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Exploring the Contribution of Host Susceptibility to Epidemiological Patterns

of Schistosoma japonicum Infection Using an Individual-Based Model

Shuo Wang and Robert C. Spear*
Center for Occupational and Environmental Health, School of Public Health, University of California, Berkeley, California

Abstract. We recently reported the analysis of epidemiological data suggesting variability in individual susceptibility
to infection by Schistosoma japonicum among rural villagers who reside in Sichuan Province of southwestern China.
By supplementing the data used in the earlier analysis from other studies we have reported from this region, we
presented improved estimates of cercarial exposure, which in turn, result in stronger evidence of susceptibility. This
analysis was conducted using an individual-based mathematical model (IBM) whose use was motivated by the nature and
extent of field data from the low-transmission environments exemplified by one of our datasets and typical of the current
situation in most endemic areas of China. In addition to individual susceptibility and water contact, the model includes
stochastic aspects of cercarial exposure as well as of diagnostic procedures, the latter being particularly relevant to the
low-transmission environment. The simulation studies show that, to produce key aspects of the epidemiological findings,
the distribution of susceptibility ranges over several orders of magnitude and is highly right skewed. We found no
compelling evidence that the distribution of susceptibility differed between the two populations that underlie both the
epidemiological and simulation results.

INTRODUCTION

Almost 20 years ago, Woolhouse and others1 published an
influential paper exploring the validity and implications of the
“20/80 rule” in the context of infectious disease control pro-
grams. The rule implies that 20% of the exposed population is
responsible for 80% of the disease transmission potential for
a variety of diseases including vector-borne parasites. These
authors concluded that “heterogeneities in contact rates lead
to consistent and substantial increases” in the basic reproductive
number and that this heterogeneity is “likely to be an important
determinant of the epidemiology of vector-borne diseases . . ..”
Clearly, a quantitative understanding of the determinants of
“contact rate” in particular situations is also essential in identi-
fying and targeting the 20% for surveillance or intervention.
Here, we explore the determinants of contact rate using epide-
miological data on Schistosoma japonicum infections among
rural villagers in Sichuan Province of southwestern China.
Woolhouse and others1 addressed the heterogeneity issue

using mathematical models of disease transmission. Recently,
Civitello and Rohr2 further pursued aspects of heterogeneity
in transmission and noted that classic models of parasitic dis-
ease transmission generally represent transmission (or con-
tact) rates by single parameters that lump the effects of both
exposure and susceptibility, the latter being the risk or inten-
sity of infection for a given exposure. They use laboratory
data on snail infections from Schistosoma mansoni miricidia
to explore the interaction of these two factors via modeling
studies and show that models that account for exposure and
susceptibility separately best predicted infection prevalence
across their dataset. Following the exposure/susceptibility dis-
tinction, we previously reported a statistical analysis of two
longitudinal datasets on human infection and reinfection by
the waterborne helminth S. japonicum among rural villagers
who reside in hilly and mountainous agricultural settings.3

That analysis suggested substantial variability in susceptibility

to infection among individuals comprising these populations;
evidence for which has been summarized by Quinnell.4 If this
finding can be confirmed, and if susceptibility were to be a
stable or slowly varying property of an individual, the practical
implications may be particularly important in moving from
low-risk environments to the termination of transmission.
A weakness in our earlier analysis arose from the indirect

methods used to estimate exposure. Here we use the same
datasets used in the earlier analysis, but supplemented with
other data that allow a more direct quantification of exposure
and the estimation of infection intensity to better estimate the
role of susceptibility. This analysis was conducted using an
individual-based mathematical model (IBM) whose structure
and mechanistic assumptions are consistent with the earlier
work at the community level by our group and others. The use
of an IBM for this purpose was motivated by the nature and
extent of field data from the low-transmission environments
exemplified by one of our datasets and typical of the current
situation in most endemic areas of China.
The IBM evolved from our use of differential equation

models of the form initially developed byMacDonald and later
revised and popularized by Anderson and May and others.5–15

These community-based models (CBMs) typically define mean
worm burden in humans and infection prevalence in snails as
state variables and yield outcomes at the population level,
although some variants have introduced more specific subpop-
ulations stratified by, for instance, occupation, age, or infection
intensity. In contrast, IBMs track the actions of autonomous
individuals and their interactions with the environment.16 This
modeling paradigm has two distinguishing features.17 First,
because the IBM tracks every individual in the population of
interest, individual data are used and its heterogeneity repre-
sented to the greatest possible extent. Second, an IBM allows
for simulation of each individual with their specific temporal
and spatial information embedded; the latter being particularly
crucial when interactions between humans and the environ-
ment are associated with the study question. The linkage back
to results obtained with the CBM or to epidemiological sum-
mary statistics is that the collection of individual simulations
allows the description of emergent behavior at the community
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level. Hence, the IBM provides a means of investigating the
origins of the patterns of behavior of the transmission process
assumed and/or observed at the community level.18

MATERIALS AND METHODS

Like the CBM, the IBM mimics each step of the life cycle of
schistosome between the definitive and intermediate hosts.19,20

Our current version of the CBM includes three state variables:
the mean worm burden of the population, the mean infected
snail density in the environment, and the mean level of
acquired immunity in the human population. In the IBM, how-
ever, we have not incorporated acquired immunity because the
levels of worm burden involved are below the threshold where
these effects are likely to affect transmission rates as deter-
mined in earlier work. Details can be found elsewhere.19–23

As noted above and consistent with a great deal of epidemio-
logical evidence, implicit in most CBMs is the assumption that
the distribution of worm burden in the human population is
highly right skewed with a small fraction of the population car-
rying the majority of the total burden in the community. Most
commonly, this distribution is assumed to be well-represented
by a negative binomial distribution. This is an assumption that
has proven quite useful if infections are near endemic equilib-
rium levels but questionable under nonequilibrium conditions.24

This assumption is not embedded in the IBM and we will sub-
sequently be interested in observing if, and to what degree, this
pattern emerges from the IBM simulations.
Worm development in an individual is tracked in the IBM

and includes the following components: water contact, cercar-
ial density in water to which the individual is exposed, individ-
ual susceptibility to worm development, and the fraction of
parasites surviving to maturity in vivo. To complete the loop
from worm burden in a village population through fecal egg
excretion, miracidial hatching and transport to cercarial density
produced by infected snail populations poses a significant chal-
lenge in the low-transmission environment. First, the detection
limits of snail surveys and cercarial bioassays, central to model
calibration in our earlier work, are no longer capable of identi-
fying the spatial and temporal distributions of infected snails
and the free-swimming forms of the schistosome within vil-
lages.25 A further difficulty is that virtually all of our work with
the CBM was focused on internal transmission among humans
and snails within a village in contrast with the very ill-defined
external sources of the free-swimming forms of the parasite
that are likely to be a much more important contributors to
village level infection risk in the low-transmission environ-
ment.26 These factors caused us to treat cercarial density as an
input variable to the IBM to use exposure-related field data
available to us from the low-prevalence end of our earlier
studies and focus on the effects of individual exposure modi-
fiers, together with susceptibility and diagnostic sensitivity, as
they condition host response to environments so defined.
Epidemiological data and supplemental exposure data.Our

earlier statistical analysis, which resulted in evidence of vari-
able host susceptibility to schistosome infection, was based on
longitudinal data from two cohorts, Cohort 1 composed of 424
individuals from 10 villages monitored from 2000 to 2006 and
Cohort 2 composed of 400 individuals from 27 villages moni-
tored from 2007 to 2010.3 Infection risk was generally higher
in the population from which Cohort 1 was drawn than that
of Cohort 2, the latter being typical of the low-transmission

environment now common in most endemic regions of China.
In both cohorts, infection was determined by a positive result
using either the Kato-Katz thick smear procedure or a mira-
cidial hatching test commonly used in China.
In this analysis, our first objective is to better describe the

two components of individual cercarial exposure, frequency
and intensity of water contact and cercarial density in that
water. Water contact was assessed in both populations in ear-
lier studies by sample surveys that allowed a common estimate
of cumulative annual water contact for each individual in both
cohorts based on the frequency and duration of various tasks as
well as the task-specific amount of skin exposure. The survey
design details are presented elsewhere.27,28 Because we are not
here interested in seasonality but in year-end infection inten-
sity, each individual was assigned a constant time-weighted
average water contact value over the annual infection season
as detailed further in Supplemental Material Item 1 (SM1).
Cercarial density presents a greater challenge since the only

directly relevant data available pertains to Cohort 1 and consists
of mouse bioassay data from 5 of the 10 villages collected
mainly over the 2001 infection season plus the consistent
absence of any mouse infections in the studies of Cohort 2.
The 2001 studies indicated substantial differences between vil-
lages in cercarial density, only modest within village changes
over the infection season, and insensitivity to short-term
weather fluctuations.29 Hence, we chose to model cercarial den-
sity throughout the infection season as a stationary random
process with a village-specific mean. The variance of the process
was based on that of the mouse bioassay data adjusted for the
duration of an exposure episode that we define as being com-
posed of one or more 30-minute episodes.30 The absence of any
data on the possible autocorrelation of sequential measure-
ments led us to assume that each 30-minute exposure episode
was to an independently drawn cercarial density value. For
example, if an individual was exposed while tending irrigation
ditches for an hour and a half, three independent 30-minute
cercarial density values would be drawn from the distribution
pertaining to that village.
The total number of cercariae to which individual i is

exposed in 1 year, Ci, is estimated as:

Ci =(
ni

j=1
rssicjkDt = rssiDt(

ni

j=1
cjk ð1Þ

where nj is the annual number of exposure intervals as defined
in Supplemental Material Item 1 (SM1), cjk is the cercarial
density in the kth village in number of cercariae per m2 of
surface water associated with the ith individual’s jth water con-
tact episode; si is the skin exposure rate in m2/min, and Dt is the
number of minutes per exposure episode. The parameter rs is
the acquisition rate of cercariae, that is, the fraction of avail-
able cercariae that attach to and penetrate the skin in fraction/
min. A value of one is used below in the absence of field data
although we speculate its value to depend in part on water
velocity. Here, in each simulation run, si is treated as a constant
for each individual since it is based on an estimate of their
cumulative annual water contact. Hence, in this implementa-
tion, cjk is the only stochastic factor associated with each water
contact episode. (Because cercariae are surface seeking, units
of water surface area are used instead of water volume.)
In earlier simulations of transmission in the Cohort 1 villages

using the CBM, mean worm burdens measured in 2000 and
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2002 allowed the estimation of village annual average cercarial
densities for those years.26 These estimates were used in the
IBM simulations for these villages and given in Supplemental
Material Item 2 (SM2). In the Cohort 2 villages, the absence of
infected snails and positive mouse bioassays made it necessary
to rely on the Cohort 1 data as the basis for estimation of the
cercarial densities in Cohort 2 villages. Specifically, it was
found that mean worm burdens in humans less than 10 are
generally associated with infected snail densities less than
0.15/m2. Hence, in villages where the mean worm burden is
below 5 and no infected snails are observed, an upper bound
on infected snail density is about 0.06/m2 that produces cercar-
ial densities of about 8/m2.
An additional complication in the Cohort 2 villages was the

presence of significant numbers of bovines, some of which were
found to be infected. Hence, we chose to assign mean annual
cercarial density estimates for those villages based on human
prevalence and the relative number of infected bovines as
detailed in Supplemental Material Item 3 (SM3).
IBM implementation.With the estimates of annual average

cercarial density assigned, we now turn to the linkage of these
data to year-end infection intensity in individuals as measured
by the Kato-Katz procedure or the miracidial hatch test. This
process has several elements that are inherently stochastic.
We begin by noting that, given the number of cercarial hits
experienced by an individual Ci, the annual number entering
the systemic circulation is Ji = aiCi. Note that the parameter
describing the fraction of cercarial hits surviving to adult
worms in vivo, Ji is defined on an annual basis rather than
per exposure episode and also that only an integer number
of acquisitions is meaningful. We also import from the CBM
a survival function to account for those parasites that die
before maturity. This function is treated as the probability of
“succeeding” in a Bernoulli trial, each trial corresponding to
the successful development of one schistosome. The rationale
is related to conducting simulations on the individual level in
low-exposure environments: if multiplied by this fraction and
having the decimal part rounded toward zero again, infection
with one worm will then have no infection by definition, and
infection with a few worms will have none or much lower
chance of pairing and producing eggs. Thus, each of the Ji
schistosomes is simulated separately with stochasticity in its
survival incorporated. Finally, the number of worms that indi-
vidual i has acquired by the end of each year is calculated by:

wi =(
Ji
B 1, e�mwtwð Þ ð2Þ

The last element of the IBM relates to infection testing. As
both the miracidial hatch test and the Kato-Katz test depend
on the presence of schistosome eggs, the first step is to deter-
mine the number of single and paired worms. To do so, two
assumptions are made: 1) each worm is either female or male
with equal probability, and 2) any two unpaired worms of the
opposite sex will pair. In the simulation, accordingly, the sex of
each worm is randomly assigned upon development and the
number of worm pairs calculated. In Supplemental Material
Item 4 (SM4), we have detailed the estimation of schistosome
eggs per gram of stool sample (EPG) given the number of
worm pairs and the probability of detecting eggs in a stool
sample using either the Kato-Katz procedure or the miracidial
hatch test.

There are two types of infection status outcome in the simu-
lation for each individual: 1) the “true” status defined by the
existence/absence of worms, which can be determined directly
by counting the number of worms, and 2) the “observed” status
as the result of infection testing, which includes a series of
stochastic factors including the number of worm pairs, the
EPG level on the day(s) when infection testing is conducted
(simulated), and the detection probabilities of both methods.
Individual susceptibility. The CBM includes a population

mean susceptibility parameter, denoted by a, which repre-
sents the mean number of cercarial hits to the skin that sur-
vive to begin development in vivo to an adult worm. This
parameter is poorly defined in the literature and was gener-
ally given a wide range of possible values in our earlier Monte
Carlo simulation studies.31 While we do not regard the avail-
able data as allowing definitive estimation of individual sus-
ceptibility, ai, it does appear feasible to gain insight into its
variability across the population and determine at least its
relative magnitude using the data summarized above.
Recall that the number of annual cercarial hits to an indi-

vidual that begin development is Ji = aiCi and that, on aver-
age, one pair of worms can produce about 1.4 EPG per day.
On the basis of Equation 1, the resulting EPG expected in a
fecal sample, Ei, is approximately:

Ei » airssiDt(
ni

j=1
cj ð3Þ

and, ai is approximately:

ai »
Ei

rssiDt
� 1

(
ni

j=1
cj

ð4Þ

For subsets of individuals with complete data from both
cohorts, it is possible to estimate ai and gain some insight into
its variability for this subset. For those individuals, the princi-
ple issue is to address the stochastic variabililty assigned to the
cercarial density associated with each water contact interval.
Monte Carlo simulation was used to take this variability into
account based on individual water contact data and village of
residence as described earlier.
Individual data collected from the two cohorts were used

separately for the estimation of ai and only individuals with
both Ei and ni greater than zero were included for obvious
reasons. Uncertainty in the number of exposure episodes and
in cercarial density was included in the algorithm used to
estimate each individual’s susceptibility parameter ai.

1. For each individual, estimation error in total water contact
was assumed to vary between 0.8 and 1.2 times his/her
original annual ni as derived from the survey data to yield
the number of water contact intervals.

2. A random sample was drawn from the cercarial density
associated with each interval from the negative binomial
distribution estimated for the village of residence. To be
consistent with the epidemiological data, each simulation
was conducted on a 2-year basis for Cohort 1, with the first
and the second years’ �cv of each village selected from our
previous analysis.26 For Cohort 2, the simulation duration
was 1 year, and �cv of each village is predetermined based
on the values given in Supplemental Material Item 3 (SM3).
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The model is coded in MATLAB© (The MathWorks Inc.,
Natick, MA), and a total of 5,000 values of ai,k were calcu-
lated for each individual in each cohort. Because these results
are needed for the main simulations studies, preliminary
results are presented at this point.
In Cohort 1, ai was calculated for 108 out of 470 people; in

Cohort 2, only 24 out of 608 people had EPG values greater
than zero and were therefore available to be used for the
simulation. Shown in Figure 1 are the histograms of the 5,000
runs for four individuals in Cohort 1. It can be seen that,
mainly depending on the number ni, the distribution of ai,k

for each individual has quite diverse patterns, varying from
highly right skewed (top left) to nearly normal (bottom right).
Furthermore, when ni is relatively small, the total number
of cercarial hits will be zero in many simulations, thereby
preventing estimation of ai,k. To account for all simulation
results, for each individual, the median of the 5,000 ai,k values
was adopted as a point estimate of the individual ai.
The sample distribution function (SDF) for the 132 esti-

mated median values of ai are shown in Figure 2 for the
combined cohorts (note the logarithmic scale of the x-axis).
Compared with the rest of the people in Cohort 1, the mean
water exposure minutes of the 108 people with measureable

EPG was only 6% greater, and the difference was insignifi-
cant (P = 0.54). However, the 24 infected people in Cohort 2,
on average, had only less than half of the exposure minutes of
the other 584 people. Therefore, the 132 people included in
the ai calculation are convincingly the more susceptible
group, and, considering the majority who had considerable
exposure but no detectable EPG, the overall distribution of
individual susceptibility appears to be highly right skewed.
Hence, the SDF shown in Figure 2 assumes these values to
constitute the upper 12% of the combined populations for
which ai values could be estimated as discussed in the follow-
ing paragraphs.
In both cohorts the values of ai,k range between about 10–3

and 10–1. Many fewer points were available from Cohort 2 and
they tended to indicate somewhat higher values of ai as would
be expected due to the generally lower exposures experienced
by infected individuals in that cohort. However, the uncer-
tainties in cercarial density estimation between the two cohorts
lead us to regard this difference as insufficient to suggest that
the susceptibility estimates characteristic of the two cohorts
are derived from different underlying distributions.
The final step is to specify the overall distributions of

individual susceptibility that will be assumed to apply to the
whole population for subsequent simulation purposes.
Combining the two cohorts, the smallest estimated ai of
2.98 + 10–4 of those with measureable EPG corresponds
to the 88th percentile of the population distribution. That,
plus the evidence for skewness of the population distribution,
results in hypothesizing a series of log-normal curves with
different combinations of geometric mean (GM) and geo-
metric standard deviation (GSD) to be fit to the data, each
of which has the same 88th percentile. As the GSD is a
parameter reflecting the variance of the distribution, three
levels of GSD, respectively 1.5, 3.0, and 4.5, are used to rep-
resent low, medium, and high variance possibilities. The
resulting cumulative density curves of the three log-normal
distributions of ai used in subsequent simulations are shown
in Figure 3.
Simulation studies.As discussed in the previous paragraphs,

the two cohorts showed considerable variability in annual
water contact as well as in village-specific cercarial density.

Figure 1. Distribution of 5,000 simulated ai,k values for four indi-
viduals from Cohort 1.

Figure 2. Estimated median values of ai for 108 people in Cohort 1 (circles) and 24 people in Cohort 2 (squares).
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These factors, together with the central question regarding
the variability in individual susceptibility (here assumed site
invariant and described by the same distribution for both
cohorts) yield two transmission scenarios that we expect to
result in medium- and low-mean infection intensities. But, is
that a reasonable expectation? That is, given the residual
uncertainty and variability in the individual parameters, is
the low- or medium-transmission level a relatively stable
emergent property at the community level or might different
or mixed patterns of community response be observed?
Moreover, do the distributions of individual infection inten-
sity and the reinfection characteristics in these communities
mimic the qualitative patterns seen in the epidemiological
data? To investigate these issues, two hypothetical popula-
tions, denoted as HP1 and HP2, corresponding to the two
original cohorts are created such that:

1. The number of people in HP1 and HP2 follow the original
data. There were 529 people from 10 villages in Cohort 1
and 727 people from 28 villages in Cohort 2, for whom the
respective water contact distributions were estimated.

2. For each hypothetical individual, residential village is ran-
domly assigned with its corresponding annual mean cercar-
ial density �cv. Note again that for HP1, the annual cercarial
density was estimated separately for two consecutive years.
Accordingly, each simulation was conducted on a two-year
basis. For HP2, on the other hand, the simulation interval
is 1 year.

3. The values of three other parameters must be specified for
each individual: individual susceptibility (ai), the water con-
tact minutes (or equivalently, ni), and the mean body sur-
face area (si). The ai of each individual is randomly selected
from one of the three distributions shown in Figure 3. Derived
from the survey data for each cohort is a negative binomial
distribution that is parameterized to describe the total num-
ber of water contact minutes for a randomly selected indi-
vidual. Finally, we chose to sample the values of si for each
individual from empirical cumulative density distributions
based on the originally calculated body surface area of each

cohort from the survey data. The specific data corresponding
to each of the above components of the simulations are
given in Supplemental Material Item 5 (SM5).

Two series of simulations were conducted to account for
stochasticity from these various sources. The first series
mimics transmission among the same group of individuals
over multiple years. So the simulation results reflect the fluc-
tuations of water contact and random variability in cercarial
exposure from year to year. Hence, each individual’s ai, si,
and �cv (or equivalently, the village in which this individual
resides) are fixed in all simulations once randomly assigned.
For water exposure, it is assumed that the total number of
30-minute intervals randomly varies between 0.8 and 1.2 of
the originally selected ni (the same assumption as that earlier
used in simulations to estimate ai). For the second series, on
the other hand, each individual’s exposure profile is ran-
domly reassigned in every simulation, so a new hypothetical
population is created each time. The main goal of conducting
Series II simulations is to confirm that the patterns observed
in the Series I simulations are not due to chance, that is, they
do not apply to only one specific population at one particular
time, but represent relatively stable patterns of infection
intensity in the population. Both series of simulations were
conducted 2,000 times for each cohort.
The second epidemiological finding that was addressed in

the simulations relates to the role of individual susceptibility
to reinfection after treatment with praziquantel. Recall that it
was the analysis of epidemiological data on these two cohorts
that initially suggested the existence of differential suscepti-
bility in the populations and that also served as the basis for
our estimation above the values of the susceptibility parame-
ter ai for a subset of individuals. The epidemiological finding
was that repeated infections were found to be nonrandomly
distributed in the population even when controlled for cercar-
ial exposure. That is, people who were infected in previous
surveys were more likely to be reinfected after treatment than
those who were not previously infected.3 However, the earlier
statistical analysis used proxies for cercarial exposure such as

Figure 3. Distribution of ai corresponding to GSD of 1.5, 3.0, and 4.5. GSD = geometric standard deviation.

HOST SUSCEPTIBILITY TO S. JAPONICUM INFECTION 1249



village infection prevalence, country of residence, and indi-
vidual demographic variables as substitutes. The IBM offers
an alternative, mechanism-oriented model structure, incorpo-
rates the hypothetical populations, and uses explicit estimates
of cercarial density. The question then, is if the same pattern
of reinfection occurs in the hypothetical populations.
In each simulation, the model is run for two time units

(TUs) two 2-year intervals for HP1 and one 2-year interval
for HP2. At the end of each TU, a mass chemotherapy treat-
ment is simulated assuming perfect compliance and efficacy.
That is, every individual’s worm burden is reset to zero. Any
infection occurring at TU1 will be regarded as baseline infec-
tion and that of TU2 is the reinfection. If reinfection is ran-
dom among the population, the proportion of people who
are reinfected in each simulation should be approximately
PR » IR1 +IR2, where IR1 and IR2 are fraction of the popula-
tion infected at TU1 and TU2. On the other hand, the actual
proportion of reinfections in each simulation is PA =NR=NHP,
where NR is the number of people who have infections (EPG
> 0) at both time points. NR is directly counted from each
simulation. NHP is the number of people in the corresponding
hypothetical population. The ratio of the two proportions is
an index for comparison between the two HPs that represent
two different levels of cercarial exposure and transmission
intensity where RAR = PA=PR. In this context, the epidemio-
logical finding was that RAR was significantly greater than
unity for both cohorts and that the ratio increased as risk of
infection decreased, that is, the ratio was larger for Cohort 2
than Cohort 1.

RESULTS

The first pattern of interest regards the distribution of

infection intensity among the hypothetical populations. Our
epidemiological data from previous infection surveys, as well

as that of many other investigators, have shown that EPG in

population groups is approximately negative binomially dis-

tributed for most transmission levels and exposure dura-

tions.15,32 To verify this pattern is also characteristic of the

two HPs, each simulation was run for three TUs—that is,

three 2-year intervals for HP1 and three 1-year intervals

for HP2.
The histograms of prevalence and population mean EPG

for the 2,000 runs at the end of 2 years for HP1 and 1 year for

HP2 are shown in Supplemental Material Item 6 (SM6) and

show normal-like distributions for both, as the central limit

theorem predicts. Moreover, the variability in both is modest,

which indicates that the pattern of response in these variables

is consistent across the 2,000 runs. Figure 4 shows the intensity

distributions corresponding to the infection intensity of each

individual averaged over of the 2,000 runs at the end of 2, 4,

and 6 years and for the three susceptibility GSDs for HP1.

Qualitatively, all of the plots present clear right skewed distri-

butions that are phenomenologically consistent with the sur-

vey data of Cohort 1 (Supplemental Material Item 7 [SM7]).

Thus, the selection of the GSD of the distribution of individ-

ual susceptibility relies on quantitative comparisons between
the simulated and survey results for the same duration of

transmission—one TU, or 2 years. Table 1 presents this

Figure 4. EPG histograms corresponding to three GSDs of the individual susceptibility distribution for HP1 based on 2,000 Series I simula-
tions. GSD = geometric standard deviation.
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comparison including the aggregation parameter kEPG that

assumes the data to be from a negative binomial distribution.
The susceptibility distribution with GSD of 1.5 yielded

more than twice as high a prevalence in HP1 than in Cohort 1
(51.8% versus 23.0%) despite having a similar mean EPG (9.0
versus 8.5). In addition, the variance and kEPG of the simulated
data were not close to the survey results. As can be seen from
Table 1, the results corresponding to GSD of 4.5 were, in
general, more consistent with the survey results without sacrific-
ing the accuracy of kEPG estimation.
Using a susceptibility GSD of 4.5, the results of Series I

simulations for HP2 yield a mean incidence quite close to the
survey result for Cohort 2 (11.4% versus 11.7%), but the
mean EPG is considerably lower than the survey result (1.14
versus 4.78). Indeed, as can be seen from the distribution of
mean EPG for the 2,000 runs for HP2 in SM6, 4.78 would be
in the extreme right tail of that distribution. In tracing back,
we found that 75% of the total EPG observed in Cohort 2 was
attributed to two individuals and, upon exclusion of these two
outliers, the survey would have yielded a mean EPG of 1.19.
Thus, while the variability in susceptibility and exposure in
HP2 does not account for these outliers, the simulation results
in the two hypothetical populations have proved reasonably
capable of capturing the incidence rate and infection intensity
for the two cohorts.
Regarding reinfection, and continuing to use a susceptibility

GSD of 4.5, the simulation results shown in Table 2 reveal
two features that are qualitatively consistent with the epidemi-
ological results. First, reinfection is not random among the
population—individuals who are infected in the first TU are
more likely to be reinfected in the second TU. Second, the
ratio of RAR is greater in the low-transmission than in high-
transmission environment. Clearly, the values of RAR are
higher in the simulations than seen in the epidemiological data
and the implications of that discrepancy are discussed below.

DISCUSSION

Recall that our overall objective was to explore via simula-
tion the role of individual susceptibility and its interaction with
cercarial exposure in search of further evidence for the exis-
tence of differential susceptibility to infection by S. japonicum.
The results of the simulations show that regardless of the
degree of variability of susceptibility in the population, the

distribution of infection intensity is highly right skewed. More-

over, the variance of the distribution of individual susceptibility
in the population is important in mimicking the quantitative

epidemiological findings with respect to the distribution of

EPG in both the medium- and low-risk transmission environ-

ments. Of the three log-normal distributions used to describe

susceptibility, the largest GSD most closely matched the simu-

lation outcomes with the epidemiological results. These find-

ings suggest that significant differential susceptibility exists

and, further, that there is a high degree of variability within

the human population.
The other principal point of comparison between the simu-

lations and the epidemiological data relates to the character-

istics of reinfection. In the simulation we find, as common

sense suggests, that the more susceptible individuals are more

prone to reinfection. Further, this clustering of reinfection

among the most susceptible increases as the overall prevalence

of infection decreases. This finding, too, mimics the epidemio-

logical data. However, from a quantitative perspective, the

degree of clustering as measured by the reinfection ratio RAR

was greater in the simulations than that found epidemiologi-

cally. This observation is of some interest in that it relates to

the interaction of exposure and susceptibility.
In exploring the exposure/susceptibility interaction, note

that Equation 3 illustrates that, in the model, schistosome egg

excretion by the infected human host is the product of the

susceptibility parameter, water contact, and the cercarial den-

sity in that water, summed over the number of exposure events

in an infection season. Both in our earlier epidemiological

studies and those of others, infection intensity was found to be

relatively insensitive to degree of water contact.27,33 This was

also the case in these simulation studies (see Supplemental

Material Item 8 [SM8]). Hence, in the simulations, and very

likely in the field, cercarial density and individual susceptibility

are the principal determinants of the population distribution of

EPG and of prevalence.
While we are tempted to speculate that some of the discrep-

ancies between the simulation and epidemiological results sug-
gest a somewhat higher mean and/or greater variability in

cercarial density or a different distribution type for ai, we do

not believe that the underlying data are sufficient to support

any further fine tuning. In addition, it is also possible that there

is some degree of residual acquired immunity in Cohort 1 in

particular, which could contribute to the overestimate of rein-

fection shown in Table 2. Whatever the explanation, it would

be of considerable value to have a method for directly measur-

ing cercarial density in water on one hand and a biological

marker of susceptibility of individuals to infection on the other.

While the former seems an obvious conclusion, the benefits of

developing a biomarker of susceptibility need further explora-

tion. We are currently using the IBM described here to investi-

gate the usefulness of such a biomarker to disease surveillance

and that will be the subject of a future report.

Received November 1, 2014. Accepted for publication March 11, 2015.

Published online April 13, 2015.

Note: Supplemental material items, tables, and figures appear at
www.ajtmh.org.

Acknowledgments: The research on which this article is based was
supported by grant number 5RO1AI68854 from the National Institute
Allergy and Infectious Diseases.

Table 1

Mean, variance, and aggregation parameter of EPG distributions for
Cohort 1 (survey results) and the corresponding HP1 (simulation)

Prevalence (%) Mean (EPG) Var (EPG) kEPG

Cohort 1 survey data 23.0 8.5 824.0 0.08
GSD = 1.5 51.8 9.0 278.7 0.30
GSD = 3 34.9 6.3 426.9 0.09
GSD = 4.5 27.8 6.9 692.1 0.07

EPG = eggs per gram of stool sample; GSD = geometric standard deviation.

Table 2

Epidemiological estimates and simulated values of reinfection ratio
(RAR) for several GSDs

Cohort 1/HP1 Cohort 2/HP2

Epidemiology 1.63 4.04
Simulation 2.56 5.72
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