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Abstract

This paper reviews work in computational scientific
discovery. After a brief discussion of its history, the focus will
be on work since 1990. The second half of the paper discusses
the author’s use of three methods for studying reasoning
strategies in scientific change: historical-philosophical vs.
live-in-the-lab vs. computational, pointing out advantages and
disadvantages of the computational method.

Introduction

There are a number of approaches to the study of reasoning
in scientific discovery. In addition to computational
approaches, work continues in cognitive science (e.g.,
Schunn & Dunbar, 1996), in laboratory studies (e.g., Darden
& Cook, 1994; Dunbar, 1995) and in philosophy of science
(e.g., Bechtel & Richardson, 1993; Darden, 1991; Kleiner,
1993; Nersessian, 1992; Nickles, 1994; Schaffner, 1993;
Spirtes, Glymour & Scheines, 1993). Unfortunately, of the
over 200 papers and abstracts submitted for the Philosophy
of Science Association meeting in 1996, none were on the
topic of reasoning in scientific discovery (Darden, Ed., 1996;
1997). Most philosophers of science do not view discovery
as a central topic in the field, despite continuing work by
those of us called “friends of discovery” (Nickles, Ed. 1980).
It is encouraging that the Cognitive Science Society is
sponsoring this Symposium on Scientific Discovery.

This paper will briefly review the history of
computational scientific discovery that uses methods from
artificial intelligence. (Non-cognitive, non-Al computational
work is outside the scope of this paper.) The first part of the
paper will concentrate on the work since 1990 (Shrager &
Langley, Eds.). The extensive reference list provides a guide
for further reading. The second half of the paper will
compare three methods used in my own work on reasoning
strategies in scientific change. Finally, I will point out
advantages and disadvantages of the computational approach
from my perspective as a philosopher of science.

Pioneering Work

The study of computational scientific discovery emerged
from the view that science is a problem solving activity,
that heuristics for problem solving can be applied to the
study of scientific discovery in either historical or
contemporary cases, and that methods in artificial
intelligence provide techniques for building computational
systems. Pioneers in this work are Bruce Buchanan (e.g.,
1982) and Herbert Simon (e.g., 1977). Buchanan was trained
as a philosopher of science at a time when the profession
was dominated by Popper’s (1965) view that there is no
logic of discovery. Buchanan stated the new research
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program: “The traditional problem of finding an effective
method for formulating true hypotheses that best explain
phenomena has been transformed into finding heuristic
methods that generate plausible explanations. The problem
of giving rules for producing true scientific statements has
been replaced by the problem of finding efficient heuristic
rules for culling the reasonable candidates for an explanation
from an appropriate set of possible candidates™ [and finding
methods for constructing the candidates] (Buchanan 1985,
110-111). Discovery as heuristic search in a search space
enabled Al methods to be applied to discovery tasks.

The first expert system, DENDRAL, was a scientific
discovery system. It formed hypotheses about chemical
compounds, given mass-spectrographic data (Lindsay,
Buchanan, Feigenbaum, & Lederberg, 1980;1993). This was
followed by Meta-DENDRAL, which discovered new rules
in mass spectrographic analysis, so as to by-pass the
problem of getting rules from experts (Buchanan &
Feigenbaum, 1978). Although its original algorithm was a
computational realization of Lederberg’s systematic scan
strategy (Lederberg, 1965), DENDRAL was built to camy
out a contemporary, difficult scientific task rather than as a
model of human cognition.

A more historical-cognitive approach was the aim of the
work on BACON, which rediscovered various scientific laws
by finding patterns in numerical data (Langley, Simon,
Bradshaw & Zytkow, 1987). Simon'’s early work on finding
patterns in sequences (Simon & Kotovsky, 1963) was
extended in BACON to heuristic search for patterns in
numerical data. The most creative of BACON’s abilities was
the decomposition of relational data to conjecture intrinsic
properties in one or more of the objects engaging in the
relations. This step went beyond curve-fitting and was based
on the melaphysncal assumption that an entity’s relational

ies are caused by its intrinsic properties. In addition
to the data-driven tasks modeled in BACON, the group also
investigated theory-driven discovery in STAHL. One
wonders to what extent these programs model actual
cognitive processes of historical scientists, as opposed o
finding strategies which are sufficient to reproduce the
historical results. As with most simulations, they provide
“how possibly” accounts. Using studies of notebook
evidence, the KEKADA system (Kulkari & Simon, 1988)
modeled reasoning patterns in some discoveries of the
biochemist Hans Krebs and focused on responses to
surprising experimental results, helping to dispel the
mystery of serendipity in discovery.

A seminal conference on computational methods for
scientific discovery, whose proceedings were published in
1990 (Shrager & Langley, Eds.) is a useful source for the
state to the field at that time.
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Recent Work

Some of the pioneers in scientific discovery, e.g., Buchanan,
Simon, and Zytkow, push ahead with their research
programs. Others who contributed to the 1990 volume are
still working on discovery. The American Association for
Artificial Intelligence sponsored a Spring Symposium on
Systematic Methods of Scientific Discovery in March,
1995. A special issue of Artficial Intelligence on
computational discovery is about to appear, although fewer
papers were received than the editors wished (Simon, Valdes-
Perez & Sleeman, forthcoming). Data-mining in scientific
databases is an active area of research, as are other
computational approaches applied to individual sciences,
e.g., intelligent systems in molecular biology. It is
becoming more difficult to locate computational discovery
work because much of it is published in scientific journals--
a good sign that the methods of producing results of interest
to practicing scientists.

Buchanan (e.g., Lee et al., 1996) continues work on rule
induction applied to various scientific databases. Simon is
studying the difficult problems of constructing diagrammatic
representations (Larkin & Simon, 1987; Qin & Simon,
1995) and of modeling relations between diagrammatic and
verbal reasoning (Tabachneck-Schijf, Leonardo, & Simon,
1996). Zytkow continues to work on various aspects of
discovery, including analyzing the components needed for an
autonomous discovery agent (e.g., Zytkow, 1995/96) and
knowledge discovery in databases (e.g., Zytkow &
Zembowicz, 1996).

Much of the current work in computational discovery is
occurring within applications to particular sciences.
According to Peter Karp, the whole field of bioinformatics is
doing computational scientific discovery but there is a
gradient from computational discoveries that are not based
on Al methods, to computational discoveries that are based
on Al methods, to methods with a “cognitive flavor.” Not
much of the bioinformatics work falls into the last category.
However, Karp (et al., 1996) applied reasoning by analogy
to predict metabolic pathways in the bacterium, H.
influenzae, based on the extensive knowledge base that he
and Monica Riley, a bacterial geneticist, have developed for
E. coli.

Larry Hunter, a frequent editor of publications in Al and
molecular biology (e.g., Hunter 1993), recently informed me
that there is a clear success is the application of Al
technology to molecular biology: hidden Markov models
(HMMs) for molecular sequence analysis. They are being
applied to automatically build models of families of
nucleotide and amino acid sequences. These models are
useful as extremely sensitive classifiers of novel sequences,
and also generate multiple sequence alignments of large
numbers of sequences in a computationally efficient way.
Tools based on this approach are now in wide use in the
biological community. A review article is Eddy (1996).
Also, Al-based qualitative reasoning technologies have
produced several good applications in reasoning about
metabolism. Perhaps somewhat surprising is that the work
in intelligent systems in molecular biology, for the most
part, does not employ discovery methods discussed at the
Shrager and Langley (Eds. 1990) conference.
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The extensive protein sequence database has provided a
challenge for those seeking 1o find computational methods
to predict how the linear amino acids will fold into the
secondary and tertiary structures in proteins. The Human
Genome Project, which is rapidly producing millions of
bases of sequence information about both human and model
organism genomes, presents a challenge for computational
approaches. Good programs are needed for discovering genes,
both coding regions and regulatory regions, in these linear
sequences. Current programs are not good at finding introns,
intervening sequences between the coding regions of genes.
Since the genetic system has some means of detecting
introns, one can expect computational systems to be able to
discover the signal(s). Knowledge discovery in scientific
databases (e.g., Fayyad, Haussler & Stolorz, 1996) promises
to be an important area in coming years.

Raul Valdes-Perez’s (1994) work in chemistry shows the
power of computational systems in doing a systematic
scarch of a hypothesis space, given certain constraints.
MECHEM is able to find reaction pathways that chemists
have missed.

Buchanan's work on rule discovery in scientific databases
and Valdes-Perez's work on systematically conjecturing
chemical reaction pathways illustrate the power of design Al
systems that aim, not at realistically modeling human
cognitive capacities, but using computational methods to
circumvent human limitations. Humans are not good at
searching massive databases and manipulating sets of rules
with many features 10 make predictions. Cognitive science
research has shown that humans have a tendency to focus
100 rapidly on one hypothesis before doing a systematic
search of a hypothesis space. Discovery programs that are
more systematic and more thorough than humans are an aid
lo scientists.

Computational Discovery: Pros and Cons

My own work on reasoning in scientific change focuses
on an cyclic process: discovery, assessment, revision. Given
a good revision procedure, one’s discovery methods can be
weaker. Strategies for these processes include: strategies for
producing new ideas, e.g., analogies, abstraction
instantiation, interfield relations; strategies for theory
assessment, e.g., prediction-testing, relations to theories in
other fields; and strategies for anomaly resolution (Darden
1991, Ch. 15). After extensive historical study of the
development of Mendelian genetics, I proposed hypothetical
strategies of the three types. The historical evidence was
inadequate to show that they are descriptive cognitive
strategies actually used by geneticists. Instead, they are
hypothetical strategies that could have been used in the
historical development of the theory of the gene to produce
the changes that did occur (Darden, 1991). One needs to
show that these strategies are effective problem-solving
strategies, instances of useful “compiled hindsight™ (Darden,
1987), applicable to additional cases, worthy of being used
by contemporary scientists or to build Al discovery systems.

I visited in Joshua Lederberg’s Laboratory for Molecular
Genetics and Informatics and participated in episodes of
anomaly resolution that exemplified some of the revision
strategies I had proposed (Darden & Cook 1994), Ome



difficulty with the live-in-the lab approach is that lile may
happen while you are there; fortunately, I was able 1o
observe some anomaly resolution strategies in use.
Although I have attempted to implement some of the
strategies in Al programs in arder to demonstrate their
efficacy (e.g., Darden & Rada, 1988; Kettler & Darden 1993;
Darden, 1997), I have returned to historical-philosophical
work, testing whether strategies from the Mendelian case
apply to molecular biology (Darden, 1995).

Computational discovery work has advantages and
disadvantages. Finding an adequate knowledge representation
for a scientific case is difficult. Early work attempted to
represent the relations between genes and chromosomes in
part-whole hierarchies and to implement reasoning via
inheritance and upward propagation of properties (Darden &
Rada, 1988). A much more fruitful method for knowledge
representation in genetics was the functional representation
(Josephsons, Eds., 1994) for genetic processes (Darden
1997). Furthermore, when one is designing a computational
system to rediscover a historical hypothesis, one must
navigate between designing a system that trivially
reproduces exactly what one is seeking versus designing a
system that is unable to accomplish the task at all. Analogy
systems often suffer these problems: either the analog is
represented in such a way that the system easily finds it or
there are so many analogs that the task becomes impossible
(for attempts to navigate between these problems, sce
Kettler & Darden, 1993; Holyoak & Thagard, 1995).

An advantage of computational methods is the precision
and completeness that is required to build a working system.
The philosopher-historian may neglect aspects that the
programmer must specify in detail if the system is to run. A
computational approach forces one Lo reexamine aspects that
may be otherwise neglected. However, this advantage is
purchased at the price of much time and effort to implement
even small parts of a historical case. Various aspects of
human discovery, such as the use of pictorial models (e.g.,
the beads on a string model for genes on chromosomes),
provide substantial difficulties when designing an
implementation. On the plus side, once one has invested the
effort in building a running system, then there is the fun of
running experiments, doing “what-if” analyses, testing
alternative strategies.

The approach in our TRANSGENE system (Darden,
Moberg, Thadani & Josephson, 1992; Darden, 1997) was
also used by Karp (1990) in his GENSIM and HYPGEN
systems and points to a fruitful way to design a
computational discovery system. A qualitative simulator of
biological (or other) processes is built and used to make
predictions. Data is supplied to test the predictions and
another component of the system compares the prediction
with data, detects anomalies, and uses diagnosis/redesign
strategies to localize the fault in the simulator and redesign a
module to remove the anomaly. Perhaps this architecture
may be of use in building future Al systems or perhaps
more traditional simulation models might be coupled with a
revision system o do diagnosis/redesign for anomaly
resolution and model improvement.

It will be exciting to see what computational scientific
discovery produces in the coming years.
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