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Rumen and lower gut microbiomes 
relationship with feed 
efficiency and production 
traits throughout the lactation 
of Holstein dairy cows
Hugo F. Monteiro1, Ziyao Zhou2, Marilia S. Gomes3, Phillip M. G. Peixoto4, 
Erika C. R. Bonsaglia1, Igor F. Canisso3, Bart C. Weimer1 & Fabio S. Lima1*

Fermentation of dietary nutrients in ruminants’ gastrointestinal (GI) tract is an essential mechanism 
utilized to meet daily energy requirements. Especially in lactating dairy cows, the GI microbiome 
plays a pivotal role in the breakdown of indigestible plant polysaccharides and supply most AAs, 
fatty acids, and gluconeogenic precursors for milk synthesis. Although the contribution of the 
rumen microbiome to production efficiency in dairy cows has been widely researched over the years, 
variations throughout the lactation and the lower gut microbiome contribution to these traits remain 
poorly characterized. Therefore, we investigated throughout lactation the relationship between the 
rumen and lower gut microbiomes with production efficiency traits in Holstein cows. We found that 
the microbiome from both locations has temporal stability throughout lactation, yet factors such 
as feed intake levels played a significant role in shaping microbiome diversity. The composition of 
the rumen microbiome was dependent on feed intake. In contrast, the lower gut microbiome was 
less dependent on feed intake and associated with a potentially enhanced ability to digest dietary 
nutrients. Therefore, milk production traits may be more correlated with microorganisms present in 
the lower gut than previously expected. The current study’s findings advance our understanding of the 
temporal relationship of the rumen and lower gut microbiomes by enabling a broader overview of the 
gut microbiome and production efficiency towards more sustainable livestock production.

Ruminants are unique animals capable of harvesting the most from complex nutrients that humans cannot 
digest1. This unique characteristic of ruminants comes from their symbiosis with the GI tract microbiomes 
(rumen and lower gut microbiomes)2. Specifically, in cattle, these two microbiomes ferment dietary nutrients 
and deliver to the host as much as 70% of their energy and 90% of their daily protein requirements for body 
maintenance, growth, production, and reproduction3–5. Interestingly, dairy cattle vary in their efficiency of 
obtaining nutrients from the diet. Moderate heritability has partially explained this variability in feed efficiency 
(h2 = 0.36 ± 0.06)6. Thus, given the importance of the GI tract fermentation of livestock, several studies have 
achieved considerable progress in understanding the relationship of the GI tract microbiome with the produc-
tion efficiency of ruminants1,7–11.

In beef cattle and lambs, for instance, microorganisms throughout the GI tract have been associated with feed 
efficiency, sometimes even being considered as important as those in the rumen10,11. For dairy cows, most studies 
have focused on understanding the rumen microbiome relationship with production efficiency and not on the 
whole GI tract microbiome as in other species1,7–11. The rumen is, in fact, an essential contributor to production 
efficiency, being the primary fermentation site in ruminants and a pre-absorptive site in the GI tract12. However, 
the lower gut microbiome contributes to almost 10% of the total metabolizable energy intake of dairy cows by 
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further fermenting nutrients that escape degradation and absorption in previous compartments of the GI tract. 
Thus, considering the daily energy requirements of lactating dairy cows, other compartments of the GI tract 
may also play an essential role in the production potential of these animals13. Despite previous studies reporting 
the association of rumen microorganisms to production efficiency14,15, associations of the lower gut microbiome 
with the production potential of dairy cows have not been much explored. Although studies demonstrated vari-
ability in rumen microbiome between dry and lactating dairy cows15, these stages of a dairy cow cycle represent 
significant differences in diets that often do not occur throughout lactation.

Therefore, we hypothesized that the integration of rumen and lower gut microbiomes throughout lactation 
would have greater association with feed and milk production efficiency in Holstein dairy cows than the rumen 
microbiome alone. To test this hypothesis, we characterized the rumen and lower gut microbiomes throughout 
the lactation of primiparous Holstein cows and their associations with feed and milk production efficiency. 
Herein, we demonstrated an important relationship of the lower gut microbiome throughout lactation with feed 
efficiency and the milk production potential of dairy cows.

Results and discussion
Dairy cows in the study had on average 33,339 ± 9193 sequence reads identified from their rumen and 
44,619 ± 11,983 sequence reads from their lower gut microbiomes following the DADA2 denoising pipeline. 
From these sequence reads, a total of 7825 amplicon sequence variants (ASVs) were identified in the rumen, and 
3627 ASVs were identified in the lower gut after taxonomy assignment. Although absolute values of diversity 
indices may vary based on several factors (e.g. sequencing depth), total ASVs found in both microbiomes showed 
greater diversity (P < 0.001) in the ruminal fluid compared to the feces.

Other studies also reported greater diversity in the rumen than the lower gut microbiome16,17, and a similar 
trend has been reported in the pre-weaning period of Holstein calves18. The greater diversity of microorgan-
isms in the rumen may be expected because of the wider variety of substrates available for fermentation in this 
organ that represent ~ 50% of the GI tract in cattle19,20. However, a lower concentration of microorganisms in 
the rumen may also be expected because of a possible faster passage rate of digesta there than in the lower gut, 
which may increase the dilution rate of a media considering that consumption tends to be consistent in dairy 
cows19,21. From a lower gut perspective, these findings align with our hypothesis. A lower variety of substrates 
available for fermentation in the lower gut may lead to a lower diversity of microorganisms growing in the 
media19,22,23. Therefore, more specialist and not generalist microorganisms may thrive under a lower diversity 
of nutrients23. A decrease in genetic variation should be further explored in future studies as this would allow a 
more direct association of these microorganisms with production traits related to undigested dietary nutrients, 
such as production efficiency. Furthermore, a potential greater retention of digesta suggest that the lower gut 
may be an important site contributing to fermentation in the GI tract of ruminants and a significant player of 
feed and production efficiency in dairy cows.

Effects of the day of lactation on rumen and lower gut microbiomes.  One of the primary goals 
of the current study was to investigate the rumen and lower gut microbiomes shifts throughout the main stages 
of lactation to test our hypothesis. No major effects of lactation day other than a non-statistical apparent differ-
ence for day 7 in the lower gut were observed in both microbiomes for alpha and beta-diversity indexes (Table 1 
and Fig. 1). There was no association between the day of lactation with any of the variables tested in the rumen 
and lower gut microbiomes. Of interest, early lactation has been reported to be a period of disturbances in the 
lower gut microbiome16. Specifically, a study evaluating the fecal microbiome differences between days 1 and 
14 of lactation recorded changes over time at the phylum and genus level16. Using 16S rRNA gene sequenc-
ing, the authors reported most of the changes to be likely associated with a decrease bacteria genera (Bacillus, 
Clostridium_sensu_stricto_1, Clostridium_sensu_stricto_6, Escherichia-Shigella, Klebsiella, and Staphylococcus) 
that could be a source of pathogenic strains until day 14, suggesting that differences in the lower gut microbiome 
could be linked to an improvement in overall lower gut health as lactation progressed.

Regarding the rumen microbiome, most structural changes are expected earlier in the ruminant life, especially 
between birth and weaning18. Indeed, it has been reported that microbial and functional changes extensively 
happen towards the ones found in mature ruminants during the pre-weaning period. However, when it comes 
to the variation of the rumen microbiome and its functionality in adult ruminants, such as those during a dairy 
cow’s lactation, stability is observed, and a limited day-to-day variation across early, middle and late lactation 
happens instead24. Thus, our results support the hypothesis that the rumen and lower gut microbiomes of first 
lactation Holstein dairy cows are resistant to changes throughout lactation. Thus, the sampling day should not 
affect the outcome of interest if the animal is under similar dietary and environmental conditions.

The association of the rumen and lower gut microbiomes with feed efficiency.  To test the 
hypothesis that the integration of the rumen and lower gut microbiomes would have greater association with effi-
ciency variables in dairy cows than the rumen microbiome alone, we investigated associations of the rumen and 
lower gut microbiomes with the feed consumption of these animals. Here, dry matter intake (DMI kg/d) was 
used to measure feed consumption by the cows. Cows consuming higher DMI did not significantly differ in the 
alpha-diversity index (P > 0.05) for their rumen and lower gut microbiomes compared to those in the lower-end 
ones (Supplementary Fig. 1). For beta-diversity, there was a significant association of the level of consumption 
with the rumen and lower gut microbiomes (Fig. 2; P = 0.01 and P = 0.001, respectively). Interestingly, rumen fill 
is one of the major mechanisms regulating feed consumption25, suggesting microorganisms in the rumen may 
also contribute to regulating feed consumption. In our study, cows consuming higher DMI had a greater ruminal 
relative abundance of Ruminococcus_gauvreauii_group, while the greater ruminal relative abundance of How-
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ardella was associated with lower DMI levels. Ruminococcus_gauvreauii_group is a fibrolytic bacterium26 that 
may contribute to an enhanced fermentation of fiber in the rumen, thus, allowing a faster turnover of ruminal 
digesta and feed consumption in cattle. On the other hand, Howardella is an ureolytic bacteria27, suggesting an 
increase in the recycling of ruminal urea may happen in these cows due to decreased feed consumption. The lat-
ter represents a lower protein intake by the cow compared to the other group, which may increase the recycling 
of urea to the rumen and the growth of microorganisms associated with its degradation. These extreme examples 
in both cases show how ASVs could perhaps be used as indicators of production traits in ruminants, warranting 
further research. Furthermore, because DMI level is one of the significant drivers of milk production (kg/d), all 
the parameters evaluated from here on were based on the correction of the DMI level to avoid the confounding 
effect of this variable (Table 1; feed and production efficiency).

The association of residual feed intake (RFI), which is a measure of feed efficiency, with the rumen and lower 
gut microbiomes was first assessed. The residuals of feed intake were obtained from the difference between the 
predicted and the observed DMI of the cows throughout the study28. Here, an association of rumen and lower 
gut microbiomes was observed with cows that were classified as the least or most efficient based on their RFI 
values (Table 1). Such associations are displayed for the rumen and the lower gut in Figs. 3 and 4, respectively. 
An association of both microbiomes with RFI in beef cows has been reported10, and herein we identified a similar 
relationship in lactating Holstein cows. Therefore, by using the lower gut microbiome instead of the rumen to 
provide insights on RFI, more non-invasive strategies could emerge to access the production potential of lactat-
ing dairy cows. Furthermore, it is well established that the lower gut, cecum, and fecal microbiomes are similar 
in ruminants, which emphasizes the importance of utilizing these sites as strategies to avoid invasive sampling 
protocols when evaluating their production efficiency10.

Core microbiomes (set of microorganisms characteristic of a phenotype29) were characterized based on ASVs 
associated with RFI or with each of the variables used to calculate RFI [DMI (kg/d), metabolic body weight 
(MBW kg), NEL secreted in the milk (NESec Mcal/d), and body energy changes (BEC Mcal/d)]. The latter 
integrated core microbiome was more diverse than the core generated by ranking the cows according to only 
RFI. Thus, the relationship of the integrated core microbiome for RFI was explored using the rumen and lower 
gut microbiomes. These RFI variables were also corrected by DMI to avoid the confounding effect from feed 
consumption. Except for the lack of association of the lower gut microbiome with MBW after the correction for 
DMI, all other RFI variables (corrected for DMI) had associations with both microbiomes throughout lactation 
(Figs. 3 and 4). To our knowledge, this is likely the first study reporting these associations. Together, these core 
microbiomes may better explain differences in the harvesting efficiency of the cows. Understanding the microor-
ganisms associated with greater uptake of nutrients in the GI tract may help improve the predictability of DMI.

Table 1.   Permutational multivariate analysis of variance (PERMANOVA) to test associations of production 
efficiency variables in first lactation Holstein cows.

Item

P-Values

Rumen Lower Gut

Day 0.84 0.29

DMI, kg/d < 0.01 < 0.001

Milk production, kg/day

ECM < 0.01 < 0.001

Milk fat < 0.001 < 0.01

Milk lactose < 0.001 < 0.01

Milk protein < 0.001 < 0.001

Feed efficiency

Residual feed intake, RFI 0.04 0.04

RFI variables

 MBW, kg < 0.001 < 0.001

 BEC, Mcal/d < 0.001 0.26

 NESec, Mcal/d < 0.01 < 0.001

RFI variables, unit/kg DMI

 MBW 0.01 0.19

 BEC 0.03 0.01

 NESec < 0.001 < 0.001

Production efficiency, kg/kg DMI

Energy-corrected milk, a.k.a. GFE 0.18 < 0.01

 Milk fat 0.12 0.03

 Milk lactose 0.30 0.19

 Milk protein 0.49 < 0.01
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The association of the rumen and lower gut microbiomes with milk production efficiency.  The 
second part of our hypothesis explored the integration of the rumen and lower gut microbiomes to test if both 
site together would have a greater association with milk production efficiency  than the rumen microbiome 
alone. First, we investigate associations of the rumen and lower gut microbiomes with the output of products 
[(e.g., energy-corrected milk (ECM kg/d)] by dairy cows; labeled here as production traits. Cows producing 
higher ECM within the group of animals enrolled in the study did not differ in alpha-diversity indexes for their 

Figure 1.   Effects of the day of lactation on alpha- (Chao, Inverse Simpson, and Shannon) and beta-diversity 
indexes from the rumen and lower gut microbiomes in first lactation Holstein cows. Permutational multivariate 
analysis of variance (PERMANOVA) was calculated using the Bray–Curtis method and used to test dispersion 
centroids in the principal coordinate analysis (PCoA). Significance was declared at P ≤ 0.05; however, no 
significant differences were observed for any diversity index.
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rumen and lower gut microbiomes (data not shown). However, for beta-diversity, there was an association of 
production of milk components reported here as milk fat, lactose, and protein yield with both microbiomes 
(Table 1). Previous studies also found an association of the rumen microbiome with production traits during 
the lactation of dairy cows8,15,30. Specifically, in the study by Lima et al.15, the rumen microbiome accurately pre-
dicted milk production even when rumen samples were collected in the prepartum period (adjusted R2 = 0.82 
for first lactation cows). Here, we showed the lower gut microbiome is also associated with these production 
traits of dairy cows, which may bring advantages over the rumen microbiome due to a less invasive sampling 
procedure for feces.

Furthermore, ECM and milk components (e.g., milk fat kg/d) were also corrected for DMI to evaluate if 
the rumen and lower gut microbiomes could be associated with the efficiency in producing those outputs. 
Interestingly, despite previous studies reporting an association of ruminal microorganisms with production 
efficiency1,8,30, the lower gut microbiome in the current study had a better association with production traits than 
the rumen microbiome (Table 1). Among the production traits measured in this study, the lower gut microbiome 
of cows grouped based on milk production efficiency was the most distinct of the PCoA and PERMANOVA 
analyses (Fig. 5). A possible explanation may be related to undigested dietary nutrients reaching the large intes-
tine, which is likely one of the major factors determining the microbial community composition of the GI tract 
of these animals31,32. Cows with lower efficiency in producing ECM, milk fat, and milk protein from the same 
amount of substrate consumed (i.e., DMI) may have more undigested nutrients reaching the large intestine and 
likely have more microorganisms associated with these nutrients.

Figure 2.   Beta-diversity analyses in the rumen and lower gut microbiomes between first lactation Holstein 
cows with different levels of dry matter intake (DMI; kg/d). (A) Principal Coordinate Analysis (PCoA) and 
permutational multivariate analysis of variance (PERMANOVA) in the cows grouped by dry matter intake; 
Significance was declared at P ≤ 0.05. (B) Linear discriminant analysis of effect size (LEfSe) using Kruskal–
Wallis, Wilcoxon, and linear discriminant analyses to detect microorganisms associated with different levels 
of DMI (kg/d); ASVs significant in all three tests displays a LDA score > 2.0, and the remaining ASVs were 
significant in at least two other tests.
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Figure 3.   Beta-diversity analyses from the rumen microbiome of first lactation Holstein cows differing in 
residual feed intake (RFI): (A) Principal Coordinate Analysis (PCoA) and permutational multivariate analysis 
of variance (PERMANOVA) in the cows grouped by RFI; Significance was declared at P ≤ 0.05. (B–D) Linear 
discriminant analysis of effect size (LEfSe) using Kruskal–Wallis, Wilcoxon, and linear discriminant analyses 
to detect microorganisms associated with RFI variables corrected for DMI (kg/d) [(B) metabolic body weight, 
MBW; (C) body energy changes, BEC; and (D) net energy secreted in the milk, NESec]. Amplicon sequence 
variants significant in all three tests display a LDA score > 2.0, and the remaining ASVs were significant in at 
least two other tests.
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There is also the possibility of cows with higher efficiency in producing milk and its components to have 
greater efficiency in extracting more out of undigested nutrients reaching the large intestine, which would 
enhance the overall energy extracted from dietary nutrients. Previous studies focusing on the rumen microbiome 
show that when Holsteins cows are fed high-forage diets, more microorganisms associated with carbohydrate-
active enzymes (CAZymes) are present in the rumen33. These enzymes are associated with enhanced cellulose, 
hemicellulose, and pectin degradation34,35, which are likely the major nutrients reaching the lower gut of rumi-
nants. In our study’s LEfSe analysis for the lower gut microbiome, which shows ASVs primarily associated with 
each efficiency group (least vs. most efficient; Fig. 4), we observed an increase of fibrolytic bacteria in animals 
more efficient in producing milk and milk protein. The major difference was the increase in Fibrobacter and 
Eubacteria Ruminantium, which, if metabolically displayed CAZymes activity, could confirm such a mechanism 
of improved efficiency.

Except for milk fat production efficiency that had most ASVs associated with this trait being from the least 
efficient animals, these findings suggest a possible link between the balance of ASVs associated with the most and 
least efficient animals, as shown in the LEfSe analysis. Cows with lower efficiency in producing milk, milk fat, and 

Figure 4.   Beta-diversity analyses from the lower gut microbiome of first lactation Holstein cows differing in 
residual feed intake (RFI). (A) Principal Coordinate Analysis (PCoA) and permutational multivariate analysis 
of variance (PERMANOVA) in the cows grouped by RFI; Significance was declared at P ≤ 0.05. (B,C) Linear 
discriminant analysis of effect size (LEfSe) using Kruskal–Wallis, Wilcoxon, and linear discriminant analyses to 
detect microorganisms associated with RFI variables corrected for dry matter intake [(B) body energy changes, 
BEC; and (C) net energy secreted in the milk, NESec]. Amplicon sequence variants significant in all three tests 
display a LDA score > 2.0, and the remaining ASVs were significant in at least two other tests.
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Figure 5.   Beta-diversity analyses from the lower gut microbiome of first lactation Holstein cows differing in 
production efficiency (kg/kg DMI). (A) Principal Coordinate Analysis (PCoA) and permutational multivariate 
analysis of variance (PERMANOVA) in the cows grouped by milk production efficiency; Significance was 
declared at P ≤ 0.05. (B–D) Linear discriminant analysis of effect size (LEfSe) using Kruskal–Wallis, Wilcoxon, 
and linear discriminant analyses to detect microorganisms associated with production efficiency variables 
[(B) efficiency of producing energy-corrected milk, ECM; (C) efficiency of producing milk fat, MFE; and (D) 
efficiency of producing milk protein, MPE]. Amplicon sequence variants significant in all three tests display a 
LDA score > 2.0 and the remaining ASVs were significant in at least two other tests.
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milk protein had a greater overall lower gut relative abundance of Fusobacterium, Ruminococcaceae UCG-001, 
and Actinobacteria. Interestingly, Fusobacterium was negatively associated with all production efficiency traits in 
the lower gut microbiome. Species of Fusobacterium, such as Fusobacterium necrophorum, have been reported 
to present in higher abundance in cattle fed diets rich in grain36, which aligns with our findings suggesting that 
more efficient animals are likely to have more undegraded substrates reaching the lower gut. In other words, 
least efficient animals are likely to have more highly fermentable carbohydrates reaching the lower gut, possibly 
due to lower efficiency in processing these nutrients in previous compartments of the GI.

Correlation of the lower gut microbiome with feed intake and production efficiency in dairy 
cows.  One of the dairy industry’s most significant challenges is finding alternatives that make a dairy herd 
more profitable by optimizing the conversion of the feed offered to the cows into high-quality milk. Therefore, 
the last goal of our study was to quantify the contribution of the rumen and lower gut microbiomes to the cur-
rent standard calculation of feed intake and production efficiency in dairy cows. Our results show the ASVs 
associated with the efficiency of each RFI variable in both the rumen and lower gut microbiomes explain a sig-
nificant part of the variation in DMI (kg/d; Fig. 6). The original equation used to calculate DMI was considerably 
improved as the rumen and lower gut microbiomes were added to the equation. The final calculated integration 
containing the original variables used to calculate DMI and the associated ASVs from the rumen and lower gut 
microbiomes accounted for a high variability in its equation (adjusted R2 = 0.52 to 0.82, respectively).

Regarding the efficiency of these cows to produce ECM, milk fat, and protein, a regression using the bacte-
ria from the lower gut microbiome associated with each variable was performed and is summarized in Fig. 7. 
Although the contribution of the lower gut microbiome composition to the efficiency of milk and milk fat 
production was low (adjusted R2 = 0.09 for both variables), the lower gut microbiome moderately explains the 
variability in milk protein production efficiency (adjusted R2 = 0.38). The latter correlation likely follows a similar 

Figure 6.   Correlation of dry matter intake with the rumen and lower gut microbiomes as well as the overall gut 
microbiome of lactating dairy cows. Regression was based on the original equation used for residual feed intake 
(RFI), followed by equations using the ASVs associated with the variables from the RFI equation corrected by 
dry matter intake (DMI; kg/d) from either the rumen or lower gut microbiomes, and equations integrating the 
RFI variables with the ASVs associated with RFI variables corrected by DMI (kg/d) from both the rumen and 
lower gut microbiomes. Significance was declared at P ≤ 0.05.
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pattern explained earlier for the ASVs associated with the efficiency traits. The microorganisms present in the 
lower gut give a general overview of the nutrient digestibility in previous compartments of the GI tract20. More 
efficient animals are likely to produce more short-chain fatty acids and microbial protein production in the 
rumen from highly fermentable carbohydrates fermentation1,8. Because these end-products of fermentation 
are directly associated with greater milk production20,37, the decrease of these nutrients reaching the lower gut 
allows the growth of microorganisms linked to more undigested nutrients; subsequently, creating the link with 
production efficiency.

Prediction of host-phenotypes based on the GI microbiomes has been targeted in several human disease 
studies38–40. Here, we sought to shed light on this topic in dairy cows by using the whole microbiome associated 
with the respective production traits to assess their contribution in the variability of feed efficiency. Previous 
studies investigating the ruminant gut microbiome evaluated the association of specific microorganisms with 
production traits1,7,8. In contrast, we used the whole core microbiome in the current study to understand their 
overall contribution to such traits. Because previous Bos indicus studies in beef cattle had reported an associa-
tion of the lower gut microbiome with feed efficiency10, we investigated and observed a similar association in 
dairy cows. Future studies need further investigate the lower gut as a critical fermentation site contributing to 
ruminants’ feed and production efficiency.

Overall, the rumen and lower gut microbiomes of the first lactation Holstein cows were stable over the main 
stages of lactation. Although we also observed associations of production traits with both microbiomes as in 
previous studies, these were weaker after correcting these variables for feed intake. This study shows a greater 
association of the lower gut microbiome of dairy cows with the efficiency of milk, milk fat, and milk protein 
production. These associations may be due to the nutrients reaching the lower gut of these animals and potential 
greater ability of these microbiomes in harvesting more of such nutrients in the lower gut. The most remarkable 
association found in the lower gut microbiome was milk protein production efficiency. Interestingly, integrating 
the core rumen and lower gut microbiomes associated with feed efficiency considerably increased the accounted 
variability in feed intake. This study clarifies significant drivers of production efficiency in ruminants and may 
guide future research towards more sustainable livestock production.

Materials and methods
Experimental procedures were approved by the University of Illinois at Urbana-Champaign Institutional Animal 
Care and Use Committee (IACUC; protocol #15200). All ARRIVE and IACUC guidelines and regulations were 
followed during the entire duration of the study. Eighteen first lactation Holstein dairy cows from the same 
cohort with mean body weight (BW) of 553 ± 32 kg were enrolled in this longitudinal study right after calving. 
All cows were housed in the same tie-stall barn at the Dairy Unit, Department of Animal Science, University of 
Illinois Urbana-Champaign. Each individual allowed feedbunk separation for feed intake measurements. Cows 
were fed once a day, and feed was pushed forward 4–6 times a day. All animals had free access to feed and water 
throughout the study.

Experimental design and sampling procedure.  Rumen and fecal samples were collected on days 7, 21, 
50, 90, and 130 of lactation. These days were chosen to represent the rumen and the lower gut microbiome of 
the cows to respectively represent parturition, end of the transition period (3 weeks before and after calving), the 
peak of lactation (milk volume kg/d), the peak of DMI (kg/d), and mid-to end-of lactation periods.

Feed intake, body weight, body condition score, and milk yield were measured daily throughout the study. 
Samples of the total mixed ration, orts, and dietary ingredients were collected daily and analyzed for dry matter 
and N concentration following AOAC41,42. Milk yield was recorded daily using an Alpro Milk point controller 780 
(DeLaval, Kansas City, MO, USA) and retrieved using a standard commercially available software (DairyComp 
305, Tulare, CA, USA). Milk samples were collected weekly from daily milking times (0500 and 1700 h) and 
analyzed for fat, lactose, and true protein by infrared analysis (AgSource, Verona, WI, USA).

Figure 7.   Correlation of the lower gut microbiome with each associated milk production efficiency trait (kg/
kg of DMI) in the linear discriminant analysis of effect size (LEfSe). Associated traits were milk production 
efficiency (ECM/DMI), milk fat production efficiency (MFE), and milk protein production efficiency 
(MPE). Significance was declared at P ≤ 0.05.
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An oro-ruminal sampling device was used to collect rumen content samples 3–4 h after the morning feed-
ing time43. Briefly, a vacuum pump equipped with a glass container was connected to a probe of approximately 
200 cm in length and 2.5 cm in diameter before being used. The probe was inserted orally and then passed 
through the esophagus to reach the cow’s rumen. Rumen content was collected through building vacuum pres-
sure in the probe. The first 100 mL were discarded to avoid contamination of rumen contents with esophageal 
components, such as saliva and mucus. Then, 500 mL of rumen content were collected, 50 mL of the content was 
immediately frozen in liquid nitrogen for further analysis. The pH was measured with a portable pH meter in 
the remaining content. Fecal samples were collected directly from the rectum using a gloved hand at the same 
time points of rumen sampling to characterize the lower gut microbiome profile. Immediately after collection, 
~ 100 g of feces was frozen for further analysis. Both rumen and fecal samples were stored in a − 80 °C freezer 
until microbial isolation, DNA extraction, and sequencing were performed.

DNA extraction, library preparation, and sequencing.  Extraction of microbial genomic DNA was 
done similarly to that previously reported15. Briefly, bacteria were isolated from the rumen and fecal samples 
by thawing the samples at 4  °C and subsequently centrifuging them for 10  min at 16,000 RCF in a DNase-
free microcentrifuge tube. The supernatant was discarded, and the pellet resuspended in nuclease-free water. A 
QIAamp Stool DNA Extraction Mini Kit (Qiagen) was used for genomic DNA isolation. Manufacturers’ instruc-
tions were followed for genomic DNA isolation after adding 400 mg of lysozyme during microbial resuspension 
and incubation for 12 h at 56 °C. A NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Rock-
land, DE, USA) was used to determine DNA concentration and purity measurements with ratios of A260 to A280 
and A260 to A230. Only samples with ratios > 1.5 were used in further analysis (https://​doi.​org/​10.​13140/​RG.2.​1.​
2961.​4807; https://​doi.​org/​10.​1038/​s41538-​019-​0056-6; https://​doi.​org/​10.​1101/​2020.​05.​18.​102574).

Library preparation and sequencing were performed similarly to those described by44. Amplification was 
performed through polymerase chain reaction (PCR) in a Bio-Rad C1000 TouchTM Thermal Cycler (BIO-RAD, 
Hercules, CA, USA). The V4 region of the 16S rDNA gene was amplified using single- and dual-index (forward 
and reverse) primers through an initial 95 °C denaturation for 5 min, followed by 30 cycles of 30 s at 95 °C, 30 s 
at 55 °C, 1 min at 72 °C, and 5 min for final elongation at 72 °C. The forward and reverse primers used were 
GTG​YCA​GCMGCC​GCG​GTAA and GGA​CTA​CNVGGG​TWT​CTAAT, respectively. Primers and small DNA 
fragments were removed using a 1% low melting agarose gel extraction kit (National Diagnostics, Atlanta, GA, 
USA). Purification and normalization of amplicons were performed using a SequalPrep plate kit (Invitrogen, 
USA), and the DNA concentration was measured with a Qubit® Fluorometer. A DNA library was prepared by 
equally pooling all of the amplicons together; qualitative real-time PCR was used for quality check. A total of 
180 samples (90 rumen and 90 fecal samples) were sequenced at the J. Roy Carver Biotechnology Center at 
the University of Illinois Urbana-Champaign using an Illumina MiSeq 2500. Sequences were deposited in the 
Sequence Read Archive (SRA) at NCBI under the BioProject accession number PRJNA777921.

Bioinformatics and statistical analyses.  The first step in our bioinformatic analyses was the prepara-
tion of our metadata. For that, average milk yields were used to calculate the concentration of milk fat, milk 
lactose, and milk protein. Energy corrected milk (kg/d) was calculated as previously published45. Residual feed 
intake was calculated according to Nehme Marinho et al.46, with the average of each day of lactation used in the 
study as time points. Briefly, a linear model including the fixed effects of NESec (Mcal/d), MBW (BW0.75), and 
BEC (Mcal/d) were used in the MIXED procedure of SAS 9.4. Because all cows were the first lactation, the lacta-
tion order was not included in the statistical model. The efficiency of milk production and milk components was 
calculated by dividing the production yield by the cow’s respective DMI (kg/d). Then, cows were ranked within 
each variable and split into lower and higher-end consumption levels, production, or efficiency. For residual feed 
intake and efficiency variables, animals were grouped into least or most efficient ones. Residual feed intake vari-
ables were also corrected for DMI (kg/d) to assess ASVs associated with the efficiency of each variable. Finally, 
community analysis was performed by testing differences between microbiome as associated with each variable.

Denoising and community analyses of the sequenced amplicons were primarily performed in R Studio. 
Sequences were denoised using the dada2 pipeline47, in which demultiplexed fastq files from forward and reverse 
readings were inspected, filtered, and trimmed based on their quality scores and error rates. Paired-end read-
ings were merged, chimeras were removed, and ASV tables were created. Taxonomy was assigned using the 
16S rRNA SILVA v138 database48 with the phyloseq package49. Total ASVs were then split into taxonomy levels, 
and the relative abundance of the ASVs within each taxonomy level was calculated using the phyloseq package.

Alpha-diversity indexes (Shannon, Chao 1, and Inverse Simpson) were calculated using the microbiome and 
vegan packages50,51. For the remaining analyses, instead of choosing a specific cutoff for the number of ASVs to 
be used (e.g., 100 most abundant ASVs or ASVs more abundant than a given percentage), we precisely selected 
relevant ASVs for the analyses using a pipeline called prevalence interval for microbiome evaluation (PIME; pime 
package)52. With PIME, low abundance ASVs relevant to a given group in the analysis are not discarded. Random 
forest classification is applied in the dataset to determine an appropriate prevalence interval for each variable of 
interest. Amplicon sequence variants shared among experimental units from the same group at a determined 
minimum prevalence are kept to visualize the differences among microbial communities.

Principal coordinate analysis (PCoA) was performed using the pime package, and graphs were designed using 
the ggplot2, dplyr, hrbrthemes, viridis, ggsci, and RColorBrewer packages. Similarly, a permutational multivari-
ate analysis of variance (PERMANOVA)53 was performed for each variable to test their microbial community’s 
dispersion differences. Except for the variable day, a model containing the effect of day, the interaction between 
day and the variable of interest, and the variable of interest itself were used for PERMANOVA. Linear discrimi-
nant analysis of effect size (LEfSe)54 was used to evaluate ASVs differences to associate with the variables in the 
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metadata. Subclasses were used for multiple testing corrections. The data were displayed using LDA score plots 
for significant ASVs after Kruskal–Wallis and Wilcoxon tests. Given the goal of discovering ASVs that could 
potentially be associated with production phenotypes, all ASVs displayed in the LDA plots were considered for 
the predictions of production phenotypes.

Finally, the organisms associated with DMI and each RFI parameter corrected for DMI in the rumen and 
lower gut were used in linear regression to understand how much of the variation in DMI (kg/d) could be 
explained by the microbiome. The calculation of DMI were performed using the original equation for RFI 
calculation46, one for each of the microbiomes, and the last one when all the parameters from the original 
equation and ASVs from both sites of the GI tract were taken into account. The lower gut microbiome associ-
ated with each efficiency variable in the metadata were also used to understand how much of the variation of 
these variables could be explained by their associated ASVs. The REG procedure in SAS 9.4 was used for model 
selection. Model selection was based on the lowest AICC and adjusted-R2. Throughout all statistical analyses, 
significance was declared when P ≤ 0.05.

Data availability
Sequences were deposited in the SRA at NCBI under BioProject accession https://​www.​ncbi.​nlm.​nih.​gov/​biopr​
oject/​PRJNA​777921/.
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