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Abstract

Although studies of categorization have been a staple of psy-
chological research for decades, there continues to be substan-
tial disagreement about how unique classes of objects are rep-
resented in the brain. We present a neural architecture for
categorizing visual stimuli based on the Neural Engineering
Framework and the manipulation of semantic pointers. The
model accounts for how the visual system computes semantic
representations from raw images, and how those representa-
tions are then manipulated to produce category judgments. All
computations of the model are carried out in simulated spiking
neurons. We demonstrate that the model matches human per-
formance on two seminal behavioural studies of image-based
concept acquisition: Posner and Keele (1968) and Regehr and
Brooks (1993).

Keywords: category representation; image categorization;
neural engineering framework; vector symbolic architecture

Introduction
Although studies of categorization have been a staple of psy-
chological research for decades, there continues to be sub-
stantial disagreement about how the mind represents informa-
tion about unique classes of objects. Theories involving pro-
totypes, exemplars, and explanatory schemas have all been
shown to account for only a subset of known categorization
phenomena, and progress toward a unified theory of cate-
gory representation has been limited (for reviews, see Mur-
phy, 2002; Machery, 2009; Smith & Medin, 1981). Histori-
cally, the difficulty in modelling category representation has
been to balance generality and accuracy.

On one hand, many of the models developed from these
theories have a fairly narrow scope of application. Con-
sider, for instance, similarity-based accounts of concept ref-
erence; these models produce impressive results at matching
human behaviour in tasks that involve feature comparisons
(see Smith & Medin, 1981), but they do not generalize well
to other tasks that require the use of deeper category knowl-
edge or explanatory inferences (see Murphy, 2002).

On the other hand, approaches with greater scope tend to
pay a price in terms of predictive accuracy or viability. For
example, Barsalou’s (1999) theory of perceptual symbol sys-
tems is a more or less unified account of category repre-
sentation, but it lacks a corresponding computational model
(Dennett & Viger, 1999). Rogers and McClelland’s (2004)
account of semantic cognition provides a powerful model that
performs well across a range of categorization tasks, but em-
ploys both an idealized neural architecture and an idealized
set of inputs (i.e. it is an abstract connectionist network that

does not use raw percepts as input). Many researchers now
recognize that object perception and conceptual cognition are
not distinct (Palmeri & Gauthier, 2004), making it important
that models integrate both perception and cognition.

In this paper, we argue that advances in our understanding
of the visual system and new principles for the design of neu-
ral architectures can be used to overcome many of the difficul-
ties in providing a viable, neurally grounded, computational
model of image categorization. We use the techniques of the
Neural Engineering Framework (NEF) (Eliasmith & Ander-
son, 2003) to develop a model of category representation that
connects retinal activity to high level cognitive judgments us-
ing a class of vector-symbolic representations called semantic
pointers (Eliasmith et al., 2012). The model receives natural
images as input, produces category judgments as output, and
carries out intermediate processing in simulated neurons. The
proposed model replicates human performance on two inde-
pendent studies of human judgment in prototype-based and
exemplar-based image categorization, with no changes to the
model. Semantic pointer architectures have been shown to
support several important cognitive capacities (e.g. Stewart
& Eliasmith, 2011; Eliasmith et al., 2012). Our study ex-
tends this line of research, showing that semantic pointers
computed by a plausible visual system model can be used to
replicate human category judgments.

Model Description
We developed a model of human image categorization that
consists of a feed-forward visual perception model (similar to
Hinton & Salakhutdinov, 2006) driving a vector-symbolic as-
sociative memory (see Gayler, 2003; Plate, 2003). The model
was first constructed using a rate approximation of the spik-
ing leaky integrate-and-fire (LIF) neuron model for the visual
system and explicit vector computations for the associative
memory. The model was then implemented fully in spiking
neurons using the principles of the NEF.

The visual system component of the model is a sequence
of feed-forward neural populations that compresses high di-
mensional input images into comparatively low dimensional
vectors, which we refer to as semantic pointers. The first pop-
ulation, analogous to the retina and lateral geniculate nucleus
(LGN), is a rasterized image, as would be captured by a con-
ventional digital camera. Like the retina, a camera adapts to
global lighting conditions and provides an image with stan-
dard intensity levels. Our (small) LGN population corre-
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sponds to a square 30× 30 image region that is best com-
pared to a small portion from the centre of the visual field.
The second population, analogous to visual area V1, com-
prises 2500 neurons with local connectivity: each neuron re-
sponds to a randomly chosen 9× 9 patch in LGN. Neurons
in the third (V2), fourth (V4), and fifth (inferotemporal (IT)
cortex) populations (with size 900, 400, and 225 respectively)
are connected to all neurons in the previous population. The
activation pattern in the fifth population (with latency similar
to visual area IT) is the semantic pointer representing the im-
age stimulus. Representations generated in this manner are
stored in an associative memory as category exemplars (dur-
ing training), and used to probe the associative memory to
yield a category judgment during testing (see Figure 2).

Adaptation to Natural Images
A large fraction of neuron cells in visual area V1 are well
modelled as luminance edge detectors (Hubel & Wiesel,
1968; DiCarlo, Zoccolan, & Rust, 2012). There is mount-
ing evidence that visual system neurons behave as they do
because they continuously adapt to statistical patterns in vi-
sual stimuli (Olshausen & Field, 1996; Hyvärinen, 2009).
Computer vision systems inspired by principles of adaptation
to unlabelled visual images are among the best-performing
computer vision systems, and reproduce several phenomena
discovered by electrode recordings (Lee, Ekanadham, & Ng,
2008; Le et al., 2012). One strategy for adaptation to un-
labelled images is the autoencoder (Ackley, Hinton, & Se-
jnowski, 1985; Rumelhart, Hinton, & Williams, 1985), which
was first applied to images by Cottrell, Munro, and Zipser
(1987).

The connection weights of our visual system model were
trained as a deep autoencoder, with an additional `1 penalty
on the hidden node activation rates to model the energy cost
of spiking and encourage sparser activation patterns. The ob-
jective function for one layer is given by

O =
1
K ∑

i,k

(
x(k)i − y(k)i

)2
+λ∑

j

∣∣q j −ρ
∣∣ (1)

where x(k)i is the value of visual node i for example k, y(k)i is
the autoencoder’s reconstruction of node i example k, q j is a
running average of the activation of hidden node j, and λ and
ρ control the importance of sparsity and the desired sparsity
level, respectively. Uniquely, our autoencoder used an LIF
response function as the feature activation function.

The autoencoder was trained on random 30× 30 natural
image patches chosen from the first 10 images of the van
Hateren Natural Image Database (van Hateren & van der
Schaaf, 1998). with each patch normalized to zero mean and
unit variance. We trained only on un-whitened images, which
contain the full spectrum of spatial frequencies. We found
that whitening was not required to extract Gabor-like filters
from the statistics of the natural images (Figure 1), and was
in fact undesirable since it removed some low-frequency fea-
tures important for classification.

Figure 1: Filters from the first layer of the visual system, after
autoencoder training on natural images. Like neurons in area
V1, our model neurons detect luminance edges at a variety of
frequencies and orientations.

Like Hinton and Salakhutdinov (2006), each layer of the
autoencoder was pretrained individually; however, layers
were pretrained as autoencoders, not restricted Boltzmann
machines, allowing us to use an LIF response function for
the neuron nonlinearity. The layers were then combined into
a deep autoencoder and trained together using backpropaga-
tion.

Semantic Pointers: Memory and Retrieval
We refer to the vectors processed by the model as seman-
tic pointers because they function as compressed symbol-like
representations that encode the statistically relevant aspects
of the information they represent (Eliasmith, in press). In the
non-visual component of the architecture, semantic pointers
representing the compressed images are bound with category
labels using the mathematical operation of circular convolu-
tion (see e.g. Plate, 2003). Subsequently, the bound repre-
sentations are added to the memory via superposition. This
process is captured formally by Equation 2:

M =
N

∑
i=1

(Pi ∗Li) (2)

where Pi is a semantic pointer produced by the visual system
from the ith raw image, Li is a vector representing the category
label associated with the image, M is the memory pointer,
and ∗ is the circular convolution operator.

Once the memory is built up with a number of learned cat-
egory exemplars, it can be used to produce categorization
judgments in response to novel input images via the use of
an inverse of the convolution operation. This inverse oper-
ation probes the memory for the category label that is most
likely to fit the input image on the basis of prior learning. As
a whole, the categorization process conforms to the following
mathematical description:

c = argmaxc
[
(P−1 ∗M) ·Lc

]
(3)

where c refers to the resulting category judgment, P−1 refers
to the pseudoinverse of the semantic pointer corresponding
to the test image, Lc refers to the label pointer of category c,
and a · b refers to the dot product of a and b. For the rate
model, these operations were implemented directly in vec-
tors; for the spiking model, the operations were implemented
in spiking LIF neurons using the NEF.
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Figure 2: The schematic of our visual categorization model has three components. Left: The visual system comprises four
populations of leaky integrate-and-fire neurons corresponding to the LGN, visual areas V1, V2, V4, and IT, which we take to
represent a semantic pointer. The connections between these populations are adapted to natural scene statistics by unsupervised
learning. Upper Right: The memory of our model is encoded as a single semantic pointer, which is the sum of several labelled
training patterns (three are shown here). Labels have been bound to their corresponding image representations through the
mathematical operation of circular convolution. Lower Right: At test time, our model labels visual stimuli by deconvolving the
activity patterns of IT with the memory vector, and matching the result against several possible label decisions.

In short, the model builds category representations by stor-
ing compressed and labelled percepts, and produces catego-
rization judgments by evaluating the similarity between an
input percept and the exemplars stored in memory. How-
ever, since all labelled percepts are compressed into the same
vector, there is significant interaction between stored per-
cepts; this can be likened to creating a prototype based on
the percepts. The model categorization system thus falls part
way in between pure exemplar-based categorization and pure
prototype-based categorization; it has elements of both.

Experiment 1: Prototype-based Categorization

To account for the sort of phenomena that have traditionally
motivated prototype theories of category representation, we
tested the model on a task from Posner & Keele’s (1968) clas-
sic study of pattern classification. We chose to model Exper-
iment 3 of the study, which was designed to test whether hu-
man subjects are learning about class prototypes when they
only ever see distorted examples. In the study, subjects are
trained to classify classify random dot patterns into three mu-
tually exclusive categories. Each pattern consists of nine dots
dispersed over a 30× 30 grid, with each dot occupying one
cell in the grid. The patterns used for training are gener-
ated from three prototypes; each training pattern is created by
choosing a prototype pattern, and moving each dot according
to a random distortion rule (see Figure 3.) Thirty (30) sub-
jects were trained by corrective feedback to classify twelve
‘high distortion’ patterns (four from each category). After
training, the subjects were asked to classify twenty-four pat-

terns without feedback: patterns from the training phase (2
per prototype, 6 total), the prototype patterns (3), prototype
patterns with a smaller degree of distortion (6), new highly
distorted prototype patterns (6), and entirely random new pat-
terns (3). Subjects were tested on these patterns on two con-
secutive days, in terms of both accuracy and reaction time.

The protocol for evaluating our categorization model was
nearly identical. We presented the model with the twelve
training images, and it stored the semantic pointers associ-
ated with the labels and the images into the model’s memory
(see Figure 2). Then we presented our model with each of
the twenty-four testing patterns. Figure 4 compares the accu-
racy of our model to the classification accuracy of the human
subjects. Since our model lacks motor output, we did not
evaluate it on reaction time. Figure 4 shows the results of
our model; in sum, the model performs much like the human
subjects.

Experiment 2: Exemplar-based Categorization
To account for effects more commonly aligned with exemplar
theories of category representation, we tested the model on a
task from Regehr & Brook’s (1993) study of the comparative
influence of analytic and non-analytic processes on catego-
rization behaviour. The study involves a number of experi-
ments in which subjects are asked to classify simple drawings
of imaginary animals into one of two categories. The animals
all possess an analytic structure that varies along five binary
dimensions (e.g. a round vs. angular body), but the exact
perceptual manifestation of a particular dimension value (i.e.
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Prototype Low Distortion High Distortion

Figure 3: Sample stimuli for Experiment 1, modelling a clas-
sic study by Posner & Keele (1968). The dot patterns are
created by distorting three randomly drawn prototype images
(left) with low (centre) and high (right) levels of noise. Sub-
jects are trained to classify a set of twelve high-distortion pat-
terns and tested without feedback on the same prototypes at
different distortion levels.

feature) can vary across animals. For example, two animals
might have round bodies, and thus be analytically equivalent
to some extent, but the actual roundness of their respective
bodies might be quite distinct (see Figure 5). This allows
for the construction of stimuli sets that possess drawings that
are analytically equivalent but perceptually dissimilar, along
with drawings that are analytically distinct but perceptually
similar. By training subjects through corrective feedback to
classify these images into categories defined by an analytic
rule, Regehr & Brooks were able to test hypotheses regarding
the relative importance of perceptual similarity and analytic
structure during categorization.

In the experiment 1C of Regehr & Brooks’ study, 32 sub-
jects are placed into one of two conditions and then trained to
classify a set of eight images into two categories. For subjects
in the first condition, the perceptual manifestations of a given
dimension are constant across the images (See Figure 5, left).
For subjects in the second condition, the perceptual manifes-
tations of a given dimension vary across images (See Fig-
ure 5, right). Every subject was trained to learn one of four
labelling rules based on analytic structure. The rules had the
form: An image is a ‘builder’ if it has at least two of X, Y, and
spots, otherwise it is a ‘digger’. The criteria X and Y referred
to things like “long neck”, “angular body”, “short legs” and
so on (see Regehr & Brooks, 1993, for details). Training oc-
curs through corrective feedback and is considered complete
after five runs through the image set.

During the transfer phase of the experiment, subjects are
asked to classify a set of sixteen images, eight of which are
from the training set and eight of which are qualitatively sim-
ilar, but new. The new images have been designed to pair up
with a specific training image, and only differ on the dimen-
sion of “spots on body.” Half of the new images belong in the
same category as their twin from the training set, while the
other new images have a different category from their twin.
The idea motivating this experimental design is that if sub-

Figure 4: Comparison of human and model performance for
Experiment 1. The model is able to account for human results
when presented with the schema, low distortion (5), and high
distortion (7) patterns. Occasional random errors by human
subjects may explain the discrepancy on training examples.
Error bars indicate 95% confidence intervals. Human data
from Posner & Keele (1968).

jects attend primarily to the analytic structure of the images
during testing, then they should make relatively few errors on
the new bad transfer items (because both analytic structure
and perceptual similarity favour the correct judgment). Alter-
natively, if subjects attend primarily to similarity to past ex-
emplars, then they should make relatively more errors on the
bad transfer items (because perceptual similarity and analytic
structure favour opposing judgments). The study is designed
to test the effect of appearance on subjects’ use of structural
vs. perceptual mental representations.

We model experiment 1C of Regehr & Brooks’ study with
the same model that we used in Experiment 1. We presented
our model with the same eight training images used in the
original experiment (though downsampled to fit in a 30×30
patch), drawn either in the composite style or in the indi-
viduated style. The semantic pointers created by the visual
system, together with semantic pointers for the correspond-
ing image labels, were stored into the model’s memory, as
described by Equation 2 shown in Figure 2. We tested the
representations of our visual system by classifying the good-
transfer and bad-transfer test images, as well as the original
training images. The accuracy of our model in each case is
presented in Figure 6. Our model provides a good match to
human performance, and replicates the effect that perceptu-
ally individuated stimuli foster substantially different error
profiles than perceptually un-individuated stimuli.
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Figure 5: Sample stimuli for Experiment 2, modelling ex-
periment 1C of Regehr and Brooks (1993). (Left) Images
are composed of interchangeable (composite) feature mani-
festations. (Right) Images expressing the same attributes are
drawn in a more coherent (individuated) style. Regehr &
Brooks (1993) drew a distinction between good transfer and
bad transfer test stimuli. A test stimulus is a good transfer
case when the addition or removal of spots matches a training
case with the same label, and a bad transfer case if adding
or removing spots matches a training case with the opposite
label. (Adapted from Regehr & Brooks (1993) Figure 2A).

Figure 6: Comparison of human and model performance for
Experiment 2. Our model accounts for the key difference
in human performance on the good transfer (GT) versus bad
transfer (BT) pairs for the individuated stimuli. Error bars in-
dicate 95% confidence intervals. Human data from Regehr &
Brooks (1993).

Discussion
Posner & Keele’s (1968) study is considered to be seminal
in the development of prototype theory, and the result that
subjects categorize the training patterns and prototype pat-
terns equally well is taken to indicate that the subjects are ab-
stracting information about the prototypes during the training
phase. Our model’s replication of this performance provides
good evidence that our approach is capable accounting for
the sort of prototype effects that the study uncovered. Inter-
estingly, the spiking version of the model performs slightly
worse than humans on the prototypes, indicating that it might
be performing a more exemplar-based classification. How-
ever, we hypothesize that adding more neurons to the asso-
ciative memory will attenuate this effect.

Regehr & Brooks’ (1993) study is more easily located in
the tradition of exemplar theories of category representation.
The fact that the model replicates the effects of interference
from exemplar memories on more analytic categorization ap-
proaches suggests that it is well-equipped to deal exemplar-
based phenomena. Moreover, the architecture of the model
almost trivially assures that this is true—the contents of the
associative memory essentially are exemplars produced from
visual experience. It is thus reasonable to expect that phe-
nomena found in studies using different kinds exemplars will
be reproducible with the model.

Overall, the results of the simulations indicate that our
model is able to account for an important set of phenomena
closely associated with exemplar and prototype theories of
category representation. The fact that the simulation employs
a neural architecture for all stages of processing, and that it
begins with raw image input, provides an important contribu-
tion to the current literature.

However, the model has several limitations as it stands.
Nevertheless, we believe it is reasonable to expect that the
architecture is capable of capturing an even wider range of
phenomena. We identify two requirements of scaling that an
architecture utilizing semantic pointers can likely achieve.

For one, it is possible to incorporate a more realistic ac-
count of category learning into the model. In the actual exper-
iments, subjects learn the relevant categories through correc-
tive feedback, and the feedback process continues either for a
set number of trials, or until the subjects can accurately clas-
sify all of the items without error. By comparison, our model
learns by memorizing a set of training images labelled with
the correct category. In the model, the label/image relation-
ships are forgotten when the model is shown another set of
stimuli. However, the recent development of methods for in-
troducing biologically plausible learning rules into the neural
framework we employ indicates that this simplification could
be removed in the future. Other cognitive models that make
use of semantic pointers have already incorporated a form of
reinforcement learning using such rules (e.g. Eliasmith et al.,
2012).

Second, we believe it is possible to account for a broader
range of categorization phenomena. The architectural prin-
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ciples used in our model have also been used to construct
what is currently the world’s largest functional brain model,
able to account for tasks involving serial-order recall, syn-
tactic induction, and the manipulation of numerical con-
cepts (Eliasmith et al., 2012). The fact that other large-scale
cognitive models make use of the same representations and
processes as this model provide good reason to think that
a similar scale of functionality can achieved with models
specifically focused on category representation. These two
extensions will be the focus of future work.

Conclusion
This paper has presented a neural architecture for categoriz-
ing visual stimuli using a semantic pointer architecture. Our
model replicates human behaviour on two important stud-
ies of visual categorization: Posner & Keele’s (1968) and
Regehr & Brooks’ (1993). Modelling efforts have tradition-
ally had to face the dilemma of choosing between plausibil-
ity and scope. The end-to-end neural model described here
takes a suggestive first step in addressing this dilemma. Over-
all, this promise of scalability adds further theoretical signif-
icance to the empirical results we describe. The combination
of a hierarchical visual model and a neurally implemented
vector-symbolic architecture yields a new, effective approach
to building models of category representation that are scal-
able, biologically plausible, and comprehensive, in that they
capture the stages of processing from perception to judgment.
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