,

1986).
ABCEEFOHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNBJPQRETUVWX Y Z_
ABCDEFOHIKLMNOPQEETUVWXYZ

ABCDEFOHLKLMNEPORSTUVWXYZ

Local, shared-weight receptive fields
‘_/
P RS

a7

Figure 2: Neural network architecture

The inputs to these earlier versions of the architec-
ture were images of single characters, but in the Martin
(1996) study, the input images depicted at least k letters,
where k = 1, 2, 3, or 4, depending on the specific net-
work, and the outputs corresponded to a vector of the
26 letters (A-Z) and a space, for each of the k possible
letter positions. Hidden nodes receive input from a local
region (for example, a 6x6 area) in the layer below. Hid-
den layers are visualized as cubes, made up of separate
planes. Hidden nodes within a plane share weights, in
the sense that corresponding weights in the nodes’ re-
ceptive fields are randomly initialized to the same value
and updated by the same error, so that different hidden
nodes within a plane learn to detect the same feature
at different locations. Different feature detectors emerge
from hidden nodes within different planes, due to differ-
ent random initializations of the weights. There are two
hidden layers of this type. Output nodes are connected
to all nodes in the previous layer, but not to each other.
The output vector consists of one set of 27 elements,
to represent the letters A-Z and a space, per character
position. The same basic architecture can be altered
to classify longer sequences by expanding the widths of
the inputs and outputs, so that the input window is wide
enough to cover the k widest characters (“WWWW?") for
k = 4. The image of a string of narrow characters will
therefore depict additional characters to the right, which
the net must learn to ignore. Hidden layers are also ex-
panded horizontally, increasing the number of feature
detectars, but not necessarily the number of different
types of features detected, which would require a ver-
tical expansion of the cubes. As before, networks were
trained until training accuracy ceased to improve by at
least a tenth of a percent over 5 training epochs, or until
generalization performance began to consistently decline
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over training epochs (indicating that the net had begun
to over-generalize).

The input images, output vectors, and the networks
were larger than in the previous study. Whereas pre-
viously, the large images containing at least 4 to-be-
classified letters consisted of a 20x80 array (1600 pixels);
the present study used a 20x188 array (3760 pixels) de-
picting 14 or more letters. The output vector increased
from 108 elements (4 x 27) to 378 (14 x 27). The pre-
vious 4-letter nets had 8152 nodes, 581,904 connections
and 104,976 different weight values, with 18 unique fea-
tures represented in each of the two hidden layers. The
current nets had 18,481 nodes, 2,399,760 connections,
and 1,231,020 different weight values, with 15 unique fea-
tures represented in the first hidden layer and 24 unique
features in the second.

One of the things discovered during the course of this
study was that it was not possible to begin training
the nets to classify all 14 letters from scratch, because
they reached saturation activation levels early in train-
ing. Varying network initialization and learning param-
eters did not eliminate this problem. Training the net-
work to at first only classify the first (leftmost) letter in
the image, and then adding training on the other letters
successively over time, did eliminate the problem.

Performance of the Model

The results of these efforts demonstrate that it is pos-
sible to build a working model of word recognition that
incorporates very wide input images, the types of con-
straints that characterize eye fixations during reading,
and integrated dictionary lookup and word segmenta-
tion components. Consistent with data on how people
read, all three versions of the networks classify letters at
all 14 letter positions above the level of chance, and on
average classify the first 7 or 8 letters in a sequence.

Figure 3 illustrates the percentage of characters cor-
rectly identified, in the generalization test set, as a func-
tion of position and type of fixation constraint by the
three nets, before any word matching was attempted
(lightest bars = constant fixation, black bars = fixa-
tion position based on word-length, dark gray bars
word-length + noise). Results were equivalent for the
validation test set. All of the networks show a decline
in letter classification as one moves to the right, as we
might expect, since letter position variability increases
with increased distance from the fixation point. The in-
creases in image variability caused by the reduced fixa-
tion constraints also take their toll on classification accu-
racy. Neither of these effects is so catastrophic however,
that the nets fail to exhibit performance comparable to
that of people when they read.

Figure 4 illustrates the benefits and costs of applying
the dynamic programming based word dictionary lookup
procedures. It shows that character position accuracy
rates for the network trained on images with noisy word
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Character Positions

Figure 3: Percent characters correct as a function of
position and type of constraints on fixation positions

length fixation positions both before (gray bars) and af-
ter dictionary lookup (black bars). Although the overall
accuracy rates for this network are lower than for the
other two nets, the pattern of performance before and af-
ter dictionary lookup is the same. Sometimes the dictio-
nary lookup component helps and sometimes it hurts, on
a character by character basis. The effects are not dra-
matic except for the rightmost characters in the string,
where the dictionary lookup tends to hurt rather than
help performance. This component can probably be op-
timized further, though several different approaches were
tried, with the results from the best version of the system
reported here.

Character Positions

Figure 4: Percent characters correct by position be-
fore(gray) and after(black) dictionary lookup.

Table 1 describes the performance of the system from
the perspective of the first n letters correctly identified
on average, Remember that the human data indicate
that people can identify the first 7 or 8 letters per fix-
ation on average. These data show that the dictionary
lookup improves the average number of correctly clas-
sified consecutive characters by about 1 character. All
of these values for the different types of fixation posi-
tion constraints are comparable to the average number
of consecutive characters correctly identified by people,
as measured by the average size of forward saccades. Be-
cause the network trained on images positioned with re-
spect to word length with noise added, are most reflec-
tive of the types of positioning constraints used by people
when they read, and this network exhibits comparable
levels of performance to that of people when they read,



it corresponds to the best computational model of word
recognition.

Table 1. Average number of leftmost characters comreetly identified in sequence

Fixation Location Type  Before Dictionary Lookup  After Dictionary Lookup
Constant 88 99
Word-Length- Based 81 9.5
Word-Length-Based +Noise 7.0 80

Discussion

This model, and the accompanying computation level
understanding of word recognition are significant for at
least two reasons. First, the computation-level under-
standing provides a theoretically-driven basis for propos-
ing one source of reading disabilities and developmental
stages. To the extent that poor readers have problems
learning to classify letters, they should not be able to
identify as many characters per fixation, and they should
exhibit irregular fixation patterns. Empirical data sup-
port these expectations (Rayner, 1986; Rayner & Pol-
latsek, 1989). This suggests that we may gain a better
understanding of reading disabilities and developmental
differences in reading by examining whether or not the
source of some reading problems lies with problems in
letter classification learning. Second, the model paves
the way for building ever more accurate working models
of human reading, by incorporating components such as
foveal warping of the input images, integration across fix-
ations, and automated generation of saccades (Martin,
Rashid & Pittman, 1993). The impact of such additions
can be evaluated via their impact on classification learn-
ing and accuracy.
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