
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Creative strategies in problem solving

Permalink
https://escholarship.org/uc/item/6896941q

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 26(26)

ISSN
1069-7977

Authors
Lee, N. Y. Louise
Johnson-Laird, P. N.

Publication Date
2004
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6896941q
https://escholarship.org
http://www.cdlib.org/


Creative strategies in problem solving  
 

N. Y. Louis Lee (ngarlee@princeton.edu) 
Department of Psychology, Princeton University 

Princeton, NJ 08544-1010 USA 
 

P. N. Johnson-Laird (phil@princeton.edu) 
Department of Psychology, Princeton University 

Princeton, NJ 08544-1010 USA 
 
 

Abstract 

Three experiments investigated how individuals solve “shape” 
problems.  These problems are not susceptible to a means-
ends strategy.  They consist of a configuration of squares, 
whose sides consist of separate pieces; and the task is to 
remove a given number of pieces to leave behind a given 
number of squares.  The paper presents a theory of how 
individuals develop strategies for these problems.  Experiment 
1 explored the constraints of symmetry and visual saliency in 
shape problems.  Experiment 2 corroborated the theory’s 
prediction of a major shift in which knowledge acquired 
during the evaluation of tactical steps comes to govern the 
generation of these steps. Experiment 3 showed that 
participants could be biased to adopt strategies making use of 
specific tactical steps. 

Introduction 
How do individuals develop strategies to solve problems?  
The question arises crucially for those problems that come 
in a series of different instances (e.g. Luchins’s, 1942, water 
jug problems).  Our aim was to answer this question for 
problems that do not have a unique solution and for which 
individuals cannot develop a simple deterministic strategy 
guaranteeing an error-free solution.  We therefore studied 
what we refer to as  “shape”  problems (see Katona, 1940).  
Figure 1 presents an example of such a problem.  There is 
an initial shape made out of separate pieces (matchsticks) 
and the goal is to remove a given number of pieces to leave 
a given number of squares.  There are two constraints: the 
resulting squares should be of the same size as the initial 
squares, and the solution should not have any loose ends 
(pieces with an end not connected to any other piece). 

 

 
 
Figure 1: On the left is a shape problem in which the task is 
to remove five matches so that only ten squares remain.  A 
solution is shown on the right. 

 
 An important feature of shape problems is that naïve 
individuals cannot use a means-ends strategy in which they 
work backwards from the desired goal (Newell & Simon, 
1972).  The goal merely specifies how many squares should 

remain, but not how they are arranged.  Likewise, 
individuals cannot always tell if a tactical step in a shape 
problem makes progress towards the goal.  The discovery of 
the tactical steps in shape problems is accordingly a 
discovery of the problem space.  There are, in fact, seven 
distinct tactical steps for removing pieces, which are 
summarized in  Figure 2. 
 

 
________________________________________________ 
1. To remove 1 piece & 0 squares, remove loose end 
2. To remove 1 piece & 0 squares, remove join 
3. To remove 1 piece & 1 square, remove outer 
4. To remove 1 piece & 2 squares, remove middle 
5. To remove 2 pieces & 1 square, remove corner 
6. To remove 3 pieces & 1 square, remove U-shape 
7.  To remove 4 pieces & 1 square, remove isolated-square 
_____________________________________________________________________ 
 
Figure 2: The seven tactical steps for shape problems. 
 
  In what follows, we outline a theory of how individuals 
explore these tactical steps, and how they use these 
explorations to develop strategies.  We then report three 
experiments that test the predictions of this theory.  
 

The theory 
Problem solving is a creative process, and we distinguish 
three main sorts of algorithm for creativity (e.g., Johnson-
Laird, 1993).  First, a neo-Darwinian algorithm consists of a 
stage in which ideas are generated followed by a stage in 
which they are evaluated.  Generation depends on arbitrary 
combinations and modifications of existing elements; 
evaluation depends on the use of knowledge as constraints 
to filter out useless results.   Any ideas that survive can be 
recycled recursively through the generative stage again, and 
so on.  Second, in a neo-Lamarckian algorithm, all the 
knowledge acquired from experience constrains the 
generation of ideas.  If alternatives are created, then choice 
amongst them can only be arbitrary, because all the 
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constraints have already been used in their creation.  When 
individuals have the requisite knowledge, the algorithm is 
highly efficient, because there is no need for recursion.  
Third, in a multi-stage algorithm, some knowledge is used 
to constrain the creation of ideas and some knowledge is 
used to evaluate the results – with the option of recursion. In 
sum, according to this account, constraints govern the 
evaluation of ideas, or their generation, or both. 
 The algorithm that individuals use to solve shape 
problems should depend on their experience.  Naïve 
individuals are likely to tackle their initial problems using a 
strategy that is close to neo-Darwinian.  They should be 
constrained solely by the statement of the problem, the 
problem shape itself, and their existing perceptual and 
cognitive processes.  As they try out the various possible 
tactical steps, they learn their consequences, which are 
summarized in Figure 2.  Learning occurs whether or not a 
tactical step turns out to be useful in solving a problem.  
Any problem allows only a limited set of tactical options, 
and so individuals should gradually narrow down the steps 
that are left to explore.  Likewise, granted that the problem 
is within their competence, they should at length hit upon a 
sequence of steps that leads to a solution.  In addition, some 
pieces in the problem shape are visually salient, and they 
may bias participants to attempt certain tactical steps first.  
Saliency is likely to depend on the perimeter of the shape.  
Any piece in the perimeter should be visually salient if it 
has at least one adjacent piece that is also in the perimeter 
and is at right angles to it.  In addition, a piece should be 
more salient if both adjacent pieces are at right angles.  A 
visually salient component comprises a group of such 
visually salient pieces that are adjacent to each other.  These 
principles are probably special cases of broader factors 
governing visual salience.  The acquisition of tactical 
knowledge depends on perceptual abilities, e.g., subitizing a 
small number of squares, and conceptual and inferential 
abilities, e.g., a grasp of the concepts of squares and pieces, 
and relevant arithmetical operations. 
 According to the theory, as tactical knowledge is 
acquired, it shifts from the evaluative stage of the creative 
process to the generative stage.  Individuals accordingly 
shift from using a neo-Darwinian algorithm to a multi-stage 
algorithm, and may even converge on a neo-Lamarckian 
algorithm.  This strategic shift enables them to avoid useless 
tactical steps and thereby to make more efficient progress 
towards solutions.  They may proceed at once to correct 
tactical steps.  A central component of an efficient strategy 
for shape problems is the ratio of the number of pieces to 
remove to the number of squares to remove (henceforth, the 
“p/s”  ratio).  It constrains the appropriate tactical steps from 
those afforded by the current configuration of the problem 
(see Figure 2).  But, its optimal use depends on knowledge 
of the full variety of tactical steps.  Conversely, a limited 
knowledge of these steps yields limited strategies for coping 
with the problems.  Yet, the shift of tactical knowledge to 
the generative stage of problem solving should still occur, 
albeit with a restricted repertoire of tactical steps.  Hence, it 

should be possible to bias the development of strategies by 
giving individuals only a limited experience of tactical steps 
in an initial set of problems. 

Experiment 1 
This experiment explored two factors that should affect 
shape problem solving: whether the initial shape is 
symmetrical or asymmetrical, and whether the solution is 
salient or not in the shape.  
 

 
 
Figure 3: The eight problems used in Experiment 1.  We 
manipulated symmetry and the presence of a salient 
solution. 
 

Method and procedure 
Twenty Princeton University students carried out eight 
problems, which manipulated symmetry and the presence or 
absence of salient solutions.  Figure 3 presents the eight 
problems used in the experiment.  In order to 
counterbalance the manipulation, one set of four problems 
(see Figure 3a) called for the same number of pieces and 
squares to be removed.  This condition is feasible only by 
changing the shapes from the cases in which the solution is 
salient to the cases in which it is not.  Hence, a second set of 
four problems (see Figure 3b) used the same shapes in these 
two cases but changed the number of pieces and squares that 
had to be removed.  The experiment employed a block 
design: half of the participants carried out the four problems 
in Figure 3a first, and the other half carried out the four 
problems in Figure 3b first.  The assignment of block 
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presentation, as well as the order of problems within each 
block, was random. 

On each trial, the participants constructed the shape in a 
given diagram using matchsticks.  They then tried to solve 
the problem.  They were told that they should not leave any 
loose ends, and that each square must consist of four pieces. 
They had to say “done”  at the end of each trial to the 
experimenter, who recorded the latencies. 

Results and discussion 
Figure 4 presents the mean latencies to solve the eight 
problems.  The two blocks did not differ reliably (z = 1.61, 
n.s.), and therefore we collapsed their latencies for analysis.  
Participants solved problems with a salient solution reliably 
faster than those without a salient solution (Wilcoxon 
signed-rank test, z = 3.85, p<.001).  In addition, they also 
solved problems with a symmetric initial shape reliably 
faster than those with an asymmetrical initial shape 
(Wilcoxon signed-rank test, z = 2.09, p<.05).  The two 
variables did not interact.  These results demonstrate that 
existing factors in the problems can constrain problem 
solving strategies.  To investigate how people develop 
strategies to cope with shape problems, however, 
participants would need to solve a series of problems calling 
for the removal of different numbers of pieces, and to think 
aloud as they solve the problems.  Experiment 2 employed 
this procedure. 
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Figure 4: Experiment 1: Mean latencies as a function of 
symmetry and the presence of salient solution. 
 

Experiment 2 
This experiment tested the key prediction of a shift in 
strategy from a neo-Darwinian exploration of steps to their 
use in constraining the generation of steps. As a corollary, 
there should be a reduction in the number of steps that 
individuals take to solve problems.   

Method and procedure 
Fourteen Princeton University students carried out 12 
problems presented in a random order.  The problems (see 
Figure 5) varied in terms of symmetry, number of matches 
to be removed, and tactical steps, but they all called for 

removing two squares.  The experimental procedure was the 
same as that in Experiment 1.  However, there was an 
additional requirement: participants had to think aloud as 
they solved the problems.  We video-recorded what they did 
and what they said.   
 

 
 
Figure 5: The 12 problem shapes used in Experiment 2. 
 

Results and discussion 
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Figure 6: Experiment 2: Mean latencies and numbers of 
false steps across trials. 
 
Figure 6 presents the mean latencies to solve the problems, 
and the mean numbers of false steps, over the 12 trials.  A 
false step was one that the participants subsequently undid. 
As predicted, the participants were able, with experience, to 
solve the problems faster (Page’s L = 7882.5, z = 4.86, p << 
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.001), and to make fewer false steps (Page’s L = 6750.0, z = 
2.16, p <.05).  These two variables correlated reliably for all 
but two of the problems (Pearson’s r ranged from .65 to .95, 
with p <.05 to p <.001). In addition, in a post-experimental 
questionnaire, the participants were most likely to identify 
those tactical steps that they had used during the 
experiment: they all mentioned the outer and the U-shape, 
but none identified all seven tactical steps (see Figure 2). 

The transcriptions of the video-recordings showed that the 
participants relied mainly on a single strategy, but there 
were other two strikingly different strategies.  The main 
strategy has two stages.  The first stage is exploratory: the 
participants try out various tactical steps, which they usually 
subsequently undo.  They are acquiring knowledge of these 
steps, including steps irrelevant to the present problem.  
They are also acquiring knowledge of the p/s ratio, i.e., the 
ratio of pieces and squares to be removed (see the previous 
section).  They grasped its relevance, but rarely in a 
complete way.  The duration of this stage depends on the 
participants’  experience with the problems.  It accordingly 
shrinks in proportion over the problems as the participants 
acquire knowledge.  The second stage of the strategy is the 
application of tactical knowledge.  The participants consider 
the p/s ratio, often mentioning it explicitly, and use their 
tactical knowledge to select an appropriate tactical step.  
The shift has occurred from a neo-Darwinian strategy to a 
multi-stage strategy. Hence, the participants are able to 
make rapid progress to the solution.  For some problems, 
they make no false steps.  Likewise, they can combine 
tactical steps into a single step that solves the problem at a 
stroke.  In other cases, they apply their knowledge 
recursively, removing a correct piece, re-assessing the 
number of pieces and the number of squares to be removed, 
and, as result, selecting a further tactical step, and so on, 
until they solve the problem.  They are converging on a neo-
Lamarckian strategy for solving shape problems. 
 

 
 
Figure 7: An example of the main strategy in a non-
deterministic finite-state automaton.  On the right, is the 
shape problem in which the goal is to remove 2 pieces and 2 
squares (Problem 7). 
 
 Figure 7 shows an example of the main strategy.  The 
participant started in an exploratory state (state 0) and tried 
various steps, which she immediately undid.  She then 
correctly removed an outer (shifting to state 1), and then 
removed another outer to solve the problem.  On some 

subsequent trials, e.g., with problem 5, she proceeded at 
once to the correct solution with no false steps.  The 
protocol is typical in that it appears to reflect the use, not of 
a simple deterministic strategy, but one in which various 
steps are tried out in a way that appears to be non-
deterministic. 
  One participant used a quite different sort of strategy.  
During the first stage of tackling a problem, the participant 
removed some pieces – often the required number – in an 
apparently arbitrary way, sometimes leaving several loose 
ends.   The participant then carried out one of three actions: 
removing a new piece, replacing a piece removed earlier, or 
moving a piece from one position in the shape to fill the 
position of a piece that had been removed.   The participant 
persisted in these steps until the solution emerged.  The 
strategy was inefficient, yielding many more false steps than 
other participants. Yet, the participant gradually acquired 
some tactical knowledge, which became evident in both a 
more judicious initial removal of pieces and in more 
efficient steps in the second stage.  
 Another participant used a strategy that depended on the 
initial shape.  The participant used the statement of the 
problem to divide the initial shape into two or three 
conceptual parts.  For example, for Problem 2 (remove five 
pieces to remove two squares), the participant identified the 
number of squares to remain in the solution (eight), and then 
partitioned this number into two parts (three squares plus 
five squares).  The participant then searched for ways to 
eliminate all but these configurations. Unfortunately, the 
attempt ignored the number of pieces to be removed. The 
strategy was inefficient, and yielded little tactical 
knowledge. 
 All three strategies stabilized as instances of the multi-
stage algorithm outlined earlier.  No-one developed a neo-
Lamarckian strategy that guaranteed that they could proceed 
directly to the solution of a problem without any false steps.  

Experiment 3 
When individuals acquire a deterministic strategy, it 
transfers to new problems (see, e.g., Luchins, 1942).  With 
shape problems, however, individuals do not acquire a 
deterministic strategy guaranteed to lead to solution, but 
instead acquire a tactical knowledge that constrains the 
generation of steps. Their resulting strategy does not appear 
to be deterministic (see Figure 7).  Nevertheless, it should 
be possible to bias the development of strategies by giving 
participants an experience of only certain tactical steps in 
the initial problems.  Experiment 3 tested this prediction. 
 The participants first encountered a series of four 
problems that could be solved only by using certain tactical 
steps.  These tactics differed between two groups of 
participants. Both groups then tackled two “ambiguous”  
problems that could be solved using either set of tactics. A 
final unambiguous problem could be solved only with novel 
tactics, i.e., a problem used to train the participants in the 
other group.  Such a problem should force the participants 
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back to a greater use of the exploratory stage of their 
strategy. 

Method 
Twenty Princeton undergraduates were assigned at random 
to one of two groups: both carried out seven problems 
calling for the removal of four pieces to eliminate two 
squares.  In Group 1, participants tackled four problems that 
could be solved only by removing two corners; in Group 2, 
they tackled four problems that could be solved only by 
removing a U-shape and an outer.  Each participant carried 
out these trials in a different random order.  Both groups 
then attempted two ambiguous problems, and finally a 
problem chosen randomly from the first four problems 
given to the other group.  Figure 8 shows the complete set 
of problems. The experimental procedure was the same as 
that in Experiment 1. 
 

 
 
Figure 8: The problems used in Experiment 3.  Each 
problem called for the removal of four pieces and two 
squares. 
 

Results 
Figure 9 presents the mean latencies of the two groups to 
solve the problems.  The participants took progressively less 
time to solve the problems over the seven trials (Page’s L = 
1618.0, z = 4.23, p <<.001).  The ambiguous problems took 
slightly longer than the last training problem, though the 
difference was only marginally significant (Wilcoxon test, z 
= 1.64, p >.05).  However, the choice of pieces to be 
removed showed that both groups persevered with the same 
tactics that they had used in training: overall, 92% of 
solutions were based on the same tactics; 14 out of the 20 
participants used these tactics on both ambiguous problems, 
and the remaining participants were ties (Binomial test, p << 
.001).  The final control problem took significantly longer to 

solve than the last training problem (Wilcoxon test, z = 
2.61, p < .01). 
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Figure 9: Mean latencies of the two groups in Experiment 
3. 
 
  The results show that even when individuals have not 
acquired a deterministic strategy, their knowledge of tactics 
transfers to new problems.  The training trials sufficed for 
the participants to develop tactical knowledge, and this 
knowledge constrained their search for solutions to the 
subsequent problems.  With ambiguous problems, they 
readily succeeded though there was a marginal tendency for 
them to be slightly slower.   In the case of the final problem, 
the tactics were inappropriate, and so they had to revert to a 
longer exploratory stage, which slowed them down. 

General Discussion 
Problem solving calls for creativity, because it calls for the 
generation of ideas that are novel (at least for the 
individual).   In the case of, say,  Duncker’s X-ray problem 
(Duncker, 1945), psychologists can study only how 
individuals solve the problem for the first time.   Hence, in 
order to investigate the development of strategies for 
solving problems, it is necessary to use problems that can be 
presented in a series that call for distinct solutions.   In the 
past, such problems have been open to solution by a  simple 
deterministic strategy of one sort or another (see, e.g., 
Luchins, 1942).  In contrast, our goal was to examine the 
development of strategies for coping with problems that lie 
outside the bounds of a deterministic strategy – at least for 
our participants.   We therefore studied problems that come 
in a series, just as many problems in daily life do  – from the 
writing of computer programs to the search for a job. 
  Experiment 1 explored two constraints in shape problems, 
and found that symmetry of the initial problem shape, and 
the presence of salient solutions in the shape, facilitated 
problem solving.  Experiment 2 showed that individuals do 
indeed normally begin to tackle such problems by exploring 
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the consequences of various tactical steps in a way akin to a 
neo-Darwinian procedure.  They choose a step arbitrarily, 
and then evaluate its consequences in relation to the solution 
of the problem.   More importantly, however, they acquire 
knowledge of the number of squares that the step removes.  
They pick up this knowledge whether or not the step is 
useful in the solution of the problem.  And, as the think-
aloud protocols also showed, they acquire some 
understanding of the importance of the p/s ratio in 
determining appropriate steps for a given problem.  This 
ratio, between the number of pieces to be removed and the 
number of squares to be removed, constrains the set of 
useful steps at any point in solving a shape problem.  As the 
theory postulates, a strategic shift then occurs.  Individuals 
start to use their knowledge of tactical steps and the ratio to 
govern the generation of tactical steps.  In this way, they are 
able to avoid useless false steps in the solution of problems.  
No participant, however, was able to converge completely 
on a neo-Lamarckian strategy that guaranteed a solution to 
any problem without false steps.  Indeed, it is an open 
question whether such a strategy is possible for shape 
problems of any degree of complexity.  
 Experiment 3 corroborated the prediction that constraints 
in the form of tactical knowledge do transfer to new 
problems. Participants acquired tactical knowledge during 
training trials, and they continued to use these tactics for 
problems that could be solved in other ways.  When the 
tactics were inappropriate, they were slowed down because 
they had to revert to a longer exploratory stage to find the 
right tactics.  Luchins (1942) discovered that deterministic 
strategies transfer in this way.  Our results generalize his 
findings to show that even when experience leads at best to 
a strategy that is not deterministic, the strategy nevertheless 
transfers. 
 Is the strategic shift an instance of insight?  The answer 
depends on what one takes insight to be (cf. Weisberg, 
1986; Kaplan & Simon, 1990; Isaak & Just, 1995; Ormerod, 
MacGregor, & Chronicle, 2002).  When the current 
constraints fail to yield a solution, the shift yields new 
constraints on the generation of tactical steps. This change, 
in turn, can yield the solution of a problem. The 
development of strategies for shape problems accordingly 
reflects a series of small insights in which constraints are 
changed as a result of strategic shifts. 
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