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An Application of Multilevel Model Prediction to NELS:88!

David Afshartous
School of Business Administration, University of Miami,
Coral Gables, FL 33124-8237
Jan de Leeuw
Department of Statistics, University of California,
Los Angeles, CA 90095-155/

ABSTRACT: Multilevel modelling is often used in the social sciences for ana-
lyzing data that has a hiearchical structure, e.g., students nested within schools.
In an earlier study, we investigated the performance of various prediction rules
for predicting a future observable within a hierachical data set (Afshartous &
de Leeuw 2002). We apply the multilevel prediction approach to the NELS:88
educational data in order to assess the improvement in prediction; the goal is to
develop model selection criteria (multilevel cross-validation and multilevel boot-
strap) that assess the predictive ability of multilevel models. We also introduce
two plots that 1) aid in the visualization the amount to which the multilevel
model predictions are “shrunk” or translated from the OLS predictions, 2) help

identify if certain groups exist for which the predictions are pariculary good or
bad.

KEY WORDS: NELS:88, prediction, multilevel model, cross-validation, bootstrap

1 Introduction

Multilevel modelling is often used in the social sciences for analyzing data that has a hiearchi-
cal structure, e.g., students nested within schools (Bryk & Raudenbush, 1992; de Leeuw &
Kreft, 2002; Leyland & Goldstein, 2001). In an earlier study, we investigated the perfor-
mance of various prediction rules for predicting a future observable within a hierachical
data set (Afshartous & de Leeuw 2002). The multilevel prediction approach employing a
shrinkage estimator proved to be the most accurate over a wide range of simulations. In
this article, we apply the multilevel prediction approach to a real data set in order to assess
the improvement in prediction; the goal is to develop model selection criteria (multilevel
cross-validation and multilevel bootstrap) that assess the predictive ability of multilevel
models. We also introduce two plots that 1) aid in the visualization the amount to which
the multilevel model predictions are “shrunk” or translated from the OLS predictions, 2)
help identify if certain groups exist for which the predictions are pariculary good or bad.
The multilevel prediction approach is applied to portion of the base-year sample from the
National Educational Longitudinal Study of 1988 (NELS:88). The base-year sample consists
of 24,599 eighth grade students, distributed amongst 1052 schools nationwide. Given the
plethora of student and school level variables available from the NELS:88 data (over 6,000),
an endless number of multilevel models may be proposed and estimated. We consider stu-
dent mathematics score modeled as a function of the race and socio-economic status (SES)
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of the student, while schools are differentiated according to school type (public versus non-
public) and the extent to which school lunches are subsidized.? A stratified random sample
of 50 schools was taken from the 1052 schools, yielding a total of 1152 students.®> There are
19 to 64 students within each school with a median of 24 students per school. Students for
which mathematics score data was missing were removed from the sub-sample. The average
mathematics score for the 1152 students in the sample is 50.7590 with a standard deviation
of 9.9683; The variability of mathematics score from school to school is displayed in Fig-
ure 1. The SES variable is a standardized variable and thus has an average of -0.0641 and
a standard deviation of 0.7416; The distribution of SES from school to school is displayed
in Figure 2.
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Figure 1: Distribution of mathematics score in 50 schools from NELS:88 data
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Figure 2: Distribution of SES in 50 schools from NELS:88 data

2The extent to which school lunches are subsidized may be considered as an indicator of the poverty
level of the students within a given school. The whites/Asians variable was formed as a composite variable
from the respective indicator variables for whites and Asians.

3The stratification was with respect to the public/non-public school dichotomy, with the percentage of
each being set equal to that in the populations. This method resulted in 39 public schools and 11 non-public
schools. The non-public schools consist of private, Catholic, and other religious schools.



2 Four Models

From the two level-1 and two level-2 variables mentioned in the previous paragraph, we
consider four candidate models for our sub-sample of 50 schools. Model 1 employs student
SES as the level-1 variable and Public as the level-2 variable, where public is a 0-1 indicator
variable with 1 representing public schools. Model 2 is the same as Model 1 but for the
fact that the level-2 variable is G8Lunch, a categorical variable indicating the degree to
which school lunches are subsidized in the school; this variable may be interpreted as a
proxy variable for the overall poverty level of the school. Model 3 is the same as Model
1—with SES as the level-1 variable and Public as the level-2 variable—except that a level-1
whites/Asians variable is introduced, coded 1 for whites/Asians and 0 for all others. Model
4 is the same as Model 3 except the level-2 variable is G8Lunch instead of Public. The
estimation results for each of these models are presented below. Note that in each case
the full model is estimated, i.e., all the coefficients are random and there is a covariance(s)
between the coefficients. After the presentation of the estimation results, we shall compare
and contrast the estimation results for the different models.
Formally, Model 1 may be written as follows:

Mathij = Boj + SESijﬁlj + rij
where

Boj = 7Yoo+ YorPublic; + ug;
613' = 70 + ’YuPllbliCj + Uty

Maximum likelihood estimates for Model 1 were produced by Terrace-Two and are given
in Figure 3. The output in Figure 3 contains the estimates of the fixed effects for each

TERRACE-TWO: Full Maximum Likelihood Estimates

Parameters Estimates (5.E.) T
Intercept
By Intercept 51.7820  ( 1.2357) 41.9064
By Public -0.9527 ( 1.3895) -0.6856
BYSES
By Intercept 3.5715  ( 0.9485) 3.7652
By Public 0.9457 ( 1.0655) 0.8875

Sigma“2: 69.2333
Tau (covariance)

Intercept 12.6168  2.6826
BYSES 2.6826 1.1784
Tau (correlation)
Intercept 1.0000 0.6957
BYSES 0.6957  1.0000

Figure 3: Model 1 for NELS:88 data

of the level-1 random coefficients—the intercept and SES slope in this case. They may
be interpreted as follows: The 7 estimate of 51.780 represents the expected mathematics
score of a student attending a non-public school with a value of 0 for SES.* Similarly, the o,
estimate of -0.9527 corresponds to the intercept shift between public and non-public schools.

4Note that since SES is a standardized variable a value of 0 corresponds to the average score.



With respect to the SES-mathematics relationship, the estimate of 3.5715 represents the
average value of this slope, i.e., a one unit increase in SES is associated with a 3.5715
unit increase in mathematics score on average, while the estimate of 7v,; corresponding
to Public indicates a slightly steeper SES-mathematics relationship in public versus non-
public schools. Also provided in Figure 3 are the estimates of standard errors for these fixed
effects and their corresponding t-ratios. Asymptotically we may treat these t-ratios in the
usual manner, i.e., as normal z-values indicating the significance of the coefficient estimate
(Bryk & Raudenbush 1992). Figure 3 also contains estimates of the level-1 and level-2
variance components, o2 and 7 respectively. Note that since we have a level-2 variable, one
may interpret the elements of 7 as a conditional level-2 variance, i.e., the variation of the
level-1 slopes that remains after accounting for certain level-2 variables. The legitimacy of
modeling the level-2 slopes as random is illustrated via the overlayed added variable plots
in Figure 4. One may interpret the separate lines as the OLS slope for the corresponding
coefficient in the various schools. The variability of the SES-mathematics relationship is
strong across the schools, while the intercept is not as variable. A useful diagnostic procedure
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Figure 4: Model 1: Overlayed added variable plots for Intercept and SES for NELS:88 data

for multilevel models is a “double residual” plot, where the residuals obtained from the
multilevel estimation are plotted against those obtained from OLS estimation. Hilden-
Minton (1995) introduced this double residual plot and suggested that such a plot is a good
check of the level-2 model being entertained.® Specifically, a well-fitting model should evince
a strong linear relationship between both sets of residuals with a correlation approaching
one. Figure 5 displays the double residual plot for Model 1; The correlation between the
two sets of residuals is 0.969.
Formally, Model 2 may be written as follow:

Mathij = ﬂoj + SESijﬂlj + rij

5The actual term double residual plot was provided by Jan de Leeuw.
6Note that the residuals produced by the multilevel model are often referred to as empirical Bayes (EB)
residuals.
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Figure 5: Double residual plot for Model 1

where

Boj = oo+ Y01G8Lunch; + ug;
Bi; = 710+ 711G8Lunch; + uy;

Maximum likelihood estimates for Model 2 were produced by Terrace-Two and are given
in Figure 6. The information in Figure 6 may be interpreted in a similar manner to that

TERRACE-TWO: Full Maximum Likelihood Estimates

Parameters Estimates (S.E.) T
Intercept
By Intercept 563.5417  ( 0.9710) 55.1394
By GS8LUNCH -0.8183 ( 0.2559) -3.1978
BYSES
By Intercept 4.8650 ( 0.7632) 6.3744
By G8LUNCH -0.2314 ( 0.1996) -1.1592

Sigma~2: 69.2205
Tau (covariance)

Intercept 10.2139  2.0192
BYSES 2.0192 1.0362
Tau (correlation)
Intercept 1.0000 0.6207
BYSES 0.6207  1.0000

Figure 6: Model 2 for NELS:88 data

of Figure 3. The estimated models will be compared in the next section. Once again, the
legitimacy of modeling the level-2 slopes as random is illustrated via the overlayed added
variable plots in Figure 7. These plots are very similar to those produced by Model 1.
Figure 8 displays the double residual plot for Model 2; the correlation between the two sets
of residuals is 0.968, once again very high.

Formally, Model 3 may be written as follows:

Mathij = ,Boj + SESijﬁlj + Whites/AsiansijBIj + rj;
where

Boj = Yoo + YorPublic; + ug;
Blj = Y0 -+ ’yllPUbliCj + Uy



150
30

100
20

50
10

0

Residual for Dependent Variabley

-a0
Residual for Dependent Variabley
0

=300 =20 -10

-1 ] 1 = -3 —= -1 o] 1 =
Residual for SES Resicdual for SES

Figure 7: Model 2: Overlayed added variable plots for Intercept and SES for NELS:88 data
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Figure 8: Double residual plot for Model 1

Maximum likelihood estimates for Model 3 were produced by Terrace-Two and are given in
Figure 9. The added variable plots and double residual plot cannot be produced for Model
3, since some of the schools possess singular level-1 design matrices and thus cannot produce
OLS estimates.”

Formally, Model 4 may be written as follows:

Mathij = ﬁ()j + SESijﬁlj + Whites/Asiansijﬁlj + Iij
where

ﬁoj = Yoo + ’y(nGSLunchj -+ Ugj
Bi; = 7o+ 711G8Lunch; + uy;

Maximum likelihood estimates for Model 4 were produced by Terrace-Two and are given in
Figure 10. Once again the added variable plots and double residual plot cannot be produced

"The singularity in the level-1 design matrices is a result of some of the schools having no variation in
the whites/Asians variable.



TERRACE-TWO: Full Maximum Likelihood Estimates

Parameters Estimates (S.E.) T
Intercept
By Intercept 46.0834¢ ( 1.6267) 28.3297
By Public 1.2385 ( 1.8191) 0.6808
Whites/Asians
By Intercept 8.2003 ( 1.8660) 4.3946
By Public -3.9427 ( 2.0197) -1.9521
BYSES
By Intercept 3.2610 ( 1.1523) 2.8299
By Public 0.7585 ( 1.2954) 0.5855

Sigma“2: 66.9927
Tau (covariance)

Intercept 8.0358 1.1934  1.2787

Whites/Asians 1.193¢ 0.2324 0.6973

BYSES 1.2787 0.6973  5.5541
Tau (correlation)

Intercept 1.0000 0.8733 0.1914

Whites/Asians 0.8733 1.0000 0.6138

BYSES 0.1914 0.6138  1.0000

Figure 9: Model 3 for NELS:88 data

TERRACE-TWO: Full Maximum Likelihood Estimates

Parameters Estimates (S.E.) T
Intercept
By Intercept 48.5284  ( 1.4064) 34.5043
By G8LUNCH -0.4304 ( 0.3180) -1.3534
Whites/Asians
By Intercept 5.3982 ( 1.4358) 3.7597
By GS8LUNCH -0.2125  ( 0.3354) -0.6335
BYSES
By Intercept 4.4992  ( 0.9094) 4.9476
By G8LUNCH -0.2392 ( 0.2366) -1.0108

Sigma~2: 67.0669
Tau (covariance)

Intercept 7.2827 1.3251 1.2838

Whites/Asians 1.3261  0.2613 -0.0315

BYSES 1.2838 -0.0315 4.4055
Tau (correlation)

Intercept 1.0000 0.9605  0.2267

Whites/Asians 0.9605 1.0000 -0.0294

BYSES 0.2267 -0.0294 1.0000

Figure 10: Model 4 for NELS:88 data

since some of the schools possess singular level-1 design matrices and thus cannot produce
OLS estimates.

There exist many ways in which these four candidate models may be compared. For
instance, one may rely on the asymptotic properties of the t-ratios and favor models with
more stable coefficient estimates. On the other hand, one may focus on the explained
variance at level-1 and level-2, choosing the model that has the lowest variance components.
As will be seen below, both of these methods quickly lead to confusion. Indeed, Snijders &
Bosker (1994) have shown that the addition of explanatory variables in the multilevel model
may actually lead to an increase in the estimates of level-2 variance components and have
proposed two candidates for measuring the explained or “modeled variance” at level-1 and
level-2.% Nevertheless, we discuss these models in such a manner to illustrate the difficult
problems encountered with respect to model selection with multilevel models with real data.
Next, we take a predictive approach to model selection and examine how well these models

8Briefly, their measures of modeled or explained variance at level-1 and level-2—R;?> and R»?,
respectively—are based on assessing the proportional reductions in mean squared prediction error. Although
they show that population values of R;? in correctly specified models becomes smaller when predictor vari-
ables are deleted, they also note that it cannot be proved in general that estimates of this quantity become
smaller when predictor variables are added. Thus, the undesirable possibility of negative values for R;? re-
mains. Although the formulae for estimating R;? and Ry? for random intercept models are straightforward,
they note that transferring these results to the general multilevel model is rather tedious.



perform predictively.

2.1 Model 1 versus Model 2

Recall that Model 1 is identical to Model 2 but for the fact that Model 1 has Public as
the level-2 variable and Model 2 has G8Lunch as the level-2 variable; both models have
student SES as the level-1 variable. With respect to estimation, Figures 3- 6 indicate that
the estimates of the fixed effects of G8Lunch are more stable than those for Public, for
both the fixed effects on the level-1 intercept and the fixed effects on the level-1 SES slope.
Indeed, the t-ratios for Public are small in magnitude for both the intercept and and SES
slope in Model 1. Furthermore, the intercept variance—my— is lower in Model 2 than in
Model 1, indicating that the variability of the level-1 intercept from school to school is
better explained by the level-2 variable G8Lunch than the level-2 variable Public; The SES
slope variance—ry;—is similar in both models. The estimated level-1 variance is similar in
both models and, as noted above, both models produce similar double residual plots. Thus,
although there are similarities in the fit of these two models, it would appear that Model 2
is a better model for the 50 schools under consideration.

2.2 Model 3 versus Model 4

Recall that Model 3 is identical to Model 4 but for the fact that Model 3 has Public as the
level-2 variable and Model 4 has G8Lunch as the level-2 variable; both employ student SES
and whites/Asians as the level-1 variables. Once again the estimates for the fixed effects
of G8Lunch are more stable than those for Public, both for the fixed effects on the level-1
intercept and level-1 SES slope. However, with respect to the level-1 whites/Asians slope,
the fixed effect for Public is more stable than that for G8Lunch, where both G8Lunch and
Public have the effect of reducing the level-1 whites/Asians slope, although only weakly
in the case of G8Lunch. In both models, the whites/Asians variable represents a positive
level-1 intercept shift for average mathematics score. Both models produce similar estimates
of level-1 and level-2 variance components. Thus, based on the level-1 and level-2 variance
estimates, it is questionable which of these models is better.

2.3 Model 1 versus Model 3

Although Model 1 and Model 3 utilize Public as the level-2 variable and SES as the level-
1 variable, Model 3 also uses the whites/Asians level-1 variable. The level-1 variance in
Model 3 is noticeably lower than that of Model 1. With respect to the level-2 variance
components, the estimated variance of the intercept increases and the estimated variance
of the SES slope decreases with the addition of the whites/Asians level-1 variable between
Model 1 and Model 3. The estimated variance of the whites/Asians slope is relatively small.
Although the Public variable does not seem important in Model 1, in Model 3 it possesses a
stable estimate with respect to the fixed effect on the level-1 whites/Asians slope, indicating
that the effect of the whites/Asians variable is lower in public schools. With respect to the
other level-1 variables, however, the level-2 Public variable is still weak. Although the
level-1 variance is reduced in Model 3, we have the problematic result of an increase in the
estimated variance for one of the level-2 coefficients.



2.4 Model 2 versus Model 4

Although Model 2 and Model 4 utilize G8 Lunch as the level-2 variable and SES as the level-1
variable, Model 4 also uses the whites/Asians level-1 variable. Once again, the larger model
produces a lower estimate of the level-1 variance and mixed results for the level-2 variance
components, where the estimated variance for the intercept increases and the estimated
variance for the SES slope decreases. The G8Lunch fixed effect on the level-1 intercept is
reduced in Model 4, both in magnitude and stability. In both models the G8Lunch effect
on the SES level-1 slope is small in magnitude and stability. The whites/Asians variable in
Model 4 seems to provide a better level-1 model.

In oder to improve upon the rudimentary model comparisons above, we apply a predictive
approach to these four models very similar to that approach of the various simulation studies.
Specifically, instead of focusing on coefficient estimates we examine how well these models
predict a future observable y,; in the jth group. To be sure, we no longer have any future
observables as in the simulations, for we have but one data set. Thus, we employ cross-
validation and bootstrapping schemes in order to mimic the process of predicting future
observables in an attempt to determine which of the various models produces the best
predictions.

3 Cross Validation

Recall that we have 50 schools and a variable number of students per school. One could
calculate the standard cross-validation leave-one-out estimate of prediction error given
earlier for the general case in equation 77 of Chapter ?7. This would entail summing
N = Z?il n; = 1152 squared elements, where the prediction of each observation is based
on the other N — 1 observations. To be sure, given the size and structure of the data set,
this would produce a result very similar to that produced by the ordinary residual sum
of squares where we do not perform a leave-one-out procedure. Moreover, this procedure
would entail cycling through every observation within every group. Instead, we propose
an approach that takes advantage of the data structure that need not cycle through every
observation within every group. Specifically, the algorithm is as follows:
Multilevel Cross-Validation

1. For each of the J schools, randomly select one observation.
2. Estimate the multilevel model with the remaining N — J observations.

3. Form the corresponding predictions and average sum of squared errors for the J se-
lected observations;

4. Go back to step 1.

5. Stop after m iterations and take the mean of the m average sum of squared errors,
i.e., the m predictive MSEs.

Note that this algorithm is similar in nature to that of the simulation studies where for
each simulated multilevel data set an additional J observations were simulated as future
observables. Here—since we no longer have the option of simulating data—we mimic this



procedure by selecting repeatedly selecting J observations and, in essence, designating these
as future observables. Several aspects of this algorithm are appealing. One, since the
students to be predicted are selected at random, different combinations of students from
the schools will be selected each time. For instance, although we may select a student from
the same school more than once, the students that will be selected along with that particular
student will certainly be different each time. Furthermore, by taking advantage of the data
structure in this manner we may get an assessment of prediction error by cycling through
the algorithm a relatively few number of times.® This is important since this reduces the
computing time because new model estimates must be produced for each set of predictions.
Indeed, how many times the algorithm is cycled can be varied by the user. Recall the well
known combinatoric results that if there are n; students per school we have ning---n;
possible combinations of students. For our current data set with J = 50 this number is
approximately 2.9 x 10°. To be sure, the algorithm may be cycled fewer times than this.

We apply this group cross-validation method to the four candidate models in order to
investigate which model(s) is best with respect to prediction. First, however, we calculate
the average sum of squared errors for all observations that is produced by the four models
when cross-validation is not employed—an underestimate of prediction error as discussed
earlier. As in the simulation studies, we shall refer to this quantify as predictive MSE.
Table 1 displays the results for the four models, seeming to divide the performance of the
models between the smaller (Models 1 and 2) and larger (Models 3 and 4) models, with
the models within each group performing similarly from this perspective. With respect to
predictive accuracy, the standard deviation of mathematics score across all of the schools
is 9.96830, and the magnitude of the prediction error (the square root of the terms in the
table) for all four models is less than this amount on average. To be sure, as with non-nested
data, were the estimates from these models applied to predict future data, the prediction
error would surely rise.

Model Predictive MSE
Model 1 | 66.6080
Model 2 | 66.6953
Model 3 | 63.5978
Model 4 | 63.7044

Table 1: Predictive MSE for the four models

Table 2 displays the estimates of predictive MSE produced via the cross-validatory al-
gorithm described above. The algorithm was iterated 100 times for each of the four models.
As expected, these numbers are greater than the corresponding numbers in Table 1 since
the observations being predicted were not used for model estimation. In addition, the re-
sults provide a differentiation between the models within the small and large model groups.

9 Another possible approach to taking advantage of the data structure would be a leave-one-group-out
approach instead of the leave-one-student-out-per-school approach. However, this approach presents serious
problems with respect to the calculation of level-1 coefficient estimates in the school that is left out. Although
a few approaches were investigated, none proved to be worth pursuing further. The leave-one-student-out
approach probably does not leave out enough of the data while leave-one-school-out approach leaves out
too much of the data.
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Specifically, it now appears that Model 2 is preferable to Model 1. Although in the model
comparisons above the t-ratios hinted at this, the estimates of variance components were
similar in both models. In addition, Model 3 now appears slightly better than Model 4,
whereas before the results were ambiguous as well. Figure 11 displays the distribution of
predictive MSE over the 100 iterations of the algorithm, where we form the average squared
error in predicting 50 randomly selected students each iteration. The side-by-side boxplot
provide the additional information that Model 2—although not nearly the best with respect
to its overall level of predictive MSE——clearly enjoys the advantage of being less variable
over the iterations.

Model Predictive MSE
Model 1 | 74.2009
Model 2 | 71.0282
Model 3 | 70.4985
Model 4 | 69.9195

Table 2: Cross validation PMSE for the four models

120

100

60

| 5

Figure 11: Distribution of Cross-validation PMSE for Models 1,2,3,4

40

In the results presented thus far we have not been concerned with the predictive perfor-
mance in the particular groups, as we have averaged over the 50 predictions of each iteration
to produce a single estimate of predictive mean square error. However, the performance of
the predictions according to school identification is often of interest. Thus, we suggest two
plots which may be formed from the output of the cross-validation algorithm which pro-
vide useful information about the particular groups. One provides information about the
accuracy of prediction while the other provides information about the degree to which the
multilevel model predictions differ from those produced via OLS.

11



The first plot examines the predictive accuracy within the groups over the iterations
of the cross-validation algorithm. Instead of averaging the predictions for the 50 selected
students each iteration, these values are retained and studied separately for each group. If
one performs 100 iterations of the original algorithm one will have 100 predictions for each
group and may examine the distribution of these predictions for the group. Figures 12- 15
display the distribution of the prediction errors over the 100 iterations for each of the 50
schools for each of the four models; we have chosen to plot the errors instead of the squared
errors to illustrate in which schools there is substantial over/under prediction occuring.

The second plot examines the degree to which the multilevel model predictions differ
from those of OLS. One may view the predictions formed via the multilevel model as predic-
tions that are translated from the predictions which would have been formed via OLS. The
difference between the multilevel prediction and the OLS prediction measures the amount
of translation. Accordingly, one may examine the distribution of the translations over the
100 iterations of the cross-validation algorithm for each of the 50 schools. This illustrates
which schools have their predictions translated the most. However, we only present this
distribution for Models 1 and 2, since the OLS prediction were not obtainable for Models 3
and 4. These plots for Models 1 and 2 are presented in Figures 16- 17.

4 Bootstrapping

A bootstrapping approach to assessing predictive performance may also be employed, draw-
ing upon the bootstrapping results from the simulation studies. Recall that in the previous
section we first calculated the average sum of squared errors produced by the four models on
the original data, noting that this would be an underestimate of prediction error since the
test sample and training sample are identical. The cross-validation algorithm was offered
as a means of mimicking the predictive process that was studied in the simulations. Now,
we offer the following bootstrap approach:
Multilevel Bootstrap

1. Set aside the original data.

2. Bootstrap the original data in the following manner: sample n; student with replace-
ment from each of the J schools.

3. Estimate the multilevel model using the bootstrap sample.

4. Form the predictions for all of the original data employing the coefficients obtained
from the bootstrap sample.

5. Calculate the average sum of squared errors.
6. Go back to Step 2.

7. Stop after m iterations and take the mean of the m average sum of squared errors.

12



Figure 12: Model 1: Distribution of prediction errors in the 50 schools
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Figure 13: Model 2: Distribution of prediction errors in the 50 schools
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Figure 14: Model 3: Distribution of prediction errors in the 50 schools
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Figure 15: Model 4: Distribution of prediction errors in the 50 schools
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As with the cross-validation algorithm, this approach is appealing for several reasons.
One, it better simulates the process of actual predictions since the bootstrap samples will
be different from the original sample. Two, the user may alter the number of bootstrap
samples. Indeed, given the structure of the data and the manner in which the bootstraps
are taken, there exists a very large number of possible bootstrap samples even for data
sets with a small number of groups.!’ Recall that for the cross-validation approach above
there exists mins ---ny choices for the students to be predicted each iteration. Now, for
the bootstrap approach the students to be predicted remain the same each iteration, while
the sample producing the coefficient estimates changes each iteration.!’ Also note that for
the cross-validation approach we are making only J predictions each iteration while for the
bootstrap approach we are making N = E;Zl n; predictions each iteration, i.e., the entire
original data set is being predicted.

Table 3 displays the estimates of predictive MSE produced via the bootstrap algorithm
described above. The algorithm was iterated 100 times for each of the four models. As ex-
pected, these numbers are greater than the corresponding numbers in Table 1 since we use
bootstrap samples for estimation rather than the original data. With regard to model selec-
tion amongst the four models, the results of the bootstrap approach would lead to the same
ordering of the four models as that from the cross-validation approach. For instance, Mod-
els 3 and 4—which contain the whites/Asians level-1 variable—clearly outperform Models
1 and 2 over the 100 iterations. The distinction between Models 1 and 2 and the distinction
between Models 3 and 4 that was provided by the cross-validation approach, however, is
now barely noticeable with the bootstrap approach.'? Figure 18 displays the distribution of
predictive MSE over the 100 iterations of the algorithm, where we form the average squared
error in predicting the original data from a bootstrap sample each iteration. The lower
variability in prediction for Model 2 in the cross-validation approach that was illustrated in
Figure 11 does not appear in Figure 18 with respect to the bootstrap approach. However,
Figure 18 illustrates how the distinction between Models 3 and 4 over Models 1 and 2 is
now stronger. Thus, it seems that the boostrap approach provides more information in dis-
tinguishing between our groups of models while the cross-validation approach was slightly
better with respect to distinguishing within the groups of models.

Model Predictive MSE
Model 1 | 67.1643
Model 2 | 67.1008
Model 3 | 65.6405
Model 4 | 65.4784

Table 3: Bootstrap PMSE for the four models

10Note that for data sets with few students per schools, this method runs the risk of producing bootstrap
samples where some of the schools have singular level-1 design matrices, e.g., when the same student is
selected n; times in a particular school for the bootstrap sample. Although this problem was encountered
in the simulations studies it was not a factor with the NELS:88 data.

1 To be sure, the sample producing the coefficient estimates changes from iteration to iteration in the
cross-validation approach as well, but in a much less corruptive manner than in the bootstrap approach
since only J observations are removed and the remaining N — J observations are part of the original data.

12Tt could be that the bootstrap approach requires a greater number of iterations; more on this later.
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Figure 18: Distribution of Bootstrap PMSE for Models 1,2,3,4

We consider a minor alteration to this bootstrapping method in order to illustrate an
approach to a more specific prediction problem. Suppose we are interested in a fixed group
of students from our original data set of fifty schools; say we are interested in one student
per school and thus 50 students. The predictive performance of the four respective models
may be examined with respect to predicting these particular 50 students. The bootstrap
algorithm used to investigate this problem is identical but for the fact that the predictions
are made only for these fifty students each iteration and these fifty students are not available
for the bootstrap samples. Formally, the algorithm is as follows:

1. Randomly select one student per school and remove these from the original data.
These are the 50 students of interest; one may view them as 50 incoming students for
which predictions are desired.

2. Estimate the model on the remaining N — J observations and form the predictions
and corresponding squared errors for the 50 students and take the average of these
50 squared errors. This represents the initial estimate of predictive MSE for these
students.

3. Bootstrap the N — J observations in step 2 and repeat step 2. This is a bootstrap
estimate of predictive MSE for these 50 students.

4. Stop after m iterations of Step 2 and take the average of the m estimates of predictive
MSE. Compare this to the result of Step 2.

Table 4 displays the initial estimates of predictive MSE for a randomly selected group
of 50 students from the 50 schools.!> Once again the models separate into two groups, but

13The fifty students possessed the following characteristics: 35 of the students where white or Asian, the
rest non-white/Asian; the average mathematics score was 52.4940, compared to a value of 50.8195 for the
remainder of the data. The average SES of the 50 selected students was -0.0367, compared to an average
SES of -0.06042 for the remainder of the data.
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notice that for these particular students Model 4 outperforms Model 3 slightly, at least
based on this one data set. Table 5 displays the estimates of predictive MSE for these 50
students produced via the bootstrap algorithm described above. The algorithm was iterated
100 times for each of the four models. With respect to model selection, the ordering of the
models is now restored, where we prefer Model 4 over Model 3. This demonstrates the
caution that should be applied to the predictions from the original sample, even if the
observations to be predicted are omitted from this original sample.

Model Predictive MSE
Model 1 | 71.9280
Model 2 | 71.1016
Model 3 | 57.9067
Model 4 | 58.0071

Table 4: Initial estimates of PMSE for 50 students

Model Predictive MSE
Model 1 | 72.6800
Model 2 | 72.3947
Model 3 | 60.2810
Model 4 | 60.0361

Table 5: Bootstrap estimates of PMSE for 50 students

As with the cross-validation algorithm, the output from the bootstrap algorithm may
be used to study different items of interest. For instance, instead of viewing the fixed 50
students as a group, one may be interested in predicting a particular student. Thus, instead
of averaging the predictions for these 50 students each iteration, these values are retained
and studied separately for each student. If one performs 100 iterations of the original
algorithm, one will have 100 predictions for each student and may examine the distribution
of these predictions for this student. Figures 19- 22 display the distribution of the prediction
errors over the 100 iterations for each of the 50 students for each of the four models; once
again we have chosen to plot the errors instead of the squared error to illustrate for which
students there is substantial over/under prediction occuring. To be sure, these results are
somewhat specific to the students we have selected, but nevertheless the algorithm and
resulting plot illustrates an approach to gauging the predictions for a particular student via
bootstrapping.
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Figure 19: Model 1: Distribution of prediction errors for 50 students
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Figure 20: Model 2: Distribution of prediction errors for 50 students
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Figure 21: Model 3: Distribution of prediction errors for 50 students
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Figure 22: Model 4: Distribution of prediction errors for 50 students

18



5 Summary

The model selection criteria presented in this article, multilevel cross-validation and multi-
level bootstrap, are useful with respect to assessing the predictive ability of candiate models
applied to the NELS:88 data. Moreover, they both adhere to the predictive perspective
followed in our earlier study. The two suggested plots, error plot and translation plot,
capture several important aspects of the prediction process. Specifically, the error plot in-
dicates whether certain schools exist in our NELS:88 sub-sample for which the predictions
are particularly good or bad. The translation plot assesses how much the predictions of the
multilevel method differ from those of the OLS method, i.e., how far the predictions are
translated. These issues are especially salient from a substantive perspective. For instance,
for graduate admissions data where one is attempting to predict the future performance of
applicants, the use of translated or shrinkage predictors has the potential for controversy
and thus requires careful study. To be sure, the NELS:88 data set considered in this arti-
cle is but one data set; such methods need to be applied to many datasets before we can
unequivocally endorse them.
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