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A B S T R A C T
Background

Although previous data indicate that the overall incidence of human leptospirosis in the
Peruvian Amazon is similar in urban and rural sites, severe leptospirosis has been observed only
in the urban context. As a potential explanation for this epidemiological observation, we tested
the hypothesis that concentrations of more virulent Leptospira would be higher in urban than
in rural environmental surface waters.

Methods and Findings

A quantitative real-time PCR assay was used to compare levels of Leptospira in urban and
rural environmental surface waters in sites in the Peruvian Amazon region of Iquitos. Molecular
taxonomic analysis of a 1,200-bp segment of the leptospiral 16S ribosomal RNA gene was used
to identify Leptospira to the species level. Pathogenic Leptospira species were found only in
urban slum water sources (Fisher’s exact test; p¼0.013). The concentration of pathogen-related
Leptospira was higher in urban than rural water sources (;103 leptospires/ml versus 0.5 3 102

leptospires/ml; F ¼ 8.406, p , 0.05). Identical 16S rRNA gene sequences from Leptospira
interrogans serovar Icterohaemorrhagiae were found in urban slum market area gutter water
and in human isolates, suggesting a specific mode of transmission from rats to humans. In a
prospective, population-based study of patients presenting with acute febrile illness, isolation
of L. interrogans-related leptospires from humans was significantly associated with urban
acquisition (75% of urban isolates); human isolates of other leptospiral species were associated
with rural acquisition (78% of rural isolates) (chi-square analysis; p , 0.01). This distribution of
human leptospiral isolates mirrored the distribution of leptospiral 16S ribosomal gene
sequences in urban and rural water sources.

Conclusions

Our findings data support the hypothesis that urban severe leptospirosis in the Peruvian
Amazon is associated with higher concentrations of more pathogenic leptospires at sites of
exposure and transmission. This combined quantitative and molecular taxonomical risk
assessment of environmental surface waters is globally applicable for assessing risk for
leptospiral infection and severe disease in leptospirosis-endemic regions.

The Editors’ Summary of this article follows the references.
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Introduction

Leptospirosis is a globally important zoonotic disease
caused by spirochetes from the genus Leptospira. Annually,
tens of millions of human cases occur worldwide, with case
fatality rates ranging as high as 20%–25% in some regions [1].
Leptospirosis is transmitted to humans through environ-
mental surface waters contaminated by the urine of domestic
and wild mammals chronically colonized with Leptospira [2].
Leptospirosis occurs in both industrialized and developing
countries [3–5], but is particularly prevalent in tropical
countries where environmental and socioeconomic condi-
tions for its transmission are particularly favorable [6–10].
Leptospires can survive in warm, moist soil and in water for
weeks to months [11]. In tropical developing countries, poor
people typically live either under highly crowded conditions
or in rural places. Both types of environments facilitate
human exposure to the urine of Leptospira-infected mammals,
whether from livestock, companion animals, peridomestic
rodents, or wild animals. Notably, rats flourish in urban areas
of both developing and industrialized countries, providing
substantial opportunity for rodent-borne leptospires to
infect people [5,7]. Recent outbreaks worldwide among
athletes, military personnel, and civilians highlight the risk
to travelers for acquiring leptospirosis in tropical environ-
ments [12,13]. Furthermore, noted risk factors, including the
use of well or stream water, minding livestock, walking
barefoot, and the presence of rats and cats at home, have
been shown to be associated with being exposed to Leptospira
[12–15]. Transmission also appears to coincide with warm
weather and the occurrence of severe weather and flooding,
which washes soil contaminated with animal urine into water
sources of potential human use [7,16–20].

We recently demonstrated that in the region of Iquitos,
Peru, severe pulmonary leptospirosis was associated with
urban acquisition of the pathogen [9]; we observed that
approximately half of all cases of acute febrile illness
presenting to urban and rural community-based health posts
had high levels of anti-leptospiral antibodies suggestive of
acute leptospirosis. This finding was consistent with the
observation that exposure to Leptospira is common in daily life
in the tropical setting [10]. We hypothesized that concen-
trations and species of pathogenic Leptospira in environmental
surface waters would be associated with both the risk of
acquiring leptospirosis and the risk for severe disease.

In the past, a major impediment to assessing environmental
risk for leptospirosis exposure has been the difficulty of
isolating pathogenic Leptospira from surface waters, attribut-
able at least in part to the observation that non-pathogenic
(saprophytic) leptospires outgrow pathogens in culture.
Other methods of identifying Leptospira in environmental
water and soil sources, including culture and direct animal
inoculation, are time-consuming and laborious, and run the
risk of missing the bacteria altogether [21,22]. To overcome
these limitations, we used a quantitative real-time PCR assay
to determine the presence of pathogen-related Leptospira in
environmental water samples from rural and urban sites in
the Peruvian Amazon. We then used molecular taxonomical
approaches to investigate the link between the identity of
environmental leptospiral sequences and human leptospiral
isolates obtained during a prospective, population-based
study of acute febrile illness.

Methods

Description of Study Area
The city of Iquitos is a major tourist destination as well as

an important local market town and small industrial center. It
is approximately 120 meters above sea level in the Amazon
River basin near the juncture of the Ucayali and Napo Rivers
(73 8W, 3 8S) in the department of Loreto, in northeastern
Peru (http://www.wikimapia.org/#y=-3765768&x=-73265676&z
=14&l=0&m=a). It has a population of approximately
400,000 and a surrounding rural population of 474,000. The
climate is tropical: rainfall averages 3 m/y and temperatures
range from 21.8 8C to 31.6 8C; the city is surrounded by a vast
expanse of humid tropical rainforest.
Belen (Figure 1), with a population of approximately

40,000, is an urban slum area located on the shoreline of
the Itaya River; it floods annually during the rainy season
(December through May). Most of its houses are built of wood
over stilts or on floats, and are surrounded by open sewers,
gutters, rainwater collections, and river-water puddles.
Belen’s water supply comes from Iquitos, but few households
have access to piped water. Most inhabitants buy water from
the households that have access to that supply or use river
water for their daily needs. There is no closed sewage system.
Open sewers and gutters run along the housing area, draining
into the river. The market of Belen occupies approximately
25% of the district’s area; its sanitation conditions are very
poor; open garbage piles, sewers, and rainwater collection
puddles are common (Figure 1). Rats, stray cats, and dogs are
seen on a daily basis in the market.
Padrecocha (Figure 2) is a rural community near Iquitos,

located north of the city along the Nanay River, a tributary
that branches from the Amazon River 15 km downstream
from Iquitos. The population of this village is approximately
1,500. Most inhabitants live in brick houses, and their water
supply comes from wells and local streams. There is no
sewage system; most households have pit latrines. Livestock
(mostly pigs, chickens, and cattle) run freely through the
village and its streams, along with stray dogs and cats; the
inhabitants observe rats frequently.

Description of Study Sites
Water samples were collected from both locations from

February to April 2004. In Belen, samples were collected from
two areas, the Belen Market area and the housing area (Belen
Living area). From the market area, 78 water samples were
collected from puddles and gutters. From the living area, 114
water samples from puddles, gutters, pooled rainwater, and
river shoreline water were collected; these samples were all
collected in the vicinity of the shoreline of the slow-moving
river, wheremud, gutters, and water collections were available.
In rural Padrecocha, a timed water collection approach was
used to determine the persistence of leptospiral contamina-
tion of the water sources.Water sources (24 total) were selected
according to spatial distribution and sampled sequentially
over ten different time points; these sources included fresh
water wells (17), a fish farm (one), and slow-moving fresh water
streams (six), totaling 236 samples from that village.

Prospective Hospital-Based and Population-Based Study
of Human Leptospirosis in the Iquitos Region
In the context of a prospective study of leptospirosis

patients conducted at the Hospital de Apoyo and rural
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outposts (Moralillo, Varillal, and Zungarococha villages) in
and around Iquitos from 01 June 2003 to 01 March 2004, 21
leptospiral strains from 600 febrile patients (3%) screened
were isolated during the study period; the overall rate of
diagnosis of acute leptospirosis by serological criteria in these
sites was approximately 50% and did not differ between
urban and rural sites [9]. The clinical study protocol has been
described [9].

Molecular Analysis of Leptospiral Sequences from
Environmental Water Samples

Water samples were tested for the presence of leptospiral
DNA by a quantitative real-time PCR assay confirmed by
nested 16S rDNA PCR and by sequencing those products.

Water collection and DNA extraction. Samples of water (50
ml) from each site were collected in sterile polypropylene
centrifuge tubes. The samples were centrifuged at 3,000 g for
30 min at room temperature. DNA from the pellet was
extracted using the QIAamp DNA Mini Kit (Qiagen, Valencia,
California, United States) following the manufacturer’s
protocol for urine DNA extraction.

Real-time PCR. A published TaqMan assay targeting the
16S ribosomal leptospiral gene for pathogen-related Lepto-

spira [23] was performed on-site in our Iquitos laboratory
using an Opticon2 real-time PCR machine (MJ Research,
BioRad, Hercules, California, United States); the assay
protocol was modified from the published version by using
the fluorescent probe at a final concentration of 0.2 lM,
primers at a final concentration of 0.5 lM, and a 20 ll
reaction volume. Standard curves for quantification were
made using Leptospira interrogans serovar icterohemorrhagiae
strain M20. Standards were prepared as follows. Leptospires
were counted using a Petroff-Hauser (Hauser Scientific,
Hosham, Pennsylvania, United States) counting chamber
and serially diluted with sterile double-distilled H2O to make
108 to 100 leptospires/ml. Genomic DNA was subsequently
prepared using the DNeasy Tissue Kit (Qiagen). Standards
were run in triplicate to generate the standard curve. A
negative result was assigned where no amplification occurred
before 40 cycles. Controls lacking template (water only added
to reaction mix) were included to detect the presence of
contaminating DNA. In addition, those water samples
amplifying after the last reliable standard but prior to a
threshold cycle (Ct) of 40 cycles on the TaqMan real-time PCR
assay were considered suspicious for pathogen-related Lep-
tospira and reamplified with the following nested-PCR

Figure 1. The Urban Slum Environment of the Belen District of Iquitos

(A and B) Typical houses in the Belen district, built on stilts to avoid flood waters when the river rises.
(C) Typical ‘‘sanitation’’ in the Belen Market area that attracts scavenger animals such as dogs and rats.
(D) A typical view of the Belen Market area where commerce is conducted. Rats are often seen beneath tables and in gutters. Rats are so abundant in
the market areas that they are commonly seen during the day although they are primarily nocturnal.
(With kind permission of Springer Science and Business Media)
DOI: 10.1371/journal.pmed.0030308.g001
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primers: lepto16S11f (59-GGCGGCGCGTCTTAAACATGC-
39) and lepto16S1338r (59-TGTGTACAAGGTCCGGGAAC-
39). These primers were designed for this study using 16S
rDNA sequences (n ¼ 39; Table 1) retrieved from GenBank
aligned using CLUSTALW 1.83 (http://www.ebi.ac.uk/clustalw).
Primers were selected from conserved regions of the 16S
rDNA genes of pathogen-related and intermediate leptospiral
species at the 59 and 39 ends of the sequences. Briefly, 5 ll of
DNA was added to the 45 ll HotStarTaq Master Mix (Qiagen),
providing final concentrations of 0.2 lM of each primer. ‘‘No
template’’ controls were also included to detect the presence
of contaminating DNA. Amplification was conducted in a
DNA Engine PCT-200 Peltier Thermal Cycler (MJ Research).
The amplification protocol consisted of 95 8C for 16 min,
followed by 35 cycles of amplification, each cycle consisting of
94 8C for 30 s, 56 8C for 1 min, and 72 8C for 2 min.

Leptospiral 16S ribosomal RNA gene PCR amplification
and sequencing. Total genomic DNA from 35 randomly
selected water samples was amplified and cycle-sequenced.
Template (5 ll) was amplified using the primers fD1/rD1 as
described previously [13]. PCR products were purified from
1.0% agarose gels in TAE buffer using the QIAEX II gel
extraction kit (Qiagen) according to manufacturer’s direc-

tions, diluted 1:100 in sterile double-distilled H2O, subjected
to a second round of amplification using the nested primers
lepto16S11f and lepto16S1338r with the protocol described
above, and then cloned into the pCR2.1-TOPO vector
(Invitrogen, Carlsbad, California, United States). Recombi-
nant plasmids bearing the nested PCR products were then
transformed into TOP10 cells (Invitrogen) and plated on LB
agar containing 100 lg/ml ampicillin. Individual clones were
then hand-picked and grown overnight in LB broth contain-
ing 100 lg/ml ampicillin. Plasmid DNA from these clones was
purified using the QIAprep Spin Miniprep Kit (Qiagen) and
cycle sequenced. Sequencing was performed on an ABI 3100
automated sequencer (PerkinElmer, Wellesley, California,
United States) using the following forward primers: lep-
to16S11f, lepto16S505f (59-TCATTGGGCGTAAAGGGTG-39),
and lepto16S1006f (59-TCAGCTCGTGTCGTGAGATG-39)
and the reverse primer lepto16S1338r. Reaction conditions
were according to the manufacturer’s directions.

Molecular Analysis of Leptospiral Sequences from Human
Isolates
Leptospira cultures from 21 human isolates were DNA-

extracted, and the bacterial 16S rDNA fragments were PCR-

Figure 2. The Rural Village of Padrecocha, Outside of Iquitos

(A) A quebrada (stream), strongly associated with leptospirosis transmission.
(B) A typical well in close association with activities of daily living.
(C) The pond of Padrecocha (the cocha) adjacent to the river.
(D) Flooding in the village during the high river season after heavy rains.
(With kind permission of Springer Science and Business Media)
DOI: 10.1371/journal.pmed.0030308.g002
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amplified, inserted into plasmid vectors, amplified in E. coli,
and cycle sequenced using the same procedures described
above.

Phylogenetic Analysis of 16S rRNA Gene Sequences from

Water Samples and Human Isolates
Sequences were assembled using the program CAP3 (http://

pbil.univ-lyon1.fr/cap3.php) then aligned using CLUSTALW
v1.83 with default parameters. Leptospira 16S rRNA sequences
from GenBank were used as controls in the tree (Table 1).
Sequences derived from isolates and water samples were
analyzed simultaneously and with identical parameters for
the nucleotide substitution model. Missing (gaps) and
ambiguous characters were excluded from the analysis.
However, a separate data partition was included whereby
gaps were coded as binary state data; with gap characters
were coded as 1 while all others were coded as 0. This data
partition was analyzed using the restriction site model as
implemented in MrBayes (specific application to leptospiral

taxonomy [24]). A phylogenetic dendrogram was generated
using MrBayes v3.1.2 running for 3,000,000 generations. The
data were analyzed using the GTR nucleotide substitution
model with gamma-distributed rates and proportion of
invariant sites. The resulting datasets were then analyzed
using flat priors for the substitution rate parameters.

Statistical Analysis
Statistical analysis was done using the statistical software

package GraphPad Prism 4 for Macintosh (GraphPad Soft-
ware, San Diego, California, United States). Sample positivity
between locations and sources were analyzed by chi-square.
The difference in the average of the bacterial counts was
analyzed by ANOVA using Newman-Keuls multiple compar-
ison test and with the unpaired t-test using Welch correction.
The timed sampling analysis used the chi-square test. The
Fisher’s exact test was used to analyze the association of
pathogenicity (pathogen versus intermediate versus sapro-
phyte) and location.

Results

Location and Frequency of PCR Detection of Leptospira in
Surface Water Sources
In Belen, 192 water samples were collected to test for the

presence of pathogen-related leptospiral DNA. From the
market area of Belen, 53 (67.9%) of 78 water samples were
positive for leptospiral DNA. From the living area, 38 (33.3%)
samples of 114 were also positive. The difference in the rate
of positivity between the living and markets areas was
statistically significant (p , 0.0001). In Padrecocha, 60
(25.4%) of 236 samples were PCR-positive. The rate of
positivity differed among the Belen market area, the Belen
living area, and the Padrecocha sites (v2¼ 46.69, p , 0.001).

Association of Type of Water Source and the Presence of
Leptospira
In the market area of Belen, all positive samples came from

open gutters and puddles. In the living area of Belen no
difference was observed between the source of the sample
and the rate of positivity (v2¼ 1.62, p . 0.05). In Padrecocha,
of 60 positive samples, 34 (57%) were collected from streams
(six collection points on two streams) and 26 (43%) were
collected from underground sources (17 wells); significantly
more stream samples than well samples were positive (v2 ¼
37.99, p , 0.001).

Quantification of Leptospira in Environmental Water
Samples
In the market area of Belen, the bacterial count range for

the 53 positive samples was 2–8,032 leptospires/ml (mean, 954
leptospires/ml [95% confidence interval (CI), 463–1,445
leptospires/ml]). In the living area of Belen, the counts for
the 38 positive samples were 2–17,147 leptospires/ml (1,286
leptospires/ml [110–2,461 leptospires/ml]). In Padrecocha, the
counts for the 60 positive samples were 1–228 leptospires/ml
(49 leptospires/ml [35–62 leptospires/ml]). The ANOVA test
showed a statistically significant difference between the
bacterial counts of the three locations (F ¼ 8.406, p ,

0.001). In the Newman-Keuls multiple comparison test, no
significant difference in the bacterial counts between the
living and market areas of Belen was observed (p . 0.05), but

Table 1. GenBank Accession Numbers of Leptospiral 16s rRNA
Gene Sequences Used in this Study

Class of

Organism

Species Serovar Accession

Number

Pathogens L. alexanderi Manhoa3 AY631880

L. borgpetersenii Ballum AY631884

Hardjo/harjobovis U12670

Balcanica U12669

L. genomospecies 1 Sicuani AY631881

L. interrogans Icterohaemorrhagiae AY631894

Canicola X17547

L. kirschneri Cynopteri U12671

L. noguchii Fortbragg U12671

Panama AY631886

Panama Z21635

L. santarosai Shermani AY631883

Atlantae U12672

Shermani Z21649

L. weillii Celledoni AY631877

Ecochallenge AY034037

Sarmin U12673

Worsfold U12677

Celledoni Z21637

Intermediate L. fainei Hurstbridge AY631885

Hurstbridge Y19243

L. inadai Aguarana AY631891

Kaup AY631887

Lyme AY631896

Lyme Z21634

Saprophytes L. biflexa Andamana AY631893

Patoc AY631876

L. genomospecies 3 Holland AY631897

L. genomospecies 4 Hualin AY631888

L. genomospecies 5 Saopaolo AY631882

L. meyeri Ranarum AY631878

Samarang AY631892

Semaranga AF167353

Ranarum Z21648

L. wolbachii Gent AY631890

Codice AY631879

Non-Leptospira

outgroup

Leptonema illini Illini AY714984

DOI: 10.1371/journal.pmed.0030308.t001
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a significant difference was found between the bacterial
counts of these two areas and Padrecocha (p , 0.01) (Figure
3). In a subset of 15 positive samples of the living area of
Belen, the samples from open gutters and the river showed
significantly higher leptospiral counts than the samples from
puddles and underground sources (unpaired t-test with
Welch’s correction; t ¼ 2.284, p , 0.05) (Figure 4). In
Padrecocha, no statistically significant difference existed
between the bacterial counts of the positive samples from
wells and streams (unpaired t-test; t¼ 1.154, p . 0.05).

Presence of Leptospira in Sequential Samples from the
Rural Village of Padrecocha

All sampling points in Padrecocha streams were PCR-
positive at least once during the sequential sampling. In
contrast, of 17 wells sampled in Padrecocha, only nine (52.9%)
were PCR-positive at least once during repeated sampling.
None of the samples from the fish farm were positive. The
average number of positive time points for the streams was 5.7
times (57% of the sampling time points, range three to seven
times), and the average number of positive time points for the
wells was 2.9 times (29% of the sampling time points, range
two to six times). The streams were more often positive over
time than the wells (v2¼ 133.74, p , 0.001) (Figure 5).

Molecular Identification of Leptospiral Species by DNA
Sequencing of Nested 16S PCR Products

Of 21 consecutive isolates (Figure 6) from leptospirosis
patients from urban and periurban Iquitos (12 cases), and
outlying rural areas (nine cases), L. interrogans isolates were
detected almost exclusively in urban/periurban habitats (9
[82%] of 11 isolates). Leptospiral isolates from rural areas
were primarily other leptospiral species (7 [70%] of 10),
particularly L. santarosai and L. noguchii. Most cases were

caused by L. interrogans (11 [52%] of 21) and L. santarosai (5
[24%] of 21). The relatively high proportion of L. interrogans
serovars was associated with urban acquisition of the
spirochete (Fisher’s exact test; p ¼ 0.03) (Table 2).
In addition to the 21 human isolates, 35 clones of 16S

ribosomal RNA gene sequences were obtained from PCR-
positive surface water samples that were randomly selected for
sequencing (Figure 6). Of these clones, 16 were from the urban
slum of Belen and 19 from the rural village of Padrecocha.
Bayesian phylogenetic analysis demonstrated that these 16S
gene leptospiral sequences could be divided into four major
monophyletic groups: known pathogens, Leptospira considered
to be intermediately pathogenic (hereafter termed ‘‘inter-
mediates’’), known saprophytes, and a previously unreported
group (termed ‘‘clade C’’) composed only of clones from this
study (Figure 6). There was strong support (95%) for the
inclusion of this newmonophyletic group within the subgroup
of pathogen-related/intermediate leptospiral strains. Most
nodes were well supported with all but three clades receiving
strong support (.75% posterior probability).
Analysis of most (34 [97.1%] of 35) leptospiral DNA

sequences from the water samples indicated that they arose
from pathogen-related/intermediate leptospires (Figure 6).
Of the Belen clones five clustered with the pathogens, four
were identical to published sequences from L. interrogans/L.
kirschneri, and the other was most similar to L. santarosai. The
remaining clones from Belen clustered with the intermediate
strains (six sequences), clade C (four sequences), and
saprophytic strains (one sequence) (Figure 6).
All sequenced 16S clones from Padrecocha clustered with

the intermediate strains L. fainei and L. inadai (six sequences)
or a previously undescribed clade (clade C, 13 sequences). The
intermediate cluster also included two strains that had been

Figure 3. Quantification of Leptospira in Belen Versus Padrecocha

Bars indicate 95% confidence intervals. Analysis of variance, F¼8.406, p¼
0.0003. Newman-Keuls multiple comparison test: Padrecocha versus
Belen market, p , 0.001; Padrecocha versus Belen living area, p , 0.01;
Belen market area versus Belen living area, p . 0.05.
DOI: 10.1371/journal.pmed.0030308.g003

Figure 4. Comparison of Leptospiral Counts in the Belen Living Area,

According to Water Source

Means and 95% CIs are shown. Open gutters and river samples showed
significantly higher bacterial counts than the samples from puddles and
underground sources (unpaired t-test with Welch’s correction: t¼ 2.284,
p , 0.05).
DOI: 10.1371/journal.pmed.0030308.g004
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previously detected in Peru (isolates CEH006 and MMD1100),
and an uncultured leptospire detected previously in a patient
dying from severe leptospirosis (HAI332) [10]. CEH006 was
isolated from Rattus norvegicus in Belen while clone MMD1100
was only detected by PCR in the kidney of a bat (Uroderma
bilobatum) collected near the village of Varillal 15 km from
Iquitos [24]. Consistent with these findings, we have recently
obtained 16S rRNA gene sequencing data from more than 20
isolates obtained from cattle and pigs from the Iquitos region.
These data indicate that L. santarosai is the predominant
infecting species of these livestock, while L. interrogans
predominantly is found in peridomestic Rattus rat species
(MAM, CBC, CAG, and JMV, unpublished data).

Clones that clustered within the pathogen-related group
were significantly more likely to be recovered from Belen
than in rural sites (p ¼ 0.013, Fisher’s exact test) (Table 3).
Three 16S rRNA gene sequences from water samples
(BEL25MA2, BEL18MA2, and BEL02LA2) were identical to
those of human isolates (HAI024, HAI188, HAI645, and
HAI725). These human isolates were typed as L. interrogans
serovar Icterohaemorrhagiae.

Discussion

We describe a new approach to identifying and quantifying
pathogen-related leptospires in environmental water sources.
A quantitative molecular and taxonomical method based on
combining real-time reverse transcriptase PCR and DNA
sequencing provided an important measure of human risk
both for acquiring leptospirosis and for developing severe
disease. Urban slums in Iquitos, Peru had high concentrations
of pathogenic Leptospira and L. interrogans-type leptospires in
surface waters such as those found in the market area and
along the riverfront. In contrast, a rural area near Iquitos had
lower concentrations of pathogenic Leptospira in surface
waters such as wells. These Leptospira were less likely than
those in the urban environment to be L. interrogans (the more
highly pathogenic species). The concentration and species of
leptospires in the water sources correlated with risk of severe
human leptospirosis.
The outcome of human infection by Leptospira can be

divided into host and microbiological factors. Different
genetic backgrounds, for example, containing mutations
altering the major histocompatibility complex [25] or innate

Figure 5. Padrecocha Sequential Sampling

A total of 17 wells and six stream sampling points were tested over time. Filled boxes indicate PCR-positivity on that day (A). Bars indicate percentage of
positivity of wells and stream sampled points for each tested day (B). The streams had a statistically significant higher frequency of positivity over time
than the wells (v2¼ 133.74, p , 0.001). NS, not sampled.
DOI: 10.1371/journal.pmed.0030308.g005
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immunity [26] might modulate outcome of human infection.
Virulence factors of Leptospira may differ among infecting
strains, and which ones may be variably expressed in different
mammalian hosts [27] are important factors likely to
modulate outcome of infection. Here we show that the type
and quantity of leptospires in surface waters that are
potential sources of human infection are also related to the
outcome of infection. This approach to the identification of
uncultivated pathogens in environmental surface waters may
be applicable to assessing risk for other water-borne
infectious diseases such as salmonellosis, shigellosis, tular-
emia, and cryptosporidiosis.

We used molecular taxonomical approaches to directly link
both the concentration and the species of pathogen-related
Leptospira in environmental surface waters to the types of
Leptospira that infect humans. We found that L. interrogans
species, more commonly associated with severe human
leptospirosis, were found significantly more often in urban
than in rural environmental water sources where species
other than L. interrogans, such as L. santarosai (associated with
pigs and cattle) and intermediately pathogenic Leptospira spp.
(of uncertain mammalian reservoirs) predominated. This
differential distribution of leptospiral sequences in environ-
mental water sources mirrored that of human isolates from
urban and rural settings. We interpret these data to indicate
that one important factor determining the risk of severe
human leptospirosis, together with pathogen-host immune
interactions, is both leptospiral species and concentration of
pathogen-related Leptospira present in environmental surface
waters. These findings are important because these factors
are targets amenable to public health intervention, more so
than bacterial or host factors. After validation in other
settings and on a larger scale, the molecular identification
and quantification of Leptospira in environmental water
samples may be useful for guiding environmental remedia-
tion to prevent leptospirosis in endemic regions.

Epidemiological approaches to identifying risk factors for

acquiring leptospirosis have traditionally focused on assess-
ing potential zoonotic reservoirs, behavioral risk factors, and
various sociodemographic features of human populations.
While other investigators in the past have sought to identify
pathogen-related leptospires in environmental sources using
culture techniques, this approach has proven to be difficult
and unreliable, being hindered in two ways: (1) saprophytic
leptospires predominate in the environment that are
morphologically similar to pathogen-related Leptospira but
grow faster; and (2) the culture methods for identifying
pathogen-related Leptospira are laborious, time-consuming,
and insensitive. However, while DNA amplification techni-
ques have been published and used for diagnosis of
leptospirosis, they cannot identify all the leptospiral serovars
in one reaction nor distinguish leptospiral species.
In both urban and rural settings, anthropogenic influences

on ecology and environment seem to drive leptospiral
transmission to humans. The quantification of leptospiral
DNA copies in the water samples tested shows that in the
living area of Belen, gutter and stagnant river water samples
had higher concentrations of leptospires than did rainwater
collection and underground water sources. This finding can
be explained by the presence of chronically infected rodents,
dogs, and pigs contaminating these water sources, as opposed
to the underground sources, which are often protected from
animal contact. In rural Padrecocha, the freshwater stream
samples were positive most of the time compared to the
freshwater well samples. This may be explained by the fact
that many inhabitants use chlorine for water decontamina-
tion and detergent and soap for clothes washing and bathing
near the wells; leptospires are inhibited at low detergent
concentrations [11]. Alternatively, it is possible that the
Leptospira-negative wells were relatively protected from
environmental runoff, thus avoiding higher level contami-
nation from animal urine. The high and persistent positivity
of the freshwater streams (especially in the stream that runs

Table 2. Distribution of L. interrogans Strains with Location

Location Type L. interrogans Othera Total

Urban/periurban 9 3 12

Rural 2 7 9

Total 11 10 21

The relative proportion of L. interrogans serovars varied significantly with location (Fisher’s
exact test; p¼ 0.03).
aIncludes leptospiral genomospecies L. noguchii, L. santarosai, and L. genomospecies 1/L.
meyeri.
DOI: 10.1371/journal.pmed.0030308.t002

Table 3. Distribution of Pathogenic Versus Saprophytic/Inter-
mediate Leptospiral Strains by Location

Location Pathogens Othera Total

Belen 5 11 16

Padrecocha 0 19 19

Total 5 30 35

Clones that clustered within the pathogenic group were significantly more likely to be
recovered from Belen than elsewhere (Fisher’s exact test; p ¼ 0.013).
aIncludes strains that cluster within the saprophytic (1) and intermediate leptospiral (29)
subgroups (Figure 6).
DOI: 10.1371/journal.pmed.0030308.t003

Figure 6. Phylogenetic Analysis of Leptospiral 16s rRNA Gene Sequences

Sequences represent human isolates and clones from environmental water samples obtained during a prospective study of leptospirosis in Peru using a
Bayesian approach. The top cluster (A) comprises strains of the most pathogenic leptospiral species; also included are intermediates (B), the new clade
(Clade C) (C), and saprophytes (D). Numbers at each node represent the posterior probability of the given node. Nodes without support values had less
than 50% posterior probability, but are consistent with the overall branching of the tree. BEL indicates isolates obtained from patients seen in Belen, a
busy riverside market community frequented by Rattus spp.; HAI indicates isolates obtained from patients seen at the Hospital de Apoyo; both are
within the urban/periurban center of Iquitos (highlighted in red). Human isolates from rural areas (green) have been designated MOR (Moralillo), VAR
(Varillal), and ZUN (Zungarococha) consistent with the location of the villages at which the patients were seen and the cultures obtained. Clones from
water samples from Belen have been designated BEL (LA, living area; MA, market area), and samples from Padrecocha as PAD. Nodes highlighted with
an asterisk (*) have support values less than 50%, but are consistent with the overall branching of the tree. Padrecocha is a rural area with a significantly
lower rat population density but with many pigs roaming free.
DOI: 10.1371/journal.pmed.0030308.g006
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through the village) may be due to the presence of cattle and
pig farms and also of wild mammals along the streams. These
findings are also important because they can explain the
persistent sources of transmission in these populations;
activities of daily living are strongly linked to water exposure
(fishing, bathing, clothes washing, etc.).

In a previous cross-sectional study, the prevalence of anti-
leptospiral antibodies was found to be significantly higher in
residents of Belen (28%) than in rural areas near Iquitos
(17%) [10]. This observation suggests the possibility that
protective immunity against severe disease from repeated
infection may develop in areas with high leptospirosis
transmission, especially if high frequency of infection leads
to cross-serovar protection. These findings are also consistent
with the finding that most of the cases of severe leptospirosis
seen in Iquitos come from urban districts of the city rather
than from periurban slums such as Belen or rural areas such
as Padrecocha [9]. Such possibilities need to be tested in
prospective, population-based studies of acquired immunity
to symptomatic leptospirosis.

This study had several limitations. First, because of
technical limitations in leptospiral cultivation, we were not
able to identify leptospiral serovars in the water samples.
Second, the real-time PCR assay used in this study, previously
reported to be specific for the detection of pathogen-related
Leptospira [23], is not as specific as previously reported—we
were able to identify noncultivated leptospires of unknown
pathogenicity. In fact, we were able to identify new Leptospira
of unknown pathogenicity, since none has yet been identified
in mammals. We have provisionally termed this group of
Leptospira ‘‘clade C.’’ Because these clade C sequences were
mostly found in rural settings, this quantitative real-time PCR
cross-reactivity problem does not invalidate the basic finding
of higher densities of pathogens in ground water from urban
settings. Our data do confirm published reports, in that all
positive samples we identified were confirmed by sequencing,
even those samples that had high Ct values beyond the limit
of detection in the standard curve (low leptospiral counts
considered as suspicious [unpublished data]). Other problems
with this methodology are expense and availability of the
equipment. However, the advantages of this method make
possible the study of large areas in a short period of time,
such as we studied here, allowing for the rapid deployment of
environmental risk assessment in endemic regions, partic-
ularly in the setting of epidemics. Finally, we did not use high-
throughput sequencing of 16S rRNA gene fragments to
provide a large-scale representation of leptospiral sequences
in the water samples. Such a study is ongoing.

Identifying the strains present in environmental water
samples may provide insight into the relevance of local
mammal species to the dissemination of leptospires and
occurrence of human leptospirosis in Iquitos. For example,
most strains sequenced from Padrecocha belonged to
possibly new intermediate leptospiral species (MAM, JN
Ricaldi, and JMV, unpublished data). 16S rRNA gene
sequences found in water sources have also been detected
in cattle, pigs, and bats, suggesting that in this rural setting,
these animals may contribute to human leptospirosis (CBC,
MAM, and JMV, unpublished data). In Belen, where rat
populations are dense, we detected 16S rDNA gene sequences
similar to several different L. interrogans serovars. Rats
common in Belen (R. norvegicus and R. rattus) carry L.

interrogans with identical 16S rDNA gene sequences (unpub-
lished data), suggesting the potential importance of these
animals to the transmission of leptospirosis in the area. In
addition, of 21 cases of leptospirosis recorded among patients
from urban and periurban Iquitos and outlying rural areas,
we noted that L. interrogans clones were detected almost
exclusively in urban/periurban habitats, while clones from
rural areas significantly comprised other leptospiral genomo-
species, including L. santarosai and L. noguchii, which have
been shown to be carried by cattle and wildlife reservoirs
(CBC, MAM, and JMV, unpublished data). Furthermore, in
this study, L. interrogans was found to be the primary cause of
severe leptospirosis in Iquitos [9]. Taken together, these
observations suggest that real-time detection and sequencing
are potentially useful for determining the significance of local
reservoirs of leptospires, and that an association with rats is a
significant risk factor for acquiring severe leptospirosis in
Iquitos.
Leptospirosis continues to be overlooked globally as a

major public health threat. Not only does leptospirosis have
highly variable, nonspecific clinical presentations, but diag-
nosis is difficult and requires a high index of suspicion
particularly with regard to potential environmental exposure.
In the Amazon region of Peru, leptospirosis is an important
cause of morbidity and mortality. More effective, timely, and
efficient methods need to be deployed for rapid clinical
diagnosis and for environmental risk assessment. PCR-based
detection and identification of leptospiral DNA, which avoid
the problems inherent to isolation of fastidious organisms
from contaminated sources, can be useful for assessing and
monitoring risk of human populations to Leptospira-contami-
nated water. The methodologies presented here need to be
validated further in prospective studies in different regions of
the world where leptospirosis is common. The researchers
conducting these studies should provide their data to
Ministries of Health and policy-making agencies critical for
justifying public health and occupational medicine cam-
paigns to control leptospirosis transmission. General health
promotion should also continue to use common-sense
strategies such as wearing shoes and eliminating trash from
the home and local environments.
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Accession Numbers
The new leptospiral sequences described in this paper have been

deposited in GenBank (http://www.ncbi.nlm.nih.gov) under the
following accession numbers: BEL012LA_1_(DQ522176); BEL012-
MA_1 (DQ522177); BEL018MA2_1 (DQ522178); BEL018MA2_2
(DQ522179); BEL020MA3_1 (DQ522180); BEL020MA3_2
(DQ522181) ; BEL022LA2_1 (DQ522182) ; BEL022LA_1
(DQ522183); BEL025MA2_1 (DQ522184); BEL02LA2_1
(DQ522185); BEL02LA2_2 (DQ522186); BEL03PS_1 (DQ522187);
BEL044LA2_1 (DQ522188); BEL044LA2_2 (DQ522189); BEL08-
MA_1 (DQ522190); BEL09MA_3 (DQ522191); BEL041LA2
(DQ522192); BEL050 (DQ522193); CEH006_1 (DQ522194); HAI156
(DQ522195); HAI024 (DQ522196); HAI029 (DQ522197); HAI056
(DQ522198); HAI134 (DQ522199); HAI188 (DQ522200); HAI257
(DQ522201); HAI645 (DQ522202); HAI725 (DQ522203); MOR069
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(DQ522204); MOR084EF (DQ522205); MOR173F (DQ522206);
MOR176U (DQ522207); MOR84GUF (DQ522208); PAD01_1
(DQ522209); PAD01_2 (DQ522210); PAD01_3 (DQ522211);
PAD029J_2 (DQ522212); PAD02_1 (DQ522213); PAD07J_1
(DQ522214); PAD07J_2 (DQ522215); PAD08B_2 (DQ522216);
PAD39J_1 (DQ522217); PAD55A_2 (DQ522218); PAD55B_2
(DQ522219); PAD56_1 (DQ522220); PAD63I_1 (DQ522221);
PAD68D_2 (DQ522222); PAD81J_1 (DQ522223); PAD82D_1
(DQ522224); PAD84B_1 (DQ522225); PAD84D_1 (DQ522226);
VAR010 (DQ522227); VAR011 (DQ522228); VAR033 (DQ522229);
ZUN179A1 (DQ522230); BEL033 (DQ522231); BEL039 (DQ522232).
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Editors’ Summary

Background. Humans catch many diseases from animals—so-called
zoonotic infections. Often, these occur in limited regions of the world.
However, one—leptospirosis—occurs in temperate and tropical climates,
and in urban and rural settings, making it the most widespread zoonotic
disease. Leptospirosis is caused by Leptospira, a large group of closely
related spiral-shaped bacteria that live in both domestic animals (for
example, cattle) and wild animals (particularly rats). Millions of humans
become infected each year with leptospires through close contact with
water, food, or soil contaminated with the urine of infected animals—
swimming or wading in contaminated water is particularly hazardous.
Some infected people have no symptoms; others develop a flu-like
disease that clears up within a few days. However, in 5%–10% of infected
people, the disease progresses to a second, sometimes fatal phase. This
is usually characterized by jaundice, kidney problems, and an enlarged
spleen (it’s then called Weil disease) but can also involve the lungs
(pulmonary leptospirosis). Leptospirosis can be successfully treated with
antibiotics if treatment is started soon after infection.

Why Was This Study Done? In a recent study in the Peruvian Amazon,
half of the people visiting urban hospitals and rural health posts with
acute fever had antibodies in their blood to Leptospira, suggesting that
they had acute leptospirosis. However, only patients living in urban areas
developed pulmonary leptospirosis. In this study, the researchers tested
the hypothesis that this pattern arose because more virulent types of
Leptospira were present at higher levels in urban environmental surface
water than in rural water sources.

What Did the Researchers Do and Find? Between June 2003 and
March 2004, the researchers isolated strains of Leptospira from patients
with acute fever who visited a hospital in the town of Iquitos or clinics in
nearby villages. Early in 2004, they also collected a large number of
different water samples from an urban slum in Iquitos and from a nearby
rural community. They measured the concentrations of Leptospira in
these samples by using a molecular technique called real-time PCR
(polymerase chain reaction) to detect and quantify a type of RNA found
only in disease-causing Leptospira. They also identified which specific
Leptospira were present in the water samples and the patient samples by
sequencing this RNA. The researchers found that leptospires were
present in both urban and rural water samples (particularly in samples
from gutters and puddles in the urban slum’s market area) but that their
concentration in the positive water samples from the urban sites was 20
times that in the positive samples from the rural sites. Furthermore, the

distribution of different Leptospira types isolated from the patients
mirrored that of the bacteria in the local environment. So, one particular
type of Leptospira interrogans known as icterohaemorrhagiae—the
leptospire most commonly associated with severe leptospirosis in the
patients—was found more often in the urban water samples than in the
rural ones. Finally, the researchers discovered a new group of Leptospira
in the rural environment. This group may contain one or several new
species of Leptospira but whether any of them causes human disease is
unknown.

What Do These Findings Mean? These results support the researchers’
hypothesis that pulmonary leptospirosis in urban areas of the Peruvian
Amazon is associated with high environmental levels of specific disease-
causing leptospires. The researchers were able to discover this link only
by using molecular techniques—this sort of study is impossible with
traditional bacteriological techniques because Leptospira are hard to
grow in the laboratory and cannot be isolated efficiently from environ-
mental water sources. Different types can’t be identified using a
microscope. The researchers’ findings need to be validated in other
settings, but they suggest that environmental interventions such as
reducing sources of standing water and clearing away garbage in urban
areas might reduce the number of cases of severe leptospirosis. The
distribution of different Leptospira types also suggests that whereas rats
may be the main disease reservoir in towns, cattle, pigs, and bats may be
more important in rural settings in Peru and presumably elsewhere.
Overall, this new information, together with the availability of molecular
methods for rapid clinical diagnosis and environmental risk assessment,
should aid attempts to control leptospirosis around the world.

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/10.1371/journal.pmed.
0030308.
� US Centers for Disease Control and Prevention, information for

patients and professionals on leptospirosis
� The Leptospirosis Information Center, information and advice on

human leptospirosis for the public and medical professionals
� MedlinePlus encyclopedia entry on leptospirosis
� NHS Direct Online, patient information on leptospirosis from the UK

National Health Service online encyclopedia
� Wikipedia pages on leptospirosis (note: Wikipedia is a free online

encyclopedia that anyone can edit)
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