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The variance of sample autocorrelations:
does Bartlett’s formula work with ARCH data?

Piotr S. Kokoszka∗ Dimitris N. Politis†

October 9, 2008

Abstract

We review the notion of linearity of time series, and show that
ARCH or stochastic volatility (SV) processes are not only non-linear:
they are not even weakly linear, i.e., they do not even possess a mar-
tingale representation. Consequently, the use of Bartlett’s formula is
unwarranted in the context of data typically modelled as ARCH or
SV processes such as financial returns. More surprisingly, we show
that even the squares of an ARCH or SV process are not weakly lin-
ear. Finally, we present an alternative to Bartlett’s formula that is
applicable (and consistent) in the context of financial returns data.

1 Introduction

In the theory and practice of time series analysis, an often used assumption
is that a time series {Xt, t ∈ Z} of interest is linear [18], i.e., that

Xt = a +
∞∑

i=−∞
αiξt−i, where ξt ∼ i.i.d. (0, 1), (1)
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i.e., the ξts are independent and identically distributed with mean zero and
variance one; of course, in the above, the coefficients αi must decay to zero
fast enough as |i| → ∞ so that the infinite sum converges in some fashion.

Recall that a linear time series {Xt} is called causal if αk = 0 for k < 0,
i.e., if

Xt = a +
∞∑
i=0

αiξt−i, where ξt ∼ i.i.d. (0, 1). (2)

Eq. (2) should not be confused with the Wold decomposition that all purely
nondeterministic time series possess [6]. In the Wold decomposition the ‘er-
ror’ series {ξt} is only assumed to be a white noise, i.e., uncorrelated, and not
i.i.d. A slightly weaker form of (2) amounts to relaxing the i.i.d. assumption
on the errors to the assumption of a martingale difference, i.e., to assume
that

Xt = a +
∞∑
i=0

αiνt−i,
∞∑
i=0

α2
i < ∞, (3)

where {νt} is a stationary martingale difference adapted to Ft, the σ-field
generated by {Xs, s ≤ t}, i.e., that

E[νt|Ft−1] = 0 and E[ν2
t |Ft−1] = 1 for all t. (4)

For conciseness, we will use here the term weakly linear for a time series
{Xt, t ∈ Z} that satisfies (3) and (4).

Many asymptotic theorems in the literature have been proven under the
assumption of linearity or weak linearity; see e.g. [6] [13] [18]. A central such
result is the celebrated Bartlett’s formula [2] for the asymptotic variance
of the sample autocorrelations that has been shown to hold under weak
linearity; see e.g. Chapter 8 of [1].

In the last thirty years, however, there has been a surge of research ac-
tivity on nonlinear time series models; an early such example is the family of
bilinear models [17]. Many of these nonlinear models were motivated from
financial returns data as, e.g., the ARCH and GARCH models that were
introduced in the 1980s [4] [11].

As far back as 1978, Granger and Andersen [17] warned against the use
of Bartlett’s formula in the context of bilinear time series. Despite additional
warnings [23] [25], even to this day practitioners often give undue credence
to the Bartlett ±1.96/

√
n bands—that many software programs automati-

cally overlay on the correlogram—even when a nonlinear time series model
is entertained for the data!
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As will be apparent from the main developements of this paper, ARCH
processes are not only non-linear: they are not even weakly linear. Conse-
quently, the use of Bartlett’s formula is unwarranted in the context of data
that are typically modelled as ARCH processes such as financial returns
data. Perhaps more surprisingly, we show that even the squares of an ARCH
process is not a weakly linear time series.

Example 1. To give a preview of our general results, consider a simple
ARCH(1) process, i.e., suppose

Xt = εt

√
β0 + β1X2

t−1 (5)

where εt ∼ i.i.d. (0, 1). If β1 < 1, then EX2
t = β0/(1 − β1). Denote Yt = X2

t

and let Ft−1 be the σ–field generated by Yt−1, Yt−2, . . .. Let σ2
t = β0 + β1LYt

be the volatility function where L denotes the lag-operator, i.e., LYt = Yt−1.
Since β1LYt = σ2

t − β0, it follows that

(1 − β1L)(Yt − EYt) = Yt − β1LYt − (1 − β1)EYt

= σ2
t ε

2
t − (σ2

t − β0) − (1 − β1)
β0

1 − β1
= σ2

t ε
2
t − σ2

t .

Setting νt = σ2
t (ε

2
t − 1), the above calculation shows that

(1 − β1L)(Yt − EYt) = νt (6)

and hence

Yt =
β0

1 − β1

+
∞∑
i=0

βi
1νt−i. (7)

In view of the fact that the innovations νt consitute a white noise—see e.g.
[16], eq. (6) is simply the recursive equation of an AR(1) model with nonzero
mean. In this light, eq. (7) is the usual MA representation of an AR(1)
process thereby giving an allusion towards linearity.

Nevertheless, this allusion is false: linearity does not hold true here—not
even in its weak form; this is a consequence of the fact that the innovations
νt do not have a constant conditional variance as required in the martingale
representation (3) and (4). To see this, just note that

E[ν2
t |Ft−1] = E[σ4

t (ε
2
t − 1)2|Ft−1] = σ4

t E[(ε2
t − 1)2] = σ4

t Var[ε2
t ].
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The above simple example shows that the common intuition that the
squares of an ARCH process are weakly linear is inaccurate. We will show
in Section 2 that, under weak assumptions, neither the general ARCH(p)
or ARCH(∞) nor stochastic volatility models are weakly linear, and that
this negative result also extends to their squares. As a consequence, using
Bartlett’s formula on a correlogram of financial returns or their squares is
unjustified1 as made clear in Section 3. Last but not least, in Section 4, we
present an alternative to Bartlett’s formula that is indeed applicable (and
consistent) in the context of ARCH models.

2 ARCH processes are not weakly linear

Consider a time series {Xt, t ∈ Z} that obeys the following model:

Xt = σtεt where εt ∼ i.i.d. (0, 1). (8)

The above is a popular assumption with financial returns data as it captures
the phenomenon of volatility clustering; two general models of interest can
be put in this type of framework [26]:

• ARCH(∞) models where

σ2
t = β0 +

∞∑
j=1

βjX
2
t−j ; (9)

this class includes all ARCH(p) and (invertible) GARCH(p, q) models.

• Stochastic volatility models where Lt = log σt satisfies the independent
AR(p) equation

Lt = φ0 +
p∑

j=1

φjLt−j + ut (10)

where ut ∼ i.i.d. (0, τ 2) and {ut, t ∈ Z} is independent to {εt, t ∈ Z}.
1In the context of bilinear series, Granger and Andersen [17] recommended using

Bartlett’s formula on the correlogram of the squared data; at the time this sounded like
an insightful recommendation. Note, however, that a bilinear model of order one is tan-
tamount to an ARCH(1) with b = 0 and βj = 0 for j > 1 in eq. (9). Hence, in view of
our general results, even with bilinear series using Bartlett’s formula on the correlogram
of the squared data is unjustified.
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We introduce the following conditions:
(ia) For each t, σt is Ft−1 measurable and square integrable.
(ib) The sequences {σt} and {εt} are independent, and σt is square inte-

grable for each t.
(iia) There is t for which σ2

t is not equal to a constant.
(iib) There is t for which E[σ2

t |Ft−1] is not equal to a constant.
(iii) For each t, εt is independent of Ft−1, and it is square integrable with

Eεt = 0, Eε2
t > 0.

Definition 1 We say that {Xt, t ∈ Z} is an ARCH-type process if (8) holds
together with conditions (ia), (iia) and (iii).

Definition 2 We say that {Xt, t ∈ Z} is an SV-type process if (8) holds
together with conditions (ib), (iib) and (iii).

Proposition 1 If {Xt} is either an ARCH-type or an SV-type process, then
it is not weakly linear.

Proof. Suppose ad absurdum that {Xt} is weakly linear. Since by (8)
EXt = 0, the constant term a in (3) must be zero, and the representation
would have to be

Xt =
∞∑
i=0

αiνt−i. (11)

The square summability of the αj implies that

Xt = lim
m→∞

m∑
i=1

αiνt−i, in L2.

Since the conditional expectation of an L2 random variable wrt a σ–field F
coincides with the orthogonal projection on L2(F), and this projection is a
continuous operator in L2, we conclude that

E[Xt|Ft−1] =
∞∑
i=0

αiE[νt−i|Ft−1].

Since E[νt|Ft−1] = 0, we further obtain that

E[Xt|Ft−1] =
∞∑
i=1

αiνt−i. (12)
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We will now show that for both ARCH–type and SV–type processes

E[Xt|Ft−1] = 0. (13)

If {Xt} is ARCH–type, then

E[Xt|Ft−1] = E[σtεt|Ft−1] = σtEεt = 0.

Similarly, if {Xt} is SV–type, then If {Xt} is ARCH–type, then

E[Xt|Ft−1] = E{[σtεt|σ(σt,Ft−1)]|Ft−1} = EεtE[σt|Ft−1] = 0.

By (11), (12) and (13), Xt = α0νt, so by (4),

E[X2
t |Ft−1] = E[α2

0ν
2
t |Ft−1] = α2

0. (14)

For an ARCH-type process, we obtain, on the other hand,

E[X2
t |Ft−1] = E[σ2

t ε
2
t |Ft−1] = σ2

t Eε2
t . (15)

Equations (14) and (15) imply that, for each t, σ2
t Eε2

t = α2
0. Since Eε2

t > 0,
this contradicts assumption (iia) of Definition 1.

Similarly, for an SV-type process, E[X2
t |Ft−1] = Eε2

tE[σ2
t |Ft−1], and we

obtain a contradiction with condition (iib). �

Proposition 1 covers both ARCH(∞) and stochastic volatility models men-
tioned above, and implies that these popular models for financial returns are
not weakly linear. As a consequence, using Bartlett’s formula is not justified
under its auspices.

We next turn to the squares Yt = X2
t of ARCH and SV processes. We

denote

FX
t−1 = σ{Xt−1, Xt−2, . . .}, FY

t−1 = σ{Yt−1, Yt−2, . . .}.

Giraitis, Kokoszka and Leipus [14] showed that if (8) and (9) hold, and
(Eε4

0)
1/2 ∑∞

j=1 βj < ∞, then the series Yt admits the representation

Yt = a +
∞∑
i=0

αiνt−i (16)
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in which the νt are martingale differences in the sense that E[νt|FY
t−1] = 0

and Eν2
t =: v2 is a finite constant. Nevertheless, the conditional variance

E[ν2
t |FY

t−1] = σ4
t Var[ε2

0]

is not constant. Proposition 2 below shows that in general the squares of
ARCH and SV processes are not weakly linear because they do not admit
representation (16) whose innovations νt have nonzero constant conditional
variance. As a consequence, Bartlett’s formula cannot justifiably be used on
the correlogram of squared returns.

For the purpose of Proposition 2, we now consider two cases that pose
some required restrictions on the ARCH and SV processes considered.

ARCH case: Each σ2
t is FY

t−1 measurable, ε2
t is independent of FY

t−1, and
{σ2

t } is not a.s. equal to a deterministic constant sequence.

SV case: The sequences {σ2
t } and {ε2

t} are independent, and the following
two conditions hold:

(i) Yt is not FY
t−1 measurable;

(ii) the sequence

v2
t := E[σ4

t |FY
t−1] − (E[σ2

t |FY
t−1])

2

is not equal to an a.s. constant positive sequence (i.e. to a sequence such
that v2

t = v2 > 0 a.s. for each t).

Conditions (i) and (ii) automatically hold in the ARCH case. Indeed, if
Yt were FY

t−1 measurable, then ε2
t = σ−2

t Yt would be FY
t−1 measurable, and so

E[ε2
t |FY

t−1] = ε2
t . Since, in the ARCH case, ε2

t is independent of FY
t−1, we also

have E[ε2
t |FY

t−1] = Eε2
t , implying ε2

t = Eε2
t . Thus, unless ε2

t is a.s. constant,
candition (i) holds in the ARCH case. Condition (ii) holds in the ARCH case
because the FY

t−1 measurability of σ2
t implies that v2

t = σ4
t − σ4

t = 0.
Condition (i) practically always holds in the SV case because Yt = σ2

t ε
2
t

need not be a function of σ2
t−1ε

2
t−1, σ

2
t−2ε

2
t−2, . . .. Because of condition (i), v2

t

is in general a random variable, not a constant, so (ii) also practically always
holds in the SV case.

Proposition 2 Suppose Yt = X2
t , where Xt follows equation (8), and either

ARCH or SV case holds. Then Yt is not weakly linear.
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Proof. To lighten the notation denote Ft−1 = FY
t−1 and suppose

Yt = a +
∞∑
i=0

αiνt−i,
∞∑
i=0

α2
i < ∞ (17)

and (4) holds. Conditioning on Ft−1, we obtain

E[Yt|Ft−1] = a +
∞∑
i=1

αiνt−i. (18)

Subtracting (18) from (16), we thus obtain

Yt − E[Yt|Ft−1] = α0νt.

If α0 = 0, then Yt = E[Yt|Ft−1] would be Ft−1 measurable, which would
contradict assumption (i). Thus for each t

νt = α−1
0 {Yt − E[Yt|Ft−1]}. (19)

The proof will thus be complete, if we show that the sequence {Yt −
E[Yt|Ft−1]} does not have a constant positive conditional variance. For this
purpose we introduce the following notation:

ξt = ε2
t , λ = Eξt, ρt = σ2

t .

In the ARCH case,

E[Yt|Ft−1] = E[ξtρt|Ft−1] = λρt,

and so

E
{
(Yt − E[Yt|Ft−1])

2|Ft−1

}
= E[(ξtρt − λρt)

2|Ft−1] = ρ2
tVar[ξo],

which is not a constant sequence.
In the SV case,

E[Yt|Ft−1] = E[ξtρt|Ft−1] = E[E[ξtρt|σ{ρt,Ft−1}]|Ft−1]

= λE[ρt|Ft−1].

Therefore

E
{
(Yt − E[Yt|Ft−1])

2|Ft−1

}
= E

{
(ξtρt − λE[ρt|Ft−1])

2|Ft−1

}
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= E{ξ2
t ρ

2
t |Ft−1} − 2λE{ξtρtE[ρt|Ft−1]|Ft−1} + λ2

{
(E[ρt|Ft−1])

2|Ft−1

}
= λ2E{ρ2

t |Ft−1} − 2λ2(E[ρt|Ft−1])
2 + λ2(E[ρt|Ft−1])

2,

and so we obtain

E[ν2
t |Ft−1] = α−2

0 λ2
{
E{ρ2

t |Ft−1} − (E[ρt|Ft−1])
2
}

. (20)

By condition (ii), the νt are not martingale differences with constant condi-
tional variance, and the proof is complete. �

3 Bartlett’s formula does not work with ARCH

data

For a second order stationary sequence {Xt}, define the population and sam-
ple autocovariances at lag k by

Rk = Cov(X1, X1+k), R̂k = n−1
n−k∑
i=1

(Xi − X̄n)(Xi+k − X̄n),

where X̄n = n−1 ∑n
i=1 Xi, and the corresponding autocorrelations

ρk = R−1
0 Rk, ρ̂k = R̂−1

0 R̂k.

Define also the p–dimensional vectors

ρ = [ρ1, ρ2, . . . , ρp]
T , ρ̂ = [ρ̂1, ρ̂2, . . . , ρ̂p]

T .

If {Xt} is a linear process (1) with iid innovations ξt having finite fourth
moment, then √

n(ρ̂ − ρ)
d→ N(0,W) (21)

as n → ∞. The entries of the p × p matrix W are given by the celebrated
Bartlett’s formula:

wij =
∞∑

k=−∞

[
ρk+iρk+j + ρk−iρk+j + 2ρiρjρ

2
k − 2ρiρkρk+j − 2ρjρkρk+i

]

see e.g. formula (47) in Section 8.4.5. of [1].
However, as we have seen in Section 2, the ARCH and SV processes typi-

cally used to model financial returns are not even weakly linear, so Bartlett’s
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formula cannot be expected to hold with such data. To illustrate, note that
for all white noise data, i.e., when ρk = 0 for all k ≥ 1, Bartlett’s formula
implies that var(

√
nρ̂1) → 1. Now ARCH processes are uncorrelated so they

do satisfy the white noise condition but the limiting variance of
√

nρ̂1 is
generally greater than unity as the following simple example shows.

Example 1 (continued). Suppose {Xt} is the ARCH(1) process (5), and
assume for simplicity that the εt are standard normal. Then, if 3β1 < 1,
{Xt} is a strictly stationary sequence with finite (4 + δ)th moment, and

EX2
1 =

β0

1 − β1
, EX4

1 =
3β2

0(1 + β1)

(1 − β1)(1 − 3β2
1)

, (22)

see Section 3 of [3]. By Theorem 2.1 of [25],
√

nρ̂1
d→ N(0, τ 2), where

τ 2 = R−2
0

[
Var(X1X2) + 2

∞∑
i=1

Cov(X1X2, X1+iX2+i)

]
. (23)

The mixing condition in Theorem 2.1 of [25] holds because ARCH(1) processes
are even β–mixing with exponential rate, see e.g. [7].

By (22) we have R0 = β0/(1 − β1). The calculation of Var(X1X2) is also
straightforward:

Var(X1X2) = E[X2
1X2

2 ] = E[X2
1 (β0 + β1σ

2
1ε

2
1)ε

2
2]

= E[X2
1 (β0 + β1σ

2
1ε

2
1)] = β0E[X2

1 ] + β1E[X4
1 ]

= β0
β0

1 − β1
+ β1

3β2
0(1 + β1)

(1 − β1)(1 − 3β2
1)

=
β2

0(1 + 3β1)

(1 − β1)(1 − 3β2
1)

.

Since
Cov(X1X2, X1+iX2+i) = 0, i ≥ 1, (24)

we obtain

τ 2 =
(1 − β1)(1 + 3β1)

1 − 3β2
1

. (25)

One can check that τ 2 increases monotonically from 1 to ∞, as β1 in-
creases from 0 to 1/

√
3; in particular, τ 2 → ∞ as EX4

1 → ∞.

For general ARCH(∞) processes (9), expressing τ 2 in terms of the coefficients
βj in closed form appears difficult and is not necessarily useful. The main
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properties established in the example above do however carry over to the
general case, as the following proposition shows.

Proposition 3 Suppose {Xt} is the ARCH process of Definition 1 with expo-
nentially decaying α–mixing coefficients, and finite (4 + δ)th moment. Then,
convergence (21) holds with

wij = δij
E[X2

1X
2
1+i]

(EX2
1 )2

, (26)

where δij is the Kronecker delta.
Moreover, if {Xt} admits representation (9), then
(i) wii ≥ 1, and wii > 1 if var[ε2

1] > 1,
(ii) if βi > 0, then wii → ∞ as EX4

1 → ∞.

Proof. Since (24) holds for any ARCH–type process, formula (26) follows
directly from Theorems 3.1 and 3.2 of [25].

We now prove the statements for the {Xt} admitting representation (9).
(i) Observe that

E[X2
1X

2
1+i] − (EX2

1 )2 = Cov(X2
1 , X2

1+i).

By Lemma 2.1 of [14], Cov(X2
1 , X

2
1+i) ≥ 0, so wii ≥ 1. By formula (2.11) of

[14], wii > 1 if var[ε2
1] > 1.

(ii) Set λ = Eε2
1, and note that

E[X2
1X

2
1+i] = λE[X2

1 (β0 +
∞∑

j=1

βjX
2
1+i−j)]

= λβ0EX2
1 + λ

∞∑
j=1

βjE[X2
1X

2
1+i−j ] ≥ λβiE[X4

1 ].

Thus,

wii ≥ λβi
EX4

1

(EX2
1 )2

and the proof is complete. �
Note that all ARCH and GARCH models used in practice have exponentially
decaying α–mixing coefficients, see Sections 3 and 4 of [7]. Convergence (21)
for GARCH processes with finite fourth moment also follows from Theorem 1
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of [28] because for them the so called physical dependence measure decays
exponentially fast, see Section 5 of [27]. The results of [25] are used to find
the exact form the asymptotic covariance matrix.

Proposition 4 Suppose {Xt} is the SV process of Definition 2 with expo-
nentially decaying α–mixing coefficients, and finite (4 + δ)th moment. Then,
convergence (21) and formula (26) also holds.

Proof. Follows by direct application of Theorems 3.1 and 3.2 of [25]. �
Note that if an SV process is of the form Xt = exp(Lt)εt with Lt defined by
(10), and the errors ut have a density, then {Lt} is α–mixing with exponential
rate, see Section 6 of [5]. Since multiplying by an iid sequence εt does not
affect mixing, {Xt} is then also α–mixing with exponential rate.

4 An alternative to Bartlett’s formula for fi-

nancial returns data

Propositions 3 and 4 suggest a simple method-of-moments estimator of the
asymptotic variance of

√
nρ̂i for ARCH and/or SV processes, namely

ŵii =
(n − i)−1 ∑n−i

d=1 X2
dX2

d+i

n−1(
∑n

d=1 X2
d)2

. (27)

Equation (27) is our proposed alternative to Bartlett’s formula in the case
of data that are either ARCH or SV processes with finite fourth moments.
For ease of reference, we state the consistency properties of the proposed
estimator as our final proposition.

Proposition 5 (i) If {Xt} is strictly stationary and ergodic with EX4
t < ∞,

then, for any i ≥ 1, ŵii
a.s.−→ wii where wii was defined in eq. (26).

(ii) Under the conditions of Proposition 3 or those of Proposition 4, ŵii is
an a.s.–consistent estimator of the variance of the asymptotic distribution of√

nρ̂i.

Proof. Part (i) follows from the ergodic theorem for stationary sequences;
see e.g. Theorem 9.6 of [19]. Ergodicity is a very weak property that is
implied by any form of mixing [5]; hence part (ii) is immediate. �
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Note that if EX4
t = ∞, formulas (26) and (27) are no longer useful.

Nevertheless, if EX2
t < ∞, the sample autocorrelations are still consistent;

see e.g. the work of Davis and Mikosch [8] [9] [10] from which it follows
that an ARCH process (with normal errors) is typically in the domain of
attraction of an α stable law. If α ∈ (2, 4), then

n1−2/αL(n)(ρ̂k − ρk)
d→ Sk (28)

where Sk has an α/2 stable law, L is a slowly varying function, and ρk = 0 if
k 
= 0 by the ARCH equation. Despite the infinite variance of ρ̂k in this case,
it is still possible to construct confidence intervals for ρk but the focus should
instead be on estimating the quantiles of the limit distribution of ρ̂k. Due
to eq. (28), subsampling [24] can be successfully used in this respect leading
to robust confidence intervals and tests for ρk that remain valid whether
EX4

t is finite or not. To construct the subsampling estimator, an estimate
of α appearing in (28) must be used; the latter could be obtained by Hill’s
estimator or any other consistent method; see e.g. [20] [21] [22].

Finally, note that when applied to the squares of ARCH and SV processes,
Theorems 3.1 and 3.2 of [25] do not lead to any simple expressions because
the squares have nonvanishing correlations at any lags, and an analog of (24)
no longer holds. To approximate the distribution of ρ̂k in such a case, it is
recommended to use a resampling/subsampling approach such as the ones
discussed in [23] [24] [25]. These approaches can be totally nonparametric,
e.g. blocking methods, or semiparametric, e.g. based on residuals from an
assumed model.
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