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ABSTRACT OF THE DISSERTATION 

 

Characterizing and Minimizing the Impacts of Diagnostic Computed Tomography 

Acquisition and Reconstruction Parameter Selection on Quantitative Emphysema 

Scoring  

 

by 

  

John Marian Hoffman 

Doctor of Philosophy in Biomedical Physics 

University of California, Los Angeles, 2018 

Professor Michael F. McNitt-Gray, Chair 

 

Computed tomography (CT) has proven to be a critical component of clinical care, and at 

present there is a strong interest in quantitative imaging: augmenting or assisting human 

readers through the use of quantitative and computational techniques applied to the 

image data.  While quantitative imaging is extremely promising and has been the focus 

of many research projects, widespread clinical adoption has not yet occurred, in part due 

to the susceptibility of many tests to CT acquisition and reconstruction parameters (such 

as radiation dose, reconstruction kernel, reconstruction algorithm, etc.).  Previous efforts 

to illustrate and quantify the effects of parameter selection on various quantitative imaging 

tests have been limited in their ability to inform broader use of quantitative imaging; this 

is partly due to the number of parameters investigated (typically one) and/or the cohort 

size.  This work builds on previous efforts by studying one well-established quantitative 
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imaging test, namely emphysema scoring, using a newly-developed, high-throughput, 

quantitative imaging pipeline.  Because of the number of conditions investigated and the 

cohort side, a key goal of this work is to provide recommendations for the clinical use of 

quantitative emphysema scoring. 

The high-throughput pipeline was utilized to reconstruct a cohort of 142 subjects, scanned 

using the lung-screening protocol at our institution.  Each scan was reconstructed under 

a variety of conditions: 100%, 50%, 25%, and 10% dose levels; 0.6mm, 1.0mm, and 

2.0mm slice thickness; and smooth, medium, and sharp reconstruction kernels.  

Additionally, two reconstruction approaches were investigated: weighted filtered 

backprojection (wFBP), and an implementation of iterative reconstruction (Siemens 

SAFIRE).  Thus, each scan was reconstructed using 72 unique parameter configurations. 

First, the susceptibility of quantitative emphysema scoring was investigated and 

characterized by determining “safe” parameter configurations (i.e. resulting in small 

emphysema score change from a reference value computed on the 1.0mm, smooth 

kernel, 100% dose, wFBP reconstruction).  Second, an adaptive denoising method 

(bilateral filtering, adjusted based on slice thickness and dose) was applied and safe 

parameter configurations were reassessed. 

It was found that there exist small groupings of parameter combinations near the 

reference value that produce quantitative emphysema scores similar to the reference. 

This suggests that careful protocol adherence is not strictly necessary to obtain a 

reasonably accurate quantitative emphysema score, however there were still many 

parameter configurations that resulted in large deviations from the reference score.  In 
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terms of clinical translation, this suggests that in addition to a standardized, 

recommended protocol, one or two small changes would not typically compromise the 

results.  However, if a scan or reconstruction was acquired using a parameter 

configuration deemed “unsafe,” this approach provides no means to obtain a valid 

emphysema score, other than to reacquire or re-reconstruct the data, which is not 

typically available. 

With adaptive denoising applied, substantially more parameter configurations were found 

to result in acceptable levels of change.  Only the parameter configurations using 10% 

dose resulted in problematic emphysema score changes.  Thus, adaptive denoising 

provides a means to greatly improve the reliability of quantitative emphysema scoring, 

most importantly in cases where the scan or reconstruction fall outside of typically 

accepted standards. 

While there is still more investigation needed, this dissertation illustrates that widespread 

quantitative emphysema scoring could be made more viable via the use of adaptive 

denoising, and in the absence of denoising only some parameter configurations yield 

acceptable quantitative results. Additionally, the high-throughput pipeline discussed can 

be applied to future, similar investigations regarding emphysema scoring, as well as 

investigations into other quantitative or computational imaging techniques. 
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Chapter 1 - Background and Motivation 

1.1 Introduction 

Clinical x-ray computed tomography (CT) was first introduced in 1971.  The original 

scanner was limited to a pure “pencil-beam” geometry, was only for the imaging of a 

patient’s head, and required approximately 4.5 minutes to render a relatively low-

resolution (80x80 pixels) image.  Since that time, modern CT scanners have improved to 

the point where scanners acquire thousands of multi-slice projections in under half a 

second, most scanners can image an entire adult thorax in one breath hold or less, and 

radiation doses are low enough that CT scanning is being used for lung cancer screening 

[1].  Modern computing technology has enabled new iterative reconstruction approaches 

that could enable substantial further dose reduction and information extraction, and 

machine learning has substantially increased interest in image processing of CT images.  

Because of these developments and CT’s relative speed, accuracy, and low cost, it has 

become one of the most widespread imaging technologies in use today.   

Since its introduction in in 1971, the gold standard for interpreting clinical CT images has 

been radiologists.  In a research setting, often radiologists are employed alongside other 

readers, and while radiologists and readers are typically highly-skilled and specially 

trained for a given task, there is substantial interest in supplementing or enhancing human 

reader performance with quantitative or automated tools.  Recent progress in the fields 

of machine learning and computing, as well as improved data collection and sharing have 

led to the rise of topics such as radiomics, disease classification, computer automated 

detection, and others.  With the extraction of detailed quantitative information not readily 
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available to the human eye, it is suspected that diagnosis and treatment of patients can 

be improved.   

While there is no indication that the use of human readers will decline in the near future, 

there has long been interest in augmenting human readers with quantitative 

measurements made on the image data from CT scans.  Early approaches to quantitative 

CT were limited to regions of the body that could be kept still for the relatively long periods 

of time required to acquire the CT scan, and thus were limited to extremities such as the 

arms, legs, and head.  As far back as 1976, quantitative CT measurements were 

proposed for bone mineral density estimation in the radius and ulna [2].  As CT technology 

improved through the 1980s and 1990s, clinical imaging of the thorax became possible, 

and quantitative approaches to bone densitometry in the spine were developed [3]–[5] 

alongside initial efforts to begin quantifying diseases of the lungs [6]–[8].  

Improvements in technology began to open up new frontiers of quantitative imaging using 

CT, and as more companies began to be involved in development of CT technology, new 

problems began to emerge.  In particular, researchers began to notice that there was a 

need to standardize quantitative results across different scanners in order to produce the 

same diagnoses at different clinical sites using different technology.  The call for 

standardization in quantitative CT extends as far back as the quantitative methods 

themselves, such as the proposed standardized phantom for lung nodule densitometry 

from Zerhouni et al. [9] and a thorough investigation into the impacts of scanner 

manufacturer, geometry, and acquisition time on CT numbers in lung nodules performed 

by McCullough and Morin [10].  McCullough and Morin argued that “great care must be 
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exercised in attempting to use CT numbers to characterize tissue type/pathology” and 

furthermore provided the somewhat prescient recommendation that “if possible, [CT-

number data should be accumulated] on your own equipment, for your own patients, and 

for one ‘standard’ set of scan parameters.”   

While both studies [[9], [10]] were conducted in 1983, modern clinical quantitative CT is 

still challenged and limited by the question of standardization.  Further complicating the 

issue is the massive heterogeneity of modern clinical CT scanners, extending from the 

lowest hardware levels of CT scanners, such as detector scintillation material or 

electronics, up through the acquisition parameters, patient size and coaching, and 

reconstruction parameters, algorithms, and implementations.  As the technology and 

applications of CT have improved, the challenge of standardization has grown more 

daunting, however in spite of the questions still lingering with regard to standardization of 

quantitative CT, modern developments in computing and the availability of large CT 

datasets has only made quantitative imaging more appealing in the last decade.  In 

particular, modern developments in graphics processing units (GPUs) have sparked a 

potential revolution in quantitative CT.  Their suitability for machine learning, image 

processing, and image analysis has extended the reach of quantitative CT beyond 

densitometry and into complex and exciting domains such as radiomics (mining image 

datasets for complex features and correlating values with either genomic data or disease 

expression), novel automated CAD (computer automated diagnosis/detection) and 

segmentation algorithms, and quantitative emphysema scoring.  Despite the excitement 

however, only a limited subset of these quantitative CT technologies and techniques have 
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found their way into day-to-day clinical usage (e.g. clinical quantitative calcium scoring, 

CAD in mammography). 

Quantitative imaging has, to date, largely been limited primarily to the domain of research 

and academic interest, stemming from the fact that results obtained at one site, even for 

simpler quantitative tests, are not necessarily believed to be comparable in any broad 

sense to results obtained elsewhere.  Buckler and Boellaard captured this challenge in 

their 2011 opinion article by identifying that “success [for quantitative imaging] will be 

achieved when results are broadly comparable and are widely disseminated rather than 

being possible only in highly selective and controlled environments.”[11]  However, one 

area in which quantitative CT has found application is in the world of clinical trials, and in 

particular with the measurement of chronic obstructive pulmonary disease (COPD).  

Several large, multicenter trials have employed quantitative CT methods including 

SPIROMICS (Subpopulations and intermediate outcomes measures in COPD)[12], 

COPDGene (Genetic Epidemiology of COPD)[13], and others[14], [15].  Efforts to 

incorporate quantitative imaging of COPD into clinical trials have included a large focus 

on standardizing CT protocols between sites involved.  This is challenging and requires 

substantial quality assurance and effort to ensure that all sites adhere, making this 

approach largely infeasible for broader clinical application. 

Despite the current infeasibility of large-scale, cross-site standardization, interest in 

quantitative measurements of COPD remains extremely high, and one of the longest 

standing approaches to quantitative imaging with CT. With the recent approval of lung 

cancer screening with low-dose CT for Medicare reimbursement, a large population of 
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subjects likely to benefit from the careful tracking of COPD status has emerged (i.e. 

former heavy smokers), in addition to other COPD patients.  However, in a clinical 

environment of disparate protocols, non-standard reconstruction algorithms, and 

aggressive dose reduction, the question remains, are the quantitative measures obtained 

reliably indicative of a patient’s underlying disease status, or are they heavily impacted 

by the conditions under which they were acquired?  

1.2 Quantitative Imaging of COPD 

Chronic obstructive pulmonary disease (COPD) is a class of diseases defined as “a 

preventable and treatable disease state characterized by airflow limitation that is not fully 

reversible.”[16]  Furthermore, “the airflow limitation is usually progressive and is 

associated with an abnormal inflammatory response of the lungs to noxious particles or 

gases, primarily caused by cigarette smoking.”[16]  According to the Centers for Disease 

Control, chronic lower respiratory disease is the third leading cause of death in the United 

States [17], behind heart disease and cancer, making it a critical target for modern 

healthcare; while environmental factors often play a role, tobacco smoking is identified as 

the main risk factor for COPD [16].  Smokers often exhibit both chronic bronchitis and 

emphysema, both classified under the umbrella of COPD, however emphysema is of 

particular concern for quantitative imaging.   
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FIGURE 1-1: ILLUSTRATION OF CONTRAST BETWEEN A POCKET OF EMPHYSEMA AND 
BACKGROUND TISSUE IN A CT SCAN.  EMPHYSEMATOUS AREAS HIGHLIGHTED WITH ARROWS. 
Emphysema refers to the progressive destruction of alveoli in the lung parenchyma, 

resulting in trapped air and reduced gas exchange, decreasing blood oxygenation, and 

the inability to expel air from the lungs normally.  As alveoli are destroyed, pockets of 

empty space are created and air infiltrates and remains.  Pockets of emphysema in a CT 

exam are readily identifiable as darker regions of lower attenuation inside of the lungs, in 

contrast to the healthy, higher-attenuation regions.  An illustration of this contrast is 

provided in Figure 1-1. 
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FIGURE 1-2: SAMPLE DENSITY USING A THRESHOLD OF -950HU (I.E. RA-950 SCORING). 
(LEFT) ORIGINAL IMAGE WITHOUT DENSITY MASK, (RIGHT) WITH DENSITY MASK OVERLAID.  
LUNG SEGMENTATION OUTLINE SHOWN IN GREEN, VOXELS OF DENSITY LESS THAN -950HU 
ARE SHOWN IN RED. 
While initial efforts to quantitatively measure emphysema concentrated on trying to 

measure changes in the mean attenuation of the entire lung parenchyma [18], the 

fundamental approach to quantitative CT for the purposes of evaluating COPD was 

developed in 1988 by Muller et al. [6] using the concept of a “density mask.”  The density 

mask highlights voxels below a given threshold, which are then counted and considered 

against the entire area of the lung, as illustrated in Figure 1-2.  Muller et al. then utilized 

pathological scoring of resected portions of the lungs and determined that the threshold 

that yielded the best correlation between the pathological findings and the quantitative 

CT density mask scores was -910 HU.  While this study laid the groundwork for nearly 

every approach to quantitative emphysema scoring that has followed, it is not without 

issue when attempting to translate to modern CT.  Of note in particular is the use of 10mm 

slice thicknesses when imaging, which is a slice thickness no longer routinely employed 

today and often results in substantial partial volume averaging.  Additionally, each slice 
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was acquired under a different breath hold (due to the slow acquisition speed of scanners 

in the 1980s), which has been found to impact emphysema scores derived from density 

masks [19].  Despite these minor issues however, the work of Muller et al. is still 

considered the seminal work of quantitative imaging of emphysema using CT [20]. 

 
FIGURE 1-3: ILLUSTRATION OF PERC15 CALCULATION IN LUNG HISTOGRAM. 
Recognizing that the -910 HU threshold may need to be revised as technology improved 

and CT slice thicknesses became thinner, several groups have further investigated the 

correlation between pathological scoring approaches and threshold selection for density 

mask scoring.  This has yielded slightly different conclusions.  Genevois et al. found that 

optimal correlation is achieved when utilizing a threshold of -950 HU [7], however their 

results were acquired using 1 mm slice thickness, acquired at  intervals of 10 mm, while 

modern scans typically employ contiguous spacing for a full volumetric acquisition.  

Furthermore, their study utilized a beam energy of 137 kVp, while most adult thoracic CT 

studies utilize 120 kVp and shifts in the beam energy are known to cause changes in 

density measurements.  In a similar study, Madani et al. 2006, it was found that either 

-960 HU or -970 HU should be utilized for optimal correlation between density mask 

scores and pathologic findings, however non-contiguous acquisition was also present in 

PERC15 
value 
(HU) 
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their study (1.25mm slice thickness spaced at 10mm intervals), and a beam energy of 

140kV was utilized.   Furthermore, Madani et al. [21] employed substantially lower tube 

current, 80mAs, than Genevois et al. [7], which, as will be shown later in this work, could 

have impacted the findings.  Although these revisions to the optimal density mask 

threshold were proposed, the threshold most commonly employed today is -950 HU “in 

the interests of balancing sensitivity and specificity” [13], [20].   

Density mask scoring with a threshold of -950 HU, also known as RA-950 (short for 

“relative area”), is the most commonly employed quantitative approach to scoring 

emphysema, however behind RA-950, measuring the location of the 15 percentile point 

of the histogram of lung parenchyma voxel values (PERC15, illustrated in Figure 1-3) has 

been found to correlate well with COPD amount.  In patients with emphysema, PERC15 

has been found to be significantly lower than in patients without, indicating that it also 

may be a good quantitative metric for evaluating emphysema [22].  Additionally, PERC15 

has in some instances proven to be more reproducible and less susceptible to volume 

changes in the lung (i.e. changes due to breath hold) [23], [24].   

Since RA-950 and PERC15 are the two most well-investigated approaches to measuring 

COPD in the lungs, they will be the focus of the work presented in this dissertation.  It is 

worth noting however that because there are some known limitations in these approaches 

(discussed below) efforts to develop other methods are ongoing.  Additionally, other 

methods have historically been tried with limited success.  One method that has been 

explored but failed to reach mainstream adoption is the approach of measuring the power-

law exponent of the cumulative frequency size distribution of the RA-950 mask.  The 
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cumulative frequency size distribution typically displays excellent agreement with the 

power law model given in [25], however it has been shown that D value does not correlate 

well with microscopic and macroscopic measures of emphysema [26].  More recently, 

there has been effort to build a measure of COPD using the mapping of voxels between 

inspiration and expiration scans [27].  By developing a deformation map between the two 

reconstructed scans, a voxel can be labeled as healthy, emphysematous, or “functional 

small airways disease” by assessing its change in value between the two scans.  Initial 

results of the “parametric response map” measure to detect and score emphysema in 

patients and over time are promising [28] and it has been found to be fairly robust to 

sources of variability common in clinical CT [29].  Although it is extremely promising, 

parametric response mapping (PRM) for COPD is a fairly new technique (first published 

in 2012 by Galbán et al. [27]), and is currently only commercially offered by one vendor 

(Imbio, LLC, Minneapolis, MN).  Implementations of PRM are challenging to develop due 

to the difficult problem of reliable deformable image registration between the inspiration 

and expiration scans.   

Despite the number of different approaches that have been explored historically and the 

new approaches that continue to be developed and explored, RA-950 and PERC15 have 

gained the widest use and are, under proper conditions, reasonably well-trusted.  Proper 

conditions however, are difficult to define, and as will be presented next, without a clear 

definition and understanding of those conditions, both RA-950 and PERC15 can display 

large amounts of variation.  Because of this variation, quantitative scoring of COPD has 

failed to gain widespread clinical adoption.   
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1.3 Clinical Challenges 

          

FIGURE 1-4: IDEAL (LEFT) VERSUS REALISTIC (RIGHT) SCENARIOS FOR QUANTITATIVE 
IMAGING. VARIATIONS IN SCANNER UTILIZED, RECONSTRUCTION ALGORITHM AND 
IMPLEMENTATION OF THE QUANTITATIVE TEST LEAD TO CHANGES IN FINAL SCORING VALUES.  
IDEALLY, A QUANTITATIVE TEST WOULD ONLY REFLECT THE ONLY THE PATIENT. 
An ideal quantitative imaging test would reflect only the subject’s underlying disease state 

or biology.  This means that the quantitative imaging test would not be impacted by the 

chosen acquisition parameters, model or manufacturer of the scanner, method and 

settings of the reconstruction, or any other factors such as breath hold, timing of contrast, 

etc. (illustrated in Figure 1-4 (left)).  In practice however, this is not the case, and most of 

these parameters have minor or major impacts on quantitative scoring approaches, 

illustrated in Figure 1-4 (right). 

For an individual clinical site, common sources of variation for CT are typically tied to the 

acquisition and reconstruction parameters of a given scanner.  Acquisition parameters 

include but are not limited to beam energy, tube current, detector collimation, focal spot 

size, bowtie filter, and use of tube current modulation.  If a site has multiple scanners, 

scanner calibration, scanner model, and detector technology can also have large impacts 



 12 

on the final images produced for quantitative evaluation.  Reconstruction parameters 

typically result in even larger changes in the final image.  For the more common filtered 

backprojection reconstruction algorithms, these variations typically result from choice of 

reconstruction kernel, or selection of slice thickness.  By adjusting the reconstruction 

kernel, a site can vary the tradeoff between image noise and resolution, optimizing based 

on the type of image and task required.  Changing the slice thickness also affects image 

noise and resolution, however in the “longitudinal” direction; thicker slices result in less-

noisy images, however also typically result in more partial volume averaging.   

Today however, in addition to the long-standing filtered backprojection reconstruction 

approaches, iterative reconstruction algorithms are now being employed clinically.  

Iterative reconstruction algorithms are being employed for their apparent ability to improve 

image quality at current doses, or maintain image quality at substantially reduced dose.  

These iterative algorithms are either statistical (such as GE’s ASiR algorithm) or model-

based (such as Toshiba/Canon’s FIRST algorithm) and often are strongly influenced by 

the selection of cost function and penalty term used for optimization.  Furthermore, each 

penalty term typically includes its own set of parameters that can be adjusted to balance 

image features such as edge detail, noise, and contrast.  While iterative algorithms 

appear to have the potential to improve or maintain image quality under substantial CT 

dose reduction, it is not well understood what their impacts are on the underlying 

quantitative properties of the reconstructed image, further complicating the already 

heterogeneous clinical environment of CT scanning.  
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While sites typically implement a standard protocol for most commonly-used scan types 

(e.g. routine chest, routine head, pediatric abdomen, etc.), variation within an individual 

site might be caused by a patient being scanned with different protocols or changes in 

protocols over time; or being scanned on different scanners can introduce drastic protocol 

changes (e.g. the lung screening protocol on the Siemens Force scanner versus the lung 

screening protocol on the Siemens Definition AS); or finally changes in patient coaching 

for reasons such as breath holds, or IV contrast.  When multiple clinical sites are involved 

in imaging, such as for a multicenter longitudinal clinical trial, handling variation becomes 

even more challenging.  Variability across sites’ “standard” protocols is often substantial 

in regard to even the more physical acquisition parameters, namely beam energy and 

tube current.  Often, multiple CT scanners from different manufacturers are utilized, which 

can have different beam spectra and manufacturers often implement new features such 

as tube current modulation in unique and non-standard ways.  Reconstruction introduces 

further variability in algorithm use and implementation, including non-standard naming 

schemes, “black-box” (i.e. unknown or unpublished) pre- and post-processing 

techniques, etc. 

1.4 Variation and Robustness Testing 

It has long been recognized in the world of quantitative imaging that the sources of 

variation described above make widespread quantitative imaging challenging.  In the 

particular case of emphysema scoring, a large body of work exists attempting to quantify 

the levels of variation observed in quantitative measures due to common clinical sources 

of protocol variation.  In an early example, Boedeker et al. (2004) [30] looked at the impact 

of changing reconstruction kernel on density mask scoring.  In a cohort of 42 patients, it 
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was found that by changing the reconstruction kernel alone, away from the standard 

recommended kernel, shifts of up to 15.3% were observed, with a statistically significant 

average shift of +9.3% for one particular class of kernel.  Earlier studies had found a 

mixture of results, with some finding that lung densitometry was reproducible across 

scanners and manufacturers [31], and others finding that protocol variations led to strong 

differences in density mask score [32].  Careful examination of these early study results 

however do not disagree with [30]: density mask scores were found to be reproducible 

utilizing phantom measurements, performing custom air calibrations on each scanner, 

and finally utilizing a near-standardized protocol (up to differences in manufacturer 

implementations).  This level of control and standardization is nearly impossible to 

achieve in a realistic clinical setting. 

More recent studies have further built upon the findings of [30] examining the impacts of 

acquisition dose, reconstruction parameters, and reconstruction algorithm selection on 

quantitative emphysema scoring.  In particular, since there is concern regarding the 

ionizing radiation dose associated with CT, ensuring that it is kept “as low as reasonably 

achievable” and with the introduction of more standardized low-dose protocol 

recommendations, such as lung cancer screening, reduction in radiation dose has been 

of particular concern.   In 2005, Gierada et al. [33] found that differences in RA-950 score 

in a cohort of 56 subjects was minimal between “standard dose” scans (120 kVp, 100-

250 mAs effective tube current) and a reduced-dose scan (120 kVp, 30-60 mAs effective 

tube current). This indicates that “precise consistency of exposure factors is not 

necessary when CT scans are used for comparative studies of emphysema… in contrast 
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to differences related to slice thickness and reconstruction filter,” [33] although as will be 

shown later in this work, this is only true up to a point. 

In 2007, Trotta et al. [34] utilized phantom measurements to evaluate the impacts of tube 

current reduction and reconstructed slice thickness on several measurements of 

emphysema, including mean value and standard deviation (no longer employed for 

emphysema evaluation), PERC15, and RA-910 (note that RA-950 is the more commonly 

used value today).  While there is substantial depth in their investigation that will not be 

discussed here, a key result is that there existed threshold tube current after which 

measurements of RA-910 would begin to deviate from the expected value, which was 

known exactly since a lung phantom with calibrated materials was employed.  As tube 

current continued to be reduced further, the deviations became larger. Additionally, they 

highlighted that there were regional differences between the apices and base of the lungs.  

These results are highly informative about changes in density mask scoring one might 

potentially see as a result of dose reduction or slice thickness changes, however they 

provide little insight into the realities of emphysema scoring in a clinical setting with a real 

patient, or possible pathways forward to improving emphysema quantification. Finally, 

phantom studies typically do not account for realistic population features, such as patient 

size, differences in disease state, breath hold, etc. 

Many other studies have taken similar approaches to testing the impacts of dose 

reduction and reconstruction technique on quantitative emphysema scoring: a common 

source of protocol variation (e.g. dose, reconstruction kernel, etc.) is selected and 

evaluated at two or more values, and change in quantitative emphysema scores are 
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measured.  Dose reduction is perhaps the most commonly investigated  [34]–[37], 

followed closely by slice thickness [7], [21] and reconstruction kernel [30], [35].  More 

recently, several investigations have explored the impacts of clinically available iterative 

reconstruction approaches on quantitative emphysema scoring [36]–[39].  Results of 

these investigations have been promising, suggesting that iterative reconstruction in 

many cases does not have a very large impact on quantitative emphysemas scores, 

however the results are often of limited utility when attempting to translate them to the 

broader clinical world.  For example, in [37], “standard dose” CT scans (~10mGy CTDIvol) 

were compared against “ultra-low-dose” CT scans (~0.5mGy) with and without iterative 

reconstruction (Toshiba AIDR 3D).  One single fixed set of reconstruction parameters was 

employed, for one scanner. While AIDR 3D largely had the effect of restoring the ultra-

low-dose RA-950 scores to their standard dose values, it is difficult to infer the reasons 

for this due to the number of data points investigated (only two: standard and ultra-low 

dose).  Additionally, the reader is left wondering if these same results would hold up under 

changes in slice thickness, or more moderate dose reduction.   

The majority of the studies above highlight two key gaps in the current body of work 

regarding the robustness of quantitative emphysema scores: (1) the number of data 

points investigated for a given test parameter and (2) the lack of consideration for possible 

interactions between different acquisition and reconstruction parameters.  The exception 

is one study conducted in 2010 by Gierada et al. [35] investigating the impacts of slice 

thickness and reconstruction kernel combination on emphysema scores.  Five 

reconstruction kernels were tested at four slice thicknesses for a total of 20 

reconstructions per subject (N=21).  By investigating two reconstruction parameters 
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simultaneously and at a number of different settings, they were able to demonstrate the 

behavior of RA-950 scoring over a realistic clinical range of those two parameters.  

Because of the careful, multi-parameter approach utilized in [35], and the fact that their 

subjects had broad range of levels of emphysema, it was further observed by the 

researchers that the amount of emphysema present in a patient’s lungs strongly impacted 

how susceptible their RA-950 score was to parameter changes; subjects with high levels 

of emphysema displayed substantially less variation in emphysema score as a result of 

kernel or slice thickness change when compared to subjects with little or no emphysema.  

This fact was not taken into account in any of the previously discussed studies, further 

complicating the interpretation or translation of those results.  Finally, while Gierada et al. 

[35] did not highlight it in their discussion, their results illustrate that there are ranges of 

acceptable parameters that result in equivalent, or nearly equivalent emphysema scores.  

This concept of “regions” of CT parameter space that produce equivalent emphysema 

scores (or equivalent for diagnostic purposes) is one that will be explored at length in this 

dissertation.  

Aggregating and interpreting all of the existing emphysema-scoring robustness studies is 

challenging: there are a large number of studies investigating similar topics in slightly 

different manners all claiming different levels of success in finding parameter 

configurations that make emphysema scoring “robust.”  However, there are fortunately 

some key lessons to be learned from all of these studies. First, there is an intense desire 

to use emphysema scoring clinically, and as a result make it more robust to acquisition 

and reconstruction parameter change.  Second, most studies were able to identify at least 

some combination of acquisition and reconstruction parameters that resulted in 
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emphysema scores matching a reference score, which means theoretically that for most 

image datasets there could exist a means to map image data or emphysema scores to 

their true values.  The next challenge facing quantitative emphysema scoring is identifying 

a correct approach to develop such a mapping for image data or scores, and 

understanding the methods and potential limitations of that approach. 

1.5 Potential Pathways to Improving Emphysema Scoring 

1.5.1 Standardization 

One of the more obvious possible solutions to reliable quantitative imaging would be to 

simply recommend or require a standardized protocol when acquiring and reconstructing 

images for the purposes of quantitative emphysema scoring.  While this is an interesting 

theoretical exercise, practically, it is almost impossible.  One of the first real attempts at 

multicenter protocol standardization for the purposes of evaluating the feasibility of CT for 

a given task was developed for the National Lung Screening Trial [40].  In [41], Cagnon 

et al. detail the protocols, carefully specified across all manufacturers and scanner models 

likely to be utilized in the study, and additionally the required quality-assurance program 

that was developed to ensure that sites, scanners, and imaging protocols met the 

inclusion requirements for the study. However, even in a well-funded, well-supported 

study it is noted that ongoing cooperation typically requires a “local site champion” to help 

maintain compliance and interest in the trial.  It is also discussed how, over the course of 

the lung screening trial, CT technology developed from 4- and 8-slice scanners into 

predominantly 16- and 64-slice CT scanners, and standards and protocols must be ready 

to adapt to the ever-changing world of CT technology.  Unfortunately, much of what was 

described by [41] lies well outside of the normal support structures and budget available 
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for the purposes of routine clinical imaging.  Recommendations, similar to those in Table 

1 of [41], can be made, however it is difficult to guarantee that sites are aware of them 

and using them. 

There are two large-scale projects that have provided recommended standardized 

protocols for quantitative imaging as part of their efforts: the COPDGene Project [13] and 

SPIROMICS [12], [42].  The efforts of COPDGene are to identify genetic factors 

associated with COPD, and one of the methods of phenotyping COPD with CT is the 

measurement of RA-950.  The protocols recommended in the appendix of [13] could be 

regarded as a good starting point for quantitative emphysema scoring, and for patients 

enrolled in the COPDGene study scores are likely to be reliable means of tracking disease 

state and possible progression.  The SPIROMICS recommended protocols closely 

resemble those of COPDGene, which is to be expected given similar quantitative imaging 

end points, and thus is also a very reasonable choice for a starting point for protocol 

standardization.  The SPIROMICS protocols are also somewhat more recent and includes 

recommendations for more modern scanners.  A key component of both studies however, 

as with the NLST’s study design, is the quality control portion, which ensures that a scan 

being used for quantitative evaluation fits within the recommended protocol specification.  

Despite the fact that these larger multicenter trials have achieved reasonable success 

with standardizing quantitative CT protocols, the question remains however, in routine 

clinical practice (i.e. the absence of a well-funded, tightly-controlled quality assurance 

program), is standardization a reasonable approach to reliable quantitative imaging? 
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Standardization without quality assurance as an approach to reliable quantitative imaging 

is realistically not a viable option for a number of reasons, however it is worth noting that 

several larger organizing bodies have worked to provide some level of 

standardization/recommendation in the CT domain outside of the above multicenter trials.  

Since 2010, the American Association of Physicists in Medicine (AAPM) has provided 

general recommendations for routine scans on a variety of scanners, and the American 

College of Radiology provides the CT Accreditation Program [43], which is required for 

reimbursement of scans billed to Medicare.  The goals of these recommendations 

however are not to standardize image quality or ensure that reliable quantitative imaging 

is performed. In the case of the ACR, it ensures that minimum acceptable imaging 

standards are being met (testing routine protocols for minimum contrast to noise ratio, 

acceptable attenuation values for a calibrated phantom, etc.), and the AAPM’s efforts are 

an attempt to provide recommendations that balance the needs of image quality, dose, 

and are “reasonable and appropriate for a specific diagnostic task” [44].  Despite these 

efforts however massive variability still exists. 

One common challenge, even within controlled multicenter trials, is technological 

evolution [41], [42].  Over time, protocols must be reevaluated to incorporate new 

scanners, reconstruction approaches, etc.  Features common to newer scanners are 

sometimes unavailable on older scanners and could cause substantive differences in 

image quality and impact the usability of the scan for quantitative imaging.  Examples 

include nearly all modern iterative reconstruction algorithms as well as detector 

technology such as the Siemens Stellar Detector [45].  This fragmentation of technology 

poses significant challenges when trying to specify a standard protocol, since patients 
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visiting the same doctor often end up being imaged on different scanners.  Another 

significant challenge to standardization in the clinical environment is protocol errors: 

patients are occasionally scanned using imperfect protocol settings.  If standardization of 

the protocol is the requirement for quantitative imaging using the scan, this would cause 

the patient to perhaps miss a key time point or require the patient to be rescanned (often 

not an option due to radiation dose concerns).  Thus, strict standardization cannot be the 

only criteria for usability of a scan for quantitative imaging.  Furthermore, a standardizing 

body for every quantitative imaging task would be required that has extensive knowledge 

of most modern imaging equipment and the task to which they are assigned, making such 

organizing bodies unlikely in the near future. 

1.5.2 Image Post-Processing and Normalization 

Accepting that there will be imperfect or minimal standardization of CT protocols in a 

broad sense, other approaches to achieving reliable quantitative emphysema scoring 

would be (1) enumerating and testing all protocols yielding acceptable values, which is 

similar to standardization, and largely infeasible for many of the same reasons, (2) 

developing an understanding of reasonable parameter “regions” that yield acceptable 

quantitative imaging results, or (3) developing image processing methods that could 

normalize or restore image data to a minimum or standard level suitable for quantitative 

evaluation.  The concept of developing acceptable parameter regions has never been 

fully realized due to limitations of the existing available research infrastructure for 

quantitative imaging (discussed in more detail below).  Most approaches published to 

date attempt to correct for known, confounding features of CT imaging that cause 

problems for density masks, such as image noise or too sharp of a reconstruction kernel.   
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In an early example, corrections were applied to account for fluid pooling in the back of 

the lung, an overly noisy image due to either dose reduction or reconstruction kernel, and 

lung motion artifacts [46].  Also proposed in 2001, was a method based on clustering of 

voxel groups within the density mask, which accounts of the biological concept that 

emphysema occurs in “pockets” and isolated low attenuation voxels are unlikely to 

actually reflect true emphysema [47].  More recent approaches have incorporated the 

concept of image “normalization,” meaning transforming image data to more closely 

resemble a defined standard.  In [48], Gallardo-Estrella et al. proposed an image 

processing technique based on frequency decomposition to alter image noise expression; 

essentially a method to correct for the variation of emphysema score due to kernel 

selection, such as that observed in [30].  In their work, the target noise expression should 

resemble that of a Siemens B31f reconstruction kernel.  Combining several of these ideas 

into one complete normalization approach, Gallardo-Estrado et al. have recently 

(December 2017) built on their previous work proposing “normES,” (“normalized 

emphysema score”) a combination of their preprocessing technique and the standard RA-

950 density mask approach [49].  This refined method includes resampling of slices into 

non-overlapping 3mm slices, the image normalization described in [48], and finally the 

minimum cluster size requirement, similar to that of [47].  While all tests [46]–[49] showed 

improvements in the measured end-points, the work described in [49] showed extremely 

strong results for the proposed normES as a biomarker for mortality (both from lung 

cancer, and all-cause) in multicenter lung screening populations (i.e. the NLST dataset).  

Furthermore, the researchers theorize that previous studies finding that emphysema 

score was a weak predictor of lung cancer risk or all-cause mortality [50], [51] was due 
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primarily to variation in acquisition and reconstruction protocol, which the proposed 

normalization process helps correct for.  Thus, image post-processing and normalization 

present an extremely promising pathway forward for improved quantification of 

emphysema. 

1.5.3 Regions of “Stability” For Emphysema Quantification 

The final possibility towards a pathway for more widespread clinical quantitative 

emphysema scoring would be to determine if there are regions of parameter space that 

produce consistent results.  For example, such a study would seek to provide a given 

range of reconstruction kernels, slice thicknesses, and doses that will result in 

emphysema scores that would not impact a subject’s emphysema diagnosis.  At its core, 

this type of study is a more rigorous extension of the previously discussed robustness 

studies, where, instead of investigating one CT acquisition or reconstruction parameter 

at 1-3 potential values, multivariate parameter space (two or more parameters) would be 

systematically explored at many combinations of values, such as in [35].  If such regions 

of stability (i.e. stable output emphysema score) exist, then recommendations can be 

made regarding the usability of an image dataset for the purposes of emphysema 

quantification.  It is also possible that from such a study any potential interactions between 

parameters can be investigated, and further understanding of the physical and 

mathematical properties of CT scanning that produce a stable quantitative emphysema 

result can be determined.  

To date, this type of exploration has largely been intractable due to the existing means of 

obtaining clinical CT image data. While this topic will be explored in more detail in Chapter 
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2, obtaining large numbers of clinical CT image datasets at present typically requires 

some tradeoff between cohort size, number of CT imaging parameters investigated, 

and/or a tightly-controlled dataset, stemming from the fact that most datasets are built 

using clinical scanners.  Additionally, CT has the added challenge of radiation exposure, 

meaning patients can seldom be scanned multiple times, precluding the rigorous 

investigation of some parameters (such as dose or beam energy).  While building 

datasets using the clinical scanner is possible, it is extremely labor intensive and time 

consuming since the workflow of the scanner is built for clinical use and not research.  

Automation of reconstruction tasks and quantitative image tests with the scanner is not 

typically possible, and conducting them using the interfaces provided by the scanner 

requires the full attention of a researcher over the course of weeks or months. 

At present, a further obstacle to building custom datasets is obtaining access to the raw 

projection data.  This data is not readily available for export on most scanners, is cleared 

from the scanner typically after a short period of time.  If accessible, the proprietary file 

formats must be decoded via reader libraries or scripts provided by the manufacturer or 

reverse engineered.  With access however, new modes of study are possible, such as 

the dose reduction simulation utilized in this work, sinogram domain preprocessing, or 

even research into new reconstruction algorithm design.  If raw data access is obtained, 

however the scanner is still utilized for reconstructions, data must still be imported and 

exported to the scanner if any processing outside of what is offered on-scanner is to be 

done, adding another layer of complexity and challenge to research workflows that 

leverage the clinical scanner; this limits the number of quantitative tasks that can be 

investigated, as well as cohort size, and number of parameters that can be investigated.    
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1.6 Review and Discussion 

While significant headway has been made on the path to quantitative emphysema 

scoring, there is still substantial work that needs to be done prior to its widespread clinical 

use.  Some key areas of success have been highlighted over the course of this chapter 

as well as some of the key limitations.    First, when quantitative emphysema scoring with 

CT is supported with clear protocol designations and a thorough quality assurance 

program, such as in the COPDGene and SPIROMICS studies, it has been found to be 

reproducible, however few clinical sites have the funding and support for careful day-to-

day quality assurance.  It is also highly likely that some scans will be acquired outside of 

recommended protocols, and it is unclear if these are still usable for quantitative 

evaluation.   

Next, substantial investigation has been conducted to date exploring the “robustness” of 

emphysema scoring to acquisition and reconstruction parameter variations, however 

these have typically only targeted one parameter at a time, and only a small number of 

settings of that parameter.  As a result, translating the results of these studies into clear 

implications or guidelines for clinical use of emphysema scoring, has proven challenging 

or impossible.  One of the reasons this has failed to be explored rigorously is the challenge 

of assembling large-scale, thoroughly controlled, and detailed datasets using the clinical 

systems.  If such investigations could be carried out, then regions of parameter space 

that result in stable quantitative emphysema scoring could potentially be found, providing 

insight into the underlying physical and mathematical mechanisms that produce reliable 

reproducible emphysema scoring results.  
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Finally, image “normalization” via image post-processing has been found to perhaps be 

an excellent method of improving the stability of quantitative emphysema scoring results, 

however has yet to gain widespread utilization.  While one recently introduced method 

[49] has shown exceptionally promising results, there may be other simple and 

reasonable approaches to image post-processing that could improve the quality of 

emphysema scoring as well, meriting further investigation.  Thus, continued investigation 

into these areas and improvements to the quantitative imaging research infrastructure 

stand to provide improved insight into the details of robust quantitative imaging in a clinical 

setting, and guidance and strategies for its correct use and interpretation. 

1.7 Specific Aims 

The immediate goal of this work is to characterize and minimize the impacts of CT 

parameter selection on quantitative emphysema scoring, with a broader goal of providing 

strategies and guidance for the clinical use of quantitative emphysema scoring.  In order 

to accomplish this goal in a manner that builds upon the existing body of work and 

provides new insight into problems facing quantitative emphysema scoring, all of the 

investigations presented here consider combinations of three commonly varied 

parameters: reconstruction kernel (and its iterative equivalent), slice thickness, and 

acquisition dose.  For each parameter, at least three reasonable settings are utilized, four 

in the case of acquisition dose.  Furthermore, the investigations are conducted in a large 

cohort of subjects scanned with the lung screening protocol at our institution.  By capturing 

many different parameter configurations, possible interactions between parameters are 

investigated in a new manner, and regions of parameter space that produce “stable” 

emphysema scores can be identified.  Further extending our sampling of clinical variation, 



 27 

we also evaluate the same sampling of CT parameter space, using a commercially 

available iterative reconstruction approach, and contrast it to an implementation of more 

traditional weighted filtered backprojection.  This provides an unparalleled starting point 

for the final evaluation of a potential approach to image post-processing for the purposes 

of reducing variation due to parameter selection.  The size of these datasets however 

represents a significant data acquisition and processing challenge that must first be 

addressed prior to quantitative analysis. 

The specific hypotheses tested in this work are the following: (1) that there exist regions 

of CT parameter space that produce emphysema scores close enough to a clinical 

reference protocol to not change scores more than 5%, and (2) that a denoising approach 

applied to the image data, here bilateral filtering is employed, will allow for more stable 

and reliable emphysema scoring under a broader range of acquisition and reconstruction 

parameters than images without any post-processing.  To investigate these hypotheses, 

the specific aims of this dissertation are the following: 

SA1: Develop a high-throughput fully-automated quantitative image analysis 
platform for CT 

Offline reconstruction algorithms, analysis tools, and automation frameworks are 

developed to enable more rapid and thorough exploration of quantitative imaging topics, 
namely emphysema scoring for this work.  

 

 



 28 

SA2: Characterize robustness of emphysema scoring to changes in reconstruction 
kernel, reconstructed slice-thickness, simulated dose reduction 

The tools developed in SA1 are used to assess a large number of acquisition and 

reconstruction conditions in a large cohort of subjects scanned with a lung screening 

protocol.  Parameter configurations that result in stable emphysema scores are 

enumerated and assessed for both filtered backprojection and an iterative reconstruction 
algorithm. 

SA3: Evaluate the impacts of post-reconstruction denoising on the quantitative 
imaging tests from SA2 

Denoising is applied to the image data using a bilateral filter and resulting levels of change 
in emphysema scores are quantified. 
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Chapter 2 - A High-Throughput Reconstruction and 
Quantitative Analysis Pipeline for CT Image Data  
Significant portions of the material for this chapter are adapted from three manuscripts: 

(In preparation for submission to Medical Physics) J.  Hoffman, N. Emaminejad, M. Wahi-
Anwar, G. Kim, S. Young, M. McNitt-Gray.  “Technical Note: Design and Implementation 
of a High Throughput Pipeline for Reconstruction and Quantitative Analysis of CT Image 
Data.”  

J. Hoffman, S. Young, F. Noo, and M. McNitt-Gray. “Technical Note: FreeCT_wFBP : A 
robust, efficient, open-source implementation of weighted filtered backprojection for 
helical , fan-beam CT.” Med. Phys. 43(3), 10 pp. (2016). 

(Submitted, under review, Medical Physics) J. Hoffman, F. Noo, S. Young, M. McNitt-
Gray. “Technical Note: FreeCT_ICD: An Open Source Implementation of a Model-Based 
Iterative Reconstruction Method using Coordinate Descent Optimization of CT Imaging 
Investigations.” 

2.1 Introduction 

In this chapter, we describe the technological and research infrastructure developments 

that were carried out to make the experiments described in Chapter 3 and Chapter 4 

possible. It is important however to motivate why such infrastructure developments were 

necessary.  One of the key challenges of the work pursued in this dissertation, and one 

of the larger challenges facing the quantitative imaging community, is that of data 

availability.  In this work, we seek to create datasets involving large number of subject 

scans (N=142) reconstructed to represent a wide variety of realistic, clinical parameter 

configurations.  Each scan was reconstructed with weighted filtered backprojection 

(WFBP) using 36 unique combinations of kernel, slice thickness, and acquisition dose.  

Each scan was additionally reconstructed with reasonably paired iterative reconstruction 

parameters and the Siemens SAFIRE reconstruction algorithm for a total of 72 unique 

reconstructions per subject, and ~10,200 image datasets for processing and final 
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analysis.  At the outset of the project, no tools existed to automate the creation, 

organization, or processing of an imaging dataset of this size. 

While the creation of a custom dataset was required for this work, it is important to note 

that there are several alternatives for researchers wishing to conduct quantitative imaging 

studies.  While these are good options, they are not without limitations.  Publicly available 

datasets such as LIDC [52], NLST [40], Maastro NSCLC [53], etc., represent one means 

to access large-scale datasets.  However, these are limited by the number of 

reconstructions available per patient (typically one), the reconstructions selected 

(optimized for human readers, not necessarily computer vision or algorithms), and are 

typically heterogeneous in terms of scanner and the protocols used to acquire the data.  

While this is a good representation of clinical variability, it is challenging if not impossible 

to achieve a highly-controlled dataset when reconstruction parameters are to be 

systematically varied and investigated.  Finally, large scale public datasets quickly go out-

of-date due to the turnover and updates of CT imaging technology, such as increasing 

numbers of detector rows, improvements in automatic exposure control, more efficient 

detectors, and new advances in reconstruction techniques.  Another approach is 

retrospective assembling of datasets from PACS.  This allows for more control over the 

reconstructions acquired, however is still limited to reconstructions optimized for/selected 

by human readers, and requires substantial time and effort to assemble datasets large 

enough for some studies. 
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FIGURE 2-1 ILLUSTRATION OF WORKFLOW USING CLINICAL SCANNER RECONSTRUCTION.  
(0) A CLINICAL STUDY IS PERFORMED AND THE RAW PROJECTION DATA IS TEMPORARILY 
STORED IN THE SCANNER DATABASE. (1) RAW PROJECTION DATA IS EXPORTED TO AN 
ENCRYPTED HARD DRIVE, RETURNED TO THE LAB AND THEN (2) LOADED INTO A SECURE 
RAW DATA STORAGE.  IF PREPROCESSING (3), SUCH AS REDUCED-DOSE ACQUISITION 
SIMULATION, IS DESIRED RAW DATA IS COPIED TO A NETWORK NODE, PREPROCESSING IS 
PERFORMED, AND THE MODIFIED RAW FILE IS PUSHED BACK TO NETWORK STORAGE.  WHEN 
DATA IS READY TO BE RECONSTRUCTED FOR AN EXPERIMENT IT IS (4) LOADED BACK ONTO 
AN ENCRYPTED EXTERNAL HARD DRIVE, CARRIED BACK TO THE SCANNER, AND (5) 
UPLOADED BACK INTO THE SCANNER DATABASE. (6) RECONSTRUCTIONS ARE MANUALLY 
CONFIGURED AND PERFORMED ACROSS ALL CASES AND DESIRED RECONSTRUCTION 
PARAMETERS.  (7) ALL RECONSTRUCTION IMAGE DATA IS EXPORTED FROM THE SCANNER 
BACK ONTO THE ENCRYPTED HARD DRIVE, RAW DATA IS DELETED FROM THE SCANNER, AND 
FINALLY, IMAGE DATA IS RETURNED TO THE LAB-BASED NETWORK STORAGE LOCATION FOR 
RECONSTRUCTED IMAGE DATA.  SIGNIFICANT HUMAN INTERVENTION IS REQUIRED AT EACH 
STEP OF THE SEVEN-PART WORKFLOW, INDICATED WITH DASHED ARROWS. 
 
A promising approach pursued in our work has been the collection and storage of raw 

projection data from CT scanners, and then subsequently returning to the scanner at a 

later date to perform reconstructions.  This has been employed in several studies from 

our group [54]–[56] to great effect, and furthermore this allows for preprocessing of the 

raw projection data, such as simulated noise addition/dose reduction and projection 

domain denoising, opening up new research pathways not previously possible. However, 

the workflow of collecting, processing and returning raw data to the scanner (illustrated in 
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Figure 2-1) is not without substantial logistical limitations.  Raw projection data is not 

widely available and access to that data typically requires some cooperation from the 

manufacturer (including permission and information about the file format which is typically 

considered to be proprietary). Even when it is available, the raw projection data must be 

re-imported to the scanner, the scanner reconstructions cannot be operated in “batch-

mode,” and reconstructions different than the clinical protocols often cannot be 

preprogrammed, and must be manually configured via a graphical user interface.  Finally, 

all image data must be exported and returned to the lab site, uploaded to a secure network 

share and organized for storage and future use.  When cohort sizes are small and only a 

few reconstructions per subject required, this is a viable approach, however it quickly 

becomes burdensome.  For example, to assemble the dataset used in Young et al. 2017 

[55] required six months (3 reconstructions per patient for 481 patients).  Increasing the 

number of parameters investigated, or investigating an additional source of variation (e.g. 

acquisition dose, reconstruction kernel, or slice thickness) dramatically increases the time 

and labor required to generate datasets used in QI analysis.  If timely, large scale 

quantitative imaging research is to be conducted, an improved approach is required. 

In this chapter, we develop and detail the construction of such an automated system 

(referred to as “the pipeline") including the reconstruction portion, illustrated in Figure 2-2, 

and analysis components.  In addition to the pipeline itself, we also detail the development 

of open-source CT image reconstruction software that enables the automated 

reconstruction portion of the pipeline, FreeCT_wFBP and FreeCT_ICD.  FreeCT_wFBP 

is utilized extensively in the rest of the dissertation for all filtered backprojection 

reconstructions; FreeCT_ICD was not directly employed in this dissertation however it 
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represents an important extension of the pipeline framework to cover a relevant topic in 

modern quantitative CT research: model-based iterative reconstruction.  

 

FIGURE 2-2 ILLUSTRATION OF THE RECONSTRUCTION WORKFLOW UTILIZING THE PIPELINE.  
(0) CLINICAL SCANS ARE ACQUIRED AND RAW PROJECTION DATA IS TEMPORARILY STORED 
IN THE SCANNER DATABASE. (1) RAW PROJECTION DATA IS IDENTIFIED AND EXPORTED TO 
AN ENCRYPTED HARD DRIVE, RETURNED TO THE LAB, AND (2) UPLOADED TO NETWORK-
BASED NETWORK STORAGE FOR RAW DATA. WHEN DATA IS READY TO BE RECONSTRUCTED, 
(3) THE PIPELINE IS SET UP WITH ONE CONFIGURATION FILE OR VIA THE GUI INTERFACE.  
THE PIPELINE THEN MANAGES ALL DATA-FETCHING, PREPROCESSING, RECONSTRUCTION, 
AND UPLOADING TO THE NETWORK-BASED IMAGE STORAGE.  NO HUMAN INTERACTION IS 
REQUIRED AFTER THE PIPELINE CONFIGURATION. IMAGE POST-PROCESSING (PRIOR TO 
STORAGE AND SUBSEQUENT ANALYSIS) MAY INCLUDE, FOR EXAMPLE, DENOISING OR OTHER 
IMAGE-DOMAIN ENHANCEMENT TECHNIQUE. 
 
It will be shown that the developed pipeline, leveraging the open-source reconstruction 

software, achieves the following: (1) allows for a wide range of acquisition and 

reconstruction parameters to be configured and applied to raw CT projection data, (2) 

performs the high-throughput reconstruction of large data sets, (3) automatically 

organizes the resulting reconstructed volumes for archiving and QI analysis, (4) allows 

for highly configurable post-processing and analysis to be applied to the reconstructions, 

(5) produces QI results in a manner to facilitate  easy, rapid statistical analysis, and finally 

(6) functions as an automated tool that requires minimal human intervention after initial 
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configuration.  To illustrate the utility and performance of the pipeline in the setting of 

quantitative imaging, a cohort (N=142) of low dose lung cancer screening exams with a 

wide range of acquisition and reconstruction conditions (36 combinations of slice 

thickness, reconstruction kernel and simulated acquisition dose) was created for analysis 

in Chapter 3 and Chapter 4. 

2.2 Pipeline Overview 

The pipeline is a collection of compiled programs and Python scripts designed to carry 

out reconstruction and quantitative imaging analysis.  While the pipeline should be 

thought of as a generalizable framework for high-throughput imaging work, it has been 

developed thus far with the specific application of robustness testing of quantitative 

imaging metrics for diagnostic CT, which involves the evaluation of a quantitative imaging 

test across a range of different acquisition and reconstruction parameters such as slice 

thickness, reconstruction kernel, and acquisition dose.  This application however gives 

an excellent example of the different, more general components of the pipeline.  For this 

work, the pipeline has been specifically configured to test the robustness of quantitative 

emphysema scoring approaches using CT image data. 

The pipeline workflow, illustrated in Figure 2-3, is roughly the following (1) reading of the 

raw projection data (2) raw data preprocessing (3) reconstruction (4) image data 

processing (5) analysis and (6) final results.  Initially raw projection data must be parsed 

into a format readable by the reconstruction software.  At present, the freely-available, 

open-source version of the pipeline accepts a binary format as well as an open-format, 

vendor independent DICOM format [57].  A customized version is employed in our lab 
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that is able to read directly from Siemens raw projection data files.  Thus, the pipeline is 

easily extensible to work on non-standard, proprietary data via the programming of a 

small raw data reading module that converts into either of these two open formats.  After 

reading the raw data, and desired preprocessing is applied. In the case of robustness 

testing, a calibrated noise addition module [54], [58] is used at this stage to simulate 

reduced-dose scans, however this could also be other processing steps such as 

projection-domain filtering, or denoising algorithms (e.g. [59], [60]).   

 
FIGURE 2-3 BLOCK DIAGRAM OF PIPELINE WORKFLOW FROM RAW PROJECTION DATA TO 
FINAL QUANTITATIVE IMAGING DATA.  EACH BLOCK REPRESENTS A SELF-CONTAINED TASK 
THAT CAN BE ENCAPSULATED IN ONE OR MORE “MODULES.”  DASHED LINES REPRESENT 
OPTIONAL PROCESSING PATHWAYS.  MODULES CAN BE PROGRAMMED BY THE USER AND 
INCORPORATED DIRECTLY INTO THE PIPELINE AUTOMATION FRAMEWORK OR CAN EXIST 
OUTSIDE OF THE HIGH-THROUGHPUT FRAMEWORK AS NEEDED, SUCH AS THE 
RECONSTRUCTIONS COMING FROM THE SCANNER OR SOME OTHER ALTERNATIVE SOURCE.  
EXAMPLES OF THE TYPES OF MODULES ARE GIVEN IN EACH BLOCK. 
Reconstruction of the raw data is performed next.  While FreeCT_wFBP [61] is utilized at 

present, the pipeline can accept image data from most sources, including other open-

source reconstruction software, and image datasets reconstructed at the clinical scanner. 

This is made possible via a data conversion module that accepts image data in multiple 

formats (including DICOM, NIfTI, mhd, binary data and others) and converts to the format 

utilized by the analysis modules.  This also allows for image-domain processing (e.g. 

denoising, smoothing, etc.) to be applied after reconstruction if desired.  In the case of 



 36 

robustness testing, image denoising algorithms are being tested to assess their ability to 

“stabilize” quantitative measures (i.e. reduce the variation caused by changing 

reconstruction and acquisition parameters).   

Finally, analysis is carried out through a series of modules that perform tasks required to 

produce the final result.  In this work, the analysis performed is emphysema scoring and 

requires the modules that perform image conversion, segmentation, calculation of a lung 

histogram, and finally the emphysema scoring and aggregation of final results.  This is 

discussed more in sec. 3.D. analysis modules.  The pipeline is designed so that each 

module can be replaced based on the requirements for a given experiment, enabling 

future experiments to leverage the underlying high-throughput design and framework to 

automate and accelerate imaging data generation and analysis.  In order to fully realize 

the pipeline concept, several key software developments were necessary, including 

FreeCT_wFBP, FreeCT_ICD, and a purpose-built GPU queuing framework to schedule 

and carry out reconstructions in an automated manner. 

2.3 FreeCT_wFBP 

The pipeline as described above was first conceived of following the work in [55].  It was 

recognized that the interest in advanced uses of CT that involve quantitative imaging, 

radiomics, and CAD for lung screening and other applications [62]–[69] is growing, 

however the ability to generate data utilizing the clinical scanners was limiting 

researchers’ abilities to fully investigate the topics.  To ensure that these applications are 

robust, they need be tested across a wide variety of scanner platforms, acquisition 

conditions, and reconstruction parameters [54], [70].  Additionally, studies often have 
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been limited to dozens of patients, rather the larger cohorts often needed to establish 

statistical power (e.g. [35],[37]).  Few resources exist to support this type of endeavor.  

The most time-consuming aspect of [55] was returning to the scanner to perform 

reconstructions, discussed in the previous section.   

Relying on the scanner for reconstructions presents additional concerns as well. First, the 

scanners are typically only available for research activities outside of clinical operation 

hours, reducing the time available for large-scale reconstruction projects.  Second, 

scanner work-flows are optimized for clinical work and not the “batch mode,” high-

throughput reconstruction typically required in quantitative imaging research, reducing the 

number of reconstructions that can be accomplished in any allotted time.  Third, the 

clinical setup typically requires manual changes to many parameters prior to each 

reconstruction, requiring the constant attention of a researcher, and increasing the 

likelihood of errors.  And finally, if a site upgrades a scanner, a researcher may lose the 

ability to reconstruct “legacy” raw data associated with that scanner model.  Therefore, it 

was identified that there was a need to develop customizable tools that allow efficient, 

large-scale reconstruction of diagnostic CT images independent of the acquisition 

scanner. 

While there are many available options for reconstructing cone-beam CT data using third-

party open source software libraries (e.g. RTK [71], CONRAD [72], OSCaR [73]), the 

options for reconstructing helical, diagnostic CT data are significantly more limited.  The 

only alternative to on-board reconstruction that could be identified, is a standalone 

reconstruction computer from manufacturers, but these have limited availability and are 
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not widely deployed.  Furthermore, the work-flow of these “recon boxes” is typically ill-

suited to large-scale reconstruction and rarely customizable to a researcher's needs.  

Thus, the standalone reconstruction computer does not represent a satisfactory solution 

to the problems facing researchers hoping to perform large numbers of reconstructions, 

and no other alternatives were available. 

As a result, FreeCT_wFBP was developed which is a free and open-source 

implementation of a commonly used reconstruction concept – specifically weighted 

filtered backprojection (wFBP) – for third-generation, helical, fan-beam CT in an effort to 

overcome some of the limitations of the currently available tools.  The software is highly 

flexible, with features such as user-configurable scanner geometries, user-modifiable 

reconstruction kernels, CPU and GPU implementations, and support for data acquired 

using sampling techniques such as flying focal spots and quarter-detector offsets. 

FreeCT_wFBP is a command-line program providing flexible and fast reconstruction of 

helical, diagnostic CT data using a GPU or CPU.  It is written in C and utilizes the NVIDIA 

CUDA framework for GPU-specific code. 

2.3.1 The FreeCT Algorithm 

FreeCT_wFBP is an implementation of weighted filtered backprojection (wFBP), a widely 

used approach for helical CT reconstruction that offers a good trade-off between 

computational effort, accuracy, and flexibility [74]–[77].  While wFBP is a relatively simple 

reconstruction approach to implement, there are many possible variations such as where 

and how to handle slice-thickness settings, weighting function choice, and weighting 

“tuning” parameters.  FreeCT_wFBP is, specifically, an implementation of weighted 



 39 

filtered backprojection as described in [75].  It is suitable for reconstructing any third-

generation, helical CT data (without gantry tilt), including clinical or simulated raw 

projection data from any manufacturer or software tool, so long as the user can extract 

that raw data into an appropriate format readable by FreeCT_wFBP and the scanner 

geometry is configured properly.  A full discussion of implementations details and choices 

including equations and pseudo-code can be found in the FreeCT_wFBP documentation 

[78]. 

FreeCT_wFBP reconstructs helical data from third-generation multi-detector CT 

scanners, currently the most widely employed geometry in clinical diagnostic CT.  Third-

generation CT scanners utilize a detector with circular curvature in the axial (XY) plane, 

and no curvature in the longitudinal (Z) direction.  For this work, the Siemens Definition 

AS 64 was specifically targeted.  FreeCT_wFBP does not currently reconstruct axial 

scans, nor does it reconstruct helical scans acquired with gantry tilt. 

2.3.2 Rebinning, Flying Focal Spots, and Quarter Detector Offsets 

Weighted filtered backprojection, as described in [75], utilizes a row-wise fan-to-parallel 

rebinning process prior to filtering and backprojection.  While this requires an extra set of 

interpolations, it has been shown to have negligible effect on image quality [79] while at 

the same time providing several benefits: (1) simplified geometry for backprojection, (2) 

artifact reduction (mitigation of cone-beam artifacts) during filtering since the data is 

recast along the spiral tangent [75], and (3) straight-forward accounting for changes in 

geometry caused by sampling techniques such as flying focal spots. 
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Flying focal spots are a technique employed by some CT scanners to improve sampling 

in the axial and/or longitudinal directions by periodically deflecting the electron beam to 

different locations on the x-ray tube anode between detector readouts [80], [81]; a 

depiction of this periodic motion can be found in figure 1 of [81] and figures 1, 2 and 5 of 

[80].  Use of the in-plane flying focal spot (called the “Phi” flying focal spot) improves in-

plane spatial resolution in axial images.  Use of the longitudinal flying focal spot (called 

the “Z” flying focal spot) improves spatial resolution in the longitudinal direction and also 

reduces windmill artifacts observed in the axial plane near the edges of high-contrast 

objects [80], [81].  Depending on scan configuration (namely rotation time and 

collimation), a scanner equipped with flying focal spots may use both Z and Phi, Z only, 

Phi only or no flying focal spots to acquire data.  Incorporation of the flying focal spot 

rebinning routines allows the software to reconstruct projection data from a much larger 

subset of scanners than would otherwise be possible. 

It is worth remarking that no other freely-available, open-source software supports flying 

focal spots to the best of our knowledge, however this is a critical feature to support if 

clinical data is to be reconstructed.  With the exception of an extremely limited number of 

protocols, every clinical acquisition made at UCLA utilizes a flying focal spot; in particular 

for the lung screening protocol utilized in this work, the Z-only flying focal spot setting is 

used.  

Another sampling technique employed clinically is the quarter- or eighth-detector offset.  

Similar to the flying focal spot, all regularly employed protocols acquired clinically at UCLA 

employ a quarter detector offset.  The quarter-detector offset (QDO) shifts the detector 
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center by a quarter of the detector width relative to true detector “center” (the point at 

which a ray traced from the focal spot through isocenter would intersect the detector 

plane).  While the quarter detector offset is most beneficial in axial CT scans (doubled in-

plane sampling, improved in-plane resolution, and reduction of in-plane aliasing artifacts) 

its use in helical CT is also very common [80], [82].  FreeCT_wFBP is capable of 

reconstructing with and without the QDO, as well as with an eighth-detector offset which 

occurs when the QDO is used in conjunction with the in-plane flying focal spot [80]. 

2.3.3 Reconstruction Kernels 

 
FIGURE 2-4 SMOOTH, MEDIUM AND SHARP/RAMP RECONSTRUCTION KERNELS PROVIDED 
WITH THE FREECT_WFBP SOFTWARE PACKAGE, PLOTTED IN THE FOURIER/SPATIAL 
FREQUENCY DOMAIN. 
Reconstruction kernels are stored as binary files of single-precision, floating-point data (a 

vector representing the kernel profile in the spatial domain) and are read in at program 

runtime making it easy for a user to create and utilize their own filters without needing to 

recompile source code.  Full details on filter creation and installation can be found in the 

documentation [78].  FreeCT_wFBP comes with three reconstruction kernels ready for 

use: smooth, medium and sharp/ramp, plotted in the Fourier domain in Figure 2-4. While 
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these filters should not be directly compared to those offered by Siemens, and a rigorous 

comparison has not been done, noise values in a 32 cm CTDI phantom compare roughly 

as follows: FreeCT_wFBP’s smooth kernel is similar to a B10 or B20 kernel; the 

FreeCT_wFBP medium kernel has similar noise to a Siemens B40-B45; and finally, the 

FreeCT_wFBP sharp kernel has approximately the same noise magnitude as a Siemens 

B50-B60.  These comparisons however do not capture or represent noise “texture” which 

can play a substantial in detection tasks, and they are intended only as a rough guideline 

for the reader.  Sample reconstructions of the ACR phantom utilizing each of the 

FreeCT_wFBP reconstruction kernels can be found in Figure 2-5, Figure 2-6, and Figure 

2-7.  These are the reconstruction kernels employed in Chapter 3 and Chapter 4 for the 

wFBP reconstructions. 

2.3.4 GPU and CPU Implementations 

Due to the computational demands of CT image reconstruction and the need to automate 

large numbers of reconstructions in an efficient manner, FreeCT_wFBP is first and 

foremost a GPU-based software package.  To extend the functionality and accessibility 

of the software, a single-threaded CPU implementation has also been created.  The GPU 

implementation is significantly faster and will be most useful for researchers looking to 

process large numbers of reconstructions, however the CPU implementation is well suited 

to running large numbers of reconstructions on distributed clusters that may not have 

GPUs available.  It should be noted that the performance on a single CPU is not expected 

to be fast enough for large-scale reconstruction projects.  The utilization of GPUs to 

accelerate FreeCT_wFBP additionally motivates the development of the GPU queueing 

framework discussed later in this chapter. 
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2.3.5 Evaluation of FreeCT_wFBP - Methods 

Image quality and accuracy were evaluated according to the current ACR CT 

Accreditation Program (CTAP) criteria for CT number evaluation, CT number uniformity, 

and contrast-to-noise ratio (CNR) using the methods and formulas described in [43].  The 

ACR phantom was scanned under the “Phi and Z” flying focal spot (FFS) conditions 

described in Table 2-1, using a routine adult abdomen protocol, and the central slice of 

each module of the ACR phantom was reconstructed to a thickness of 5mm using the 

included smooth, medium, and sharp/ramp kernels from the FreeCT_wFBP package.  

The reconstructed slices of each module were then evaluated to see if they fell within 

ACR-acceptable ranges. 
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FIGURE 2-5 CT NUMBER MODULE OF THE ACR PHANTOM. RECONSTRUCTED WITH 
FREECT_WFBP’S SMOOTH (LEFT), MEDIUM (MIDDLE), AND SHARP (RIGHT) 
RECONSTRUCTION KERNELS. SHOWN WITH A WINDOW/LEVEL OF 400/0 HU. 

 
FIGURE 2-6 UNIFORMITY MODULE OF THE ACR PHANTOM. RECONSTRUCTED WITH 
FREECT_WFBP’S SMOOTH (LEFT), MEDIUM (MIDDLE), AND SHARP (RIGHT) 
RECONSTRUCTION KERNELS. SHOWN WITH A WINDOW/LEVEL OF 100/0 HU. 

 
FIGURE 2-7 LOW CONTRAST MODULE OF THE ACR PHANTOM. RECONSTRUCTED WITH 
FREECT_WFBP’S SMOOTH (LEFT), MEDIUM (MIDDLE), AND SHARP (RIGHT) 
RECONSTRUCTION KERNELS. SHOWN WITH A WINDOW/LEVEL OF 100/0 HU.  
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TABLE 2-1 SUMMARY OF SCAN PARAMETERS FOR SPEED PROFILING SCANS.  THE NUMBER OF REBINNED 
PROJECTIONS REQUIRED FOR EACH RECONSTRUCTION ARE SHOWN AND REFLECT THE EFFECTS OF 
COLLIMATION AND FLYING FOCAL SPOT SETTINGS, WHICH ARE INFLUENCED BY THE RECONSTRUCTED VOXEL 
SIZE RELATIVE TO THE SIZE OF THE EFFECTIVE DETECTOR THICKNESS (E.G. 16X1.2MM).  
 

 

Pipeline performance was evaluated using timing benchmarks for each step of the 

reconstruction process for a given set of reconstruction/acquisition conditions.  

Reconstruction speed (i.e. computational performance) is dependent on many factors, 

including but not limited to collimation, flying focal spot configuration, and slice thickness; 

column 5 of Table 2-1 (“Rebinned Projections for 32 Slices”) is included to highlight how 

collimation and flying focal spot settings in particular can have a large impact on 

parameters the user does not directly control (i.e. number of projections required to fully 

reconstruct a volume), but do affect reconstruction speed.  FreeCT_wFBP reconstruction 

speed was evaluated by reconstructing 512x512x32 voxel volumes from scans of the 

ACR accreditation phantom (Model 464, Gammex, Middleton, WI) performed on a 3rd 

generation CT scanner (Definition AS 64, Siemens Healthcare, Forchheim, Germany) 

under all flying focal spot (FFS) combinations available on that scanner: (a) no FFS, (b) 

Phi FFS only, (c) Z FFS only and (d) both Z and Phi FFS as described in Table 2-1.  Slices 

were reconstructed to thicknesses matching detector collimation.  Code profiling for both 

the CPU and GPU implementations was performed using the NVIDIA Visual Profiler 

included with the CUDA toolkit.  



 46 

All reconstruction and evaluation was performed on an Alienware Aurora R4 computer 

with an Intel i7-4960X CPU (3.6 GHz, 15 MB L3 cache), 32 GB of RAM, and an Nvidia 

GeForce GTX 780 GPU with 3 GB of global memory.  GPU reconstructions were acquired 

by running the software with the standard settings (auto-detection and use of GPU 

resources), and CPU reconstructions were acquired using a “--no-gpu” command line 

option, forcing all reconstruction to take place on the CPU.   

While spatial resolution is no longer evaluated as part of the ACR CTAP, the spatial 

resolution module of the phantom was used to ensure proper implementation of flying 

focal spot rebinning.  A slice through the middle of the spatial resolution module from 

each of the scans listed in table 1 was reconstructed to a 1.2mm slice thickness and a 

100mm field of view centered on the 9 lp/cm bar pattern.  A sharp/ramp filter was used to 

maximize spatial resolution.  Each reconstructed image was evaluated for changes in in-

plane resolution and changes in windmill artifacts.  If implemented correctly, an 

improvement in in-plane resolution with activation of the Phi flying focal spot, and a 

reduction of windmill artifacts with the activation of the Z flying focal spot, should be 

observed. 

Finally, reconstruction accuracy was evaluated using a reconstruction of a simulated 

FORBILD thorax phantom [83] for which attenuation values were known exactly.  The 

FORBILD thorax phantom data was generated with a simulated, 80keV, monochromatic 

beam without flying focal spots, and reconstructed using the included sharp/ramp kernel.  

The attenuation value of water at 80keV (mass attenuation coefficient of 0.0183 mm2/g) 

was used to create the phantom. Without scaling the reconstructed image to Hounsfield 
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units (HU), an ROI was placed over a region of simulated water and the mean value 

(mass attenuation coefficient) was compared to the value used in the simulation. 

2.3.6 Evaluation of FreeCT_wFBP - Results 

Tables Table 2-2 and Table 2-3 summarize the GPU and CPU reconstruction times, 

respectively. Rebinning and filtering are a hybrid process in the FreeCT_wFBP 

implementation and thus are combined into one step for timing purposes. Note that GPU 

reconstruction times are in seconds and CPU reconstruction times are in minutes. Table 

2-4, Table 2-5, and Table 2-6 summarize the imaging performance of the smooth, 

medium, and sharp reconstruction kernels using the ACR testing protocols.  Figure 2-5, 

Figure 2-6, and  Figure 2-7 show the reconstructed slices that were used for evaluation, 

all windowed and leveled to the values recommended in the ACR testing protocols. 
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TABLE 2-2 SAMPLE SPEED RESULTS FOR GPU RECONSTRUCTION FOR DIFFERENT FLYING 
FOCAL SPOT (FFS) CONFIGURATIONS. NOTE THAT TIMES ARE GIVEN IN SECONDS.  

 
 

TABLE 2-3 SAMPLE SPEED RESULTS FOR CPU RECONSTRUCTION FOR DIFFERENT FLYING 
FOCAL SPOT (FFS) CONFIGURATIONS. NOTE THAT TIMES ARE GIVEN IN MINUTES.  

 
 

TABLE 2-4 SUMMARY OF CT NUMBER PERFORMANCE FOR EACH RECONSTRUCTION KERNEL 
PROVIDED WITH FREECT_WFBP.  ALL VALUES ARE WITHIN ACCEPTABLE ACR RANGES.  
ALL VALUES ARE IN HU.  

 
 

TABLE 2-5 SUMMARY OF UNIFORMITY MEASUREMENTS FOR EACH RECONSTRUCTION 
KERNEL.  ALL VALUES ARE IN HU AND WELL WITHIN THE -5 TO +5 HU RANGE SPECIFIED BY 
THE ACR.  

 
 

TABLE 2-6 SUMMARY OF CNR VALUES FOR FREECT_WFBP.  THE SMOOTH AND MEDIUM 
RECONSTRUCTIONS ARE WELL ABOVE THE ACR LIMIT OF 1.0. 
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The effects of flying focal spot usage on reconstruction quality are shown in figures Figure 

2-8 and Figure 2-9.  In Figure 2-8, an improvement in spatial resolution is observed when 

the Phi flying focal spot is utilized (Figure 2-8, (b) and (d)) allowing the 9 lp/cm bar pattern 

to be clearly resolved. When the Phi flying focal spot is not used (Figure 2-8, (a) and (c)), 

the 9 lp/cm bar pattern can no longer be precisely resolved. 

In Figure 2-9, the image is windowed and leveled to highlight the impacts of Z flying focal 

spot usage.  Usage of the Z flying focal spot manifests itself in the axial plane as a 

reduction of windmill artifacts.  In Figure 2-9, a high contrast bead produces windmill 

artifacts when the Z flying focal spot is not utilized (top row, highlighted with the larger red 

arrow), which then disappear with the activation of the Z flying focal spot (highlighted with 

the smaller, black arrows).  The higher frequency noise in the right column is due to the 

increased in-plane resolution with the Phi flying focal spot combined with the ramp filter 

reconstruction.  

Finally, Figure 2-10 shows the unscaled axial, sagittal, and coronal FreeCT_wFBP 

reconstruction of the FORBILD thorax phantom for which all attenuation values are known 

exactly.  The ROI's mean value of 0.0183 mm2/g agrees to within 0.0001 (0.5%) of the 

value used to simulate the data.   
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FIGURE 2-8 SPATIAL RESOLUTION RECONSTRUCTIONS USING (A) NO FLYING FOCAL SPOTS, 
(B) PHI FLYING FOCAL SPOT, (C) Z FLYING FOCAL SPOT, AND (D) Z AND PHI FLYING FOCAL 
SPOT.  IN (B) AND (D) THE PHI FLYING FOCAL SPOT IS ACTIVE AND SPATIAL RESOLUTION IS 
QUALITATIVELY IMPROVED AND LINE PROFILES ACROSS THE BAR PATTERN FURTHER 
INDICATE THE IMPROVED ABILITY TO DISTINGUISH FINE DETAIL.  ALL IMAGES ARE OF THE 9 
LP/CM BAR PATTERN OF THE ACR PHANTOM SPATIAL RESOLUTION MODULE.  SHOWN WITH 
A WINDOW/LEVEL OF 100/1000 HU. 
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FIGURE 2-9 Z FLYING FOCAL SPOT COMPARISON USING (A) NO FLYING FOCAL SPOTS, (B) 
PHI FLYING FOCAL SPOT, (C) Z FLYING FOCAL SPOT, AND (D) Z AND PHI FLYING FOCAL 
SPOT.  LARGE, RED ARROWS HIGHLIGHT WINDMILL ARTIFACTS OFF OF A HIGH CONTRAST 
CENTERING BEAD, WHILE SMALLER BLACK ARROWS HIGHLIGHT THEIR ABSENCE IN (C) AND 
(D) WHEN THE Z FLYING FOCAL SPOT IS ACTIVE. SHOWN WITH A WINDOW/LEVEL OF 125/-
1000 HU.  HIGH FREQUENCY ARTIFACTS (MOST PRONOUNCED IN TOP RIGHT IMAGE) ARE 
DUE TO THE RAMP FILTER RECONSTRUCTION COMBINED WITH THE HIGH, IN-PLANE 
RESOLUTION OFFERED WITH THE PHI FLYING FOCAL SPOT; NOTE THEIR DISAPPEARANCE 
WHEN THE PHI AND Z FLYING FOCAL SPOTS ARE UTILIZED TOGETHER. 

 
 
FIGURE 2-10 SAMPLE AXIAL (LEFT), CORONAL (TOP RIGHT), AND SAGITTAL (BOTTOM 
RIGHT) RECONSTRUCTIONS OF A SIMULATED FORBILD THORAX PHANTOM 
(MONOCHROMATIC, 80 KEV BEAM ENERGY) ARE SHOWN.  AN ELLIPTICAL ROI IS PLACED OF 
A REGION OF SIMULATED WATER SHOWING A RECONSTRUCTED ATTENUATION VALUE OF 
0.0183 MM2/G.  SHOWN WITH A WINDOW/LEVEL OF 0.005/0.0183 MM2/G, WHICH 
CORRESPONDS TO A WINDOW/LEVEL OF APPROXIMATELY 272/0 HU.  RESIDUAL ALIASING 
ARTIFACTS CAUSED BY HIGH-FREQUENCY COMPONENTS IN THE NOISE-FREE DATA ARE 
VISIBLE DUE TO THE USE OF A RAMP KERNEL. 
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2.3.7 Discussion of FreeCT_wFBP 

FreeCT_wFBP not only offers software dedicated diagnostic CT reconstruction, but does 

so in a highly flexible and configurable package capable of handling complex imaging 

setups including detector offsets, flying focal spots, and multiple scanner geometries.  

While this package may not represent the exact reconstruction algorithms employed by 

clinical CT scanners, an initial assessment demonstrated that FreeCT_wFBP can provide 

acceptable performance on the ACR phantom as well as accurate reconstruction of 

attenuation values.  FreeCT_wFBP's GPU implementation allows for fast reconstruction 

of clinical CT data and is well suited to large-scale explorations of reconstruction 

parameter space.   

To provide an initial verification that the software was yielding acceptable results, 

reconstructions of the ACR phantom were performed and analyzed. These 

reconstructions (Figure 2-5, Figure 2-6, Figure 2-7) were performed using the smooth and 

medium reconstruction kernels and met or exceeded all of the ACR accreditation 

standards (Table 2-4, Table 2-5, Table 2-6).   The CNR of the sharp/ramp kernel did not 

pass the adult abdomen standard (>1.0), however ramp kernels are not used clinically 

due to the fact that they over-enhance high-frequency noise.  The sharp/ramp kernel met 

all other ACR accreditation standards, and provided the highest spatial resolution.  Using 

a reconstruction of a simulated scan (80keV monochromatic beam) of a FORBILD thorax 

phantom (Figure 2-10), it was shown that the software reconstructs accurate attenuation 

values.  Therefore, while FreeCT_wFBP may not represent the exact reconstruction 

algorithms employed in clinical scanners, ACR-acceptable performance, and accurate 

reconstruction of physical attenuation values in a known phantom indicate its readiness 
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for use in scientific research, such as [84] where the software was used to perform 10,000 

volumetric reconstructions to assess lesion detectability in lung screening scans. 

FreeCT_wFBP is utilized extensively in Chapter 3 and Chapter 4 for all weighted filtered 

backprojection images.  The results presented demonstrate the correct implementation 

of clinically important details such as flying focal spots and accurate attenuation value 

reconstruction, critical for the use of FreeCT_wFBP to perform reconstructions usable for 

quantitative imaging.   

2.4 FreeCT_ICD 

FreeCT_ICD represents the fully-3D, model-based iterative complement to 

FreeCT_wFBP, enabling fully-automated, offline reconstruction of clinical, 3rd generation, 

helical CT datasets.  While not directly utilized in the quantitative evaluation experiments 

presented here1, it is an important extension of the pipeline to address modern CT 

technology.  Here, we provide an overview of the algorithm implementation details and 

some sample results for completeness. 

2.4.1 Introduction 

The purpose of the broader FreeCT project is to provide a set of tools for offline 

reconstruction of raw projection data (i.e. sinogram data) for CT imaging research.  These 

tools have enabled the development of the reconstruction pipeline that is not dependent 

on the availability of clinical CT scanners, can be configured to operate in high throughput 

                                            
1 FreeCT_ICD was not utilized here since the scanner-based SAFIRE reconstruction 
algorithm was utilized.  Additionally, FreeCT_ICD is computationally intensive and run 
times are currently much longer than FreeCT_wFBP.  Future work will concentrate on 
accelerating FreeCT_ICD. 
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batch modes, can incorporate simulated dose reduction techniques [54], [58] and 

therefore can produce a large collection of image datasets that represent a wide range of 

acquisition and reconstruction settings such as different slice thicknesses and 

reconstruction kernels used in wFBP.  The results of the reconstruction pipeline has 

contributed to the growing list of investigations evaluating the robustness of quantitative 

imaging, radiomics and CAD methods across a range of scanner platforms, acquisition 

conditions and reconstruction parameters [54]–[56], [64], [65], [85], [86]. 

FreeCT_wFBP represents an important contribution to this work, since all modern 

scanners still typically offer a version of filtered backprojection reconstruction and many 

protocols still utilize it exclusively (e.g. [13], [42]).  Modern scanners however offer 

advanced image reconstruction techniques that use some form of statistical or iterative 

reconstruction.  These advanced image reconstruction methods are an important clinical 

technique for reducing radiation doses in CT, but require further investigation for their 

effects on quantitative imaging, radiomics and CAD performance. Model-based iterative 

reconstruction offers the potential for substantial radiation dose reduction [87], but comes 

with a challenging computational burden. Part of this burden lies in the size of the system 

matrix, which can be 1000 times larger than system memory for a typical CT scan. While 

open-source reconstruction packages now exist for FBP, to the authors’ knowledge there 

are no open-source, freely-available packages that can directly reconstruct clinical 

datasets using model-based iterative reconstruction methods. The aim of this work is to 

fill this gap with software, FreeCT_ICD, that can provide this capability. A complementary 

initiative is underway to provide the community with freely available raw data from clinical 

scanners [57]. 
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2.4.2 Algorithm Description and Software Features 

System Matrix Definition 
FreeCT_ICD employs a stored system matrix, in contrast to standard approaches, which 

avoid storing the system matrix by focusing on the evaluation of matrix-vector products 

on the fly.  This “on-the-fly” approach however limits the choice of system matrix (or 

forward projection model) to that which can be quickly computed. Model-based iterative 

reconstruction depends on the accuracy of the CT system model, and more detailed 

models of the x-ray source or detector responses may lead to improved resolution and 

image quality.  Storing the system matrix offers the potential for modeling these higher-

order effects, obviating the need to re-calculate them on the fly at each iteration, at high 

computational expense.  The trade-off for this approach however is extremely high 

memory requirements, which are often infeasible to store in a computer’s memory, or 

much slower traversing of full-size matrix stored to disk.  To make the size of this matrix 

practical, we have adopted the concept of Xu et al. [88], which exploits the helical 

symmetry through the use of rotating slices, resulting in a system matrix size that is 

substantially smaller, can be kept in memory on high-performance systems, and is 

functional and fast on lower-memory systems that require it to be saved to disk. 

 Within this concept, there exist many ways to define the system matrix elements. We 

have used a method based on Joseph’s method [89] that can be viewed as a natural 3D 

extension of the bilinear method employed by Hahn et al. [90] however with the refinement 

of reducing bilinear interpolating to Joseph’s method.  This yields similar image quality 

with smaller system matrix sizes.  Our system matrix approach provides results that are 
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very similar to those one might expect using Joseph’s method in 3D on a conventional 

Cartesian grid. We have verified this aspect using computer simulation with the FORBILD 

head phantom (for brevity, this is not reported here).  We expect the blob approach of Xu 

et al. [88] can provide results with fewer discretization errors, particularly in the absence 

of a regularizer, but this advantage comes with a much higher memory requirement. 

Compared with the intersection length based approach of Guo and Gao [91], the opposite 

effect is expected: fewer discretization errors at the cost of an increase in memory 

requirement. We did not consider employing a Siddon-based approach as our experience 

in 2D fan-beam tomography is that Siddon’s approach is suboptimal for practical CT 

geometries. 

Implementation 

The program includes a penalty term in the objective function as a regularizer, with two 

choices for the potential function: quadratic or Fair (edge-preserving) potential.  In the 

quadratic case, the single coordinate optimization problem is solved analytically; in the 

Fair potential case, it is solved via the bisection method.  The program sequentially 

iterates along the axial direction first, followed by the transaxial direction, so that the 

elements of the stored system matrix need only be accessed once per iteration.  Eight 

transaxial neighbors are used to calculate the penalty term.  Iterative coordinate descent 

does not lend itself easily to GPU parallelization, so the system matrix calculations and 

iterations are performed on a normal desktop CPU architecture.  However, individual 

iterations are accelerated with multi-core CPU OpenMP libraries [92], which produces up 

to a factor of 5 speed-up.   
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One key offering of FreeCT_ICD is that it can be initialized from a filtered backprojection 

reconstruction using FreeCT_wFBP, which dramatically reduces the number of iterations 

required to achieve a converged solution. To take advantage of this, users will have to 

install FreeCT_wFBP and have a suitable GPU.  For the requirements of FreeCT_wFBP, 

readers are referred to the FreeCT_wFBP technical note [93] and the FreeCT_wFBP 

documentation [78]. 

FreeCT_ICD is coded in C++ and was developed on Linux (Ubuntu 14.04LTS, Canonical, 

Ltd, London, UK) and should compile and run on all modern Linux distributions with little 

to no modification. Only two major external dependencies for building and running the 

software are required: (1) the Boost uBLAS C++ library (http://www.boost.org) and (2) the 

“yaml-cpp” library (https://github.com/jbeder/yaml-cpp).  The Boost libraries come 

preinstalled on most Linux systems and/or are easily available through the distribution’s 

package manager along with the YAML-cpp library. 

2.4.3 Sample Results 

In this section, we report on reconstructions of clinical datasets that were carried out to 

evaluate image quality. The datasets used raw projection (sinogram) data acquired on a 

clinical scanner (Definition AS, Siemens Healthineers, Forchheim, Germany).  The latter 

involved both the phantom from the American College of Radiology (ACR) CT 

Accreditation Program and a pediatric thoracic scan. In both cases, the scans were 

performed on the clinical scanner, the raw projection data was collected from the scanner 

and then image data was reconstructed using FreeCT_ICD.  These are described below.  
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ACR CT Accreditation Phantom 

The ACR CT accreditation phantom was scanned on the clinical scanner using a helical 

scan protocol with acquisition parameters described in Table 2-7. The raw data was 

captured from the scanner and reconstructed using both wFBP and the ICD algorithm 

using wFBP initialization. The reconstruction parameters used are also described in Table 

2-7.  Figure 2-11 shows images through the reconstructed ACR phantom from the ICD 

reconstruction.  

TABLE 2-7 ACQUISITION AND RECONSTRUCTION PARAMETERS FOR BOTH THE ACR 
PHANTOM SCAN AND THE PEDIATRIC THORACIC SCAN (INCLUDING PENALTY TERM AND 
EDGE-PRESERVING PARAMETERS). 
 

Scan ACR Phantom Pediatric Chest 
Acquisition Parameters     
Tube voltage [kV] 120 100 
CareDose4D Off On 
Quality Reference mAs --- 180 
Effective mAs 100 73 
Collimation 16 x 1.2 mm 16 x 1.2 mm 
Flying focal spot Off Off 
Rotation time [s] 0.33 0.33 
Reconstruction (ICD) 
Parameters  wFBP initialization wFBP initialization 

Voxel grid dimensions 512 x 512 x 132 512 x 512 x 163 

Voxel size [mm] 0.58 x 0.58 x 1.5 0.98 x 0.98 x 1.5 
FOV radius [mm] 300 500 
Edge-preserving 
parameter 0.005 0.005 

Penalty term 
parameter 0.1 0.1 

Matrix size [GB] 8.5 14.6 
Iterations 50 50 
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FIGURE 2-11 IMAGES FROM THE FREECT_ICD RECONSTRUCTIONS OF THE ACR 
ACCREDITATION PHANTOM USING THE ACQUISITION AND RECONSTRUCTION PARAMETERS 
DESCRIBED IN TABLE 2-7 WITH THE EDGE PRESERVING PENALTY FUNCTION. THIS FIGURE 
SHOWS FROM LEFT TO RIGHT: THE CT NUMBER MODULE; THE LOW CONTRAST MODULE; THE 
UNIFORMITY MODULE AND THE SPATIAL RESOLUTION MODULE. EACH IMAGE HAS BEEN 
WINDOWED AND LEVELED TO THE VALUES RECOMMENDED BY THE ACR [94].  
 
Using the image shown in Figure 2-11, the CT number of all materials were evaluated 

according to ACR CT Accreditation Program instructions[94]. The results are shown in 

Table 2-8. All reconstructed CT number values were within the acceptable ranges as 

defined in the accreditation instructions. 

TABLE 2-8 RESULTS FROM CT NUMBER EVALUATIONS OF THE ACR CT ACCREDITATION 
PHANTOM SHOWN IN FIGURE 2-11.  
 

Material Acceptable range [HU] Reconstructed value [HU] 

Polyethylene -107 to -84 -89 
Bone 850 to 970 864 
Water -7 to 7 -2 
Acrylic 110 to 135 123 
Air -1005 to -970 -988 

 
The low-contrast module reconstruction gave a CNR of 3.83, primarily due to a very low 

standard deviation value of 1.73.  For adult abdomen protocols, the accreditation program 

guidelines specify that the CNR should be > 1.0, so this value is acceptable (it should be 

noted that there is no CNR specification for a routine chest protocol).  It should be noted 
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that the CNR is affected by the reconstruction kernel in FBP, and by a number of 

parameters in the iterative reconstruction algorithm. Depending on the selection of these 

parameters, the apparent CNR can be increased or decreased. 

For the uniformity module, the maximum difference from center was 1.1 HU, indicating 

acceptable uniformity in the reconstructed image.  The ACR specifies a range of +/- 5 HU 

as acceptable. 

For the resolution module, the image in Figure 2-12 indicates a resolution of 8 lp/cm was 

achieved with our reconstruction. The ACR no longer requires this evaluation, but does 

require resolution evaluation as part of annual QC testing. While there is no limiting 

resolution value stated for adult head protocols, the adult abdomen protocol limiting 

resolution is 6 lp/cm. Therefore, this resolution can be judged to be acceptable.  

To emphasize the differences between the conventional wFBP reconstruction (which 

served as the initial condition to the ICD) and the ICD reconstruction, Figure 2-12  shows 

some additional images of module 4 which evaluates spatial resolution. This figure shows 

the resolution section reconstructed from both wFBP with a smooth filter as well as with 

the ICD algorithm with the edge-preserving penalty term.  These images are shown at 

both the window and level the ACR recommends for evaluation of the bar patterns 

(approx. L=1100/W=100) as well as a window/level setting that is closer to a soft tissue 

window, which allows us to evaluate both the noise level (evaluated through standard 

deviations in each image) as well as the reduced streaking artifacts observed in the ICD 

image.  In addition, a difference image is provided to demonstrate the improved resolution 

that ICD provides. Thus, these images demonstrate that ICD is indeed providing improved 
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resolution at slightly reduced noise compared to wFBP.  These images are meant to be 

illustrative and not definitive of the advantages of ICD over wFBP in all cases; it is 

recognized that the parameters selected (including those for wFBP) will have significant 

bearing on any comparisons of resolution, noise and image quality in general.  

 

FIGURE 2-12 MODULE 4 (RESOLUTION MODULE) OF THE ACR PHANTOM RECONSTRUCTED 
WITH BOTH WFBP (SMOOTH KERNEL) AND ICD (EDGE PRESERVING PENALTY TERM).  THE 
TOP ROW DISPLAYS THE IMAGES AT THE WINDOW AND LEVEL SETTINGS SIMILAR TO SOFT 
TISSUE WINDOWS TO DEMONSTRATE THE REDUCED STREAK ARTIFACTS AND SLIGHTLY 
REDUCED STANDARD DEVIATION RESULTING FROM ICD RECONSTRUCTIONS.    THE BOTTOM 
ROW DISPLAYS THE IMAGES AT THE WINDOW AND LEVEL SETTINGS SUGGESTED BY THE 
ACR TO EVALUATE IMAGES FROM THIS MODULE[94] AND SHOWS THE IMPROVED 
RESOLUTION PROVIDED BY ICD (EVEN AT REDUCED NOISE LEVEL). THE IMAGE ON THE 
RIGHT IS A DIFFERENCE IMAGE WHICH CLEARLY DEMONSTRATES THE IMPROVED 
RESOLUTION FROM ICD IN THIS CASE. 
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Initialization with Weighted Filtered Backprojection 

One of the key contributions of FreeCT_ICD is that the iterative reconstructions can be 

initilized using automatically-configured weighted filtered backprojection reconstructions 

from FreeCT_wFBP.  While the final reconstruction provided is the same, the number of 

required iterations is substantially fewer when initialized with FreeCT_wFBP.  This is 

demonstrated in  

Figure 2-13.  Initializing the reconstruction volume with the wFBP scan tends to achieve 

convergence after approximately 25 iterations, while initializing from an empty volume 

requires between 50 to 100. This amounts to an hours-long reduction in computing time 

for one reconstruction, making FreeCT_ICD substantially more viable for large scale 

investigations.  

Pediatric Thoracic Scan 

A clinically indicated thoracic scan was performed on a pediatric (7-year-old) patient on 

the same multidetector CT (Definition AS 64, Siemens Healthineers, Forchheim, 

Germany). The raw projection data was obtained and anonymized under IRB approval at 

our institution. Our pediatric chest scans are performed with very low doses (CTDIvol for 

the 32cm phantom of for this scan was 2.5 mGy). Figure 2-14 represents a coronal image 

reconstructed from this pediatric thoracic scan using conventional wFBP (with a smooth 

reconstruction filter) as well as ICD using first a quadratic penalty term and then ICD using 

an edge preserving penalty term. In both ICD cases, the wFBP was used as the 

initialization. However, each ICD image can be shown to provide more detail than the 
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wFBP (with smooth kernel) as evidenced by the clearer representation of fine details such 

as fissures and vascular markings. In this figure, the quadratic penalty term results in 

noisier images (higher standard deviation) than the edge preserving penalty term, 

although in general the resolution and noise characteristics depend on the specific 

parameters used in the regularizer. 

 

 

 

FIGURE 2-13 FIGURE DEMONSTRATING THE EFFECTS OF INITIALIZATION USING WFBP 
IMAGE DATA USING THE ACR UNIFORMITY MODULE (MODULE 3). THE TOP ROW SHOWS 
RECONSTRUCTIONS OF THIS MODULE WHEN NO INITIALIZATION IS USED. THE BOTTOM ROW 
SHOWS RECONSTRUCTIONS OF THIS MODULE WHEN THE WFBP IMAGE DATA IS USED AS THE 
INITIAL CONDITION AND HOW MUCH FASTER THE IMAGE CONVERGES TO THE EXPECTED 
ANSWER.  
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(a)           (b)     (c) 

 
(d)         (e)     (f) 

FIGURE 2-14 CORONAL REFORMAT IMAGE OF A PEDIATRIC THORACIC CT EXAM FROM THE 
SAME RAW PROJECTION DATA TO ILLUSTRATE THE DIFFERENCES IN RECONSTRUCTIONS.  
THE TOP ROW SHOWS IMAGES DISPLAYED AT LUNG WINDOWS FOR: (A) WFBP USING A 
SMOOTH RECONSTRUCTION KERNEL, (B) ICD USING A QUADRATIC PENALTY TERM AND (C) 
ICD USING AN EDGE PRESERVING PENALTY TERM.  THE BOTTOM ROW SHOWS THE SAME 
IMAGES BUT DISPLAYED AT SOFT TISSUE WINDOWS AND WITH A REGION OF INTEREST 
WITHIN A HOMOGENEOUS AREA IN THE LIVER WHICH DEMONSTRATES THE SIMILARITY IN 
MEAN VALUES ACROSS RECONSTRUCTIONS AS WELL AS DIFFERENCES IN STANDARD 
DEVIATION VALUES ACROSS RECONSTRUCTIONS.  THE ORDER OF IMAGES IS THE SAME AS 
THE ROW ABOVE: (D) WFBP USING A SMOOTH RECONSTRUCTION KERNEL, (E) ICD USING A 
QUADRATIC PENALTY TERM AND (F) ICD USING AN EDGE PRESERVING PENALTY TERM. 
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2.4.4 Discussion 

FreeCT_ICD is model-based iterative reconstruction software for helical CT images that 

uses an iterative coordinate descent approach. This method represents a reasonable 

tradeoff in computation time and memory requirements for practical implementation of 

off-line reconstructions. This tool was designed to facilitate CT imaging research such as 

investigations into the effects of radiation dose reduction and reconstruction method and 

parameter selection on CT image quality, quantitative imaging and CAD performance. 

The offline (i.e. away from the clinical scanner) capabilities provided, coupled with 

standard representation formats for raw projection (sinogram) data [57], may provide 

advantages in terms of the breadth and depth of investigations that can be performed. 

This tool was intended as a complement to the weighted filtered backprojection tool 

already developed and made available [93] via the FreeCT website.  It is hoped 

FreeCT_ICD be a useful addition for the medical physics community and the broader 

research community. 

In the context of this dissertation, FreeCT_ICD represents a key extension of the pipeline 

infrastructure allowing it to address a broader range of clinical reconstruction 

configurations.  By offering model-based iterative reconstruction (MBIR) in addition to 

weighted filtered backprojection (wFBP), a more thorough investigation of CT parameter 

space can be conducted; additionally, because both FreeCT_wFBP and FreeCT_ICD are 

released under the GNU General Public License version 2.0, the software can be audited 

in detail, tuned to more closely match clinically used version of wFBP and MBIR if desired.  

While neither tool is exactly the reconstruction done on the clinical scanners, both 

demonstrate clinically-similar performance, and pass the ACR CT accreditation 
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standards, and thus represent a very reasonable choice for use in research.  Future 

investigations will focus on accelerating FreeCT_ICD making it more viable for large scale 

investigations such as those performed in Chapter 3 and Chapter 4 using FreeCT_wFBP. 

FreeCT_ICD differs from other iterative reconstruction approaches in that it stores the 

system matrix directly. In order to fit within memory, it is necessary to employ a rotating 

grid. The combination of stored system matrix and rotating grid has also been analyzed 

and studied in [88]. Our work differs from that work in that it has been verified with 

experimental and clinical data, uses ICD for optimization rather than the alternating 

direction method of multipliers (ADMM), uses a different representation of the system 

matrix, and will be released as an open-source, free package. In our implementation, we 

have mostly used a CPU approach to make the software available to a wider community. 

The final stored system matrix size is strongly influenced by reconstruction and 

acquisition parameters (e.g. collimation, reconstructed field of view, pitch, etc.).  System 

matrix sizes for this work fell roughly between 10GB and 20GB using the modified 

Joseph’s method described above.  Taking into account the reconstruction and 

acquisition parameters, our matrix sizes were larger than those achieved by Guo et al. 

[91] (roughly 1-10GB, Siddon-based), however smaller than those achieved by Xu et al. 

[88] (roughly 27GB, Blob-based approach). Based on the size of our stored system matrix 

and the recent analysis provided by Matenine et al. [95], an efficient GPU refinement of 

our code may be possible in the near future for high end GPU cards. This warrants further 

investigation and development. 
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FreeCT_ICD at release is one of only two known open-source, free software packages 

for CT reconstruction that explicitly supports flying focal spots (the other being 

FreeCT_wFBP).  While full support is still under development, FreeCT_ICD supports the 

in-plane or “phi” flying focal spot with support for the Z flying focal spot due in a future 

release.  This dramatically extends the immediate usability of the software package since 

many clinical scans are acquired using a flying focal spot.  

These investigations provide a basis for continuing work including improvements in both 

computational performance as well as image quality improvement. Specific future 

developments will include investigations into the utility of extending the regularization into 

the third (longitudinal or “z”) dimension, which may include incorporating a longitudinal 

direction penalty term as well as ensuring that interpolated values are aligned in the 

longitudinal direction. 

2.5 The Pipeline GPU Queuing Framework 
While FreeCT_wFBP and FreeCT_ICD represent pathways to accomplish individual 

reconstructions away from the scanner, an approach was needed to systematically 

sample a wide range of reconstruction and acquisition parameters with minimal user 

intervention or input.  In addition, to achieve high-throughput reconstruction, a custom 

GPU framework was developed.  While Figure 2-3 illustrates what is happening in each 

stage of the pipeline, the following subsections cover how the primary components of the 

computing framework achieve this.  The primary components of the framework are: the 

“launcher” which starts the pipeline; the “daemon”, which dispatches individual jobs and 

ensures system resources are optimally utilized; and the “queue item” script, which 
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processes an individual reconstruction from start to finish.  A schematic flowchart view of 

the components discussed below can be found in Figure 2-15.   

 
FIGURE 2-15 FLOW DIAGRAM OF PIPELINE RECONSTRUCTION COMPUTATION.  PRIMARY 
PROGRAMMATIC COMPONENTS ARE HIGHLIGHTED IN ORANGE (I.E. THE LAUNCHER, 
DAEMON, AND QUEUE ITEM).  SUPPORTING FILES (E.G. CONFIG FILE, CASE LIST, QUEUE, 
ETC.) ARE NOT PROGRAMMATIC COMPONENTS THEMSELVES, HOWEVER ARE CRITICAL TO 
THE PROPER FUNCTIONING OF THE PIPELINE. 
 

2.5.1 Launcher and Configuration Files 
The launcher script is the first of the three primary programmatic components and serves 

to parse a simple configuration file into a job-list, update the pipeline queue, and 

subsequently start full pipeline execution managed by the “daemon.” After the pipeline 

launcher has started the daemon, the launcher exits and is not utilized further for a given 

set of cases.  After the work of Young et al. in 2017 [55], it was recognized that the largest 

expenditure of researcher time was in the manual configuration of reconstructions on the 

scanner, requiring constant human intervention and attention.  The launcher script 

completely eliminates this requirement, automatically configuring an arbitrary number of 

reconstructions in seconds based only on the simple input configuration file.    



 69 

Configuration files are written in YAML (http://yaml.org), a simple, human-readable “data 

serialization” format that is well supported across many platforms and programming 

languages, in particular Python.  A sample configuration file is given in Listing 2-1.  Users 

can request any number of doses, 𝑁/012, and any number of slice thicknesses, 𝑁1.3., to 

explore; the pipeline is capable of assessing any number of reconstruction kernels 

(𝑁4256), however is limited to the offerings of the reconstruction software.  The three used 

in this work are currently the only three offered with FreeCT_wFBP.  In the pipeline’s 

present implementation, the total number of reconstructions per patient will thus be 

𝑁/012 ∗ 𝑁1.3. ∗ 𝑁4256. 

library:           /data/DefAS_Full/library 
case_list:         /data/DefAS_Full/case_list.txt 
doses:             [100,50,25,10] 
kernels:           [1,2,3] 
slice_thicknesses: [0.6, 1.0, 2.0] 
 
LISTING 1: CONFIGURATION FILE USE IN THIS EXPERIMENT FOR THE RECONSTRUCTION OF 
THE CASES LISTED IN “CASE_LIST.TXT.”  CASES WILL BE RECONSTRUCTED WITH 4 
SIMULATED DOSE LEVELS (100%, 50%, 25%, AND 10%), THREE RECONSTRUCTION 
KERNELS (SMOOTH, MEDIUM, AND SHARP), AND THREE SLICE THICKNESSES (0.6MM, 1.0MM, 
AND 2.0MM). THE “LIBRARY” PARAMETER SPECIFIES THE LOCATION WHERE ALL 
RECONSTRUCTED DATA WILL BE STORED, AND WHERE SUBSEQUENT QI ANALYSIS WILL TAKE 
PLACE.  

The launcher script’s handling of job list creation, and spawning of all further processes 

simplifies the role of the researcher in experimental setup which increases throughput 

and reduces the risk of possible configuration errors. 

2.5.2 Pipeline Daemon 

The daemon is a management script that runs in the background and ensures that system 

resources are utilized continuously and efficiently.  The daemon performs three primary 
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functions: (1) poll the GPU resources of the current system and detect when they are 

available, (2) spawn “queue_items” which handle the processing of individual 

reconstructions (see below) when GPU resources are available, and (3) evaluate the exit 

status of the queue items for logging/debugging purposes. 

The daemon runs continuously once the pipeline is launched until there are no more items 

in the current queue.  Checking for available GPUs is done via the polling of a directory 

of lock files every five seconds.  If an available GPU is detected (i.e. no lock file is present) 

the daemon removes the next item from the job queue, assigns it to the GPU, generates 

a corresponding lock file, and spawns a new queue item.  This ensures that multiple jobs 

do not compete for the same resources and that all of a system’s available GPU resources 

are used continuously to maximize throughput. 

2.5.3 Queue Items 

The queue item script handles the processing of an individual reconstruction from start to 

finish.  After receiving its instructions from the daemon in regard to which reconstruction 

to compute, and which GPU to utilize, the primary steps of this process are data-fetch 

(i.e. retrieval of raw data from network storage), simulation of reduced dose data if 

required, and reconstruction according to requested parameters.  In addition to these 

tasks, the queue item also manages data organization for the given reconstruction, 

generating a specific directory structure inside of the project library (a directory specified 

in the configuration file) that prepares the case for quantitative imaging analysis. 
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2.5.4 Quality Assurance 

A critical challenge of the pipeline is to ensure that reconstructions and analysis tasks 

were performed correctly.  To accomplish this on the large scale required for the pipeline, 

slice visualizations are automatically generated and presented to researchers in 

structured HTML documents allowing for the rapid review of the thousands of image 

volumes generated.  Sample visualizations are shown in Figure 2-16.  A sample HTML 

quality assurance document is show in Figure 2-17 highlighting the ease with which errors 

can be detected using this approach.  Since the generation of QA documents is a key 

component of each analysis module, this approach can scale with dataset size and allows 

researchers to easily review and correct problems.   

 

 

FIGURE 2-16 : SAMPLE QA IMAGES UTILIZED TO VERIFY RECONSTRUCTION QUALITY AND 
THAT QUANTITATIVE TESTS ARE BEING CORRECTLY APPLIED. (A) RECONSTRUCTION, (B) 
RECONSTRUCTIONS AND LUNG SEGMENTATIONS, (C) QUANTITATIVE EMPHYSEMA SCORING.  
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FIGURE 2-17 SAMPLE HTML DOCUMENT, VIEWABLE IN A STANDARD WEB BROWSER.  TWO 
ERRORS ARE CAUGHT (HIGHLIGHTED WITH ARROWS).  A FAULTY SEGMENTATION IS SHOWN 
(TOP OF THE LUNGS IS TRUNCATED IN THE 0.6 MM SLICE) AND A MISSING RECONSTRUCTION 
OR SEGMENTATION FILE IS CAUGHT VIA THE IMAGE MISSING FROM THE GRID.   
 

2.5.5 Data Organization 

The pipeline creates a unique directory structure designed specifically for quantitative 

imaging analysis and stores imaging data and study metadata directly into the structure 

for further analysis.  The elements of the directory structure are described in Table 2-9 

and Table 2-10.  Because the directory structure is standardized across all pipeline runs, 

post-processing and analysis tasks are simple to apply across all image volumes in a 

pipeline library, and all analysis data is stored with its respective image data making 

aggregation for statistical analysis efficient and straightforward.  Furthermore, multiple QI 

analyses can be performed on the same dataset using different analysis modules. 
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TABLE 2-9 PARENT DIRECTORY STRUCTURE FOR A PIPELINE LIBRARY.  THE TOP-LEVEL 
DIRECTORIES HOLD INFORMATION FOR THE ENTIRE LIBRARY, SUCH AS AGGREGATED 
ANALYSIS RESULTS AND HIGH-LEVEL LOGGING INFORMATION.   
 
Directory element Purpose 
case_list.txt Stores original file paths to each raw data file 

used in the current library, and a “hash” value of 
the raw data file. The hash serves as a unique 
identifier, and helps to ensure it is not duplicated 
unnecessarily. 

Eval/ Directory containing final, aggregated quantitative 
imaging data ready for statistical analysis and 
interpretation.  

Log/ Directory containing copies of all pipeline logging 
data including the daemon log and logs from 
individual queue items. 

Qa/ Directory containing auto-generated structured 
documents to assist with quality assurance 

Recon/ Directory containing all of the reconstructed image 
data and results from individual queue items (note 
that there is further directory organization 
discussed in table 2) 

Recons.csv Contains a record of all reconstructions present in 
the library including data such as the source raw 
data file (and its unique hash value), parameter 
configuration information, and filepath to the 
image data.  

 

An organization scheme such as this one is critical for the efficient use of data on the 

scale of that output by the pipeline.  Manual management, such as that provided by 

dragging and dropping folders and files, does not typically scale to thousands of image 

datasets, and any speed improvements gained from fast, efficient, automated 

reconstruction would likely be lost. 
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TABLE 2-10 INDIVIDUAL RECONSTRUCTION DIRECTORY STRUCTURE (ALL STORED IN THE 
“RECON” DIRECTORY FROM TABLE 1).  DIRECTORIES IN THIS CASE STORE DATA ONLY FOR 
ONE RECONSTRUCTION.  THIS INCLUDES RAW QUANTITATIVE ANALYSIS DATA SUCH AS 
SEGMENTATIONS, AND INDIVIDUAL TEST RESULTS. 
 
 
Directory element Purpose 
Eval/ Directory containing “compiled” quantitative imaging data (e.g. complete 

multi-score results for the emphysema module) 
Img/ Directory containing all image data and metadata for the current 

reconstruction 
Log/ Directory containing all logging data for the current reconstruction as well 

as stdout and stderr output. 
Qa/ Directory for the storage of reconstruction-specific data used for quality 

assurance, for instance, a PNG visualization of overlay of the 
segmentation on top of the reconstruction 

Qi_raw/ Directory containing “raw” quantitative imaging results, such as a 
histogram of voxel values inside of an ROI, computer automated detection 
reports/results, etc. 

Ref/ Directory containing non-pipeline data specific to the reconstruction (i.e. 
“reference” data).  E.g. A clinical reconstruction being used for comparison 
against with the pipeline data; human-reader markings being used for 
CAD comparison 

Seg/ Directory containing and segmentations for the current dataset.   

 

2.5.6 Code Availability 

The pipeline GPU queuing framework source code as well as the analysis cluster 

framework code is being made available under the free, open-source GNU General Public 

License version 3.0 to encourage usage in research and quantitative imaging.  Full details 

can be found on the Github page [96], however in brief this means that users are free to 

copy, distribute and modify the software provided changes are identified and dated in the 

source code and any modifications are made freely available under the same license.  

The reconstruction software, both FreeCT_wFBP and FreeCT_ICD, has also previously 

been made freely available [61].  At present, the code for the calibrated noise addition 

and the analysis modules (segmentation, internal data format conversion, etc.) cannot be 

released due to proprietary code and research agreements, however free, open-source 
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versions would work within the frameworks being released, and future efforts from our 

research group may result in the release of some of this code. 

2.6 Demonstration of Pipeline Performance 

2.6.1 Methods 

To illustrate the utility and performance of the pipeline, datasets were created for a project 

in which lung cancer screening CT datasets representing a wide range of acquisition and 

reconstruction parameters were created. This dataset used the raw data from 142 

subjects to create image datasets that represented 4 dose levels (original and 3 simulated 

reduced dose levels), 3 reconstruction kernels and 3 slice thicknesses.  This resulted in 

a total of 36 reconstructions per subject, 5112 unique image datasets in total. Total size 

of the dataset was approximately two terabytes. 

The reconstruction portion of the pipeline was run on an Alienware Aurora R4 computer 

with an Intel i7-4960X CPU (3.6 GHz, 15 MB L3 cache), 32 GB of RAM, and two Nvidia 

GeForce GTX 780 GPU (2304 cores, base clock speed of 863 MHz) with 3.2 GB of global 

memory each.  Analysis of the reconstructed volumes was performed on an in-house 

computing cluster built with HTCondor cluster software with 15-25 computers in use at a 

time. 

Log files generated by the pipeline were mined for timing data using a Python script that 

is part of the pipeline software package [96].  Start and stop times for each major 

processing step were recorded for each individual reconstruction (i.e. data fetch time, 

simulated dose reduction, and image reconstruction), and elapsed times were computed 

for both the individual steps as well as the overall execution time for the job queue items 
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(times for all individual steps plus any pipeline overhead).  Average times across all 5,112 

reconstructed image datasets were computed and compared with previous similar 

experiments conducted by our research group. 

2.6.2 Reconstruction 

To explore robustness of emphysema scoring to protocol variation, a range of parameters 

were selected to capture the possible variability one might see clinically, and additionally 

some configurations that would push the limits of study “acceptability” for diagnosis, in 

particular with respect to dose reduction.  For this study, four doses were explored: 100%, 

50%, 25%, and 10% of the original “low dose” scans (approximately 2.0, 1.0, 0.5 and 0.1 

mGy CTDIvol), three reconstructions kernels: smooth, medium and sharp (corresponding 

roughly to Siemens B10f/B20f, B40f/B50f, and B60f respectively), and three slice 

thicknesses: 0.6, 1.0, and 2.0mm.  Thus, each study was evaluated under 36 different 

parameter configurations and sample reconstructions with each parameter configuration 

are shown in Figure 2-18. 

Simulated dose reduction was performed on the raw data with a noise model [58], an 

implementation of which has been validated and utilized for similar, previous 

experiments[54], [55].  The model adds noise to individual projections considering 

quantum and electronic noise. Electronic noise is an important consideration since the 

starting dose of CT lung cancer screening is already low; samples of electronic noise 

were acquired directly from the scanner on which all patients were scanned.  Additionally, 

a realistic attenuation model of the bowtie was generated using measurements from the 

scanner.  For the pipeline, a GPU implementation of the noise model has been developed 
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that achieves an acceleration of roughly 12x.  More discussion of the noise model will be 

provided in Chapter 3. 

 
FIGURE 2-18 SAMPLE RECONSTRUCTIONS OF AN ROI IN THE LUNGS ACROSS THE 
PARAMETERS UTILIZED FOR THIS EXPERIMENT.  ROI INCLUDES A SMALL POCKET OF 
EMPHYSEMA (RIGHT SIDE, AGAINST LUNG WALL).  THE APPEARANCE AND CONTRAST OF THE 
EMPHYSEMA POCKET RELATIVE TO THE LUNG PARENCHYMA CHANGES SUBSTANTIALLY WITH 
PARAMETER SELECTION.  THE SCAN MOST SIMILAR TO WHAT IS PERFORMED CLINICALLY AT 
OUR INSTITUTION IS HIGHLIGHTED WITH A RED, DASHED RECTANGLE. 
All reconstructions were performed using FreeCT_wFBP, designed to be similar to the 

clinical weighted filtered backprojection algorithms utilized on Siemens scanners.  While 

not precisely the same algorithm, when applied to raw data from the scanner utilized, it 

has been shown to meet the criteria specified by the ACR CT accreditation protocol [43], 

and produce clinically-similar reconstructions [61]. 

2.6.3 Analysis 

Threshold- and histogram-based emphysema scoring was chosen as an example task 

on which to test the pipeline because they are established approaches and have been 
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the subject of much research to date [30], [33], [35], [36], [38], [39].  Four analysis modules 

were utilized to carry out the analysis: (1) data format conversion (2) lung segmentation 

(3) calculation of the lung histogram, and (4) emphysema scoring (shown in Figure 2-19).  

The data format conversion reads the reconstructed image data and image metadata and 

converts it to a custom format suitable for use with the automated segmentation tool. The 

lung segmentation module reads the converted image data and runs previously-

published, fully-automated lung segmentation software [67].  The  

 

FIGURE 2-19 ANALYSIS MODULES USED TO GENERATE QUANTITATIVE RESULTS FOR 
EMPHYSEMA SCORING APPROACHES ASSESSED IN THIS STUDY.  MODULE 1 CONVERTS 
FROM STANDARD IMAGE OUTPUT FILE TYPES TO THE FILE TYPE USED BY THE OTHER 
ANALYSIS MODULES. MODULE 2 ACCEPTS CONVERTED IMAGE DATA AND PERFORMS 
AUTOMATED SEGMENTATION OF THE LUNGS.  MODULE 3 THEN LEVERAGES THE OUTPUT OF 
THE SEGMENTATION MODULE AS WELL AS THE IMAGE DATA TO CREATE A HISTOGRAM OF 
THE LUNGS.  FINALLY, MODULE 4 UTILIZES THE RESULTS OF ALL PREVIOUS THREE MODULES 
TO EVALUATE THE DIFFERENT EMPHYSEMA SCORES FOR THIS EXPERIMENT (SEE TAB. 3 FOR 
A COMPLETE LIST).  EACH ANALYSIS MODULE IS DESIGNED IN SUCH A WAY THAT IT CAN BE 
USED FOR FUTURE EXPERIMENTS. 
histogram calculation module then utilizes both the converted image data and the 

generated segmentation to create a histogram of the lung voxels. Finally, the emphysema 

scoring module pulls on all of the previously generated data to achieve final scoring values 

for the various executed tests.  The metrics calculated for this experiment were density 

mask metrics [6], calculated by evaluating the number of voxels in the lung below the 

given threshold (e.g. -950HU), and percentile metrics, calculated by evaluating the 

location of the Nth percentile of the lung parenchyma histogram (most commonly the 15th 
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percentile).  Additionally, mean, median and volume of the lung was computed.  Density 

mask metrics were computed using thresholds from -900HU to -970HU in increments of 

10HU, and 10th, 15th and 20th percentiles were computed. 

2.6.4 Results 

Table 2-11 summarizes the timing results for the experiment conducted and the average 

times required for each processing step of the pipeline run.  For the data-generation 

portion of the pipeline (reduced dose simulation, image reconstruction, and post-

reconstruction data handling), the most time-consuming step is reconstruction requiring 

on average approximately 4.4 minutes, while simulated dose reduction and data handling 

requires less than ten seconds on average.   

TABLE 2-11 TIMING RESULTS FOR PIPELINE RUN.  WHILE SPEEDUP IS NOTABLE BY ITSELF, 
IT IS ALSO IMPORTANT TO CONSIDER THAT NO RESEARCHER INVOLVEMENT BEYOND INITIAL 
CONFIGURATION IS REQUIRED DURING THE 8.75 DAYS OF RUN TIME, WHILE SUBSTANTIAL 
TIME AND ATTENTION WAS REQUIRED FOR YOUNG ET AL. 2017 [55].  “QUEUE ITEM TIME” 
CONSIDERS ANY COMPUTATIONAL OR DATA ORGANIZATION OVERHEAD, IN ADDITION TO THE 
TIME REQUIRED TO PERFORM DATA FETCH, DOSE REDUCTION, AND RECONSTRUCTION.  
TOTAL TIME IS DEPENDENT ON THE SYSTEM USED TO RUN THE PIPELINE. MODERN GPUS 
COUPLED WITH A GREATER NUMBER OF GPUS IN A SYSTEM WILL SUBSTANTIALLY REDUCE 
THE TOTAL RUN TIME SINCE THE INDIVIDUAL RECONSTRUCTIONS WILL RUN FASTER, AND A 
GREATER NUMBER OF RECONSTRUCTIONS WILL BE PROCESSED CONCURRENTLY. 
 
Mean data fetch time 1.74 s 
Mean dose reduction time 8.81 s 
Mean reconstruction time 4.40 min 
Mean queue item time 5.57 min 
Total time, full dataset (2 GPUs) 8.75 days 
Approximate speedup over Young et al. 2017 [55] 72x 

 
 
In general, the GPU implementation of simulated dose reduction requires approximately 

1.5 minutes to process a full case and the data-fetch requires approximately 30 seconds 

when these steps are required, however if the required raw data file is already in the 
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library, or the required dose reduction has already been simulated, the pipeline does not 

re-compute them.  Thus, most scans end up not requiring a separate data fetch or dose 

reduction step, reducing the average time required for these steps dramatically.   

The total size for the reconstructed dataset consisting of 5,112 reconstructions and 568 

raw data files (142 x 4 dose levels) required approximately 2 terabytes of storage.  Raw 

data files were on average approximately 2 gigabytes and reconstructed image data 

ranged from 200-600 megabytes per reconstruction. 

Thirty-one reconstructions did not succeed on the first try, and had to be re-queued and 

re-processed.  The failures were likely due to GPU memory conflicts since one of the 

graphics cards was being used to drive a computer display (which would not occur on a 

dedicated system); all succeeded on the second try.  The pipeline software package 

provides a script that automatically identifies failed reconstructions and adds them back 

to the job queue making this “clean up” step simple and fast to perform for the researcher.   

Additionally, automated segmentation is known to be imperfect, and the structured QA 

documents allowed for the fast identification of segmentations with errors.  30 subjects 

were identified as having one or more segmentations that needed revision.  Most errors 

occurred on the 0.6mm slice thickness. Criteria for error identification included substantial 

airway inclusion in the segmentation, and/or “truncation” of the upper lung which were 

easily visible in the segmentation QA document.  Once the failed cases were identified, 

segmentations for them were manually edited to correct errors.  Quality assurance of all 

results required less than one day. 



 81 

2.6.5 Discussion 

In total, the pipeline required slightly over one week for data generation and analysis for 

142 lung screening patients, assessing 36 unique reconstruction configurations of each 

scan. The total number of reconstructions analyzed was 5,112 and 15 quantitative 

imaging metrics were computed for each reconstruction (all 15 were histogram based).  

The pipeline allowed for this experiment to be conducted approximately 80 times faster, 

and with substantially less researcher involvement required than the most comparable 

experiment conducted by our research group, which required approximately six months 

for data generation (i.e. simulated dose reduction and reconstruction) and more for quality 

assurance and analysis[55].  While a larger cohort was assessed in [5] (N=481), only one 

“dimension” of CT parameter space (i.e. acquisition dose) was assessed, and only three 

data points per patient were tested (i.e. 100%, 50%, 25% of clinical dose) for a total 

number of reconstructions of 1,443. 

The reconstruction portion of the pipeline is highly optimized and performed extremely 

well.  Reconstructions were generated as expected with few failures.  Failures were easily 

identified and reprocessed to complete the dataset which helps make the pipeline be an 

efficient and robust tool for large-scale quantitative imaging work.   

The pipeline is programmed to automatically scale to the system on which it is running.  

Improved GPU hardware and a greater number of GPUs on the pipeline system will 

further accelerate the pipeline without any code modifications required.  “Deep learning” 

workstations, such as one recently acquired by our research group, are becoming more 

common in research groups and typically contain four, state-of-the-art GPUs.  Preliminary 
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tests suggest that the new workstation’s Nvidia GTX 1080Ti GPUs reconstruct cases 5x 

faster than the GTX 780 GPUs utilized for this work due to a faster clock speed and a 

greater number of computing cores.  With four GPUs in the new machine, this suggests 

that all of the data for this work could have been generated in approximately one day. 

While faster than any previous alternatives, it was observed that the current 

implementation of the analysis modules could be improved.  Namely, the computational 

overhead required for the cluster node configuration script was a substantial burden 

requiring more time than the actual quantitative image processing steps.  The simplest 

potential solution would be to revise the node configuration script and optimize for only 

the specific resources required for a given experiment (a “general” version giving access 

to all resources was used in this work).  This will be done for the next experiment using 

the pipeline, however it is not clear that this will yield substantial improvements in 

performance. Another potential pathway to improve this would be to let a single cluster 

node process all modules for a given reconstruction.  While this is a promising route 

forward, it is somewhat less easily adapted for general quantitative imaging than the 

current modular implementation due to the dependence of some processing steps on 

data from other reconstructions (e.g. in this case, segmentations from the 100% cases 

were utilized for the reduced dose cases, instead of attempting to segment the low-dose 

cases).  Implementation of modules would be experiment specific, and a parent “analysis” 

script (analogous to the reconstruction “queue items”) would be required.  These scripts 

would also be required to build in protection for race conditions and shared resources to 

ensure accurate results and reduce node latency.  
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2.7 Review and Discussion of the Pipeline 

Over the course of the previous chapter we have presented key developments enabling 

the construction of a high-throughput pipeline for the reconstruction and quantitative 

analysis of CT image data, with a specific focus on support for clinical, 3rd-generation, 

diagnostic, helical CT systems.  The developments were: (1) FreeCT_wFBP, GPU-

accelerated weighted filtered backprojection reconstruction software; (2) FreeCT_ICD, 

multicore, fully-3d, model-based iterative reconstruction with quadratic and edge 

preserving penalty functions; and (3) an automated reconstruction and analysis 

framework, leveraging modern GPU computing technology to accelerate, and improve 

high-throughput quantitative imaging studies. We have demonstrated the clinically-

acceptable and clinically-similar performance of both reconstruction algorithms, and 

illustrated the performance gains possible for quantitative imaging studies through the 

utilization of the automated framework. 

While the highest throughput is achieved when using the pipeline for both reconstruction 

and analysis, the pipeline workflow has been constructed to accept image input from 

multiple sources.  In particular, there may be instances where it is beneficial to perform 

quantitative evaluation of image data from a clinical scanner or other devices (such as a 

manufacturer “recon box”), which is fully achievable under the data paradigm utilized.  

Even non-standard or proprietary image formats are usable; however, a small data 

conversion tool or script will likely need to be added to the data conversion module to 

translate into a format directly usable by the pipeline.  This functionality will be utilized in 

Chapter 3 to conduct the analysis of reconstructed image datasets obtained on the 

scanner utilizing the Siemens SAFIRE reconstruction algorithm. 
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In order to take full advantage of the pipeline, some prerequisites need to be met.  First, 

users must have access to raw projection data, be it from the clinical scanner or from a 

simulation.  This can be a challenge if physical access to the scanner console is not 

available, or if manufacturers do not allow the exporting of the projection data.  Second, 

users must be able to decode the raw projection data if it is stored in a proprietary format.  

This has been recognized as a challenging problem for the generalization of these 

approaches to the broader diagnostic CT community, and effort has been made to 

overcome this such as the introduction of a DICOM-based vendor-independent CT raw 

data format [57].  Finally, to achieve the calibrated noise reduction discussed in this work, 

a “noise model” for each scanner must be developed which involves characterizing the 

scanner’s bowtie filter as well as the detector’s electronic noise and gain.  This requires 

physical access to the scanner as well as a means of acquiring a zero tube current scan 

(i.e. no x-ray production), typically via service mode. 

Future improvements to the pipeline are planned, namely a more robust, integrated 

interface that combines reconstruction process monitoring, quality assurance, and 

analysis module configuration into one application.  New reconstruction algorithms are 

under development, namely FreeCT_ICD, will be added as a configuration option to the 

pipeline allowed users to select from weighted filtered backprojection or iterative 

reconstruction [97] and more fully capture the broad variety of clinically-realistic 

reconstructions.  Lastly, while the pipeline’s current implementation is intended for CT 

imaging, the GPU job queuing framework developed here is generalizable beyond just 

CT reconstructions and would be an important tool allowing researchers to leverage multi-
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GPU workstations and servers in a manner not currently available without custom scripts 

and substantial programming investment. 

2.8 Conclusions 

The demonstrated reduction of the time required to go from experiment conception to 

finalized quantitative results was critical to the work presented in this dissertation, 

however it is an important advancement for the future investigation of quantitative 

imaging. Since perfect standardization of CT systems will not be realized in the near 

future, new and existing quantitative imaging metrics and evaluation methods must be 

tested for robustness to the myriad conditions that occur in day-to-day clinical CT imaging.  

The pipeline represents an impressive amount of computing power, however its most 

important developments are the new studies it can enable that were previously intractable 

due to logistical overhead of data acquisition, and the new scientific insights possible with 

such a data paradigm.  

While previous investigations into the impacts of quantitative imaging have been 

performed (e.g. [30], [33], [35]–[39]), they have not been comprehensive enough to 

establish robust confidence for widespread clinical use.  One potential application of the 

pipeline is the exhaustive search of clinical parameters to establish “acceptable” 

conditions under which a given quantitative test can be performed reliably.  From these 

conditions, future CT protocols can be designed in which clinicians can confidently use 

quantitative image tests to assess their patients.  Such a study will be presented in 

Chapter 3 for quantitative emphysema scoring. The pipeline is the first tool of which the 

authors are aware that allows for the thorough investigation of such interplay between CT 
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imaging and reconstruction parameters and represents an exciting new pathway towards 

new experiments.   

Further applications also exist, such as a test-bed for image post-processing and analysis 

techniques, or as a data-generation tool for machine-learning and deep-learning 

applications.  By providing all of the tools described in this chapter as free, open-source 

software, we hope to help accelerate the improvement and clinical translation of 

quantitative CT imaging. 
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Appendix: Validation of the Pipeline Infrastructure 

Many individual components comprise the pipeline infrastructure described in this chapter 

and validation of each component is a critical step in the development process to ensure 

that accurate, clinically-relevant data and results are obtained.  The components requiring 

validation for the work in this dissertation were the following: (1) the noise addition model, 

(2) reconstruction, (3) segmentation, (4) quantitation, and (5) data handling.  While some 

elements were developed from scratch (reconstruction and data handling) and required 

extensive validation, others were developed and validated for other works (noise addition 

and segmentation [54], [67], respectively) and the implementations were utilized without 

modification to the underlying approach beyond a “wrapper” script to automate calls to 

the programs.  The quantitation step that was re-implemented for this work was carefully 

checked for exact agreement using an existing software package (namely the in-house 

QIA software package).  The remainder of this appendix will focus on the steps used to 

validate the newly developed individual components (reconstruction and data handling) 

as well as the entire pipeline to ensure the integrity of the results. 

For reconstruction, FreeCT_wFBP and FreeCT_ICD were validated using a series of 

tests that reflect an approach commonly employed for the development and 

implementation of CT reconstruction algorithms.  Initial implementations of the 

reconstruction were developed using simulated, exactly-known analytic phantoms, 

namely the FORBILD head and thorax phantoms [83], [98].  These two phantoms have 

been employed extensively in the development and testing of other reconstruction 

algorithms (e.g., [59], [72], [76], [99]–[105]), and provide a large set of objects that were 

designed to result in artifacts and discretization errors should the algorithm 
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implementation not be correct.  These phantoms provided test cases in which the 

phantom and the simulated system geometry were known exactly. Reconstructed images 

were reviewed by a CT reconstruction expert (Dr. Frédéric Noo, University of Utah, with 

extensive experience in evaluating reconstruction algorithms and identifying artifacts and 

errors in these phantoms) for attenuation value accuracy and artifacts due to 

implementation errors.  After satisfactory initial implementations were reached, further 

simulation studies were conducted with the inclusion of flying focal spots.  Each flying 

focal spot configuration was tested and debugged individually on the FORBILD 

simulations and reviewed by the reconstruction expert until a satisfactory implementation 

(i.e. free of artifacts and producing the expected resolution improvements) was reached.   

After all expected geometry conditions were implemented and tested with simulation data, 

testing moved to evaluation using datasets obtained from the clinical CT systems to be 

reconstructed in our quantitative imaging work (the Siemens Definition AS 64, Medical 

Plaza 200, UCLA).  The first half of this process was to use the ACR phantom, which has 

known characteristics designed to evaluate CT system performance.  Further testing was 

performed to ensure that requested reconstructed slice locations agreed with 

reconstructions performed on the clinical scanners, and that the implementation properly 

handled changes in pitch and table direction (i.e. into the gantry and out of the gantry).   

Only after all of the above were tested and reviewed by the researchers and 

reconstruction expert was FreeCT employed for the reconstruction and quantitative 

imaging of clinical subject data.  Sections 2.3.6 and 2.4.2 report the results of ACR testing 
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with FreeCT_wFBP and FreeCT_ICD respectively. To summarize validation results 

overall:  

• All CT number evaluations fell within the range deemed acceptable by the ACR 

CT Accreditation Protocols (Table 2-4) 

• All uniformity evaluation met ACR criteria (Table 2-5) 

• ACR contrast-to-noise (CNR) criteria were met with the smooth and medium 

reconstruction kernels.  The sharp kernel did not meet the CNR criteria (>1.0 for 

adult protocols), however this is typical with sharp reconstruction kernels (Table 

2-6). 

• The use of the in-plane flying focal spot improved spatial resolution and the use of 

the Z flying focal spot provided a reduction of windmill artifacts, as expected 

(Figure 2-8 and Figure 2-9).  

• FORBILD phantom results demonstrated proper implementation of system 

geometry and implementation accuracy, reflected by reconstruction of known 

attenuation values (agreeing to within <0.01%, Figure 2-10), and reconstruction 

free of artifacts other than the expected aliasing observed due to the noise-free, 

ramp-kernel reconstruction.   

To ensure that the quantitation implementation was correct, a previously-employed (e.g. 

[56]) software package was initially utilized (i.e. the in-house “QIA” software suite).  The 

final version of RA-950 and the PERC15 scoring was re-implemented using MATLAB to 
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improve computational efficiency.  The latter implementation was checked against the 

results obtained with the QIA-based implementation for agreement by selecting 

approximately five subject test cases (a volumetric image dataset and a corresponding 

segmentation) and scoring using both the existing QIA implementation and the newly-

developed MATLAB implementation.  Both PERC15 and RA-950 scores agreed exactly 

between the two implementations.  As a further check, the histograms of the segmented 

lung region were found to agree exactly.   

Finally, the quality-assurance (QA) images (described in section 2.5.4) serve a dual-

purpose:  in addition to their quality assurance role, they provide on-the-fly validation of 

the data handling as the pipeline generates quantitative results.  Data handling 

specifically refers to matching the correct subject and volumetric image dataset with the 

segmentation and final quantitative results.  The quality assurance images illustrate that, 

for a given reconstruction, the correct subject was identified and matched to the proper 

segmentation and quantitative results, which is reflected in the fact that the visualizations 

are generated during the scoring process, therefore the visualizations reflect the actual 

data utilized to generate the scoring results.  Any disagreements in the visualization, 

which are easily spotted during a QA review, would reflect errors in scoring.  Since initial 

debugging during the pilot studies described below, incorrectly paired images and 

segmentations have not been observed. 

Ideally the results of each reconstruction would be reviewed in detail (i.e. slice-by-slice) 

for both segmentation accuracy and proper scoring of the RA-950 data, however this is 

intractable given the large-scale datasets being utilized.  Instead, a detailed review of a 
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sample of individual cases was performed during a series of pilot studies that were 

conducted to ensure that the entire pipeline workflow was working properly.  In the first 

study, a cohort of ten subjects was evaluated, and all segmentation and quantitative 

results were given a detailed review for accuracy  [106].  The results of the pilot studies 

demonstrated that any errors identified using the detailed review were able to also be 

identified using the QA documents with individual coronal slices.   This test was then 

scaled to thirty subjects in a second pilot study [107] to ensure that results observed on 

the 10 cohort sample would scale properly without any further software modification.  The 

QA images were employed as the primary means of validation, and detailed review was 

performed on subjects that had segmentation errors in the QA images, as well as 

randomly on other subjects.  Regarding validation of data handling, the results of this 

second pilot study were that no data-matching or segmentation errors were found in the 

randomly selected subjects, and all segmentation errors identified in the QA images were 

a result of known limitation of the segmentation algorithm utilized (again, not re-

implemented or modified for our use beyond the use of a wrapper script for automation), 

and errors were easily corrected via manual editing of the segmentation.  Only after 

results were verified in the pilot studies was the pipeline infrastructure scaled to evaluate 

larger cohorts such as those described in Chapter 3 and Chapter 4. 

In summary, each component was independently validated when needed (reconstruction, 

data handling, quantitation), and the entire pipeline itself underwent extensive testing to 

ensure the integrity of the results of the quantitative imaging measures extracted. 
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Chapter 3 - Characterizing the Impacts of Slice 
Thickness, Kernel Selection, and Dose on Quantitative 
Emphysema Scoring Under Weighted Filtered 
Backprojection and SAFIRE 
Significant portions of the material for this chapter are adapted from the manuscript: 

(In preparation for submission to Medical Physics) J. Hoffman, G. Kim, M. Brown, J. 
Goldin, M. McNitt-Gray. “The Effects of Acquisition and Reconstruction on Quantitative 
CT imaging: Evaluation of Quantitative Measures of Emphysema in a Large Lung-
Screening Cohort.” 

3.1 Introduction 

Emphysema is the degradation of lung alveoli leading to difficulty breathing, shortness of 

breath, and poor oxygenation of the blood due to limited gas exchange, and is one of the 

key diseases comprising the larger disease family: chronic obstructive pulmonary disease 

(COPD).  In the United States, roughly 2% of the population is affected by emphysema 

[108], and worldwide 10.1% of people are affected by COPD [109].  COPD represents 

the third leading cause of death in the United States, behind heart disease and cancer 

[17] and can lead to significant degradation of patient quality of life. For these reasons, 

COPD and emphysema remain important targets in healthcare for improving diagnosis 

and treatment. 

Current gold standard tests for the diagnosis and evaluation of emphysema are primarily 

functional, consisting of FEV1 (“forced expiratory volume in one second”), and six-minute 

walking distance.  Additional tests include blood gas measurements.  While these tests 

are useful, they are limited in their ability to group patients beyond 3-4 categories or 

stages (GOLD Classification, [110]), and because diagnosis typically requires spirometry 

measurement [110], early diagnosis, at which a patient may not yet be symptomatic and 
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the disease may be most treatable, could be very beneficial.  Since emphysema is 

irreversible, early diagnosis is critical for starting treatment to delay onset of severe 

symptoms, which the functional tests may not be able to provide.   

For many years it has been recognized that emphysema is typically highly visible on 

thoracic CT scans and as such could possibly be quantified using CT [6], [7].  Such tests 

are able to detect the onset of emphysema earlier and provide more detailed tracking of 

disease progression than the functional tests.  The current most common quantitative CT 

method utilized is a threshold-based method referred to as “RA-950” (relative area, -

950HU), which measures the amount of degraded tissue falling below -950HU relative to 

the total volume of the lung.  Several studies have shown good correlation between this 

score and the amount of underlying morphological and pathological changes causing or 

leading to emphysema [6], [7], [21].  Other quantitative tests for emphysema using CT 

that have been proposed include location of the 15th percentile of the lung histogram, 

mean value of the lung tissue [20], as well as more modern techniques such as parametric 

response mapping [27].  

Results of quantitative CT for emphysema are promising, however widespread clinical 

adoption, outside of tightly controlled clinical trials, has not been achieved in the 30 years 

since its initial introduction.  While there are likely a number of contributing factors for this 

delay, one that is of principle importance is the variation in emphysema scores that is 

caused by CT acquisition and reconstruction parameters.  This has been investigated 

and reported in a number of different studies.  Boedeker et al. [30] reported on observed 

variations in density mask scores of up to 15% simply by changing the reconstruction 
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kernel.  In emphysema scoring with filtered backprojection reconstruction, a clear trend 

of increasing emphysema score with reduced dose scans has been established [33], [34], 

[37], [39].  More recently, the impacts of iterative reconstruction algorithms have been 

explored and found to perhaps be a means to "stabilize" RA-950 scores in the presence 

of dose reduction [36]–[39], however in some cases they do appear to introduce a small 

bias in the final metric value and the potential clinical implications of this are somewhat 

unclear [37]–[39].  Because of this observed variation caused only by changing 

reconstruction or acquisition parameters (i.e. no change in a subject’s underlying disease 

state), confidence in the widespread usability of emphysema scoring is low. 

The use of diagnostic quantitative CT may have improved the early diagnosis of 

emphysema, however, the number of easily-varied factors (such as slice thickness, 

reconstruction kernel, dose) impacting the final measured emphysema scores limits its 

utility in a heterogeneous clinical environment where the same patient may be scanned 

at different sites, by different technologists, and with different protocols.  Because results 

are not believed to be widely comparable between sites and studies, quantitative imaging 

of emphysema using CT is thought to only be minimally more useful than the current 

functional tests [111].  

There have been many calls to standardize quantitative imaging protocols (e.g. [11], 

[111]), however these are unlikely to be achieved in the near future due to costs and 

practical considerations, such as how to standardize across proprietary manufacturer 

technology (e.g. x-ray source, filtration, detectors, etc.) and what to do in the event of 

improper protocol configuration.  Because of this, if quantitative imaging for emphysema 
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is to be achieved in any general sense, other approaches are needed.  One such 

alternative approach is to quantitatively evaluate patient scans under a broad range of 

realistic, clinical acquisition and reconstruction conditions and establish a range or family 

of parameters choices that produce results comparable to a trusted reference value.  This 

“robustness” testing could lead to increased confidence in the quantitative results, and 

comfort with clinical interpretation for patients and doctors.  

Previous efforts to perform robustness testing for quantitative imaging have typically 

focused on varying one CT parameter (such as tube current, slice thickness, 

reconstruction kernel, etc.) and reporting the change in the chosen quantitative test [30], 

[33], [36]–[38]. This has served well to establish the baseline understanding among the 

quantitative imaging community that acquisition and reconstruction can be critical factors 

in quantitative imaging; in other words, how we scan can be just as important as what we 

scan.  A missing component of nearly all previous studies however has been an 

investigation of how variation in multiple parameters and their potential interplay can 

impact quantitative results.  The only exception of which the authors are aware has been 

[35], in which multiple settings of reconstruction kernel and slice thickness were 

systematically investigated in 20 different combinations (4 slice thickness, 5 

reconstruction kernel) for each subject in the study.  While very thorough, this study only 

investigated 21 subjects. 

In this study, we build on previous efforts to quantify the robustness of emphysema 

scoring metrics by leveraging a high-throughput computing platform for quantitative CT 

(discussed in Chapter 2) to investigate several quantitative emphysema scoring 
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approaches over a large number of reconstruction and acquisition conditions in a large 

cohort (N=142) of clinical lung screening subjects.  Acquisition dose (via dose reduction 

simulation software, described below), reconstruction kernel selection, and slice 

thickness (three of the most commonly changing clinical parameters) are varied to create 

36 unique weighted filtered backprojection reconstructions of each subject scan to 

systematically investigate the impact of and interplay between clinical parameters, and 

gain insight into how their combinations could impact patient diagnosis.  Furthermore, an 

additional set of 36 reconstruction per patient are generated using the Siemens clinical 

iterative reconstruction approach, SAFIRE (“Sinogram Affirmed Iterative Reconstruction”, 

Siemens Healthineers, Forchheim, Germany).  This provided at total of 72 reconstructions 

of each subject scan with each reconstruction representing a unique point in parameter 

space. 

Finally, from the results, we seek to provide “bounding boxes” of investigated parameters 

and reconstruction algorithms that would produce reliable quantitative results suitable for 

diagnosis and evaluation of a subject’s emphysema level, in the hopes of providing 

confidence in quantitative CT results, and a potential pathway for the clinical usage of 

quantitative emphysema scoring in current medical practice. 

3.2 Methods 

Patient population 

142 lung screening subjects scanned at our institution were selected from an in-house 

raw data archive.  All scans were acquired on the Siemen’s Definition AS 64 (Siemens 

Healthineers, Forchheim, Germany) according to the lung cancer screening protocol of 



 97 

our institution:  120 kV, Tube Current Modulation (TCM) was on in all scans 

(“CAREDose4D” is the name for the proprietary Siemens implementation), 25 Quality 

Reference mAs, pitch of 1.0, and collimation of 64 x 0.6mm (which includes the use of 

the Z-Flying Focal Spot – ZFFS). 

Quantitative scoring methods 

The primary emphysema scoring metrics evaluated in this work were RA-950 and the 

location of the 15th Percentile of the global lung histogram (PERC15).  To compute 

RA-950, the number of voxels in the lung (i.e. identified by the lung segmentation) with 

HU values below the given threshold were tallied and then divided by the total number of 

voxels in the lung to yield a fraction of the lung that is below the specified threshold.  

Percentile location measurements (PERC15) were found by generating a histogram of 

lung voxel values and identifying the Hounsfield Unit value of the 15th percentile of the 

histogram; this was done using automated software. 

Both emphysema scoring approaches required patients’ lungs to be segmented prior to 

software evaluation.  Three lung segmentations were generated for each patient, one per 

slice thickness, using the segmentation module of our fully automated CAD software [67] 

on the 100% dose, smooth kernel cases.  Segmentations were not run on each 

reconstruction in order to eliminate variations in quantitative score due only to 

segmentation differences.  Segmentation agreement with patient anatomy was verified 

by reviewing overlays of the segmentations with patient scans. 22 patients had at least 

one segmentation “failure” in which large portions of the airways were included, or a 

portion of the lung was excluded.  The bulk of these failures occurred on only the 0.6mm 
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slice thickness (14 patients), while several patients had multiple automated lung 

segmentation failures (6 subjects).   

Pipeline and range of parameters 

A high-throughput pipeline was utilized to generate and analyze all of the imaging data 

for this experiment.  This pipeline has been described in detail in Chapter 2, however to 

summarize, the pipeline is a GPU and cluster computing framework leveraging the free, 

open-source reconstruction software FreeCT_wFBP (Chapter 2, page 36, and [61]), as 

well as in-house analysis software for the high throughput creation and analysis of CT 

imaging data.  The pipeline accepts a small configuration file specifying the list of scans 

to be reconstructed and parameter configurations desired.  It then performs the 

reconstruction and analysis in a nearly fully-automated manner relying on the researcher 

only for quality-assurance of the results.   

In addition to exploring reconstruction parameters, the pipeline is able to simulate dose 

reduction for clinical CT scans by leveraging a realistic noise model [58] that has 

previously been employed for similar studies [54], [55], [112].  In addition to considering 

Poisson counting statistics, the model is built utilizing scanner specific measurements of 

electronic noise and the bowtie filter producing a highly realistic, simulated reduced-dose 

scan, even down to the lowest scanner-allowed dose values.  Validation of the noise 

model was described in [54]. 

The primary aim of this work was to investigate a range of clinically realistic selections of 

imaging parameters: reconstruction algorithm, slice thickness, reconstruction kernel, and 
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CT dose.  Lung screening studies at our institution are performed at ~2mGy CTDIvol, and 

reconstructed at 1.0mm slice thickness, using weighted filtered backprojection with a lung 

kernel (Siemens B40f or similar).  

To capture potentially realistic clinical variability the following parameters were selected: 

dose, slice thickness, reconstruction kernel, and reconstruction algorithm.  Values 

selected and rough clinical equivalents are given in Table 3-1.  All combinations of the 

parameters selected were investigation for a total of 72 reconstructions per subject scan. 

Figure 3-1 illustrates a sample lung ROI reconstructed under all of the different parameter 

combinations. 

TABLE 3-1 ACQUISITION AND RECONSTRUCTION PARAMETER VALUES INVESTIGATED. (*) 
INDICATES PARAMETERS USED WERE DIRECTLY FROM THE SCANNER OR DIRECTLY 
EQUIVALENT TO SCANNER VALUES. 
 
Parameter Values Approximate clinical equivalent 
Dose 100%, 50%, 25%, 10% 2.0mGy, 1.0mGy, 0.5mGy, 0.2mGy 

(CTDIvol) 
Slice thickness 2.0mm, 1.0mm, 0.6mm * 

Reconstruction algorithm FreeCT_wFBP, Siemens 
SAFIRE 

Siemens weighted filtered 
backprojection, * 

wFBP reconstruction kernels Smooth, Medium, Sharp B10f, B45f, B60f (Siemens) 

SAFIRE sharpness settings I26, I44, I50 (all strength 3) * 

 
 
Quantitative metrics used and analyses performed 

Quantitative emphysema scores using RA-950 and PERC15 were determined for all 

reconstructions.  Because there is no clear “truth” value defined for each patient, the 

change in score relative to a patient’s reference reconstruction was utilized as a figure of 

merit.  The reference reconstruction was chosen to be the parameter configuration most 
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comparable to a clinical quantitative imaging protocol [42]: 100% dose, 1.0mm slice 

thickness, and the smooth reconstruction kernel with weighted filtered backprojection 

(outlined with a dashed line in Figure 3-1).  Summary statistics are provided for the study 

population in Table 3-2 and Table 3-3.  Figure 3-2 provides histograms of emphysema 

scores at the reference condition for RA-950 and PERC15. 
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FIGURE 3-1 SAMPLE REGION OF INTEREST CONTAINING A SMALL REGION OF LOW 
ATTENUATION.  RECONSTRUCTED USING DIFFERENT COMBINATIONS OF WFBP AND 
ITERATIVE (SAFIRE) PARAMETERS.  REFERENCE RECONSTRUCTION IS OUTLINED WITH A 
RED, DASHED LINE.  ALL RECONSTRUCTIONS ARE SHOWN WITH A WINDOW/LEVEL OF 
1600/-600.  

WFBP 

SAFIRE 
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FIGURE 3-2 HISTOGRAM OF SUBJECT EMPHYSEMA LEVELS AT REFERENCE (WFBP, 100% 
DOSE, 1.0MM SLICE THICKNESS, SMOOTH RECONSTRUCTION KERNEL). 
 
 
TABLE 3-2 SUMMARY STATISTICS OF RA-950 AND PERC15 SCORES FOR STUDY 
POPULATION.  REFERENCE CONDITION IS 100% DOSE, 1.0MM SLICE THICKNESS, AND 
SMOOTH RECONSTRUCTION KERNEL.  MEAN VALUES AND STANDARD DEVIATION ARE 
PROVIDED; MINIMUM AND MAXIMUM VALUES ARE GIVING BELOW IN BRACKETS. 
 

Dose 
Slice 

thickness Kernel Metric 
WFBP SAFIRE 

100% 
(~2.0mGy) 1.0 Smooth 

RA-950 0.024 ± 0.051 
[0.000,0.436] 

0.050 ± 0.070 
[0.001,0.548] 

PERC15 -905.099 ± 26.853 
[-980.000,-797.000] 

-917.944 ± 26.705 
[-987.000,-811.000] 

 
 
TABLE 3-3 SUMMARY OF EMPHYSEMA PREVALENCE UTILIZING RA-950 SCORE AT 
REFERENCE.  THE VAST MAJORITY OF SUBJECTS IN THIS STUDY HAVE LITTLE TO NO 
EMPHYSEMA. 
 

  RA-950 < 0.05 0.05 ≤ RA-950 < 0.10 RA-950 ≥ 0.10 Total 
Number of 

subjects 125 12 5 142 
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To investigate clinically acceptable levels of variation in RA-950 a 5% threshold was 

utilized (absolute change in score, not percent change); for PERC15, a threshold of 10HU 

change was evaluated.  The change in emphysema scoring metric from reference 

condition was computed for each patient and parameter configuration, and then averaged 

across the patient population.  From this data, the acquisition and reconstruction 

parameter configurations producing “acceptable” levels of change in emphysema score 

were determined and used to provide recommendations for clinical emphysema scoring.  

A parameter configuration was considered acceptable if the 95% confidence interval 

determined using a paired t-test of the figure of merit lied within the threshold being 

evaluated; which for RA-950 scoring was being within 5% of the reference condition and 

for PERC15 was being within 10 HU of the reference condition.   

A key focus of this study was to determine which of the parameters investigated have the 

largest impact on emphysema score, as well as to determine whether or not any complex 

interactions between parameters existed.  Parameter importance (i.e. large, statistically 

significant coefficient value) in the model indicates which parameters need to be carefully 

controlled for clinically (i.e. likely to cause substantial emphysema score change).  

Additionally, the presence of strong interactions is important to determine since it has 

implications for establishing guidelines for robust quantitative emphysema scoring.  For 

instance, claims of “safety” for a given parameter would conditionally depend on other 

parameter selections made, and thus establishing rules or guidelines regarding safe 

parameter configurations becomes difficult or impossible.  Assessing parameter 

importance and potential interactions was done using regression analysis in two stages: 

first without interaction terms (i.e. slice thickness, kernel, dose), and second with 
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interaction terms (slice thickness, kernel, dose, and all possible interactions, such as 

“slice thickness x dose,” and “dose x sharp kernel” etc.).  A substantially improved R2 

value under the interaction model would indicate the importance of interaction terms to 

achieve a good fit (i.e. the model closely reflects the data); similar R2 values suggest that 

the interaction terms may not necessarily substantially improve or change the model, and 

coefficient magnitudes should be assessed individually, in particular the interaction terms 

versus non-interaction terms.  If interaction term coefficients are small relative to the non-

interaction terms, then the interaction terms do not substantially impact the results, and 

were ignored in favor of a simpler, non-interaction model.  If the interaction term 

coefficients are on the same order as the non-interaction coefficients, then the interaction 

results are important to the final model, in particular if the R2 value is greater for the 

interaction model.  In these cases, the regression analysis including interaction terms was 

utilized for interpreting results instead of the model without interaction terms.  

To investigate the potential impacts of overall amount of emphysema present, an effect 

clearly observed in [35], subgroup-analysis was conducted to determine differences 

between patients displaying an RA-950 score of greater than 5% (N=17, patients likely 

having some amount of emphysema present) at the reference condition versus those less 

than or equal to 5% (N=125, patients having little to no emphysema).  Although the 

number of subjects was small (N=5), an additional comparison was made between the 

patients with RA-950 at the reference condition of greater than or equal to 10%. 

All statistical analysis was conducted using the Python (www.python.org) packages 

Statsmodels version 0.8.0, and Scipy version 1.0.0. 
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3.3 Results 

3.3.1 Weighted Filtered Backprojection 

RA-950 

 

FIGURE 3-3 HEAT MAP OF ACCEPTABLE AND UNACCEPTABLE RECONSTRUCTION 
CONDITIONS FOR RA-950 (I.E. YIELDING A SCORE WITHIN PLUS OR MINUS 0.05 OF THE 
REFERENCE CONDITION, WHICH IS DISPLAYED AS A WHITE BOX).  95% CONFIDENCE 
INTERVALS ARE GIVEN INDICATING THE AMOUNT OF CHANGE THAT COULD BE EXPECTED DUE 
TO A PARAMETER CHANGE.  SQUARES RECEIVE GREEN (WHITE, IF FIGURE IS GRAYSCALE) 
COLORING IF THE CONFIDENCE INTERVALS LIE COMPLETELY WITHIN THE 0.05 THRESHOLD 
OF ACCEPTABILITY.  SQUARES RECEIVE LIGHTER BLUE IF THE CORRESPONDING 95% 
CONFIDENCE INTERVAL IS PARTIALLY CONTAINED IN, OR EXTREMELY CLOSE (WITHIN 0.01) 
TO THE 0.05 THRESHOLD.  PARAMETER CONFIGURATIONS RESULTING IN SCORE CHANGES 
BEYOND THIS RECEIVE DARK BLUE COLORING INDICATING “UNACCEPTABLE” CHANGES IN 
RA-950 SCORE. 
 
Weighted filtered backprojection (wFBP) demonstrated a region of acceptable parameter 

configurations for RA-950 scoring concentrated around the reference configuration.  

Figure 3-3 provides a visual representation of the conditions found to be acceptable for 

the entire pooled population, and as can be seen, most configurations that were only 

slightly different than the reference yielded acceptable performance, with the exception 
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of the sharp reconstruction kernel. In general, parameter configuration changes that 

introduce more noise into the image (i.e. moving from a smooth kernel to a sharp kernel, 

and/or moving from a 1.0mm slice thickness to a 0.6mm slice thickness) typically resulted 

in a net increase in RA-950 score (i.e. higher apparent emphysema) and greater 

likelihood of yielding a score that fell outside of the 0.05 threshold of acceptability; 

parameter configuration changes that would result in less image noise (e.g. thicker slices) 

had the opposite effect.  In some cases, this effect can be leveraged to achieve almost 

the exact same RA-950 score but with substantively different acquisition and 

reconstruction parameters, such as 50% dose relative to reference (increases image 

noise relative to reference), but a slice thickness of 2.0mm (decreases image noise 

relative to reference), which resulted in a 95% confidence interval of [-0.00009,0.00045] 

(i.e.  essentially the exact same scores as the reference configuration). Figure 3-4 

illustrates the same data however in a different manner using line plots.  

 

 
FIGURE 3-4 PLOT OF THE AVERAGE CHANGE IN RA-950 AS A FUNCTION OF PARAMETER 
SELECTION.  AVERAGES WERE COMPUTED ACROSS THE ENTIRE STUDY POPULATION.  THE 
REFERENCE CONDITION IS HIGHLIGHTED WITH A STAR.  GRAY, DASHED LINES INDICATE THE 
THRESHOLD OF ACCEPTABILITY UTILIZED IN THIS EXPERIMENT.  ERROR BARS ARE INCLUDED 
HOWEVER SMALLER THAN THE PLOT MARKERS IN MOST CASES. 
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Within subpopulations grouped by amount of emphysema at the reference configuration 

(illustrated in Figure 3-5, page 108), patients with mild and moderate amounts of 

emphysema were actually somewhat less susceptible to the more “extreme” parameter 

configurations, such as the sharp kernel and the 10% and 25% dose settings.  While 

these “extreme” configurations still yielded changes in RA-950 score that fell outside of 

the “acceptable” threshold (for the higher-emphysema subpopulation), these results 

agree with and support those found in [35], and suggest that patients with at least some 

emphysema are less likely to receive an incorrect quantitative RA-950 score due to 

parameter changes than those patients without any emphysema.  It appears that this 

effect becomes stronger the more emphysema a patient has, evidenced by the decrease 

in variation observed in the ≥ 0.10 group versus the ≥ 0.05 and no emphysema groups.  

Given the small sample size however for the emphysematous populations, strong 

conclusions regarding this effect cannot be made from this data. 
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FIGURE 3-5: SUBGROUP PLOTS OF CHANGE IN RA-950 AS A FUNCTION OF PARAMETER 
CONFIGURATION.  TOP ROW REPRESENTS PATIENTS WHO HAVE LITTLE-TO-NO EMPHYSEMA, 
MIDDLE ROW REPRESENTS PATIENTS THAT HAVE AT LEAST SOME EMPHYSEMA (I.E. A 
MINIMUM RA-950 SCORE OF 0.05 AT REFERENCE), AND THE BOTTOM ROW SHOWS ONLY 
PATIENTS WITH MODERATE EMPHYSEMA OR WORSE (I.E. MINIMUM OF 0.10 RA-950 AT 
REFERENCE).  ORIGINAL POOLED PLOTS (FIGURE 3-4) ARE SHOWN WITH REDUCED 
OPACITY TO HIGHLIGHT HOW THE SUBGROUPS BEHAVE DIFFERENTLY. 
 
 
  

RA-950 < 0.05 
at reference, 

N=125 

RA-950 ≥ 0.10 
at reference, 

N=5 

RA-950 ≥ 0.05 
at reference, 

N=17 

RA-950, WFBP 
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PERC15 
 

 
FIGURE 3-6 HEAT MAP ILLUSTRATING “ACCEPTABLE” VERSUS UNACCEPTABLE CHANGES IN 
PERC15 SCORE AS A RESULT OF PARAMETER CHANGES.  AN ACCEPTABLE LEVEL OF 
CHANGE WAS DEFINED TO BE LESS THAN 10HU. 95% CONFIDENCE INTERVALS ARE SHOWN. 
 
Interestingly, PERC15 yielded nearly the exact same set of acceptable conditions 

(illustrated in Figure 3-6) as RA-950.  This is however, perhaps somewhat unsurprising 

given that both metrics are purely histogram-based, although acceptable regions could 

be easily changed by where the threshold of acceptability is set.  While the acceptable 

parameter configurations are the same, the behavior of PERC15 is the opposite of RA-

950: PERC15 becomes lower with increasing noise in the wFBP images. This is illustrated 

in Figure 3-7.  Furthermore, although the PERC15 response to parameter change is the 

inverse of RA-950, the same effect on subpopulations is observed: patients with higher 

levels of emphysema are subject to less change in PERC15 under extreme protocol 

changes, although no substantive change to the acceptable protocols was observed 

(Figure 3-8 on page 111).   
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FIGURE 3-7 PLOT OF CHANGE IN PERC15 AS A FUNCTION OF PARAMETER CONFIGURATION 
FOR FULL STUDY POPULATION.  ERROR BARS ARE SHOWN, HOWEVER ARE SMALLER THAN 
THE MARKER IN ALL CASES. REFERENCE CONDITION IS HIGHLIGHTED WITH A STAR. 
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FIGURE 3-8: PERC15 RESPONSE IN SUBPOPULATIONS OF THE STUDY COHORT, GROUPED 
BY AMOUNT OF EMPHYSEMA AT REFERENCE (DETERMINED USING RA-950, SAME 
GROUPINGS AS FIGURE 3-5).  ORIGINAL POOLED RESULTS, SHOWN IN FIGURE 3-7, ARE 
OVERLAID WITH REDUCED OPACITY TO HIGHLIGHT HOW TRENDS CHANGE WITH DIFFERING 
LEVELS OF EMPHYSEMA AT BASELINE. 
  

RA-950 < 0.05 
at reference, 

N=125 

RA-950 ≥ 0.10 
at reference, 

N=5 

RA-950 ≥ 0.05 
at reference, 

N=17 

PERC 15, WFBP 
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Multiple Linear Regression Modeling of RA-950 Change 

Modeling of the data was conducted in two stages: initially without interaction terms 

between independent variables (i.e. dose, kernel, and slice thickness), and second 

including interaction terms.  Regression results for the no-interaction model are given in 

Table 3-4 and regression results for the model including interaction terms are given in 

Table 3-5. 

While the model including interaction terms provided a slightly improved fit (R2 of 0.812, 

versus 0.783 without interaction terms), and all interaction terms were found to be 

statistically significant, upon closer inspection the interaction terms are found to be one 

to two orders of magnitude less important than the individual, non-interaction variables.  

For example, the strongest interaction term in the model, “Slice Thickness x Kernel: 

Sharp,” has a coefficient of -0.033, however the sharp kernel alone has a coefficient of 

0.235 and slice thickness alone has a coefficient of -0.087.  The non-interaction terms are 

a full order of magnitude “stronger” than the interaction terms.  Thus, for wFBP, the non-

interaction model is the model selected for further analysis. 
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TABLE 3-4 REGRESSION RESULTS FOR RA-950 WITH WFBP, NO INTERACTION TERMS.  ALL 
RESULTS GIVEN ARE STATISTICALLY SIGNIFICANT AT 95% CONFIDENCE LEVEL.  NOTE THAT 
THE “DOSE” VARIABLE IS MODELED AS CONTINUOUS AND THE COEFFICIENT REFLECTS A 1% 
CHANGE IN DOSE.  THUS, A 50% CHANGE IN DOSE WOULD REFLECT 50 ∗ −0.002 = 	-0.1	 =
	-10%. SLICE THICKNESS IS ALSO MODELED AS A CONTINUOUS VARIABLE. 

		 		

Intercept (Kernel: Smooth) 0.287 
(0.002) 

Kernel: Medium 0.059 
(0.002) 

Kernel: Sharp 0.151 
(0.002) 

Dose -0.002 
(0.000) 

Slice Thickness -0.066 
(0.001) 

R-squared: 0.783 

Adj. R-squared: 0.783 

No. Observations: 5,112 

 

Inspecting the individual coefficients of the non-interaction model (Table 3-4), we 

observed that kernel selection has the largest impact on the change in RA-950 score, in 

particular the selection of the sharp kernel.  This agrees well with the observations 

regarding over-enhancing kernels found in [30] and [33].  Dose also plays a very important 

role.  Since dose was modeled as a continuous variable however it is important to 

remember that the coefficient given in the table represents the expected change in RA-

950 for a dose change of 1%.  Thus, considering a 50% change in dose, the coefficient 

“adjusts” to -0.10, on the order of coefficients associated with kernel change. 

While lots of information regarding emphysema scoring with wFBP can be learned from 

these models, the key results are the following: no strong interactions were observed, 

and kernel selection proved to be the parameter having the largest impact on RA-950 
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change, in particular the sharp kernel.  Although kernel seems to have the largest impact, 

dose and slice thickness play statically and clinically significant roles in the final model.  

In terms of implications for clinical quantitative imaging, the lack of important interaction 

terms with wFBP is a good result, implying that parameters can be freely adjusted without 

risking unexpected changes in RA-950 score (for example, if an “unacceptable” image 

dataset was acquired, one could thicken the slices or move to a smoother kernel to 

achieve an acceptable reconstruction).  Unfortunately, without any post-processing, every 

parameter was observed to have important, large impacts on the quantitative imaging, 

which does not meet the criteria for an “ideal” quantitative imaging test, which only reflects 

the patient’s underlying disease or biology.   
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TABLE 3-5 REGRESSION RESULTS FOR RA-950 WITH WFBP, WITH INTERACTION TERMS.  
ALL RESULTS GIVEN ARE STATISTICALLY SIGNIFICANT AT 95% CONFIDENCE LEVEL.  NOTE 
THAT THE THREE-WAY INTERACTION TERMS WERE REMOVED FROM THE MODEL TO 
ELIMINATE MULTICOLLINEARITY. 
 

Intercept (Kernel: Smooth)   0.313 
(0.003) 

Kernel: Medium                 0.115 
(0.004) 

Kernel: Sharp 0.235 
(0.004) 

Dose -0.002 
(0.000) 

Slice Thickness -0.087 
(0.002) 

Dose x Slice Thickness 0.001 
(0.000) 

Dose x Kernel: Medium -0.001 
(0.000) 

Dose x Kernel: Sharp -0.001 
(0.000) 

Slice Thickness x Kernel: Medium -0.022 
(0.003) 

Slice Thickness x Kernel: Sharp -0.033 
(0.003) 

  R-squared:          0.812 

  Adj. R-squared:     0.811 

No. Observations: 5112 
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3.3.2 SAFIRE Iterative Reconstruction 

RA-950 & PERC15 

 
 
FIGURE 3-9 HEAT MAP OF ACCEPTABLE AND UNACCEPTABLE PARAMETER CONFIGURATIONS 
FOR RA-950 SCORED ON SAFIRE RECONSTRUCTIONS.  NOTE THAT THE REFERENCE 
CONDITION IS WFBP, 100% DOSE, 1.0MM SLICE THICKNESS, AND SMOOTH 
RECONSTRUCTION KERNEL. (*) INDICATES ONE MISSING IMAGE DATASET (I.E. SCORES 
COMPUTED OVER 141 SUBJECTS RATHER THAN 142). 
 
Iterative reconstruction typically marketed as be able to preserve image quality at reduced 

acquisition dose via noise and artifact reduction, however little has been done to 

determine whether these denoising approaches impact quantitative imaging.  Given the 

potential to reduce noise in the images, iterative reconstruction could prove immensely 

valuable for quantitative imaging purposes.  While iterative reconstruction approaches 

vary significantly, Siemens SAFIRE is one current realization that is in use clinically and 

represents a good candidate for comparison with wFBP.  Figure 3-9 illustrates the 

acceptable conditions for reconstruction.  If SAFIRE achieves noise reduction without 

imparting any other effects on the image data, one would expect to see an increase in the 
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number of “acceptable” parameter configurations when compared to wFBP, however 

there are noticeably fewer acceptable conditions.  The difference in behavior between the 

SAFIRE I50 setting and sharp wFBP kernel (as well as I26 and I44) becomes most 

apparent in Figure 3-10.  In Figure 3-10 it can be seen that the I26, and I40 iterative 

settings behave somewhat more similarly to the wFBP kernels than I50 however the 

behavior of I50 seemingly depends strongly on both slice thickness and acquisition dose.  

Possible reasons for this are discussed in the next section.  While there are similarities 

with wFBP, SAFIRE reconstruction displayed substantially different results than wFBP 

reconstruction in particular with regard the I50 setting, the “sharpest” iterative setting 

investigated.   

Subgroups of patients with differing levels of emphysema at reference behaved strikingly 

different than the subgroups with wFBP.  As shown in Figure 3-11, no clear trend in 

behavior is discernable with increasing levels of patient emphysema other than for 

subjects with increasing levels of emphysema, fewer parameter configurations fall within 

the region of acceptability.  In particular, under the I50 SAFIRE setting with a 1.0mm slice 

thickness, robustness to dose appears to get substantially worse in patients with a 

baseline RA-950 score of ≥0.10.  As with wFBP however, sample sizes in the subgroups, 

with the exception of the no-emphysema subgroup, were too small to make rigorous 

conclusions.  
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FIGURE 3-10 DIFFERENCE IN RA-950 UNDER SAFIRE RECONSTRUCTION USING 
DIFFERENT PARAMETER SETTINGS.  REFERENCE CONDITION IS WFBP RECONSTRUCTION, 
100% DOSE, 1.0 MM SLICE THICKNESS AND SMOOTH RECONSTRUCTION KERNEL.  5% 
THRESHOLD OF ACCEPTABILITY IS INDICATED WITH GRAY DASHED LINES.  ORIGINAL WFBP 
PLOTS ARE OVERLAID WITH REDUCED OPACITY FOR COMPARISON.  STRIKINGLY DIFFERENT 
BEHAVIOR OCCURS FOR THE I50 SETTING COMPARED TO ALL OTHER WFBP KERNELS AND 
SAFIRE SETTINGS. 
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FIGURE 3-11: RA-950 RESPONSE IN SUBPOPULATIONS OF THE STUDY COHORT, GROUPED 
BY AMOUNT OF EMPHYSEMA AT REFERENCE (DETERMINED USING RA-950, SAME 
GROUPINGS AS FIGURE 3-5).  ORIGINAL POOLED RESULTS, SHOWN IN FIGURE 3-10, ARE 
OVERLAID WITH REDUCED OPACITY. 
  

RA-950 < 0.05 
at reference, 

N=125 

RA-950 ≥ 0.10 
at reference, 

N=5 

RA-950 ≥ 0.05 
at reference, 

N=17 

RA-950, SAFIRE 
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While not shown here for brevity, the PERC15 results demonstrate similar trends to those 

observed in RA-950 scores.  Parameter configurations yielding acceptable levels of 

PERC15 change were similar, albeit with slightly fewer configurations resulting in fully 

acceptable results (i.e. change ≤10HU).  Changes within subgroups were equally 

unpredictable, seeming to vary depending on all three investigated parameters.  

Interestingly, PERC15 did seem to behave somewhat more similarly to results observed 

under wFBP in that there seemed to be less overall change in PERC15 in patients with 

greater levels of emphysema; RA-950 did not behave this way.  For completeness, all 

results for PERC15 under SAFIRE are included in the appendix at the end of this chapter. 

Multiple Linear Regression Modeling of RA-950 Change in SAFIRE 

The non-interaction regression model, presented in   
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Table 3-6, resulted in an R2 value of 0.547. The regression model including interaction 

terms (presented in Table 3-7) resulted in an R2 value of 0.604 indicating a slightly 

improved fit.  While this increase in R2 is similar to the increase observed for wFBP, it is 

the relative importance of the interaction terms to the rest of the model that makes the 

interaction model the better choice for understanding the behavior of RA-950 when 

scored on the SAFIRE reconstructions.  
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TABLE 3-6 NON-INTERACTION MODEL REGRESSION RESULTS FOR RA-950 SCORES 
COMPUTED ON SAFIRE RECONSTRUCTIONS. 

Intercept	(Kernel:	I26)	 0.340	
(0.003)	

Kernel:	I44	 0.025	
(0.003)	

Kernel:	I50	 0.095	
(0.003)	

Dose	 -0.002	
(0.000)	

Slice	Thickness	 -0.066	
(0.002)	

		R-squared:	 0.547	

		Adj.	R-squared:	 0.546	

No.	Observations:	 5100	

 
TABLE 3-7 REGRESSION RESULTS (WITH INTERACTION TERMS) FOR RA-950 CALCULATED 
ON IMAGES RECONSTRUCTED WITH SAFIRE.  (*) DENOTES A RESULT THAT IS NOT 
STATISTICALLY SIGNIFICANT.  ALL OTHER RESULTS ARE SIGNIFICANT AT THE 95% 
CONFIDENCE LEVEL.  
 

Intercept		(Kernel:	I26)			 0.366	
(0.004)	

Kernel:	I44	 0.036	
(0.007)	

Kernel:	I50	 0.085	
(0.007)	

Dose	 -0.003	
(0.000)	

Slice	Thickness	 -0.087	
(0.003)	

Dose	x	Slice	Thickness	 0.0005	
(0.000)	

Dose	x	Kernel:	I44	 0.000	
(0.000)	

Dose	x	Kernel:	I50	 0.0014	
(0.00007)	

Slice	Thickness	x	Kernel:	I44	 0.002	*	
(0.004)	

Slice	Thickness	x	Kernel:	I50	 -0.044	
(0.004)	

		R-squared:	 0.604	

		Adj.	R-squared:	 0.604	

No.	Observations:	 5100	
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With wFBP, interaction terms were statistically significant, however they did not play a 

clinically significant role in the final model (i.e. coefficients were small relative to the non-

interaction term).  SAFIRE, however, has interaction terms that are on the same order of 

magnitude of the non-interaction terms. Of particular note are the interaction terms 

involving the I50 SAFIRE setting. One can qualitatively observe from Figure 3-10 and 

Figure 3-11 that change in RA-950 involving I50 depends on both the acquisition dose 

and slice thickness.  Regression results presented in  

Table 3-7 support this quantitatively.  The coefficient for the interaction term between slice 

thickness and I50 (-0.0435) is on the same order as the non-interaction slice thickness 

coefficient (-0.0871) and the non-interaction I50 coefficient (-0.085).  Contrasted against 

the same coefficients for interaction-term wFBP model (-0.033, -0.0869, and 0.2345, 

respectively), we see that with SAFIRE the interaction term plays nearly as large of a role 

in the final model as the non-interaction terms, while with wFBP the non-interaction sharp 

kernel coefficient dominates.   

The regression analysis provides further insight into SAFIRE’s impact on RA-950 scoring 

in that the coefficient for the interaction term for dose and I50 (0.0014) has the opposite 

sign from the coefficient for the non-interaction dose parameter (-0.0026).  This reflects 

that with I50, the change in RA-950 can decrease with decreasing dose (e.g. Figure 3-10, 

slice thickness 1.0mm); this is the opposite effect of that observed with I26, I40, and all 

WFBP settings where decreasing dose results in increasing RA-950 change.  Thus, the 

linear regression model analysis establishes and quantifies that there exist non-trivial 
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interactions between SAFIRE setting, slice thickness, and dose when scoring 

emphysema with RA-950 that were not observed with wFBP.  

3.4 Discussion 

3.4.1 Weighted Filtered Backprojection 

Several key results have emerged from this study regarding emphysema scoring 

robustness using both wFBP and SAFIRE.  In general, parameter settings that produce 

a smoother image (i.e. less noise with thicker slices, higher dose, or smooth 

reconstruction kernel) resulted in images that were more likely to agree with the reference 

condition.  Additionally, emphysema scoring on wFBP images did not present interactions 

between the parameters, although SAFIRE did.  It was also observed, that with wFBP, 

that amount of emphysema present in a patient’s lungs impacted the robustness to 

parameter change of the RA-950.  While the sample sizes of patients with emphysema 

were too small to establish rigorous conclusions, this result was also observed by Gierada 

et al. [35] and can clearly be seen emerging Figure 3-5.  For wFBP, we found that the 

sharp kernel produced significant change in the RA-950 when compared to reference, 

and none of the configurations yielded results that were within 5% of the reference value.  

This agrees well with the findings of Boedeker et al. [30] and Gierada et al. [35] who both 

identified statistically significant changes as a result of sharp or over-enhancing kernel 

utilization.  Smooth and medium kernels result in some conditions that produce results 

close the reference value.   

Finally, because of the systematic investigation of three parameters concurrently enabled 

by the pipeline, the linear regression analysis established that there are not typically 



 125 

interactions between wFBP parameters and RA-950, meaning that these parameters can 

be considered independently of one another in terms of their effects on quantitative 

emphysema scoring.  This lack of complex interactions between parameters has 

implications for clinical usage of RA-950 scoring that will be discussed in more depth in 

Chapter 5.  This is a new result that has not previously been established in the literature.  

This was not the case for SAFIRE, discussed below.  

PERC15 results in wFBP, in terms of regions of acceptability and impacts on more or less 

emphysematous patients (i.e. the subgroup analysis), were similar to the results found 

for RA-950.  PERC15 under wFBP reconstructions decreases with increasing image 

noise, the opposite of RA-950, which increases with increasing noise.  Slightly fewer 

parameter configurations resulted in “acceptable” levels of change for PERC15.  This 

could possibly be attributed to the definition of “acceptable” variation utilized, in that it is 

difficult to establish that a ±10HU change in PERC15 score is exactly equivalent to a 

±0.05 change in RA-950 score; however, given the similarities between the acceptable 

parameter configurations, and the lack of studies correlating PERC15 with other 

emphysema metrics (e.g. GOLD status, BODE index, etc.) it represents a good starting 

point.  A more in-depth discussion of defining “acceptable” variation is given below.  

3.4.2 SAFIRE Iterative Reconstruction 

SAFIRE reconstruction had fewer parameter configurations that resulted in acceptable 

levels of change for both RA-950 and PERC15.  This is somewhat surprising given that 

iterative reconstruction is generally thought to result in lower image noise at a given dose 

than wFBP, and lower image noise is thought to produce more “stable” quantitative 
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emphysema scores.  This effect was not observed in this study.  In addition to fewer 

acceptable parameter configurations, SAFIRE also displayed both clinically and 

statistically significant interactions between the I50 setting and both dose and slice 

thickness.  I26 and I44 were also more strongly affected by dose reduction than the wFBP 

smooth and medium reconstruction kernels (Figure 3-10).  While other studies have 

observed that iterative approaches to reconstruction may represent a means to improve  

the reliability of quantitative emphysema scoring (e.g. [37]2) these results suggest that 

iterative approaches may actually be less reliable for quantitative emphysema scoring 

than wFBP. 

Amount of emphysema in a patient was also observed to have an impact on the 

robustness of emphysema scoring approaches for SAFIRE, however no clear trends 

emerged to help understand how these patients are impacted.  With I50, amount of 

emphysema seemed to cause more variation (i.e. less robustness).  I26 and I44 had less 

variation, however the 100% dose scores moved further from the acceptable range of 

RA-950 change, while RA-950 scores at lower doses moved closer to the acceptable 

threshold. 

While this study did not directly investigate why this complex behavior occurs with 

SAFIRE, one possible explanation for the difficult-to-predict behavior with regard to 

quantitative emphysema has to do with the nature of iterative reconstruction algorithms.  

Siemens SAFIRE algorithm is a hybrid combination an image-domain based iterative 

                                            
2 Investigated RA-950 scoring under dose reduction with a similar study design, 
however using Toshiba’s AIDR 3D reconstruction, and found that AIDR 3D dramatically 
improved robustness 
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denoising approach, and an iterative projection domain scheme to achieve some level of 

artifact reduction [113].  Depending on selection of image denoising approach, optimizer, 

and cost function, different image features can be enhanced (such as edges, or contrast, 

or noise reduction).  It is conceivable that SAFIRE, in particular the I50 setting, is 

optimized to enhance local contrast differences to assist human readers, whose visual 

system is much more sensitive to contrast than absolute gray values. However, local 

contrast enhancement would likely confound quantitative imaging approaches that rely 

on predictable density values, such as RA-950 scoring, since regions of emphysema 

could have different HU values depending on the surrounding area. 

Finally, while 10% dose levels (~0.2mGy) were investigated and scored quantitatively, in 

nearly all cases, the image quality is poor enough that these images would likely not be 

considered usable for any clinical purpose. 

  



 128 

 

FIGURE 3-12 SAMPLE RECONSTRUCTIONS USING THE 10% DOSE SETTING.  TOP ROW: 
ILLUSTRATES THE REFERENCE CONDITION (WFBP, 100% DOSE, SMOOTH 
RECONSTRUCTION KERNEL, 1.0MM SLICE THICKNESS).  MIDDLE ROW: WFBP, 10% DOSE, 
SMOOTH RECONSTRUCTION KERNEL, 1.0MM SLICE THICKNESS. BOTTOM ROW: SAFIRE, 
10% DOSE, I26 SHARPNESS SETTING, 1.0MM SLICE THICKNESS. 
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3.5 Conclusions 

For the purposes of reliable, robust clinical quantitative RA-950 and PERC15 scoring on 

lung screening studies, this work supports wFBP as the better choice of reconstruction 

algorithm.  WFBP presented a wider range of acceptable parameter configurations than 

SAFIRE, more predictable behavior over the range of parameters investigated, and no 

complex interactions between the investigated parameters: slice thickness, 

kernel/sharpness selection, and acquisition dose.  While this is not to say that all iterative 

reconstruction approaches should be excluded from quantitative imaging, it highlights one 

of the difficulties with the broad umbrella term of “iterative reconstruction” in that it rarely 

clarifies the underpinnings of the algorithm.  Some studies have found that “iterative” 

approaches improved quantitative emphysema scoring results (e.g. [37]) while others, 

like this study, highlight that care should be taken when attempting quantitation of a CT 

scan reconstructed with an “iterative” algorithm (e.g. [39]). This conclusion to use wFBP 

over iterative approaches agrees with the protocol recommendations given for 

SPIROMICS [42]. 

With wFBP, there were no major differences between the robustness of RA-950 and 

PERC15.  Other studies have found that PERC15 may be slightly more repeatable for the 

purposes of longitudinal studies [23], [24] and these results do not disagree with that 

conclusion (i.e. this was not a repeatability study).  For this study, based on the behavior 

of RA-950 and PERC15 under different parameter configurations, as well as within 

subgroups of different emphysema levels, it is likely that both scoring approaches are 

fundamentally extremely similar and could likely be used interchangeably when wFBP is 

utilized as the reconstruction approach.  RA-950 however has the added benefit of 
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localizing pockets of emphysema for visual review, and a recently proposed 

“normalization” scheme [49] along with other image post-processing techniques may 

make it more robust and reliable in the long term.  This will be addressed further in the 

next chapter. 

Finally, in terms of direct recommendations for clinical use of quantitative emphysema 

scoring in a lung screening population: quantitative emphysema scoring can be done. 

However, care should still be taken to ensure that an acceptable protocol been used.   

Weighted filtered backprojection should be utilized, quantitative scoring should not be 

performed with sharp reconstruction kernels (no acceptable configurations were found), 

and scoring should not be conducted directly on 0.6mm slices (only one acceptable 

parameter configuration).  Emphysema scoring using RA-950 and/or PERC15 should be 

reasonably robust down to 50% of the clinically recommended dose (~1.0mGy for a 

standard-size patient) when a smooth or a medium reconstruction kernel (roughly 

Siemens B10, B45 or between) is utilized, and at least a 1.0mm slice thickness is used.  
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Appendix: Complete PERC15 Results for SAFIRE  

 

FIGURE 3-13 HEAT MAP OF ACCEPTABLE PARAMETER CONFIGURATIONS FOR PERC15 
UNDER SAFIRE RECONSTRUCTION. VERY FEW CONFIGURATIONS RESULT IN ACCEPTABLE 
LEVELS OF CHANGE FROM THE REFERENCE VALUE, HOWEVER THE ONES THAT DO ARE THE 
SAME AS THOSE FOUND IN RA-950 UNDER SAFIRE (FIGURE 3-9).  THIS IS SIMILAR TO WHAT 
OCCURRED IN WITH WFBP RECONSTRUCTIONS.  (*) INDICATES ONE MISSING IMAGE 
DATASET (I.E. SCORES COMPUTED OVER 141 SUBJECTS RATHER THAN 142). 
 

 
FIGURE 3-14 DIFFERENCE IN PERC15 UNDER SAFIRE RECONSTRUCTION USING 
DIFFERENT PARAMETER SETTINGS.  REFERENCE CONDITION IS WFBP RECONSTRUCTION, 
100% DOSE, 1.0 MM SLICE THICKNESS AND SMOOTH RECONSTRUCTION KERNEL.  5% 
THRESHOLD OF ACCEPTABILITY IS INDICATED WITH GRAY DASHED LINES.  ORIGINAL WFBP 
PLOTS FOR PERC15 (FIGURE 3-7) ARE OVERLAID WITH REDUCED OPACITY FOR 
COMPARISON.  STRIKINGLY DIFFERENT BEHAVIOR OCCURS FOR THE I50 SETTING 
COMPARED TO ALL OTHER WFBP KERNELS AND SAFIRE SETTINGS. 
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FIGURE 3-15: PERC15 RESPONSE IN SUBPOPULATIONS OF THE STUDY COHORT, GROUPED 
BY AMOUNT OF EMPHYSEMA AT REFERENCE (DETERMINED USING RA-950, SAME 
GROUPINGS AS FIGURE 3-5).  ORIGINAL POOLED RESULTS, SHOWN IN FIGURE 3-14, ARE 
OVERLAID WITH REDUCED OPACITY. 
  

RA-950 < 0.05 
at reference, 

N=125 

RA-950 ≥ 0.10 
at reference, 

N=5 

RA-950 ≥ 0.05 
at reference, 

N=17 
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Chapter 4 – Impacts of Adaptive Denoising Using 
Bilateral Filtering on Quantitative Emphysema Scoring 
Under a Broad Range of Reconstruction and Acquisition 
Conditions 

4.1 Introduction 

In Chapter 3 it was found that there were regions of CT parameter space, clustered 

around the reference reconstruction, that would result in limited amounts of change in 

RA-950 scoring and PERC15 scoring.  Although the regions were relatively small, some 

clear guidance could be provided regarding the proper acquisition of a scan intended for 

quantitative emphysema scoring: wFBP with smooth or medium reconstruction kernels, 

with at least 1.0mm slice thickness should be utilized, assuming CTDIvols do not go below 

roughly 1.0mGy.  It was generally found that parameter configurations that resulted in 

less image noise than the reference configuration were more likely to produce a score 

within the limits of “acceptability.”  This evaluation allows for a researcher or clinician to 

decide if the scan is acceptable for quantitative emphysema scoring based on the 

acquisition and reconstruction protocols, however does not provide many options if it is 

found that the scan and/or reconstruction is unacceptable for emphysema scoring.  

If access to the raw data is still possible, the scan could be reconstructed using an 

acceptable protocol, however often this is typically not the case since raw data is usually 

cleared from the scanner after a short period of time (approximately one week at our 

institution).  This leaves two options if quantitative imaging is required: redo the study, or 

perform image post-processing to “restore” the data to an acceptable state.  Since 

performing CT studies multiple times is generally not possible (i.e. because of dose 

concerns), in the absence of further reconstructions directly from the raw data, post-
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processing of the image data may be the only viable pathway towards reliable quantitative 

emphysema scoring.   

Surprisingly little work has been conducted investigating post-processing of the image 

data, however all have yielded promising results.  Early studies investigated simple 

approaches, namely Gaussian filtration3 [46] and slice averaging for the purposes of noise 

reduction [114].  Both approaches resulted in improved quantification of emphysema, with 

some limitations: the research end point for [114] was a plot of RA-950 score as a function 

of slice location, which is not generally utilized today making it difficult to compare 

(although promising results are presented showing clear differences in said plots between 

different GOLD status patients). Tylen et al. [46] improved separation of patients with and 

without emphysema, however still observed overlap between the two groups, suggesting 

some potential limitations of the proposed method.  Further denoising approaches have 

been proposed such as non-linear “local noise-weighted” filtering which tunes the strength 

of the image filter depending on an estimate on local image variance for the voxel being 

denoised [115], and a very recently proposed machine-learning based “convolutional 

auto-encoder” for artifact and noise reduction [116].  Despite demonstrating more 

accurate, robust quantification of emphysema, a key limitation of these approaches is 

complexity, with each method requiring a number of different tuning parameters and/or 

training cases.   

                                            
3 The authors also propose several additional corrections to the image data, including a 
correction for “fluid pooling” and possible lung motion; the core of the denoising approach 
however lies in Gaussian blurring. 
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An extremely promising “image normalization” approach has been proposed by Gallardo-

Estrella et al. [49].  This approach utilizes slice averaging to reach a 3.0mm, non-

overlapping scan, filtering of the masked bullae (pockets of emphysema) to exclude any 

below 5mm2 which are likely to be noise, and finally a Fourier domain-based kernel 

normalization scheme [48] to make images appear as if they were reconstructed using a 

Siemens B31f reconstruction kernel.  As demonstrated on the NLST dataset, this 

approach dramatically improved the performance of emphysema scoring as a biomarker 

for mortality [49].  While the effect of the normalization process is similar to denoising, this 

approach is fundamentally limited.  For instance, while this approach may work to contend 

with a scan incorrectly acquired using an over-enhancing/sharp reconstruction kernel or 

a very thin slice, once normalization is applied no further processing can be provided by 

the normalization scheme.  Additionally, the kernel normalization process has been 

rigorously tested only in cohorts coming from well-controlled clinical trials (COPDGene 

and NLST) and only under three kernel configurations (Siemens B45f, GE “Standard” and 

“Bone”) and it remains to be seen if it will work effectively in a broader clinical cohort.  

Thus, denoising can potentially provide an alternative, perhaps complimentary approach 

to image post-processing.   

In this chapter, we explore an existing image denoising algorithm, namely bilateral 

filtering, and its impact on the robustness of emphysema scoring using RA-950 and 

PERC15. Bilateral filtering is a non-linear, edge-preserving, approach to denoising [117] 

that has proven to be popular in many image-processing applications [118], however only 

recently has begun being explored in CT imaging [119]–[121].  One of the key benefits to 
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the bilateral filter is its relative simplicity compared to the denoising algorithms described 

above [117].   

The bilateral filter is formulated in the following manner: 

𝐼89:3252/ 𝑥 =
1
𝑊=

𝐼 𝑥9
>?∈A

𝑓5 𝐼 𝑥9 − 𝐼 𝑥 𝑔1 𝑥9 − 𝑥  

 
where 𝑥 is the pixel location being filtered, 𝐼89:3252/ is the filtered pixel value, and Ω is a 

neighborhood of pixels, 𝑥9, around the pixel being denoised. 𝑓5 and 𝑔1 are the “range” and 

“spatial” filter functions respectively.  Finally, 𝑊= is a normalization term: 

𝑊= = 𝑓5 𝐼 𝑥9 − 𝐼 𝑥 𝑔1( 𝑥9 − 𝑥 )
>?∈A

 

While the range and spatial filter functions are arbitrary in the definition of the bilateral 

filter, a common choice is Gaussian functions for both, which is utilized in this work. A full 

treatment of the mathematical details of the bilateral filter is outside of the scope of this 

work, however the assumption and intuition underpinning this approach are that voxels 

that are close to one another in intensity value are likely to be from the same underlying 

material.  Therefore, any slight differences observed are likely to be noise and should be 

smoothed (thus, small intensity differences result in a larger weight).  Large differences 

are more likely to be different materials, such as the intensity difference between lung 

parenchyma and lung wall, and therefore should be preserved, i.e. lower weight in the 

bilateral filter.  Bilateral filtering using Gaussian filter functions essentially accomplishes 

Gaussian filtering in relatively homogeneous regions, while avoiding Gaussian blurring 
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across strong edges, giving the bilateral filter edge-preserving properties.  The amount of 

edge-preserving versus Gaussian blurring can be modified via the tuning of several 

parameters, and by adjusting these parameters based on expected increases or 

decreases in noise, the bilateral filter can be made “adaptive.”  These parameters as well 

as the settings utilized for them are discussed in the next section. 

We theorize that the application of denoising using bilateral filtering prior to the scoring of 

emphysema will improve the robustness of the RA-950 and PERC15 metrics across the 

range of parameters investigated. Bilateral filtering is applied to the datasets developed 

in Chapter 3, and the same quantitative analysis is performed as described in Chapter 3, 

section 3.2 Methods, including an analysis of “acceptable” parameter configurations, as 

well as linear regression analysis to determine the impacts of individual parameters on 

the final quantitative emphysema result and any potential interactions between 

parameters.   

4.2 Methods 

The experiment performed in this chapter is methodologically identical the experiment 

performed in Chapter 3, as is the image data and study cohort, however with the 

application of bilateral filtering to denoise the image data prior to emphysema scoring and 

analysis.  For information regarding the cohort, reconstructions, and quantitative analyses 

performed, readers are referred to section 3.2 Methods on page 96.   
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FIGURE 4-1 BLOCK DIAGRAM HIGHLIGHTING WHEN DENOISING WAS APPLIED IN THE 
PIPELINE WORKFLOW. 
 
Bilateral filtering was applied after reconstruction, before analysis, as indicated in Figure 

4-1.  Filtering was conducted in three dimensions on the volumetric image datasets.  The 

choice of Gaussian functions presents three tuning parameters: 𝜎5, the standard deviation 

of the range filter, 𝜎1, the standard deviation of the spatial filter, and 𝑤, the filter window 

width.  For this work, the spatial filter standard deviation was fixed at 𝜎1 = 1 for all 

parameter configurations. The window width was set to 5, with the window centered on 

the voxel being filtered.  Finally, the standard deviation of the range filter, 𝜎5, was adjusted 

depending on dose and slice thickness according to the following heuristic formula: 

𝜎5(𝑑3213, 𝑠3213) = 2
/KLM
/NLON

∗
1KLM
1NLON

PQ
 

where 𝑑528 and 𝑑3213 are the reference dose and the test dose (reference is always 100%), 

and 𝑠528 and 𝑠3213 are the reference slice thickness (1.0mm) and the test slice thickness.  

Adjustments were not made for the reconstruction kernel/sharpness setting.  Thus, with 

the reference condition, 𝜎5 = 1.  A full list of the different values employed for 𝜎5 can be 

found in Table 4-1.  This heuristic formula causes the bilateral filter to favor edge 
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preserving in images where the noise is lower (i.e. higher dose, thick slices), but filter 

noisier parameter settings more aggressively at the expense of edge-preserving. The 

larger values of 22.627 and 228.070 cause the bilateral filter to behave essentially as a 

Gaussian blur.  The bilateral filter was implemented in MATLAB (v2014a). 

TABLE 4-1 VALUES FOR THE STANDARD DEVIATION OF THE RANGE FILTER (𝜎5) AS A 
FUNCTION OF DOSE AND SLICE THICKNESS.  
 

  Dose	(%)	

	  100	 50	 25	 10	

Slice	Thickness	
(mm)	

2.0	 0.841	 1.000	 1.414	 4.000	

1.0	 1.000	 1.414	 2.828	 22.627	

0.6	 1.260	 2.245	 7.127	 228.070	

4.3 Results 

Example images of the denoising results can be found in Figure 4-2 (page 141) and 

Figure 4-9 (page 149).  Enlarged version of some key examples are provided in Figure 

4-3 and Figure 4-4.   Qualitatively, bilateral filtering worked well to remove noise, in 

particular in the low dose cases, where the pocket of low-attenuation became extremely 

difficult to resolve without denoising (e.g. Figure 4-2, 10% dose, 0.6mm, sharp kernel).  

Visually, denoising seems slightly more effective at removing noise in the wFBP than the 

SAFIRE images.  While it is not entirely clear the reason for this, one possible reason is 

the apparent increase in noise “structure” in the SAFIRE images (i.e. streaks, rather than 

simply image “graininess”); this will be discussed later in the discussion section of this 

chapter.  Results for PERC15, in terms of trends and number of acceptable parameter 

configurations, was very similar to RA-950.  For this reason, results for PERC15 are 

presented in their entirety in the appendix at the end of this chapter, and this chapter will 

primarily discuss RA-950. 
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4.3.1 WFBP 

With regard to RA-950 scoring, denoising using bilateral filtering had a significant impact 

on the number of parameter configurations producing acceptable results.  Indeed, as can 

be seen in Figure 4-5, for the pooled results, every parameter configuration evaluated 

resulted in an acceptable amount of change, in stark contrast to the unfiltered wFBP 

results where only a small subset resulted in acceptable levels of change.  Line plots of 

the pooled results for the full study population are presented in Figure 4-6.  For the 

subgroups of patients with emphysema and without emphysema, results are given in 

Figure 4-7.  While results are still extremely promising, a more complex picture of 

denoising’s impact on RA-950 scores emerges.  It can be seen that patients with more 

emphysema typically undergo a systematic decrease in their RA-950 scores when 

bilateral filtering is applied, although in most cases this change still falls within the ±5% 

threshold of acceptability, and overall the robustness of RA-950 scoring is still 

dramatically improved with bilateral filtering.  Possible reasons for the systematic 

decrease will be discussed in depth in the discussion section. 
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FIGURE 4-2 WFBP DENOISING RESULTS WITH BILATERAL FILTER (BOTTOM ROW) 
PRESENTED WITH ORIGINAL WFBP IMAGES (TOP ROW).  ALL IMAGES SHOWN WITH 
WINDOW/LEVEL OF 1600/-600.   REFERENCE RECONSTRUCTION IS OUTLINED WITH A RED, 
DASHED LINE. 
 
 

WFBP 

WFBP WITH 
BILATERAL FILTER 
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FIGURE 4-3 ENLARGED ROIS ILLUSTRATING BILATERAL FILTERING'S EFFECT ON 100% 
DOSE CONDITIONS.  TOP LEFT: REFERENCE CONDITION (WFBP, SMOOTH KERNEL, 1.0MM 
SLICE THICKNESS) WITHOUT DENOISING.  TOP RIGHT: REFERENCE CONDITION WITH 
BILATERAL FILTERING APPLIED.  BOTTOM LEFT: SAFIRE, I26 SETTING, 1.0MM SLICE 
THICKNESS, WITHOUT DENOISING. BOTTOM RIGHT: SAFIRE, I26, 1.0MM WITH DENOISING 
APPLIED 
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FIGURE 4-4 ENLARGED ROIS ILLUSTRATING BILATERAL FILTERING'S EFFECT ON 10% DOSE 
CONDITIONS.  TOP LEFT: REFERENCE CONDITION (WFBP, SMOOTH KERNEL, 1.0MM SLICE 
THICKNESS) WITHOUT DENOISING.  TOP RIGHT: REFERENCE CONDITION WITH BILATERAL 
FILTERING APPLIED.  BOTTOM LEFT: SAFIRE, I26 SETTING, 1.0MM SLICE THICKNESS, 
WITHOUT DENOISING. BOTTOM RIGHT: SAFIRE, I26, 1.0MM WITH DENOISING APPLIED 
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FIGURE 4-5 ACCEPTABLE PARAMETER CONFIGURATIONS FOR WFBP WITH BILATERAL 
FILTERING APPLIED. ALL 95% CONFIDENCE INTERVALS FALL WITHIN THE ESTABLISH ±5% 
THRESHOLD. 
 
 
 

 

 
FIGURE 4-6 PLOT OF RA-950 CHANGE IN FULL POPULATION, RECONSTRUCTED WITH WFBP 
AND BILATERAL FILTERING, AS A FUNCTION OF ACQUISITION AND RECONSTRUCTION 
PARAMETER.  ORIGINAL WFBP RESULTS (WITHOUT BILATERAL FILTERING) ARE OVERLAID 
WITH REDUCED OPACITY.  GRAY, DASHED LINES SHOW ±5% THRESHOLD OF ACCEPTABLE 
CHANGE.  WITH BILATERAL FILTERING, ROBUSTNESS OF RA-950 INCREASES 
DRAMATICALLY. 
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FIGURE 4-7 SUBGROUP PLOTS OF RA-950 CHANGE WITH WFBP+BILATERAL FILTERING.  
SUBGROUPS ARE FORMED BASED ON RA-950 SCORE AT THE REFERENCE CONDITION.  
ORIGINAL POOLED RESULTS (I.E. RESULTS PRESENTED IN FIGURE 4-6) ARE OVERLAID WITH 
REDUCED OPACITY.  
 
Table 4-2 and Table 4-3 provide the results for the regression analysis (for RA-950 

calculated on images reconstruction with wFBP and bilateral filter applied) with and 

without interaction terms.  Both regressions resulted in an extremely poor fit (R2 of 0.066 

and 0.141 without interaction terms and with interaction terms, respectively).  This poor 

fit, however, indicates that bilateral filtering was an effective means to reduce the impacts 

RA-950 < 0.05 
at reference, 

N=125 

RA-950 ≥ 0.10 
at reference, 

N=5 

RA-950 ≥ 0.05 
at reference, 

N=17 
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of kernel, slice thickness, and dose on RA-950 scoring.  Sharp kernel and its interactions 

still had the strongest impact, however with a maximum regression coefficient absolute 

value of 0.036 (sharp kernel parameter, interaction model, Table 4-3), its effect relative 

to the ±0.05 threshold of acceptable change in RA-950 is minimal.  Neither regression 

yielded a strong fit, however qualitatively in Figure 4-6 there does appear to be some 

interaction between kernel selection and slice thickness, so it may be reasonable to 

conclude that bilateral filtering induced some interactions not found with wFBP alone.  

However, given the similarity of R2 values and coefficients (e.g. sharp kernel has largest 

coefficient in both models) and overall low coefficient values it is difficult to make any 

strong conclusions.   

 
TABLE 4-2 REGRESSION ANALYSIS RESULTS FOR RA-950 UNDER WFBP WITH BILATERAL 
FILTERING, WITHOUT INTERACTIONS.  (*) DENOTES VALUES THAT ARE NOT STATISTICALLY 
SIGNIFICANT. 
 

Intercept	(Kernel:	Smooth)	 0.001	*	
(0.001)	

Kernel:	Medium	 -0.001	*	
(0.001)	

Kernel:	Sharp	 -0.009	
(0.001)	

Dose	 0.000	
(0.000)	

Slice	Thickness	 -0.003	
(0.000)	

R-squared:	 0.066	

Adj.	R-squared:	 0.065	

No.	Observations:	 5112	
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TABLE 4-3 REGRESSION ANALYSIS RESULTS FOR RA-950 UNDER WFBP WITH BILATERAL 
FILTERING, WITH INTERACTIONS. (*) DENOTES VALUES THAT WERE NOT STATISTICALLY 
SIGNIFICANT. 

Intercept	(Kernel:	Smooth)	 -0.001	*	
(0.001)	

Kernel:	Medium	 -0.010	
(0.002)	

Kernel:	Sharp	 -0.036	
(0.002)	

Dose	 0.000	
(0.000)	

Slice	Thickness	 -0.002	
(0.001)	

Dose	x	Slice	Thickness	 0.000	
(0.000)	

Dose	x	Kernel:	Medium	 0.000	
(0.000)	

Dose	x	Kernel:	Sharp	 0.000	
(0.000)	

Slice	Thickness	x	Kernel:	Medium	 0.004	
(0.001)	

Slice	Thickness	x	Kernel:	Sharp	 0.011	
(0.001)	

R-squared:	 0.141	

Adj.	R-squared:	 0.139	

No.	Observations:	 5112	
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4.3.2 SAFIRE 

SAFIRE with bilateral filtering (sample shown in Figure 4-9) resulted in fewer acceptable 

parameter configurations than wFBP with bilateral filtering, however still had a substantial 

improvement over wFBP without bilateral filtering and SAFIRE without bilateral filtering.  

An illustration of this is provided in Figure 4-8, along with the 95% confidence intervals of 

RA-950 change.  When the dose was greater than 10% (~0.2 mGy CTDIvol), bilateral 

filtering greatly improved the robustness of emphysema scoring using SAFIRE.  This is a 

promising result, since it was previously illustrated that the 10% dose is unusable for most 

applications (Figure 3-12, page 128).  Interestingly, at 10% dose, the I50 sharpness 

setting resulted in the most robust performance; this result however is strongly influenced 

by the cohort largely not having emphysema, and does not hold for subjects with >0.05 

emphysema at reference (shown in Figure 4-11). 

 

FIGURE 4-8 ACCEPTABLE PARAMETER CONFIGURATIONS FOR SAFIRE WITH BILATERAL 
FILTERING APPLIED. MOST 95% CONFIDENCE INTERVALS FALL WITHIN THE ESTABLISH ±5% 
THRESHOLD, HOWEVER I26 AND THE 10% DOSE SETTING SEEMED TO CONSISTENTLY 
RESULT IN SCORES THAT WERE TOO HIGH. (*) INDICATES ONE MISSING IMAGE DATASET (I.E. 
SCORES COMPUTED OVER 141 SUBJECTS RATHER THAN 142). 
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FIGURE 4-9 SAFIRE DENOISING RESULTS WITH BILATERAL FILTER (BOTTOM ROW) 
PRESENTED WITH ORIGINAL SAFIRE IMAGES (TOP ROW).  ALL IMAGES SHOWN WITH 
WINDOW/LEVEL OF 1600/-600.   REFERENCE ACQUISITION/RECONSTRUCTION CAN BE 
FOUND IN FIGURE 4-2. 

SAFIRE 

SAFIRE WITH 
BILATERAL FILTER 
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FIGURE 4-10 LINE PLOTS OF RA-950 CHANGE UNDER SAFIRE RECONSTRUCTION WITH 
BILATERAL FILTERING AS FUNCTION OF PARAMETER CONFIGURATION. ORIGINAL WFBP 
RESULTS WITHOUT BILATERAL FILTERING ARE OVERLAID WITH REDUCED OPACITY FOR 
COMPARISON. 
 
As can be seen in Figure 4-10, the RA-950 scored under the I50 setting continues to 

display behavior different than I26, I44, and all wFBP kernel settings. This effect is more 

pronounced when considering emphysematous patients only, which can be found in 

Figure 4-11.  As with wFBP with bilateral filtering, emphysematous patients undergo a 

decrease in RA-950 scores at high-dose, smooth-setting reconstructions (e.g. 100% 

dose, 2.0mm slice thickness, I26 reconstruction), and with sharp kernel, low-dose 

settings, there is a strong decrease in RA-950 scores, falling well outside of the ±5% limits 

of acceptable score change.   
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FIGURE 4-11 SUBGROUP PLOTS OF RA-950 CHANGE WITH SAFIRE+BILATERAL 
FILTERING.  ORIGINAL POOLED RESULTS (FOR SAFIRE WITH BILATERAL FILTERING, FIGURE 
4-10) ARE OVERLAID WITH REDUCED OPACITY. 
 
Table 4-4 and Table 4-5 present the results for the regression analysis of RA-950 change 

both with interaction terms and without.  R2 values for both were low (0.169 and 0.357 for 

the non-interaction and interaction models, respectively), indicating a poor fit to the data 

with the variables utilized, although a somewhat improved fit than in the models of wFBP 

with bilateral filtering.  This however, as with wFBP with bilateral filtering above, is a 

positive result, supporting the use of bilateral filtering for removing the effects of 

parameter configuration, since none of the parameters was especially predictive of the 
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change in RA-950. The regression analysis quantitatively demonstrates that bilateral 

filtering was an effective means of removing most of the effects of kernel, dose, and slice 

thickness on RA-950 scoring in this cohort.  While including interactions in the model 

resulted in an improved fit, the overall poor fit of the interaction model (R2 of 0.357) and 

small coefficients relative to ±5% threshold of acceptability make it difficult to conclude 

that the interaction model is substantially better than the non-interaction model. 

It is worth noting however, that wFBP with bilateral filtering resulted in smaller R2 values 

relative to the SAFIRE results, as well as smaller coefficients.  This implies that wFBP 

with bilateral filtering depends less on parameter selection than SAFIRE, and as a result 

is likely to be better choice for robust quantitative emphysema scoring with RA-950. 

 
TABLE 4-4 REGRESSION ANALYSIS RESULTS FOR RA-950 UNDER SAFIRE WITH BILATERAL 
FILTERING, WITHOUT INTERACTIONS. 
 

Intercept	(Kernel:	Smooth)	 0.029	
(0.001)	

Kernel:	Medium	 -0.011	
(0.001)	

Kernel:	Sharp	 -0.031	
(0.001)	

Dose	 0.000	
(0.000)	

Slice	Thickness	 -0.008	
(0.001)	

		R-squared:	 0.169	

		Adj.	R-squared:	 0.168	

No.	Observations:	 5103	
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TABLE 4-5 REGRESSION ANALYSIS RESULTS FOR RA-950 UNDER SAFIRE WITH BILATERAL 
FILTERING, WITH INTERACTIONS. (*) DENOTES VALUES THAT WERE NOT STATISTICALLY 
SIGNIFICANT. 
 

Intercept	(Kernel:	Smooth)	 0.024	
(0.002)	

Kernel:	Medium	 -0.022	
(0.003)	

Kernel:	Sharp	 -0.087	
(0.003)	

Dose	 0.000	
(0.000)	

Slice	Thickness	 -0.004	
(0.001)	

Dose	x	Slice	Thickness	 0.000	
(0.000)	

Dose	x	Kernel:	Medium	 0.000	
(0.000)	

Dose	x	Kernel:	Sharp	 0.001	
(0.000)	

Slice	thickness	x	Kernel:	Medium	 0.000	*	
(0.002)	

Slice	thickness	x	Kernel:	Sharp	 0.005	
(0.002)	

R-squared:	 0.357	
Adj.	R-squared:	 0.355	

No.	Observations:	 5103	

 

4.4 Discussion 

Denoising using bilateral filtering, when adapted based on dose and slice thickness 

setting, greatly improved the robustness of RA-950 scoring under both wFBP and 

SAFIRE.  wFBP with bilateral filtering still demonstrated better performance (i.e. more 

acceptable parameter configurations) as well as fewer apparent interactions than SAFIRE 

with bilateral filtering and thus, we argue that it is the better choice for robust, quantitative 

emphysema scoring.  While other iterative algorithms might yield highly robust noise 
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reduction and accurate quantitative imaging, it is not clear what the SAFIRE algorithm at 

the settings utilized is optimizing, yielding unpredictable quantitative results under some 

conditions. 

One possible explanation of why bilateral filtering was more effective in wFBP than 

SAFIRE is the increase in noise structure that seems to occur with SAFIRE.  In the 25% 

and 10% dose cases show in Figure 4-9, there appears to be a dramatic increase in 

“streaking” across the image, while the equivalent conditions in Figure 4-2 seem to only 

increase in “graininess.”  It is possible that because bilateral filtering is an edge-preserving 

denoising approach that these streaks were left untouched since they seem to indicate a 

true image feature rather than just noise.  Although we would still recommend wFBP be 

used for RA-950 scoring and not SAFIRE, a more tailored denoising algorithm could 

improve the removal of such structured noise. 

The appendix at the end of the chapter illustrates that highly similar results are observed 

for PERC15.  As in Chapter 3, there were slightly more parameter configurations that 

resulted in unacceptable levels of change for both SAFIRE and wFBP with bilateral 

filtering.  While this does not directly contradict studies that have found that PERC15 may 

be a slightly more repeatable measure of emphysema for the purposes of longitudinal 

patient evaluation [23], [24], it does suggest that PERC15 may more susceptible to 

reconstruction and acquisition parameters, at least in a lung screening population.  In 

particular, SAFIRE reconstructions appear to have unclear effects on the image data, 

which causes PERC15 scoring changes that appear largely unpredictable.  As stated in 
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Chapter 3 however, these results are dependent on what is defined as “acceptable” levels 

of change.   

Use of the sharp kernel or sharp iterative settings should still likely be excluded for the 

purposes of quantitative emphysema scoring. While bilateral filtering appears to 

dramatically improve the robustness of scores in the sharp reconstructions, in all patients, 

especially those with high-emphysema, this still appears to be the parameter and setting 

that results in the most complex and difficult to predict behavior of RA-950 and PERC15 

scoring.  This is supported by the regression model analysis, in which the sharp kernel, 

in all cases, had the largest coefficient.  Thus, it plays the largest “role” in causing change 

in RA-950 score and as a result, should be avoided if clinical emphysema scoring were 

to be performed. 

One interesting effect observed in the subpopulation analysis was a systematic decrease 

in RA-950 scores (and corresponding increase in PERC15) among subjects with high 

baseline RA-950 scores (i.e. higher emphysema), which could reflect a very real concern 

about any denoising approach: the over-smoothing of actual regions of emphysema, 

which could result in under-scoring or under-diagnosis.   While this experiment was not 

designed to determine exactly why this was the case, qualitative review of several high-

emphysema cases, as illustrated in Figure 4-12 indicate that there does appear to be 

some loss at the borders of emphysematous regions, however it also appears that 

bilateral filtering helps smooth out some extraneous voxels from the reference condition 

mask (i.e. noise “speckle”), which would result in the observed shift down in RA-950 

scores (i.e. a net improvement in the accuracy of scores). In either case, improvements 
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to the denoising method could reduce this effect by considering image-based features for 

tuning of the filter.  For example, instead of a heuristic tuning of bilateral filter based on 

knowledge of dose reduction and slice thickness change, one could utilize the standard 

deviation of an ROI placed in the trachea or lung parenchyma of a subject.  This would 

prevent over-smoothing of a case that was already “acceptable” for emphysema scoring.  

Possible future work discussed in the next chapter explores several pathways forward to 

both determine the impact of the denoising approach on density mask features as well as 

possible means for improving the patient-specific and parameter-specific tuning of 

denoising strength. 

A potential concern with the utilization of denoising is the destruction of underlying 

disease information.  For example, in the case of emphysema scoring this would 

potentially reflect the loss of emphysematous voxels at the boundary of emphysema 

pockets, or the elimination of smaller pockets of emphysema due to the blurring or 

averaging operations typically incorporated into the filter.  As Figure 4-12 illustrates, this 

loss of mask borders and elimination of small emphysema pockets can occur with the 

bilateral filter, however it only appears to result in unacceptable amounts of change in 

emphysema score for challenging conditions (e.g., high noise), such as <0.2mGy CTDIvol 

with a sharp kernel. 

Were the loss of the density mask at borders and small regions a substantial issue, it 

would be reflected in our results due to the experimental design utilized in this work.  By 

comparing scores computed on an unfiltered wFBP reconstruction with scores computed 

on the filtered reconstructions, substantial loss of the emphysema mask due to the 
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bilateral filter would be reflected as an “unacceptable” decrease in score (i.e. a decrease 

of greater than 5%).  While this was observed to a slightly greater extent in subjects with 

>0.05 RA-950 score at reference (Figure 4-7, in particular the low-dose, sharp kernel 

reconstructions), it can be seen that the bilateral filter still improves the robustness of the 

emphysema scoring relative to the scoring performed on the unfiltered image datasets. 

The extent to which the bilateral filter removes emphysema borders and small pockets 

could be rigorously evaluated in a future experiment by conducting a simulation study 

utilizing a phantom such as the XCAT phantom [122] and simulating a series of 

emphysema pockets of varying sizes.  The phantom could then be reconstructed utilizing 

the same parameters in this experiment and scored.  Since the amount of emphysema is 

simulated and known exactly, the loss due to the filtering process could be determined 

exactly.  Results could then be utilized to further improve the bilateral filter tuning scheme 

or set limits on when a scan is too compromised with noise for denoising to be effective. 

Finally, it is worth noting that bilateral filtering, while effective for emphysema scoring, 

may not be the ideal filter selection for other quantitative tasks.  Bilateral filtering is 

fundamentally a blurring/averaging operation (with some limited measure of edge-

preservation), and it is unlikely that bilateral filtering will preserve more complex 

information such as texture or fine structures.  Since emphysema tends to occur in 

pockets, and emphysema scoring is based on density measurements, this averaging 

process is effective and reasonable for the task evaluated here, however other denoising 

schemes (such as that utilized in [123] to classify voxels into lung parenchymal 

abnormalities such as ground glass, lung fibrosis, etc.) would likely be more effective for 
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different clinical tasks.  Future work should compare the application and effects of 

different denoising approaches for a given diagnostic task, and across different diagnostic 

tasks. 

A larger discussion of limitations of this work and future work will be discussed in detail in 

Chapter 5, since much of it applies to both Chapter 3 and Chapter 4. 

 

FIGURE 4-12 SAMPLE CORONAL IMAGES OF RA-950 MASK IN A HIGH-BASELINE 
EMPHYSEMA PATIENT. 100% DOSE IS SHOWN.  TOP ROW SHOWS THE REFERENCE 
RECONSTRUCTION AND CORRESPONDING RA-950 MASK.  BOTTOM ROW SHOWS THREE 
EXAMPLES WITH BILATERAL FILTERING: (A) REFERENCE RECONSTRUCTION (100% DOSE, 
1.0MM SLICE THICKNESS, SMOOTH RECONSTRUCTION KERNEL) (B) 100% DOSE, 2.0MM 
SLICE THICKNESS, SMOOTH KERNEL, AND (C) 25% DOSE, 0.6MM SLICE THICKNESS, SHARP 
KERNEL (NOT USABLE).  
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4.5 Conclusions 

Denoising, in particular with bilateral filtering, presents an extremely viable pathway 

forward for the clinical use of quantitative emphysema scoring.  Specifically, it appears to 

dramatically increase the robustness of RA-950 and PERC15 scores to commonly varied 

imaging parameters, namely acquisition dose, slice thickness, and sharpness setting 

(either kernel or iterative setting).  While the results here demonstrated improvements for 

both wFBP and SAFIRE, results support the argument that wFBP is the better choice for 

clinical, robust emphysema scoring since more acceptable parameter configurations 

were found with wFBP.  wFBP is also a more “accessible” reconstruction configuration 

since, at present, all scanners still provide a version of filtered-backprojection 

reconstruction.  This does not guarantee that there are not proprietary, non-linear, “black-

box” pre- or post-processing methods applied to either the projection or raw data with 

wFBP, however wFBP is a fundamentally more well-understood and widely available 

algorithm than the currently heterogeneous field of iterative reconstruction algorithms, 

with the additional benefit that the underlying reconstruction method is linear and 

preserves photon counting physics and statistics (e.g. Poisson process, mean values, 

etc.).  In the long run, this may not prove to be necessary for reliable quantitative imaging, 

however it at least gives at present some intuition around how noise magnitude, noise 

power spectrum shape, and spatial resolution depend on acquisition and reconstruction 

parameters.  

All of the results presented strongly suggest that some amount of denoising can readily 

be applied to image data to improve emphysema score robustness, however our results 

also suggest that some care must be taken with applying denoising to patients with higher 
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emphysema, if an accurate score is required. PERC15 and RA-950 displayed similar 

behavior within the parameter configurations explored for wFBP with bilateral filtering.  

However, RA-950 proved to be slightly more robust under the tests utilized here, and 

provides the added benefit of localizing pockets of emphysema for visual review or further 

quantitative analysis (such as number of bullae/pockets, evaluations of the size of 

pockets, filtering of pockets by size, etc.). Since both are straightforward to compute and 

have similar requirements (i.e. a lung segmentation), and are equally robust under wFBP 

with bilateral filtering4, we would recommend that both be used in a complimentary 

manner. 

Finally, improvements to the underlying denoising approach should be investigated.  In 

this study, knowledge of the reference versus test parameter configuration was utilized to 

adapt the strength of the denoising.  This information is not typically available, and 

furthermore does not account for factors such as patient size or reconstruction 

kernel/sharpness.  A reasonable next step in the investigation of denoising with bilateral 

filtering might be to adjust the strength of denoising based on an ROI measurement inside 

either the lung parenchyma or trachea, making the approach more patient- and scan-

specific and could make the denoising more effective. 

                                            
4 With the exception of the 10% dose configurations.  This however, is far below what 
would be considered “acceptable” for radiologist review and would likely be sent back 
for a rescan. 
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Appendix: PERC15 Results 

WFBP with bilateral filtering 

 

FIGURE 4-13 ACCEPTABLE PARAMETER CONFIGURATIONS FOR PERC15, SCORED ON 
WFBP WITH BILATERAL FILTERING RECONSTRUCTIONS. NEARLY ALL 95% CONFIDENCE 
INTERVALS FALL WITHIN THE ESTABLISH ±10HU THRESHOLD.  AS SEEN WITH RA-950, 
THERE IS SOME DEVIATION IN THE “SMOOTHEST” CASES LIKELY CAUSED BY THE DENOISING 
ALGORITHM. 

 

FIGURE 4-14 PLOT OF PERC15 CHANGE IN FULL POPULATION, RECONSTRUCTED WITH 
WFBP AND BILATERAL FILTERING, AS A FUNCTION OF ACQUISITION AND RECONSTRUCTION 
PARAMETER.  ORIGINAL WFBP RESULTS (WITHOUT BILATERAL FILTERING) ARE OVERLAID 
WITH REDUCED OPACITY.  GRAY, DASHED LINES SHOW ±10HU THRESHOLD OF ACCEPTABLE 
CHANGE.  WITH BILATERAL FILTERING, ROBUSTNESS OF PERC15 INCREASES 
DRAMATICALLY. 
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FIGURE 4-15 SUBGROUP PLOTS OF PERC15 CHANGE WITH WFBP+BILATERAL FILTERING.  
ORIGINAL POOLED RESULTS ARE OVERLAID WITH REDUCED OPACITY. 
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SAFIRE with bilateral filtering 

 

 

FIGURE 4-16 ACCEPTABLE PARAMETER CONFIGURATIONS FOR PERC15, SCORED ON 
SAFIRE WITH BILATERAL FILTERING RECONSTRUCTIONS. THE 10% DOSE 
CONFIGURATIONS TYPICALLY RESULTED IN UNACCEPTABLE SCORES.  (*) INDICATES ONE 
MISSING IMAGE DATASET (I.E. SCORES COMPUTED OVER 141 SUBJECTS RATHER THAN 
142). 
 

 

FIGURE 4-17 PLOT OF PERC15 CHANGE IN FULL POPULATION, RECONSTRUCTED WITH 
SAFIRE AND BILATERAL FILTERING, AS A FUNCTION OF ACQUISITION AND 
RECONSTRUCTION PARAMETER.  ORIGINAL WFBP RESULTS (WITHOUT BILATERAL 
FILTERING) ARE OVERLAID WITH REDUCED OPACITY.  GRAY, DASHED LINES SHOW ±10HU 
THRESHOLD OF ACCEPTABLE CHANGE.  WITH BILATERAL FILTERING, ROBUSTNESS OF 
PERC15 INCREASES DRAMATICALLY, HOWEVER IS SUBSTANTIALLY WORSE THAN RA-950 
AS WELL AS ALL WFBP WITH BILATERAL FILTERING RESULTS. 
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FIGURE 4-18 SUBGROUP PLOTS OF PERC15 CHANGE WITH SAFIRE+BILATERAL 
FILTERING.  ORIGINAL POOLED RESULTS ARE OVERLAID WITH REDUCED OPACITY.  
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Chapter 5 – Conclusions 

5.1 Review 

At the beginning of this dissertation, we discussed the concept that an ideal quantitative 

imaging test would only reflect a patient’s underlying disease state or anatomy, and would 

not be impacted by factors such as scanner manufacturer, acquisition protocol, or 

reconstruction.  In practice however, each of these has some effect on the final 

quantitative score, which creates significant concerns when trying to implement clinical 

quantitative imaging tests that would be used to make diagnoses or guide treatment for 

a patient.   

Previous studies have explored the fact that parameter changes cause variation in 

quantitative imaging, although most have only explored variation in one parameter, or in 

limited cohorts of patients.  To overcome this, much of the initial efforts of this dissertation 

were infrastructure development to accelerate quantitative imaging studies, namely 

automating the dataset creation process and quantitative imaging tests.  Through the 

development of free, open-source, CT reconstruction software, and a customized GPU 

pipeline framework, quantitative imaging studies that previously required upwards of six 

months to complete can now be carried out in less than one week.  This enables much 

more thorough explorations in terms of the number of parameters, parameter 

configurations tested, and cohort size.  Furthermore, because of simplicity of generating 

these datasets and the automated processing of quantitative imaging data, more 

quantitative imaging applications can be tested, such as computer automated 

detection/diagnosis (CAD), automated segmentation systems, and more recently 

developed deep learning tests.   
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Using the developed infrastructure, in Chapter 3 it was shown that while emphysema 

scoring with both RA-950 and PERC15 are susceptible to changes in dose, slice 

thickness, and kernel selection, there do exist small “regions” of parameter space that 

can give reasonably similar results to a reference reconstruction.  This is shown for wFBP 

in Figure 3-3, Figure 3-4, Figure 3-6, and Figure 3-7; SAFIRE results are given in Figure 

3-9 and Figure 3-10, as well as the appendix of Chapter 3.  In practice, this could allow a 

researcher or clinician to evaluate (using a look-up table of acceptable parameter 

configurations) whether or not a scan can be utilized for quantitative emphysema scoring, 

and the likely difference in score they would expect to see as a result.  For this to be 

utilized clinically however, maps such as Figure 3-3 (i.e. the heat map of acceptable and 

unacceptable parameter configurations) would need be generated for different scanners, 

manufacturers, reconstruction algorithms, and subpopulations (e.g. differing amounts of 

emphysema, which is difficult to know in advance in many cases) etc.  As was shown in 

Figure 3-9 and Figure 3-10, while similar emphysema scores can be found using the 

SAFIRE iterative reconstruction algorithm, there were certain configurations for which no 

clear pattern emerged regarding which configurations would yield reliable scores, namely 

the I50 sharpness setting.  Although I26 and I44 SAFIRE settings behaved more similarly 

to wFBP than I50, emphysema score changes at 25% and 10% still were worse than the 

smooth and medium settings for wFBP.  Overall, while there is reasonable robustness of 

emphysema scoring to parameter configuration when wFBP is utilized, identifying these 

regions of robustness and translating this approach directly into the clinic would prove to 

be challenging for emphysema scoring across all scanners, manufacturers, and 

reconstruction algorithms. 
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Since an exhaustive search of all possible parameters, hardware, and software is unlikely, 

post-processing of the image data may be the most viable pathway forward.  In Chapter 

4 it was shown that denoising via the use of a bilateral filter removed nearly all of the 

effects of slice thickness, reconstruction kernel, and acquisition dose on quantitative 

emphysema scores, making RA-950 and PERC15 score values across a wide range of 

parameter configurations almost equal to their values at reference.  Figure 4-5 and Figure 

4-6 illustrate acceptable parameter configurations and trends for wFBP with denoising, 

and Table 4-2 and Table 4-3 present the regression results establishing that nearly all of 

the impact of parameter selection has on quantitative RA-950 scoring has been removed.   

While denoising with bilateral filtering did work better in wFBP (e.g. comparing and 

contrasting Figure 4-5 with Figure 4-8), it had a similar effect with SAFIRE iterative 

reconstructions lending some optimism that the approach could work for other 

reconstruction algorithms.  We did find that some care must be taken in patients with 

greater amounts of emphysema, however even in these patients, more parameter 

configurations proved to be acceptable with denoising than without.  Based on these 

results, as well as other recent explorations into “image normalization” schemes for 

emphysema scoring [49], denoising represents one of the most promising pathways to 

achieving reliable, robust, and widespread clinical quantitative imaging. 

5.2 Limitations and Future Work 

Cohort and lung screening protocol 

The cohort for this study was 142 subjects scanned at UCLA using the CT lung screening 

protocol.  A lung screening population, smokers with a smoking history of 30+ pack years, 
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is likely to have emphysema, however most subjects in this study had minimal amounts 

of emphysema (< 0.05 RA-950 score at reference, N=125).  Thus, all of the results and 

conclusions presented reflect a non-emphysematous population, however the subgroup 

analyses presented show that the underlying amount of emphysema does impact these 

results.  To better understand the effects of amount of emphysema, other experiments 

should be conducted that capture a larger subject population with mild, moderate, and 

severe levels of emphysema and conduct similar analyses as those presented above.  

Furthermore, different emphysema subtypes (e.g. centrilobular versus paraseptal 

emphysema) may be susceptible in different ways to parameter configurations and 

denoising and should potentially be considered in future work.  

While the lung screening protocol agrees well with the guidelines established by the NLST 

[40], [41] it is markedly lower dose than a diagnostic or quantitative CT [42].  Work has 

been done establishing that these low-dose protocols typically produce scores similar to 

their full-dose counterparts [33] suggesting that as long as the reference condition is 

similar to what would typically be utilized for quantitative imaging (in terms reconstruction 

algorithm, kernel, and slice thickness) this represents scores that would be similar to a 

true, full-dose quantitative scan (such as that recommended for SPIROMICS).  Our 

selection of wFBP, smooth kernel, and 1.0mm slice thickness is similar to the quantitative 

protocols established at our institution (Siemens wFBP, B31f reconstruction kernel, 

1.0mm slice thickness).  Future work would ideally begin with a clinical quantitative CT 

protocol as reference and investigate the same sorts of parameter configurations and 

changes in quantitative emphysema scoring. 
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Selection of the reference protocol 

Since no specific “truth” value is known for RA-950 and PERC15 scores for the subjects 

evaluated, the figure of merit was change in score relative to a reference parameter 

configuration.  Thus, the selection of the reference protocol is critical to the overall work.  

As seen in Figure 4-12, while the reference protocol is a reasonable match for the clinical 

quantitative imaging protocol, it will occasionally contain voxels typically regarded as 

extraneous (i.e. “noise speckle”) which bilateral filtering removed and thus “lowered” the 

score.  However, the bilateral filter may have simply improved the quality of the reference 

result.  It is possible that there are other justifiable, reasonable selections for the reference 

configuration.  As a result, researchers should be conscious of the impacts that the 

reference selection can have on the results, clearly state the selected reference, and 

explain why it was selected. 

Scanner and reconstruction algorithms 

All of the data in this work originated from the Siemens Definition AS 64 located in Medical 

Plaza 200 at UCLA.  All of this data was reconstructed utilizing either FreeCT_wFBP (not 

on the scanner) or Siemens SAFIRE iterative reconstruction (on the scanner).  The 

resulting dataset is extensive, however this only captures a small portion of all possible 

reconstructions.  Ideally, future work would capture more scanner models and more 

reconstruction algorithms,  

Exploring other scanners and reconstruction algorithms is challenging for two reasons: 

raw data access and a lack of on-board (i.e. on the scanner) automation.  A key 
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development enabling this work was the use of the pipeline and the pipeline relies on 

access to clinical raw projection data, as well as full automation of the reconstruction 

process.  Work with image data from non-pipeline reconstructions is possible (as was 

done with the SAFIRE iterative reconstructions for this project), however substantially 

slows down the investigation process, and limits the number of configurations that can be 

explored.   

Raw data access is often restricted, and raw data cannot generally be removed from most 

scanners.  If it can be removed, there is the further challenge of extracting projections 

and necessary metadata from the file, which is often encoded in various schemes to 

reduce file sizes.  Wider investigations covering multiple scanners or reconstruction 

schemes would be possible if manufacturers were to: (1) allow users to export raw data 

and (2) adopt the recently proposed, DICOM-based projection data format for more 

universal access [57].  It is unlikely that manufacturers will pursue this route in the near 

future, so in addition to FreeCT_wFBP, FreeCT_ICD, and the pipeline, we hope that 

future development from the research community will help enable broader access to both 

the raw projection data as well as clinically-similar reconstruction algorithms for use in 

research. 

Denoising adjustment 

Some measure of “adaptation” in the bilateral filter was achieved through the use of a 

heuristic rule to tune the range filter standard deviation.  This rule however was developed 

based on knowledge of the relative parameter changes between configurations, which is 

not always known, and additionally fails to account for other factors that affect image 
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noise magnitude and structure, such as kernel sharpness, or patient size.  An improved 

scheme would consider image-based features to decide the proper denoising strength, 

such as standard deviation of a region of interest placed in the trachea.  Future work 

should test several such schemes and see if it improves results.  This will additionally 

make the denoising scheme more readily applicable to other datasets, since no 

knowledge beyond what is available in the image would be required for tuning.   

Finally, while one of the strengths of the bilateral filter is its simplicity, it is also possible 

that different denoising schemes may be more effective, in particular with patients who 

have substantial emphysema.  Future work should investigate alternative denoising 

schemes alongside, or coupled with bilateral filtering.  Some good candidate approaches 

for alternative denoising algorithms could be BM3D denoising [124] or non-local means 

denoising [125], which have proven immensely effective in digital photography 

applications.  We would also recommend that in addition to advanced denoising methods, 

more simplistic denoising approaches also be tested, such as basic median filtering or 

Gaussian filtering; these simple filtering approaches may help researchers understand 

what filtering approaches and filter features are most important to reliable quantitative 

results (e.g. preservation of mean values, filter linearity, and/or edge-preserving 

characteristics, etc.).  In particular, denoising with bilateral filtering might make an 

excellent complement to the image normalization approach proposed in [49]. 

Defining “acceptable” variation 

This work centers heavily on the concept of an “acceptable” amount of change that can 

be incurred in a quantitative imaging metric.  Thus, the definition of what is or is not 
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acceptable is central to any of the results obtained.  For this dissertation, “acceptable” 

amount of change in emphysema scores were determined by considering the limitations 

of the emphysema scoring approach as well as the clinical implications of the potential 

score changes.  In this work, we identified a change of ≤0.05 in RA-950 and a change of 

≤10HU in PERC15 as acceptable.   

Whenever defining what an acceptable tolerance for error would be, it is important to 

consider the diagnostic task.  For emphysema scoring, there are two reasonably obvious 

tasks: prediction of the “correct” amount of emphysema, and evaluation of change over 

time.  Accurate estimation of disease amount and tracking of disease change over time 

would likely require different levels of accuracy to be effective.  In the context of lung 

cancer screening where scanning is conducted yearly or more frequently, it would be 

ideal if both tracking and accurate estimation could be performed and highly valuable to 

patient care since it could improve early diagnosis of emphysema in a population in which 

emphysema is likely to occur.  However, while lung cancer screening presents an 

excellent opportunity for the tracking of emphysema score, it is unlikely that it is accurate 

enough to perform tracking beyond relatively crude designations (e.g. similar to the GOLD 

designations of mild, moderate, severe). 

Gietema et al. [126] determined in a cohort of 157 lung screening subjects that RA-950 

scoring could potentially assess a 1.1% change in patient score with 95% accuracy when 

perfect protocol implementation is utilized: patients are scanned on the same scanner 

using the exact same parameter configurations.  While this is an extremely promising 

result, it is unlikely that such a high sensitivity is required for effective clinical quantitative 
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imaging; it is also unlikely that a subject would be scanned often enough to observe such 

small changes (in [126], patients were scanned within 3 months).  A larger threshold may 

be acceptable for establishing a diagnosis, i.e. baseline amount of emphysema for a 

patient, and a potential prognosis.  The patient could then be called back to the clinic for 

a full-dose quantitative CT scan if detailed tracking would be needed.  Thus, for this study 

in which the cohort was derived from a population scanned with the lung cancer screening 

protocol, a wider threshold of acceptability was utilized. 

As far as establishing a diagnosis is concerned, current methods for diagnosis and 

prognosis of COPD typically group patients into categories such as mild, moderate, 

severe, and very severe.  While these groupings arise primarily from evaluation methods 

such as FEV1, the BODE index, or SGRQ (Saint George’s Respiratory Questionnaire), 

there is evidence that patients in the “very severe” category typically display quantitative 

RA-950 scores >=30% [127], with other grouping falling roughly linearly below that (i.e. 

mild: 0-10%, moderate: 10-20%, and severe: 20-30%).  Thus, we theorize that a change 

of >5% score would be likely to affect the prognosis and treatment course of a patient, 

and therefore we set the second threshold of “acceptable” change in score at 5%. 

Finally, no such correlations between prognostic functional tests and the other 

quantitative metrics (i.e. PERC15) have been established in the same manner as for RA-

950 described above.  The PERC15 threshold of acceptability was selected to be ±10HU 

based on the work of [22].  In this work, a COPD subgroup (subjects with GOLD stage III 

and IV) had a mean PERC15 score of -985HU, while the control subgroup (GOLD stage 

0 and I) had a mean PERC15 score of -963. Stratifying between the two values in 
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increments of 10HU would result in a reasonable, albeit crude, correspondence between 

PERC15 score and GOLD status.   

With denoising however, substantially more accurate results may be possible. Coupled 

with an image normalization procedure (such as that discussed in the Chapter 4 

introduction), tighter tolerances may be possible, and longitudinal tracking may be 

substantially more viable with both clinical quantitative imaging or lung screening scans. 

5.3 Implications for Clinical Quantitative Emphysema Scoring 

WFBP versus SAFIRE 

One of the primary goals of this dissertation is to determine implementable, achievable 

pathways for clinical usage of quantitative emphysema scoring.  From the results 

described above, wFBP should be utilized for RA-950 and PERC15 scoring instead of 

SAFIRE.  This is due to the fact that parameter configurations using wFBP as the 

reconstruction method were more likely than SAFIRE reconstructions to produce RA-950 

results close to the reference score.  Furthermore, SAFIRE presented non-trivial 

interactions between dose, slice thickness, and sharpness setting (i.e. the iterative 

equivalent of kernel) that make it difficult to predict whether or not a given parameter 

configurations would predictably produce RA-950 scores close to reference.  These 

SAFIRE behaviors are further complicated when considering different underlying levels 

of patient emphysema, which appear to cause conflicting, unpredictable behavior across 

the different parameter configurations.  wFBP on the other hand demonstrated 

predictable behavior with noisier reconstruction resulting in higher RA-950 scores.  While 

interactions were statistically significant, none were clinically significant, meaning that 
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parameters can be adjusted independently without the risk of complex, unexpected 

behaviors in RA-905 scoring. 

It is important to emphasize that these results do not mean that iterative reconstruction 

approaches cannot be used for quantitative emphysema scoring, but rather highlight that 

with the current state of iterative algorithms, extreme caution should be exercised when 

attempting quantitative imaging on iterative reconstructions.  The term “iterative 

reconstruction” is presently being applied to a wide variety of different algorithms that all 

approach the problem of denoising, artifact reduction, and edge-preservation differently.  

SAFIRE is a hybrid algorithm, beginning with an FBP reconstruction, followed by an 

iterative denoising step and some level of raw-data domain verification of the denoising 

and artifact reduction. Other approaches often also referred to as “iterative 

reconstruction”, such as GE’s ASiR, and Toshiba’s AIDR 3D, are at their core an FBP 

reconstruction that has been denoised in the image domain using an iterative post-

processing technique.  Finally, a third class of “iterative” algorithms implement a fully 

“model-based” approach that is highly computationally intensive however attempts a 

detailed modeling of the CT system properties and iterative updates the reconstructed 

volume through careful comparison with the raw data.  Examples of this approach include 

Toshiba’s FIRST algorithm and GE’s Veo algorithm, as well as FreeCT_ICD discussed in 

Chapter 2. 

In the current paradigm of iterative reconstruction methods, it will be difficult or impossible 

to ever reach a strong conclusion regarding acceptable and unacceptable configurations, 

or whether or not iterative reconstruction as a whole is beneficial to or hinders quantitative 



 176 

imaging.  With some clarification from the manufacturers as to the underlying approach, 

it is conceivable that a class of iterative algorithms (e.g. model-based iterative algorithm 

with an edge-preserving penalty function) could be found that works exceedingly well for 

quantitative imaging, achieving denoising and artifact reduction while preserving 

underlying physical properties of the data thought to be important for accurate quantitative 

imaging.  As iterative reconstruction matures, more research will hopefully emerge 

helping to characterize each algorithm and its impacts on quantitative imaging.  Prior to 

that point however, wFBP algorithms represents a more reliable, more predictable, 

algorithm for use with quantitative imaging. 

Acquisition 

The doses explored represent lung screening doses and below.  Sample reconstructions 

from all doses investigated are shown in Figure 5-1 with wFBP reconstruction and Figure 

5-2 with SAFIRE reconstruction.  Lung screening is already a fairly low-dose protocol 

(~2mGy CTDIvol) when compared to routine diagnostic exams (~10-15mGy CTDIvol).  

The 10% dose configuration was investigated in an attempt to find a lower bound of 

possible acceptable configurations.  While our results suggest that this dose level may 

not be entirely out of the question with denoising, the overall image quality would not be 

acceptable for radiologist review.  25% dose levels and above however could be viable 

in patients for the purposes of quantitative imaging, assuming that some type of denoising 

is applied, and kernel/sharpness setting selection is not sharp or over-enhancing.  
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FIGURE 5-1 EXAMPLES OF DIFFERENT DOSE LEVELS INVESTIGATED WITH WFBP.  IMAGES 
ARE RECONSTRUCTED WITH SMOOTH KERNEL AND 1.0MM SLICE THICKNESS. NO DENOISING 
IS APPLIED.  
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FIGURE 5-2 EXAMPLES OF DIFFERENT DOSE LEVELS INVESTIGATED WITH SAFIRE.  
IMAGES ARE RECONSTRUCTED WITH SMOOTH KERNEL AND 1.0MM SLICE THICKNESS. NO 
DENOISING IS APPLIED.  
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Reconstruction Parameters 

As previous studies have found, and this work supports: sharp or over-enhancing kernels 

should not be used when performing quantitative emphysema scoring.  In all cases, 

including with both SAFIRE and wFBP, these kernels produced results that fell outside of 

what would be considered “acceptable” in any routine clinical practice.  When coupled 

with denoising, these results improved, however it is easy to identify patients and settings 

for whom a sharp kernel would produce aberrant results.  Anyone attempting to perform 

quantitative imaging using a sharp kernel reconstruction should use extreme caution 

when interpreting the results. 

Based on our results, thicker slices resulted in more parameter configurations that yielded 

acceptable results.  As a result, we would recommend reconstructing 1.0mm slices and 

above for emphysema scoring.  We did not directly investigate slice thicknesses above 

2.0mm, however based on results of other studies [49] 3.0mm slice thicknesses should 

be perfectly acceptable.  We would not recommend scoring emphysema directly on 

0.6mm slices, due to the increased noise observed.  With thin slice reconstructions, one 

can often simply average slices together to achieve a pseudo-thicker-slice reconstruction 

and it is on this reconstruction that we would attempt emphysema scoring.  While we did 

not investigate this approach directly, other studies have investigated it and found that it 

behaves as expected [49].  

Denoising 

In our study, denoising dramatically improved the robustness of quantitative emphysema 

scoring and removed much of the effects of the parameter tested.  While quantifying 
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acceptable parameters is important for the understanding of how parameter selection 

impacts quantitative emphysema scoring, it appears that denoising is the best pathway 

forward to bring quantitative imaging to the clinic.  While further testing needs to be done 

to ensure performance across different levels and types of emphysema, the results of this 

study show that the potential application of denoising to any lung screening exam could 

make it usable for quantitative emphysema scoring.  With slightly more validation, and an 

improved tuning-scheme, we would recommend that any study utilizing quantitative 

emphysema scoring as an end-point employ some form of denoising. 

5.4 Final Thoughts 

In this work, it has been shown that denoising has the potential to turn a non-ideal 

quantitative imaging test into something much closer to the ideal test presented in 

Chapter 1 (Figure 1-4).  While more work is needed, these results highlight that there is 

a very clear potential path to extend quantitative emphysema scoring into routine clinical 

practice.  Perhaps more importantly, the work presented in this dissertation lays the 

groundwork for many possible further studies that will hopefully result in more effective 

and accurate quantitative imaging.  In particular, the types of tests and analyses 

presented here can be conducted much faster with the infrastructure developments of 

Chapter 2. Additionally, improved tuning schemes for the bilateral filter as well as the 

exploration of other denoising approaches would be straightforward and valuable 

extensions of this work.  Finally, we hope that the free, open-source software tools 

provided will help provide a solid foundation for the future development of new 

reconstruction algorithms, possibly even those built with quantitative imaging in mind.  
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This work has concentrated on two attenuation-based quantitative measures of 

emphysema (RA-950 and PERC15), however other quantitative approaches are currently 

under investigation such as parametric response mapping (PRM) of the lung tissues [27], 

texture features [128], or deep learning-based schemes [129].  Broadly, we see two clear 

extensions of this work for other quantitative imaging tests.  First is the potential for 

denoising to improve the robustness of quantitative imaging and quantitative imaging 

tasks.  We believe that tasks that rely mostly on attenuation-based measurements will 

benefit from denoising; this could be densitometry (nodules, bone, etc.), the attenuation-

based version of PRM, or automated segmentation algorithms.  Tasks that may benefit 

from denoising are possibly volumetry or measures of “shape,” however some additional 

care must be taken regarding the borders of the object being measured, since many 

denoising approaches fundamentally rely on blurring/averaging operations.  Finally, we 

do not expect most “texture” image features (such as gray level co-occurrence matrix, 

Haralick features [130], etc.) to benefit from denoising, since denoising often 

fundamentally changes the expression of many features that impact image texture: noise 

magnitude, noise structure, edges, etc.  Thus the denoising process could fundamentally 

damage potentially valuable textures, or create new textures that reflect the denoising 

process and not the underlying subject biology. 

The second broad application of this work, is the methodology applied to test robustness 

of a given quantitative imaging approach.  The tools and techniques developed here are 

readily transferred to other tasks through the development of custom analysis modules, 

and generation of custom, suitable datasets for the given task.  If any quantitative task is 

to gain widespread clinical adoption, we foresee an evaluation similar to that provided 
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here for RA-950 and PERC15, being necessary to build confidence in the approach. 

Because we have provided nearly all of our tools as free and open-source software, we 

hope that others begin testing their quantitative imaging techniques in a similar manner.  
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