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We have utilized the finite-difference approach to explore electron-tunneling properties in gapped
graphene through various electrostatic-potential barriers ranging from Gaussian to a triangular
envelope function in comparison with a square potential barrier. The transmission coefficient is
calculated numerically for each case and applied to the corresponding tunneling conductance. It
is well known that Klein tunneling in graphene will be greatly reduced in gapped graphene. Our
results further demonstrate that such a decrease of transmission can be significantly enhanced for
spatially-modulated potential barriers. Moreover, we investigate the effect from a bias field applied
to those barrier profiles, from which we show that it enables the control of electron flow under normal
incidence. Meanwhile, the suppression of Klein tunneling is found more severe for a non-square
barrier and exhibits a strong dependence on bias-field polarity for all kinds of barriers. Finally,
roles of a point impurity on electron transmission and conductance are analyzed with a sharp peak
appearing in electron conductance as the impurity atom is placed in the middle of a square barrier.
For narrow triangular and Gaussian barriers, however, the conductance peaks become significantly
broadened, associated with an enhancement in tunneling conductance.

I. INTRODUCTION

Unusual properties of Dirac quasiparticles have become one of the most popular topics in fundamental research
and a promising source for new application technologies 1–3 as well. Being a zero-gap semiconductor and possessing
a specific chiral wave function simultaneously will result in full transparency to any potential barrier for normally-
incident electrons 4,5. A massless Dirac fermion which is scattered by an electrostatic potential is able to tunnel with
certainty for normal incidence, as known Klein paradox, regardless of potential-barrier height or width. 6,7 Graphene
is also known for its specific magnetic-field properties, 8–11 as well as its strong decrease of magneto-resistance 12,13

through p-n junctions 14. While the metallic band structure and high mobility are obvious advantages of graphene,
most applications in electronics requires a small and tunable bandgap 15 in order to keep its charged carriers confined
within a finite area of an electronic device 16. This feature could be achieved by opening a finite bandgap 17 which
directly leads to a suppression of the Klein tunneling in graphene 18–21.

There are several efficient ways for creating a sizable (∼ 100 meV and above) and tunable bandgap in graphene.
Most of them are connected with adding a dielectric Si-based substrate 17 or a substrate with broken inversion
symmetry between sublattices 20. It was just recently recognized that a tunable gap can be achieved after a Dirac-cone
hexagonal two-dimensional lattice has been irradiated with circularly-polarized 22–24 and off-resonance field 25–34. In
addition, strain engineering, finite-width graphene nanoribbons (GNR) systems, 35, structural and topological defects
or insertion of impurity atoms can also produce a bandgap in graphene 15. Physically, the presence and size of an
induced bandgap in graphene and other hexagon lattices directly affect tunneling and transport properties 36–39, and
play a crucial role in graphene-based electronics, such as field-effect transistors since their on/off current ratios 40

can be tuned through tunneling control. Meantime, the optical response of gapped graphene also acquires attractive
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features in opto-electronics and optical spectroscopy 41. Particularly, these responses have been proved sensitive to
localized and trapped states within the bandgap of considered systems 42–44. The effect of mesoscopic fluctuations
appearing in the conductance of a gapped-graphene strip due to random electrostatic potential landscape is believed
important but has not been investigated thoroughly as for gapless graphene 45. The same goes for the effect of an
electrostatic field applied across a potential barrier 46.

Although a considerable amount of research works has been published on graphene band-transport characteristics,
studies on tunneling transport through a smoothly-varying potential barrier in a gapped Dirac system are much less
touched upon. In fact, tunneling transport through a steep-slope potential profile, involving either single or double
square barrier, is explored and reported in Refs. [47–49]. However, analytic solutions for most cases of a finite-slope
barrier are still inaccessible. As a bright exception, we can mention an exact solution of the problem with a linear
finite-slope barrier demonstrated in Ref. [50]. On the other hand, electron transmission in graphene and other newly
discovered Dirac materials was also computed based on Wentzel-Kramers-Brillouin (WKB) semiclassical theory. 50–53

Furthermore, it has been shown within WKB theory that if electron-hole transition is considered inside a non-square
potential barrier, tunneling transmission will increase with the slope of a potential profile. Technically, a smooth finite-
slope potential barrier becomes more realistic since it matches better with the experimentally accessible situation 54.
Importantly, such a case also presents several intriguing phenomena and properties, e.g., Klein collimator 55 as well as
a possibility for building up a collimated interferometer or reflector 56,57. Besides, these smooth-barrier profiles also
display unusual tunneling features upon applying an electric or a magnetic field 56,58–61.

For a square-shape barrier layer, approximate analytic expressions can be obtained for the transmission coefficient, as
shown in Eq. (10) of our previous paper 62, including the modification from a finite bandgap for graphene. Additionally,
detailed comparison has already been made between the WKB expression in Eq. (10) of our earlier paper 62 with a
finite bandgap plus a tilted potential barrier and the predictions made by Cheianov and Fal’ko in Ref. [14] for a zero
bandgap and a smooth p-n junction potential, including an exponential suppression for the tunneling coefficient with
respect to a transverse wave number of incident electrons.

In comparison with tunneling transport of incident electrons across a potential barrier in graphene, impurity scat-
tering 45,61–65 in gapped graphene turns out to be another important research topic that has not been extensively
studied. Disorder embedded within an electrostatic-potential barrier in a gapped graphene system 66, which exhibits
either disorder-assisted or disorder-impeded tunneling, is even less known to researchers. Specifically, the spatial po-
sition, strength and polarity of an embedded scatterer and its effect on tunneling conductance of electrons for various
electrostatic potential barriers 45,63 have become the most important aspect because they decide whether the conduc-
tance of the system is enhanced or reduced with chosen impurity configurations. Consequently, it is of paramount
importance to study the effect due to impurity scattering in gapped graphene and reveal the condition for suppressed
back-scattering of incident electrons by appropriately distributing scatterers within a barrier region, and this plays a
crucial part in our current work.

The key issue addressed in this paper is quantifying electron transmission and conductance across non-square
potential barriers with a finite slope in gapped graphene subject to a DC electric field by using a discretized Dirac
equation 67,68 based on a finite-difference method 62,69. The finite-difference approach (FDA) was employed initially
for studying field-induced sequential tunneling of electrons in quantum-well systems 66. Later, this method was
extended to calculate Klein tunneling in graphene 62 and transport properties in nanoribbon 67 and graphene strips 68.
The details about calculations of both reflection and transmission coefficients based on the FDA have been fully
described in previous papers 62,67,68. In computing the coherent-tunneling conductance for graphene electrons in
the system, we have introduced an effective projected group velocity by averaging it with an obtained transmission
coefficient, as presented in Eqs. (36) and (39) of our earlier paper 62 at low temperatures and under a weak longitudinal
electric field. Our numerical model presented here is proven to be crucial for studying gapped-graphene system with a
smooth disorder potential. Based on our established numerical model, we calculated accurately the effect of a disorder
potential on electron tunneling and conductance.

The remaining part of the present paper is organized as follows. We first validate our discretized model by calculating
transmission coefficient of gapped graphene in the presence of a potential barrier, and then compare the obtained
numerical results with earlier analytical solution 70 in some limiting cases. By employing this numerical method,
we further explore quantitatively how the barrier-potential profile, applied bias with different polarities and barrier-
embedded disorder affect the conductance as a function of incident-electron kinetic energy for various graphene p-n
junction (GPNJ) within a gapped monolayer graphene.
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II. GENERAL FORMALISM

The low-energy states of gapped graphene can be described fully by a Dirac Hamiltonian with an additional gap
term 18,70,71, given by

Ĥ(r) = −ivF
[
Σ̂ ·∇

]
(x,y)

+ VB(x) Σ̂0 + ∆G Σ̂z , (1)

where Σ̂x,y,z are three two-dimensional Pauli matrices, Σ̂0 is a 2× 2 unit matrix, vF is the Fermi velocity, ∆G is the
gap parameter, and VB(x) represents a spatially non-uniform barrier potential. For constant potential VB(x) = V0,
the Dirac Hamiltonian in Eq. (1) gives rise to a finite energy bandgap EG = 2∆G between the valence and conduction
bands which are symmetric with respect to the Dirac point. In addition, the energy dispersions are calculated as
εγ(k) = γ

√
(~vF k)2 + ∆2

G and k = {kx, ky} is a two-dimensional wave vector of electrons. For varied VB(x), however,
we have γ = sign[εγ(k) − VB(x)] = ±1, corresponding to electron and hole states, respectively, where sign(x) is a
sign function. This implies that the carrier could go through an electron-hole (or inverse) transition inside the barrier
region.

In this paper, we will look forward to finding scattering-state solutions Φγ(r) for the Hamiltonian in Eq. (1) in the
form two-component (spinor) type of wave function, i.e.

Φγ(r) = exp(ikyy) Ψγ(x) = exp(ikyy)

[
φA(γ, x)
φB(γ, x)

]
, (2)

where unlike gapless graphene both components rely on the electron-hole index γ.

As a special case, if VB(x) = V0 is a constant, the translational symmetry of the system is preserved in both x and
y directions, and then the Hamiltonian in Eq. (1) can be greatly simplified as

Ĥ(0)
g (k | θk) =

 V0 + ∆G ~vF k−

~vF k+ V0 −∆G

 , (3)

where k = (k
(0)
x , ky), k± = k

(0)
x ± iky, γ = sign(ε0(k)− V0) within the barrier region, and ε0(k) = ~vF

√
(k

(0)
x )2 + k2y

is the given energy of an incident electron. In this case, the scattering-state wave function associated with the
Hamiltonian in Eq. (3) takes the explicit form 18,71,72

Φ(0)
γ (r) =

1√
2γ δε0(k)

 √
|δε0(k) + ∆G|

γ
√
|δε0(k)−∆G| eiθk

 exp(ik(0)x x+ ikyy) , (4)

where θk = tan−1(ky/k
(0)
x ), δε0(k) ≡ ε0(k) − V0 ≥ ∆G for an electron with γ = +1 and δε0(k) ≤ −∆G for a hole

with γ = −1. Here, two components of the wave function spinor in Eq. (4) are not the same and their ratio further
depends on the electron/hole index γ = ±1.

The introduced definition for electron/hole index γ in Eq. (4) corresponds to the case of a constant potential.
However, it is important to notice that the kinetic energy of an upcoming particle is always specified in advance.

In fact, in the presence of a potential VB(x), the total energy of a particle, i.e., E =
√
k2x(x) + k2y + VB(x) remains

conserved during the full tunneling process, although its longitudinal momentum kx(x) varies with position x and
may even becomes imaginary or zero by crossing the turning or crossing points, as discussed in Ref. [50].

Here, we concentrate on studying the electron transmission and conductance through a biased barrier of different
geometries in gapped graphene. Therefore, we will limit our investigation only to experimentally-available symmetrical
barrier profiles, e.g., triangular and Gaussian shapes. For this reason, we would like to compare our results first with
the well-studied case having a square barrier

Vs(x)

V0
= Θ(x) Θ(WB − x) , (5)
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where Θ(x) is the Heaviside unit step function, meaning Vs(x) = V0 if 0 < x < WB and is equal to zero otherwise. As
adopted in Figs. 1 and 2, the selection of using a square potential barrier makes it simple to compare our numerical
results for a general varying-slope barrier system with some known analytical cases and discern quantitatively the
effect of a finite slope of a potential barrier.

Next, for comparison we would introduce a triangular barrier Vt(x) with both positive and negative slopes present
on its two sides, yielding

Vt(x)

V0
=


0 for x < a ,

(x− a)/(b− a) for a < x < b ,
(c− x)/(c− b) for b < x < c ,

0 for x > c .

(6)

For our numerical computations, we will adopt a symmetric triangular barrier configuration which corresponds to
c− b = b− a, as used in Fig. 3.

For comparison with experimentally-available setup, we also consider a (symmetric) Gaussian profile with the
potential voltage profile varying according to

Vg(x)

V0
= ±exp

[
−
(
x− x0
l

)2
]
, (7)

where l is employed to define the effective width
√
πl of our barrier, x0 is its symmetric center where the highest

possible potential V0 is reached, as employed in Fig. 3. Depending on the ± sign in Eq. (7), this profile could describe
either a barrier (+V0) or a trap (−V0).

For numerical computations, using the Hamiltonian in Eq. (1) we obtain a pair of coupled scattering-state equations
within the barrier region, leading to

∂

∂x
φB(x) + ky φB(x) =

i

~vF
[ε0(k)− VB(x) + Vd δ(x− xs)−∆G] φA(x) , (8)

∂

∂x
φA(x)− ky φA(x) =

i

~vF
[ε0(k)− VB(x) + Vd δ(x− xs) + ∆G] φB(x) . (9)

In Eqs. (8) and (9), if we consider a tilted barrier under an applied electric field E0, we should replace VB(x) by
VB(x)−eE0x within the barrier region, where E0 can be either positive or negative. Additionally, ky remains conserved
during a tunneling process for all regions considered, i.e., to left of the barrier (1), x < 0, inside (2), 0 < x < WB ,
and to the right of the barrier (3), x > WB . We also introduce in Eqs. (8) and (9) a single scatterer of strength ±Vd
at the position x = xs within the barrier region 0 < xs < WB . The scattering problem is such that there could be
both transmitted and reflected waves with the amplitudes ti(ε0) and ri(ε0), i = 1, 2, in regions (1) and (2) but only
the transmitted wave t3(ε0) in region (3).

For a weak potential, the conservation of pseudospin for graphene electrons prohibits their inter-valley scatterings.
In the presence of a strong potential barrier, however, the inter-valley scattering of graphene electrons with different
pseudospins occurs, and therefore, a strong mixing of the pseudospins of graphene electrons is expected to show
up within the barrier layer, as revealed clearlier by Eq. (28) of our early paper 62 in coupled FDA equations with a
barrier potential for pseudospin-1/2 graphene electrons. Quantitatively, the degree of such mixing becomes strongly
dependent on the sharpness of curvature of a barrier potential, including a very sharp delta-function potential for a
single scatterer embedded in the barrier layer.

From a physical point of view, it is very interesting to notice that under the transformations ky → −ky and
∆G → −∆G for φA(x)→ φB(x) as well, Eq. (9) changes to Eq. (8) and vice versa. This implies a hidden chirality-time-
reversal (CTR) symmetry for electron tunneling in this gapped-graphene system if its scatterer-embedded potential
VB(x)−Vd δ(x−xs) remains unchanged under the barrier transformation with respect to x→WB−x for fixed barrier
width WB , i.e., VB(x)− Vd δ(x− xs) should acquire mirror symmetry with respect to its midpoint x = WB/2 under
zero bias E0 = 0 condition.
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III. RESULTS AND DISCUSSIONS

In order to ensure that our numerically-calculated results based on the finite-difference approach (FDA) are accu-
rate and valid, we first compare them with some previously known cases having analytical solutions 70 for a square
barrier with VB(x) = V0 Θ(x) Θ(WB − x). As a validation, we have presented in Fig. 1 the transmission coefficient
T (ε, φk | E0) for a square barrier using both our FDA results and the known analytical solutions 70, where the incidence
angle φk = tan−1(ky/kx) together with the incident kinetic energy ε are two crucial quantities in characterizing an
incoming particle. 2,52,61 This direct comparison clearly indicates that the FDA will be valid for an arbitrary biased
barrier-potential profile VB(x) on the order of 102-103 meV, including both Gaussian and triangular potential barriers
embedded with a single scatterer.

The analytically-calculated transmission coefficients T (ε, φk = 0 |WB) for a 1D square-barrier potential Vs(x) are
plotted in Fig. 2 as functions of bandgap parameter ∆G for various barrier widths WB and incoming-particle energies
ε. We see clearly from Fig. 2 that the transmission coefficient T (ε, φk = 0 |WB) for head-on collision will be completely
suppressed once ∆G exceeds an ε-dependent threshold value, which becomes largely independent of the barrier width
WB . However, this threshold value for ∆G reduces with increasing incident-electron energy ε.

Now, we turn to numerical computations of transmission coefficient T (ε, φk | E0) by introducing general FDA
method, as described in Eqs. (8) and (9), for arbitrary shape of barrier-potential profiles under an applied bias
field and with embedded point scatterers.

We first present results for the effect of a barrier-potential profile on the transmission coefficient T (ε, φk) in the
absence of a bias field E0 = 0. We have specifically selected square, triangular and Gaussian as three distinctive
barrier profiles in Fig. 3 in order to acquire a full comparison among them. From the left panel of Fig. 3, we find a
great suppression of the Klein tunneling in the presence of a finite gap by a triangular-barrier potential Vt(x) (red
curve). Meanwhile, the transmission for this case is only limited to a very narrow angular region around φk = 0. For
a square-barrier potential Vs(x) (black curve), on the contrary, the transmission is distributed widely within a broad
angular region bounded by |φk| ≤ π/3, and meanwhile the transmission for head-on collision at φk = 0 remains strong.
The transmission for a Gaussian potential barrier Vg(x) (brown curve) somewhat stands between the previous two
cases with a limited angular distribution as well as a greatly enhanced strength at φk = 0 compared to a square-barrier
and triangular-barrier potentials, respectively.

To get a better and conclusive understanding about the effect of different selected barrier-potential profiles on
the transmission coefficient, we present in Fig. 4 the density plot for T (ε, φk |VB) as functions of incident-electron
energy ε and incident angle φk with varied barrier profiles. By comparing Figs. 4(a) and 4(b), we identify a main
feature in this figure for the tunneling of electrons in gapped graphene, i.e., the transmission coefficient can be greatly
reduced and nearly goes to zero as the incident energy approaches the barrier height at normal incidence, where the
incident particle acquires a small or even imaginary momentum within the barrier region. Furthermore, the electron
transmission is modified significantly for two different slowly-varying barrier profiles considered in Figs. 4(c) and 4(d).
Here, many layered sharp resonant features of transmission coefficient observed in Fig. 4(b) for an under square-barrier
incidence disappear in both Figs. 4(c) and 4(d), leaving only a single energy belt around φk = 0 in Fig. 4(d).

From a technology perspective, we know that the control of an electrical-current flow in graphene devices becomes
crucial for their applications, such as current modulation and amplification and signal processing. For this reason,
we compare in Fig. 5 the changes of scaled tunneling conductance σ(ε |VB)/σ0 as functions of incoming-particle
energy ε in gapped graphene for three distinctive barrier profiles. As seen in Fig. 5, for ε sitting within the range
of 50-230 meV, a square barrier gives rise to a square-like highest conductivity (black curve) which, however, will
decrease as ε approaches V0 − ∆G = 235 meV. For a triangular barrier (red curve), on the other hand, we find an
strongly-oscillating conductance with multiple peaks and valleys in the same range. Quite differently, Gaussian barrier
(brown curve) leads to a lowest weakly-oscillating conductivity for all barrier profiles considered within this energy
range, but it produces a highest step-rising conductivity above this energy range. Meanwhile, unlike square barrier,
the conductivity associated with either triangular and Gaussian potential barrier goes up quickly as ε > 235 meV
although its increase is not as fast as that for square potential barrier around ε = 350 meV.

In Fig. 6, for three different barrier-potential profiles we compare the obtained numerical results for transmission
coefficient T (ε, φk |VB) as a function of the angle of incidence φk with a series of gap parameters ∆G. For the
Gaussian barrier profile in Fig. 6(b), the tunneling is confined well within a small angle region. With increasing ∆G,
the tunneling amplitude at φk = 0 is enhanced quickly to unity which is accompanied by the expanded angle region
around φk = 0. Interestingly, very strong focusing of tunneling with respect to φk = 0 is developed for a triangular
barrier profile in Fig. 6(c) which is supplemented by the appearance of two symmetric sharp side robes. Meanwhile,
in this case, the tunneling amplitude at φk = 0 is reduced rapidly with increasing ∆G, which further goes together



6

with the suppression of two side robes. For the square barrier profile in Fig. 6(a), lots of side robes occurs and their
angular distributions are shrunken slowly with increasing ∆G.

From a device point of view, tuning the tunneling conductance in gapped graphene is an effective technique and
very important for its functionality and application. Here, we want to demonstrate tunable tunneling conductance in
gapped graphene by applying a bias field E0 to a general barrier potential VB(x), which is in interplay with the opened
bandgap of graphene. We start with a square barrier and present calculated polar plots of T (ε, φk | E0) in Fig. 7(a)-(b)
for forward and backward biases, respectively, from which we find the suppression of Klein tunneling at φk = 0 due
to electron-hole transition resulting from a finite ∆G chosen but it is still robust against the applied bias field E0. It is
interesting to note that the suppression of transmission under normal incidence appears only for a positive biase but
not for a negative bias, which exhibits a strong asymmetry with respect to the polarity of E0 or broken CTR symmetry
in the system. In particular, enhancements of T (ε, φk | E0) near φk ≈ ±90o are seen only for E0 = −1 kV/cm. On the
other hand, there exists an insulating zero-conductance gap for incident-electron energy ε as found from Fig. 7(c)-(d),
but its two edges shift in opposite directions with the polarity of E0. In this way, we can easily switch the electron
tunneling conductance between the conducting and insulating phases in gapped graphene by properly selecting the
polarity and magnitude of an applied bias field for any fixed kinetic energy of incident electrons.

Certainly, for a finite bandgap ∆G of graphene, the tuning of tunneling conductance by an applied bias field
also depends on the selected shape of a barrier-potential profile, such as a triangular or Gaussian barrier. For the
triangular barrier under a reverse bias in Fig. 8(a), we find the conductance as a function of ε remains at zero for
ε < 50 meV. However, both the dominant higher and the secondary lower conductance peaks move upwards as a
function of incoming-electron energy ε with increasing |E0|. On the contrary, these two conductance peaks shift to
lower values of ε with increasing E0 under forward biases, as found from Fig. 8(b). In order to gain an overall picture
about the tuning of tunneling conductance σ(ε, E0 |VB) by a bias field E0 for different barrier profiles VB(x), we
compare corresponding density plots of scaled σ(ε, E0)/σ0 as functions of both incoming-particle energy ε and E0
in Figs. 9(a)-9(d). Generally speaking, the case for biased Gaussian barriers in Figs. 9(a)-9(b) only gives rise to two
relatively-weak peaks in tunneling conductance σ(ε, E0) within two separate ranges for kinetic energy ε. The bias field
E0, on the other hand, only shifts those conductance peaks in σ(ε, E0) downward in ε under the forward-bias condition
but shifts it upward as a function of ε in the reverse-bias condition. For a triangular barrier, we find enhanced features
for peak shifting both upwards and downwards with increasing |E0|, as displayed in Figs. 9(c)-9(d).

In the remaining part of this Section, we will address the effect of a single scatterer embedded at various positions
within an unbiased barrier of different shapes on tunneling conductance of electrons in gapped graphene. In Fig. 10,
we plot σ(ε, Vd |VB)/σ0 for an unbiased square barrier with different locations for a single scatterer. As a comparison,
we also include the result with no scatterer in Fig. 10(a) under E0 = 0 for a square-barrier potential. From Fig. 10(b)
with xs/WB = 0.1, we observe that σ(ε, Vd) acquires several consecutive peaks and valleys within the low-energy range
of 0.3 < ε/V0 < 0.8 in the presence of a single scatterer. In addition, a zero-conductance gap exists for intermediate
energy range 0.8 < ε/V0 < 1.3, and meanwhile, a number of peaks and valleys develop for enhanced σ(ε, Vd) in the
high-energy region 1.3 < ε/V0 < 1.8. For xs/WB = 0.5 in Fig. 10(c) for the scatterer located right at the middle of
square barrier, a sharp peak in σ(ε, Vd) occurs at ε/V0 = 1 within this zero-conductance gap, despite the sign and
magnitude of Vd. For xs/WB = 0.9 in Fig. 10(d), we verify the CTR symmetry with respect to the center xs = WB/2
of a 1D barrier, i.e., σ(ε, Vd) for a scatterer at xs is the same as σ(ε, Vd) for a scatterer at WB − xs.

To understand quantitatively the interplay between effects of a scatterer and the shape of a barrier-potential profile,
we compare 2D plots in Figs. 11 and 12 for the scaled tunneling conductance σ(ε, Vd |VB)/σ0 of gapped graphene in
the presence of a single scatterer at different positions within a triangular and Gaussian barrier regions, respectively.
First, for a triangular barrier in Fig. 11, we observe a conductance peak at ε/V0 = 0.5 for xs/WB = 0.1 instead of
ε/V0 = 1 as in Fig. 10(b). Moreover, σ(ε, Vd |VB) remains zero within the energy ranges of 0 < ε/V0 < 0.4 as well
as 0.6 < ε/V0 < 1. As the scatterer is shifted to xs/WB = 0.3, we find a weak conductance peak appearing near
ε/V0 = 0.5 in Fig. 11(c). Furthermore, when xs/WB = 0.5, we reveal a new strong conductance peak for ε/V0 = 0.85
in Fig. 11(d) due to constructive superposition of two individual peaks. In particular, the CTR symmetry with respect
to the center xs = WB/2 of a 1D barrier in Fig. 10 is still maintained in Figs. 11(e) and 11(f) in comparison with
Figs. 11(c) and 11(b), respectively, with a switched sign for Vd.

Finally, for a Gaussian barrier potential, we know from Fig. 12 that there exist two weak conductance peaks at
ε/V0 = 0.3 and ε/V0 = 0.65 for xs/WB = 0.1 in Fig. 12(b). Meanwhile, a zero-conductance gap is still present within
the energy ranges of 0 < ε/V0 < 0.25 and 0.25 < ε/V0 < 0.65. Interestingly, there is a suppression of σ(ε, Vd |VB) for
incident energy ε below the barrier height V0 as xs/WB = 0.3, as shown in Fig. 12(c). After xs/WB is increased to 0.5
at the peak position of Gaussian barrier in Fig. 12(d), the shape of σ(ε, Vd |VB) as a function of ε changes dramatically
by displaying a high and wide constructive conductance peak at ε/V0 = 0.85 accompanied by an overall enhancement



7

of conductance in the energy range of ε/V0 > 0.4. Furthermore, the CTR symmetry associated with xs = WB/2 for
a 1D barrier is retained in Figs. 12(e) and 12(f) compared to Figs. 12(c) and 12(b) with a switched sign for Vd.

IV. SUMMARY AND REMARKS

In summary, we have investigated tunneling and calculated the transmission properties of electrons across square,
triangular and Gaussian potential barriers embedded with a single scatterer for gapped graphene by applying a
finite-difference approach since their computations are not accessible by standard analytical solution techniques. We
have also addressed the effect due to a bias and point scatterer located within the barrier. It is known that the
transmission and conduction in gapped graphene are largely suppressed as the particle energy lies inside the bandgap
within a barrier region. Due to the existence of a finite bandgap between valence and conduction bands, the Klein
tunneling for head-on collision (i.e., with incident angle φk = 0) is suppressed for the case with a square-potential
barrier. Simultaneously, the side resonances for electron tunneling, which are associated with finite incident angles,
are also reduced significantly in gapped graphene. These suppression effects become even more pronounced for smooth
barriers. However, we have demonstrated multiple ways to modify or even break this low-conduction condition and
substantially improve the collimation of transmitted electron beam by employing the approach described above. Using
the obtained transmission probability, we have further calculated the tunneling conductance which also displays a
suppression for a finite gap in graphene. In fact, we have found that both transmission and conductance display a
strong dependence on the barrier profile, its slope and curvature. Additionally, we have shown that the application
of a bias field and its polarity greatly affect the nature of Klein-tunneling suppression resulting from broken CTR
symmetry of the system, and at the same time shift conductance peaks in energy for all barrier types.

Under a bias field, a zero-conductance gap occurs for a square barrier in a range of selected incident-electron energy
below the top of a barrier. For positive/negative bias, two edges of this zero-conductance gap are respectively dragged
to lower/higher energies for incident electrons with increasing absolute value |E0| of the bias. For a triangular barrier,
on the other hand, we have only found one dominant and another secondary peak in higher and lower energy ranges for
incident electrons, and similar behaviors of peak shifting have been seen with increasing |E0|. By introducing a single
scatterer to an energy barrier of gapped graphene, we have revealed that its strength, polarity and position can affect
effectively the conductance profile of gapped graphene. As a scatterer is moved to the midpoint (or the symmetry
point) of an energy barrier, the resulting conductance always acquires either a peak within this zero-conductance
gap or a significant enhancement from a constructive scattering contribution due to CTR symmetry of the system.
Specifically, for a square barrier we have observed the appearance of a sharp conductance peak for ε/V0 ∼ 1 within
the zero-conductance gap. For Gaussian and triangular potential barriers, however, such a conductance peak around
ε/V0 ∼ 0.85 becomes much broaden, especially for a smooth Gaussian barrier with a smaller curvature.

Finally, we wish to emphasize that studying the conduction properties of gapped graphene and their possible
alteration is very important and timely since the beginning for practical use of graphene in device applications has
already been witnessed recently. Our results are directly associated with creating a spatial confinement for graphene
electrons within designated areas of an electronic device modulated by a bias voltage. Apart from that, gapped
graphene itself is also related to some newly discovered materials with an intrinsic spin-orbit gap, such as silicene,
germanene and molybdenum disulfide. We believe that our current works could be implanted into these materials as
well.

Acknowledgments

A.I. would like to acknowledge the funding provided by TRADA-51-82 PSC-CUNY Award No. 63061-00–51. D.H.
would like to acknowledge the financial supports from Air Force Office of Scientific Research (AFOSR). G.G. would
like to acknowledge the support from Air Force Research Laboratory (AFRL) through Contract #FA9453-18-1-0100.

1 A. K. Geim and K. S. Novoselov, in Nanoscience and technology: a collection of reviews from nature journals (World
Scientific, 2010), pp. 11–19.

2 A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, Reviews of modern physics 81, 109 (2009).
3 A. K. Geim, science 324, 1530 (2009).
4 C. Beenakker, Reviews of Modern Physics 80, 1337 (2008).
5 M. Katsnelson, K. Novoselov, and A. Geim, Nature physics 2, 620 (2006).



8

6 O. Klein, Zeitschrift für Physik 53, 157 (1929).
7 A. Calogeracos and N. Dombey, Contemporary physics 40, 313 (1999).
8 M. Goerbig, Reviews of Modern Physics 83, 1193 (2011).
9 G. Gumbs, A. Iurov, D. Huang, and L. Zhemchuzhna, Physical Review B 89, 241407 (2014).

10 P. Pyatkovskiy and V. Gusynin, Physical Review B 83, 075422 (2011).
11 J. G. Checkelsky and N. Ong, Physical Review B 80, 081413 (2009).
12 D. Huang, A. Iurov, H.-Y. Xu, Y.-C. Lai, and G. Gumbs, Physical Review B 99, 245412 (2019).
13 W. Y. Kim and K. S. Kim, Nature nanotechnology 3, 408 (2008).
14 V. V. Cheianov and V. I. Fal’ko, Physical review b 74, 041403 (2006).
15 V. M. Pereira, V. N. Kotov, and A. C. Neto, Physical Review B 78, 085101 (2008).
16 C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, et al., Science 312,

1191 (2006).
17 Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, ACS nano 2, 2301 (2008).
18 A. Iurov, G. Gumbs, O. Roslyak, and D. Huang, Journal of Physics: Condensed Matter 24, 015303 (2011).
19 M. Kindermann, B. Uchoa, and D. L. Miller, Physical Review B 86, 115415 (2012).
20 S. Y. Zhou, G.-H. Gweon, A. Fedorov, d. First, PN, W. De Heer, D.-H. Lee, F. Guinea, A. C. Neto, and A. Lanzara, Nature

materials 6, 770 (2007).
21 A. Iurov, G. Gumbs, O. Roslyak, and D. Huang, Journal of Physics: Condensed Matter 25, 135502 (2013).
22 A. Iurov, G. Gumbs, and D. Huang, Physical Review B 99, 205135 (2019).
23 T. Oka and H. Aoki, Physical Review B 79, 081406 (2009).
24 Y. Liu, G. Bian, T. Miller, and T.-C. Chiang, Physical review letters 107, 166803 (2011).
25 A. Iurov, G. Gumbs, and D. Huang, Journal of Physics: Condensed Matter 32, 415303 (2020).
26 L. M. Pastrana-Martinez, S. Morales-Torres, V. Likodimos, J. L. Figueiredo, J. L. Faria, P. Falaras, and A. M. Silva, Applied

Catalysis B: Environmental 123, 241 (2012).
27 G. Usaj, P. M. Perez-Piskunow, L. F. Torres, and C. A. Balseiro, Physical Review B 90, 115423 (2014).
28 A. Iurov, L. Zhemchuzhna, G. Gumbs, and D. Huang, Journal of Applied Physics 122, 124301 (2017).
29 O. Kibis, Physical Review B 81, 165433 (2010).
30 A. Pervishko, O. V. Kibis, S. Morina, and I. Shelykh, Physical Review B 92, 205403 (2015).
31 M. Portnoi, O. Kibis, and M. R. Da Costa, Superlattices and Microstructures 43, 399 (2008).
32 O. Kibis, K. Dini, I. Iorsh, and I. Shelykh, Physical Review B 95, 125401 (2017).
33 A. Iurov, G. Gumbs, and D. Huang, Journal of Modern Optics 64, 913 (2017).
34 B. Dey and T. K. Ghosh, Physical Review B 98, 075422 (2018).
35 L. Brey and H. Fertig, Physical Review B 73, 235411 (2006).
36 K. Kristinsson, O. V. Kibis, S. Morina, and I. A. Shelykh, Scientific reports 6, 1 (2016).
37 M. R. Masir, P. Vasilopoulos, and F. Peeters, Physical Review B 79, 035409 (2009).
38 M. Zarenia, J. Pereira Jr, G. Farias, and F. Peeters, Physical Review B 84, 125451 (2011).
39 A. Iurov, L. Zhemchuzhna, D. Dahal, G. Gumbs, and D. Huang, Physical Review B 101, 035129 (2020).
40 T. Low and J. Appenzeller, Physical Review B 80, 155406 (2009).
41 T. G. Pedersen, A.-P. Jauho, and K. Pedersen, Physical Review B 79, 113406 (2009).
42 V. M. Pereira, F. Guinea, J. L. Dos Santos, N. Peres, and A. C. Neto, Physical review letters 96, 036801 (2006).
43 G. Gumbs, A. Balassis, A. Iurov, and P. Fekete, The Scientific World Journal 2014 (2014).
44 E. V. Castro, N. Peres, J. L. dos Santos, A. C. Neto, and F. Guinea, Physical review letters 100, 026802 (2008).
45 A. Rycerz, J. Tworzyd lo, and C. Beenakker, EPL (Europhysics Letters) 79, 57003 (2007).
46 M. S. Jang, H. Kim, Y.-W. Son, H. A. Atwater, and W. A. Goddard, Proceedings of the National Academy of Sciences 110,

8786 (2013).
47 D. Dahal and G. Gumbs, Journal of Physics and Chemistry of Solids 100, 83 (2017).
48 E. Azarova and G. Maksimova, Physica E: Low-dimensional Systems and Nanostructures 61, 118 (2014).
49 J. Navarro-Giraldo and C. Quimbay, Journal of Physics: Condensed Matter 30, 265304 (2018).
50 E. Sonin, Physical Review B 79, 195438 (2009).
51 G. S. Paraoanu, New Journal of Physics 23, 043027 (2021).
52 A. Laitinen, G.-S. Paraoanu, M. Oksanen, M. F. Craciun, S. Russo, E. Sonin, and P. Hakonen, Physical Review B 93,

115413 (2016).
53 N. Weekes, A. Iurov, L. Zhemchuzhna, G. Gumbs, and D. Huang, Physical Review B 103, 165429 (2021).
54 N. Stander, B. Huard, and D. Goldhaber-Gordon, Physical review letters 102, 026807 (2009).
55 F. Libisch, T. Hisch, R. Glattauer, L. Chizhova, and J. Burgdörfer, Journal of Physics: Condensed Matter 29, 114002

(2017).
56 A. F. Young and P. Kim, Nature Physics 5, 222 (2009).
57 K. Wang, M. M. Elahi, L. Wang, K. M. Habib, T. Taniguchi, K. Watanabe, J. Hone, A. W. Ghosh, G.-H. Lee, and P. Kim,

Proceedings of the National Academy of Sciences 116, 6575 (2019).
58 A. E. Mouhafid and A. Jellal, arXiv preprint arXiv:1303.0559 (2013).
59 A. V. Shytov, M. S. Rudner, and L. S. Levitov, Physical review letters 101, 156804 (2008).
60 F. Anwar, C. Carlos, V. Saraswat, V. Mangu, M. Arnold, and F. Cavallo, Aip Advances 7, 115015 (2017).
61 F. Anwar (2020).
62 F. Anwar, A. Iurov, D. Huang, G. Gumbs, and A. Sharma, Physical Review B 101, 115424 (2020).



9

63 M. Titov, EPL (Europhysics Letters) 79, 17004 (2007).
64 C. Valagiannopoulos, Physical Review B 100, 035308 (2019).
65 T. Ando and M. Koshino, Phys. Rev. Lett 53, 2449 (1984).
66 D. Huang, A. Singh, and D. Cardimona, Physics Letters A 259, 488 (1999).
67 A. R. Hernández and C. H. Lewenkopf, Physical Review B 86, 155439 (2012).
68 J. Tworzyd lo, C. Groth, and C. Beenakker, Physical Review B 78, 235438 (2008).
69 D. Huang, F. Anwar, A. Iurov, G. Gumbs, and A. Sharma, Bulletin of the American Physical Society 65 (2020).
70 M. Setare and D. Jahani, Physica B: Condensed Matter 405, 1433 (2010).
71 P. Pyatkovskiy, Journal of Physics: Condensed Matter 21, 025506 (2008).
72 A. Iurov, G. Gumbs, D. Huang, and L. Zhemchuzhna, Journal of Applied Physics 121, 084306 (2017).



10

FIG. 1: (color online) Polar plots for the transmission coefficient T (ε, φk |WB) as a function of incidence angle φk in graphene
with a bandgap ∆G = 50 meV for a square potential barrier Vs(x) = V0 Θ(x) Θ(WB − x) with various barrier widths WB .
Here, both the analytical expressions (solid curves) and numerical results (dashed curves) obtained by using the FDA method
are plotted together for comparisons. Panel (a) displays calculated T (ε, φk |WB) for WB = 110 nm, while panel (b) shows
T (ε, φk |WB) for WB = 50 nm, where the barrier height is V0 = 285 meV, the bias field E0 = 0, and the incident-electron energy
ε = 80 meV are assumed.
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FIG. 2: (color online) Calculated transmission coefficients T (ε, 0 |WB) for the head-on collision φk = 0 through a square-
barrier potential Vs(x) as functions of bandgap parameter ∆G with various barrier widths WB in panel (a) and with different
incident-electron energies ε in panel (b). Here, V0 = 0.2 eV and the unit-energy E0 = 0.1 eV are chosen for both panels.
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FIG. 3: (color online) (Left) comparison of the FDA calculated transmission coefficients T (ε, φk) as a function of the angle of
incidence φk for three different unbiased barrier-potential profiles with V0 = 285 meV, E0 = 0, ∆G = 50 meV, and ε = 80 meV,
including a square (black), a triangular (red) and Gaussian (brown) potential barrier. (Right) corresponding potential-barrier
profiles VB(x) chosen for our computation results presented in the left panel.

FIG. 4: (color online) Density plots for the transmission coefficient T (ε, φk |VB) as a function of the incoming-particle energy ε
and incidence angle φk for various barrier profiles VB(x) in four different cases: (a) a square barrier without gap; (b) a square
barrier with a gap ∆G = 50 meV; (c) a triangular barrier with a gap ∆G = 50 meV; (d) Gaussian potential barrier with a gap
∆G = 50 meV. For all plots, the bias field E0 = 0, the barrier width is WB = 110 nm, and its height is V0 = 285 meV.
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FIG. 5: (color online) Relative conductance σ/σ0 as a function of the incident-electron energy ε for three different barrier
profiles, i.e., square (black), triangular (red) and Gaussian (brown) as depicted, in gapped graphene. Here, we set the barrier
height V0 = 285 meV, the barrier width WB = 100 nm, the gap parameter ∆G = 50 meV, and the bias field E0 = 0, similar to
those used in Fig. 3. The unit for the conductance is chosen to be σ0 = 2 e2/π~.

FIG. 6: (color online) Transmission coefficient T (ε, φk |VB), calculated by FDA method, as a function of the angle of incidence
φk for various bandgaps in graphene and different barrier profiles VB(x): (a) square barrier; (b) Gaussian barrier; (c) triangular
barrier. Here, we set the barrier width WB = 110 nm, the barrier height V0 = 285 meV, the bias field E0 = 0, and the
incident-electron energy ε = 80 meV.
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FIG. 7: (color online) Polar plots of T (ε, φk | E0) as a function of φk for gapped graphene with ∆G = 50 meV over a square
barrier with its height V0 = 285 meV, width WB = 110 nm, as well as various applied bias fields E0. Here, Panels (a)-(b) show
the results for fixed ε = 80 meV corresponding to a reverse and a forward bias, respectively. Panels (c)-(d) display the change
of relative conductance σ/σ0 as functions of ε for a reverse and forward bias, separately. The unit for the conductance in panels
(c) and (d) is σ0 = 2e2/π~.
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FIG. 8: (color online) Numerically-calculated relative conductance σ/σ0 as a function of φk for gapped graphene with ∆G =
50 meV over a triangular barrier with its height V0 = 285 meV, width WB = 110 nm, as well as various applied bias fields E0.
Panels (a) and (b) display the change of relative conductance σ/σ0 as functions of ε for a reverse and a forward bias, separately.
The unit for the conductance in these two panels is σ0 = 2e2/π~.
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FIG. 9: (color online) 2D plots of tunneling conductance as functions of applied bias E0 and incident-electron energy ε. Here,
four panels correspond to (a) Gaussian barrier with forward bias; (b) Gaussian barrier with reverse bias; (c) triangular barrier
with forward bias; (d) triangular barrier with reverse bias. For all cases, we choose the barrier width WB = 110 nm, the barrier
height V0 = 285 meV, and the energy gap ∆G = 50 meV. The unit for the conductance in panels (a)-(d) is set as σ0 = 2e2/π~.
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FIG. 10: (color online) 2D plots for σ/σ0 as functions of incident energy ε and scattering strength Vd (both positive and
negative) for the case of a square barrier with width WB = 100 nm, height V0 = 285 meV and zero bias E0 = 0. Here, panel (a)
presents the result for the situation with no scatterer, while panels (b)-(d) correspond to σ/σ0 with a single scatterer sitting at
various positions xs/WB = 0.1, 0.5, 0.9. The unit for the conductance in panels (a)-(d) is set as σ0 = 2e2/π~.



17

FIG. 11: (color online) 2D plots for σ/σ0 as functions of incident energy ε and scattering strength Vd (both positive and
negative) for the case of a triangular barrier with width WB = 100 nm, height V0 = 285 meV and zero bias E0 = 0. Here,
panel (a) presents the result for the situation with no scatterer, while panels (b)-(f) correspond to σ/σ0 with a single scatterer
sitting at various positions xs/WB = 0.1, 0.3, 0.5, 0.7, 0.9, respectively. The unit for the conductance in panels (a)-(f) is set
as σ0 = 2e2/π~.
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FIG. 12: (color online) 2D plots for σ/σ0 as functions of incident energy ε and scattering strength Vd (both positive and
negative) for the case of Gaussian barrier with width WB = 100 nm, height V0 = 285 meV and zero bias E0 = 0. Here, panel
(a) presents the result for the situation with no scatterer, while panels (b)-(f) correspond to σ/σ0 with a single scatterer
sitting at various positions xs/WB = 0.1, 0.3, 0.5, 0.7, 0.9, respectively. The unit for the conductance in panels (a)-(f) is set
as σ0 = 2e2/π~.
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