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 Perforated plates are employed in various noise control applications to attenuate sound 

whose direction of propagation is normal to the plate.  In certain instances this is accompanied 

by a bias flow through the perforations.  The mechanism of sound attenuation is dependent both 

on the physical properties of the perforated plate and on the mixing of the small jets emerging 

from the perforations.  The objective of this study is to analyze the acoustic properties of 

perforates and develop a comprehensive theoretical model that is capable of predicting the sound 

attenuation over a wide range of bias flow speeds, porosity, hole size, and thickness values of the 

perforated plate.   The theoretical analysis of this investigation is validated through 

experimentation and comparison with existing models. 

 As a first step in this work, a study has been conducted on the insertion loss of perforated 

plates at normal incidence without bias flow.  The experiments comprised microphone 

measurements of insertion loss for eleven perforated plates that varied in thickness, hole size, 

and porosity.   The theoretical model is based on planar wave propagation through a single 

contraction/expansion chamber, with modifications to account for hole interaction effects.  The 

resulting formula for insertion loss yields superior predictions over past theories for the range of 

properties investigated.  Deviations between experimental measurements and theoretical 
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predictions of insertion loss are less than about 1.5 decibels for dimensionless hole diameter d/λ 

<0.5, where  is the wavelength of sound.  The accuracy of the model does not show a strong 

dependence on plate thickness-to-diameter ratio l/d or porosity β.   

  An insertion loss model of perforated plates with subsonic bias flow is proposed based on 

the principal elements of the model without flow.  Significant loss in the transmitted acoustic 

energy is caused by the mixing and viscous dissipation downstream of the contraction.  The loss 

involved in this process is incorporated in the model through entropy fluctuations, which 

propagate downstream from the contraction at the mean flow velocity.  Vena contracta theory 

was utilized in modeling the end correction of the perforated plate with bias flow.  The 

experimental measurements and proposed theoretical model both indicate an increase in insertion 

loss as the bias flow Mach number in the perforations, M2, increases to about 0.25.  For M2 >0.25, 

the experimental measurements indicate a saturation, followed by a decrease in insertion loss due 

to increasing flow noise for plates with porosity β <0.23.  The proposed model does not 

incorporate flow noise, and therefore is validated only for M2 <0.25.  Deviations between the 

proposed model and experimental measurements are less than 3 decibels for M2 <0.25 and 0.02 < 

d/λ < 0.4 for thin plates.  Larger discrepancies between the model and experiment occur at 

intermediate ranges of l/d, where the vena contracta location with respect to the perforated plate 

becomes unstable.   Despite these discrepancies, the proposed model expression yields more 

reliable predictions than previous models and exhibits the same trends as the experimental 

measurements. 
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Chapter 1 

INTRODUCTION 

 

1.1  Motivation 

Perforated material has been extensively employed in various noise control applications.  

Examples include acoustic liners for ducts and aeroengine nacelles, automotive mufflers, and 

silencers for flow control valves.  Aeroengine acoustic liners and automotive mufflers are 

classified as reactive silencers [1].  In reactive silencers, the frequency response of the system is 

tuned to suppress sound at targeted frequencies such as, for example, the blade passing frequency 

of a rotor or the firing frequency of an internal combustion engine.   Air or exhaust flow is 

usually present in these applications, which can dramatically augment or reduce the damping 

effectiveness.  

Depending on the application, both flow speed and direction with respect to the silencer 

configuration may vary.  The mean flow is at grazing incidence when the flow direction is 

parallel to the surface containing the perforations.  Flow that is directed into the surface 

containing the perforations, thereby forcing the flow through the perforations, is referred to as 

bias flow.  Both grazing and bias flow are commonly present in aeroengine liners.  Bias flow 

applications in aeroengine liners were originally intended to provide a thin cooling layer to 

protect the liner wall from extreme temperatures in the combustion chamber.  It has been found, 

however, that the bias flow can potentially modify the damping characteristics of the liner such 

that acoustically driven combustion instabilities are more effectively suppressed.  A robust 
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model on the transmission characteristics of perforated plates that includes the effects of flow 

would provide guidance in optimizing the design of liners and other reactive applications. 

Perforated plates are also used in mufflers for flow control valves, particularly pneumatic 

bleed valves on gas turbines
 
(Figure 1.1) [2].  These valves discharge compressor air into the fan 

duct of a turbofan engine in order to prevent compressor surges during transients or throttle back.  

Noise from the bleed valves can be a significant contributor to total aircraft noise.  Figure 1.2 

depicts a simplified drawing of a pneumatic bleed valve.   It consists of a valve body, followed 

by a muffler containing multiple perforated surfaces that are oriented substantially normally to 

the mean flow direction (Figures 1.2 and 1.3).  Without the muffler, the exhaust of the valve 

forms a high-speed turbulent jet that is very loud.  The muffler expands the cross-sectional area 

of the flow and dramatically reduces its bulk velocity.  The small jets emerging from the 

perforations produce noise at very high frequency, but this noise is attenuated rapidly by 

atmospheric absorption.  What remains, though, is transmission of sound from the internal 

sources, including turbulence and vortex shedding through the perforations.  Recent efforts to 

suppress bleed valve noise underscored the lack of fundamental understanding of the dependence 

of sound attenuation on the properties of the perforated plate (porosity, hole size, thickness) and 

the bias flow speed through the perforations.  This formed the basic motivation for the current 

study, namely the understanding and modeling of sound transmission through the perforated 

plates exemplified in Figure 1.2.  It is evident that the noise suppression mechanism does not 

involve tuning and is thus fundamentally different from reactive mufflers.  However, the basic 

physics of sound transmission through a perforation remains relevant to both reactive and non-

reactive applications.  

1.2  Research objectives 
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 The goals of the present investigation can be divided into the following objectives:  

1. Develop a comprehensive theoretical model of sound attenuation through 

perforated plates.  The model should be applicable over a wide range of bias flow 

speeds, porosity, hole size, and thickness values of the perforated plate. 

2. Identify how bias flow and the physical properties of the perforated plate affect 

the attenuation characteristics of the plate. 

3. Construct a robust experimental facility that will provide reliable insertion loss 

measurements, and from the acoustic data, identify any additional physical 

phenomena that will assist in developing the theoretical model 

4. Evaluate the current model against experimental measurements and the models of 

previous investigators 

 The research objectives were accomplished in two phases.  In the first phase, the 

transmission characteristics of perforated plates were studied assuming no bias flow through the 

perforations (henceforth referred to as the static condition).  This was considered as a first step to 

modeling the complex system illustrated in Figure 1.2, as it isolated the effect of the plate’s 

physical properties on its damping characteristics.  The established static model was then 

validated based on experiments and comparisons to past models. The second phase of this 

research focused on the effect of bias flow on the perforated plate’s damping characteristics.  The 

bias flow model established in this study was validated based on experimental measurements and 

comparisons with previous models. 

1.3  Outline 

 The dissertation is presented in six chapters.  Chapter 1 presents the motivation and 

overall objective of this study.  Chapter 2 reviews the fundamental physics of sound transmission 



4 
 

through perforated plates, and summarizes previous efforts with emphasis on those which 

propose analytical models for both static and bias flow cases.  Chapter 3 details the theoretical 

model developed in the current study for insertion loss.  Chapter 4 discusses the experimental 

setup and data processing.  Chapter 5 presents the experimental results on transmission loss, with 

comparisons to the present model and previous models noted in Chapter 2.  Chapter 6 

summarizes the findings in this study with concluding remarks and suggestions for future work. 

 

 
Pneumatic bleed valves

 

Figure 1.1:   Cutaway view of Rolls Royce Trent 1000 jet engine with location of intermediate 

and high pressure bleed valves indicated 
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Figure 1.2:   Schematic of pneumatic bleed valve assembly used on aircraft engines [2]
 

 

 

 

 

 

 

 
 

Figure 1.3:   Muffler attachment to bleed valve outlet [3] 



6 
 

Chapter 2 

LITERATURE REVIEW 

 This chapter reviews selected literature which focused primarily on analytical or semi-

empirical modeling of the transmission characteristics of perforated plates.  Prior to 

understanding the development of these models, an overview of fundamental principles relevant 

in describing the transmission behavior of silencers is reviewed.  Previous models are presented 

along with the range of parameters over which these models are validated. 

2.1  Fundamental principles 

The current investigation focused on the acoustic insertion loss of perforated plates, 

namely the difference in measured acoustic power with and without the installation of a 

perforated plate.  This is a process that is generally governed by inertial and viscous effects.  As 

shown by Crandall [4], the discriminant between viscous and inertial effects on sound 

propagation through a short tube is the quantity  

 



 d

2

1
                                                       (2.1) 

where d is the tube diameter, ω is the angular frequency, ρ and μ are the density and dynamic 

viscosity of the fluid, respectively.  For  ≤1 the propagation is dominated by viscous effects.   

For  >1 inertial effects become prominent.  The discriminant can be rewritten using the acoustic 

propagation speed, c, and wavelength, λ, as 
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




dcd

2
                                                  (2.2) 

The argument of the first square root has the form of a Reynolds number based on the speed of 

sound and the hole diameter.  The argument of the second square root is the non-dimensional 

hole size, an important parameter in the analysis that follows.   For a hole diameter of 1 mm (the 

order of magnitude in this study), and for air at standard conditions, the discriminant becomes 

=184 (d/)
1/2

.   This means that inertial effects dominate down to d/, i.e., frequencies 

on the order of 30 Hz.  Aerospace applications are typically concerned with much higher 

frequencies associated with peak levels of annoyance.  It is concluded that, for the applications 

that motivated this study, the sound transmission process can be treated as purely inertial with a 

good degree of accuracy.  

2.1.1 Acoustical performance criteria 

The sound field around the perforation consists of incident, reflected, and transmitted 

waves (subscripts i, r, and t, respectively).  The medium far upstream of the perforation is 

moving at bias flow incidence with a speed defined by the Mach number Mi.  The bias flow 

constricts and accelerates as it approaches the perforated plate, forming small jets which separate 

from the rim of the perforations (Figure 2.1).  The jets coalesce downstream of the perforation, 

and resume motion predominantly at bias flow incidence with Mach number Mt.  An acoustic 

wave is a progressive wave, where the energy of the acoustic disturbance is transported in the 

direction of propagation.  The power of a acoustic wave is defined using the acoustic intensity, I, 

and reference area A 

 
A

dAnI  
 

(2.3) 
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The acoustic intensity is defined for a moving medium as [5]  

  '''''''' 


uUUuuU
U

uI  pp  

 

(2.4) 

where the angle brackets  denotes time averaging, p’, u’, and ρ’ are the acoustic pressure, 

velocity, and density, respectively, and U  and   are the mean (undisturbed) velocity and 

density. For a stationary medium, Equation 2.4 reduces to the form ''uI ps  .   

The transmission loss (LT) and insertion loss (LI) are frequently used as performance 

criteria of a silencing device.  The transmission loss is defined as [5,6,7] 















t

i
TL 10log10  

 

(2.5) 

Equation 2.5 indicates that the transmission loss is defined as the level difference between the 

incident and transmitted sound power.  Although the expression for transmission loss is easily 

obtainable in theory (to be shown in Chapter 3), experimentally measuring transmission loss 

poses difficulties.  For example, a microphone placed upstream of the perforated plate in Figure 

2.1 can cause interferences, such as a disturbance in the mean flow, or diffraction of the incident 

acoustic wave that would propagate downstream. Therefore, the sound pressure measured 

downstream would not be an accurate representation of the damping characteristics of the 

perforated plate alone.  The insertion loss is a more experimentally convenient performance 

criteria, and is defined as   















t

t
IL

0,
10log10  

 

(2.6) 
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Unlike the transmission loss, which requires sound power measurement at two separate locations, 

namely upstream and downstream of the perforated plate, the insertion loss is a comparison of 

the sound power at the same location downstream of the perforated plate, with (Πt) and without 

(Πt,0) the plate installed.  The insertion and transmission losses are equal if no wave reflections 

occur downstream of the plate and upstream of the source.  This holds true if the regions 

upstream and downstream of the plate are anechoically terminated [5,6,8]. 

2.1.2 Acoustic impedance and Rayleigh conductivity 

Concerning the one-dimensional propagation of sound in a tube or lattice of tubes, we 

gain insight into the transmission behavior by relating the acoustic power to the acoustic 

impedance.  The acoustic impedance of a fluid acting over a surface area A is defined as the ratio 

of the acoustic pressure to the acoustic velocity, or particle velocity 

u

p

A
Z






1
 

 

(2.7) 

 

Expressing the particle velocity in terms of the impedance and pressure fluctuation according to 

Equation 2.7, the acoustic power follows the qualitative relation for a stationary medium 

Z

p 2

~


  

 

(2.8) 

 

From Equation 2.8, it is apparent that the power of the acoustic disturbance is maximized when 

the acoustic impedance is minimized.  This occurs for disturbances at the resonance frequency of 

the system.  Concerning the perforated plate, the incident wavefront acts as a source which 

disturbs the column of air inside the perforations.  When the air is disturbed at integer multiples 

of its resonance frequency, the power of the acoustic waves inside the perforation is maximized.  



10 
 

This results in maximum transmission of the energy from the incident wavefront through the 

perforations, or minimum transmission loss, at these characteristic frequencies. 

  Lord Rayleigh defined an electrical analogue of conductivity for acoustic wave 

propagation through circular apertures [9].  The Rayleigh conductivity, KR, is defined as the ratio 

of the net volume flux through the aperture to the pressure drop across the plate [10]  

   
p

Qi
KR





                                                 (2.9) 

where Q = uA is the volume flux and Δp is the pressure difference across the aperture.  Equation 

2.9 is applicable when mean flow is either present or absent.  In the absence of mean flow, it can 

be shown for circular apertures that KR = 2a, where a is the aperture radius [9]. Combining 

Equations 2.9 and 2.7 results in the relation between the acoustic impedance and the Rayleigh 

conductivity  

 
RK

i
Z


  (2.10) 

2.1.3 End effects 

Acoustic disturbances that propagate within the perforations disturb the medium adjacent 

to the ends of the perforation.  This is illustrated in Figure 2.2, where the dotted line represents 

the distribution of the disturbed, “attached” mass of a single hole.  The disturbance inside the 

perforation travels a distance slightly further than the geometric thickness of the perforation as a 

result of this attached mass.  This gives rise to an end correction to the perforation thickness, 

which was treated analytically by Rayleigh [9].  In the case of multiple adjacent holes, the 

attached mass regions overlap forming an interaction region whose extent is determined by the 

spacing between the holes (Figure 2.2).  The consequence of this interaction has been addressed 
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by many authors.  Fok [11] described the hole interaction effect (HIE) as a correction to 

Rayleigh conductivity of a single orifice.  An analytical expression known as Fok's function was 

developed using potential theory (to be introduced in Section 3.2) and can be expressed in terms 

of the plate porosity β.  Nesterov [12]
 
validated Fok's work experimentally, showing that an 

increase in the porosity corresponds to a reduction in the end correction for thickness.  Other 

investigators attributed HIE to the diffraction of pressure waves that radiate from the perforations.  

Ingard [13] showed that the pressure radiated from an orifice exerts an additional force on nearby 

orifices, and that this effect is strongly dependent on the separation distance between perforations.  

He described this acoustic interaction by a correction term, the interaction impedance, to the 

acoustic impedance of an isolated orifice.  Christensen [14] and Hou et al. [15,16] concluded that 

the diffracted waves created acoustic modes that travel parallel to the surface of the perforated 

plate.  The interaction between the surface modes and diffracted pressure waves from the 

perforations modifies the resonance condition associated with the original plate thickness to a 

plate that is 16% thinner [15,16].  The aforementioned works [11-16] indicated that HIE results 

in scaling the end correction associated with a single orifice. In the current investigation, the HIE 

was accounted for using Fok's function with more details on this implementation in Chapter 3. 

2.1.4 Vena contracta 

 The acoustic transmission behavior through perforated plates can be significantly 

influenced by the introduction of bias flow, and it is therefore necessary to accurately model the 

mean flow dynamics in the vicinity of the perforations.  Consider a cylindrical duct containing a 

single contraction and expansion shown Figure 2.3.  The streamlines curve inward as the flow 

approaches and is constricted through the orifice.  The blue dashed lines in Figure 2.3 are the 

streamlines near the wall, which separate at the upstream corner.  The streamtube bound by the 
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separation streamlines continues to constrict due to the strong radial velocity component near the 

upstream surface of the contraction.  The compression of the streamtube eventually ceases; due 

to the combination of a strong radial pressure gradient and Coandă effect both within the 

contraction and in the expanded duct region.  At some point downstream of the contraction the 

streamlines become parallel, forming a minimum area, Avc, known as the vena contracta. 

  A standardized method of characterizing the pressure drop across an orifice in a flow duct, 

such as that shown in Figure 2.3, is through the discharge coefficient  

 
ideal

actual
D

m

m
C




  (2.11) 

The discharge coefficient is the ratio of the experimentally meausred mass flow rate through the 

orifice to the mass flow rate that is calculated assuming ideal (one-dimensional, isentropic) flow.  

Equation 2.11 can be rewritten in the form CD = CρCvCc, where the density coefficient Cρ, 

velocity coefficient Cv, and contraction coefficient Cc are the ratios of the actual values of 

density, velocity, and area to their respective ideal values.  The density coefficient is 

approximately unity as long as the working temperature of the fluid in the contraction is not large 

enough to allow dissociation [17].  The velocity coefficient has been reported to vary between 

0.97 to 0.98 for a free jet discharging from a sharp edged orifice
 
[18,19].  The ratio of the jet area 

at the vena contracta to the physical area of the contraction is the contraction coefficient, Cc.   

 Unlike the density and velocity coefficients, the contraction coefficient varies 

significantly from unity.  Many standard fluid mechanics texts provide the theoretical contraction 

coefficient for an incompressible free jet as Cc,inc = π/(π+2) = 0.611 using hodographic 

transformation methods [20].  Shapiro
 
[21] accounted for compressibility effects using a Mach 

number correction, and determined that an increase in the jet Mach number resulted in an 

increase in the contraction coefficient.  Shapiro [21] and Batchelor [20] assumed the jet is issuing 
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from a single orifice in an infinite plane of infinitesimal thickness.  In practical applications, the 

orifice is situated on a plate with finite size and thickness.  The effect of thickness and orifice-to-

duct area on the discharge coefficient has been investigated experimentally, and empirical 

formulas are available in several hydraulic handbooks [22,23,24].   

 The flow discharge through perforated plates is different from the single orifice plate due 

to flow interactions between neighboring jets.  Smith and Van Winkle
 
[25] experimentally 

determined the discharge coefficient of perforated plates for varying thickness-to-hole diameter 

ratio (l/d), hole diameter-to-pitch ratio (d/P), and Reynolds number based on perforation 

diameter 400 < Red < 3,000.  Kolodzie and Van Winkle [26]
 
expanded this study to Reynolds 

number up to 20,000.  Their results indicated that the discharge coefficient becomes independent 

of Reynolds number for Red > 4,000.  The authors provided a correlation formula for the 

discharge coefficient of perforated plates, using the separation distance between the perforations 

and the Reynolds based on the hole diameter and mean flow velocity through the perforations.  

The discharge coefficient measured by the aforementioned works [25,26] yielded values that are 

much higher than values associated with single orifice contractions. 

2.1.5 Acoustic dissipation   

 The addition of bias flow through the perforations introduces potential benefits in the 

absorptive properties of the plate.  Losses in acoustic energy occur at area discontinuities, where 

the energy of an acoustic wave is transferred to the kinetic energy of vortical motions in the 

shear layer.  The kinetic energy of the vortical motions is ultimately dissipated as heat.  This 

implies a non-isentropic process downstream of the perforated plate, where changes in entropy 

must be factored into the propagation of the acoustic field.  Mungur and Gladwell [27] linearized 

the energy equation in terms of entropy, and obtained an expression relating entropy fluctuations 
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to acoustic pressure fluctuations.  Ronneberger [28], Alfredson and Davies [29], Davies [30], and 

Cummings [31] applied this concept to a duct containing a sudden expansion.  Ronneberger and 

Cummings provided experimental measurements of reflection coefficient that were in good 

agreement for flow Mach number < 0.6.  Their results [28,31] indicated a monotonic increase in 

losses with increasing duct Mach number.  More recently, Hofmans et al. [1] and Durrieu et al. 

[32] developed a quasi-steady model of the acoustic response of a circular diaphragm and a 

perforated plate, respectively, in a duct with bias flow, using entropy fluctuations to model the 

dissipation of acoustic energy.  For low frequency excitations, their results indicated larger 

transmission loss with increasing bias flow speed.  

The dissipation of acoustic waves by mean flow at area discontinuities had also been 

approached by focusing on the acoustic-vortex layer interaction at the edge of the discontinuity.  

Howe [10,33] considered the canonical problem of bias flow through an aperture in an infinite 

plate of infinitesimal thickness, represented schematically in Figure 2.4.  The aperture is circular 

with radius a, and the bias flow through the aperture is in line with the x-axis, at velocity U.  His 

analysis was restricted to low Mach number, inviscid flow.  The momentum equation was 

expressed in the following form 

 uΩ 0
2h                                                (2.12) 

where h0 is the total enthalpy and Ω  is the vorticity.  Howe’s analytical solution of Equation 

2.12 was a modified form of the Rayleigh conductivity of single aperture that included bias flow, 

from which he then extended his analysis to determine the transmission loss of a perforated plate.  

His results indicated an increase in transmission loss at low Strouhal number, St = ωa/U, as the 

bias flow Mach number was increased.  His theory was later verified by experiments [34-37].  

Equation 2.12 established the framework for several other research efforts [38-44] on 
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characterized the bias flow effects on the transmission properties of orifices and perforated plates.  

The absorption or scattering of sound due to fluctuating vorticity has been investigated with 

varying degrees of complexity, depending on the boundary conditions imposed, and how the 

vortex sheet is modeled in Equation 2.12. 

2.1.6 Nonlinear effects 

The transmission characteristics of an orifice exhibits nonlinear behavior at high pressure 

amplitudes because of the dissipative effects of the jet and vortex rings formed downstream of 

the orifice [45,46,47].  Ingard and Ising [47] observed a linear relationship between the acoustic 

pressure and particle velocity for sound pressure levels (SPL) up to about 120 dB, with a 

quadratic relation starting above 130 dB.  The SPL in the muffler cavity of Figure 1.2 is 

estimated not to exceed 120 dB based on far-field measurements of the jet issuing from the 

isolated valve body.  Acoustic levels in the experiment of this study were much lower, around 60 

dB.  For this reason, it was concluded that non-linear effects are not significant in the actual 

application, the model developed in this study, and the experiments in this work for both the 

static and bias flow cases.   

2.2  Previous theoretical models 

This section gives an overview of previous models that are relevant to the scope of the 

current investigation.  All existing models are recast in terms of transmission loss to facilitate 

comparison with the current theory. 

2.2.1 Transmission loss models without bias flow 

 Chen [48] proposed a theoretical model, with experimental validation, for the 

transmission loss of a perforated plate under the assumption of a two-dimensional planar wave 
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incident on a rigid screen.  The screen dimensions were assumed to be large in comparison to the 

wavelength.  The air column inside the perforation was assumed to move in phase, behaving like 

a rigid piston.  Viscous losses were neglected.  Transmission loss predictions were provided for 

3.6×10
-4

 < d/λ < 0.0933, 3.6×10
-4

 < l/λ < 0.0023, and were shown to agree well with the 

experiments.  Chen accounted for the directivity of transmission loss by averaging over a 

hemisphere upstream from the perforated screen, resulting in the expression: 
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θ is the angle with respect to the normal direction of the plate surface, c is the propagation speed 

of the acoustic wave, and β is the porosity of the plate.  The plate thickness l was augmented by 

an end correction factor ε, which was determined empirically to equal 1.6 times the perforation 

radius if the ratio of perforation radius to the distance between the holes was less than 0.2.  For 

perforations with uniformly spaced holes, this translates to a porosity of 0.126 or less. 

Tayong, Dupont and Leclaire [49] and Melling [50] defined the normal surface 

impedance of the perforations while incorporating Fok’s function to account for HIE.  Using the 

lumped acoustic impedance model formulated by Ingard [13], Tayong et al. accounted for HIE in 

the reactance (imaginary) term of the impedance, resulting in the expression  
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where Zcav is the cavity impedance and ψ is the inverse of Fok’s function.  Zcav can be defined for 

a perforated panel surrounded on both sides by semi-infinite fluid media by defining Zcav as the 

characteristic impedance of the fluid.  This imposes the condition that there can be no reflected 
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waves in the fluid media where the transmitted waves propagate.  Tayong et al. also included 

additional terms to account for nonlinear effects in their work due to high sound pressure level 

excitations [49].  Since the scope of the current study is concerned only with the linear regime, 

these terms were neglected in the model of Tayong et al., resulting in Equation 2.14.  

Experimental validation for the authors’ perforation impedance model is provided for 0.0014 < 

d/λ < 0.0024 and 0.0013 < l/λ < 0.0022.   Tayong et al. defined the reflection coefficient, Rc, as 

0
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(2.15) 

 

where Z0 = ρc is the characteristic impedance of air.  In order to compare directly with the 

experimental measurements in this study, the transmission loss expression, Equation 2.5, is 

rewritten using the transmission coefficient Tc = 1 - |Rc|
2
: 

 cT TL 10log10  (2.16) 

Substituting Equation 2.15 into Equation 2.16 results in an expression for transmission loss as a 

function of the perforation impedance 
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Other investigators have alternatively modeled the perforated plate as an effective fluid 

layer [16,51,52,53].  The perforated plate was assumed to be rigid and porous with circular 

cylindrical pores.  The effective density, ρe, and bulk modulus, K, was defined using the 

Johnson-Champoux-Allard model [53]   
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where the flow resistivity is ζr = 32μ/βd
2
, the geometric tortuosity α∞ = 1, and γ, p0, ρ, and Pr are 

the specific heat ratio, static pressure, density, and Prandtl number for air, respectively, at 291.15 

K (γ = 1.4, p0 = 1.013×10
5
 Pa, ρ = 1.21 kg/m

3
, and Pr = 0.71).  Atalla and Sgard [51] proposed a 

correction to the geometric tortuosity by accounting for flow distortions within the vicinity of the 

perforations 

l


 21  (2.20) 

 where ε is an end correction length defined by Jaouen and Bécot [54] as 

 
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8
27.009.013.11 32 a

  with 



 2 .  The effective characteristic impedance and 

wavenumber of the perforated plate was defined using Equations 2.18, 2.19, and 2.20 

ep KZ ,0  (2.21) 

e

p

K
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
  (2.22) 

Assuming that the semi-infinite fluid media on both sides of the perforation is air, the Transfer 

Matrix Method (TMM) can be applied [5], using Equations 2.21 and 2.22, to determine the 

transmission loss  
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where Z0 is the characteristic impedance of air.  Atalla and Sgard provided experimental 

validation for their perforation impedance model for 7×10
-5

 < d/λ < 7×10
-3

 and 3×10
-4

 < l/λ < 

0.2915. 

2.2.2 Transmission loss models with bias flow 

 Howe [33] proposed an analytical model for the Rayleigh conductivity of a circular 

aperture in an infinitely thin plate, subject to low Mach number bias flow.  He assumed that a 

circular, cylindrical vortex sheet is shed downstream of the aperture, at a strength determined by 

the condition that uʹ and pʹ remain finite at the rim of the aperture (Kutta condition).  The theory 

was extended to a perforated screen with the assumption that the perforations were sufficiently 

separated such that the flow details of neighboring apertures do not influence each other.  The 

results indicated significant attenuation at low Strouhal numbers based on orifice radius and 

orifice mean flow velocity.  The level of attenuation decreased with increasing Strouhal number.  

The model
 
is applicable for low Mach number flow, low porosity, and acoustic wavelengths that 

significantly exceed the perforation dimensions.  Howe’s expression for the Rayleigh 

conductivity is 
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where Sta = ωa/U is the Strouhal number based on the bias flow velocity through the aperture 

and the aperture radius, and I1 and K1 are the modified Bessel functions of the first and second 
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kind, respectively.  The real and imaginary components of Equation 2.24 are expressed in 

normalized form as γR=Re{KR/(2a)} and δR=Im{KR/(2a)}, respectively. 

The transmission coefficient was defined as  
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where the Mp = U/c is the Mach number of the flow in the perforations.  The accuracy of this 

model in the application of perforated plates was corroborated experimentally by Hughes and 

Dowling [36] and by Eldredge and Dowling [37].  Collectively, these authors verified Howe’s 

model for 2.18×10
-4

 < d/λ < 0.016, 0.02 < β < 0.11, and 0 < Mp < 0.09.  The transmission loss is 

determined by Equations 2.25 and 2.16. 

 Jing and Sun [41,42] investigated the effect of thickness on the acoustic impedance of 

perforated plates with bias flow.  The authors recast Howe’s analytical expression [33] for the 

Rayleigh conductivity in terms of impedance.  From Equation 2.10, the normalized, specific 

acoustic impedance of a perforation was expressed using the real and imaginary components of 

the Rayleigh conductivity 
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An additional reactance term was included to account for plate thickness  



kl
izze                                                       (2.27) 

The acoustic impedance was measured experimentally using an impedance tube setup, and their 

model was validated over a range of for 0.0129 < β < 0.0254, 0.0027 < d/λ < 0.0027, and 0 < Mp 
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< 0.05.  Jing and Sun’s experimental measurements and model predicted an increase in 

absorption with increasing plate thickness.  The authors further extended their work by solving 

Equation 2.12 numerically using the boundary element method [42].  Their numerical results 

indicated a decrease in reactance with increasing bias flow Mach number.  They concluded that 

the damping characteristics of perforated plates behave similarly to thin plates at high flow 

speeds.  The numerical results also indicated that the resistance can become negative, for l/d > 

0.75.  Jing and Sun’s analytical model, experiment, and numerical model indicated a linear 

increase in resistance with bias flow speed, for Mp > 0.01. 

 Bellucci, Flohr and Paschereit [43] examined the impedance characteristics of perforated 

plates backed by a solid walled cavity.  In their analysis, the flow through the perforations was 

governed by the axisymmetric Navier-Stokes equations, and was assumed to be very low Mach 

number.  Vena contracta effects were considered in their analysis using the discharge coefficient 

CD = 0.82.  A semi-empirical relation was used to determine the reactance component of their 

impedance model, where several expressions were employed to describe both orifice interaction 

and end corrections associated with the perforations.  The model was validated with 

measurements from an impedance tube, modified to supply bias flow through the perforations.  

Their proposed semi-empirical model for the perforation impedance is [43] 
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where ̂  and 0û  are the frequency-domain transforms of the pressure loss and velocity 

fluctuation in the perforation, respectively. Similar to the model of Tayong et al., the cavity 

impedance Zcav was defined by the characteristic impedance for a perforated panel surrounded on 
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both sides by semi-infinite fluid media.  For bias flow speeds that are significantly larger than the 

velocity fluctuations, Bellucci et al. approximated the pressure loss term as 

ouU ˆˆ                                                      (2.29) 

where Howe’s vortex sheet model [33] was used to define the pressure loss coefficient 
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The thickness was multiplied by a factor which accounted for variation in acoustic pressure
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kt = ω/ct is the acoustic wave number in the transmitted region downstream of the plate.  The end 

correction l’ was determined by the semi-empirical relation  
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In order to determine the acoustic Strouhal number oac uRSt ˆ/ , 0û  was determined 

experimentally from the authors’ impedance measurement.  The model of Bellucci et al. was 

validated experimentally for 5.89×10
-4

 < d/λ < 0.0237, Mp < 0.02, and 0.0103 < β < 0.0231. 

  Betts [55] developed an compressible bias flow impedance model by modifying 

Crandall’s impedance model [4,50] to account for bias flow.  He obtained an expression for the 

normalized specific acoustic impedance 
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ρ, c, ν, ub and urms are the density, propagation speed, kinematic viscosity of air, bias flow and 

root mean square (rms) velocity, respectively, upstream of the plate. CD is the discharge 

coefficient and ψ is Fok’s function.  Betts estimated the rms velocity experimentally, using the 

plane wave relation between the acoustic velocity and the sound pressure level  
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where pref = 2×10
-5

 Pa is the reference pressure.  Experimental validation was provided for 

0.0007 < d/λ < 0.0129, 0.059 < β < 0.165, and 0.00221 < Mp < 0.357. 

Recent efforts in modeling the damping characteristics of perforated plates subject to bias 

flow were either numerical or experimental, due to the complexity of the modeled problem 

[42,44,56,57].  Lee, Ih and Peat [44] applied Howe’s analysis [33] to a thick orifice in a duct 

containing incompressible flow.  The numerical approach was similar to Jing and Sun’s analysis 

[42], however, Lee et al. included hole interaction effects through a correction to the orifice 
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thickness.  Their results indicated a decrease in reactance with increasing porosity, which the 

authors attributed to interaction effects.   Mendez and Eldredge [56]
 
used Large-Eddy Simulation 

(LES) to model the unsteady behavior of the flow near the perforations.  The reliability of 

Mendez and Eldredge’s results were used to corroborate existing analytical [33] and numerical 

models [42,43].  They emphasized the need to model the jet profile in order to obtain more 

accurate predictions of the damping characteristics of perforated plates.  Aygun and 

Attenborough [57] demonstrated experimentally an increase in insertion loss with decreasing 

open area ratio β, and increasing bias flow speed.  The upstream Mach number of the bias flow 

in their experiments was subsonic (M1 = 0.016).  Their measurements predicted a large insertion 

loss increase at low frequency, which is consistent with previous investigators [33,34,35,41,43].  

The authors only reported experimental evidence of the bias flow effects on insertion loss; no 

insertion loss or impedance model was specified in their study that accounted for the effect of 

bias flow.     

The applicability of the aforementioned insertion loss models [33,41,43,55] are limited 

based on the assumptions made in the respective works.  Howe [33] and Jing and Sun [41] 

assumed no interaction between the perforations, therefore restricting their models to low 

porosity plates.  Betts [55] accounts for HIE, however, his model does not include possible 

effects of bias flow on the mass end correction associated with the perforations.  The vena 

contracta of the jet was included in Bellucci et al. and Betts’ model using the contraction 

coefficient, which both investigators [43,55] assumed to be constant.  The models of Howe, Jing 

and Sun, and Bellucci et al. were experimentally validated only at low Mach number to be 

consistent with the assumption of negligible changes in the bias flow density.  All previous 
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models [33,41,43,55] were experimentally validated only at low frequency, or low d/λ, to ensure 

one-dimensional wave propagation.   

 A bias flow model is presented in the following chapter with the aims of rectifying the 

shortcomings of previous models [33,41,43,55].  Interactions between the perforations are 

considered in this work through the use of Fok’s function [11].  An estimate of the vena 

contracta location was used to determine the effect of bias flow on the end correction associated 

with the perforations.  The vena contracta of the jet was not assumed constant in this study; 

empirical data was used to determine the jet area contraction as a function of bias flow speed and 

the geometric properties of the perforated plate.     
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Figure 2.1:   Perforated plate with bias flow, indicating directions of the mean flow and pressure 

fluctuations
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Figure 2.2:   Cutaway view of two holes, showing the attached mass distributions associated with 

each hole and the interaction region between both holes [50]
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Figure 2.3:   Schematic of streamlines in a duct containing a single contraction.  Blue 

dashed lines indicate the separation streamlines  
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Figure 2.4: Aperture in an infinite plane with bias flow jet. Unsteady, axisymmetric vorticity is 

assumed to shed from the rim, convecting at a velocity Uc that is parallel to the x-axis and within 

the mean flow shear layer [33] 
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Chapter 3 

CURRENT THEORICAL MODEL 

 In this section, the development of the insertion loss model for both static and bias flow 

cases are presented.  The formulation of the model is detailed, beginning from fundamental 

principles.  The transmission loss models presented are those which will be compared to the 

models reported in Section 2.2.1 and 2.2.2. 

 

3.1 Governing equations 

 The problem considered in this work is governed by the acoustic equations, which are 

derived from mass continuity and Euler’s equation 
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where   denotes the tensor product.  The pressure, velocity, and density are decomposed into 

perturbations from their mean state: ppp  , uuu  ,   , where )( and 

)(  indicate the mean and perturbed states, respectively.  The decomposed variables are 

substituted back into Equations 3.1 and 3.2, and the equations are linearized by discarding terms 

containing the product of two or more perturbation quantities.  Further assuming that the mean 

quantities do not vary in space and time results in the following set of equations  
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γ is the ratio of specific heat at constant pressure to specific heat at constant volume, and is equal 

to 1.4 for air at 293 K.  For one-dimensional propagation and mean flow in a duct, 
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 , where xê is the unit vector corresponding to the 

axial direction.  Cross differentiating Equations 3.3 and 3.4, and combining with Equation 3.5 

results in the convected wave equations for both uʹ and pʹ 
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Assuming time harmonic disturbances of the exponential form e
iωt

, where ω=2πf is the angular 

frequency, the general solutions of Equations 3.6 and 3.7 are, respectively 
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where M is the mean flow Mach number, k=ω/c is the acoustic wave number, A and B are the 

amplitudes of the right and left running acoustic pressure waves, respectively, and C and D 

amplitudes of the right and left running acoustic velocity waves, respectively.  The constants C 

and D in Equation 3.9 can be expressed in terms of A and B using Equation 3.4:  
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3.2 Static model  

In the present study, the insertion loss of the perforated plate is modeled theoretically by 

considering a duct containing a single contraction chamber, as illustrated in Figure 3.1. The 

development follows the inertial model of Ffowcs Williams and Dowling [58] with important 

modifications related to end effects.  Besides the neglect of viscous effects, the other major 

assumption is that the wavelength of sound is larger than the contraction diameter, which allows 

the approximation of the sound waves throughout the duct as one-dimensional.  Acoustic waves 

that are confined spatially to regions such as ducts will have modes that will propagate or decay, 

depending on the frequency of excitation [5].  If the waves in the duct are excited at a frequency 

below the cutoff frequency of a certain mode, the mode is considered evanescent and will decay 

at appreciable distances from the source.  The plane wave assumption restricts the model 

accuracy to only frequencies below the cutoff frequency corresponding to plane wave 
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propagation inside perforations.  If the perforations are approximated as circular ducts, the cutoff 

frequency can be expressed non-dimensionally as d/λ =0.5861.   

The acoustic pressure throughout the domain is expressed using Equation 3.9.  In the 

static case, where M = 0, the acoustic pressure reduces to 
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where I, R, and T are the amplitudes of the incident, reflected, and transmitted waves, 

respectively.  The subscripts 1, 2, and 3 are used as reference to the regions upstream, inside, and 

downstream of the contraction respectively (Figure 3.1).  The amplitudes B and C of the acoustic 

pressure waves inside the contraction are determined by application of the conservation 

equations.  The mass flux into the contraction interface (x = 0) must equal the mass flux out of 

the contraction.   

2211 uAuA    (3.12) 

In addition, the energy flux into the contraction interface must equal the energy flux out of the 

contraction.    

222111 upAupA   (3.13) 

Combining Equations 3.12 and 3.13 shows that the energy flux condition is a statement of 

continuity in the acoustic pressure at the contraction interface, 21 pp  .  The same conditions of 

mass and energy flux apply at the expansion interface (x = l). Assuming that the pressure 
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fluctuations propagate at the same speed throughout the entire domain (c = c1 = c2 = c3) and that 

A3 = A1, the following set of algebraic equations which relate R and T to I are obtained:   
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It can be shown from Equations 3.14 and 3.15 that the sum of the energies in the reflected and 

transmitted waves equals the energy of the incident wave:  
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In other words, this is a lossless process as evident from the lack of any dissipative (viscous) 

effects in the formulation of the governing equations.   Adopting Equation 2.5, Equation 2.3, and 

Equation 2.4 for zero bias flow, the transmission loss is 
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Substituting Equation 3.14:  
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In applying Equation 3.18 to a perforated plate, the porosity is  = A2/A1 and the plate thickness 

is l.  The transmission loss in Equation 3.18 is symmetric in A1 and A2 and is therefore the same 
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whether the chamber is expanding (A2 > A1) or contracting (A2 < A1).   With these substitutions, 

Equation 3.18 becomes 
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As discussed in Section 2.1.3, an end correction for the thickness must be applied to 

account for the effect of acoustic interaction between the holes of the perforated plate [11-16].  

The volume of the disturbed mass adjacent to the ends of the perforation can be idealized as a 

cylindrical volume of total length l’ (Figure 3.2).  The additional length is added to the physical 

thickness of the plate, resulting in an effective thickness 

', lll se   (3.20) 
 

where lʹ is the correction length defined as 
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8
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d
l   (3.21) 

 

The 8d/(3π) term in Equation 3.21 is the end correction applicable to a single orifice in a 

spatially infinite plate [7].    The additional term in the denominator, ψ(ξ), originates from Fok’s 

work [11], who considered the problem of a circular tube of diameter, D, with a partition 

containing a circular orifice of diameter, d, located on the axis of the tube.  His analysis showed 

that as d/D approaches unity, the orifice conductivity becomes infinite, and the end correction 

tends to zero.  Conversely, for d/D << 1, the end correction approaches the value for a single 

orifice in an infinite plate, 8/(3π).  Fok derived a function that describes this behavior:  
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where ψ(ξ) = [M(ξ)]
-1

 is the reciprocal of Fok’s function, and its argument ξ = d/D.  Nesterov [12] 

showed experimentally that Equation 3.22 is valid for both single orifice and multiple orifices.  

The case of multiple orifices is representative of a perforated plate, where each orifice is 

confined within a lattice of characteristic length D, and the ratio of orifice area to lattice area is 

equal to the porosity β of the perforated plate.  Nesterov showed that the effect of lattice 

geometry on Fok’s function is negligible; indicating that the end correction associated with the 

perforations is independent of the nature of perforation grating.  From this result, a circular 

lattice geometry of diameter D can be assumed for all perforated plates, and ratio of perforation 

area to lattice area, or porosity, can be defined as β = d
2
/D

2
.  The argument in Fok’s function can 

therefore be rewritten, using porosity, as   .  As β approaches zero, the lattice area 

effectively becomes infinite with respect to the perforation and ψ(0) =1, resulting in an end 

correction equal to a single orifice (Equations 3.21 and 3.22).  Fok’s function modifies the 

effective thickness of a single orifice in an infinite baffle by accounting for finite lattice area.  

Nesterov’s experiments showed that HIE are negligible for β <0.10.  The porosities of the 

perforations used in the current work are greater than 0.22, indicating that interaction effects 

must be considered for all the perforations in this study (Table 4.1).  Incorporating the effective 

thickness, Equation 3.19 becomes:   
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Equation 3.23 is a variant of the original result by Ffowcs Williams and Dowling [58], modified 

to include end corrections and HIE.  It is noted that the transmission loss model contains a sine-

squared term, and therefore exhibits oscillatory behavior that is governed by the effective 

thickness.  The oscillatory behavior is caused by standing-wave-formed resonances inside the 

contraction that are analogous to Fabry-Pérot resonance observed in optics [14-16].   

  The transmission loss was derived using one-dimensional, inviscid theory, assuming no 

reflections from x = ±∞, and that A3 = A1.  In the absence of an area contraction, β = 0 and 

Equation 3.23 predicts zero transmission loss.  This implies from Equation 2.5 that Πi = Πt 

without a perforated plate, or from Equation 2.6, Πi = Πt,0.  Therefore, the transmission loss 

expression (Equation 3.23) derived in this section is equal to the insertion loss.  The predictions 

given by Equation (3.23) will be compared to insertion loss measurements, and to the previous 

theoretical models noted in Section 2.2.1.   

3.3 Bias flow model  

The current model for the acoustic transmission loss of perforated plates with bias flow 

was formulated based on the work of Durrieu et al. [32] and Hofmans et al. [1].  Similar to the 

static case, the perforated plate is modeled as a duct containing a single contraction chamber, 

only now there is flow along the duct axis (Figure 3.3(a)).  The subscripts 1, 2, j, m, and 3 are 

used as reference to regions upstream of the contraction, within contraction, the vena contracta 

location, the mixing region downstream of the contraction, and the fully mixed region, 

respectively.  The contraction is a discontinuous change in area at x = 0, and the ratio of 

contracted to upstream area is defined by  = A2/A1.  The contraction expands discontinuously at 

x = l to the original duct area, A3 = A1.  The Reynolds number (Ud/ν) in the contraction was 

assumed to be sufficiently large so that viscosity has the sole effect of flow separation at the 
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upstream corner of the contraction, as illustrated in Figure 3.3(a).  A jet of uniform velocity is 

formed at the vena contracta, located at x = lvc.  Irreversible losses occur in the mixing region 

downstream of the vena contracta; the losses are represented in this study through fluctuations in 

entropy.  After some distance lm downstream from the expansion, the flow is assumed to be fully 

mixed and the acoustic and mean flow properties can be approximated as one dimensional in 

region 3. 

 Recalling Section 3.1, a prerequisite of the acoustic pressure being represented by 

Equation 3.8 is that the mean flow cannot be varying in both time and space.  The former 

condition is satisfied by assuming steady mean flow throughout the entire domain.   Realistically, 

however, the fluid accelerates slightly before the contraction and within the contraction up to the 

vena contracta, violating the latter condition.  In the following analysis, the change in mean flow 

speed is discontinuous at x = 0, and the separation of the jet and its profile is modeled as a 

contraction of constant area, equal to the vena contracta area (Figure 3.3(b)).  This allows the 

vena contracta effect to be included such that Equation 3.8 is applicable within the contraction.   

The jet Mach number M2 =Mj is subsonic, and the acoustic wavelength is assumed to be much 

larger than the contraction diameter.  This allows the approximation of one-dimensional 

propagation in regions 1, 2, and 3 of the duct.  The acoustic pressure (Equation 3.8) can be 

determined only after the mean quantities, namely the density, Mach number and wave 

propagation speed, are known.   

 The flow between regions 1 and 2 is inviscid and isentopic.  Therefore the following 

integral forms for conservation of mass and energy apply, along with the isentropic relation: 

cCuu  2211   (3.24) 
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Equation 3.24 implies that the vena contracta area A2 = Avc = A1βCc.  Downstream of the duct 

expansion, the conservation equations are applied to the control volume illustrated in Figure 3.4.  

The control volume (dashed black line) is defined such that the left surface is located at x = l.  

The top and bottom surfaces are coincident with the walls of the duct, and the right surface is 

located at length lm that is sufficiently downstream of the expansion so that the jet has become 

completely mixed and the flow properties are uniform along this surface.  Mass conservation 

between the left (x = l) and right (x = l + lm) surfaces of the control volume requires that  

3322 uCu c    (3.27) 

Assuming that the flow expands adiabatically 
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Neglecting friction along the walls of the duct, the momentum conservation between the left and 

right surfaces of the control volume yields 

2
333

2
222 upCup c    

(3.29) 

The contraction coefficient Cc in Equations 3.24, 3.27 and 3.29 can be determined from the 

discharge coefficient.  Assuming Cρ=1 and Cv=0.97, from Section 2.1.4, 97.0Dc CC  .  The 

discharge coefficient CD is determined based on the empirical correlation formula provided by 

Smith and Van Winkle [25] for perforated plates 
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where K is specified by the Reynolds number, Red = Upd/ν, and l/d, using Figure 3.5.  The 

distance between perforations, P, is determined based on the array geometry of the perforations.   

If the array is rectilinear (Figure 3.6(a)), P is defined as [23]  
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and for the staggered array (Figure 3.6(b)) 
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The mean flow quantities M2, c2, ρ2, M3, c3, and ρ3 are determined from Equations 3.24-

3.29 if M1, c1, and ρ1  are specified.  Using Equations 3.24 and 3.25, 
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ρ2 can be determined using an iterative procedure.   Equations 3.24, 3.26, and 3.5 then determine 

the Mach number and sound speed in region 2 
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Equation 3.28 is rewritten in terms of Mach number 
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where the c2/c3 is determined by applying Equations 3.29, 3.27, and 3.5  
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Combining Equations 3.37 and 3.36 results in an implicit equation for M3, which is then 

computed using an iterative procedure.  Once M3 is determined, c3 can be solved from Equation 

3.37, and by conservation of mass between regions 2 and 3  
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Equations 3.24-3.29 define the mean flow properties throughout the entire domain.  In order to 

determine the acoustic response of the contraction, acoustic perturbations are introduced in the 

conservation equations.  The same acoustic decompositions for density, pressure and velocity 

introduced in Section 3.1 are applied in regions 1 and 2.  The density fluctuations in region 3 are 

modified to include important effects associated with the mixing of the jet in the mixing region. 

 Irreversible flow losses occur due to mixing and viscous dissipation as the flow develops 

downstream of the contraction (Figure 3.4).  The losses associated with the flow in the mixing 

region produce fluctuations in entropy that propagate downstream at the mean flow velocity in 

region 3.  The use of entropy fluctuations to describe dissipation in acoustic energy has been 

used by previous researchers [27-32] with experimental validation [28,29,31,32].  The method of 

characterizing dissipation through entropy fluctuations can readily be integrated into the 

perturbed energy equation, using principles from thermodynamics (see Appendix A).  Using 
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Equation A.6, the acoustic density fluctuation in region 3 can be expanded in terms of pressure 

and entropy fluctuations 
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The second term on the right hand side of Equation 3.39 indicates a perturbation from the 

isentropic relation defined in Equation 3.5.  By dimensional analysis, the numerator of the 

second term on the right side of Equation 3.39 represents a pressure disturbance that is dependent 

on entropy fluctuation 

  333 1 sT    
(3.40) 

 

Rewriting Equation 3.39  
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It is noted that δ is finite only in region 3 because the entropy fluctuations produced in region m 

are convected downstream by the mean flow.  Since the entropy fluctuations propagate at speeds 

corresponding to the mean flow, these fluctuations are not directly involved in the propagation of 

true sound, and therefore do not contribute to the generation of sound power in the duct.  The 

entropy fluctuations are equal to zero in both regions 1 and 2, because the flow processes there 

are assumed isentropic.  The acoustic pressure throughout the domain (Figure 3.2) can be 

expressed from Equation 3.8  
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where the convected wave number is related to the acoustic wave number in the static case 
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and n is the index of reference to the region within the domain.  The acoustic velocity and 

density can be determined as a function of the acoustic pressure amplitudes from Equations 3.9 

and 3.41, respectively, with sʹ = 0 in regions 1 and 2.  Similar to the static case, corrections to the 

length of the contraction were applied in order to account for inertial effects near the abrupt area 

changes at x=0 and x=l.  Additional corrections were applied to the end correction to include the 

effect of bias flow.  Fok accounted for the influence of neighboring perforations on the inertial 

reactance of a single perforation by deriving an expression based on potential theory.  Therefore, 

it was assumed that the end correction is applicable only where the flow is potential, and hence 

where the mean velocity field is irrotational. 

 Melling [50] proposed a qualitative explanation of the effect of bias flow on the end 

correction associated with perforated plates.  The author stated that “up to the vena contracta the 

flow is laminar and becomes turbulent beyond it… the mass reactance due to the attached mass 

is presumed to exist and beyond this point is destroyed.”  Therefore the modification to the 

attached mass is determined as a function of the vena contracta location of the jet.  Figure 3.7 

schematically illustrates this effect for a single perforation.  The vena contracta length, lvc, is 

defined as the distance between the upstream side of the plate and the vena contracta location.  

The vena contracta location is approximated using the jet profile determined numerically by 
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Rouse and Abul-Fetouh [59].  Based on their data, the jet contraction d/D is within 1% of the 

fully contracted value at x/a =1.4 (Figure 3.8), and therefore it was assumed in this work that the 

vena contracta is located at lvc=1.4a.  Observing Figure 3.7, three cases are defined which scale 

the end correction with respect to lvc:  
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where l’ corresponds to the static end correction length defined in Equation 3.21.  The first 

condition implies that the end correction length for perforations with bias flow cannot be larger 

than the end correction without bias flow.  The second condition follows Melling’s assumption 

that the static end correction length on the downstream side of the plate is limited by the vena 

contracta length.  The third condition implies that although the vena contracta location resides 

within the contraction, significant mixing does not occur until the mean flow leaves the 

perforations, and therefore the mean flow is approximately potential inside the perforation. 

 Applying acoustic perturbations to p, ρ and u, and making the appropriate linearization 

results in the following set of equations 
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(3.49) 

 

Equations 3.45 and 3.46 are the continuity equations applied from regions 2 to 3, and 1 to 2, 

respectively; Equation 3.47 is the momentum conservation between the jet and fully mixed flow 

in region 3; and Equations 3.48 and 3.49 are the energy conservation equations from regions 2 to 

3, and 1 to 2, respectively.   Equations 3.45-3.49 are a linear system of equations  
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where K1 through K20 are defined on the following page: 
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The system of equations was solved using MATLAB’s inbuilt reduced row echelon function.  

The acoustic energy flux of a wave propagating in a moving medium (Equation 2.4) is rewritten 

for plane wave propagation as 
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The power associated with the forward and reflected waves is determined by multiplying by the 

appropriate reference area (Equation 2.3).  Since A1 = A3, the transmission loss is therefore 

determined from Equations 2.3, 2.5, and 3.51 
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(3.52) 

 

where T is determined through the solution of Equation 3.50.  If no area change is present in the 

duct, the incident wave in region 1 propagates downstream to region 3 without any loss in power.  

Therefore, like Equation 3.23, Equation 3.52 is also a valid expression for the insertion loss.   

 As mentioned in Chapter 2, the bias flow model proposed in this study (Equation 3.52) 

aims to overcome the shortcomings of previous models [33,41,43,55].  The proposed model 
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takes in account the variation of mean flow density, and is therefore not restricted to low 

subsonic bias flow.  A combination of HIE and an estimate of the vena contracta location were 

used to model the effect of bias flow on the end correction length.  The jet contraction diameter 

is determined based on measurements of the discharge coefficient [25] for perforated plates.  

Unlike previous works [43,55], the variations in the contraction coefficient with bias flow speed 

are included in the proposed model.  The insertion loss predictions from Equation 3.52 will be 

validated against the previous models presented in Section 2.2.2, and experimental results 

reported in Chapter 5. 
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Figure 3.1:   Contraction chamber used for one-dimensional modeling of transmission for static 

case [58]
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Figure 3.2:   End correction showing actual and idealized attached mass distribution with 

associated length corrections [50]
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Figure 3.3:   Contraction chamber used for modeling perforated plate acoustics (a) with 

contraction area corresponding to perforation diameter; (b) with contraction area equal to vena 

contracta area  
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Figure 3.4:   Control volume that contains the mixing region dowstream of the expansion 
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Figure 3.5:   Correlation parameter K relating perforated plate discharge coefficient with P/d , l/d 

and Reynolds number [25] 
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Figure 3.6:   Perforation hole geometry: a) rectilinear (square) array and; b) staggered (triangular) 

array 
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Figure 3.7:   Bias flow correction to idealized mass distribution. 
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Figure 3.8:   Free jet profile for varying orifice to duct area ratio 0 < β < 0.5 [59] 
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Chapter 4 

EXPERIMENTAL DETAILS 

4.1  Perforations 

Eleven perforated plates of varying porosity, hole size, and thickness were investigated (Figure 

4.1).   Table 4.1 lists the geometric properties of the perforated plates used for both static and 

bias flow cases.  All the plates were made of sheet metal: either brass or steel.  It was noted in a 

previous study [48] that the transmission characteristics of the plate are independent of its 

material composition.  The test matrix includes a solid perforated plate (Experiment S) and the 

free-field, baseline case (Experiment 0).  The gratings of the perforations on the plates were 

either square or triangular patterned (Figure 3.6).   

4.2  Experiment setup 

 Two separate experiment facilities were utilized to determine the insertion loss of the 

perforated plates.  The static insertion loss (SIL) facility was set up within the UCI anechoic 

chamber.  To accommodate bias flow, a separate facility (bias flow insertion loss (BFIL) facility) 

was built.  The details of the experimental setup are given in this chapter, followed by a 

description of the acoustic data processing 

4.2.1 Static insertion loss experiment setup 

The static insertion loss experimental setup has some similarity to the arrangement used 

by Chen [48].   The basic layout is shown in Figure 4.2.  Acoustic measurements were conducted 

inside an anechoic facility using two 3.2-mm condenser microphones (Brüel & Kjaer, Model 



52 
 

4138), with frequency response of 120 kHz.  The microphones were mounted inside a separate 

small anechoic box located within the anechoic facility (Figure 4.2(b)).  The anechoic box, 

detailed in Figure 4.3, had one open side on which the perforated plates were mounted.  The 

other sides were lined with anechoic wedges with cut-off frequency of 200 Hz.  The 

microphones were held on an arm at the opposite end of the box, and were separated from each 

other by a distance of 7.6-cm.  The distance between the microphone tips and plane of the 

opening was approximately 7.6-cm.  The microphone signals were acquired simultaneously, 

which allowed microphone correlation assessments that would validate the assumption of plane 

wave propagation used in the static theory. 

A localized broadband acoustic source (“point source”) was generated using four small 

impinging jets, each issuing from a 2.54-mm diameter tube and supplied at a pressure of 200 kPa.  

The design of the impinging-jets source was similar to that used by Gerhold and Clark [60].  The 

distance between the impinging-jets source and the perforated plate was 1.48-m.  The perforated 

sheets were attached to the open end of the box using spring clamps.  The box was hinged in one 

corner to allow variation of the incidence angle relative to the wave front.   In the present 

experiments, the incidence angle was normal to the perforations.   

4.2.2 Bias flow insertion loss experiment setup 

 In order to investigate the effect of bias flow on the transmission properties of the 

perforated plate, a separate facility was constructed which accommodated a steady flow of dry 

air flow to the perforations.  The facility is schematically represented in Figure 4.4(a).  The 

material selected for the main duct and coupling was polyvinyl chloride (PVC) for ease of 

manufacturing.  The internal diameter of the duct was 26.35-cm, with an average wall thickness 

of 0.475-cm.  A 3.81-cm duct liner (SoundVAC
TM

, with a cutoff frequency of 500 Hz) was used 
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to prevent signal contamination by internal reflections from the duct wall.  The BFIL facility was 

divided into three sections, each connected by flanges at the tube ends.  The coupling between 

the flanges was sealed with an Aramid/Buna-N flange gasket to minimize air leakage during 

experiments.   

 The first section was constructed with the objective of conditioning the incoming flow.  

The section was 0.762-m in length and contained four inlet ports into which compressed air was 

supplied.  The supplied air was injected in the radial direction with respect to the duct axis (see 

Figure 4.4).  A honeycomb grid and a series of screens were placed downstream of the inlet ports 

to reduce turbulence levels of the incoming flow.  The selection of the coarseness and 

positioning of the wire mesh was based on the initial design for the NASA Langley 8-foot 

transonic pressure tunnel by McKinney and Scheiman [61].  The honeycomb selected was 2.54-

cm in length with circular cell sizes of 3.18-mm diameter.  Downstream of the honeycomb, a 20 

x 20 wire mesh was placed, followed by two 42 x 42 wire mesh.  The screens and honeycomb 

were separated by 12.7-cm.  To prevent over pressurization of the BFIL facility, a burst 

diaphragm with a burst pressure of about 5 psig was installed in the flow conditioning section, 

upstream of the 20 x 20 wire mesh.     

 The second section (0.762-m in length) was used to hold the impinging jets source and 

the convergent section upstream of the sample plate.  The impinging jets were supplied by four 

1.6-mm diameter tubes.  An additional screen (42 x 42 wire mesh) was placed slightly 

downstream of the piping for the source in order to reduce fluctuations in the flow due to 

shedding in the wake of the pipe.  At the end of the source section, a smoothly convergent 

section was constructed using open cell, insulation foam sealant to ensure uniform axial flow at 

the plane of the perforation.  The overall length of the convergent section was 20.32-cm.  A 
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sample mounting plate located immediately downstream of the convergent section was used to 

hold the perforation in place (Figure 4.5).  The plate was sandwiched between the flanges of the 

source section and the measurement/termination section.     

 The measurement/termination section (1.52-m in length) held the microphone arm and 

termination cone.  The microphone arm consisted of an aluminum rod (1.27-cm diameter), 

mounted perpendicular to the duct axis, 25.4-cm from the sample mounting plate.  Two 3.2-mm 

condenser microphones (Brüel & Kjaer, Model 4138) were inserted into slotted wedges, which 

were held by the microphone arm.  Figure 4.6 details the setup used to obtain the microphone 

correlations in the BFIL facility.  The measurement plane, defined as the plane intersecting the 

two microphone tips, was located 19.7-cm from the sample mounting plate.  The microphones 

were fixed at the locations shown in Figure 4.6, and were separated by a distance of 7.6-cm to 

compare with the correlations obtained in the SIL facility.  The sound power downstream of the 

perforated plate was determined by multiple acoustic measurements from a single microphone, 

traversed within the measurement plane.  Details of the sound power measurement obtained in 

the BFIL facility are provided in Section 4.3. The sample mounting plate had a 4.57-cm diameter 

hole bored in its center that allowed airflow through from the convergent section.   

 To be consistent with the theory developed in Section 3.3, it was necessary to ensure 

anechoic termination so that acoustic measurements would not be contaminated by reflections 

from the downstream end of the duct.  The use of duct area expansion for anechoic termination 

was not a practical choice for the current setup due to the large duct diameter [62].  Instead, a 

termination cone 0.45-m in length was attached at the end of the termination section.  The frame 

of the cone was constructed from balsa wood, and was both filled and wrapped with 3.81-cm of 

R-19 Ecotouch FIBERGLAS insulation.   
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 Unlike the SIL facility, a single spatial measurement of sound pressure level is not an 

accurate indication of the acoustic power in the duct.  The wave propagation in the duct is 

confined by the liner surface, creating an effective duct diameter D = 18.73-cm.   If D/λ > 0.5861, 

the first higher order duct mode is cut-on, and the pressure fluctuations will vary with position in 

the measurement plane [5].  Multiple acoustic measurements on the measurement plane were 

needed in order to obtain an accurate measurement of the sound power level in a duct [63,64].  

The microphone arm was therefore attached to a linear traverse, and acoustic measurements were 

acquired at different spatial locations in the measurement plane, at a fixed axial distance from the 

perforated plate (see Figure 4.6).  Further details on the acoustic power measurement for the 

BFIL setup are provided in Section 4.3.  The microphones were held at zero-incidence angle 

with respect to the sample mounting plate.  

 In order to protect the B&K 4138 condenser microphone from flow impact, an 

aerodynamic forebody (Figure 4.7) was attached to the microphone tip in place of the standard 

protective grid.  Discriminating between the noise due to turbulent fluctuations from the mean 

flow and the noise from the acoustic source is generally accomplished using two measurements 

under the same source and flow conditions.  One measurement is made in which the nose-cone 

forebody is used, while another is obtained using a slit-tube windscreen [63,64].  However, due 

to unavailability of a slit-tube windscreen for the microphone size used in this study, only 

measurements obtained with the nose-cone attachment were used.  Post-filtering of noise due to 

pressure fluctuations from the mean flow will be described in Chapter 5. 

 The total and static pressure upstream of the perforated plate were measured to determine 

experimentally the upstream Mach number.  The total pressure was measured using a Pitot tube.  

The Pitot tube was installed in the source section of the duct, 11.43-cm upstream of the 
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convergent section inlet in order to minimize flow interference between the Pitot tube and the 

perforated plate (Figure 4.8).  A static port was installed 2.54-cm upstream of the perforated 

plate.  Using static and Pitot pressure measurements, the Mach number upstream of the plate was 

determined from the isentropic relation 
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For the BFIL experiments, acoustic measurements were conducted for M1 = 0, 0.02, 0.04, 0.06, 

0.08, and 0.1. The insertion loss model proposed in this study (Equation 3.52) is dependent on 

the contraction coefficient.  The contraction coefficient was estimated from Smith and Van 

Winkle’s experimental data, which required the Reynolds number of the flow through the 

perforations [25].  The perforation Reynolds number is defined as  
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(4.2) 

 

The Mach number of flow in the perforation was estimated using Equation 4.1 along with static 

pressure measurements downstream of the perforated plate (see Figure 4.6).  Assuming the total 

temperature T0 = 293 K and is constant throughout the duct, the adiabatic relation was used to 

determine the local temperature 
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And the speed of sound in the perforation was determined from the equation of state 

 pTRc 0  
(4.4) 
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Tables 4.2-4.12 lists the experimentally determined values of the Reynolds number Red, using 

the flow conditions specified for 0.02 < M1 < 0.1. 

4.3  Acoustic data processing 

 The voltage time traces represent the raw acoustic data acquired from the microphones 

used in the experiments.  The raw data was post processed to obtain the sound pressure level 

(SPL) spectrum of the acoustic signal.  The normalized pressure is obtained from the pressure 

fluctuation 

refp

tp
th

)('
)(   

(4.5) 

 

where the pressure fluctuation in the time domain was determined by multiplying the voltage 

time trace by the appropriate sensitivity factor, and pref = 20 μPa.  For the SIL facility, both 

microphones were connected to a conditioning amplifier (Brüel & Kjaer, model 2690-A-0S4).  

The outputs of the amplifiers were sampled simultaneously at a rate of 250 kS/s per channel 

using a multifunction data acquisition board (National Instruments PCI-6143) installed in a Dell 

Precision T7400 computer with a Xeon quad-core processor.  For the BFIL facility, the 

microphones were connected to a dual channel power supply/conditioning amplifier (Brüel & 

Kjaer Type 5935L).  The outputs of the amplifier were sampled at 250 kS/s by a multifunction 

data acquisition board (National Instruments PCI-6070E) installed in a Dell Optiplex 380 

computer with an Intel Core 2 Duo processor.  The voltage signals for both SIL and BFIL 

facilities were conditioned with a high-pass filter set at 350 Hz and a low-pass filter set at 140 

kHz.  The power spectrum, Sraw, of Equation 4.5 was then computed using a 4096 point Fast 

Fourier transform, resulting in a spectral resolution of 61.03 Hz.  The spectra of each of the 

microphones represent the power spectral density of the acoustic signal.  Accounting for 
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microphone sensitivity and adjusting for amplifier gains, the raw, narrowband sound pressure 

level spectrum was obtained from the power spectrum of the normalized pressure 

 )(log10)(SPL 10 fSf rawraw   (4.6) 

The raw sound pressure level was corrected for microphone actuator CFR and free field response 

CFF, both of which are based on data provided from the microphone manufacturer.  Atmospheric 

absorption corrections CAA, were also applied using relative humidity and temperature of the 

ambient air.  All corrections were applied in the frequency domain.  The resulting corrected 

sound pressure level spectrum is expressed as 

)()()()(SPL)(SPL AAFFFR fCfCfCff raw   (4.7) 

 The microphone measurements were not shown to vary significantly with spatial location 

in the SIL setup, and therefore a single point measurement was sufficient in determining the 

insertion loss (to be shown in Chapter 5).  In the BFIL setup, however, it was necessary to obtain 

SPL measurements at multiple spatial locations.  The acoustic measurements were taken at the 

19 locations indicated by the filled dark circles on the measurement axis (Figure 4.9(a)).  The 

microphone arm was aligned with the z-axis.  The slotted wedge was mounted on the arm, and 

the microphone was inserted through the slot (Figure 4.9(b)).  The microphone tips were oriented 

at normal incidence to the sample plate.  Due to the microphone-arm setup, the measurement 

axis was offset from the z-axis by 12.7-mm (Figure 4.9(a)).  Position 10 corresponded to the 

measurement location intersecting the y-axis.  Acoustic measurements were taken at 19 different 

locations along the measurement axis in increments of ±6.4-mm.  The acoustic intensity level for 

a plane wave in a non-stationary medium is related to the sound pressure through Equation 3.51  
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n corresponds to the measurement position indicated in Figure 4.9(a), Mn is the Mach number, 

and Iref = 10
-12

 W·m
-2

.  The intensity is assumed to be constant over the strip of area, dAn, where 

the radii used to determine dAn was selected to intersect the midpoint between the n and n-1, and 

the n and n+1 location along the measurement axis.  Mn was measured using Pitot pressure 

measurements of the flow field downstream of the perforated plate, wall static pressure 

measurements in the measurement plane (Figure 4.6).  The microphone shown in Figure 4.7(a) 

was replaced by a Pitot tube with an internal diameter of 3.2 mm.  Pitot pressure was obtained at 

the 19 positions shown in Figure 4.9a.  The Pitot tube was connected to a Setra Model 209 

transducer that was sampled at a rate of 1 kHz by a data acquisition board (National Instruments 

PCI-6070E) installed on a Dell Optiplex 380 computer with an Intel Core 2 Duo processor.  The 

Pitot pressure was monitored using National Instruments Labview software.  The measured static 

and Pitot pressures led to determination of the local Mach number, Mn, by Equation 4.1.  In the 

current experiments, the Mach number in the measurement plane did not exceed 0.2 for all 

perforated plates (see Appendix B).  Therefore the variation in density and temperature from a 

stationary medium did not exceed 2% and 1%, respectively, and the 

approximation refref cIp 2
 holds satisfactorily, where pref = 20

 
μPa.  This allowed the acoustic 

intensity level spectrum to be recast in terms of SPL, by combining Equations 4.6 and 4.8 

 )(SPL1.02
10 10)1(log10)(IL

f
nn

nMf


  (4.9) 

The sound power level over the measurement plane was determined using Equation 2.3 
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and the resulting expression for the experimentally determined insertion loss is 

  exp,exp,0,exp, PLPL ttIL   (4.11) 

Equation 4.11 is the general expression for the insertion loss measurement used in both the SIL 

and BFIL facilities.  For the SIL facility, only a single point measurement of the acoustic field 

behind the perforated plate was needed, reducing Equation 4.11 to 

exp,exp,0,exp,, SPLSPL ttsIL   (4.12) 

Here SPLt,0,exp refers to the sound pressure level measurement without the plate installed 

(baseline case), and SPLt,exp is the sound pressure level measurement with the plate installed.  To 

facilitate the interpretation of the insertion loss measurements in the SIL facility, the spurious 

wiggles from the SPL spectra were removed by using a Savitzky-Golay filter [65].   The filter 

removes the wiggles but does not alter the fundamental shape of the spectrum.   
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Table 4.1:  Properties of perforated sheets used in experiments 

Experiment Porosity 

β 

Thickness 

l, mm 

Hole Diameter 

d, mm 

Perforation 

Grating 

Hole Pitch 

P, mm 

S 0.00 0.6096 -- -- -- 

0 1.00 -- -- -- -- 

1 0.37 0.6096 1.1430 Square 1.672 

2 0.48 0.4064 2.6162 Square 3.361 

3 0.37 0.4064 1.1430 Square 1.672 

4 0.29 0.4064 1.0160 Square 1.679 

5 0.45 0.7620 1.7526 Triangular 2.481 

6 0.23 0.7620 1.5875 Triangular 3.144 

7 0.23 0.9144 1.5875 Triangular 3.144 

8 0.23 0.4064 0.6858 Square 1.273 

9 0.23 0.4064 0.6096 Square 1.131 

10 0.22 0.4064 0.5080 Triangular 1.029 

11 0.22 0.4064 0.4064 Triangular 0.823 

 

Table 4.2: Experimentally Determined Flow Conditions for Plate 1 

Flow Condition M1 Mp Up Red 

1 -- -- -- -- 

2 0.020 0.056 19.25 1441 

3 0.040 0.108 37.07 2776 

4 0.060 0.160 55.00 4118 

5 0.080 0.211 72.56 5433 

6 0.100 0.276 95.03 7116 

 

 

Table 4.3: Experimentally Determined Flow Conditions for Plate 2 

Flow Condition M1 Mp Up Red 

1 -- -- -- -- 

2 0.020 0.048 16.60 2845 

3 0.040 0.096 32.93 5643 

4 0.060 0.141 48.53 8318 

5 0.080 0.189 65.17 11169 

6 0.100 0.256 88.19 15114 
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Table 4.4: Experimentally Determined Flow Conditions for Plate 3 

Flow Condition M1 Mp Up Red 

1 -- -- -- -- 

2 0.020 0.057 19.53 1472 

3 0.040 0.114 39.14 2951 

4 0.060 0.169 57.95 4369 

5 0.080 0.227 77.85 5869 

6 0.100 0.310 106.42 8023 

 

 

Table 4.5: Experimentally Determined Flow Conditions for Plate 4 

Flow Condition M1 Mp Up Red 

1 -- -- -- -- 

2 0.020 0.083 28.65 1927 

3 0.040 0.168 57.76 3884 

4 0.060 0.246 84.57 5686 

5 0.080 0.327 112.41 7558 

6 0.100 0.472 162.03 10895 

 

 

Table 4.6: Experimentally Determined Flow Conditions for Plate 5 

Flow Condition M1 Mp Up Red 

1 -- -- -- -- 

2 0.020 0.040 13.66 1579 

3 0.040 0.078 26.79 3097 

4 0.060 0.114 39.20 4531 

5 0.080 0.140 47.98 5547 

6 0.100 0.184 63.24 7310 

 

 

Table 4.7: Experimentally Determined Flow Conditions for Plate 6 

Flow Condition M1 Mp Up Red 

1 -- -- -- -- 

2 0.020 0.090 31.05 3240 

3 0.041 0.193 66.30 6919 

4 0.060 0.280 96.32 10051 

5 0.080 0.384 132.04 13778 

6 0.098 0.527 181.25 18913 
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Table 4.8: Experimentally Determined Flow Conditions for Plate 7 

Flow Condition M1 Mp Up Red 

1 -- -- -- -- 

2 0.020 0.103 35.35 3676 

3 0.040 0.187 64.51 6709 

4 0.060 0.261 89.94 9353 

5 0.080 0.366 126.10 13114 

6 0.100 0.523 179.93 18712 

 

 

Table 4.9: Experimentally Determined Flow Conditions for Plate 8 

Flow Condition M1 Mp Up Red 

1 -- -- -- -- 

2 0.020 0.079 27.15 1228 

3 0.040 0.166 57.16 2585 

4 0.060 0.248 85.19 3853 

5 0.080 0.323 111.12 5026 

6 0.100 0.439 150.71 6817 

 

 

Table 4.10: Experimentally Determined Flow Conditions for Plate 9 

Flow Condition M1 Mp Up Red 

1 -- -- -- -- 

2 0.020 0.082 28.10 1126 

3 0.041 0.155 53.35 2138 

4 0.060 0.226 77.70 3114 

5 0.080 0.301 103.45 4145 

6 0.100 0.413 142.06 5692 

 

 

Table 4.11: Experimentally Determined Flow Conditions for Plate 10 

Flow Condition M1 Mp Up Red 

1 -- -- -- -- 

2 0.020 0.086 29.60 988 

3 0.040 0.158 54.21 1810 

4 0.060 0.234 80.37 2684 

5 0.080 0.319 109.69 3663 

6 0.100 0.436 150.02 5009 
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Table 4.12: Experimentally Determined Flow Conditions for Plate 11 

Flow Condition M1 Mp Up Red 

1 -- -- -- -- 

2 0.020 0.084 28.78 774 

3 0.040 0.150 51.45 1384 

4 0.060 0.215 73.68 1982 

5 0.080 0.285 97.81 2631 

6 0.100 0.386 132.40 3561 

 

 

 

 

 

Figure 4.1:   Perforated plates used for bias flow experiments. 
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(a)   (b)  

Figure 4.2:   Static insertion loss experiment setup within UCI anechoic facility (a) represented 

schematically; (b) showing the position of the anechoic box  

with respect to impinging jets source. 

 

(a) (b)   

Figure 4.3: Anechoic box (a) schematic detailing the setup of microphones in the box and 

relevant dimensions; (b) with perforated plate attached, shown in the UCI anechoic facility. 
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(b)   

Figure 4.4:   Bias flow insertion loss facility (a) schematic; (b) setup. 
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Figure 4.5:   Sample mounting plate with perforated plate (Plate 11) attached. 
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Figure 4.6:   Schematic detailing the setup of the microphones used in the measurement section 

of the BFIL facility.  
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(a)     

(b)  

 

Figure 4.7:   (a) Microphone arm assembly with G.R.A.S. RA0173 nosecone attached to B&K 

4138 microphone; (b) G.R.A.S. RA0173 nosecone adaptor for 3.2-mm microphone. 
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Figure 4.8:   Schematic detailing the Pitot and static port positions relative to the perforated plate. 
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(b)  (c)  

Figure 4.9:   Cross section of the duct measurement section, (a) Schematic of the measurement 

plane, indicating 19 points of measurement; (b) actual setup at measurement location n = 1; (c) 

setup for microphone correlation measurements with microphones at positions n = 4 and n = 16. 
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Chapter 5 

RESULTS 

 The results are presented in two sections.  The first section and second section presents 

the measurements and validation of the SIL facility and the BFIL facility, respectively.  Both 

sections first evaluate the robustness of the experimental facility in determining the insertion loss 

of perforated plates.  This is done through an analysis of the SPL spectra and microphone cross-

correlations.  The experimental results are then compared with the current theoretical models, 

Equations 3.23 and 3.52, and previous models presented in Chapter 2.  The sections conclude 

with an analysis of the error between the current theoretical models and experimental 

measurements. 

5.1  Static results 

5.1.1 Robustness of setup  

  It was necessary to check for any possible sources of error in the experiment setup in 

order to ensure accuracy in the insertion loss measurements.   Acoustic contamination could 

result from leaks due to inadequate sealing of the contact area between the perforated plate and 

the structure of the anechoic box.  An additional source of concern was vibrations of the plate 

itself, which could lead to discrepancies in the transmission loss measurement.  In order to assess 

these possible sources of error, experiments were conducted with a solid plate, and the results 

were compared to a perforated plate of equal thickness.   

  Figure 5.1 shows the raw SPL spectra (before smoothing) comparisons between three 

cases:  the solid plate, the perforated plate, and the background noise with the source turned off 
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and the solid plate installed.  It was noted that the spectrum for the solid plate is well below the 

spectrum of the perforated plate.   The difference is 20 dB at low frequency increasing to 40 dB 

at high frequency.  This shows that the effects of vibration and leakage were very small and did 

not have any impact on the measured transmission loss.  It was also noted that the spectrum for 

the solid plate was higher than the background spectrum, indicating some transmission of sound 

through the sealed anechoic box.    It is natural that some sound will be transmitted through the 

box, particularly though the un-insulated solid plate.  However, this transmission was extremely 

weak to influence the results.      

  Chapter 4 also discussed the capability of the SIL facility in determining sound power 

using a single point measurement.  This was confirmed by comparing the SPL spectra of the 

signals acquired by each microphone.  Figure 5.2 shows the spectral comparisons between the 

baseline (no plate attached), Plates 1, 2, 6, and 11.  The plates selected for this comparison 

covered both extrema and intermediate values of thickness, hole size, and porosity used in this 

study.  The comparisons show that the spectra were nearly identical, with the exception of Plate 

2 (Figure 5.2(c)), where differences are noticeable at f >100 kHz.  Based on these results, 

multiple spatial acoustic measurements in the SIL box was deemed unnecessary, and an average 

of the spectra between the two microphones was taken as representative of the acoustic power 

transmitted through the plate.    

5.1.2 Microphone correlations  

To confirm that the incident waves were normal to the perforations, the signals of the two 

microphones were cross-correlated.  The microphone voltage signals were cross-correlated using 

MATLAB’s inbuilt cross correlation function.  Figure 5.3 compares the cross-correlation 

coefficient Rm1m2 for the open box and the box covered with a perforated plate.  For both the 
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open and covered box, the cross-correlation peaks at η = 7.8 μs.  This time lag corresponds to a 

propagation distance of 2.7-mm, which is very small compared to the 76-mm separation between 

the microphones.   For all practical purposes, the sound arrived at the two microphones 

simultaneously and the wavefronts were aligned with the plane of the perforation.  It is 

interesting that the magnitude of the cross-correlation does not decline with installation of the 

perforated plate.  This indicates that the diffraction process is largely deterministic.   

Further insight was gained by examining the coherence between the microphone signals, 

plotted in Figure 5.4.  The magnitude squared coherence 2
 was computed using MATLAB’s 

inbuilt coherence function, using an FFT size of 4096 with a 1024 point Hanning window.  The 

coherence plots are virtually identical for the open and covered box, except at f >100 kHz.  The 

coherence is very strong for f <100 kHz, then falls off rapidly for higher frequency.    The 

decline has to do with the turbulent nature of the impinging-jets noise source wherein the 

variance of source location becomes large compared to the acoustic wavelength.     

The cross-correlation results, in conjunction with the geometry of the setup depicted in 

Figure 4.3(a), allowed us to assess the applicability of the one-dimensional propagation model, 

proposed in Section 3.2, to the present experiments.   The strong coherence for f <100 kHz 

indicates a highly coherent wavefront impinging on the plate - a prerequisite for the 

aforementioned model.  On the other hand, the decline in coherence for f >100 kHz indicates that 

the wavefronts impinging on individual holes become progressively uncorrelated.   For this 

reason, only the results below 100 kHz were used in evaluating the model. 

The large distance between the sound source and the perforated plate ensured that the 

wave approaching each hole is planar.   Near the center of the plate, the incidence of the plane 

wave is normal.   Towards the edge of the plate, the incidence is slightly off-normal with an 
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obliquity angle no larger than 6.4 deg.   Sustained propagation at such angle requires high-order 

radial and circumferential modes whose cutoff frequency is much higher than the planar-

propagation cutoff frequency mentioned in Section 3.2 [66,67].  Therefore, it was concluded that 

the obliquity of the incident wave on the perforations did trigger any transverse modes and thus 

did not alter the insertion-loss relations developed in this study. 

5.1.3 Insertion loss measurements 

  The experimental results for transmission loss of the perforated plates listed in Table 4.1 

are plotted in Figure 5.5(a).  For all the cases investigated, the transmission loss is practically 

zero at very low frequency.  With increasing frequency, the transmission loss for plates with 

thickness l=0.4046-mm increases monotonically within the frequency range investigated.   For 

the three cases with l >0.4046-mm (Plates 5, 6, and 7), the transmission loss curves rise then fall.   

As indicated in Section 3.2, the saturation and decline of transmission loss for the thick plates is 

a result of Fabry-Pérot-like resonance.    The theoretical predictions for transmission loss are 

plotted in Figure 5.5(b).  A quick comparison between Figures 5.5(a) and 5.5(b) shows that the 

model captures the experimental trends.   In the cases with l >0.4046 mm Equation 3.23 is able 

to accurately predict the frequency at which the maximum transmission loss occurs.  The 

frequency limitation of the experiment prevented resolution of the frequency of peak 

transmission loss for plates with thickness l=0.4046 mm; therefore no distinct transmission loss 

maxima were observed for these cases.  The comparisons in Figure 5.4 also indicate a significant 

deviation between model and experiment at high frequency for Plate 2.  This deviation may be 

attributable to diffraction effects similar to Wood’s anomaly
 
[14,15,16,68], which occurs when 

the wavelength becomes similar to the hole spacing, P.   Plate 2 was the only case that may be 

impacted by Wood’s anomaly within the experimental frequency range.    
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5.1.4 Comparison with previous models 

  It was necessary to determine the range where the non-dimensional parameters of the 

previous classical models were validated so that comparisons with the current model can 

appropriately be made.    The ratio of plate thickness to acoustic wavelength, l/λ, and perforation 

diameter to acoustic wavelength, d/λ, were selected as the relevant non-dimensional parameters.  

The range of d/λ and l/λ where the classical models were considered valid was determined based 

on their respective experimental constraints, and is illustrated in Figure 5.6.  A region of 

significant overlap, 0.002 < d/λ < 0.09, was chosen to compare the insertion loss results.  It is 

shown in Figure 5.6 that the current work investigates values of d/λ >0.1, a region where 

previous static models [48,49,51] lack validation.    

  Figure 5.7 compares the current insertion loss measurements with the predictions of the 

current static model, Equation 3.23, and the predictions by Chen [48], Tayong et al. [49], and 

Atalla and Sgard [51].  Equations 2.17 and 2.23 were used to recast the impedance expressions 

of Tayong et al. and Atalla and Sgard, respectively, into transmission loss.  The aforementioned 

models [48,49,51] were derived with the assumptions that no reflected waves are present 

downstream of the perforated plate or upstream from the source, and therefore the insertion loss 

and transmission loss are identical.  Figures 5.7(b), 5.7(d), 5.7(h), 5.7(i), 5.7(j), and 5.7(k) focus 

on insertion loss between 0.002 < d/λ < 0.09, the region of validity of the classical models.   

Figures 5.7(a), 5.7(c), 5.7(e), 5.7(f), and 5.7(g) include results for d/λ > 0.09, and a vertical 

dashed line marking the upper d/λ limit at which previous models [48,49,51] were validated.  

  Within the region of validated d/λ, Chen’s theory over-predicted the insertion loss with 

increasing error at higher d/λ for all perforates except for Plate 4.  It is important to note that the 

end correction value used in Chen’s theory is 0.8 times the perforation diameter for β <0.126.  
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Since no specification was given for perforates with larger values of porosity, Chen’s theory is 

expected to be inaccurate for higher porosity cases, such as Plates 1, 2, 3, and 5 (Figures 5.7(a), 

5.7(b), 5.7(c), and 5.7(e)).  Both transmission loss predictions using the surface impedance 

model of Tayong et al. and applying the TMM to Atalla and Sgard’s model agree well with the 

current experimental data within the region of validated d/λ, except for Plates 8-11 (Figures 

5.7(h), 5.7(i), 5.7(j), and 5.7(k)), where deviations from the experiment occur with increasing d/λ.   

  The capability of the classic and current models in predicting the resonance phenomena 

shown in the experiments (Figure 5.5(a)) is compared next.  Figures 5.7(a), 5.7(e), 5.7(f), and 

5.7(g) indicate that resonance effects become apparent for d/λ >0.1, a region which previous 

classical models [48,49,51]
 
lack validation.  This effect is an essential physical mechanism that 

cannot be ignored when modeling the transmission behavior of perforated plates.  This 

underscores the distinguishing advantage of the current model over Tayong et al. and Chen's 

model.  As discussed in Section 2.2.1, the insertion loss was obtained from the model of Tayong 

et al. [49] by examining the classic problem of acoustic wave transmission between two semi-

infinite fluid media:  one defined by characteristic impedance of air, and the other by the 

perforation impedance.  Conservation equations were applied at the interface separating the 

media, resulting in the well known expression for reflection coefficient Equation 2.15.  The 

transmission loss was then obtainable from the reflection coefficient, as shown in Equation 2.17.  

In the current model, boundary conditions were applied at the two cross sectional area changes of 

contraction chamber (Figure 3.1).  Reflected waves form within the contraction, resulting in a 

Fabry-Pérot-like resonance behavior when the acoustic wavelength approaches the order of the 

plate thickness l.  This effect was captured in the transmission loss expression, Equation 3.23, 

through the sine-squared term, and was confirmed by experimental results for thicker plates.   
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  Atalla and Sgard’s [51] model was used in conjunction with the TMM in order to assess 

the accuracy to which their model can capture the resonance behavior shown in the current 

experiments.  The results indicate that the Fabry-Pérot resonance behavior for thick plates is 

resolved, with good accuracy in predicting the d/λ value of peak transmission loss.  However, the 

model also yields large errors in transmission loss amplitude for Plates 1, 5, and 7 (Figures 5.7(a), 

5.7(c), and 5.7(g)) at high d/λ.  It is not expected, however, for Atalla and Sgard’s model to be 

accurate at high frequencies, or high d/λ, because their model was designed to focus on visco-

inertial and thermal dissipative effects on the transmission behavior of porous media at low 

frequencies. 

5.1.5 Error analysis 

To assess the range of validity of the current predictive model, Equation 3.23, the 

deviation of the prediction from the experiment was examined systematically.   The error in 

transmission loss was defined as the difference between the model prediction and experimental 

measurement 

,expmodel, III LLL   (5.1) 

Equation 5.1 is plotted versus the relevant non-dimensional parameters of the problem.  In the 

formulation of the current theory it was assumed that the wavelength of sound is much greater 

than the perforation diameter.   To examine the effect of this assumption, Figure 5.8 plots ΔLI 

against the ratio of perforation diameter to wavelength of sound, d/λ, for all the plates examined.    

There is a very modest increase in ΔLT with increasing d/λ, the deviation being less than about 

1.5 dB for d/λ <0.5.  For d/λ above this value, ΔLT increases significantly, as shown in the case of 

Plate 2.   
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Since the current experiments include d/λ greater than the cutoff value of 0.5861 (Section 

3.2), we expect the departure from the model, Equation 5.1, to increase for d/λ > 0.5861 because 

the acoustic excitations can sustain non-planar modes.  This is evident in the ΔLI  trends shown in 

Figure 5.8.  For Plate 2, ΔLI increases to about 2 dB at d/λ = 0.6, and continues to increase 

monotonically with increasing d/λ.  It is concluded that the assumption of one-dimensional 

propagation holds satisfactorily for d/λ <0.5, where |ΔLT | <1.5 for all cases.   

In addition to higher-order duct modes, it is expected that the diffracted pressure field 

significantly influences the experimental results.  The simplified analysis and assumptions made 

in formulating the problem did not allow a rigorous analysis of diffraction effects.  It is believed, 

however, that diffraction effects are inherent in the application of end corrections.  As discussed 

in Section 3.2, recent studies have attributed the effects of diffraction as a link between acoustic 

modes within the perforations and evanescent modes along the surface of the perforated plate 

[14,15,16].  It was shown in the work of these authors that the coupling between modes results in 

decreasing the Fabry-Pérot predicted resonance frequency.  In the current model, the end 

correction with HIE increases the effective thickness of the plate, which also results in 

decreasing the resonance frequency.  The similarity between these results implies a coupling 

between diffraction effects and the implementation of HIE using end corrections with Fok’s 

function.  The validity of this assumption is corroborated by the accuracy in predicting the d/λ of 

peak transmission loss (Figures 5.7(e), 5.7(f), and 5.7(g)).   

Next, the effects of dimensionless thickness and porosity on the model accuracy for d/λ 

<0.5 are examined. The effect of thickness-to-diameter ratio, l/d, on the insertion loss error is 

shown in Figure 5.9(a) for several values of d/λ.  The trends in Figure 5.9(a) indicate that the 

transmission loss error is not a strong function of l/d.  The magnitude of the error is less than 1.2 
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dB.      Similarly, Figure 5.9(b) plots ΔLI against the range of perforation porosities tested, 0.22 < 

β < 0.48.    The results of Figure 5.9(b) show that the current model predicts the transmission 

loss within an error of about 1.2 dB or less for all the porosities tested.  Unlike the trends seen in 

Figure 5.8, where ΔLI increases with d/λ, there does not appear to be any definable trend between 

ΔLI and l/d or β. 

Estrada et al. [68] and other authors [14,15,16] indicated deviations from expected 

transmission behavior, known as Wood’s anomaly, when the acoustic wavelength approaches the 

same length as the spacing between perforations.   This phenomenon occurs as a result of 

diffraction of higher order acoustic modes, which cannot be resolved by the current model’s 

plane wave based approach.  It is therefore expected that ΔLI increases as λ approaches P.  The 

spacing between the perforations in Plate 2 approach this limit, which may possibly explain the 

large departure of experiment from the model prediction shown in Figure 5.5.  

5.2  Bias flow results 

5.2.1 Robustness of setup  

 As described in Section 4.2.2, an in-duct method was used to determine the total power of 

the acoustic wave propagating in the measurement section of the duct.  When obtaining 

experimental measurements of sound power in a duct containing flow, one must consider the 

following issues [64]: 

1. Pressure fluctuations that propagate from the source down the duct experiences 

reflections at discontinuous area changes in the duct 

2. The sound pressure varies with location along a fixed axial plane in the duct if the 

source frequency is higher than the cut-on frequency of the first non-planar mode 



79 
 

3. In addition to sound pressure fluctuations, the microphone is also subject to unsteady 

turbulent pressure fluctuations associated with the flow itself, requiring a windscreen 

or forebody attachment to the microphone tip 

4. If only the transmission properties of the acoustic signal are desired, signal 

contamination due to pressure fluctuations from the flow must be filtered. 

 The first item emphasized caution to possible reflections that could contaminate the noise 

signal acquired in the measurement plane.  In the current study, this problem was addressed by 

terminating the duct anechoically.  The termination cone height was constructed to 0.45-m, or 

about 2.4 effective duct diameters in length, to allow for gradual area change at the exit.  The 

flow was exhausted radially (Figure 4.4a), 15.2-cm upstream from the duct end.  The direction of 

the reflected waves from the exhaust ports were predominantly radially inward, and were 

therefore reflected back towards the termination cone.  This termination setup allowed 

ventilation of the supplied air and minimized acoustic reflections through gradual area changes at 

the duct exit.   

 The second item addressed the possible need to account for higher order mode effects of 

wave propagation.  Except for Plate 2, the laboratory scale frequencies resolved in the current 

experiments were well below the cut-off frequencies for acoustic higher order modes 

corresponding to the perforation diameter.  However the influence of these modes cannot be 

neglected within the duct itself.  The sound power at a particular cross section of the duct was 

not appropriately represented by a single point measurement in the duct, and therefore, acoustic 

measurements were taken at multiple spatial locations within the measurement plane.  In order to 

validate this method of measurement, the insertion loss results measured in the SIL facility were 

compared to insertion loss results measured in the BFIL facility with no bias flow.  Figure 5.10 
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compares the insertion loss measured from each of the facilities.  Plates 1, 2, 6 and 11 were 

selected for comparison.  Overall, the trends observed in the insertion loss measurements 

acquired in the BFIL facility were similar to those observed in the SIL facility, notably the 

thickness effect captured in Figure 5.10(c).  This indicates that, although the sound pressure 

distribution in the duct is not one-dimensional, the insertion loss based on the sound power level 

computation (Equation 4.10) exhibits similar trends as the one-dimensional SIL experiments.  

The peculiarity of this result is discussed in Section 5.2.6.  The BFIL measurements indicated a 

large magnitude of insertion loss at low frequency, followed by a rapid decline with increasing 

frequency.  This behavior is not exhibited in the SIL measurement, and can be attributed to the 

difference in the experiment setup.  Both facilities utilized an impinging jets source supplied by 

compressed air.  Unlike the SIL facility, where the air is exhausted freely in an anechoic chamber 

(Figure 4.2(a)), the air supplied in the BFIL facility can only be vented at exhaust ports which 

are downstream of the perforations (Figure 4.4a).  Therefore, the flow that is used to operate the 

source also provides a small amount of bias flow through the perforations.  The increase in 

insertion loss at low frequency may be attributed to the transfer of acoustic energy to the kinetic 

energy of vortical motions, a low frequency phenomena that was noted by previous authors 

[10,34,35,41].  It will be shown in Section 5.2.4, however, that the increase in insertion loss is 

overcome by wind noise with increasing bias flow. 

 The third and fourth items emphasized that noise due to turbulence fluctuations in the 

flow must be filtered from the acoustic signal if a measurement of sound power associated only 

with the impinging jets source is desired.  Assuming that the sound emitted from the source and 

the flow noise signal are mutually uncorrelated, the intensity of the pressure fluctuations 

measured at the microphone tip is the sum of the intensity associated with fluctuations from the 
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source, 
2

IJS
p , and the intensity of turbulence pressure fluctuations associated with the bias 

flow,
2

flow
p .  Therefore, the experimental data needs to be analyzed in order to discriminate 

between pressure disturbances from turbulent fluctuations and pressure disturbances from the 

impinging jets source.  This task was accomplished in two steps:  examination of the signal-to-

noise ratio between the acoustic signal and flow noise; and cross-correlation of the microphone 

signals.   Details are provided in the next two sections.   

5.2.2 Signal to noise ratio 

 This step comprised of a series of measurements for varying source and flow conditions.  

Acoustic measurements were acquired for the following run conditions  

1. Impinging jets source on, mean flow on )0,0(  flowIJS pp  

2. Impinging jets source on, mean flow off )0,0(  flowIJS pp  

3. Impinging jets source off, mean flow on )0,0(  flowIJS pp  

4. Impinging jets source off, mean flow off )0,0(  flowIJS pp  

The sound power level (PL) spectra for these four run conditions are plotted and compared in 

Figures 5.11-5.21.  The SPL spectra for condition 2 (green line) indicates that the impinging jets 

source emits noise with predominantly high frequency content.  The noise associated with the 

flow (condition 3, blue line) is predominantly low frequency content.  When both the source and 

the mean flow are on (condition 1, red line), the resulting spectrum reflects the combination of 

conditions 2 and 3.  As the mean flow speed increases, the noise magnitude and the frequency 

bandwidth associated with the flow increases.  While the spectral shape of the high frequency 

content associated with acoustic source does not appear to change with increasing bias flow, the 

SPL decreases uniformly over these frequencies (Figures 5.11(a)-5.11(e)).  In some cases, 
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particularly at the highest flow condition (M1 = 0.10), the spectral shape at high frequencies 

resembles that of the mean flow only (Figure 5.17(e)) indicating that the sound field associated 

with the impinging jets source has become significantly contaminated by the turbulence due to 

bias flow.    

  The focus of this work is on the transmission of acoustic waves from the source alone, 

without consideration to noise amplification from the turbulence fluctuations of the bias flow.  

Therefore, only frequencies where the SPL of the source is significantly greater than the SPL of 

the flow will be considered.  Based on existing literature on in-duct acoustic measurements 

[63,64,69], a minimum signal-to-noise ratio (SNR) of sound pressure level from the source to 

noise due to turbulence is 6 dB, however, 10 dB is recommended.  Referring back to the SPL 

spectra in Figures 5.11-5.21, only frequencies where the difference between the blue and red 

lines is > 10 dB were considered valid in determining the insertion loss experimentally in this 

study. 

5.2.3 Microphone correlations  

 Microphone correlation data provided additional guidance in determining the amount of 

signal contamination due to turbulence fluctuations from the bias flow.  The microphones tips 

were positioned approximately 19.7-cm downstream of the perforated plate.  The microphones 

were fixed at positions 4 and 16 (Figure 4.9(a)), which corresponded to a separation distance of 

7.6-cm between the microphone tips.  These positions were chosen to allow comparisons with 

the correlations obtained in the SIL facility.  The cross-correlations between the microphone 

voltage signals are plotted in Figures 5.22 and 5.23.  The cross-correlations plotted in Figure 

5.22 are comparisons between the correlations measured in the BFIL and the SIL facility.  We 

see in both facilities a maximum correlation at very nearly zero time lag.  For Plates 6-11 
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(Figures 5.22(f)-5.22(k)), the magnitude of the peak correlation is somewhat lower than the peak 

correlation value measured in the SIL facility.  It is suspected, as previously mentioned, that this 

departure is due to bias flow effects from the air supplied to the impinging jets source.  This 

argument is corroborated by the smaller decline in peak magnitude for the higher porosity Plates 

1-5.  Since the open area ratio is larger, the bias flow velocity in the perforations will be smaller.  

This results in a weaker influence from the turbulence fluctuations of bias flow that form 

downstream of the perforations.   

 The influence of bias flow on the acoustic field was further evaluated by examining the 

cross-correlation of the microphone signals at varying bias flow conditions.  Figure 5.23 

compares the effect of increasing upstream Mach number on the microphone correlation for 

Plate 1.  The blue line plots the microphone correlation for the condition where both the IJS 

source and bias flow are on, while the red line plots the microphone correlation with only the 

bias flow on.  The signal correlation decreases with increasing Mach number, indicating an 

increasing dominance of flow noise over the original acoustic signal from the impinging jets 

source.  This trend of decreasing cross correlation was also observed for the remaining plates and 

is plotted in Figure 5.24.  There is a discernable peak near zero time lag that is reminiscent of the 

static condition for M1 =0.02, however, the magnitude of the peak is significantly reduced.  

When increasing the bias flow to M1 =0.04, Plates 6-8 (Figures 5.24(f), 5.24(g), and 5.24(h)) do 

not exhibit any distinguishable peak, and a further increase to M1 = 0.06 results in very small 

peaks for Plates 1, 2, 5, 9, 10, and 11 (Figures 5.24(a), 5.24(b), 5.24(e), 5.24(i), 5.24(j), and 

5.24(k)).  In the range of M1 > 0.08, no peaks are shown in the correlation plots, which indicated 

that the acoustic pressure field was largely contaminated by turbulence fluctuations associated 

with the bias flow.  It was also noted that the time lag associated with peak correlation does not 
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shift appreciably with increasing bias flow, indicating weak diffraction of the wave front due to 

mean flow. 

 In the BFIL setup, the coherence between the microphones was not used to ascertain one-

dimensionality of the wave front.  The coherence measurements were instead used to indicate the 

extent to which the signal becomes contaminated by turbulence fluctuations from the flow, and 

at which frequencies the signal contamination is most prominent.  Figure 5.25 plots the 

dependence of coherence on the upstream Mach number.  With increasing bias flow, the 

magnitude of coherence decreases initially at high frequencies for all plates.  Plates 4 and 7 

(Figures 5.25(d) and 5.25(g)) represent this effect most clearly.  Further increasing the bias flow 

Mach number to M1 = 0.04 results in decreasing coherence levels at high frequency nearly to 

zero for Plates 1, 4, 6, and 8 (Figures 5.25(a), 5.25(d), 5.25(f), and 5.25(h)).  At M1 > 0.08, the 

signal coherence is nearly zero at all frequencies for Plates 4, 6, 7 and 8.  It was also noted that 

the limit at which low frequencies are incoherent broadens with increasing M1.  For all plates, the 

signal coherence rises from about 3 kHz at M1 = 0, to about 22 kHz at M1 = 0.1.  These 

frequency values correspond very closely to the frequency values in Figures 5.11-5.21 where the 

shape of the PL spectra associated with the source becomes distinct from the flow noise PL 

spectra.  The coherence levels plotted in Figure 5.25 indicated the extent to which noise from the 

source is affected by flow noise, and which frequencies are most affected.  To ensure that the 

incoherent frequency components of noise associated with flow was not factored into the 

insertion loss, an additional criterion of γ
2 

> 0.05 was imposed in addition to the SNR 

requirement defined in Section 5.2.2. 
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5.2.4 Insertion loss measurements 

  The insertion loss was determined from experiments with the constraints of γ
2 

>0.05 and 

SNR >10 dB.  Figure 5.26 plots the insertion loss for Plate 9, with emphasis on the components 

of the spectra that meet both of the aforementioned constraints.  The red line is the insertion loss 

predicted using the current bias flow theory (Equation 3.52), while the black and grey lines are 

the measured insertion loss from experiment.  The black line represents the measurements at 

which the SNR > 10 dB and γ
2 

> 0.05, and the grey line represents the measurements that fail to 

meet either one or both of the SNR and γ
2 

requirements.  Figure 5.26 indicates that the amount of 

signal contamination from turbulence fluctuations increases with M1, and is reflected by the 

increase in the amount of unusable experimental data (grey lines).  Two distinct features were 

noted from the experimentally measured insertion loss.  For a finite value of M1, the insertion 

loss measurement is negative at low frequencies, indicating sound pressure amplification with 

increasing bias flow speed.  Furthermore, the range of low frequencies over which amplification 

occur increases monotonically with increasing M1.  The second feature that was noted was the 

sharp drop in the insertion loss at f = 106 kHz, shown in Figure 5.26(d).   This is due to a tone in 

the SPL spectra, shown by the red curve in Figure 5.19(d), and can be attributed to a “whistling” 

effect which has been reported for single orifices with bias flow [70,71].  The phenomenon is 

related to the shear layer instability forming downstream of the perforations.  Energy is 

transferred from the bias flow to self-sustained oscillations due to hydrodynamic feedback 

between the vortex layers shed from the perforation rims [70].  The data presented in Figure 5.26 

indicate that the imposed SNR and coherence criteria filter both flow and whistling noise. 

  Figures 5.27-5.37 plot the insertion loss results for the remaining plates, showing only 

data which satisfy both SNR and coherence criteria.  Figures 5.27(a)-5.37(a) compare the 
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insertion loss measured by experiment with no flow and the current model (Equation 3.52).  

Since the current model does not allow a zero input for the upstream Mach number, a small value, 

M1 = 10
-5

, was used to assess the applicability of Equation 3.52 in a static medium.  Equation 

3.52 predicts the experimental measurements very well between 10 kHz < f < 100 kHz.   It was 

noted in Section 5.3.1 that even with the mean flow inoperative, a small amount of bias flow is 

supplied to the perforations from the source.  It is suspected that the error at f <10 kHz is a result 

of dissipation due to a small amount of bias flow supplied by the impinging jets source. 

  Figures 5.27-5.37 also plot the effect of increasing upstream Mach number.  Both the 

current bias flow model (Equation 3.52) and experiments show an increase in insertion loss as 

M1 is increased from 0 to 0.02, however, Equation 3.52 overestimates the insertion loss increase 

for some cases Plates 1, 3 and 5 (Figures 5.27(b), 5.29(b), and 5.31(b)).  Similar to the static case, 

the insertion loss with bias flow exhibited resonance behavior for thick plates (Plates 5, 6 and 7).  

It is shown in Figures 5.31 and 5.32 that the frequency corresponding to peak loss is reduced as 

M1 is increases.  The effect of convection on the acoustic wave propagation within the 

perforations produces a shift in the frequency corresponding to peak insertion loss.  A 

considerable amount of deviation is shown at high frequencies for Plates 2, 6, and 7 (Figures 

5.28, 5.32, and 5.33), which is attributed to effects of higher order mode propagation within the 

perforations.  Also, at moderate bias flow speeds for Plate 7 (Figures 5.33(c), (d), and (e)), the 

measured insertion loss is much larger than the model prediction.   

5.2.5 Comparison with previous models 

 Before comparing with previous models, it was first necessary to determine the range of 

experimental parameters used in each study to determine the previously validated parameter 

space.  Section 2.2.2 summarized the validated parametric space as cited by the authors 
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referenced in this work [33,41,43,55].  Comparison between previous and the current 

experimental parameter space for d/λ, and M2 are illustrated in Figures 5.38(a) and 5.38(b).  For 

the majority of previous experiments, the Mach number inside the perforations was in the low 

subsonic range of M2 < 0.3, and the range of valid d/λ was well below the cut-on limit for higher 

order modes of wave propagation   When comparing the current bias flow model to previous bias 

flow models [33,41,43,55], a parameter space was selected to appropriately evaluate the current 

model.  For comparison with previous models, the parameter range selected was 0.001 < d/λ < 

0.03, and 0 < M2 < 0.35. 

 Figures 5.39-5.49 compare the insertion loss predictions of the current bias flow model 

(Equation 3.52), previous bias flow models [33,41,43,55], and the insertion loss measurements 

from this study.  The vertical dashed line is drawn at d/λ = 0.03 to indicate the maximum d/λ 

validated for previous bias flow models. Figures 5.39(a)-5.49(a) indicate that both current and 

previous bias flow models fail to capture the insertion loss peak at low frequencies.  All plates 

except for Plates 2, 6 and 7 had valid experimental data that were within the range of previously 

validated d/λ for M2 > 0.  Except for Plate 4, the current model is in better agreement with the 

experimental data than previous models where M2 > 0 and for d/λ < 0.03. 

 The performance of the current and previous bias flow models for d/λ > 0.03 was then 

evaluated against experimental measurements.  For M1 =0, the insertion loss predictions using 

Howe’s model [33] agrees with the current experimental data for plates with low porosity 

(Figures 5.44(a)-5.48(a)).  The agreement between his model and the current experiments 

increases over a larger range of d/λ as the perforation hole diameter decreases (Figures 5.46(a), 

5.47(a)).  This result is expected because the hole spacing scales inversely with the porosity (see 

Equation 3.32, for example), and therefore interaction effects weaken as porosity decreases.  As 
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porosity increases, Howe’s assumption of no interaction between the perforations [33] is no 

longer valid, and therefore his model becomes unreliable for large β.  This explains the large 

error between Howe’s model and the experimental measurements for Figures 5.40 and 5.43, 

where β >0.45.  Howe’s model is also shown to be fairly accurate for low perforation Mach 

number (Figures 5.46(b), 5.47(b)), which is expected because Equation 2.28 was derived 

assuming low Mach number flow.  Howe’s model predicts a monotonic increase in insertion loss 

as the bias flow speed increases, which is consistent with the current experimental data for 0 < 

M2 < 0.35.  His model, however, over predicts the insertion loss increase due to bias flow at 

small d/λ (Figures 5.46(b), 5.47(b), and 5.48(b)). 

 Jing and Sun [41] modified Howe’s model [33] with an impedance correction to include 

the effect of plate thickness.  Jing and Sun’s results show an increase in insertion loss in 

comparison to Howe’s model at higher d/λ.  Since their model [41] is an extension of Howe’s 

analysis, Jing and Sun’s model also predicts additional low frequency dissipation when bias flow 

is present.  Figures 5.39-5.49 indicate that, aside from Plate 7 (Figure 5.45(d)), the agreement 

between Jing and Sun’s model and the current experimental data is very poor.  The authors had 

noted in their work [41] that the additional reactance term corresponding to the thickness 

correction in their model resulted in an overestimate of the reactance when compared to their 

experiments.  They claimed that the reactance error was large at high bias flow speeds due to the 

effect of flow separation, which was not included in their model. 

 Figures 5.44(b)-5.49(b) indicate that the model of Bellucci et al. [43] agrees well with the 

current experimental data at low β and low M2. This is expected, as the model was validated only 

for perforation Mach numbers less than 0.02 and β <0.0231.  The model fails to predict the static 

insertion loss with accuracy, except at low d/λ where the model has been validated (Figures 
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5.46(a)-5.49(a).  It is also important to note that the model of Bellucci et al. [43] predicts a 

monotonic decrease in insertion loss with increasing bias flow.  This result is inconsistent with 

the expected increase in insertion loss at low subsonic perforation Mach number.   

 Betts’ impedance model yielded similar trends as the models of Howe [33] and Jing and 

Sun [41]: an increase in insertion loss over the entire range of d/λ with increasing bias flow Mach 

number.  The trends in his model are consistent with the current experimental results, however, 

his model slightly over predicts the insertion loss for many cases with low bias flow Mach 

number (Figures 5.39(b), 5.41(b), 5.43(b), 5.46(b), and 5.47(c)).  His model is also very accurate 

for Plate 2 (Figure 5.40), which is the plate of highest porosity in this experiment.  The large 

porosity implies a strong interaction between perforations, which Betts included in his model 

using Fok’s function [11].  The importance of including HIE in the modeling of perforated plates 

with bias flow is emphasized by the greater accuracy in which Betts’ [55] and the current bias 

flow model (Equation 3.52) predicts the insertion loss measurements for higher porosity plates, 

such as Plates 2 and 5 (Figures 5.40 and 5.43).  Betts’ model, however, assumes no difference in 

the treatment of HIE between the static and bias flow cases. 

 The current bias flow model developed in this study was shown to have greater accuracy 

than previous bias flow models [33,41,43,55] when compared to experimental measurements.  

The development of the current static model (Section 3.2) and the results presented in Section 

5.1.3 indicated that the Fabry-Pérot-like resonance behavior was captured by applying the 

appropriate boundary conditions at the contraction and expansion location of the contraction 

chamber.  This analysis was repeated for the current bias flow model (Section 3.3), and the 

agreement between the proposed bias flow model (Equation 3.52) with the experimental results 

shown in Section 5.2.4 indicated that the resonance behavior was resolved successfully by the 
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current model.  The inclusion of hole interaction effects using Fok’s function [11] was an 

essential element of the current static model (Equation 3.23), and was therefore also utilized in 

the current bias flow model.  The attached mass was modified, assuming that any portion of the 

idealized attached mass downstream of the vena contracta location was destroyed [50].  Betts 

also used Fok’s function to account for HIE, however, no consideration was given to the region 

downstream of the perforations, where the flow is no longer potential and Fok’s function 

becomes invalid.  Both Howe [33] and Jing and Sun’s [41] model did not include HIE, which 

possibly explains the poor comparison between their models [33,44] and the experimental data 

shown in Figures 5.39-5.43.  The previous bias flow models [33,41,43,55] had also failed to 

predict the static insertion loss with consistent accuracy whereas the current bias flow was able 

to do so.  Observing that the current model predicts insertion loss with superior accuracy over 

previous bias flow models, under both static and bias flow conditions, underpins the advantage 

of the current bias flow model over previous models.  

5.2.6 Error analysis 

  Equation 5.1 was used to determine the insertion loss difference between the current bias 

flow model and experiments as a function of d/λ for Plates 1 through 11 (Figure 5.50).  Except 

for Plate 7 (Figure 5.50(g)), ΔLI stays within 2.5 dB for d/λ < 0.4 and 0 < M1 < 0.02.  As M1 is 

increased to 0.04, ΔLI increases beyond 2.5 dB for Plates 6, 7 and 8 (Figures 5.50(e), (f), and (h)), 

while the remaining plates keep within 2.5 dB level difference.  Increasing M1 even further 

results in larger ΔLI for Plate 5, with a maximum of 7 dB difference for Plate 11 at M1 = 0.1.  

Plates 1, 2, and 3 did not seem to illustrate any increase in ΔLI with increasing M1 towards 0.1.  

The discrepancy between the current model and experiment for Plate 2 at d/λ > 0.7 and M1 = 0 is 

consistent with the error seen in the static experiments (Figure 5.8).  This is due to higher order 
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mode propagation, as d/λ becomes larger than the cut-off frequency for plane waves.  

Discrepancies in LI were also observed for d/λ > 0.5 for both Plates 6 and 7, which was suspected 

to be an effect of high order mode propagation as the wavelength approaches the thickness of the 

plate.   

  Figure 5.51 plots LI contour levels versus M2 and d/λ.  All subfigures indicate negative 

insertion loss, or noise amplification, at small d/λ.  This result is consistent with the signal-to-

noise analysis in Section 5.2.2, where the flow noise power spectrum was shown to progressively 

contaminate the low frequency content of the acquired signal as the mean flow speed increases.  

The white dashed lines in Figure 5.51 indicate the perforation Mach number where maximum 

insertion loss occurs for a specified d/λ.  The perforations with high porosity (Figures 5.51(a), 

5.51(b), 5.51(c) and 5.51(e)) do not provide conclusive information about peak insertion loss; 

however, the lower porosity plates indicate a saturation of insertion loss at about M2 = 0.25 

followed by decline with further increase in M2.  The decline in insertion loss is due to high-

frequency amplification from the mean flow.  The proposed model (Equation 3.52) does not 

predict this behavior, and therefore the validity of the model is verified only for M2 <0.25.   

  Figure 5.52 plots ΔLI versus l/d for Plates 1 through 11.  The upper and lower limits of 

the error bars correspond to the maximum and minimum ΔLI for 0.02 < d/λ < 0.4 and M2 < 0.25.  

The upper limit in d/λ was selected to exclude large error magnitudes due to higher order modes 

(see Figures 5.50(b),(f),(h)), while the limit in M2 was selected to exclude error from flow noise 

amplification.  Figure 5.52 indicates a large amount of error localized between 0.45 < l/d < 0.6.  

The large error can be explained by the assumption of a stable vena contracta downstream of the 

perforated plate.  The location of the vena contracta was determined based on the jet profile by 

Rouse and Abul-Fetouh [59], and it was assumed in this study that the vena contracta location is 



92 
 

steady.  Also, Rouse and Abul-Fetouh’s analysis was based on a free jet issuing from a sharp 

edged orifice.  The orifice thickness, which was not considered in their analysis [59], can have 

significant impact on the details of the jet profile.  Smith [22] described multiple flow regimes 

for an orifice in a duct that depend on l/d.  The separation streamlines depicted in Figure 2.3 

expand in the positive radial direction due to Coandă effect and positive radial pressure gradient 

(Section 2.1.4).  Smith identified a regime of thickness-to-orifice diameter ratio, 0.5 < l/d < 0.8, 

where the jet may intermittently detach and reattach to the wall of the orifice.  This transitional 

regime of separated or reattached flow implies unsteadiness of the vena contracta.  Since both 

the insertion loss and end correction in this study are modeled based on steady flow, 

discrepancies between predictions and experiments could be attributed to the transitional regime 

of the jet described by Smith. 

  Unlike the SIL facility, where the wavefronts from the impinging jets source radiate 

freely in an anechoic environment, disturbances in the BFIL experiments are confined within a 

duct.  Although the acoustic liner in the duct minimizes internal reflections, higher order acoustic 

modes are sustainable in the regions both upstream and downstream of the perforated plate.   

Despite the propagation of these modes, it was shown in Section 5.2.1 (Figure 5.10) that the 

insertion loss measurements in the BFIL facility exhibited similarity to measurements in the SIL 

facility.  The similarity between the SIL and BFIL experimental measurements is explained by 

an analysis of the acoustic pressure non-uniformity associated with non-planar modes upstream 

of the perforated plate.  Based on the diameter of the contracted duct upstream of the perforated 

plate, D =4.57-cm, and the highest frequency resolved in the BFIL experiments, fmax = 125 kHz, 

the impinging wave from the source contains 50 circumferential and 17 radial cut-on modes.  

Acoustic pressure amplitude contours associated with cut-on modes upstream of the plate are 
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plotted in Figures 5.53(a)-5.53(d).  The red and blue regions in the figures indicate peak and 

minimum pressure fluctuation amplitudes, respectively, m is the circumferential mode number, 

and n is the radial mode number.  Figures 5.53(a) and 5.53(b) indicate a minimum distance of 

2.86-mm between peak pressure fluctuations.  The non-uniformity in pressure fluctuation is 

confined to the outer perimeter of the duct wall for the highest circumferential mode (Figure 

5.52(b)). An intermediate mode shape (Figure 5.53(c)) indicates a minimum distance of 2.77-mm 

between peak pressure amplitude.  Except for Plate 2, the diameter of the perforations in this 

study is less than 1.75-mm.  Although acoustic pressure non-uniformity is present due to higher 

order modes of wave propagation upstream of the perforated plate, the non-uniformity is small 

with respect to the individual perforations.  This is represented clearly for lower circumferential 

and radial mode numbers (Figure 5.53(d)).  The pressure non-uniformity of the impinging wave 

is small, relative to the perforation diameter, and therefore the process governing sound 

transmission through each perforation is approximately one-dimensional. 

  The current analysis is valid only in quantifying the amount of transmitted energy from a 

known source upstream of the perforation.  The experimental measurements indicated that noise 

regeneration as a result of turbulence fluctuations from the bias flow can significantly 

contaminate the fluctuations from the source, producing large errors between the current theory 

(Equation 3.52) and experimental measurements.  This was evident in Figure 5.26, where flow 

noise and potential orifice whistling resulted in negative insertion loss measurements.  These 

effects were not included in the model, and therefore care was taken to isolate and omit any error 

arising from these sources of sound.  The process of isolating these effects involved an 

examination of both signal-to-noise ratio and the microphone coherence in the measurement 

plane.  The effectiveness of this method is critical in the validation of this study. 
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Figure 5.1:   Comparisons of SPL spectra between perforated plate and solid plate of equal 

thickness. 
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Figure 5.2:   Comparisons of SPL spectra between microphones in SIL (a) baseline; (b) Plate 1; 

(c) Plate 2; (d) Plate 6; (e) Plate 11 
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Figure 5.3:   Microphone cross correlation in SIL setup, comparisons between open and  

(a) Plate 1; (b) Plate 2; (c) Plate 3; (d) Plate 4; (e) Plate 5; (f) Plate 6; (g) Plate 7; 

 (h) Plate 8; (i) Plate 9; (j) Plate 10; (k) Plate 11   
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Figure 5.3:   (cont.) 
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Figure 5.4:   Microphone coherence in SIL setup, comparisons between open and  

(a) Plate 1; (b) Plate 2; (c) Plate 3; (d) Plate 4; (e) Plate 5; (f) Plate 6; (g) Plate 7; 

 (h) Plate 8; (i) Plate 9; (j) Plate 10; (k) Plate 11   
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Figure 5.4:   (cont.) 
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Figure 5.5:   Insertion loss versus frequency comparison between (a) experiment and (b) current 

static model (Equation 3.23);            Plate 1          Plate 2           Plate 3            

Plate 4  Plate 5           Plate 6          Plate 7         Plate 8      
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Figure 5.6:   Comparisons of the range of (a) d/, (b) l/, and (c) β covered in the current and 

previous work.  The ranges of d/, l/, and β are determined based on the range of experimental 

validation provided for the respective work.   
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Figure 5.7:   Comparison of transmission loss between experiment, current static theoretical 

model Equation (2.39), and previous models [18,19,21] for (a) Plate 1;  

(b) Plate 2; (c) Plate 3; (d) Plate 4; (e) Plate 5; (f) Plate 6; (g) Plate 7;  

(h) Plate 8; (i) Plate 9; (j) Plate 10; (k) Plate 11 
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Figure 5.7:   (cont.) 
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Figure 5.8:   Insertion loss error versus d/λ: 
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Figure 5.9:   Transmission loss error versus (a) thickness scaled by hole diameter;  

(b) porosity 
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Figure 5.10: Comparing insertion loss measurements between SIL and BFIL facilities;  

(a) Plate 1; (b) Plate 2; (d) Plate 6; (d) Plate 11 
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Figure 5.11:   SPL spectral comparisons between varying source and flow combinations 1-4.  

Measurements shown for Plate 1 at upstream Mach number 

(a) M1 = 0.02; (b) M1 = 0.04; (c) M1 = 0.06; (d) M1 = 0.08; (e) M1 = 0.1 
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Figure 5.12:   SPL spectral comparisons between varying source and flow combinations 1-4.  

Measurements shown for Plate 2 at upstream Mach number 

(a) M1 = 0.02; (b) M1 = 0.04; (c) M1 = 0.06; (d) M1 = 0.08; (e) M1 = 0.1 
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Figure 5.13:   SPL spectral comparisons between varying source and flow combinations 1-4.  

Measurements shown for Plate 3 at upstream Mach number 

(a) M1 = 0.02; (b) M1 = 0.04; (c) M1 = 0.06; (d) M1 = 0.08; (e) M1 = 0.1 
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Figure 5.14:   SPL spectral comparisons between varying source and flow combinations 1-4.  

Measurements shown for Plate 4 at upstream Mach number 

(a) M1 = 0.02; (b) M1 = 0.04; (c) M1 = 0.06; (d) M1 = 0.08; (e) M1 = 0.1 
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Figure 5.15:   SPL spectral comparisons between varying source and flow combinations 1-4.  

Measurements shown for Plate 5 at upstream Mach number 

(a) M1 = 0.02; (b) M1 = 0.04; (c) M1 = 0.06; (d) M1 = 0.08; (e) M1 = 0.1 
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Figure 5.16:   SPL spectral comparisons between varying source and flow combinations 1-4.  

Measurements shown for Plate 6 at upstream Mach number 

(a) M1 = 0.02; (b) M1 = 0.04; (c) M1 = 0.06; (d) M1 = 0.08; (e) M1 = 0.1 
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Figure 5.17:   SPL spectral comparisons between varying source and flow combinations 1-4.  

Measurements shown for Plate 7 at upstream Mach number 

(a) M1 = 0.02; (b) M1 = 0.04; (c) M1 = 0.06; (d) M1 = 0.08; (e) M1 = 0.1 
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Figure 5.18:   SPL spectral comparisons between varying source and flow combinations 1-4.  

Measurements shown for Plate 8 at upstream Mach number 

(a) M1 = 0.02; (b) M1 = 0.04; (c) M1 = 0.06; (d) M1 = 0.08; (e) M1 = 0.1 
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Figure 5.19:   SPL spectral comparisons between varying source and flow combinations 1-4.  

Measurements shown for Plate 9 at upstream Mach number 

(a) M1 = 0.02; (b) M1 = 0.04; (c) M1 = 0.06; (d) M1 = 0.08; (e) M1 = 0.1 
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Figure 5.20:   SPL spectral comparisons between varying source and flow combinations 1-4.  

Measurements shown for Plate 10 at upstream Mach number 

(a) M1 = 0.02; (b) M1 = 0.04; (c) M1 = 0.06; (d) M1 = 0.08; (e) M1 = 0.1 
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Figure 5.21:   SPL spectral comparisons between varying source and flow combinations 1-4.  

Measurements shown for Plate 11 at upstream Mach number 

(a) M1 = 0.02; (b) M1 = 0.04; (c) M1 = 0.06; (d) M1 = 0.08; (e) M1 = 0.1 
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Figure 5.22:   Comparison of microphone cross correlations obtained in SIL and BFIL facilities.  

(a) Plate 1; (b) Plate 2; (c) Plate 3; (d) Plate 4; (e) Plate 5; (f) Plate 6;  

(g) Plate 7; (h) Plate 8; (i) Plate 9; (j) Plate 10; (k) Plate 11 
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Figure 5.22: (cont.) 
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Figure 5.23:   Effect of mean flow on signal correlation for Plate 1, and signal correlation of flow 

only at varying upstream Mach number; (a) M1 = 0.02; (b) M1 = 0.04;  

(c) M1 = 0.06; (d) M1 = 0.08; (e) M1 = 0.10 
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Figure 5.24:   Effect of upstream bias flow Mach number on cross-correlation.  

 (a) Plate 1; (b) Plate 2; (c) Plate 3; (d) Plate 4; (e) Plate 5; (f) Plate 6;  

(g) Plate 7; (h) Plate 8; (i) Plate 9; (j) Plate 10; (k) Plate 11 
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Figure 5.24: (cont.) 
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Figure 5.25:   Effect of upstream bias flow Mach number on microphone coherence 

(a) Plate 1; (b) Plate 2; (c) Plate 3; (d) Plate 4; (e) Plate 5; (f) Plate 6; 

(g) Plate 7; (h) Plate 8; (i) Plate 9; (j) Plate 10; (k) Plate 11 
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Figure 5.25:   (cont.) 
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Figure 5.26:   Insertion loss measurement vs. current theory. Black line indicates experimental 

data that satisfy the minimum SNR and coherence requirement, and grey line indicates data 

points which do not satisfy one or both of the requirements 

(a) M1 = 0; (b) M1 = 0.02; (c) M1 = 0.04; (d) M1 = 0.06; (e) M1 = 0.08; (f) M1 = 0.10 
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Figure 5.27:   Insertion loss measurement vs. current theory for Plate 1; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04; (d) M1 = 0.06; (e) M1 = 0.08; (e) M1 = 0.1 
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Figure 5.28:   Insertion loss measurement vs. current theory for Plate 2; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04; (d) M1 = 0.06; (e) M1 = 0.08 
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Figure 5.29:   Insertion loss measurement vs. current theory for Plate 3; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04; (d) M1 = 0.06; (e) M1 = 0.08 
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Figure 5.30:   Insertion loss measurement vs. current theory for Plate 4; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04 
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Figure 5.31:   Insertion loss measurement vs. current theory for Plate 5; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04; (d) M1 = 0.06; (e) M1 = 0.08; f.) M1 = 0.10 
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Figure 5.32:   Insertion loss measurement vs. current theory for Plate 6; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04; (d) M1 = 0.06 
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Figure 5.33:   Insertion loss measurement vs. current theory for Plate 7; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04; (d) M1 = 0.06 
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Figure 5.34:   Insertion loss measurement vs. current theory for Plate 8; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04; (d) M1 = 0.06; (e) M1 = 0.08 
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Figure 5.35:   Insertion loss measurement vs. current theory for Plate 9; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04; (d) M1 = 0.06; (e) M1 = 0.08; (f) M1 = 0.1 

 

 

 



134 
 

(a) 

0 25 50 75 100 125
0

5

10

15

20

 f (kHz)

L
I (

d
B

)

Plate 10

M
1
 =  0

 

 

Current Theory

Experiment

 (b) 

0 25 50 75 100 125
0

5

10

15

20

 f (kHz)

L
I (

d
B

)

Plate 10

M
1
 =  0.02

 

 

Current Theory

Experiment

 

(c) 

0 25 50 75 100 125
0

5

10

15

20

 f (kHz)

L
I (

d
B

)

Plate 10

M
1
 =  0.04

 

 

Current Theory

Experiment

 (d) 

0 25 50 75 100 125
0

5

10

15

20

 f (kHz)

L
I (

d
B

)

Plate 10

M
1
 =  0.06

 

 

Current Theory

Experiment

 

(e) 

0 25 50 75 100 125
0

5

10

15

20

 f (kHz)

L
I (

d
B

)

Plate 10

M
1
 =  0.08

 

 

Current Theory

Experiment

 (f)

0 25 50 75 100 125
0

5

10

15

20

 f (kHz)

L
I (

d
B

)

Plate 10

M
1
 =  0.1

 

 

Current Theory

Experiment

 

 

Figure 5.36:   Insertion loss measurement vs. current theory for Plate 10; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04; (d) M1 = 0.06; (e) M1 = 0.08; (f) M1 = 0.1 
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Figure 5.37:   Insertion loss measurement vs. current theory for Plate 11; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04; (d) M1 = 0.06; (e) M1 = 0.08; (f) M1 = 0.10 
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Figure 5.38:   Comparisons of the range of (a) d/, (b) M2, and (c) β covered in the current and 

previous work with bias flow.  The ranges of d/, M2, and β are determined based on the range of 

experimental validation provided for the respective work.   
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Figure 5.39:   Insertion loss measurement vs. current theory for Plate 1; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04; (d) M1 = 0.06; (e) M1 = 0.08 

Experiment              Current               Howe            Jing & Sun 

                                                    Bellucci et al.               Betts 
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Figure 5.40:   Insertion loss measurement vs. current theory for Plate 2; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04; (d) M1 = 0.06; (e) M1 = 0.08 

  Experiment              Current               Howe           Jing & Sun 

                                                    Bellucci et al.               Betts 
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Figure 5.41:   Insertion loss measurement vs. current theory for Plate 3; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04; (d) M1 = 0.06; (e) M1 = 0.08 

  Experiment              Current               Howe           Jing & Sun 

                                                    Bellucci et al.               Betts 
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Figure 5.42:   Insertion loss measurement vs. current theory for Plate 4; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04 

  Experiment              Current               Howe           Jing & Sun 

                                                    Bellucci et al.               Betts 
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Figure 5.43:   Insertion loss measurement vs. current theory for Plate 5; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04; (d) M1 = 0.06; (e) M1 = 0.08; (f) M1 = 0.10 

  Experiment              Current               Howe           Jing & Sun 

                                                    Bellucci et al.               Betts 
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Figure 5.44:   Insertion loss measurement vs. current theory for Plate 6; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04; (d) M1 = 0.06 

  Experiment              Current               Howe           Jing & Sun 

                                                    Bellucci et al.               Betts 
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Figure 5.45:   Insertion loss measurement vs. current theory for Plate 7; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04; (d) M1 = 0.06 

  Experiment              Current               Howe           Jing & Sun 

                                                    Bellucci et al.               Betts 
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Figure 5.46:   Insertion loss measurement vs. current theory for Plate 8; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04; (d) M1 = 0.06 

  Experiment              Current               Howe           Jing & Sun 

                                                    Bellucci et al.               Betts 
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Figure 5.47:   Insertion loss measurement vs. current theory for Plate 9; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04; (d) M1 = 0.06 

  Experiment              Current               Howe           Jing & Sun 

                                                    Bellucci et al.               Betts 
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Figure 5.48:   Insertion loss measurement vs. current theory for Plate 10; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04; (d) M1 = 0.06 

Experiment              Current               Howe           Jing & Sun 

                                                    Bellucci et al.               Betts 
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Figure 5.49:   Insertion loss measurement vs. current theory for Plate 11; (a) M1 = 0;  

(b) M1 = 0.02; (c) M1 = 0.04; (d) M1 = 0.06 

Experiment              Current               Howe           Jing & Sun 

                                                    Bellucci et al.               Betts 
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Figure 5.50:   Insertion loss difference between theory and experiment for  

(a) Plate 1; (b) Plate 2; (c) Plate 3; (d) Plate 4; (e) Plate 5; (f) Plate 6;  

(g) Plate 7; (h) Plate 8; (i) Plate 9; (j) Plate 10; (k) Plate 11 

 M1 = 0;         M1 = 0.02;         M1 = 0.04;       M1 = 0.06; 

M1 = 0.08;    M1 = 0.1 
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Figure 5.50:   (cont.) 
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Figure 5.51:   Contour plots of LI versus d/λ and M2.  Dashed white line indicates the bias flow 

Mach number M2 which LI reaches peak value for a given d/λ. (a) Plate 1; (b) Plate 2; (c) Plate 3; 

(d) Plate 4; (e) Plate 5; (f) Plate 6; (g) Plate 7; (h) Plate 8; (i) Plate 9;  

(j) Plate 10; (k) Plate 11 
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Figure 5.51:   (cont.) 
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Figure 5.52:   Dependence of ΔLI on l/d.  Width of error bars indicates maximum and minimum 

error measurements between 0.02 < d/λ < 0.4 and M2 < 0.25. 
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Figure 5.53: Acoustic pressure amplitude distribution upstream of the perforated plate with:  (a) 

maximum number of radial modes (m =2, n = 17); (b) maximum number of circumferential 

modes (m =50, n = 1); (c) intermediate number of radial and circumferential modes (m =23, n = 

8).  ); (d) intermediate number of radial and circumferential modes (m =10, n = 5).  m and n are 

the circumferential and radial modes numbers, respectively, and D =4.57-cm is the diameter of 

the fully converged area upstream of the perforated plate. 
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Chapter 6 

CONCLUSION 

6.1  Summary 

An experimental and theoretical parametric study of the acoustic damping characteristics 

of perforated plates at normal incidence, without and with bias flow, was conducted.   The 

investigation included experiments in specially designed facilities and the development of a 

theoretical model for the prediction of insertion loss.   Two distinct experimental setups were 

designed and built for the measurement of insertion loss without and with bias flow: the static 

insertion loss (SIL) facility and the bias flow insertion loss (BFIL) facility.   The theoretical 

model was first developed for the static case and later expanded to include the effects of the bias 

flow.  

The static model combines one-dimensional planar wave theory through a single 

contraction chamber with end corrections that include hole interaction effects.  The model is 

based on the acoustic wavelength being much larger than the hole diameter.   Experiments were 

conducted in the UCI anechoic facility to provide validation for the static model (Equation 3.23).  

The SIL experiments comprised a broadband point source to evaluate the insertion loss of eleven 

perforated plates with varying porosity, hole size, and thickness.  The robustness of the SIL 

facility was assessed by examining the simultaneously acquired acoustic signal of two 

microphones downstream of the perforated plate.  A comparison of the sound pressure level 

(SPL) spectra and microphone correlations confirmed the one-dimensional acoustic wave 

propagation through the perforated plate.  This was a prerequisite of the static model (Equation 
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3.23).  The experimental matrix covered porosities 0.22 ≤ ≤ 0.48, non-dimensional hole size 

7×10
-5

 ≤ d≤ 0.75, and non-dimensional thickness 0.15 ≤ ld ≤ 1.0.  The static model 

predictions are in good agreement with the experimental measurements, with errors of about 1.5 

dB or less for d≤ 0.5.  The static model also provides much higher fidelity predictions than 

past models over most of the range of the experiments in this study.  A systematic analysis of the 

error between the static model and SIL experimental measurements did not show any specific 

trends versus plate thickness-to-diameter ratio or porosity.  The results of the static model and 

experimental comparisons emphasized the importance of correctly modeling resonance effects 

exhibited in thicker plates and hole interaction effects between the perforations.    

 The bias flow model developed in this study is based on similar elements as the static 

model: one-dimensional wave propagation through an contraction chamber with end corrections 

that include hole interaction effects.  The vena contracta of the jet that forms due to flow 

separation from the upstream corner of the contraction was modeled as an additional area 

reduction to the open area ratio.  The mean flow upstream of the contraction is approximately 

potential, and therefore the mass end correction upstream of the contraction was assumed equal 

to the end correction length used in the static model.  The mean flow downstream of the vena 

contracta is no longer potential due to the mixing process between the jet and surrounding fluid.  

The end correction downstream of the contraction was therefore modified assuming that the 

attached mass downstream of the vena contracta location is destroyed.  The bias flow mixing 

and viscous dissipation are sources of irreversible losses, which were included in the insertion 

loss model through entropy fluctuations. 

 A different experimental setup than the SIL facility was needed to provide insertion loss 

measurements for perforated plates with bias flow.  The BFIL facility was similar to an 
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impedance tube setup, with modifications that included bias flow.  An impinging jets noise 

source was also used in the BFIL experimental setup.  An in-duct method was used to determine 

the acoustic power in the duct, which was accomplished by spatially averaging the acoustic 

intensity inside the duct.  The accuracy of this method at static conditions was validated by 

comparing the BFIL and SIL insertion loss measurements without bias flow.  In the BFIL facility, 

the insertion loss measurement can be contaminated by noise from the turbulent mixing of the 

jets emerging from the perforations.  To mitigate this effect, signal-to-noise and spatial 

coherence criteria were enforced to filter out the contaminated results.  The signal-to-noise 

criterion entailed that the combined power level of flow plus source must exceed by at least 10 

dB the power level of the flow alone.   The spatial coherence criterion required that the 

magnitude of coherence squared γ
2 

of the signals of two laterally displaced microphones at the 

measurement plane exceed 0.05.  Any experimental data that did not meet both of these 

requirements were considered unusable. 

 The bias flow model (Equation 3.52) indicated two primary trends associated with 

increasing bias flow Mach number.  The first was a monotonic increase in the insertion loss with 

increasing bias flow over all frequencies.  The second is a decrease in the frequency 

corresponding to the peak value of insertion loss.  The former observation is a result of flow 

losses due to mixing downstream of the area expansion.  The latter observation is a convection 

effect on the acoustic wave propagation by mean flow within the contraction.  The trends of 

increasing insertion loss and decrease in the frequency corresponding peak loss with increasing 

bias flow were also observed in most of the BFIL experiments.  The exceptions were the plates 

with the low open area ratio (Plates 4, 6, 7, 8, 9, 10 and 11), where the experimental 

measurements had indicated a decrease in insertion loss when the Mach number inside the 
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perforations M2 was increased above 0.25.  It was concluded that there exists a bias flow Mach 

number where optimal sound attenuation occurs; further increasing the bias flow Mach number 

results in a decrease in the sound attenuation capability of the perforated plate.  Further 

experimental work is needed to confirm this trend with the remaining perforated plates.  

 The bias flow model agreed with experimental data to within 3 dB for 0.02 < d≤ 0.4 at 

M1 < 0.08 for thin plates.  For thicker plates (Plates 6 and 7), the discrepancy between the bias 

flow insertion loss model and the BFIL measurements increased with increasing upstream Mach 

number.  The model also appears to be more accurate at values of l/d < 0.4, where the vena 

contracta location of the jet is far downstream of the perforated plate.  The large departure 

between the bias flow model and experiments for intermediate values of l/d may be due to 

instability of the vena contracta as its location approaches the downstream side of the perforated 

plate.  Despite the discrepancy between the current bias flow model and experiments at large M1 

and intermediate values of l/d, the current bias flow model predicts insertion loss with higher 

fidelity than previous models over the range of experiments in this study. 

6.2  Recommendations for future work 

 The effect of bias flow on the transmission of plane wave propagation through a 

perforated plate has been examined theoretically and experimentally.  An integral part of 

interpreting the bias flow experimental data was the signal-to-noise ratio and coherence 

measurement.  Increasing the signal-to-noise ratio would allow a broader set of experimental 

data points that could be used to validate the model.  The signal-to-noise ratio could be increased 

through the use of a stronger impinging jets source.  This can be accomplished by increasing the 

diameter of the impinging jets.   
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 The sound power in the duct was estimated using only 19 points and assuming azimuthal 

uniformity as depicted in Figure 4.9(a).  A more accurate estimation of the sound power in the 

duct can be obtained by increasing the number of measurement locations in the measurement 

plane.  The validity of the sound power measurement used in this study can also be assessed by 

comparing with other in-duct methods of sound power measurement.  One alternative example of 

measuring sound power in a duct involves circumferentially averaging the sound pressure level 

in the duct at a fixed radius.  This procedure is a standard provided in ISO-5136, which can be 

used to compare and validate the current method.   

 Near-field effects were not rigorously considered in the present study, however, these 

effects are assumed to be inherent in the current model through the hole interaction and end 

correction terms.  Although these simplifications have been shown to predict the insertion loss of 

perforated plates over a wide range of bias flow speeds, the current theory can be made more 

accurate by including higher order modes of pressure fluctuations at the sudden area changes 

upstream and downstream surfaces of the contraction.  

 In most of the experiments, the insertion loss was shown to increase monotonically with 

increasing upstream Mach number. However, for low porosity plates, the increase in perforation 

Mach number M2 >0.25 for perforations with open area ratio of about 0.23 resulted in a 

saturation and decrease in insertion loss.  It is assumed that the pressure fluctuations due to bias 

flow become strong enough to overcome the additional attenuation at lower perforation Mach 

number.  Obtaining additional experimental insertion loss data for the perforations of higher 

porosity validate this assumption, and would therefore more clearly establish the Mach number 

limit at which the current bias flow model is valid. 
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Appendix A 

NON-ISENTROPIC DENSITY FLUCTUATIONS 

Assuming adiabatic flow, the first and second law of thermodynamics   
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Further assuming a thermally perfect gas, Equation A.1 can be rewritten as
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From the equation of state 
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Combining Equation A.2 and A.3 
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Rewriting Equation A.4 in terms of acoustic perturbations 
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Without entropy fluctuations, sʹ =0 and Equation A.5 becomes the usual expression for the speed 

of sound.  With entropy fluctuations, however, the density fluctuations  
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Appendix B 

PITOT PRESSURE PROFILES 
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Figure B.1:   Pitot pressure profile along the measurement axis for Plate 1. 

(a) M1 = 0.02; (b) M1 = 0.04; (c) M1 = 0.06; (d) M1 = 0.08; (d) M1 = 0.1. 
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Figure B.2:   Pitot pressure profile along the measurement axis for Plate 2. 

(a) M1 = 0.02; (b) M1 = 0.04; (c) M1 = 0.06; (d) M1 = 0.08; (d) M1 = 0.1.
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Figure B.3:   Pitot pressure profile along the measurement axis for Plate 7. 

(a) M1 = 0.02; (b) M1 = 0.04; (c) M1 = 0.06; (d) M1 = 0.08; (d) M1 = 0.1. 
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Figure B.4:   Pitot pressure profile along the measurement axis for Plate 11. 

(a) M1 = 0.02; (b) M1 = 0.04; (c) M1 = 0.06; (d) M1 = 0.08; (d) M1 = 0.1. 




